
PostgreSQL 9.2.7 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.2.7 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2014 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2014 by the PostgreSQL Global Development Group.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents
Preface ... lxiii

1. What is PostgreSQL? .. lxiii
2. A Brief History of PostgreSQL..lxiv

2.1. The Berkeley POSTGRES Project ..lxiv
2.2. Postgres95...lxv
2.3. PostgreSQL...lxv

3. Conventions... lxvi
4. Further Information... lxvi
5. Bug Reporting Guidelines.. lxvii

5.1. Identifying Bugs .. lxvii
5.2. What to Report ... lxviii
5.3. Where to Report Bugs ..lxx

I. Tutorial ..1
1. Getting Started ...1

1.1. Installation ...1
1.2. Architectural Fundamentals...1
1.3. Creating a Database...2
1.4. Accessing a Database ..3

2. The SQL Language ..6
2.1. Introduction ...6
2.2. Concepts ..6
2.3. Creating a New Table ..6
2.4. Populating a Table With Rows ..7
2.5. Querying a Table ...8
2.6. Joins Between Tables...10
2.7. Aggregate Functions..12
2.8. Updates ..14
2.9. Deletions..14

3. Advanced Features ...16
3.1. Introduction ...16
3.2. Views ...16
3.3. Foreign Keys..16
3.4. Transactions...17
3.5. Window Functions...19
3.6. Inheritance ...22
3.7. Conclusion...24

II. The SQL Language...25
4. SQL Syntax ..27

4.1. Lexical Structure..27
4.1.1. Identifiers and Key Words...27
4.1.2. Constants...29

4.1.2.1. String Constants ...29
4.1.2.2. String Constants with C-style Escapes...29
4.1.2.3. String Constants with Unicode Escapes...31
4.1.2.4. Dollar-quoted String Constants ..32

iii

4.1.2.5. Bit-string Constants..33
4.1.2.6. Numeric Constants ...33
4.1.2.7. Constants of Other Types ...33

4.1.3. Operators...34
4.1.4. Special Characters...35
4.1.5. Comments ...35
4.1.6. Operator Precedence ...36

4.2. Value Expressions..37
4.2.1. Column References...38
4.2.2. Positional Parameters..38
4.2.3. Subscripts..38
4.2.4. Field Selection ..39
4.2.5. Operator Invocations...40
4.2.6. Function Calls ...40
4.2.7. Aggregate Expressions..40
4.2.8. Window Function Calls...42
4.2.9. Type Casts ...43
4.2.10. Collation Expressions ...44
4.2.11. Scalar Subqueries..45
4.2.12. Array Constructors..45
4.2.13. Row Constructors..47
4.2.14. Expression Evaluation Rules ..48

4.3. Calling Functions...49
4.3.1. Using Positional Notation ...50
4.3.2. Using Named Notation ...50
4.3.3. Using Mixed Notation...51

5. Data Definition ...52
5.1. Table Basics...52
5.2. Default Values ...53
5.3. Constraints ...54

5.3.1. Check Constraints ...54
5.3.2. Not-Null Constraints...56
5.3.3. Unique Constraints..57
5.3.4. Primary Keys...58
5.3.5. Foreign Keys ...59
5.3.6. Exclusion Constraints ...61

5.4. System Columns..62
5.5. Modifying Tables...63

5.5.1. Adding a Column..64
5.5.2. Removing a Column ...64
5.5.3. Adding a Constraint ..64
5.5.4. Removing a Constraint ...65
5.5.5. Changing a Column’s Default Value...65
5.5.6. Changing a Column’s Data Type ..66
5.5.7. Renaming a Column ...66
5.5.8. Renaming a Table ...66

5.6. Privileges ...66
5.7. Schemas...67

iv

5.7.1. Creating a Schema ..68
5.7.2. The Public Schema ...69
5.7.3. The Schema Search Path...69
5.7.4. Schemas and Privileges...70
5.7.5. The System Catalog Schema ..70
5.7.6. Usage Patterns...71
5.7.7. Portability..71

5.8. Inheritance ...72
5.8.1. Caveats ..75

5.9. Partitioning ..75
5.9.1. Overview...75
5.9.2. Implementing Partitioning ..76
5.9.3. Managing Partitions ..79
5.9.4. Partitioning and Constraint Exclusion ..80
5.9.5. Alternative Partitioning Methods..81
5.9.6. Caveats ..82

5.10. Foreign Data ..83
5.11. Other Database Objects ...83
5.12. Dependency Tracking..84

6. Data Manipulation..86
6.1. Inserting Data ..86
6.2. Updating Data..87
6.3. Deleting Data...88

7. Queries ...89
7.1. Overview ...89
7.2. Table Expressions ..89

7.2.1. The FROM Clause...90
7.2.1.1. Joined Tables ..90
7.2.1.2. Table and Column Aliases..94
7.2.1.3. Subqueries ..95
7.2.1.4. Table Functions ..95

7.2.2. The WHERE Clause...96
7.2.3. The GROUP BY and HAVING Clauses..97
7.2.4. Window Function Processing ...99

7.3. Select Lists...100
7.3.1. Select-List Items ...100
7.3.2. Column Labels ..101
7.3.3. DISTINCT ...101

7.4. Combining Queries..102
7.5. Sorting Rows ...102
7.6. LIMIT and OFFSET..103
7.7. VALUES Lists ...104
7.8. WITH Queries (Common Table Expressions) ..105

7.8.1. SELECT in WITH..105
7.8.2. Data-Modifying Statements in WITH ..109

8. Data Types..111
8.1. Numeric Types...112

8.1.1. Integer Types...113

v

8.1.2. Arbitrary Precision Numbers ..114
8.1.3. Floating-Point Types ...115
8.1.4. Serial Types...116

8.2. Monetary Types ...117
8.3. Character Types ...118
8.4. Binary Data Types ...120

8.4.1. bytea Hex Format..120
8.4.2. bytea Escape Format...121

8.5. Date/Time Types..122
8.5.1. Date/Time Input ..124

8.5.1.1. Dates...124
8.5.1.2. Times ..125
8.5.1.3. Time Stamps...126
8.5.1.4. Special Values ..127

8.5.2. Date/Time Output ...128
8.5.3. Time Zones ...129
8.5.4. Interval Input...130
8.5.5. Interval Output ..132

8.6. Boolean Type...133
8.7. Enumerated Types ...134

8.7.1. Declaration of Enumerated Types...134
8.7.2. Ordering ..134
8.7.3. Type Safety ...135
8.7.4. Implementation Details...136

8.8. Geometric Types..136
8.8.1. Points ..137
8.8.2. Line Segments...137
8.8.3. Boxes...137
8.8.4. Paths..137
8.8.5. Polygons..138
8.8.6. Circles ...138

8.9. Network Address Types...138
8.9.1. inet ..139
8.9.2. cidr ..139
8.9.3. inet vs. cidr...140
8.9.4. macaddr ...140

8.10. Bit String Types ...141
8.11. Text Search Types..141

8.11.1. tsvector ...141
8.11.2. tsquery ...143

8.12. UUID Type ..144
8.13. XML Type ...145

8.13.1. Creating XML Values ...145
8.13.2. Encoding Handling ...146
8.13.3. Accessing XML Values...147

8.14. JSON Type...147
8.15. Arrays ..147

8.15.1. Declaration of Array Types...148

vi

8.15.2. Array Value Input..148
8.15.3. Accessing Arrays ..150
8.15.4. Modifying Arrays..152
8.15.5. Searching in Arrays...154
8.15.6. Array Input and Output Syntax...155

8.16. Composite Types ...156
8.16.1. Declaration of Composite Types...156
8.16.2. Composite Value Input..157
8.16.3. Accessing Composite Types ...158
8.16.4. Modifying Composite Types...159
8.16.5. Composite Type Input and Output Syntax..159

8.17. Range Types ..160
8.17.1. Built-in Range Types ..161
8.17.2. Examples...161
8.17.3. Inclusive and Exclusive Bounds ...161
8.17.4. Infinite (Unbounded) Ranges..162
8.17.5. Range Input/Output...162
8.17.6. Constructing Ranges ...163
8.17.7. Discrete Range Types ...164
8.17.8. Defining New Range Types ..164
8.17.9. Indexing ..165
8.17.10. Constraints on Ranges...165

8.18. Object Identifier Types ..166
8.19. Pseudo-Types...168

9. Functions and Operators ..170
9.1. Logical Operators ..170
9.2. Comparison Operators...170
9.3. Mathematical Functions and Operators...172
9.4. String Functions and Operators ...176
9.5. Binary String Functions and Operators ...191
9.6. Bit String Functions and Operators ...193
9.7. Pattern Matching ...194

9.7.1. LIKE ..194
9.7.2. SIMILAR TO Regular Expressions ...195
9.7.3. POSIX Regular Expressions ...196

9.7.3.1. Regular Expression Details ..200
9.7.3.2. Bracket Expressions ...202
9.7.3.3. Regular Expression Escapes...203
9.7.3.4. Regular Expression Metasyntax...206
9.7.3.5. Regular Expression Matching Rules ..207
9.7.3.6. Limits and Compatibility ...208
9.7.3.7. Basic Regular Expressions ...209

9.8. Data Type Formatting Functions ...209
9.9. Date/Time Functions and Operators..216

9.9.1. EXTRACT, date_part ..220
9.9.2. date_trunc ...224
9.9.3. AT TIME ZONE...225
9.9.4. Current Date/Time ..226

vii

9.9.5. Delaying Execution...227
9.10. Enum Support Functions ...228
9.11. Geometric Functions and Operators ..229
9.12. Network Address Functions and Operators...233
9.13. Text Search Functions and Operators ..235
9.14. XML Functions ...239

9.14.1. Producing XML Content...239
9.14.1.1. xmlcomment ..240
9.14.1.2. xmlconcat ..240
9.14.1.3. xmlelement ..241
9.14.1.4. xmlforest ..242
9.14.1.5. xmlpi ...243
9.14.1.6. xmlroot...243
9.14.1.7. xmlagg ...243

9.14.2. XML Predicates ..244
9.14.2.1. IS DOCUMENT ..244
9.14.2.2. XMLEXISTS ..244
9.14.2.3. xml_is_well_formed ...245

9.14.3. Processing XML ...246
9.14.4. Mapping Tables to XML...247

9.15. JSON Functions...251
9.16. Sequence Manipulation Functions ..251
9.17. Conditional Expressions..253

9.17.1. CASE ..254
9.17.2. COALESCE ...255
9.17.3. NULLIF..256
9.17.4. GREATEST and LEAST...256

9.18. Array Functions and Operators ...256
9.19. Range Functions and Operators...259
9.20. Aggregate Functions..261
9.21. Window Functions...265
9.22. Subquery Expressions ...267

9.22.1. EXISTS..267
9.22.2. IN ..267
9.22.3. NOT IN..268
9.22.4. ANY/SOME ..269
9.22.5. ALL ..269
9.22.6. Row-wise Comparison..270

9.23. Row and Array Comparisons ..270
9.23.1. IN ..270
9.23.2. NOT IN..271
9.23.3. ANY/SOME (array) ..271
9.23.4. ALL (array) ..271
9.23.5. Row-wise Comparison..272

9.24. Set Returning Functions ..273
9.25. System Information Functions ..275
9.26. System Administration Functions ...286

9.26.1. Configuration Settings Functions..286

viii

9.26.2. Server Signalling Functions..287
9.26.3. Backup Control Functions ..288
9.26.4. Recovery Control Functions ...290
9.26.5. Snapshot Synchronization Functions..292
9.26.6. Database Object Management Functions..293
9.26.7. Generic File Access Functions..295
9.26.8. Advisory Lock Functions..296

9.27. Trigger Functions ..298
10. Type Conversion...299

10.1. Overview ...299
10.2. Operators ...300
10.3. Functions ...303
10.4. Value Storage...306
10.5. UNION, CASE, and Related Constructs...307

11. Indexes ...310
11.1. Introduction ...310
11.2. Index Types..311
11.3. Multicolumn Indexes...313
11.4. Indexes and ORDER BY..314
11.5. Combining Multiple Indexes ...315
11.6. Unique Indexes ..316
11.7. Indexes on Expressions ...316
11.8. Partial Indexes ...317
11.9. Operator Classes and Operator Families ...319
11.10. Indexes and Collations...321
11.11. Examining Index Usage...321

12. Full Text Search ...323
12.1. Introduction ...323

12.1.1. What Is a Document?..324
12.1.2. Basic Text Matching ...325
12.1.3. Configurations...326

12.2. Tables and Indexes...326
12.2.1. Searching a Table ..326
12.2.2. Creating Indexes ...327

12.3. Controlling Text Search...328
12.3.1. Parsing Documents ...329
12.3.2. Parsing Queries ...330
12.3.3. Ranking Search Results ..331
12.3.4. Highlighting Results ...333

12.4. Additional Features ...335
12.4.1. Manipulating Documents..335
12.4.2. Manipulating Queries..336

12.4.2.1. Query Rewriting ...336
12.4.3. Triggers for Automatic Updates ...338
12.4.4. Gathering Document Statistics ...339

12.5. Parsers..340
12.6. Dictionaries..342

12.6.1. Stop Words..343

ix

12.6.2. Simple Dictionary ...344
12.6.3. Synonym Dictionary ...345
12.6.4. Thesaurus Dictionary ..347

12.6.4.1. Thesaurus Configuration ..348
12.6.4.2. Thesaurus Example ..348

12.6.5. Ispell Dictionary..349
12.6.6. Snowball Dictionary ...350

12.7. Configuration Example..351
12.8. Testing and Debugging Text Search ..352

12.8.1. Configuration Testing..353
12.8.2. Parser Testing..355
12.8.3. Dictionary Testing...356

12.9. GiST and GIN Index Types ...357
12.10. psql Support...358
12.11. Limitations...361
12.12. Migration from Pre-8.3 Text Search..361

13. Concurrency Control ..363
13.1. Introduction ...363
13.2. Transaction Isolation ...363

13.2.1. Read Committed Isolation Level ..364
13.2.2. Repeatable Read Isolation Level...365
13.2.3. Serializable Isolation Level...366

13.3. Explicit Locking ..369
13.3.1. Table-level Locks ..369
13.3.2. Row-level Locks ...371
13.3.3. Deadlocks..372
13.3.4. Advisory Locks...373

13.4. Data Consistency Checks at the Application Level...374
13.4.1. Enforcing Consistency With Serializable Transactions374
13.4.2. Enforcing Consistency With Explicit Blocking Locks375

13.5. Locking and Indexes..376
14. Performance Tips ...377

14.1. Using EXPLAIN ...377
14.1.1. EXPLAIN Basics ..377
14.1.2. EXPLAIN ANALYZE ..383
14.1.3. Caveats ..386

14.2. Statistics Used by the Planner ...387
14.3. Controlling the Planner with Explicit JOIN Clauses...389
14.4. Populating a Database ...391

14.4.1. Disable Autocommit ...391
14.4.2. Use COPY...391
14.4.3. Remove Indexes ..391
14.4.4. Remove Foreign Key Constraints ...392
14.4.5. Increase maintenance_work_mem ...392
14.4.6. Increase checkpoint_segments ...392
14.4.7. Disable WAL Archival and Streaming Replication ..392
14.4.8. Run ANALYZE Afterwards...393
14.4.9. Some Notes About pg_dump..393

x

14.5. Non-Durable Settings ..394

III. Server Administration ..395
15. Installation from Source Code ...397

15.1. Short Version ...397
15.2. Requirements...397
15.3. Getting The Source..399
15.4. Installation Procedure..399
15.5. Post-Installation Setup...409

15.5.1. Shared Libraries ..410
15.5.2. Environment Variables ..410

15.6. Supported Platforms ..411
15.7. Platform-specific Notes ...412

15.7.1. AIX ...412
15.7.1.1. GCC Issues...412
15.7.1.2. Unix-Domain Sockets Broken..413
15.7.1.3. Internet Address Issues...413
15.7.1.4. Memory Management ..414

References and Resources ...415
15.7.2. Cygwin..415
15.7.3. HP-UX ..416
15.7.4. IRIX ..417
15.7.5. MinGW/Native Windows ...417

15.7.5.1. Collecting Crash Dumps on Windows ...418
15.7.6. SCO OpenServer and SCO UnixWare..418

15.7.6.1. Skunkware ..418
15.7.6.2. GNU Make ...418
15.7.6.3. Readline..419
15.7.6.4. Using the UDK on OpenServer..419
15.7.6.5. Reading the PostgreSQL Man Pages..419
15.7.6.6. C99 Issues with the 7.1.1b Feature Supplement419
15.7.6.7. Threading on UnixWare ...420

15.7.7. Solaris ...420
15.7.7.1. Required Tools ...420
15.7.7.2. Problems with OpenSSL ..420
15.7.7.3. configure Complains About a Failed Test Program420
15.7.7.4. 64-bit Build Sometimes Crashes ..421
15.7.7.5. Compiling for Optimal Performance..421
15.7.7.6. Using DTrace for Tracing PostgreSQL..421

16. Installation from Source Code on Windows ..423
16.1. Building with Visual C++ or the Microsoft Windows SDK..423

16.1.1. Requirements ..424
16.1.2. Special Considerations for 64-bit Windows ...425
16.1.3. Building ..426
16.1.4. Cleaning and Installing ...426
16.1.5. Running the Regression Tests ...427
16.1.6. Building the Documentation ...427

16.2. Building libpq with Visual C++ or Borland C++..428

xi

16.2.1. Generated Files ...428
17. Server Setup and Operation ...429

17.1. The PostgreSQL User Account ...429
17.2. Creating a Database Cluster ..429

17.2.1. Network File Systems ...430
17.3. Starting the Database Server..431

17.3.1. Server Start-up Failures ..432
17.3.2. Client Connection Problems ...433

17.4. Managing Kernel Resources..433
17.4.1. Shared Memory and Semaphores ...434
17.4.2. Resource Limits ..440
17.4.3. Linux Memory Overcommit ...440

17.5. Shutting Down the Server..442
17.6. Upgrading a PostgreSQL Cluster ..443

17.6.1. Upgrading Data via pg_dump...443
17.6.2. Non-Dump Upgrade Methods...445

17.7. Preventing Server Spoofing ...445
17.8. Encryption Options..445
17.9. Secure TCP/IP Connections with SSL ..447

17.9.1. Using Client Certificates ...448
17.9.2. SSL Server File Usage ..448
17.9.3. Creating a Self-signed Certificate ...449

17.10. Secure TCP/IP Connections with SSH Tunnels ..449
17.11. Registering Event Log on Windows..450

18. Server Configuration ..452
18.1. Setting Parameters ...452

18.1.1. Parameter Names and Values..452
18.1.2. Setting Parameters via the Configuration File ..452
18.1.3. Other Ways to Set Parameters...453
18.1.4. Examining Parameter Settings..453

18.2. File Locations ..454
18.3. Connections and Authentication..455

18.3.1. Connection Settings ..455
18.3.2. Security and Authentication..457

18.4. Resource Consumption..459
18.4.1. Memory...459
18.4.2. Disk ...461
18.4.3. Kernel Resource Usage...461
18.4.4. Cost-based Vacuum Delay ..462
18.4.5. Background Writer..463
18.4.6. Asynchronous Behavior..464

18.5. Write Ahead Log ...464
18.5.1. Settings..464
18.5.2. Checkpoints...468
18.5.3. Archiving ..468

18.6. Replication...469
18.6.1. Sending Server(s)..469
18.6.2. Master Server ..470

xii

18.6.3. Standby Servers ..471
18.7. Query Planning..472

18.7.1. Planner Method Configuration..473
18.7.2. Planner Cost Constants ...474
18.7.3. Genetic Query Optimizer..475
18.7.4. Other Planner Options...476

18.8. Error Reporting and Logging ..477
18.8.1. Where To Log ...478
18.8.2. When To Log ..480
18.8.3. What To Log ...482
18.8.4. Using CSV-Format Log Output ..485

18.9. Run-time Statistics...487
18.9.1. Query and Index Statistics Collector ..487
18.9.2. Statistics Monitoring...488

18.10. Automatic Vacuuming ...488
18.11. Client Connection Defaults ...490

18.11.1. Statement Behavior ...490
18.11.2. Locale and Formatting ..493
18.11.3. Other Defaults ...495

18.12. Lock Management ...496
18.13. Version and Platform Compatibility..497

18.13.1. Previous PostgreSQL Versions ...497
18.13.2. Platform and Client Compatibility..499

18.14. Error Handling...499
18.15. Preset Options..499
18.16. Customized Options ..501
18.17. Developer Options ...501
18.18. Short Options...504

19. Client Authentication ...506
19.1. The pg_hba.conf File ...506
19.2. User Name Maps ...512
19.3. Authentication Methods ..514

19.3.1. Trust Authentication ...514
19.3.2. Password Authentication ..514
19.3.3. GSSAPI Authentication ..515
19.3.4. SSPI Authentication..515
19.3.5. Kerberos Authentication ...516
19.3.6. Ident Authentication..518
19.3.7. Peer Authentication...518
19.3.8. LDAP Authentication ...519
19.3.9. RADIUS Authentication...520
19.3.10. Certificate Authentication ...521
19.3.11. PAM Authentication ...521

19.4. Authentication Problems ...522
20. Database Roles ...523

20.1. Database Roles ..523
20.2. Role Attributes...524
20.3. Role Membership ..525

xiii

20.4. Function and Trigger Security ...527
21. Managing Databases ..528

21.1. Overview ...528
21.2. Creating a Database...528
21.3. Template Databases ...529
21.4. Database Configuration ...530
21.5. Destroying a Database ...531
21.6. Tablespaces..531

22. Localization..534
22.1. Locale Support...534

22.1.1. Overview...534
22.1.2. Behavior ..535
22.1.3. Problems ...536

22.2. Collation Support...536
22.2.1. Concepts..537
22.2.2. Managing Collations...538

22.3. Character Set Support..539
22.3.1. Supported Character Sets..540
22.3.2. Setting the Character Set...542
22.3.3. Automatic Character Set Conversion Between Server and Client..................543
22.3.4. Further Reading ..546

23. Routine Database Maintenance Tasks..547
23.1. Routine Vacuuming ...547

23.1.1. Vacuuming Basics...547
23.1.2. Recovering Disk Space ...548
23.1.3. Updating Planner Statistics ...549
23.1.4. Updating The Visibility Map ..550
23.1.5. Preventing Transaction ID Wraparound Failures..550
23.1.6. The Autovacuum Daemon ..553

23.2. Routine Reindexing ...554
23.3. Log File Maintenance..554

24. Backup and Restore ...556
24.1. SQL Dump...556

24.1.1. Restoring the Dump ..557
24.1.2. Using pg_dumpall...557
24.1.3. Handling Large Databases ..558

24.2. File System Level Backup...559
24.3. Continuous Archiving and Point-in-Time Recovery (PITR).......................................560

24.3.1. Setting Up WAL Archiving...561
24.3.2. Making a Base Backup ...563
24.3.3. Making a Base Backup Using the Low Level API ...564
24.3.4. Recovering Using a Continuous Archive Backup ..565
24.3.5. Timelines...567
24.3.6. Tips and Examples ..568

24.3.6.1. Standalone Hot Backups ..568
24.3.6.2. Compressed Archive Logs ...569
24.3.6.3. archive_command Scripts ...569

24.3.7. Caveats ..570

xiv

25. High Availability, Load Balancing, and Replication..571
25.1. Comparison of Different Solutions..571
25.2. Log-Shipping Standby Servers..575

25.2.1. Planning ..575
25.2.2. Standby Server Operation ...576
25.2.3. Preparing the Master for Standby Servers ..576
25.2.4. Setting Up a Standby Server ...576
25.2.5. Streaming Replication...577

25.2.5.1. Authentication ..578
25.2.5.2. Monitoring..579

25.2.6. Cascading Replication ..579
25.2.7. Synchronous Replication ..579

25.2.7.1. Basic Configuration..580
25.2.7.2. Planning for Performance...581
25.2.7.3. Planning for High Availability ...581

25.3. Failover ..582
25.4. Alternative Method for Log Shipping ...583

25.4.1. Implementation ...584
25.4.2. Record-based Log Shipping..584

25.5. Hot Standby ...585
25.5.1. User’s Overview..585
25.5.2. Handling Query Conflicts ...587
25.5.3. Administrator’s Overview...589
25.5.4. Hot Standby Parameter Reference ..591
25.5.5. Caveats ..591

26. Recovery Configuration ...593
26.1. Archive Recovery Settings ..593
26.2. Recovery Target Settings ...594
26.3. Standby Server Settings...595

27. Monitoring Database Activity..596
27.1. Standard Unix Tools ..596
27.2. The Statistics Collector..597

27.2.1. Statistics Collection Configuration ...597
27.2.2. Viewing Collected Statistics ...597
27.2.3. Statistics Functions ...611

27.3. Viewing Locks...613
27.4. Dynamic Tracing ...613

27.4.1. Compiling for Dynamic Tracing...614
27.4.2. Built-in Probes ..614
27.4.3. Using Probes ...623
27.4.4. Defining New Probes ..623

28. Monitoring Disk Usage..626
28.1. Determining Disk Usage ...626
28.2. Disk Full Failure..627

29. Reliability and the Write-Ahead Log...628
29.1. Reliability ..628
29.2. Write-Ahead Logging (WAL) ...629
29.3. Asynchronous Commit..630

xv

29.4. WAL Configuration ...631
29.5. WAL Internals ...634

30. Regression Tests...635
30.1. Running the Tests ..635

30.1.1. Running the Tests Against a Temporary Installation635
30.1.2. Running the Tests Against an Existing Installation ..636
30.1.3. Additional Test Suites ...636
30.1.4. Locale and Encoding...637
30.1.5. Extra Tests...637
30.1.6. Testing Hot Standby..638

30.2. Test Evaluation ..638
30.2.1. Error Message Differences..639
30.2.2. Locale Differences ..639
30.2.3. Date and Time Differences ...640
30.2.4. Floating-Point Differences..640
30.2.5. Row Ordering Differences ..640
30.2.6. Insufficient Stack Depth..640
30.2.7. The “random” Test ..641
30.2.8. Configuration Parameters..641

30.3. Variant Comparison Files ..641
30.4. Test Coverage Examination...642

IV. Client Interfaces ..644
31. libpq - C Library ..646

31.1. Database Connection Control Functions ...646
31.1.1. Connection Strings..652

31.1.1.1. Keyword/Value Connection Strings ...652
31.1.1.2. Connection URIs ..652

31.1.2. Parameter Key Words ...653
31.2. Connection Status Functions ...657
31.3. Command Execution Functions ..661

31.3.1. Main Functions ...661
31.3.2. Retrieving Query Result Information ...668
31.3.3. Retrieving Other Result Information ..672
31.3.4. Escaping Strings for Inclusion in SQL Commands ..673

31.4. Asynchronous Command Processing ..676
31.5. Retrieving Query Results Row-By-Row ...679
31.6. Canceling Queries in Progress...680
31.7. The Fast-Path Interface..681
31.8. Asynchronous Notification..682
31.9. Functions Associated with the COPY Command ...683

31.9.1. Functions for Sending COPY Data...684
31.9.2. Functions for Receiving COPY Data..685
31.9.3. Obsolete Functions for COPY ..686

31.10. Control Functions ..688
31.11. Miscellaneous Functions ...689
31.12. Notice Processing ..691
31.13. Event System ...692

xvi

31.13.1. Event Types...693
31.13.2. Event Callback Procedure...695
31.13.3. Event Support Functions...695
31.13.4. Event Example ..696

31.14. Environment Variables ..699
31.15. The Password File ...700
31.16. The Connection Service File ...701
31.17. LDAP Lookup of Connection Parameters ...701
31.18. SSL Support...702

31.18.1. Client Verification of Server Certificates ..703
31.18.2. Client Certificates..703
31.18.3. Protection Provided in Different Modes ...704
31.18.4. SSL Client File Usage...706
31.18.5. SSL Library Initialization ...706

31.19. Behavior in Threaded Programs ..707
31.20. Building libpq Programs..707
31.21. Example Programs...709

32. Large Objects ...719
32.1. Introduction ...719
32.2. Implementation Features ...719
32.3. Client Interfaces...719

32.3.1. Creating a Large Object ..719
32.3.2. Importing a Large Object..720
32.3.3. Exporting a Large Object..721
32.3.4. Opening an Existing Large Object..721
32.3.5. Writing Data to a Large Object...721
32.3.6. Reading Data from a Large Object ...722
32.3.7. Seeking in a Large Object...722
32.3.8. Obtaining the Seek Position of a Large Object...722
32.3.9. Truncating a Large Object ..722
32.3.10. Closing a Large Object Descriptor ...723
32.3.11. Removing a Large Object ...723

32.4. Server-side Functions ..723
32.5. Example Program ..724

33. ECPG - Embedded SQL in C...730
33.1. The Concept...730
33.2. Managing Database Connections ..730

33.2.1. Connecting to the Database Server ...730
33.2.2. Choosing a Connection ...732
33.2.3. Closing a Connection..733

33.3. Running SQL Commands..733
33.3.1. Executing SQL Statements ...733
33.3.2. Using Cursors..734
33.3.3. Managing Transactions ...735
33.3.4. Prepared Statements..735

33.4. Using Host Variables ...736
33.4.1. Overview...736
33.4.2. Declare Sections..737

xvii

33.4.3. Retrieving Query Results ..737
33.4.4. Type Mapping ...738

33.4.4.1. Handling Character Strings ..739
33.4.4.2. Accessing Special Data Types..740

33.4.4.2.1. timestamp, date ..740
33.4.4.2.2. interval ...741
33.4.4.2.3. numeric, decimal..742

33.4.4.3. Host Variables with Nonprimitive Types ...743
33.4.4.3.1. Arrays ..743
33.4.4.3.2. Structures ...744
33.4.4.3.3. Typedefs...745
33.4.4.3.4. Pointers ..746

33.4.5. Handling Nonprimitive SQL Data Types..746
33.4.5.1. Arrays ...746
33.4.5.2. Composite Types ..748
33.4.5.3. User-defined Base Types ..749

33.4.6. Indicators...751
33.5. Dynamic SQL..751

33.5.1. Executing Statements without a Result Set ..752
33.5.2. Executing a Statement with Input Parameters ..752
33.5.3. Executing a Statement with a Result Set ..752

33.6. pgtypes Library..753
33.6.1. The numeric Type ...754
33.6.2. The date Type..757
33.6.3. The timestamp Type..760
33.6.4. The interval Type ..764
33.6.5. The decimal Type..765
33.6.6. errno Values of pgtypeslib ..765
33.6.7. Special Constants of pgtypeslib ..766

33.7. Using Descriptor Areas ...766
33.7.1. Named SQL Descriptor Areas ..767
33.7.2. SQLDA Descriptor Areas ...769

33.7.2.1. SQLDA Data Structure...770
33.7.2.1.1. sqlda_t Structure ..770
33.7.2.1.2. sqlvar_t Structure...771
33.7.2.1.3. struct sqlname Structure ..772

33.7.2.2. Retrieving a Result Set Using an SQLDA ...772
33.7.2.3. Passing Query Parameters Using an SQLDA.....................................773
33.7.2.4. A Sample Application Using SQLDA ...775

33.8. Error Handling...780
33.8.1. Setting Callbacks ..781
33.8.2. sqlca ..783
33.8.3. SQLSTATE vs. SQLCODE..784

33.9. Preprocessor Directives ...788
33.9.1. Including Files ..788
33.9.2. The define and undef Directives ...789
33.9.3. ifdef, ifndef, else, elif, and endif Directives..789

33.10. Processing Embedded SQL Programs...790

xviii

33.11. Library Functions ..791
33.12. Large Objects...792
33.13. C++ Applications ..794

33.13.1. Scope for Host Variables...794
33.13.2. C++ Application Development with External C Module795

33.14. Embedded SQL Commands ..797
ALLOCATE DESCRIPTOR ..797
CONNECT..799
DEALLOCATE DESCRIPTOR ...802
DECLARE ..803
DESCRIBE ...805
DISCONNECT ...807
EXECUTE IMMEDIATE...809
GET DESCRIPTOR ...810
OPEN ..813
PREPARE ...815
SET AUTOCOMMIT ...817
SET CONNECTION ..818
SET DESCRIPTOR ..819
TYPE...821
VAR...824
WHENEVER ..825

33.15. Informix Compatibility Mode ...827
33.15.1. Additional Types ...827
33.15.2. Additional/Missing Embedded SQL Statements ..827
33.15.3. Informix-compatible SQLDA Descriptor Areas...828
33.15.4. Additional Functions...831
33.15.5. Additional Constants...840

33.16. Internals ...841
34. The Information Schema..844

34.1. The Schema ...844
34.2. Data Types ...844
34.3. information_schema_catalog_name ..845
34.4. administrable_role_authorizations ..845
34.5. applicable_roles...846
34.6. attributes..846
34.7. character_sets ...850
34.8. check_constraint_routine_usage ..851
34.9. check_constraints ..852
34.10. collations..852
34.11. collation_character_set_applicability ...853
34.12. column_domain_usage ..853
34.13. column_options ...854
34.14. column_privileges ..854
34.15. column_udt_usage...855
34.16. columns ..856
34.17. constraint_column_usage ...861
34.18. constraint_table_usage..862

xix

34.19. data_type_privileges ..862
34.20. domain_constraints ..863
34.21. domain_udt_usage...864
34.22. domains ..864
34.23. element_types ...868
34.24. enabled_roles ...871
34.25. foreign_data_wrapper_options...871
34.26. foreign_data_wrappers..872
34.27. foreign_server_options..872
34.28. foreign_servers...873
34.29. foreign_table_options..873
34.30. foreign_tables ...874
34.31. key_column_usage...874
34.32. parameters..875
34.33. referential_constraints ...878
34.34. role_column_grants ..879
34.35. role_routine_grants ..880
34.36. role_table_grants ..880
34.37. role_udt_grants...881
34.38. role_usage_grants ..882
34.39. routine_privileges ..883
34.40. routines ..883
34.41. schemata ..889
34.42. sequences..890
34.43. sql_features ...891
34.44. sql_implementation_info ...892
34.45. sql_languages ...893
34.46. sql_packages ...893
34.47. sql_parts..894
34.48. sql_sizing..894
34.49. sql_sizing_profiles ..895
34.50. table_constraints ..895
34.51. table_privileges...896
34.52. tables ..897
34.53. triggered_update_columns ...898
34.54. triggers ..899
34.55. udt_privileges ...900
34.56. usage_privileges...901
34.57. user_defined_types ..902
34.58. user_mapping_options ..904
34.59. user_mappings ...904
34.60. view_column_usage ..905
34.61. view_routine_usage ..905
34.62. view_table_usage...906
34.63. views ..907

xx

V. Server Programming ..909
35. Extending SQL...911

35.1. How Extensibility Works...911
35.2. The PostgreSQL Type System...911

35.2.1. Base Types ..911
35.2.2. Composite Types...912
35.2.3. Domains ..912
35.2.4. Pseudo-Types ..912
35.2.5. Polymorphic Types ...912

35.3. User-defined Functions..913
35.4. Query Language (SQL) Functions ..914

35.4.1. Arguments for SQL Functions..914
35.4.2. SQL Functions on Base Types ..915
35.4.3. SQL Functions on Composite Types ..917
35.4.4. SQL Functions with Output Parameters ...920
35.4.5. SQL Functions with Variable Numbers of Arguments921
35.4.6. SQL Functions with Default Values for Arguments922
35.4.7. SQL Functions as Table Sources ..923
35.4.8. SQL Functions Returning Sets ...923
35.4.9. SQL Functions Returning TABLE ...925
35.4.10. Polymorphic SQL Functions ..926
35.4.11. SQL Functions with Collations...927

35.5. Function Overloading ..928
35.6. Function Volatility Categories ...929
35.7. Procedural Language Functions ..931
35.8. Internal Functions..931
35.9. C-Language Functions...931

35.9.1. Dynamic Loading..932
35.9.2. Base Types in C-Language Functions...933
35.9.3. Version 0 Calling Conventions ...936
35.9.4. Version 1 Calling Conventions ...938
35.9.5. Writing Code...941
35.9.6. Compiling and Linking Dynamically-loaded Functions.................................942
35.9.7. Composite-type Arguments ..944
35.9.8. Returning Rows (Composite Types) ...945
35.9.9. Returning Sets...947
35.9.10. Polymorphic Arguments and Return Types ..952
35.9.11. Transform Functions ...954
35.9.12. Shared Memory and LWLocks ...954
35.9.13. Using C++ for Extensibility..955

35.10. User-defined Aggregates ...956
35.11. User-defined Types ..958
35.12. User-defined Operators..961
35.13. Operator Optimization Information...962

35.13.1. COMMUTATOR ...963
35.13.2. NEGATOR ...963
35.13.3. RESTRICT ...964
35.13.4. JOIN ..965

xxi

35.13.5. HASHES..965
35.13.6. MERGES..966

35.14. Interfacing Extensions To Indexes...967
35.14.1. Index Methods and Operator Classes ...967
35.14.2. Index Method Strategies ...968
35.14.3. Index Method Support Routines ...970
35.14.4. An Example ..972
35.14.5. Operator Classes and Operator Families...974
35.14.6. System Dependencies on Operator Classes ..977
35.14.7. Ordering Operators ...978
35.14.8. Special Features of Operator Classes..979

35.15. Packaging Related Objects into an Extension ...980
35.15.1. Extension Files..980
35.15.2. Extension Relocatability ...982
35.15.3. Extension Configuration Tables ..983
35.15.4. Extension Updates ..984
35.15.5. Extension Example ...985

35.16. Extension Building Infrastructure ...986
36. Triggers ..989

36.1. Overview of Trigger Behavior...989
36.2. Visibility of Data Changes...991
36.3. Writing Trigger Functions in C ...992
36.4. A Complete Trigger Example..994

37. The Rule System ..999
37.1. The Query Tree..999
37.2. Views and the Rule System ...1001

37.2.1. How SELECT Rules Work ...1001
37.2.2. View Rules in Non-SELECT Statements ...1006
37.2.3. The Power of Views in PostgreSQL ...1007
37.2.4. Updating a View..1007

37.3. Rules on INSERT, UPDATE, and DELETE ..1008
37.3.1. How Update Rules Work ..1008

37.3.1.1. A First Rule Step by Step...1010
37.3.2. Cooperation with Views..1013

37.4. Rules and Privileges ..1019
37.5. Rules and Command Status...1021
37.6. Rules Versus Triggers ..1022

38. Procedural Languages ..1025
38.1. Installing Procedural Languages ...1025

39. PL/pgSQL - SQL Procedural Language ..1028
39.1. Overview ...1028

39.1.1. Advantages of Using PL/pgSQL ..1028
39.1.2. Supported Argument and Result Data Types..1029

39.2. Structure of PL/pgSQL..1029
39.3. Declarations...1031

39.3.1. Declaring Function Parameters...1031
39.3.2. ALIAS..1034
39.3.3. Copying Types ..1034

xxii

39.3.4. Row Types...1035
39.3.5. Record Types ..1035
39.3.6. Collation of PL/pgSQL Variables ...1036

39.4. Expressions..1037
39.5. Basic Statements..1037

39.5.1. Assignment ...1038
39.5.2. Executing a Command With No Result ..1038
39.5.3. Executing a Query with a Single-row Result..1039
39.5.4. Executing Dynamic Commands ...1040
39.5.5. Obtaining the Result Status...1043
39.5.6. Doing Nothing At All ...1044

39.6. Control Structures..1045
39.6.1. Returning From a Function...1045

39.6.1.1. RETURN ...1045
39.6.1.2. RETURN NEXT and RETURN QUERY ..1045

39.6.2. Conditionals ..1046
39.6.2.1. IF-THEN...1047
39.6.2.2. IF-THEN-ELSE ..1047
39.6.2.3. IF-THEN-ELSIF ..1048
39.6.2.4. Simple CASE ...1049
39.6.2.5. Searched CASE..1049

39.6.3. Simple Loops ..1050
39.6.3.1. LOOP ...1050
39.6.3.2. EXIT ...1050
39.6.3.3. CONTINUE...1051
39.6.3.4. WHILE ...1052
39.6.3.5. FOR (Integer Variant) ..1052

39.6.4. Looping Through Query Results ..1053
39.6.5. Looping Through Arrays ..1054
39.6.6. Trapping Errors ...1055

39.6.6.1. Obtaining information about an error...1057
39.7. Cursors...1058

39.7.1. Declaring Cursor Variables ...1058
39.7.2. Opening Cursors ...1059

39.7.2.1. OPEN FOR query ...1059
39.7.2.2. OPEN FOR EXECUTE ...1060
39.7.2.3. Opening a Bound Cursor..1060

39.7.3. Using Cursors..1061
39.7.3.1. FETCH ...1061
39.7.3.2. MOVE ...1062
39.7.3.3. UPDATE/DELETE WHERE CURRENT OF ...1062
39.7.3.4. CLOSE ...1062
39.7.3.5. Returning Cursors ..1063

39.7.4. Looping Through a Cursor’s Result..1064
39.8. Errors and Messages..1065
39.9. Trigger Procedures ..1066
39.10. PL/pgSQL Under the Hood ...1073

39.10.1. Variable Substitution...1074

xxiii

39.10.2. Plan Caching ...1076
39.11. Tips for Developing in PL/pgSQL...1077

39.11.1. Handling of Quotation Marks ...1078
39.12. Porting from Oracle PL/SQL...1079

39.12.1. Porting Examples ..1080
39.12.2. Other Things to Watch For..1086

39.12.2.1. Implicit Rollback after Exceptions...1086
39.12.2.2. EXECUTE...1086
39.12.2.3. Optimizing PL/pgSQL Functions...1086

39.12.3. Appendix...1087
40. PL/Tcl - Tcl Procedural Language...1090

40.1. Overview ...1090
40.2. PL/Tcl Functions and Arguments..1090
40.3. Data Values in PL/Tcl..1092
40.4. Global Data in PL/Tcl ...1092
40.5. Database Access from PL/Tcl ...1092
40.6. Trigger Procedures in PL/Tcl ..1095
40.7. Modules and the unknown Command...1096
40.8. Tcl Procedure Names ..1097

41. PL/Perl - Perl Procedural Language...1098
41.1. PL/Perl Functions and Arguments...1098
41.2. Data Values in PL/Perl...1102
41.3. Built-in Functions..1102

41.3.1. Database Access from PL/Perl..1102
41.3.2. Utility Functions in PL/Perl ..1105

41.4. Global Values in PL/Perl ...1107
41.5. Trusted and Untrusted PL/Perl ..1108
41.6. PL/Perl Triggers ..1109
41.7. PL/Perl Under the Hood ..1110

41.7.1. Configuration ..1111
41.7.2. Limitations and Missing Features...1112

42. PL/Python - Python Procedural Language...1113
42.1. Python 2 vs. Python 3..1113
42.2. PL/Python Functions ...1114
42.3. Data Values..1116

42.3.1. Data Type Mapping...1116
42.3.2. Null, None...1117
42.3.3. Arrays, Lists..1117
42.3.4. Composite Types...1118
42.3.5. Set-returning Functions...1119

42.4. Sharing Data ..1121
42.5. Anonymous Code Blocks ..1121
42.6. Trigger Functions ..1121
42.7. Database Access ..1122

42.7.1. Database Access Functions...1122
42.7.2. Trapping Errors ...1125

42.8. Explicit Subtransactions ..1126
42.8.1. Subtransaction Context Managers ..1126

xxiv

42.8.2. Older Python Versions ..1127
42.9. Utility Functions..1128
42.10. Environment Variables ..1128

43. Server Programming Interface ...1130
43.1. Interface Functions ..1130

SPI_connect ..1130
SPI_finish..1132
SPI_push ...1133
SPI_pop...1134
SPI_execute...1135
SPI_exec..1139
SPI_execute_with_args ...1140
SPI_prepare...1142
SPI_prepare_cursor...1144
SPI_prepare_params ...1145
SPI_getargcount ..1146
SPI_getargtypeid...1147
SPI_is_cursor_plan ...1148
SPI_execute_plan..1149
SPI_execute_plan_with_paramlist..1151
SPI_execp..1152
SPI_cursor_open ...1153
SPI_cursor_open_with_args ...1155
SPI_cursor_open_with_paramlist ...1157
SPI_cursor_find...1158
SPI_cursor_fetch...1159
SPI_cursor_move ..1160
SPI_scroll_cursor_fetch..1161
SPI_scroll_cursor_move ...1162
SPI_cursor_close...1163
SPI_keepplan ..1164
SPI_saveplan...1165

43.2. Interface Support Functions ..1166
SPI_fname...1166
SPI_fnumber ...1167
SPI_getvalue ...1168
SPI_getbinval ..1169
SPI_gettype ...1170
SPI_gettypeid..1171
SPI_getrelname...1172
SPI_getnspname..1173

43.3. Memory Management ...1174
SPI_palloc ...1174
SPI_repalloc..1176
SPI_pfree...1177
SPI_copytuple ...1178
SPI_returntuple ...1179
SPI_modifytuple ...1180

xxv

SPI_freetuple...1182
SPI_freetuptable..1183
SPI_freeplan..1184

43.4. Visibility of Data Changes...1185
43.5. Examples ...1185

VI. Reference..1189
I. SQL Commands..1191

ABORT...1192
ALTER AGGREGATE...1194
ALTER COLLATION ..1196
ALTER CONVERSION...1198
ALTER DATABASE ..1200
ALTER DEFAULT PRIVILEGES ...1203
ALTER DOMAIN ..1206
ALTER EXTENSION ..1210
ALTER FOREIGN DATA WRAPPER ..1214
ALTER FOREIGN TABLE..1216
ALTER FUNCTION ..1220
ALTER GROUP ...1224
ALTER INDEX ..1226
ALTER LANGUAGE...1229
ALTER LARGE OBJECT..1230
ALTER OPERATOR..1231
ALTER OPERATOR CLASS...1233
ALTER OPERATOR FAMILY ..1235
ALTER ROLE ..1239
ALTER SCHEMA..1243
ALTER SEQUENCE..1244
ALTER SERVER..1247
ALTER TABLE ..1249
ALTER TABLESPACE ..1261
ALTER TEXT SEARCH CONFIGURATION ..1263
ALTER TEXT SEARCH DICTIONARY ..1265
ALTER TEXT SEARCH PARSER..1267
ALTER TEXT SEARCH TEMPLATE ..1268
ALTER TRIGGER ...1269
ALTER TYPE...1271
ALTER USER ..1275
ALTER USER MAPPING ...1276
ALTER VIEW ..1278
ANALYZE..1280
BEGIN..1283
CHECKPOINT...1285
CLOSE ...1286
CLUSTER ..1288
COMMENT..1291
COMMIT..1295

xxvi

COMMIT PREPARED...1297
COPY ...1299
CREATE AGGREGATE ..1309
CREATE CAST..1313
CREATE COLLATION..1318
CREATE CONVERSION ..1320
CREATE DATABASE..1322
CREATE DOMAIN..1325
CREATE EXTENSION..1328
CREATE FOREIGN DATA WRAPPER..1331
CREATE FOREIGN TABLE ...1333
CREATE FUNCTION..1335
CREATE GROUP...1343
CREATE INDEX..1344
CREATE LANGUAGE ..1351
CREATE OPERATOR ...1355
CREATE OPERATOR CLASS..1358
CREATE OPERATOR FAMILY..1362
CREATE ROLE..1364
CREATE RULE..1369
CREATE SCHEMA ...1372
CREATE SEQUENCE ...1375
CREATE SERVER...1379
CREATE TABLE ...1381
CREATE TABLE AS ...1396
CREATE TABLESPACE..1400
CREATE TEXT SEARCH CONFIGURATION..1402
CREATE TEXT SEARCH DICTIONARY..1404
CREATE TEXT SEARCH PARSER ...1406
CREATE TEXT SEARCH TEMPLATE..1408
CREATE TRIGGER...1410
CREATE TYPE..1416
CREATE USER..1426
CREATE USER MAPPING...1427
CREATE VIEW..1429
DEALLOCATE ..1432
DECLARE..1433
DELETE...1437
DISCARD...1440
DO ..1442
DROP AGGREGATE...1444
DROP CAST ..1446
DROP COLLATION ..1448
DROP CONVERSION...1450
DROP DATABASE ..1452
DROP DOMAIN ..1453
DROP EXTENSION ..1455
DROP FOREIGN DATA WRAPPER ..1457

xxvii

DROP FOREIGN TABLE..1459
DROP FUNCTION ..1461
DROP GROUP ...1463
DROP INDEX ..1464
DROP LANGUAGE...1466
DROP OPERATOR..1468
DROP OPERATOR CLASS...1470
DROP OPERATOR FAMILY ..1472
DROP OWNED..1474
DROP ROLE ..1476
DROP RULE ..1478
DROP SCHEMA..1480
DROP SEQUENCE..1482
DROP SERVER..1484
DROP TABLE ..1486
DROP TABLESPACE ..1488
DROP TEXT SEARCH CONFIGURATION ..1490
DROP TEXT SEARCH DICTIONARY ..1492
DROP TEXT SEARCH PARSER..1494
DROP TEXT SEARCH TEMPLATE ..1496
DROP TRIGGER ...1498
DROP TYPE...1500
DROP USER ..1502
DROP USER MAPPING ...1503
DROP VIEW ..1505
END..1507
EXECUTE..1509
EXPLAIN...1511
FETCH ...1517
GRANT ..1521
INSERT ..1529
LISTEN ..1533
LOAD ...1535
LOCK ...1536
MOVE...1539
NOTIFY..1541
PREPARE...1544
PREPARE TRANSACTION..1547
REASSIGN OWNED...1549
REINDEX...1551
RELEASE SAVEPOINT..1554
RESET..1556
REVOKE ..1558
ROLLBACK ...1562
ROLLBACK PREPARED..1564
ROLLBACK TO SAVEPOINT ..1566
SAVEPOINT ..1568
SECURITY LABEL...1570

xxviii

SELECT ...1573
SELECT INTO...1592
SET...1594
SET CONSTRAINTS ..1598
SET ROLE..1600
SET SESSION AUTHORIZATION...1602
SET TRANSACTION..1604
SHOW ..1607
START TRANSACTION...1610
TRUNCATE ...1611
UNLISTEN...1614
UPDATE...1616
VACUUM ...1621
VALUES...1624

II. PostgreSQL Client Applications ...1627
clusterdb ...1628
createdb...1631
createlang..1635
createuser ..1638
dropdb...1643
droplang..1646
dropuser ..1649
ecpg...1652
pg_basebackup ...1655
pg_config ..1661
pg_dump...1664
pg_dumpall ...1675
pg_receivexlog..1681
pg_restore ...1684
psql ...1693
reindexdb ..1725
vacuumdb..1729

III. PostgreSQL Server Applications ...1733
initdb...1734
pg_controldata ..1738
pg_ctl ..1739
pg_resetxlog ...1745
postgres...1747
postmaster...1755

VII. Internals..1756
44. Overview of PostgreSQL Internals ..1758

44.1. The Path of a Query...1758
44.2. How Connections are Established ...1758
44.3. The Parser Stage ..1759

44.3.1. Parser...1759
44.3.2. Transformation Process...1760

44.4. The PostgreSQL Rule System...1760

xxix

44.5. Planner/Optimizer..1761
44.5.1. Generating Possible Plans...1761

44.6. Executor...1762
45. System Catalogs ...1764

45.1. Overview ...1764
45.2. pg_aggregate ...1765
45.3. pg_am ..1766
45.4. pg_amop ..1768
45.5. pg_amproc..1770
45.6. pg_attrdef..1770
45.7. pg_attribute ...1771
45.8. pg_authid..1774
45.9. pg_auth_members...1776
45.10. pg_cast ..1776
45.11. pg_class ..1778
45.12. pg_constraint ...1781
45.13. pg_collation ...1784
45.14. pg_conversion ...1785
45.15. pg_database ...1786
45.16. pg_db_role_setting ..1787
45.17. pg_default_acl ...1788
45.18. pg_depend..1789
45.19. pg_description ...1790
45.20. pg_enum ..1791
45.21. pg_extension ...1792
45.22. pg_foreign_data_wrapper ...1792
45.23. pg_foreign_server ..1793
45.24. pg_foreign_table...1794
45.25. pg_index ..1794
45.26. pg_inherits ...1797
45.27. pg_language ...1798
45.28. pg_largeobject ...1799
45.29. pg_largeobject_metadata ...1800
45.30. pg_namespace ...1800
45.31. pg_opclass..1801
45.32. pg_operator ...1801
45.33. pg_opfamily ...1802
45.34. pg_pltemplate ...1803
45.35. pg_proc ..1804
45.36. pg_range ..1808
45.37. pg_rewrite..1809
45.38. pg_seclabel ...1810
45.39. pg_shdepend ...1811
45.40. pg_shdescription...1812
45.41. pg_shseclabel ...1813
45.42. pg_statistic ...1813
45.43. pg_tablespace ...1816
45.44. pg_trigger..1816

xxx

45.45. pg_ts_config ...1818
45.46. pg_ts_config_map...1819
45.47. pg_ts_dict..1819
45.48. pg_ts_parser ...1820
45.49. pg_ts_template ...1820
45.50. pg_type ..1821
45.51. pg_user_mapping...1830
45.52. System Views ..1830
45.53. pg_available_extensions ...1831
45.54. pg_available_extension_versions ..1831
45.55. pg_cursors..1832
45.56. pg_group ..1833
45.57. pg_indexes..1833
45.58. pg_locks ..1834
45.59. pg_prepared_statements..1837
45.60. pg_prepared_xacts ..1838
45.61. pg_roles ..1839
45.62. pg_rules ..1840
45.63. pg_seclabels ...1841
45.64. pg_settings ...1842
45.65. pg_shadow..1844
45.66. pg_stats ..1845
45.67. pg_tables..1848
45.68. pg_timezone_abbrevs ..1849
45.69. pg_timezone_names ..1849
45.70. pg_user ..1850
45.71. pg_user_mappings...1850
45.72. pg_views ..1851

46. Frontend/Backend Protocol..1852
46.1. Overview ...1852

46.1.1. Messaging Overview...1852
46.1.2. Extended Query Overview..1853
46.1.3. Formats and Format Codes ...1853

46.2. Message Flow..1854
46.2.1. Start-up..1854
46.2.2. Simple Query ..1856
46.2.3. Extended Query ..1857
46.2.4. Function Call...1860
46.2.5. COPY Operations ...1861
46.2.6. Asynchronous Operations...1862
46.2.7. Canceling Requests in Progress ..1863
46.2.8. Termination ...1863
46.2.9. SSL Session Encryption..1864

46.3. Streaming Replication Protocol...1864
46.4. Message Data Types ..1868
46.5. Message Formats ...1869
46.6. Error and Notice Message Fields ..1885
46.7. Summary of Changes since Protocol 2.0...1886

xxxi

47. PostgreSQL Coding Conventions ..1888
47.1. Formatting ...1888
47.2. Reporting Errors Within the Server...1889
47.3. Error Message Style Guide..1891

47.3.1. What Goes Where ...1891
47.3.2. Formatting...1892
47.3.3. Quotation Marks ...1892
47.3.4. Use of Quotes..1892
47.3.5. Grammar and Punctuation ..1892
47.3.6. Upper Case vs. Lower Case ..1893
47.3.7. Avoid Passive Voice ..1893
47.3.8. Present vs. Past Tense ...1893
47.3.9. Type of the Object...1894
47.3.10. Brackets...1894
47.3.11. Assembling Error Messages ...1894
47.3.12. Reasons for Errors...1894
47.3.13. Function Names ..1894
47.3.14. Tricky Words to Avoid ..1895
47.3.15. Proper Spelling..1895
47.3.16. Localization...1896

48. Native Language Support...1897
48.1. For the Translator ..1897

48.1.1. Requirements ..1897
48.1.2. Concepts..1897
48.1.3. Creating and Maintaining Message Catalogs ...1898
48.1.4. Editing the PO Files ..1899

48.2. For the Programmer...1900
48.2.1. Mechanics ...1900
48.2.2. Message-writing Guidelines ...1901

49. Writing A Procedural Language Handler ..1903
50. Writing A Foreign Data Wrapper ..1906

50.1. Foreign Data Wrapper Functions ..1906
50.2. Foreign Data Wrapper Callback Routines...1906
50.3. Foreign Data Wrapper Helper Functions...1909
50.4. Foreign Data Wrapper Query Planning ...1910

51. Genetic Query Optimizer ...1913
51.1. Query Handling as a Complex Optimization Problem..1913
51.2. Genetic Algorithms ...1913
51.3. Genetic Query Optimization (GEQO) in PostgreSQL ..1914

51.3.1. Generating Possible Plans with GEQO...1915
51.3.2. Future Implementation Tasks for PostgreSQL GEQO1915

51.4. Further Reading ...1916
52. Index Access Method Interface Definition ..1917

52.1. Catalog Entries for Indexes ...1917
52.2. Index Access Method Functions..1918
52.3. Index Scanning ..1922
52.4. Index Locking Considerations...1924
52.5. Index Uniqueness Checks..1925

xxxii

52.6. Index Cost Estimation Functions...1926
53. GiST Indexes..1930

53.1. Introduction ...1930
53.2. Extensibility...1930
53.3. Implementation..1938

53.3.1. GiST buffering build ...1938
53.4. Examples ...1938

54. SP-GiST Indexes ..1940
54.1. Introduction ...1940
54.2. Extensibility...1940
54.3. Implementation..1947

54.3.1. SP-GiST Limits...1947
54.3.2. SP-GiST Without Node Labels...1947
54.3.3. “All-the-same” Inner Tuples ...1948

54.4. Examples ...1948
55. GIN Indexes ...1949

55.1. Introduction ...1949
55.2. Extensibility...1949
55.3. Implementation..1951

55.3.1. GIN Fast Update Technique..1952
55.3.2. Partial Match Algorithm ...1952

55.4. GIN Tips and Tricks ..1952
55.5. Limitations...1953
55.6. Examples ...1953

56. Database Physical Storage ...1955
56.1. Database File Layout ...1955
56.2. TOAST ..1957
56.3. Free Space Map ...1959
56.4. Visibility Map..1959
56.5. The Initialization Fork ...1960
56.6. Database Page Layout ...1960

57. BKI Backend Interface...1964
57.1. BKI File Format ..1964
57.2. BKI Commands ...1964
57.3. Structure of the Bootstrap BKI File...1965
57.4. Example...1966

58. How the Planner Uses Statistics...1967
58.1. Row Estimation Examples...1967

VIII. Appendixes..1973
A. PostgreSQL Error Codes...1974
B. Date/Time Support ..1983

B.1. Date/Time Input Interpretation ...1983
B.2. Date/Time Key Words...1984
B.3. Date/Time Configuration Files ...1985
B.4. History of Units ..1986

C. SQL Key Words...1989
D. SQL Conformance ..2013

xxxiii

D.1. Supported Features ...2014
D.2. Unsupported Features ...2030

E. Release Notes ..2046
E.1. Release 9.2.7 ...2046

E.1.1. Migration to Version 9.2.7..2046
E.1.2. Changes ..2046

E.2. Release 9.2.6 ...2050
E.2.1. Migration to Version 9.2.6..2050
E.2.2. Changes ..2050

E.3. Release 9.2.5 ...2052
E.3.1. Migration to Version 9.2.5..2053
E.3.2. Changes ..2053

E.4. Release 9.2.4 ...2055
E.4.1. Migration to Version 9.2.4..2055
E.4.2. Changes ..2055

E.5. Release 9.2.3 ...2058
E.5.1. Migration to Version 9.2.3..2058
E.5.2. Changes ..2058

E.6. Release 9.2.2 ...2061
E.6.1. Migration to Version 9.2.2..2061
E.6.2. Changes ..2061

E.7. Release 9.2.1 ...2066
E.7.1. Migration to Version 9.2.1..2066
E.7.2. Changes ..2066

E.8. Release 9.2 ..2067
E.8.1. Overview ..2067
E.8.2. Migration to Version 9.2...2068

E.8.2.1. System Catalogs...2068
E.8.2.2. Functions..2068
E.8.2.3. Object Modification ...2069
E.8.2.4. Command-Line Tools ..2069
E.8.2.5. Server Settings ...2069
E.8.2.6. Monitoring ...2070

E.8.3. Changes ..2070
E.8.3.1. Server ...2070

E.8.3.1.1. Performance ..2071
E.8.3.1.2. Process Management...2072
E.8.3.1.3. Optimizer...2072
E.8.3.1.4. Authentication ...2073
E.8.3.1.5. Monitoring...2073
E.8.3.1.6. Statistical Views ..2073
E.8.3.1.7. Server Settings...2074

E.8.3.1.7.1. postgresql.conf ..2074
E.8.3.2. Replication and Recovery ..2075
E.8.3.3. Queries ...2075
E.8.3.4. Object Manipulation ..2076

E.8.3.4.1. Constraints...2076
E.8.3.4.2. ALTER ..2076

xxxiv

E.8.3.4.3. CREATE TABLE ...2077
E.8.3.4.4. Object Permissions..2077

E.8.3.5. Utility Operations ..2077
E.8.3.6. Data Types ...2078
E.8.3.7. Functions..2078
E.8.3.8. Information Schema...2079
E.8.3.9. Server-Side Languages ..2079

E.8.3.9.1. PL/pgSQL Server-Side Language ...2079
E.8.3.9.2. PL/Python Server-Side Language ...2080
E.8.3.9.3. SQL Server-Side Language...2080

E.8.3.10. Client Applications ..2080
E.8.3.10.1. psql ..2080
E.8.3.10.2. Informational Commands..2081
E.8.3.10.3. Tab Completion ...2081
E.8.3.10.4. pg_dump..2082

E.8.3.11. libpq ...2082
E.8.3.12. Source Code...2083
E.8.3.13. Additional Modules ...2083

E.8.3.13.1. pg_upgrade ..2084
E.8.3.13.2. pg_stat_statements ..2085
E.8.3.13.3. sepgsql...2085

E.8.3.14. Documentation...2085
E.9. Release 9.1.12 ...2085

E.9.1. Migration to Version 9.1.12..2086
E.9.2. Changes ..2086

E.10. Release 9.1.11 ...2089
E.10.1. Migration to Version 9.1.11..2089
E.10.2. Changes ..2090

E.11. Release 9.1.10 ...2091
E.11.1. Migration to Version 9.1.10..2091
E.11.2. Changes ..2091

E.12. Release 9.1.9 ...2093
E.12.1. Migration to Version 9.1.9..2093
E.12.2. Changes ..2094

E.13. Release 9.1.8 ...2096
E.13.1. Migration to Version 9.1.8..2096
E.13.2. Changes ..2096

E.14. Release 9.1.7 ...2098
E.14.1. Migration to Version 9.1.7..2098
E.14.2. Changes ..2098

E.15. Release 9.1.6 ...2101
E.15.1. Migration to Version 9.1.6..2101
E.15.2. Changes ..2101

E.16. Release 9.1.5 ...2103
E.16.1. Migration to Version 9.1.5..2103
E.16.2. Changes ..2103

E.17. Release 9.1.4 ...2105
E.17.1. Migration to Version 9.1.4..2106

xxxv

E.17.2. Changes ..2106
E.18. Release 9.1.3 ...2109

E.18.1. Migration to Version 9.1.3..2109
E.18.2. Changes ..2109

E.19. Release 9.1.2 ...2113
E.19.1. Migration to Version 9.1.2..2114
E.19.2. Changes ..2114

E.20. Release 9.1.1 ...2118
E.20.1. Migration to Version 9.1.1..2118
E.20.2. Changes ..2118

E.21. Release 9.1 ..2118
E.21.1. Overview ..2119
E.21.2. Migration to Version 9.1...2119

E.21.2.1. Strings ..2119
E.21.2.2. Casting ...2120
E.21.2.3. Arrays...2120
E.21.2.4. Object Modification ...2120
E.21.2.5. Server Settings ...2120
E.21.2.6. PL/pgSQL Server-Side Language..2121
E.21.2.7. Contrib ...2121
E.21.2.8. Other Incompatibilities ..2121

E.21.3. Changes ..2122
E.21.3.1. Server ...2122

E.21.3.1.1. Performance ..2122
E.21.3.1.2. Optimizer...2122
E.21.3.1.3. Authentication ...2123
E.21.3.1.4. Monitoring...2123
E.21.3.1.5. Statistical Views ..2123
E.21.3.1.6. Server Settings...2124

E.21.3.2. Replication and Recovery ..2124
E.21.3.2.1. Streaming Replication and Continuous Archiving..............2124
E.21.3.2.2. Replication Monitoring ...2125
E.21.3.2.3. Hot Standby...2125
E.21.3.2.4. Recovery Control ..2125

E.21.3.3. Queries ...2126
E.21.3.3.1. Strings..2126

E.21.3.4. Object Manipulation ..2127
E.21.3.4.1. ALTER Object ..2127
E.21.3.4.2. CREATE/ALTER TABLE ..2127
E.21.3.4.3. Object Permissions..2128

E.21.3.5. Utility Operations ..2128
E.21.3.5.1. COPY ..2128
E.21.3.5.2. EXPLAIN..2128
E.21.3.5.3. VACUUM ..2128
E.21.3.5.4. CLUSTER..2129
E.21.3.5.5. Indexes...2129

E.21.3.6. Data Types ...2129
E.21.3.6.1. Casting...2130

xxxvi

E.21.3.6.2. XML..2130
E.21.3.7. Functions..2130

E.21.3.7.1. Object Information Functions ...2130
E.21.3.7.2. Function and Trigger Creation ..2131

E.21.3.8. Server-Side Languages ..2131
E.21.3.8.1. PL/pgSQL Server-Side Language2131
E.21.3.8.2. PL/Perl Server-Side Language ..2131
E.21.3.8.3. PL/Python Server-Side Language2132

E.21.3.9. Client Applications ..2132
E.21.3.9.1. psql ..2132
E.21.3.9.2. pg_dump..2133
E.21.3.9.3. pg_ctl ...2133

E.21.3.10. Development Tools ..2133
E.21.3.10.1. libpq...2133
E.21.3.10.2. ECPG...2134

E.21.3.11. Build Options...2134
E.21.3.11.1. Makefiles ...2134
E.21.3.11.2. Windows..2134

E.21.3.12. Source Code...2134
E.21.3.12.1. Server Hooks ...2135

E.21.3.13. Contrib ...2135
E.21.3.13.1. Security..2136
E.21.3.13.2. Performance ..2136
E.21.3.13.3. Fsync Testing...2136

E.21.3.14. Documentation...2137
E.22. Release 9.0.16 ...2137

E.22.1. Migration to Version 9.0.16..2138
E.22.2. Changes ..2138

E.23. Release 9.0.15 ...2141
E.23.1. Migration to Version 9.0.15..2141
E.23.2. Changes ..2141

E.24. Release 9.0.14 ...2143
E.24.1. Migration to Version 9.0.14..2143
E.24.2. Changes ..2143

E.25. Release 9.0.13 ...2144
E.25.1. Migration to Version 9.0.13..2145
E.25.2. Changes ..2145

E.26. Release 9.0.12 ...2147
E.26.1. Migration to Version 9.0.12..2147
E.26.2. Changes ..2147

E.27. Release 9.0.11 ...2148
E.27.1. Migration to Version 9.0.11..2149
E.27.2. Changes ..2149

E.28. Release 9.0.10 ...2151
E.28.1. Migration to Version 9.0.10..2151
E.28.2. Changes ..2151

E.29. Release 9.0.9 ...2152
E.29.1. Migration to Version 9.0.9..2152

xxxvii

E.29.2. Changes ..2152
E.30. Release 9.0.8 ...2154

E.30.1. Migration to Version 9.0.8..2154
E.30.2. Changes ..2155

E.31. Release 9.0.7 ...2157
E.31.1. Migration to Version 9.0.7..2157
E.31.2. Changes ..2157

E.32. Release 9.0.6 ...2160
E.32.1. Migration to Version 9.0.6..2160
E.32.2. Changes ..2161

E.33. Release 9.0.5 ...2163
E.33.1. Migration to Version 9.0.5..2163
E.33.2. Changes ..2163

E.34. Release 9.0.4 ...2167
E.34.1. Migration to Version 9.0.4..2167
E.34.2. Changes ..2167

E.35. Release 9.0.3 ...2169
E.35.1. Migration to Version 9.0.3..2169
E.35.2. Changes ..2170

E.36. Release 9.0.2 ...2171
E.36.1. Migration to Version 9.0.2..2171
E.36.2. Changes ..2171

E.37. Release 9.0.1 ...2174
E.37.1. Migration to Version 9.0.1..2174
E.37.2. Changes ..2174

E.38. Release 9.0 ..2175
E.38.1. Overview ..2175
E.38.2. Migration to Version 9.0...2176

E.38.2.1. Server Settings ...2176
E.38.2.2. Queries ...2176
E.38.2.3. Data Types ...2176
E.38.2.4. Object Renaming ...2177
E.38.2.5. PL/pgSQL ..2177
E.38.2.6. Other Incompatibilities ..2178

E.38.3. Changes ..2178
E.38.3.1. Server ...2179

E.38.3.1.1. Continuous Archiving and Streaming Replication..............2179
E.38.3.1.2. Performance ..2179
E.38.3.1.3. Optimizer...2179
E.38.3.1.4. GEQO..2180
E.38.3.1.5. Optimizer Statistics ...2180
E.38.3.1.6. Authentication ...2180
E.38.3.1.7. Monitoring...2181
E.38.3.1.8. Statistics Counters ...2181
E.38.3.1.9. Server Settings...2181

E.38.3.2. Queries ...2182
E.38.3.2.1. Unicode Strings ...2182

E.38.3.3. Object Manipulation ..2182

xxxviii

E.38.3.3.1. ALTER TABLE ...2183
E.38.3.3.2. CREATE TABLE ...2183
E.38.3.3.3. Constraints...2183
E.38.3.3.4. Object Permissions..2184

E.38.3.4. Utility Operations ..2184
E.38.3.4.1. COPY ..2184
E.38.3.4.2. EXPLAIN..2185
E.38.3.4.3. VACUUM ..2185
E.38.3.4.4. Indexes...2185

E.38.3.5. Data Types ...2186
E.38.3.5.1. Full Text Search...2186

E.38.3.6. Functions..2186
E.38.3.6.1. Aggregates...2187
E.38.3.6.2. Bit Strings..2187
E.38.3.6.3. Object Information Functions ...2187
E.38.3.6.4. Function and Trigger Creation ..2188

E.38.3.7. Server-Side Languages ..2188
E.38.3.7.1. PL/pgSQL Server-Side Language2188
E.38.3.7.2. PL/Perl Server-Side Language ..2189
E.38.3.7.3. PL/Python Server-Side Language2189

E.38.3.8. Client Applications ..2190
E.38.3.8.1. psql ..2190

E.38.3.8.1.1. psql Display ..2190
E.38.3.8.1.2. psql \d Commands ...2191

E.38.3.8.2. pg_dump..2191
E.38.3.8.3. pg_ctl ...2191

E.38.3.9. Development Tools ..2192
E.38.3.9.1. libpq...2192
E.38.3.9.2. ecpg ...2192

E.38.3.9.2.1. ecpg Cursors ...2193
E.38.3.10. Build Options...2193

E.38.3.10.1. Makefiles ...2193
E.38.3.10.2. Windows..2193

E.38.3.11. Source Code...2193
E.38.3.11.1. New Build Requirements ..2195
E.38.3.11.2. Portability ..2195
E.38.3.11.3. Server Programming ...2195
E.38.3.11.4. Server Hooks ...2196
E.38.3.11.5. Binary Upgrade Support..2196

E.38.3.12. Contrib ...2196
E.39. Release 8.4.20 ...2197

E.39.1. Migration to Version 8.4.20..2197
E.39.2. Changes ..2197

E.40. Release 8.4.19 ...2200
E.40.1. Migration to Version 8.4.19..2201
E.40.2. Changes ..2201

E.41. Release 8.4.18 ...2202
E.41.1. Migration to Version 8.4.18..2202

xxxix

E.41.2. Changes ..2202
E.42. Release 8.4.17 ...2203

E.42.1. Migration to Version 8.4.17..2203
E.42.2. Changes ..2204

E.43. Release 8.4.16 ...2205
E.43.1. Migration to Version 8.4.16..2205
E.43.2. Changes ..2205

E.44. Release 8.4.15 ...2206
E.44.1. Migration to Version 8.4.15..2206
E.44.2. Changes ..2207

E.45. Release 8.4.14 ...2208
E.45.1. Migration to Version 8.4.14..2209
E.45.2. Changes ..2209

E.46. Release 8.4.13 ...2209
E.46.1. Migration to Version 8.4.13..2210
E.46.2. Changes ..2210

E.47. Release 8.4.12 ...2211
E.47.1. Migration to Version 8.4.12..2211
E.47.2. Changes ..2212

E.48. Release 8.4.11 ...2213
E.48.1. Migration to Version 8.4.11..2213
E.48.2. Changes ..2214

E.49. Release 8.4.10 ...2216
E.49.1. Migration to Version 8.4.10..2216
E.49.2. Changes ..2217

E.50. Release 8.4.9 ...2218
E.50.1. Migration to Version 8.4.9..2219
E.50.2. Changes ..2219

E.51. Release 8.4.8 ...2222
E.51.1. Migration to Version 8.4.8..2222
E.51.2. Changes ..2222

E.52. Release 8.4.7 ...2223
E.52.1. Migration to Version 8.4.7..2224
E.52.2. Changes ..2224

E.53. Release 8.4.6 ...2224
E.53.1. Migration to Version 8.4.6..2225
E.53.2. Changes ..2225

E.54. Release 8.4.5 ...2227
E.54.1. Migration to Version 8.4.5..2227
E.54.2. Changes ..2227

E.55. Release 8.4.4 ...2230
E.55.1. Migration to Version 8.4.4..2230
E.55.2. Changes ..2230

E.56. Release 8.4.3 ...2232
E.56.1. Migration to Version 8.4.3..2232
E.56.2. Changes ..2233

E.57. Release 8.4.2 ...2235
E.57.1. Migration to Version 8.4.2..2236

xl

E.57.2. Changes ..2236
E.58. Release 8.4.1 ...2239

E.58.1. Migration to Version 8.4.1..2239
E.58.2. Changes ..2239

E.59. Release 8.4 ..2241
E.59.1. Overview ..2241
E.59.2. Migration to Version 8.4...2242

E.59.2.1. General...2242
E.59.2.2. Server Settings ...2242
E.59.2.3. Queries ...2243
E.59.2.4. Functions and Operators ..2243

E.59.2.4.1. Temporal Functions and Operators2244
E.59.3. Changes ..2244

E.59.3.1. Performance ...2244
E.59.3.2. Server ...2245

E.59.3.2.1. Settings ..2246
E.59.3.2.2. Authentication and security...2246
E.59.3.2.3. pg_hba.conf ...2246
E.59.3.2.4. Continuous Archiving ...2247
E.59.3.2.5. Monitoring...2247

E.59.3.3. Queries ...2248
E.59.3.3.1. TRUNCATE..2249
E.59.3.3.2. EXPLAIN..2249
E.59.3.3.3. LIMIT/OFFSET ..2249

E.59.3.4. Object Manipulation ..2249
E.59.3.4.1. ALTER ..2250
E.59.3.4.2. Database Manipulation..2250

E.59.3.5. Utility Operations ..2251
E.59.3.5.1. Indexes...2251
E.59.3.5.2. Full Text Indexes ...2251
E.59.3.5.3. VACUUM ..2251

E.59.3.6. Data Types ...2252
E.59.3.6.1. Temporal Data Types...2252
E.59.3.6.2. Arrays ..2253
E.59.3.6.3. Wide-Value Storage (TOAST) ..2253

E.59.3.7. Functions..2254
E.59.3.7.1. Object Information Functions ...2254
E.59.3.7.2. Function Creation..2255
E.59.3.7.3. PL/pgSQL Server-Side Language2255

E.59.3.8. Client Applications ..2256
E.59.3.8.1. psql ..2256
E.59.3.8.2. psql \d* commands..2256
E.59.3.8.3. pg_dump..2257

E.59.3.9. Programming Tools..2258
E.59.3.9.1. libpq...2258
E.59.3.9.2. libpq SSL (Secure Sockets Layer) support2258
E.59.3.9.3. ecpg ...2259
E.59.3.9.4. Server Programming Interface (SPI)...................................2259

xli

E.59.3.10. Build Options...2259
E.59.3.11. Source Code...2260
E.59.3.12. Contrib ...2261

E.60. Release 8.3.23 ...2262
E.60.1. Migration to Version 8.3.23..2262
E.60.2. Changes ..2262

E.61. Release 8.3.22 ...2263
E.61.1. Migration to Version 8.3.22..2264
E.61.2. Changes ..2264

E.62. Release 8.3.21 ...2265
E.62.1. Migration to Version 8.3.21..2266
E.62.2. Changes ..2266

E.63. Release 8.3.20 ...2266
E.63.1. Migration to Version 8.3.20..2267
E.63.2. Changes ..2267

E.64. Release 8.3.19 ...2268
E.64.1. Migration to Version 8.3.19..2268
E.64.2. Changes ..2268

E.65. Release 8.3.18 ...2270
E.65.1. Migration to Version 8.3.18..2270
E.65.2. Changes ..2270

E.66. Release 8.3.17 ...2272
E.66.1. Migration to Version 8.3.17..2272
E.66.2. Changes ..2272

E.67. Release 8.3.16 ...2274
E.67.1. Migration to Version 8.3.16..2274
E.67.2. Changes ..2274

E.68. Release 8.3.15 ...2276
E.68.1. Migration to Version 8.3.15..2277
E.68.2. Changes ..2277

E.69. Release 8.3.14 ...2278
E.69.1. Migration to Version 8.3.14..2278
E.69.2. Changes ..2278

E.70. Release 8.3.13 ...2279
E.70.1. Migration to Version 8.3.13..2279
E.70.2. Changes ..2279

E.71. Release 8.3.12 ...2281
E.71.1. Migration to Version 8.3.12..2281
E.71.2. Changes ..2281

E.72. Release 8.3.11 ...2283
E.72.1. Migration to Version 8.3.11..2283
E.72.2. Changes ..2284

E.73. Release 8.3.10 ...2285
E.73.1. Migration to Version 8.3.10..2285
E.73.2. Changes ..2285

E.74. Release 8.3.9 ...2287
E.74.1. Migration to Version 8.3.9..2287
E.74.2. Changes ..2288

xlii

E.75. Release 8.3.8 ...2290
E.75.1. Migration to Version 8.3.8..2290
E.75.2. Changes ..2290

E.76. Release 8.3.7 ...2291
E.76.1. Migration to Version 8.3.7..2292
E.76.2. Changes ..2292

E.77. Release 8.3.6 ...2293
E.77.1. Migration to Version 8.3.6..2293
E.77.2. Changes ..2294

E.78. Release 8.3.5 ...2295
E.78.1. Migration to Version 8.3.5..2295
E.78.2. Changes ..2296

E.79. Release 8.3.4 ...2297
E.79.1. Migration to Version 8.3.4..2297
E.79.2. Changes ..2297

E.80. Release 8.3.3 ...2299
E.80.1. Migration to Version 8.3.3..2300
E.80.2. Changes ..2300

E.81. Release 8.3.2 ...2300
E.81.1. Migration to Version 8.3.2..2300
E.81.2. Changes ..2300

E.82. Release 8.3.1 ...2303
E.82.1. Migration to Version 8.3.1..2303
E.82.2. Changes ..2303

E.83. Release 8.3 ..2305
E.83.1. Overview ..2305
E.83.2. Migration to Version 8.3...2306

E.83.2.1. General...2306
E.83.2.2. Configuration Parameters...2308
E.83.2.3. Character Encodings ..2308

E.83.3. Changes ..2309
E.83.3.1. Performance ...2309
E.83.3.2. Server ...2310
E.83.3.3. Monitoring ...2311
E.83.3.4. Authentication..2312
E.83.3.5. Write-Ahead Log (WAL) and Continuous Archiving2313
E.83.3.6. Queries ...2313
E.83.3.7. Object Manipulation ..2314
E.83.3.8. Utility Commands..2315
E.83.3.9. Data Types ...2315
E.83.3.10. Functions..2316
E.83.3.11. PL/pgSQL Server-Side Language..2317
E.83.3.12. Other Server-Side Languages ..2317
E.83.3.13. psql...2318
E.83.3.14. pg_dump ..2318
E.83.3.15. Other Client Applications ..2318
E.83.3.16. libpq ...2319
E.83.3.17. ecpg..2319

xliii

E.83.3.18. Windows Port...2319
E.83.3.19. Server Programming Interface (SPI) ...2320
E.83.3.20. Build Options...2320
E.83.3.21. Source Code...2320
E.83.3.22. Contrib ...2321

E.84. Release 8.2.23 ...2322
E.84.1. Migration to Version 8.2.23..2322
E.84.2. Changes ..2322

E.85. Release 8.2.22 ...2323
E.85.1. Migration to Version 8.2.22..2324
E.85.2. Changes ..2324

E.86. Release 8.2.21 ...2325
E.86.1. Migration to Version 8.2.21..2326
E.86.2. Changes ..2326

E.87. Release 8.2.20 ...2326
E.87.1. Migration to Version 8.2.20..2327
E.87.2. Changes ..2327

E.88. Release 8.2.19 ...2328
E.88.1. Migration to Version 8.2.19..2328
E.88.2. Changes ..2328

E.89. Release 8.2.18 ...2329
E.89.1. Migration to Version 8.2.18..2329
E.89.2. Changes ..2330

E.90. Release 8.2.17 ...2331
E.90.1. Migration to Version 8.2.17..2332
E.90.2. Changes ..2332

E.91. Release 8.2.16 ...2333
E.91.1. Migration to Version 8.2.16..2333
E.91.2. Changes ..2333

E.92. Release 8.2.15 ...2335
E.92.1. Migration to Version 8.2.15..2335
E.92.2. Changes ..2335

E.93. Release 8.2.14 ...2337
E.93.1. Migration to Version 8.2.14..2337
E.93.2. Changes ..2337

E.94. Release 8.2.13 ...2338
E.94.1. Migration to Version 8.2.13..2338
E.94.2. Changes ..2339

E.95. Release 8.2.12 ...2340
E.95.1. Migration to Version 8.2.12..2340
E.95.2. Changes ..2340

E.96. Release 8.2.11 ...2341
E.96.1. Migration to Version 8.2.11..2341
E.96.2. Changes ..2341

E.97. Release 8.2.10 ...2342
E.97.1. Migration to Version 8.2.10..2343
E.97.2. Changes ..2343

E.98. Release 8.2.9 ...2344

xliv

E.98.1. Migration to Version 8.2.9..2344
E.98.2. Changes ..2344

E.99. Release 8.2.8 ...2345
E.99.1. Migration to Version 8.2.8..2345
E.99.2. Changes ..2345

E.100. Release 8.2.7 ...2346
E.100.1. Migration to Version 8.2.7..2346
E.100.2. Changes ..2346

E.101. Release 8.2.6 ...2348
E.101.1. Migration to Version 8.2.6..2348
E.101.2. Changes ..2348

E.102. Release 8.2.5 ...2350
E.102.1. Migration to Version 8.2.5..2350
E.102.2. Changes ..2350

E.103. Release 8.2.4 ...2351
E.103.1. Migration to Version 8.2.4..2352
E.103.2. Changes ..2352

E.104. Release 8.2.3 ...2352
E.104.1. Migration to Version 8.2.3..2353
E.104.2. Changes ..2353

E.105. Release 8.2.2 ...2353
E.105.1. Migration to Version 8.2.2..2353
E.105.2. Changes ..2353

E.106. Release 8.2.1 ...2354
E.106.1. Migration to Version 8.2.1..2354
E.106.2. Changes ..2354

E.107. Release 8.2 ..2355
E.107.1. Overview ..2355
E.107.2. Migration to Version 8.2...2356
E.107.3. Changes ..2358

E.107.3.1. Performance Improvements ...2358
E.107.3.2. Server Changes ..2359
E.107.3.3. Query Changes...2360
E.107.3.4. Object Manipulation Changes ...2362
E.107.3.5. Utility Command Changes...2363
E.107.3.6. Date/Time Changes..2363
E.107.3.7. Other Data Type and Function Changes ..2364
E.107.3.8. PL/pgSQL Server-Side Language Changes...................................2365
E.107.3.9. PL/Perl Server-Side Language Changes ..2365
E.107.3.10. PL/Python Server-Side Language Changes2365
E.107.3.11. psql Changes ..2365
E.107.3.12. pg_dump Changes..2366
E.107.3.13. libpq Changes ..2366
E.107.3.14. ecpg Changes ...2367
E.107.3.15. Windows Port...2367
E.107.3.16. Source Code Changes ..2367
E.107.3.17. Contrib Changes ..2368

E.108. Release 8.1.23 ...2370

xlv

E.108.1. Migration to Version 8.1.23..2370
E.108.2. Changes ..2370

E.109. Release 8.1.22 ...2371
E.109.1. Migration to Version 8.1.22..2371
E.109.2. Changes ..2372

E.110. Release 8.1.21 ...2373
E.110.1. Migration to Version 8.1.21..2373
E.110.2. Changes ..2373

E.111. Release 8.1.20 ...2374
E.111.1. Migration to Version 8.1.20..2374
E.111.2. Changes ..2375

E.112. Release 8.1.19 ...2376
E.112.1. Migration to Version 8.1.19..2376
E.112.2. Changes ..2376

E.113. Release 8.1.18 ...2377
E.113.1. Migration to Version 8.1.18..2377
E.113.2. Changes ..2377

E.114. Release 8.1.17 ...2378
E.114.1. Migration to Version 8.1.17..2378
E.114.2. Changes ..2379

E.115. Release 8.1.16 ...2379
E.115.1. Migration to Version 8.1.16..2380
E.115.2. Changes ..2380

E.116. Release 8.1.15 ...2380
E.116.1. Migration to Version 8.1.15..2381
E.116.2. Changes ..2381

E.117. Release 8.1.14 ...2382
E.117.1. Migration to Version 8.1.14..2382
E.117.2. Changes ..2382

E.118. Release 8.1.13 ...2383
E.118.1. Migration to Version 8.1.13..2383
E.118.2. Changes ..2383

E.119. Release 8.1.12 ...2384
E.119.1. Migration to Version 8.1.12..2384
E.119.2. Changes ..2384

E.120. Release 8.1.11 ...2385
E.120.1. Migration to Version 8.1.11..2386
E.120.2. Changes ..2386

E.121. Release 8.1.10 ...2387
E.121.1. Migration to Version 8.1.10..2388
E.121.2. Changes ..2388

E.122. Release 8.1.9 ...2388
E.122.1. Migration to Version 8.1.9..2388
E.122.2. Changes ..2389

E.123. Release 8.1.8 ...2389
E.123.1. Migration to Version 8.1.8..2389
E.123.2. Changes ..2389

E.124. Release 8.1.7 ...2389

xlvi

E.124.1. Migration to Version 8.1.7..2390
E.124.2. Changes ..2390

E.125. Release 8.1.6 ...2390
E.125.1. Migration to Version 8.1.6..2390
E.125.2. Changes ..2391

E.126. Release 8.1.5 ...2391
E.126.1. Migration to Version 8.1.5..2391
E.126.2. Changes ..2392

E.127. Release 8.1.4 ...2392
E.127.1. Migration to Version 8.1.4..2393
E.127.2. Changes ..2393

E.128. Release 8.1.3 ...2394
E.128.1. Migration to Version 8.1.3..2394
E.128.2. Changes ..2395

E.129. Release 8.1.2 ...2396
E.129.1. Migration to Version 8.1.2..2396
E.129.2. Changes ..2396

E.130. Release 8.1.1 ...2397
E.130.1. Migration to Version 8.1.1..2397
E.130.2. Changes ..2397

E.131. Release 8.1 ..2398
E.131.1. Overview ..2398
E.131.2. Migration to Version 8.1...2400
E.131.3. Additional Changes ..2402

E.131.3.1. Performance Improvements ...2402
E.131.3.2. Server Changes ..2403
E.131.3.3. Query Changes...2404
E.131.3.4. Object Manipulation Changes ...2405
E.131.3.5. Utility Command Changes...2405
E.131.3.6. Data Type and Function Changes ..2406
E.131.3.7. Encoding and Locale Changes...2408
E.131.3.8. General Server-Side Language Changes..2408
E.131.3.9. PL/pgSQL Server-Side Language Changes...................................2409
E.131.3.10. PL/Perl Server-Side Language Changes2409
E.131.3.11. psql Changes ..2410
E.131.3.12. pg_dump Changes..2411
E.131.3.13. libpq Changes ..2411
E.131.3.14. Source Code Changes ..2411
E.131.3.15. Contrib Changes ..2412

E.132. Release 8.0.26 ...2413
E.132.1. Migration to Version 8.0.26..2413
E.132.2. Changes ..2413

E.133. Release 8.0.25 ...2414
E.133.1. Migration to Version 8.0.25..2415
E.133.2. Changes ..2415

E.134. Release 8.0.24 ...2416
E.134.1. Migration to Version 8.0.24..2416
E.134.2. Changes ..2416

xlvii

E.135. Release 8.0.23 ...2417
E.135.1. Migration to Version 8.0.23..2417
E.135.2. Changes ..2417

E.136. Release 8.0.22 ...2418
E.136.1. Migration to Version 8.0.22..2419
E.136.2. Changes ..2419

E.137. Release 8.0.21 ...2420
E.137.1. Migration to Version 8.0.21..2420
E.137.2. Changes ..2420

E.138. Release 8.0.20 ...2420
E.138.1. Migration to Version 8.0.20..2421
E.138.2. Changes ..2421

E.139. Release 8.0.19 ...2421
E.139.1. Migration to Version 8.0.19..2421
E.139.2. Changes ..2421

E.140. Release 8.0.18 ...2422
E.140.1. Migration to Version 8.0.18..2422
E.140.2. Changes ..2422

E.141. Release 8.0.17 ...2423
E.141.1. Migration to Version 8.0.17..2423
E.141.2. Changes ..2424

E.142. Release 8.0.16 ...2424
E.142.1. Migration to Version 8.0.16..2424
E.142.2. Changes ..2424

E.143. Release 8.0.15 ...2425
E.143.1. Migration to Version 8.0.15..2426
E.143.2. Changes ..2426

E.144. Release 8.0.14 ...2427
E.144.1. Migration to Version 8.0.14..2427
E.144.2. Changes ..2427

E.145. Release 8.0.13 ...2428
E.145.1. Migration to Version 8.0.13..2428
E.145.2. Changes ..2428

E.146. Release 8.0.12 ...2429
E.146.1. Migration to Version 8.0.12..2429
E.146.2. Changes ..2429

E.147. Release 8.0.11 ...2429
E.147.1. Migration to Version 8.0.11..2429
E.147.2. Changes ..2429

E.148. Release 8.0.10 ...2430
E.148.1. Migration to Version 8.0.10..2430
E.148.2. Changes ..2430

E.149. Release 8.0.9 ...2431
E.149.1. Migration to Version 8.0.9..2431
E.149.2. Changes ..2431

E.150. Release 8.0.8 ...2431
E.150.1. Migration to Version 8.0.8..2432
E.150.2. Changes ..2432

xlviii

E.151. Release 8.0.7 ...2433
E.151.1. Migration to Version 8.0.7..2433
E.151.2. Changes ..2433

E.152. Release 8.0.6 ...2434
E.152.1. Migration to Version 8.0.6..2434
E.152.2. Changes ..2434

E.153. Release 8.0.5 ...2435
E.153.1. Migration to Version 8.0.5..2435
E.153.2. Changes ..2435

E.154. Release 8.0.4 ...2436
E.154.1. Migration to Version 8.0.4..2436
E.154.2. Changes ..2436

E.155. Release 8.0.3 ...2438
E.155.1. Migration to Version 8.0.3..2438
E.155.2. Changes ..2438

E.156. Release 8.0.2 ...2439
E.156.1. Migration to Version 8.0.2..2439
E.156.2. Changes ..2440

E.157. Release 8.0.1 ...2441
E.157.1. Migration to Version 8.0.1..2441
E.157.2. Changes ..2442

E.158. Release 8.0 ..2442
E.158.1. Overview ..2442
E.158.2. Migration to Version 8.0...2443
E.158.3. Deprecated Features ...2445
E.158.4. Changes ..2445

E.158.4.1. Performance Improvements ...2446
E.158.4.2. Server Changes ..2447
E.158.4.3. Query Changes...2449
E.158.4.4. Object Manipulation Changes ...2450
E.158.4.5. Utility Command Changes...2451
E.158.4.6. Data Type and Function Changes ..2452
E.158.4.7. Server-Side Language Changes ...2453
E.158.4.8. psql Changes ..2454
E.158.4.9. pg_dump Changes..2455
E.158.4.10. libpq Changes ..2455
E.158.4.11. Source Code Changes ..2456
E.158.4.12. Contrib Changes ..2457

E.159. Release 7.4.30 ...2457
E.159.1. Migration to Version 7.4.30..2458
E.159.2. Changes ..2458

E.160. Release 7.4.29 ...2459
E.160.1. Migration to Version 7.4.29..2459
E.160.2. Changes ..2459

E.161. Release 7.4.28 ...2460
E.161.1. Migration to Version 7.4.28..2460
E.161.2. Changes ..2460

E.162. Release 7.4.27 ...2461

xlix

E.162.1. Migration to Version 7.4.27..2461
E.162.2. Changes ..2461

E.163. Release 7.4.26 ...2462
E.163.1. Migration to Version 7.4.26..2462
E.163.2. Changes ..2462

E.164. Release 7.4.25 ...2463
E.164.1. Migration to Version 7.4.25..2463
E.164.2. Changes ..2463

E.165. Release 7.4.24 ...2464
E.165.1. Migration to Version 7.4.24..2464
E.165.2. Changes ..2464

E.166. Release 7.4.23 ...2464
E.166.1. Migration to Version 7.4.23..2465
E.166.2. Changes ..2465

E.167. Release 7.4.22 ...2465
E.167.1. Migration to Version 7.4.22..2465
E.167.2. Changes ..2466

E.168. Release 7.4.21 ...2466
E.168.1. Migration to Version 7.4.21..2466
E.168.2. Changes ..2466

E.169. Release 7.4.20 ...2467
E.169.1. Migration to Version 7.4.20..2467
E.169.2. Changes ..2467

E.170. Release 7.4.19 ...2468
E.170.1. Migration to Version 7.4.19..2468
E.170.2. Changes ..2468

E.171. Release 7.4.18 ...2469
E.171.1. Migration to Version 7.4.18..2469
E.171.2. Changes ..2469

E.172. Release 7.4.17 ...2470
E.172.1. Migration to Version 7.4.17..2470
E.172.2. Changes ..2470

E.173. Release 7.4.16 ...2470
E.173.1. Migration to Version 7.4.16..2471
E.173.2. Changes ..2471

E.174. Release 7.4.15 ...2471
E.174.1. Migration to Version 7.4.15..2471
E.174.2. Changes ..2471

E.175. Release 7.4.14 ...2472
E.175.1. Migration to Version 7.4.14..2472
E.175.2. Changes ..2472

E.176. Release 7.4.13 ...2472
E.176.1. Migration to Version 7.4.13..2473
E.176.2. Changes ..2473

E.177. Release 7.4.12 ...2474
E.177.1. Migration to Version 7.4.12..2474
E.177.2. Changes ..2474

E.178. Release 7.4.11 ...2475

l

E.178.1. Migration to Version 7.4.11..2475
E.178.2. Changes ..2475

E.179. Release 7.4.10 ...2475
E.179.1. Migration to Version 7.4.10..2476
E.179.2. Changes ..2476

E.180. Release 7.4.9 ...2476
E.180.1. Migration to Version 7.4.9..2476
E.180.2. Changes ..2476

E.181. Release 7.4.8 ...2477
E.181.1. Migration to Version 7.4.8..2477
E.181.2. Changes ..2479

E.182. Release 7.4.7 ...2480
E.182.1. Migration to Version 7.4.7..2480
E.182.2. Changes ..2480

E.183. Release 7.4.6 ...2481
E.183.1. Migration to Version 7.4.6..2481
E.183.2. Changes ..2481

E.184. Release 7.4.5 ...2482
E.184.1. Migration to Version 7.4.5..2482
E.184.2. Changes ..2482

E.185. Release 7.4.4 ...2482
E.185.1. Migration to Version 7.4.4..2482
E.185.2. Changes ..2482

E.186. Release 7.4.3 ...2483
E.186.1. Migration to Version 7.4.3..2483
E.186.2. Changes ..2483

E.187. Release 7.4.2 ...2484
E.187.1. Migration to Version 7.4.2..2484
E.187.2. Changes ..2485

E.188. Release 7.4.1 ...2486
E.188.1. Migration to Version 7.4.1..2486
E.188.2. Changes ..2487

E.189. Release 7.4 ..2488
E.189.1. Overview ..2488
E.189.2. Migration to Version 7.4...2490
E.189.3. Changes ..2491

E.189.3.1. Server Operation Changes ...2491
E.189.3.2. Performance Improvements ...2492
E.189.3.3. Server Configuration Changes ...2493
E.189.3.4. Query Changes...2494
E.189.3.5. Object Manipulation Changes ...2495
E.189.3.6. Utility Command Changes...2496
E.189.3.7. Data Type and Function Changes ..2497
E.189.3.8. Server-Side Language Changes ...2499
E.189.3.9. psql Changes ..2499
E.189.3.10. pg_dump Changes..2500
E.189.3.11. libpq Changes ..2500
E.189.3.12. JDBC Changes...2501

li

E.189.3.13. Miscellaneous Interface Changes ..2501
E.189.3.14. Source Code Changes ..2502
E.189.3.15. Contrib Changes ..2502

E.190. Release 7.3.21 ...2503
E.190.1. Migration to Version 7.3.21..2503
E.190.2. Changes ..2504

E.191. Release 7.3.20 ...2504
E.191.1. Migration to Version 7.3.20..2504
E.191.2. Changes ..2505

E.192. Release 7.3.19 ...2505
E.192.1. Migration to Version 7.3.19..2505
E.192.2. Changes ..2505

E.193. Release 7.3.18 ...2505
E.193.1. Migration to Version 7.3.18..2506
E.193.2. Changes ..2506

E.194. Release 7.3.17 ...2506
E.194.1. Migration to Version 7.3.17..2506
E.194.2. Changes ..2506

E.195. Release 7.3.16 ...2507
E.195.1. Migration to Version 7.3.16..2507
E.195.2. Changes ..2507

E.196. Release 7.3.15 ...2507
E.196.1. Migration to Version 7.3.15..2507
E.196.2. Changes ..2508

E.197. Release 7.3.14 ...2508
E.197.1. Migration to Version 7.3.14..2509
E.197.2. Changes ..2509

E.198. Release 7.3.13 ...2509
E.198.1. Migration to Version 7.3.13..2509
E.198.2. Changes ..2509

E.199. Release 7.3.12 ...2510
E.199.1. Migration to Version 7.3.12..2510
E.199.2. Changes ..2510

E.200. Release 7.3.11 ...2511
E.200.1. Migration to Version 7.3.11..2511
E.200.2. Changes ..2511

E.201. Release 7.3.10 ...2511
E.201.1. Migration to Version 7.3.10..2512
E.201.2. Changes ..2512

E.202. Release 7.3.9 ...2513
E.202.1. Migration to Version 7.3.9..2513
E.202.2. Changes ..2513

E.203. Release 7.3.8 ...2514
E.203.1. Migration to Version 7.3.8..2514
E.203.2. Changes ..2514

E.204. Release 7.3.7 ...2515
E.204.1. Migration to Version 7.3.7..2515
E.204.2. Changes ..2515

lii

E.205. Release 7.3.6 ...2515
E.205.1. Migration to Version 7.3.6..2515
E.205.2. Changes ..2516

E.206. Release 7.3.5 ...2516
E.206.1. Migration to Version 7.3.5..2516
E.206.2. Changes ..2516

E.207. Release 7.3.4 ...2517
E.207.1. Migration to Version 7.3.4..2517
E.207.2. Changes ..2517

E.208. Release 7.3.3 ...2518
E.208.1. Migration to Version 7.3.3..2518
E.208.2. Changes ..2518

E.209. Release 7.3.2 ...2520
E.209.1. Migration to Version 7.3.2..2520
E.209.2. Changes ..2521

E.210. Release 7.3.1 ...2522
E.210.1. Migration to Version 7.3.1..2522
E.210.2. Changes ..2522

E.211. Release 7.3 ..2522
E.211.1. Overview ..2523
E.211.2. Migration to Version 7.3...2523
E.211.3. Changes ..2524

E.211.3.1. Server Operation ..2524
E.211.3.2. Performance ...2524
E.211.3.3. Privileges..2525
E.211.3.4. Server Configuration..2525
E.211.3.5. Queries ...2526
E.211.3.6. Object Manipulation ..2527
E.211.3.7. Utility Commands..2528
E.211.3.8. Data Types and Functions..2529
E.211.3.9. Internationalization ..2530
E.211.3.10. Server-side Languages ...2530
E.211.3.11. psql...2531
E.211.3.12. libpq ...2531
E.211.3.13. JDBC..2531
E.211.3.14. Miscellaneous Interfaces..2532
E.211.3.15. Source Code...2532
E.211.3.16. Contrib ...2534

E.212. Release 7.2.8 ...2534
E.212.1. Migration to Version 7.2.8..2535
E.212.2. Changes ..2535

E.213. Release 7.2.7 ...2535
E.213.1. Migration to Version 7.2.7..2535
E.213.2. Changes ..2535

E.214. Release 7.2.6 ...2536
E.214.1. Migration to Version 7.2.6..2536
E.214.2. Changes ..2536

E.215. Release 7.2.5 ...2537

liii

E.215.1. Migration to Version 7.2.5..2537
E.215.2. Changes ..2537

E.216. Release 7.2.4 ...2537
E.216.1. Migration to Version 7.2.4..2537
E.216.2. Changes ..2538

E.217. Release 7.2.3 ...2538
E.217.1. Migration to Version 7.2.3..2538
E.217.2. Changes ..2538

E.218. Release 7.2.2 ...2538
E.218.1. Migration to Version 7.2.2..2539
E.218.2. Changes ..2539

E.219. Release 7.2.1 ...2539
E.219.1. Migration to Version 7.2.1..2539
E.219.2. Changes ..2540

E.220. Release 7.2 ..2540
E.220.1. Overview ..2540
E.220.2. Migration to Version 7.2...2541
E.220.3. Changes ..2542

E.220.3.1. Server Operation ..2542
E.220.3.2. Performance ...2542
E.220.3.3. Privileges..2543
E.220.3.4. Client Authentication...2543
E.220.3.5. Server Configuration..2543
E.220.3.6. Queries ...2543
E.220.3.7. Schema Manipulation ..2544
E.220.3.8. Utility Commands..2544
E.220.3.9. Data Types and Functions..2545
E.220.3.10. Internationalization ..2546
E.220.3.11. PL/pgSQL ..2546
E.220.3.12. PL/Perl ...2547
E.220.3.13. PL/Tcl ..2547
E.220.3.14. PL/Python ..2547
E.220.3.15. psql...2547
E.220.3.16. libpq ...2547
E.220.3.17. JDBC..2548
E.220.3.18. ODBC ..2549
E.220.3.19. ECPG ...2549
E.220.3.20. Misc. Interfaces..2549
E.220.3.21. Build and Install...2550
E.220.3.22. Source Code...2550
E.220.3.23. Contrib ...2550

E.221. Release 7.1.3 ...2551
E.221.1. Migration to Version 7.1.3..2551
E.221.2. Changes ..2551

E.222. Release 7.1.2 ...2551
E.222.1. Migration to Version 7.1.2..2552
E.222.2. Changes ..2552

E.223. Release 7.1.1 ...2552

liv

E.223.1. Migration to Version 7.1.1..2552
E.223.2. Changes ..2552

E.224. Release 7.1 ..2553
E.224.1. Migration to Version 7.1...2553
E.224.2. Changes ..2553

E.225. Release 7.0.3 ...2557
E.225.1. Migration to Version 7.0.3..2557
E.225.2. Changes ..2557

E.226. Release 7.0.2 ...2558
E.226.1. Migration to Version 7.0.2..2559
E.226.2. Changes ..2559

E.227. Release 7.0.1 ...2559
E.227.1. Migration to Version 7.0.1..2559
E.227.2. Changes ..2559

E.228. Release 7.0 ..2560
E.228.1. Migration to Version 7.0...2560
E.228.2. Changes ..2561

E.229. Release 6.5.3 ...2567
E.229.1. Migration to Version 6.5.3..2567
E.229.2. Changes ..2567

E.230. Release 6.5.2 ...2567
E.230.1. Migration to Version 6.5.2..2568
E.230.2. Changes ..2568

E.231. Release 6.5.1 ...2568
E.231.1. Migration to Version 6.5.1..2569
E.231.2. Changes ..2569

E.232. Release 6.5 ..2569
E.232.1. Migration to Version 6.5...2570

E.232.1.1. Multiversion Concurrency Control ..2571
E.232.2. Changes ..2571

E.233. Release 6.4.2 ...2574
E.233.1. Migration to Version 6.4.2..2575
E.233.2. Changes ..2575

E.234. Release 6.4.1 ...2575
E.234.1. Migration to Version 6.4.1..2575
E.234.2. Changes ..2575

E.235. Release 6.4 ..2576
E.235.1. Migration to Version 6.4...2577
E.235.2. Changes ..2577

E.236. Release 6.3.2 ...2581
E.236.1. Changes ..2581

E.237. Release 6.3.1 ...2582
E.237.1. Changes ..2582

E.238. Release 6.3 ..2583
E.238.1. Migration to Version 6.3...2584
E.238.2. Changes ..2584

E.239. Release 6.2.1 ...2587
E.239.1. Migration from version 6.2 to version 6.2.1...2588

lv

E.239.2. Changes ..2588
E.240. Release 6.2 ..2589

E.240.1. Migration from version 6.1 to version 6.2..2589
E.240.2. Migration from version 1.x to version 6.2 ...2589
E.240.3. Changes ..2589

E.241. Release 6.1.1 ...2591
E.241.1. Migration from version 6.1 to version 6.1.1...2591
E.241.2. Changes ..2591

E.242. Release 6.1 ..2592
E.242.1. Migration to Version 6.1...2592
E.242.2. Changes ..2593

E.243. Release 6.0 ..2595
E.243.1. Migration from version 1.09 to version 6.0..2595
E.243.2. Migration from pre-1.09 to version 6.0 ..2595
E.243.3. Changes ..2595

E.244. Release 1.09 ..2597
E.245. Release 1.02 ..2597

E.245.1. Migration from version 1.02 to version 1.02.1...2597
E.245.2. Dump/Reload Procedure ..2598
E.245.3. Changes ..2598

E.246. Release 1.01 ..2599
E.246.1. Migration from version 1.0 to version 1.01..2599
E.246.2. Changes ..2601

E.247. Release 1.0 ..2602
E.247.1. Changes ..2602

E.248. Postgres95 Release 0.03..2603
E.248.1. Changes ..2603

E.249. Postgres95 Release 0.02..2605
E.249.1. Changes ..2605

E.250. Postgres95 Release 0.01..2606
F. Additional Supplied Modules ..2607

F.1. adminpack..2608
F.1.1. Functions Implemented...2608

F.2. auth_delay..2608
F.2.1. Configuration Parameters..2608
F.2.2. Author ...2609

F.3. auto_explain...2609
F.3.1. Configuration Parameters..2609
F.3.2. Example ..2610
F.3.3. Author ...2611

F.4. btree_gin ..2611
F.4.1. Example Usage ...2611
F.4.2. Authors..2611

F.5. btree_gist ...2611
F.5.1. Example Usage ...2612
F.5.2. Authors..2612

F.6. chkpass...2613
F.6.1. Author ...2614

lvi

F.7. citext ..2614
F.7.1. Rationale ...2614
F.7.2. How to Use It ..2614
F.7.3. String Comparison Behavior...2615
F.7.4. Limitations ..2615
F.7.5. Author ...2616

F.8. cube..2616
F.8.1. Syntax ...2616
F.8.2. Precision..2617
F.8.3. Usage...2617
F.8.4. Defaults ...2619
F.8.5. Notes ...2620
F.8.6. Credits ...2620

F.9. dblink ...2620
dblink_connect..2621
dblink_connect_u..2624
dblink_disconnect ...2625
dblink ..2626
dblink_exec ...2629
dblink_open...2631
dblink_fetch ..2633
dblink_close ..2635
dblink_get_connections ..2637
dblink_error_message ...2638
dblink_send_query..2639
dblink_is_busy ..2640
dblink_get_notify..2641
dblink_get_result...2643
dblink_cancel_query ...2646
dblink_get_pkey..2647
dblink_build_sql_insert...2649
dblink_build_sql_delete ..2651
dblink_build_sql_update...2653

F.10. dict_int ...2655
F.10.1. Configuration ..2655
F.10.2. Usage...2655

F.11. dict_xsyn..2655
F.11.1. Configuration ..2656
F.11.2. Usage...2656

F.12. dummy_seclabel ..2657
F.12.1. Rationale ...2657
F.12.2. Usage...2657
F.12.3. Author ...2658

F.13. earthdistance ..2658
F.13.1. Cube-based Earth Distances ...2658
F.13.2. Point-based Earth Distances ...2659

F.14. file_fdw..2660
F.15. fuzzystrmatch...2662

lvii

F.15.1. Soundex...2662
F.15.2. Levenshtein ...2663
F.15.3. Metaphone...2664
F.15.4. Double Metaphone..2664

F.16. hstore ...2664
F.16.1. hstore External Representation ..2664
F.16.2. hstore Operators and Functions ...2665
F.16.3. Indexes ..2668
F.16.4. Examples...2668
F.16.5. Statistics ..2669
F.16.6. Compatibility ..2670
F.16.7. Authors..2671

F.17. intagg ...2671
F.17.1. Functions...2671
F.17.2. Sample Uses..2671

F.18. intarray...2672
F.18.1. intarray Functions and Operators ...2672
F.18.2. Index Support ..2674
F.18.3. Example ..2674
F.18.4. Benchmark ..2675
F.18.5. Authors..2675

F.19. isn...2675
F.19.1. Data Types...2675
F.19.2. Casts ..2676
F.19.3. Functions and Operators ...2677
F.19.4. Examples...2678
F.19.5. Bibliography..2679
F.19.6. Author ...2679

F.20. lo ..2679
F.20.1. Rationale ...2679
F.20.2. How to Use It ..2680
F.20.3. Limitations ..2680
F.20.4. Author ...2680

F.21. ltree ..2680
F.21.1. Definitions...2681
F.21.2. Operators and Functions ...2682
F.21.3. Indexes ..2685
F.21.4. Example ..2685
F.21.5. Authors..2687

F.22. pageinspect ..2688
F.22.1. Functions...2688

F.23. passwordcheck...2689
F.24. pg_buffercache...2690

F.24.1. The pg_buffercache View..2690
F.24.2. Sample Output ..2691
F.24.3. Authors..2691

F.25. pgcrypto ...2692
F.25.1. General Hashing Functions...2692

lviii

F.25.1.1. digest()...2692
F.25.1.2. hmac() ...2692

F.25.2. Password Hashing Functions ..2692
F.25.2.1. crypt() ...2693
F.25.2.2. gen_salt() ..2693

F.25.3. PGP Encryption Functions..2695
F.25.3.1. pgp_sym_encrypt() ...2695
F.25.3.2. pgp_sym_decrypt() ...2696
F.25.3.3. pgp_pub_encrypt() ...2696
F.25.3.4. pgp_pub_decrypt() ...2696
F.25.3.5. pgp_key_id() ..2696
F.25.3.6. armor(), dearmor() ...2697
F.25.3.7. Options for PGP Functions...2697

F.25.3.7.1. cipher-algo ...2697
F.25.3.7.2. compress-algo ..2697
F.25.3.7.3. compress-level ...2698
F.25.3.7.4. convert-crlf...2698
F.25.3.7.5. disable-mdc..2698
F.25.3.7.6. enable-session-key ...2698
F.25.3.7.7. s2k-mode..2698
F.25.3.7.8. s2k-digest-algo...2699
F.25.3.7.9. s2k-cipher-algo ..2699
F.25.3.7.10. unicode-mode...2699

F.25.3.8. Generating PGP Keys with GnuPG..2699
F.25.3.9. Limitations of PGP Code ...2700

F.25.4. Raw Encryption Functions..2700
F.25.5. Random-Data Functions ...2701
F.25.6. Notes ...2701

F.25.6.1. Configuration..2702
F.25.6.2. NULL Handling ...2702
F.25.6.3. Security Limitations ...2702
F.25.6.4. Useful Reading ...2703
F.25.6.5. Technical References..2703

F.25.7. Author ...2704
F.26. pg_freespacemap ...2704

F.26.1. Functions...2704
F.26.2. Sample Output ..2704
F.26.3. Author ...2705

F.27. pgrowlocks...2705
F.27.1. Overview...2705
F.27.2. Sample Output ..2706
F.27.3. Author ...2706

F.28. pg_stat_statements...2707
F.28.1. The pg_stat_statements View ...2707
F.28.2. Functions...2709
F.28.3. Configuration Parameters..2709
F.28.4. Sample Output ..2710
F.28.5. Authors..2711

lix

F.29. pgstattuple..2711
F.29.1. Functions...2711
F.29.2. Authors..2713

F.30. pg_trgm..2713
F.30.1. Trigram (or Trigraph) Concepts ..2713
F.30.2. Functions and Operators ...2713
F.30.3. Index Support ..2714
F.30.4. Text Search Integration ...2715
F.30.5. References...2716
F.30.6. Authors..2716

F.31. seg ..2716
F.31.1. Rationale ...2716
F.31.2. Syntax ...2717
F.31.3. Precision..2718
F.31.4. Usage...2718
F.31.5. Notes ...2719
F.31.6. Credits ...2720

F.32. sepgsql ...2720
F.32.1. Overview...2720
F.32.2. Installation...2720
F.32.3. Regression Tests..2721
F.32.4. GUC Parameters ...2723
F.32.5. Features ...2723

F.32.5.1. Controlled Object Classes ..2723
F.32.5.2. DML Permissions...2723
F.32.5.3. DDL Permissions ...2724
F.32.5.4. Trusted Procedures ...2725
F.32.5.5. Dynamic Domain Transitions...2725
F.32.5.6. Miscellaneous...2726

F.32.6. Sepgsql Functions ...2726
F.32.7. Limitations ..2727
F.32.8. External Resources..2727
F.32.9. Author ...2728

F.33. spi...2728
F.33.1. refint — Functions for Implementing Referential Integrity..........................2728
F.33.2. timetravel — Functions for Implementing Time Travel2729
F.33.3. autoinc — Functions for Autoincrementing Fields2729
F.33.4. insert_username — Functions for Tracking Who Changed a Table2730
F.33.5. moddatetime — Functions for Tracking Last Modification Time2730

F.34. sslinfo...2730
F.34.1. Functions Provided ...2730
F.34.2. Author ...2732

F.35. tablefunc ..2732
F.35.1. Functions Provided ...2732

F.35.1.1. normal_rand ..2733
F.35.1.2. crosstab(text)..2734
F.35.1.3. crosstabN(text) ...2736
F.35.1.4. crosstab(text, text)...2737

lx

F.35.1.5. connectby...2740
F.35.2. Author ...2742

F.36. tcn ..2742
F.37. test_parser..2743

F.37.1. Usage...2744
F.38. tsearch2..2745

F.38.1. Portability Issues ...2745
F.38.2. Converting a pre-8.3 Installation...2745
F.38.3. References...2746

F.39. unaccent ...2746
F.39.1. Configuration ..2746
F.39.2. Usage...2747
F.39.3. Functions...2748

F.40. uuid-ossp..2748
F.40.1. uuid-ossp Functions ..2748
F.40.2. Author ...2750

F.41. xml2 ...2750
F.41.1. Deprecation Notice ...2750
F.41.2. Description of Functions...2750
F.41.3. xpath_table ...2752

F.41.3.1. Multivalued Results..2753
F.41.4. XSLT Functions ..2754

F.41.4.1. xslt_process ..2754
F.41.5. Author ...2755

G. Additional Supplied Programs ..2756
G.1. Client Applications ...2756

oid2name...2756
pgbench ...2761
vacuumlo...2770

G.2. Server Applications ..2772
pg_archivecleanup ..2772
pg_standby ..2775
pg_test_fsync ..2779
pg_test_timing ..2781
pg_upgrade..2785

H. External Projects ...2792
H.1. Client Interfaces..2792
H.2. Administration Tools ..2792
H.3. Procedural Languages...2793
H.4. Extensions...2793

I. The Source Code Repository ..2794
I.1. Getting The Source via Git ..2794

J. Documentation ...2795
J.1. DocBook ..2795
J.2. Tool Sets...2795

J.2.1. Linux RPM Installation ...2796
J.2.2. FreeBSD Installation ...2797
J.2.3. Debian Packages..2797

lxi

J.2.4. Manual Installation from Source...2797
J.2.4.1. Installing OpenJade ..2798
J.2.4.2. Installing the DocBook DTD Kit..2798
J.2.4.3. Installing the DocBook DSSSL Style Sheets2799
J.2.4.4. Installing JadeTeX ..2799

J.2.5. Detection by configure ..2800
J.3. Building The Documentation...2800

J.3.1. HTML..2800
J.3.2. Manpages...2801
J.3.3. Print Output via JadeTeX ..2801
J.3.4. Overflow Text ..2802
J.3.5. Print Output via RTF ...2802
J.3.6. Plain Text Files ..2803
J.3.7. Syntax Check...2804

J.4. Documentation Authoring ...2804
J.4.1. Emacs/PSGML..2804
J.4.2. Other Emacs Modes ..2805

J.5. Style Guide...2805
J.5.1. Reference Pages ..2805

K. Acronyms ..2808

Bibliography...2814
Index..2816

lxii

Preface
This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

• Part I is an informal introduction for new users.

• Part II documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

• Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

• Part IV describes the programming interfaces for PostgreSQL client programs.

• Part V contains information for advanced users about the extensibility capabilities of the server. Topics
include user-defined data types and functions.

• Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

• Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.21, developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of the
SQL standard and offers many modern features:

• complex queries
• foreign keys
• triggers
• views
• transactional integrity
• multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

• data types

1. http://db.cs.berkeley.edu/postgres.html

lxiii

Preface

• functions
• operators
• aggregate functions
• index methods
• procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free of
charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL
The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over two decades of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in The design of POSTGRES , and the definition of the initial data model appeared
in The POSTGRES data model . The design of the rule system at that time was described in The design
of the POSTGRES rules system. The rationale and architecture of the storage manager were detailed in
The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in The
implementation of POSTGRES , was released to a few external users in June 1989. In response to a critique
of the first rule system (A commentary on the POSTGRES rules system), the rule system was redesigned
(On Rules, Procedures, Caching and Views in Database Systems), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage man-
agers, an improved query executor, and a rewritten rule system. For the most part, subsequent releases
until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, Illustra Information Technologies
(later merged into Informix2, which is now owned by IBM3) picked up the code and commercialized it.
In late 1992, POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project4.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

lxiv

Preface

devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2.2. Postgres95
In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY query clause was
also added.

• A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

• A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

• The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL
By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

lxv

Preface

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions
This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in italics. Everything that represents in-
put or output of the computer, in particular commands, program code, and screen output, is shown in a
monospaced font (example). Within such passages, italics (example) indicate placeholders; you must
insert an actual value instead of the placeholder. On occasion, parts of program code are emphasized in
bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.) Braces
({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (...) mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information
Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki

The PostgreSQL wiki5 contains the project’s FAQ6 (Frequently Asked Questions) list, TODO7 list,
and detailed information about many more topics.

Web Site

The PostgreSQL web site8 carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

5. http://wiki.postgresql.org
6. http://wiki.postgresql.org/wiki/Frequently_Asked_Questions
7. http://wiki.postgresql.org/wiki/Todo
8. http://www.postgresql.org

lxvi

Preface

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs
Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

lxvii

Preface

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to Report
The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.
If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively
straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

• The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding CREATE

TABLE and INSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqlrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example, but
this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

• The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server’s log output, this would be a good time to start doing so.

lxviii

Preface

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

• Any command line options and other start-up options, including any relevant environment variables or
configuration files that you changed from the default. Again, please provide exact information. If you
are using a prepackaged distribution that starts the database server at boot time, you should try to find
out how that is done.

• Anything you did at all differently from the installation instructions.

• The PostgreSQL version. You can run the command SELECT version(); to find out the version of
the server you are connected to. Most executable programs also support a --version option; at least
postgres --version and psql --version should work. If the function or the options do not exist
then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package might have. If you are talking about a Git
snapshot, mention that, including the commit hash.

If your version is older than 9.2.7 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered in
an older release of PostgreSQL has already been fixed. We can only provide limited support for sites
using older releases of PostgreSQL; if you require more than we can provide, consider acquiring a
commercial support contract.

• Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation, and so on. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have installation
problems then information about the toolchain on your machine (compiler, make, and so on) is also
necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an article9

that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time
to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is called
“PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend process,
mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process is quite different
from crash of the parent “postgres” process; please don’t say “the server crashed” when you mean a single
backend process went down, nor vice versa. Also, client programs such as the interactive frontend “psql”

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

lxix

Preface

are completely separate from the backend. Please try to be specific about whether the problem is on the
client or server side.

5.3. Where to Report Bugs
In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org>. You are
requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site10. Entering a bug
report this way causes it to be mailed to the <pgsql-bugs@postgresql.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately visible
in public archives, don’t send it to pgsql-bugs. Security issues can be reported privately to
<security@postgresql.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org> or
<pgsql-general@postgresql.org>. These mailing lists are for answering user questions, and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list <pgsql-hackers@postgresql.org>.
This list is for discussing the development of PostgreSQL, and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug report on pgsql-hackers, if
the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org>. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-hackers@postgresql.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug-report web form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail. For more
information send mail to <majordomo@postgresql.org> with the single word help in the body of the
message.

10. http://www.postgresql.org/

lxx

I. Tutorial
Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a more
formal knowledge of the SQL language, or Part IV for information about developing applications for
PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation
Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST

environment variable to the name of the database server machine. The environment variable PGPORTmight
also have to be set. The bottom line is this: if you try to start an application program and it complains
that it cannot connect to the database, you should consult your site administrator or, if that is you, the
documentation to make sure that your environment is properly set up. If you did not understand the
preceding paragraph then read the next section.

1.2. Architectural Fundamentals
Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

• A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program is
called postgres.

• The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

1

Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process is
always running, waiting for client connections, whereas client and associated server processes come and
go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database
The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation instruc-
tions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again, check
the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Post-
greSQL user account for you. (PostgreSQL user accounts are distinct from operating system user ac-
counts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to become
the operating system user under which PostgreSQL was installed (usually postgres) to create the first
user account. It could also be that you were assigned a PostgreSQL user name that is different from your

2

Chapter 1. Getting Started

operating system user name; in that case you need to use the -U switch or set the PGUSER environment
variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will see
the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-
ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as. 1

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 bytes in length.
A convenient choice is to create a database with the same name as your current user name. Many tools
assume that database name as the default, so it can save you some typing. To create that database, simply
type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database
Once you have created a database, you can access it by:

• Running the PostgreSQL interactive terminal program, called psql, which allows you to interactively
enter, edit, and execute SQL commands.

• Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC support
to create and manipulate a database. These possibilities are not covered in this tutorial.

• Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further in Part IV.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specify the -U option everywhere to select a PostgreSQL user name to connect as.

3

Chapter 1. Getting Started

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb

database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psql (9.2.7)
Type "help" for help.

mydb=>

The last line could also be:

mydb=#

That would mean you are a database superuser, which is most likely the case if you installed PostgreSQL
yourself. Being a superuser means that you are not subject to access controls. For the purposes of this
tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT version();

version

PostgreSQL 9.2.7 on i586-pc-linux-gnu, compiled by GCC 2.96, 32-bit

(1 row)

mydb=> SELECT current_date;

date

2002-08-31

(1 row)

mydb=> SELECT 2 + 2;

?column?

4
(1 row)

The psql program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

4

Chapter 1. Getting Started

To get out of psql, type:

mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

5

Chapter 2. The SQL Language

2.1. Introduction
This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including Understanding the New SQL and A Guide to the SQL Standard. You
should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in the
previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those files,
first change to that directory and run make:

$ cd/src/tutorial

$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to start
the tutorial, do the following:

$ cd/tutorial

$ psql -s mydb

...

mydb=> \i basics.sql

The \i command reads in commands from the specified file. psql’s -s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section are in
the file basics.sql.

2.2. Concepts
PostgreSQL is a relational database management system (RDBMS). That means it is a system for man-
aging data stored in relations. Relation is essentially a mathematical term for table. The notion of storing
data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a database cluster.

6

Chapter 2. The SQL Language

2.3. Creating a New Table
You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (
city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date

);

You can enter this into psql with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--”) introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision, char(N),
varchar(N), date, time, timestamp, and interval, as well as other types of general utility and a
rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar(80),
location point

);

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows
The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, ’1994-11-27’);

7

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (’), as in the example. The date type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ’(-194.0, 53.0)’);

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, ’1994-11-29’);

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, ’Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.

Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used COPY to load large amounts of data from flat-text files. This is usually faster
because the COPY command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM ’/home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process, not
the client, since the backend process reads the file directly. You can read more about the COPY command
in COPY.

2.5. Querying a Table
To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here * is a shorthand for “all columns”. 1 So the same result would be had with:

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column
to the table would change the results.

8

Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29

(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
---------------+----------+------------
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29

(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE

clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
San Francisco | 46 | 50 | 0.25 | 1994-11-27

(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in either
order. But you’d always get the results shown above if you do:

9

Chapter 2. The SQL Language

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

city

Hayward
San Francisco

(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT and
ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables
Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A query that accesses multiple rows of the same or different tables at one time is called a join query. As an
example, say you wish to list all the weather records together with the location of the associated city. To
do that, we need to compare the city column of each row of the weather table with the name column
of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

2. In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders the
rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee
that DISTINCT causes the rows to be ordered.

10

Chapter 2. The SQL Language

Observe two things about the result set:

• There is no result row for the city of Hayward. This is because there is no matching entry in the cities
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly
how this can be fixed.

• There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you’d need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location

FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table’s columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

11

Chapter 2. The SQL Language

This query is called a left outer join because the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find
all the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all
other weather rows. We can do this with the following query:

SELECT W1.city, W1.temp_lo AS low, W1.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE W1.temp_lo < W2.temp_lo
AND W1.temp_hi > W2.temp_hi;

city | low | high | city | low | high
---------------+-----+------+---------------+-----+------
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50

(2 rows)

Here we have relabeled the weather table as W1 and W2 to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions
Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(temp_lo) FROM weather;

max

46

(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:

12

Chapter 2. The SQL Language

SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation; so
obviously it has to be evaluated before aggregate functions are computed.) However, as is often the case
the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

city

San Francisco

(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
---------------+-----
Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;

city | max
---------+-----
Hayward | 37

(1 row)

which gives us the same results for only the cities that have all temp_lo values below 40. Finally, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’S%’Ê

GROUP BY city
HAVING max(temp_lo) < 40;

13

Chapter 2. The SQL Language

Ê The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn’t use aggregates, but it’s seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates
You can update existing rows using the UPDATE command. Suppose you discover the temperature readings
are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > ’1994-11-28’;

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29

(3 rows)

2.9. Deletions
Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’Hayward’;

All weather records belonging to Hayward are removed.

14

Chapter 2. The SQL Language

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction
In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will be
useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql in
the tutorial directory. This file also contains some sample data to load, which is not repeated here. (Refer
to Section 2.1 for how to use the file.)

3.2. Views
Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create a view over the query, which gives a name to the query that you can refer to like an ordinary
table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location

FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsu-
late the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys
Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to
make sure that no one can insert rows in the weather table that do not have a matching entry in the
cities table. This is called maintaining the referential integrity of your data. In simplistic database
systems this would be implemented (if at all) by first looking at the cities table to check if a matching
record exists, and then inserting or rejecting the new weather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

16

Chapter 3. Advanced Features

CREATE TABLE cities (
city varchar(80) primary key,
location point

);

CREATE TABLE weather (
city varchar(80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date

);

Now try inserting an invalid record:

INSERT INTO weather VALUES (’Berkeley’, 45, 53, 0.0, ’1994-11-28’);

ERROR: insert or update on table "weather" violates foreign key constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of foreign
keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions
Transactions are a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Alice’);

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Bob’);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure

17

Chapter 3. Advanced Features

to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy
customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into a transaction gives us this guarantee. A transaction is said to be atomic: from the point of
view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to
his account will disappear in a crash just after he walks out the bank door. A transactional database
guarantees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before
the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN

and COMMIT commands. So our banking transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;
-- etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful) COMMIT
wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called a trans-
action block.

Note: Some client libraries issue BEGIN and COMMIT commands automatically, so that you might get
the effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of save-
points. Savepoints allow you to selectively discard parts of the transaction, while committing the rest.
After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with ROLLBACK

TO. All the transaction’s database changes between defining the savepoint and rolling back to it are dis-
carded, but changes earlier than the savepoint are kept.

18

Chapter 3. Advanced Features

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions. When
and if you commit the transaction block, the committed actions become visible as a unit to other sessions,
while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s ac-
count, only to find later that we should have credited Wally’s account. We could do it using savepoints
like this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00

WHERE name = ’Bob’;
-- oops ... forget that and use Wally’s account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00

WHERE name = ’Wally’;
COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely and
starting again.

3.5. Window Functions
A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function. But
unlike regular aggregate functions, use of a window function does not cause rows to become grouped into
a single output row — the rows retain their separate identities. Behind the scenes, the window function is
able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his or
her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
-----------+-------+--------+-----------------------
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 | 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000

19

Chapter 3. Advanced Features

develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1 | 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed across
an appropriate set of rows.)

A window function call always contains an OVER clause directly following the window function’s name
and argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY list within OVER specifies dividing the rows into groups, or partitions,
that share the same values of the PARTITION BY expression(s). For each row, the window function is
computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) FROM empsalary;

depname | empno | salary | rank
-----------+-------+--------+------
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 | 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 | 3500 | 2
sales | 1 | 5000 | 1
sales | 4 | 4800 | 2
sales | 3 | 4800 | 2

(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for each
distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed
because it does not meet the WHERE condition is not seen by any window function. A query can contain
multiple window functions that slice up the data in different ways by means of different OVER clauses, but
they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is just one partition containing all the rows.

20

Chapter 3. Advanced Features

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Many (but not all) window functions act only on the rows of
the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows that
are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default
frame consists of all rows in the partition. 1 Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
--------+-------

5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
--------+-------

3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They are
forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they logically
execute after the processing of those clauses. Also, window functions execute after regular aggregate

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

21

Chapter 3. Advanced Features

functions. This means it is valid to include an aggregate function call in the arguments of a window
function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,

rank() OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary

) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.4, and the
SELECT reference page.

3.6. Inheritance
Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you’re really clever you might
invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -- (in ft)
state char(2)

);

CREATE TABLE non_capitals (
name text,
population real,
altitude int -- (in ft)

);

22

Chapter 3. Advanced Features

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION

SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (
name text,
population real,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
-----------+----------
Las Vegas | 2174
Mariposa | 1953
Madison | 845

(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
-----------+----------
Las Vegas | 2174

23

Chapter 3. Advanced Features

Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion
PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site2 for links to more
resources.

2. http://www.postgresql.org

24

II. The SQL Language
This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax
This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure
SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, ter-
minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words
Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is,
words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of
identifiers. They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according

27

Chapter 4. SQL Syntax

to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant in
src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code points.
This variant starts with U& (upper or lower case U followed by ampersand) immediately before the opening
double quote, without any spaces in between, for example U&"foo". (Note that this creates an ambiguity
with the operator &. Use spaces around the operator to avoid this problem.) Inside the quotes, Unicode
characters can be specified in escaped form by writing a backslash followed by the four-digit hexadecimal
code point number or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal
code point number. For example, the identifier "data" could be written as

U&"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

28

Chapter 4. SQL Syntax

U&"d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single quotes,
not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (Surrogate
pairs are not stored directly, but combined into a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If
you want to write portable applications you are advised to always quote a particular name or never quote
it.)

4.1.2. Constants
There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (’), for example
’This is a string’. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., ’Dianne”s horse’. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated and
effectively treated as if the string had been written as one constant. For example:

SELECT ’foo’
’bar’;

is equivalent to:

SELECT ’foobar’;

but:

SELECT ’foo’ ’bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

29

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E’foo’. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation
\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (o = 0 - 7) octal byte value

\xh, \xhh (h = 0 - 9, A - F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x = 0 - 9, A - F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in addition
to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hexadecimal
escapes, compose valid characters in the server character set encoding. When the server encoding is UTF-
8, then the Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3, should
be used instead. (The alternative would be doing the UTF-8 encoding by hand and writing out the bytes,
which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the 4-digit and
the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points
larger than U+FFFF, although the availability of the 8-digit form technically makes this unnecessary.
(When surrogate pairs are used when the server encoding is UTF8, they are first combined into a single
code point that is then encoded in UTF-8.)

30

Chapter 4. SQL Syntax

Caution
If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape string
constants. However, as of PostgreSQL 9.1, the default is on, meaning that
backslash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to off, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to represent
a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in
string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary Uni-
code characters by code point. A Unicode escape string constant starts with U& (upper or lower case letter
U followed by ampersand) immediately before the opening quote, without any spaces in between, for ex-
ample U&’foo’. (Note that this creates an ambiguity with the operator &. Use spaces around the operator
to avoid this problem.) Inside the quotes, Unicode characters can be specified in escaped form by writing a
backslash followed by the four-digit hexadecimal code point number or alternatively a backslash followed
by a plus sign followed by a six-digit hexadecimal code point number. For example, the string ’data’

could be written as

U&’d\0061t\+000061’

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&’\0441\043B\043E\043D’

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause after
the string, for example:

U&’d!0061t!+000061’ UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encodings
are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit and the
6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code points larger
than U+FFFF, although the availability of the 6-digit form technically makes this unnecessary. (When
surrogate pairs are used when the server encoding is UTF8, they are first combined into a single code point
that is then encoded in UTF-8.)

31

Chapter 4. SQL Syntax

Also, the Unicode escape syntax for string constants only works when the configuration parameter stan-
dard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients that
parse the SQL statements to the point that it could lead to SQL injections and similar security issues. If
the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to un-
derstand when the desired string contains many single quotes or backslashes, since each of those must
be doubled. To allow more readable queries in such situations, PostgreSQL provides another way, called
“dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar sign ($),
an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of characters that
makes up the string content, a dollar sign, the same tag that began this dollar quote, and a dollar sign. For
example, here are two different ways to specify the string “Dianne’s horse” using dollar quoting:

$$Dianne’s horse$$
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This is
most commonly used in writing function definitions. For example:

$function$
BEGIN

RETURN ($1 ~ q[\t\r\n\v\\]q);
END;
$function$

Here, the sequence q[\t\r\n\v\\]q represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $function$, it is just some more characters within the
constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain a dollar sign. Tags are case sensitive, so tagString contenttag is correct, but
TAGString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write complicated
string literals than the standard-compliant single quote syntax. It is particularly useful when representing
string constants inside other constants, as is often needed in procedural function definitions. With single-
quote syntax, each backslash in the above example would have to be written as four backslashes, which
would be reduced to two backslashes in parsing the original string constant, and then to one when the
inner string constant is re-parsed during function execution.

32

Chapter 4. SQL Syntax

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B’1001’. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X’1FF’. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.
Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if its value
fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain decimal
points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated as type real (float4) by writing:

REAL ’1.23’ -- string style
1.23::REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

33

Chapter 4. SQL Syntax

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ’string’
’string’::type
CAST (’string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called type. The result is
a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to the
type the constant must be (for example, when it is assigned directly to a table column), in which case it is
automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename (’string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’string’

syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

’string’ syntax is that it does not work for array types; use :: or CAST() to specify the type of an array
constant.

The CAST() syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with :: is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators
An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ?

There are a few restrictions on operator names, however:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multiple-character operator name cannot end in + or -, unless the name also contains at least one of
these characters:

~ ! @ # % ^ & | ‘ ?

For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

34

Chapter 4. SQL Syntax

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator named @, you
cannot write X*@Y; you must write X* @Y to ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters
Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

• A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign can be part of an identifier or a
dollar-quoted string constant.

• Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

• Commas (,) are used in some syntactical constructs to separate the elements of a list.

• The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

• The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

• The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value. It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate
does not require any explicit parameter.

• The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments
A comment is a sequence of characters beginning with double dashes and extending to the end of the line,
e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment

* with nesting: /* nested block comment */

*/

35

Chapter 4. SQL Syntax

where the comment begins with /* and extends to the matching occurrence of */. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Operator Precedence
Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators < and >

have a different precedence than the Boolean operators <= and >=. Also, you will sometimes need to add
parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;

will be parsed as:

SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (decreasing)

Operator/Element Associativity Description
. left table/column name separator

:: left PostgreSQL-style typecast

[] left array element selection

+ - right unary plus, unary minus

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS NULL,
etc

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

36

Chapter 4. SQL Syntax

Operator/Element Associativity Description
OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

< > less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other” oper-
ator. This is true no matter which specific operator appears inside OPERATOR().

4.2. Value Expressions
Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also called scalar expressions (or even simply
expressions). The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

• A constant or literal value

• A column reference

• A positional parameter reference, in the body of a function definition or prepared statement

• A subscripted expression

• A field selection expression

• An operator invocation

• A function call

• An aggregate expression

• A window function call

• A type cast

• A collation expression

37

Chapter 4. SQL Syntax

• A scalar subquery

• An array constructor

• A row constructor

• Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining op-
tions.

4.2.1. Column References
A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the column
name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters
A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support
specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept(text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

38

Chapter 4. SQL Syntax

4.2.3. Subscripts
If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing

expression[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection
If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An impor-
tant special case is extracting a field from a table column that is of a composite type:

(compositecol).somefield
(mytable.compositecol).somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

In a select list (see Section 7.3), you can ask for all fields of a composite value by writing .*:

(compositecol).*

39

Chapter 4. SQL Syntax

4.2.5. Operator Invocations
There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

OPERATOR(schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls
The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

The arguments can optionally have names attached. See Section 4.3 for details.

Note: A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the notations
col(table) and table.col are interchangeable. This behavior is not SQL-standard but is provided
in PostgreSQL because it allows use of functions to emulate “computed fields”. For more information
see Section 35.4.3.

40

Chapter 4. SQL Syntax

4.2.7. Aggregate Expressions
An aggregate expression represents the application of an aggregate function across the rows selected by a
query. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by_clause])
aggregate_name (ALL expression [, ...] [order_by_clause])
aggregate_name (DISTINCT expression [, ...] [order_by_clause])
aggregate_name (*)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name),
expression is any value expression that does not itself contain an aggregate expression or a window
function call, and order_by_clause is a optional ORDER BY clause as described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form is
the same as the first, since ALL is the default. The third form invokes the aggregate once for each distinct
value of the expression (or distinct set of values, for multiple expressions) found in the input rows. The
last form invokes the aggregate once for each input row; since no particular input value is specified, it is
generally only useful for the count(*) aggregate function.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count(*) yields the total number of input rows; count(f1) yields the number of input
rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number
of distinct non-null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs in.
However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order_by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;

not this:

SELECT string_agg(a ORDER BY a, ’,’) FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it’s a constant).

41

Chapter 4. SQL Syntax

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included in
the DISTINCT list.

Note: The ability to specify both DISTINCT and ORDER BY in an aggregate function is a PostgreSQL
extension.

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be added
by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It is
forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggregate
is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s arguments
contain only outer-level variables: the aggregate then belongs to the nearest such outer level, and is eval-
uated over the rows of that query. The aggregate expression as a whole is then an outer reference for the
subquery it appears in, and acts as a constant over any one evaluation of that subquery. The restriction
about appearing only in the result list or HAVING clause applies with respect to the query level that the
aggregate belongs to.

4.2.8. Window Function Calls
A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name ([expression [, expression ...]]) OVER window_name

function_name ([expression [, expression ...]]) OVER (window_definition)
function_name (*) OVER window_name

function_name (*) OVER (window_definition)

where window_definition has the syntax

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[frame_clause]

and the optional frame_clause can be one of

[RANGE | ROWS] frame_start

[RANGE | ROWS] BETWEEN frame_start AND frame_end

where frame_start and frame_end can be one of

42

Chapter 4. SQL Syntax

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW
value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls. The
PARTITION BY and ORDER BY lists have essentially the same syntax and semantics as GROUP BY and
ORDER BY clauses of the whole query, except that their expressions are always just expressions and cannot
be output-column names or numbers. window_name is a reference to a named window specification
defined in the query’s WINDOW clause. Alternatively, a full window_definition can be given within
parentheses, using the same syntax as for defining a named window in the WINDOW clause; see the SELECT
reference page for details. It’s worth pointing out that OVER wname is not exactly equivalent to OVER

(wname); the latter implies copying and modifying the window definition, and will be rejected if the
referenced window specification includes a frame clause.

The frame_clause specifies the set of rows constituting the window frame, for those window functions
that act on the frame instead of the whole partition. If frame_end is omitted it defaults to CURRENT

ROW. Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is not
allowed. The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE

BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to be all rows from the parti-
tion start up through the current row’s last peer in the ORDER BY ordering (which means all rows if there
is no ORDER BY). In general, UNBOUNDED PRECEDING means that the frame starts with the first row of
the partition, and similarly UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition (regardless of RANGE or ROWS mode). In ROWS mode, CURRENT ROW means that the frame starts
or ends with the current row; but in RANGE mode it means that the frame starts or ends with the current
row’s first or last peer in the ORDER BY ordering. The value PRECEDING and value FOLLOWING cases
are currently only allowed in ROWS mode. They indicate that the frame starts or ends with the row that
many rows before or after the current row. value must be an integer expression not containing any vari-
ables, aggregate functions, or window functions. The value must not be null or negative; but it can be zero,
which selects the current row itself.

The built-in window functions are described in Table 9-47. Other window functions can be added by the
user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count(*) OVER (PARTITION BY x ORDER BY y). The asterisk (*) is customarily not used
for non-aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do
not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, Section 7.2.4.

43

Chapter 4. SQL Syntax

4.2.9. Type Casts
A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL; the syntax with :: is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion. The
cast will succeed only if a suitable type conversion operation has been defined. Notice that this is subtly
different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent float8 can. Also, the names interval, time,
and timestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast syn-
taxes is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on. For further details
see CREATE CAST.

4.2.10. Collation Expressions
The COLLATE clause overrides the collation of an expression. It is appended to the expression it applies
to:

expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than oper-
ators; parentheses can be used when necessary.

44

Chapter 4. SQL Syntax

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

SELECT * FROM tbl WHERE a > ’foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > ’foo’;

But this is an error:

SELECT * FROM tbl WHERE (a > ’foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable data
type boolean.

4.2.11. Scalar Subqueries
A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

45

Chapter 4. SQL Syntax

4.2.12. Array Constructors
An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example:

SELECT ARRAY[1,2,3+4];
array

{1,2,7}

(1 row)

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

{1,2,23}

(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
array

{{1,2},{3,4}}

(1 row)

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3,4}}

(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce sub-
arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates automatically
to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

SELECT ARRAY[f1, f2, ’{{9,10},{11,12}}’::int[]] FROM arr;
array

--

46

Chapter 4. SQL Syntax

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}

(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE ’bytea%’);
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}

(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element for
each row in the subquery result, with an element type matching that of the subquery’s output column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors
A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,’this is a test’);

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list. For example,
if table t has columns f1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .* syntax was not expanded, so that writing ROW(t.*, 42) created
a two-field row whose first field was another row value. The new behavior is usually more useful. If you

47

Chapter 4. SQL Syntax

need the old behavior of nested row values, write the inner row value without .*, for instance ROW(t,

42).

By default, the value created by a ROW expression is of an anonymous record type. If necessary, it can be
cast to a named composite type — either the row type of a table, or a composite type created with CREATE
TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,’this is a test’));
getf1

1

(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,’this is a test’));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,’this is a test’)::mytable);
getf1

1

(1 row)

SELECT getf1(CAST(ROW(11,’this is a test’,2.5) AS myrowtype));
getf1

11

(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,’this is a test’) = ROW(1, 3, ’not the same’);

SELECT ROW(table.*) IS NULL FROM table; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.22.

48

Chapter 4. SQL Syntax

4.2.14. Expression Evaluation Rules
The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all. The same would be the case if one wrote:

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For exam-
ple, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x

instead.)

4.3. Calling Functions
PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters, since it
makes the associations between parameters and actual arguments more explicit and reliable. In positional
notation, a function call is written with its argument values in the same order as they are defined in the
function declaration. In named notation, the arguments are matched to the function parameters by name
and can be written in any order.

In either notation, parameters that have default values given in the function declaration need not be written
in the call at all. But this is particularly useful in named notation, since any combination of parameters
can be omitted; while in positional notation parameters can only be omitted from right to left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

49

Chapter 4. SQL Syntax

The following examples will illustrate the usage of all three notations, using the following function defi-
nition:

CREATE FUNCTION concat_lower_or_upper(a text, b text, uppercase boolean DEFAULT false)
RETURNS text
AS
$$
SELECT CASE

WHEN $3 THEN UPPER($1 || ’ ’ || $2)
ELSE LOWER($1 || ’ ’ || $2)
END;

$$
LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation
Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL. An
example is:

SELECT concat_lower_or_upper(’Hello’, ’World’, true);
concat_lower_or_upper

HELLO WORLD

(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper(’Hello’, ’World’);
concat_lower_or_upper

hello world

(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation
In named notation, each argument’s name is specified using := to separate it from the argument expres-
sion. For example:

SELECT concat_lower_or_upper(a := ’Hello’, b := ’World’);
concat_lower_or_upper

50

Chapter 4. SQL Syntax

hello world

(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a := ’Hello’, b := ’World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD

(1 row)

SELECT concat_lower_or_upper(a := ’Hello’, uppercase := true, b := ’World’);
concat_lower_or_upper

HELLO WORLD

(1 row)

4.3.3. Using Mixed Notation
The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper(’Hello’, ’World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD

(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having nu-
merous parameters that have default values, named or mixed notation can save a great deal of writing and
reduce chances for error.

Note: Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

51

Chapter 5. Data Definition
This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned
to tables. Finally, we will briefly look at other features that affect the data storage, such as inheritance,
views, functions, and triggers.

5.1. Table Basics
A table in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable — it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order
of the rows in a table. When a table is read, the rows will appear in an unspecified order, unless sorting
is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign unique identifiers
to rows, so it is possible to have several completely identical rows in a table. This is a consequence of the
mathematical model that underlies SQL but is usually not desirable. Later in this chapter we will see how
to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation to Chapter 8. Some of the frequently used data types are integer for whole numbers, numeric
for possibly fractional numbers, text for character strings, date for dates, time for time-of-day values,
and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and the
type integer. The table and column names follow the identifier syntax explained in Section 4.1.1.
The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

52

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

);

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the script
works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant to
avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of this
chapter later.

5.2. Default Values
A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know what
that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99

);

53

Chapter 5. Data Definition

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default of
CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is gen-
erating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval(’products_product_no_seq’),
...

);

where the nextval() function supplies successive values from a sequence object (see Section 9.16). This
arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,
...

);

The SERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints
Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no standard data type that accepts only positive numbers.
Another issue is that you might want to constrain column data with respect to other columns or rows.
For example, in a table containing product information, there should be only one row for each product
number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.3.1. Check Constraints
A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

);

54

Chapter 5. Data Definition

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK

followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

);

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed to
refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you should follow it
if you want your table definitions to work with other database systems.) The above example could also be
written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);

or even:

55

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CONSTRAINT valid_discount CHECK (price > discounted_price)

);

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section can be used.

5.3.2. Not-Null Constraints
A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

);

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL creating
an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);

56

Chapter 5. Data Definition

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert the NOT key word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints
Unique constraints ensure that the data contained in a column or a group of columns is unique with respect
to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

);

when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)

);

57

Chapter 5. Data Definition

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

);

Adding a unique constraint will automatically create a unique btree index on the column or group of
columns used in the constraint.

In general, a unique constraint is violated when there is more than one row in the table where the values of
all of the columns included in the constraint are equal. However, two null values are not considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful when
developing applications that are intended to be portable.

5.3.4. Primary Keys
Technically, a primary key constraint is simply a combination of a unique constraint and a not-null con-
straint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

);

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)

);

58

Chapter 5. Data Definition

A primary key indicates that a column or group of columns can be used as a unique identifier for rows in
the table. (This is a direct consequence of the definition of a primary key. Note that a unique constraint
does not, by itself, provide a unique identifier because it does not exclude null values.) This is useful
both for documentation purposes and for client applications. For example, a GUI application that allows
modifying row values probably needs to know the primary key of a table to be able to identify rows
uniquely.

Adding a primary key will automatically create a unique btree index on the column or group of columns
used in the primary key.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally the same thing, but only one can be identified as the primary key.) Relational
database theory dictates that every table must have a primary key. This rule is not enforced by PostgreSQL,
but it is usually best to follow it.

5.3.5. Foreign Keys
A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

);

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the referenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

);

59

Chapter 5. Data Definition

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)

);

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,
...

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to handle that as well.
Intuitively, we have a few options:

• Disallow deleting a referenced product
• Delete the orders as well
• Something else?

60

Chapter 5. Data Definition

To illustrate this, let’s implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,
...

);

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing columns to be set to nulls or default values, respectively, when the referenced
row is deleted. Note that these do not excuse you from observing any constraints. For example, if an action
specifies SET DEFAULT but the default value would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

Since a DELETE of a row from the referenced table or an UPDATE of a referenced column will require
a scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns. Because this is not always needed, and there are many choices available on how to
index, declaration of a foreign key constraint does not automatically create an index on the referencing
columns.

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documentation
for CREATE TABLE.

61

Chapter 5. Data Definition

5.3.6. Exclusion Constraints
Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USING gist (c WITH &&)

);

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.4. System Columns
Every table has several system columns that are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns; just know they exist.

oid

The object identifier (object ID) of a row. This column is only present if the table was created using
WITH OIDS, or if the default_with_oids configuration variable was set at the time. This column is of
type oid (same name as the column); see Section 8.18 for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin

The command identifier (starting at zero) within the inserting transaction.

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

62

Chapter 5. Data Definition

cmax

The command identifier within the deleting transaction, or zero.

ctid

The physical location of the row version within its table. Note that although the ctid can be used to
locate the row version very quickly, a row’s ctid will change if it is updated or moved by VACUUM

FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even better a user-defined
serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that this is the case. If you need to identify the rows in a table,
using a sequence generator is strongly recommended. However, OIDs can be used as well, provided that
a few additional precautions are taken:

• A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such a unique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the table
contains fewer than 232 (4 billion) rows, and in practice the table size had better be much less than that,
or performance might suffer.)

• OIDs should never be assumed to be unique across tables; use the combination of tableoid and row
OID if you need a database-wide identifier.

• Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT OIDS

is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23 for
details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only commands that
actually modify the database contents will consume a command identifier.

5.5. Modifying Tables
When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

63

Chapter 5. Data Definition

• Add columns
• Remove columns
• Add constraints
• Remove constraints
• Change default values
• Change column data types
• Rename columns
• Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column
To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a DEFAULT
clause).

You can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ”);

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new column
value). However, if no default is specified, PostgreSQL is able to avoid the physical update. So if you
intend to fill the column with mostly nondefault values, it’s best to add the column with no default,
insert the correct values using UPDATE, and then add any desired default as described below.

5.5.2. Removing a Column
To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will not
silently drop that constraint. You can authorize dropping everything that depends on the column by adding
CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

64

Chapter 5. Data Definition

5.5.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ”);
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.5.4. Removing a Constraint
To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can be
helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-quote
it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint on
the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

65

Chapter 5. Data Definition

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as any
constraints that involve the column. But these conversions might fail, or might produce surprising results.
It’s often best to drop any constraints on the column before altering its type, and then add back suitably
modified constraints afterwards.

5.5.7. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges
When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser) can
do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular
object vary depending on the object’s type (table, function, etc). For complete information on the different
types of privileges supported by PostgreSQL, refer to the GRANT reference page. The following sections
and chapters will also show you how those privileges are used.

66

Chapter 5. Data Definition

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are both the
current owner of the object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and accounts

is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

5.7. Schemas
A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databases in
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, both schema1 and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects in
any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

• To allow many users to use one database without interfering with each other.

67

Chapter 5. Data Definition

• To organize database objects into logical groups to make them more manageable.

• Third-party applications can be put into separate schemas so they do not collide with the names of other
objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.7.1. Creating a Schema
To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write a
database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
...

);

To drop a schema if it’s empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

68

Chapter 5. Data Definition

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema
In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);

and:

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path
Qualified names are tedious to write, and it’s often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred to by unqualified names, which consist of just the table
name. The system determines which table is meant by following a search path, which is a list of schemas
to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be created if the CREATE TABLE command does
not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

search_path

"$user",public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

69

Chapter 5. Data Definition

To put our new schema in the path, we use:

SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATOR(schema.operator)

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.7.4. Schemas and Privileges
By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects in
its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

70

Chapter 5. Data Definition

5.7.5. The System Catalog Schema
In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path’s schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer true:
you can create such a table name if you wish, in any non-system schema. However, it’s best to continue to
avoid such names, to ensure that you won’t suffer a conflict if some future version defines a system table
named the same as your table. (With the default search path, an unqualified reference to your table name
would then be resolved as the system table instead.) System tables will continue to follow the convention
of having names beginning with pg_, so that they will not conflict with unqualified user-table names so
long as users avoid the pg_ prefix.

5.7.6. Usage Patterns
Schemas can be used to organize your data in many ways. There are a few usage patterns that are recom-
mended and are easily supported by the default configuration:

• If you do not create any schemas then all users access the public schema implicitly. This simulates the
situation where schemas are not available at all. This setup is mainly recommended when there is only
a single user or a few cooperating users in a database. This setup also allows smooth transition from the
non-schema-aware world.

• You can create a schema for each user with the same name as that user. Recall that the default search
path starts with $user, which resolves to the user name. Therefore, if each user has a separate schema,
they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it alto-
gether), so users are truly constrained to their own schemas.

• To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow the
other users to access them. Users can then refer to these additional objects by qualifying the names with
a schema name, or they can put the additional schemas into their search path, as they choose.

5.7.7. Portability
In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of username.tablename. This is how PostgreSQL will effectively behave
if you create a per-user schema for every user.

71

Chapter 5. Data Definition

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at all.

5.8. Inheritance
PostgreSQL implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital
or not? The inheritance feature can help to resolve this problem. We define the capitals table so that it
inherits from cities:

CREATE TABLE cities (
name text,
population float,
altitude int -- in feet

);

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
-----------+----------
Las Vegas | 2174
Mariposa | 1953
Madison | 845

72

Chapter 5. Data Definition

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
-----------+----------
Las Vegas | 2174
Mariposa | 1953

Here the ONLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are included:

SELECT name, altitude
FROM cities*
WHERE altitude > 500;

Writing * is not necessary, since this behavior is the default (unless you have changed the setting of the
sql_inheritance configuration option). However writing * might be useful to emphasize that additional
tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
----------+-----------+----------

139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude

73

Chapter 5. Data Definition

----------+-----------+----------
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 37). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its children.
Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table’s definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child’s definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. The merged column will have copies of
all the check constraints coming from any one of the column definitions it came from, and will be marked
not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this
the new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of the
parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant of ALTER
TABLE. Dynamically adding and removing inheritance links like this can be useful when the inheritance
relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE

clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check con-
straints of child tables be dropped or altered if they are inherited from any parent tables. If you wish to
remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE

option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

74

Chapter 5. Data Definition

Note how table access permissions are handled. Querying a parent table can automatically access data in
child tables without further access privilege checking. This preserves the appearance that the data is (also)
in the parent table. Accessing the child tables directly is, however, not automatically allowed and would
require further privileges to be granted.

5.8.1. Caveats
Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used for
data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child
tables and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (Reference I, SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

• If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals

table from having rows with names duplicating rows in cities. And those duplicate rows would by
default show up in queries from cities. In fact, by default capitals would have no unique constraint
at all, and so could contain multiple rows with the same name. You could add a unique constraint to
capitals, but this would not prevent duplication compared to cities.

• Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint would
not automatically propagate to capitals. In this case you could work around it by manually adding
the same REFERENCES constraint to capitals.

• Specifying that another table’s column REFERENCES cities(name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable care is
needed in deciding whether inheritance is useful for your application.

5.9. Partitioning
PostgreSQL supports basic table partitioning. This section describes why and how to implement partition-
ing as part of your database design.

5.9.1. Overview
Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

• Query performance can be improved dramatically in certain situations, particularly when most of the

75

Chapter 5. Data Definition

heavily accessed rows of the table are in a single partition or a small number of partitions. The parti-
tioning substitutes for leading columns of indexes, reducing index size and making it more likely that
the heavily-used parts of the indexes fit in memory.

• When queries or updates access a large percentage of a single partition, performance can be improved
by taking advantage of sequential scan of that partition instead of using an index and random access
reads scattered across the whole table.

• Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far faster
than a bulk operation. These commands also entirely avoid the VACUUM overhead caused by a bulk
DELETE.

• Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set up
partitioning.

The following forms of partitioning can be implemented in PostgreSQL:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by date
ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning
To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you intend
them to be applied equally to all partitions. There is no point in defining any indexes or unique
constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL tables.
3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

76

Chapter 5. Data Definition

CHECK (x = 1)
CHECK (county IN (’Oxfordshire’, ’Buckinghamshire’, ’Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are descrip-
tive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might want.
(The key index is not strictly necessary, but in most scenarios it is helpful. If you intend the key values
to be unique then you should always create a unique or primary-key constraint for each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresql.conf.
If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company mea-
sures peak temperatures every day as well as ice cream sales in each region. Conceptually, we want a table
like:

CREATE TABLE measurement (
city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

);

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that needs
to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning of each month
we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the measure-
ments table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
...
CREATE TABLE measurement_y2007m11 () INHERITS (measurement);
CREATE TABLE measurement_y2007m12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from the
measurement table.

77

Chapter 5. Data Definition

This solves one of our problems: deleting old data. Each month, all we will need to do is perform a
DROP TABLE on the oldest child table and create a new child table for the new month’s data.

3. We must provide non-overlapping table constraints. Rather than just creating the partition tables as
above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE ’2006-02-01’ AND logdate < DATE ’2006-03-01’)

) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’2006-03-01’ AND logdate < DATE ’2006-04-01’)
) INHERITS (measurement);
...
CREATE TABLE measurement_y2007m11 (

CHECK (logdate >= DATE ’2007-11-01’ AND logdate < DATE ’2007-12-01’)
) INHERITS (measurement);
CREATE TABLE measurement_y2007m12 (

CHECK (logdate >= DATE ’2007-12-01’ AND logdate < DATE ’2008-01-01’)
) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’2008-01-01’ AND logdate < DATE ’2008-02-01’)
) INHERITS (measurement);

4. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
...
CREATE INDEX measurement_y2007m11_logdate ON measurement_y2007m11 (logdate);
CREATE INDEX measurement_y2007m12_logdate ON measurement_y2007m12 (logdate);
CREATE INDEX measurement_y2008m01_logdate ON measurement_y2008m01 (logdate);

We choose not to add further indexes at this time.
5. We want our application to be able to say INSERT INTO measurement ... and have the data be

redirected into the appropriate partition table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest partition, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN

INSERT INTO measurement_y2008m01 VALUES (NEW.*);
RETURN NULL;

END;
$$
LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
BEFORE INSERT ON measurement
FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();

We must redefine the trigger function each month so that it always points to the current partition. The
trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the row
should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()

78

Chapter 5. Data Definition

RETURNS TRIGGER AS $$
BEGIN

IF (NEW.logdate >= DATE ’2006-02-01’ AND
NEW.logdate < DATE ’2006-03-01’) THEN

INSERT INTO measurement_y2006m02 VALUES (NEW.*);
ELSIF (NEW.logdate >= DATE ’2006-03-01’ AND

NEW.logdate < DATE ’2006-04-01’) THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.*);

...
ELSIF (NEW.logdate >= DATE ’2008-01-01’ AND

NEW.logdate < DATE ’2008-02-01’) THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);

ELSE
RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger() function!’;

END IF;
RETURN NULL;

END;
$$
LANGUAGE plpgsql;

The trigger definition is the same as before. Note that each IF test must exactly match the CHECK

constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger’s tests in the same order as in other parts of
this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.9.3. Managing Partitions
Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for new
data. One of the most important advantages of partitioning is precisely that it allows this otherwise painful
task to be executed nearly instantaneously by manipulating the partition structure, rather than physically
moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:

DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every record.

79

Chapter 5. Data Definition

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is often
a useful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful time to
aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the parti-
tioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01’ AND logdate < DATE ’2008-03-01’)

) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows the data to be loaded, checked, and transformed prior to it
appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS);

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01’ AND logdate < DATE ’2008-03-01’);

\copy measurement_y2008m02 from ’measurement_y2008m02’
-- possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion
Constraint exclusion is a query optimization technique that improves performance for partitioned tables
defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count(*) FROM measurement WHERE logdate >= DATE ’2008-01-01’;

Without constraint exclusion, the above query would scan each of the partitions of the measurement

table. With constraint exclusion enabled, the planner will examine the constraints of each partition and try
to prove that the partition need not be scanned because it could not contain any rows meeting the query’s
WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE ’2008-01-01’;

QUERY PLAN

80

Chapter 5. Data Definition

Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)

-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

...
-> Seq Scan on measurement_y2007m12 measurement (cost=0.00..30.38 rows=543 width=0)

Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m01 measurement (cost=0.00..30.38 rows=543 width=0)

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point here
is that there is no need to scan the older partitions at all to answer this query. When we enable constraint
exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE ’2008-01-01’;

QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)

-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2008m01 measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes. There-
fore it isn’t necessary to define indexes on the key columns. Whether an index needs to be created for a
given partition depends on whether you expect that queries that scan the partition will generally scan a
large part of the partition or just a small part. An index will be helpful in the latter case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor off, but an
intermediate setting called partition, which causes the technique to be applied only to queries that are
likely to be working on partitioned tables. The on setting causes the planner to examine CHECK constraints
in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods
A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead of
a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’2006-02-01’ AND logdate < DATE ’2006-03-01’)
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.*);
...

81

Chapter 5. Data Definition

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’2008-01-01’ AND logdate < DATE ’2008-02-01’)
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.*);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather than
once per row, so this method might be advantageous for bulk-insert situations. In most cases, however, the
trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally if
you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of rules
doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT * FROM measurement_y2006m02

UNION ALL SELECT * FROM measurement_y2006m03
...
UNION ALL SELECT * FROM measurement_y2007m11
UNION ALL SELECT * FROM measurement_y2007m12
UNION ALL SELECT * FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions of
the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats
The following caveats apply to partitioned tables:

• There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is safer
to create code that generates partitions and creates and/or modifies associated objects than to write each
by hand.

• The schemes shown here assume that the partition key column(s) of a row never change, or at least do
not change enough to require it to move to another partition. An UPDATE that attempts to do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the partition tables, but it makes management of the structure much more complicated.

• If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;

will only process the master table.

The following caveats apply to constraint exclusion:

82

Chapter 5. Data Definition

• Constraint exclusion only works when the query’s WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

• Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that parti-
tioning constraints should contain only comparisons of the partitioning column(s) to constants using
B-tree-indexable operators.

• All constraints on all partitions of the master table are examined during constraint exclusion, so large
numbers of partitions are likely to increase query planning time considerably. Partitioning using these
techniques will work well with up to perhaps a hundred partitions; don’t try to use many thousands of
partitions.

5.10. Foreign Data
PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that resides
outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library that
can communicate with an external data source, hiding the details of connecting to the data source and
fetching data from it. There is a foreign data wrapper available as a contrib module, which can read
plain data files residing on the server. Other kind of foreign data wrappers might be found as third party
products. If none of the existing foreign data wrappers suit your needs, you can write your own; see
Chapter 50.

To access foreign data, you need to create a foreign server object, which defines how to connect to a
particular external data source, according to the set of options used by a particular foreign data wrapper.
Then you need to create one or more foreign tables, which define the structure of the remote data. A
foreign table can be used in queries just like a normal table, but a foreign table has no storage in the
PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch the data from
the external source.

Accessing remote data may require authentication at the external data source. This information can be
provided by a user mapping, which can provide additional options based on the current PostgreSQL role.

Currently, foreign tables are read-only. This limitation may be fixed in a future release.

5.11. Other Database Objects
Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use

83

Chapter 5. Data Definition

and management of the data more efficient or convenient. They are not discussed in this chapter, but we
give you a list here so that you are aware of what is possible:

• Views

• Functions and operators

• Data types and domains

• Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.12. Dependency Tracking
When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message such
as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what DROP ... CASCADE will do, run DROP

without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to get
the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADE is required. No database
system actually enforces that rule, but whether the default behavior is RESTRICT or CASCADE varies
across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL ver-
sions prior to 7.3 are not maintained or created during the upgrade process. All other dependency
types will be properly created during an upgrade from a pre-7.3 database.

84

Chapter 5. Data Definition

85

Chapter 6. Data Manipulation
The previous chapter discussed how to create tables and other structures to hold your data. Now it is time
to fill the tables with data. This chapter covers how to insert, update, and delete table data. The chapter
after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data
When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than
one row, but there is no way to insert less than one row. Even if you know only some column values, a
complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

);

An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
this you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

86

Chapter 6. Data Manipulation

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, ’Cheese’, 9.99),
(2, ’Bread’, 1.99),
(3, ’Milk’, 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data
The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET

followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

87

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity. Of
course, the WHERE condition does not have to be an equality test. Many other operators are available (see
Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;

6.3. Deleting Data
So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we explained that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

88

Chapter 7. Queries
The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview
The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.
WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM table1;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from table1. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if table1 has columns named a, b, and c (and perhaps
others) you can make the following query:

SELECT a, b + c FROM table1;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM table1 is a simple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random();

7.2. Table Expressions
A table expression computes a table. The table expression contains a FROM clause that is optionally fol-
lowed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on

89

Chapter 7. Queries

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the
query.

7.2.1. The FROM Clause
The FROM Clause derives a table from one or more other tables given in a comma-separated table refer-
ence list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a table join, or complex combinations of these. If more than one table reference is listed in the FROM

clause they are cross-joined (see below) to form the intermediate virtual table that can then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table
expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table reference
produces rows of not only that table but all of its descendant tables, unless the key word ONLY precedes
the table name. However, the reference produces only the columns that appear in the named table — any
columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly specify
that descendant tables are included. Writing * is not necessary since that behavior is the default (unless
you have changed the setting of the sql_inheritance configuration option). However writing * might be
useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join

T1 CROSS JOIN T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have
N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1, T2. It is also equivalent to FROM T1 INNER

JOIN T2 ON TRUE (see below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)

90

Chapter 7. Queries

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of JOIN USING has one column for each of the equated pairs
of input columns, followed by the remaining columns from each table. Thus, USING (a, b, c)

is equivalent to ON (t1.a = t2.a AND t1.b = t2.b AND t1.c = t2.c) with the exception
that if ON is used there will be two columns a, b, and c in the result, whereas with USING there will
be only one of each (and they will appear first if SELECT * is used).

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with USING, these columns appear only once in the output table.
If there are no common columns, NATURAL behaves like CROSS JOIN.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both T1 and T2 can be joined tables. Paren-
theses can be used around JOIN clauses to control the join order. In the absence of parentheses, JOIN
clauses nest left-to-right.

To put this together, assume we have tables t1:

91

Chapter 7. Queries

num | name
-----+------

1 | a
2 | b
3 | c

and t2:

num | value
-----+-------

1 | xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;

num | name | num | value
-----+------+-----+-------

1 | a | 1 | xxx
1 | a | 3 | yyy
1 | a | 5 | zzz
2 | b | 1 | xxx
2 | b | 3 | yyy
2 | b | 5 | zzz
3 | c | 1 | xxx
3 | c | 3 | yyy
3 | c | 5 | zzz

(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;

num | name | num | value
-----+------+-----+-------

1 | a | 1 | xxx
3 | c | 3 | yyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);

num | name | value
-----+------+-------

1 | a | xxx
3 | c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;

num | name | value
-----+------+-------

1 | a | xxx
3 | c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;

num | name | num | value

92

Chapter 7. Queries

-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy

(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);

num | name | value
-----+------+-------

1 | a | xxx
2 | b |
3 | c | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;

num | name | num | value
-----+------+-----+-------

1 | a | 1 | xxx
3 | c | 3 | yyy
| | 5 | zzz

(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;

num | name | num | value
-----+------+-----+-------

1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy
| | 5 | zzz

(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = ’xxx’;

num | name | num | value
-----+------+-----+-------

1 | a | 1 | xxx
2 | b | |
3 | c | |

(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num WHERE t2.value = ’xxx’;

num | name | num | value
-----+------+-----+-------

1 | a | 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction placed
in the WHERE clause is processed after the join.

93

Chapter 7. Queries

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or

FROM table_reference alias

The AS key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is not
allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT * FROM my_table AS m WHERE my_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the alias
b to the second instance of my_table, but the second statement assigns the alias to the result of the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (column1 [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

94

Chapter 7. Queries

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table alias
name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM table1) AS alias_name

This example is equivalent to FROM table1 AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’smith’), (’bob’, ’jones’), (’joe’, ’blow’))
AS names(first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name. If
the function returns a composite type, the result columns get the same names as the individual attributes
of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is used
in the FROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid IN (

SELECT foosubid

95

Chapter 7. Queries

FROM getfoo(foo.fooid) z
WHERE z.fooid = foo.fooid

);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pseudotype record.
When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. Consider this example:

SELECT *
FROM dblink(’dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS t1(proname name, prosrc text)

WHERE proname LIKE ’bytea%’;

The dblink function (part of the dblink module>) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

7.2.2. The WHERE Clause
The syntax of the WHERE Clause is

WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type
boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause will
be fairly useless.

Note: The join condition of an inner join can be written either in the WHERE clause or in the JOIN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

96

Chapter 7. Queries

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROM clause is probably
not as portable to other SQL database management systems, even though it is in the SQL standard.
For outer joins there is no choice: they must be done in the FROM clause. The ON or USING clause
of an outer join is not equivalent to a WHERE condition, because it results in the addition of rows (for
unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE

clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as fdt.c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This
example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GROUP BY and HAVING Clauses
After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY

clause, and elimination of group rows using the HAVING clause.

SELECT select_list

FROM ...
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all the
columns listed. The order in which the columns are listed does not matter. The effect is to combine each
set of rows having common values into one group row that represents all rows in the group. This is done
to eliminate redundancy in the output and/or compute aggregates that apply to these groups. For instance:

=> SELECT * FROM test1;

x | y
---+---
a | 3
c | 2
b | 5
a | 1

97

Chapter 7. Queries

(4 rows)

=> SELECT x FROM test1 GROUP BY x;

x

a
b
c

(3 rows)

In the second query, we could not have written SELECT * FROM test1 GROUP BY x, because there is
no single value for the column y that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM test1 GROUP BY x;

x | sum
---+-----
a | 4
b | 5
c | 2

(3 rows)

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.20.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GROUP BY list since it is only used in an aggregate expression (sum(...)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for each
product ID group.

98

Chapter 7. Queries

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this to
also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;

x | sum
---+-----
a | 4
b | 5

(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < ’c’;

x | sum
---+-----
a | 4
b | 5

(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is a
single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same is
true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. Window Function Processing
If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these func-
tions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if the

99

Chapter 7. Queries

query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are the
group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in
a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions hav-
ing different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering of
rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered accord-
ing to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not recommended
to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure the results are
sorted in a particular way.

7.3. Select Lists
As shown in the previous section, the table expression in the SELECT command constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by the select list. The select list determines which columns of the intermediate
table are actually output.

7.3.1. Select-List Items
The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it could
be a list of column names:

SELECT a, b, c FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in the
select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same as in
the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbl2.a FROM ...

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted

100

Chapter 7. Queries

for any column references. But the expressions in the select list do not have to reference any columns in
the table expression of the FROM clause; they can be constant arithmetic expressions, for instance.

7.3.2. Column Labels
The entries in the select list can be assigned names for subsequent processing, such as for use in an ORDER
BY clause or for display by the client application. For example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + c AS sum FROM ...

but this does:

SELECT a "value", b + c AS sum FROM ...

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the FROM clause (see Section
7.2.1.2). It is possible to rename the same column twice, but the name assigned in the select list is
the one that will be passed on.

7.3.3. DISTINCT
After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list ...

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

101

Chapter 7. Queries

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries
The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

query1 UNION [ALL] query2

query1 INTERSECT [ALL] query2

query1 EXCEPT [ALL] query2

query1 and query2 are queries that can use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

query1 UNION query2 UNION query3

which is executed as:

(query1 UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

7.5. Sorting Rows
After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in that

102

Chapter 7. Queries

case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list

FROM table_expression

ORDER BY sort_expression1 [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example is:

SELECT a, b FROM table1 ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal according
to the earlier values. Each expression can be followed by an optional ASC or DESC keyword to set the sort
direction to ascending or descending. ASC order is the default. Ascending order puts smaller values first,
where “smaller” is defined in terms of the < operator. Similarly, descending order is determined with the
> operator. 1

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or
after non-null values in the sort ordering. By default, null values sort as if larger than any non-null value;
that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER

BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y

DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that is,
it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM table1 ORDER BY sum + c; -- wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case
it is only permitted to sort by output column names or numbers, not by expressions.

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering for
ASC and DESC. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

103

Chapter 7. Queries

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list

FROM table_expression

[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query itself
yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both OFFSET and
LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists
VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same number
of elements (i.e., the number of columns in the table), and corresponding entries in each list must have
compatible data types. The actual data type assigned to each column of the result is determined using the
same rules as for UNION (see Section 10.5).

As an example:

VALUES (1, ’one’), (2, ’two’), (3, ’three’);

will return a table of two columns and three rows. It’s effectively equivalent to:

104

Chapter 7. Queries

SELECT 1 AS column1, ’one’ AS column2
UNION ALL
SELECT 2, ’two’
UNION ALL
SELECT 3, ’three’;

By default, PostgreSQL assigns the names column1, column2, etc. to the columns of a VALUES table.
The column names are not specified by the SQL standard and different database systems do it differently,
so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as
the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WITH Queries (Common Table Expressions)
WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example
is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region

), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)

)
SELECT region,

product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales

FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

105

Chapter 7. Queries

which displays per-product sales totals in only the top sales regions. The WITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used
in top_regions and the output of top_regions is used in the primary SELECT query. This example
could have been written without WITH, but we’d have needed two levels of nested sub-SELECTs. It’s a bit
easier to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
VALUES (1)

UNION ALL
SELECT n+1 FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query’s own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include
all remaining rows in the result of the recursive query, and also place them in a temporary working
table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows
that duplicate any previous result row. Include all remaining rows in the result of the recur-
sive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology cho-
sen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values from
1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause, and
so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example is
this query to find all the direct and indirect sub-parts of a product, given only a table that shows immediate
inclusions:

WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’our_product’

106

Chapter 7. Queries

UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider the following query
that searches a table graph using a link field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g

UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link

)
SELECT * FROM search_graph;

This query will loop if the link relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns path
and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[g.id],
false

FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array of
rows. For example, if we needed to compare fields f1 and f2:

107

Chapter 7. Queries

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY[ROW(g.f1, g.f2)],
false

FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.f1, g.f2),
ROW(g.f1, g.f2) = ANY(path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip: Omit the ROW() syntax in the common case where only one field needs to be checked to recognize
a cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query ORDER BY a “path” column
constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t(n) AS (
SELECT 1

UNION ALL
SELECT n+1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won’t work if you make the outer query sort the recursive
query’s results or join them to some other table, because in such cases the outer query will usually try to
fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent query,
even if they are referred to more than once by the parent query or sibling WITH queries. Thus, expensive
calculations that are needed in multiple places can be placed within a WITH query to avoid redundant work.
Another possible application is to prevent unwanted multiple evaluations of functions with side-effects.
However, the other side of this coin is that the optimizer is less able to push restrictions from the parent
query down into a WITH query than an ordinary sub-query. The WITH query will generally be evaluated as
written, without suppression of rows that the parent query might discard afterwards. (But, as mentioned
above, evaluation might stop early if the reference(s) to the query demand only a limited number of rows.)

108

Chapter 7. Queries

The examples above only show WITH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in WITH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to per-
form several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE

"date" >= ’2010-10-01’ AND
"date" < ’2010-11-01’

RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-SELECT
within the INSERT. This is necessary because data-modifying statements are only allowed in WITH clauses
that are attached to the top-level statement. However, normal WITH visibility rules apply, so it is possible
to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses, as seen in the example above. It is
the output of the RETURNING clause, not the target table of the data-modifying statement, that forms the
temporary table that can be referred to by the rest of the query. If a data-modifying statement in WITH

lacks a RETURNING clause, then it forms no temporary table and cannot be referred to in the rest of the
query. Such a statement will be executed nonetheless. A not-particularly-useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = ’our_product’

UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)

109

Chapter 7. Queries

DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query. Therefore,
when using data-modifying statements in WITH, the order in which the specified updates actually happen
is unpredictable. All the statements are executed with the same snapshot (see Chapter 13), so they cannot
“see” each others’ effects on the target tables. This alleviates the effects of the unpredictability of the
actual order of row updates, and means that RETURNING data is the only way to communicate changes
between different WITH sub-statements and the main query. An example of this is that in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also applies
to deleting a row that was already updated in the same statement: only the update is performed. Therefore
you should generally avoid trying to modify a single row twice in a single statement. In particular avoid
writing WITH sub-statements that could affect the same rows changed by the main statement or a sibling
sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

110

Chapter 8. Data Types
PostgreSQL has a rich set of native data types available to users. Users can add new types to PostgreSQL
using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description
bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n)

]

varchar [(n)] variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [(p)

]

time span

json JSON data

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

111

Chapter 8. Data Types

Name Aliases Description
polygon closed geometric path on a plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial2 autoincrementing two-byte
integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without

time zone]

time of day (no time zone)

time [(p)] with time

zone

timetz time of day, including time zone

timestamp [(p)] [

without time zone]

date and time (no time zone)

timestamp [(p)] with

time zone

timestamptz date and time, including time
zone

tsquery text search query

tsvector text search document

txid_snapshot user-level transaction ID
snapshot

uuid universally unique identifier

xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (with or without time zone), xml.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8-2 lists the available types.

112

Chapter 8. Data Types

Table 8-2. Numeric Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for
integer

-2147483648 to
+2147483647

bigint 8 bytes large-range integer -9223372036854775808
to
9223372036854775807

decimal variable user-specified precision,
exact

up to 131072 digits
before the decimal
point; up to 16383 digits
after the decimal point

numeric variable user-specified precision,
exact

up to 131072 digits
before the decimal
point; up to 16383 digits
after the decimal point

real 4 bytes variable-precision,
inexact

6 decimal digits
precision

double precision 8 bytes variable-precision,
inexact

15 decimal digits
precision

smallserial 2 bytes small autoincrementing
integer

1 to 32767

serial 4 bytes autoincrementing
integer

1 to 2147483647

bigserial 8 bytes large autoincrementing
integer

1 to
9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a full
set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information. The
following sections describe the types in detail.

8.1.1. Integer Types
The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
should only be used if the range of the integer type is insufficient, because the latter is definitely faster.

On very minimal operating systems the bigint type might not function correctly, because it relies on
compiler support for eight-byte integers. On such machines, bigint acts the same as integer, but still
takes up eight bytes of storage. (We are not aware of any modern platform where this is the case.)

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,

113

Chapter 8. Data Types

int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers
The type numeric can store numbers with a very large number of digits and perform calculations ex-
actly. It is especially recommended for storing monetary amounts and other quantities where exactness is
required. However, arithmetic on numeric values is very slow compared to the integer types, or to the
floating-point types described in the next section.

We use the following terms below: The scale of a numeric is the count of decimal digits in the fractional
part, to the right of the decimal point. The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC(precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERIC(precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you’re concerned about portability, always specify the precision and scale explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will round
the value to the specified number of fractional digits. Then, if the number of digits to the left of the decimal
point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar(n) than to char(n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = ’NaN’. On input, the
string NaN is recognized in a case-insensitive manner.

114

Chapter 8. Data Types

Note: In most implementations of the “not-a-number” concept, NaN is not considered equal to any
other numeric value (including NaN). In order to allow numeric values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types
The data types real and double precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics and
computer science and will not be discussed here, except for the following points:

• If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

• If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

• Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

Note: The extra_float_digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of 0, the output is the same
on every platform supported by PostgreSQL. Increasing it will produce output that more accurately
represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity

-Infinity

NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, respec-
tively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values will prob-

115

Chapter 8. Data Types

ably not work as expected.) When writing these values as constants in an SQL command, you must put
quotes around them, for example UPDATE table SET x = ’Infinity’. On input, these strings are
recognized in a case-insensitive manner.

Note: IEEE754 specifies that NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, PostgreSQL
treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL-standard notations float and float(p) for specifying inexact nu-
meric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float(1) to float(24) as selecting the real type, while float(25) to float(53) select double
precision. Values of p outside the allowed range draw an error. float with no precision specified is
taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float(p) was taken to mean so many decimal digits.
This has been corrected to match the SQL standard, which specifies that the precision is measured
in binary digits. The assumption that real and double precision have exactly 24 and 53 bits in
the mantissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE
platforms it might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types
The data types smallserial, serial and bigserial are not true types, but merely a notational con-
venience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported by
some other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

);

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (

colname integer NOT NULL DEFAULT nextval(’tablename_colname_seq’)
);
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In most cases
you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values from
being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as “owned by” the
column, so that it will be dropped if the column or table is dropped.

Note: Because smallserial, serial and bigserial are implemented using sequences, there may
be "holes" or gaps in the sequence of values which appears in the column, even if no rows are ever

116

Chapter 8. Data Types

deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval() in Section 9.16 for details.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like any
other data type.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial
should be used if you anticipate the use of more than 231 identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types
The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The fractional
precision is determined by the database’s lc_monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and floating-
point literals, as well as typical currency formatting, such as ’$1,000.00’. Output is generally in the
latter form but depends on the locale.

Table 8-3. Monetary Types

Name Storage Size Description Range
money 8 bytes currency amount -

92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of lc_monetary. To avoid problems, before restoring a dump into a new
database make sure lc_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real

and double precision data types can be done by casting to numeric first, for example:

117

Chapter 8. Data Types

SELECT ’12.34’::float8::numeric::money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could poten-
tially lose precision, and must also be done in two stages:

SELECT ’52093.89’::money::numeric::float8;

When a money value is divided by another money value, the result is double precision (i.e., a pure
number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8-4. Character Types

Name Description
character varying(n), varchar(n) variable-length with limit

character(n), char(n) fixed-length, blank padded

text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character(n), where n is a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store
the shorter string.

If one explicitly casts a value to character varying(n) or character(n), then an over-length value
will be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar(n) and char(n) are aliases for character varying(n) and character(n),
respectively. character without length specifier is equivalent to character(1). If character

varying is used without length specifier, the type accepts strings of any size. The latter is a PostgreSQL
extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed when
converting a character value to one of the other string types. Note that trailing spaces are semanti-
cally significant in character varying and text values, and when using pattern matching, e.g. LIKE,

118

Chapter 8. Data Types

regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which includes
the space padding in the case of character. Longer strings have 4 bytes of overhead instead of 1. Long
strings are compressed by the system automatically, so the physical requirement on disk might be less.
Very long values are also stored in background tables so that they do not interfere with rapid access to
shorter column values. In any case, the longest possible character string that can be stored is about 1 GB.
(The maximum value that will be allowed for n in the data type declaration is less than that. It wouldn’t be
useful to change this because with multibyte character encodings the number of characters and bytes can
be quite different. If you desire to store long strings with no specific upper limit, use text or character
varying without a length specifier, rather than making up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character(n) has performance advantages in some other
database systems, there is no such advantage in PostgreSQL; in fact character(n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for information
about available operators and functions. The database character set determines the character set used to
store textual values; for more information on character set support, refer to Section 22.3.

Example 8-1. Using the Character Types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES (’ok’);
SELECT a, char_length(a) FROM test1; -- Ê

a | char_length

------+-------------

ok | 2

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES (’ok’);
INSERT INTO test2 VALUES (’good ’);
INSERT INTO test2 VALUES (’too long’);
ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length

-------+-------------

ok | 2

good | 5

too l | 5

Ê The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the

119

Chapter 8. Data Types

general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and is
therefore adjustable for special uses); the default maximum length might change in a future release. The
type "char" (note the quotes) is different from char(1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type

name 64 bytes internal type for object names

8.4. Binary Data Types
The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description
bytea 1 or 4 bytes plus the actual

binary string
variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets, and also dis-
allow any other octet values and sequences of octet values that are invalid according to the database’s
selected character set encoding. Second, operations on binary strings process the actual bytes, whereas
the processing of character strings depends on locale settings. In short, binary strings are appropriate for
storing data that the programmer thinks of as “raw bytes”, whereas character strings are appropriate for
storing text.

The bytea type supports two external formats for input and output: PostgreSQL’s historical “escape”
format, and “hex” format. Both of these are always accepted on input. The output format depends on
the configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The
input format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format
The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first. The
entire string is preceded by the sequence \x (to distinguish it from the escape format). In some contexts,
the initial backslash may need to be escaped by doubling it, in the same cases in which backslashes have
to be doubled in escape format; details appear below. The hexadecimal digits can be either upper or lower
case, and whitespace is permitted between digit pairs (but not within a digit pair nor in the starting \x

120

Chapter 8. Data Types

sequence). The hex format is compatible with a wide range of external applications and protocols, and it
tends to be faster to convert than the escape format, so its use is preferred.

Example:

SELECT E’\\xDEADBEEF’;

8.4.2. bytea Escape Format
The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient. But
in practice it is usually confusing because it fuzzes up the distinction between binary strings and character
strings, and also the particular escape mechanism that was chosen is somewhat unwieldy. So this format
should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and precede
it by a backslash (or two backslashes, if writing the value as a literal using escape string syntax). Back-
slash itself (octet value 92) can alternatively be represented by double backslashes. Table 8-7 shows the
characters that must be escaped, and gives the alternative escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet
Value

Description Escaped Input
Representation

Example Output
Representation

0 zero octet E’\\000’ SELECT

E’\\000’::bytea;

\000

39 single quote ”” or E’\\047’ SELECT

E’\”::bytea;

’

92 backslash E’\\\\’ or
E’\\134’

SELECT

E’\\\\’::bytea;

\\

0 to 31 and 127 to
255

“non-printable”
octets

E’\\xxx’ (octal
value)

SELECT

E’\\001’::bytea;

\001

The requirement to escape non-printable octets varies depending on locale settings. In some instances you
can get away with leaving them unescaped. Note that the result in each of the examples in Table 8-7 was
exactly one octet in length, even though the output representation is sometimes more than one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written as a
string literal must pass through two parse phases in the PostgreSQL server. The first backslash of each pair
is interpreted as an escape character by the string-literal parser (assuming escape string syntax is used)
and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted strings can be used to

121

Chapter 8. Data Types

avoid this level of escaping.) The remaining backslash is then recognized by the bytea input function as
starting either a three digit octal value or escaping another backslash. For example, a string literal passed
to the server as E’\\001’ becomes \001 after passing through the escape string parser. The \001 is then
sent to the bytea input function, where it is converted to a single octet with a decimal value of 1. Note
that the single-quote character is not treated specially by bytea, so it follows the normal rules for string
literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value 92
(backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet
Value

Description Escaped Output
Representation

Example Output Result

92 backslash \\ SELECT

E’\\134’::bytea;

\\

0 to 31 and 127 to
255

“non-printable”
octets

\xxx (octal value) SELECT

E’\\001’::bytea;

\001

32 to 126 “printable” octets client character set
representation

SELECT

E’\\176’::bytea;

~

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.4 for more information).

Table 8-9. Date/Time Types

Name Storage Size Description Low Value High Value Resolution
timestamp [

(p)] [

without

time zone]

8 bytes both date and
time (no time
zone)

4713 BC 294276 AD 1 microsecond /
14 digits

122

Chapter 8. Data Types

Name Storage Size Description Low Value High Value Resolution
timestamp [

(p)] with

time zone

8 bytes both date and
time, with time
zone

4713 BC 294276 AD 1 microsecond /
14 digits

date 4 bytes date (no time of
day)

4713 BC 5874897 AD 1 day

time [(p)

] [without

time zone]

8 bytes time of day (no
date)

00:00:00 24:00:00 1 microsecond /
14 digits

time [(p)

] with time

zone

12 bytes times of day
only, with time
zone

00:00:00+1459 24:00:00-1459 1 microsecond /
14 digits

interval [

fields] [

(p)]

12 bytes time interval -178000000
years

178000000
years

1 microsecond /
14 digits

Note: The SQL standard requires that writing just timestamp be equivalent to timestamp without

time zone, and PostgreSQL honors that behavior. (Releases prior to 7.3 treated it as timestamp

with time zone.) timestamptz is accepted as an abbreviation for timestamp with time zone; this
is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from 0 to 6 for the timestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsecond
precision is available over the full range of values. When timestamp values are stored as double preci-
sion floating-point numbers instead (a deprecated compile-time option), the effective limit of precision
might be less than 6. timestamp values are stored as seconds before or after midnight 2000-01-
01. When timestamp values are implemented using floating-point numbers, microsecond precision is
achieved for dates within a few years of 2000-01-01, but the precision degrades for dates further away.
Note that using floating-point datetimes allows a larger range of timestamp values to be represented
than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored as
floating-point numbers or eight-byte integers. In the floating-point case, large interval values de-
grade in precision as the size of the interval increases.

For the time types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing one of
these phrases:

YEAR
MONTH
DAY

123

Chapter 8. Data Types

HOUR
MINUTE
SECOND
YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp

without time zone, and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are discouraged
from using these types in applications; these internal types might disappear in a future release.

8.5.1. Date/Time Input
Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation, or
YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] ’value’

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for time, timestamp, and interval types. The allowed values are mentioned
above. If no precision is specified in a constant specification, it defaults to the precision of the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

124

Chapter 8. Data Types

Example Description
1999-01-08 ISO 8601; January 8 in any mode (recommended

format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in
DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with time

zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, it is silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name that
involves a daylight-savings rule, such as America/New_York. In this case specifying the date is required
in order to determine whether standard or daylight-savings time applies. The appropriate time zone offset
is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description
04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value

04:05 PM same as 16:05; input hour must be <= 12

04:05:06.789-8 ISO 8601

125

Chapter 8. Data Types

Example Description
04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation

2003-04-12 04:05:06 America/New_York time zone specified by full name

Table 8-12. Time Zone Input

Example Description
PST Abbreviation (for Pacific Standard Time)

America/New_York Full time zone name

PST8PDT POSIX-style time zone specification

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time

zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according
to the standard,

TIMESTAMP ’2004-10-19 10:23:54’

is a timestamp without time zone, while

126

Chapter 8. Data Types

TIMESTAMP ’2004-10-19 10:23:54+02’

is a timestamp with time zone. PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as timestamp without time zone. To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02’

In a literal that has been determined to be timestamp without time zone, PostgreSQL will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system’s TimeZone parameter,
and is converted to UTC using the offset for the timezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone normally
assume that the timestamp without time zone value should be taken or given as timezone local
time. A different time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and -infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon as
they are read.) All of these values need to be enclosed in single quotes when used as constants in SQL
commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description
epoch date, timestamp 1970-01-01 00:00:00+00 (Unix

system time zero)

infinity date, timestamp later than all other time stamps

-infinity date, timestamp earlier than all other time stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

127

Chapter 8. Data Types

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See Section
9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output
The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8-14 shows examples of each output style. The output of the date and time types is of course only
the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example
ISO ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00

PST

Postgres original style Wed Dec 17 07:37:16 1997

PST

German regional style 17.12.1997 07:37:16.00

PST

Note: ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation of
input values.) Table 8-15 shows examples.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output
SQL, DMY day/month/year 17/12/1997 15:37:16.00

CET

SQL, MDY month/day/year 12/17/1997 07:37:16.00

PST

Postgres, DMY day/month/year Wed 17 Dec 07:37:16 1997

PST

The date/time style can be selected by the user using the SET datestyle command, the DateStyle pa-

128

Chapter 8. Data Types

rameter in the postgresql.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

8.5.3. Time Zones
Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the widely-used
zoneinfo (Olson) time zone database for information about historical time zone rules. For times in the
future, the assumption is that the latest known rules for a given time zone will continue to be observed
indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

• Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can vary
through the year with daylight-saving time boundaries.

• The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported
by PostgreSQL for legacy applications and for compliance with the SQL standard). PostgreSQL assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

• A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 45.69). PostgreSQL uses the widely-used zoneinfo

time zone data for this purpose, so the same names are also recognized by much other software.

• A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 45.68). You cannot set the configuration parameters TimeZone or log_timezone to a time zone
abbreviation, but you can use abbreviations in date/time input values and with the AT TIME ZONE

operator.

• In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time zone
specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation, offset
is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone abbreviation,
assumed to stand for one hour ahead of the given offset. For example, if EST5EDT were not already a

129

Chapter 8. Data Types

recognized zone name, it would be accepted and would be functionally equivalent to United States East
Coast time. When a daylight-savings zone name is present, it is assumed to be used according to the
same daylight-savings transition rules used in the zoneinfo time zone database’s posixrules entry.
In a standard PostgreSQL installation, posixrules is the same as US/Eastern, so that POSIX-style
time zone specifications follow USA daylight-savings rules. If needed, you can adjust this behavior by
replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations always represent a
fixed offset from UTC, whereas most of the full names imply a local daylight-savings time rule, and so
have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE TO

FOOBAR0 will work, leaving the system effectively using a rather peculiar abbreviation for UTC. Another
issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations west of
Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive timezone offsets
are east of Greenwich.

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL ver-
sions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configuration
files stored under .../share/timezone/ and .../share/timezonesets/ of the installation direc-
tory (see Section B.3).

The TimeZone configuration parameter can be set in the file postgresql.conf, or in any of the other
standard ways described in Chapter 18. There are also some special ways to set it:

• The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

• The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

8.5.4. Interval Input
interval values can be written using the following verbose syntax:

[@] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals
of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts of the
different units are implicitly added with appropriate sign accounting. ago negates all the fields. This
syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For exam-
ple, ’1 12:59:10’ is read the same as ’1 day 12 hours 59 min 10 sec’. Also, a combination of
years and months can be specified with a dash; for example ’200-10’ is read the same as ’200 years

130

Chapter 8. Data Types

10 months’. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators”
of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with designators
looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order, but
units smaller than a day must appear after T. In particular, the meaning of M depends on whether it is
before or after T.

Table 8-16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning
Y Years

M Months (in the date part)

W Weeks

D Days

H Hours

M Minutes (in the time part)

S Seconds

In the alternative format:

P [years-months-days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are given
as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL ’1’ YEAR is read as 1 year, whereas INTERVAL ’1’ means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL ’1 day 2:03:04’ HOUR TO MINUTE results
in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading negative
sign applies to all fields; for example the negative sign in the interval literal ’-1 2:03:04’ applies to both
the days and hour/minute/second parts. PostgreSQL allows the fields to have different signs, and tradition-
ally treats each field in the textual representation as independently signed, so that the hour/minute/second
part is considered positive in this example. If IntervalStyle is set to sql_standard then a leading
sign is considered to apply to all fields (but only if no additional signs appear). Otherwise the traditional
PostgreSQL interpretation is used. To avoid ambiguity, it’s recommended to attach an explicit sign to each
field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is

131

Chapter 8. Data Types

involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or timestamp subtraction, this storage method works
well in most cases. Functions justify_days and justify_hours are available for adjusting days and
hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can have
fractional parts; for example ’1.5 week’ or ’01:02:03.45’. Such input is converted to the appropriate
number of months, days, and seconds for storage. When this would result in a fractional number of months
or days, the fraction is added to the lower-order fields using the conversion factors 1 month = 30 days and
1 day = 24 hours. For example, ’1.5 month’ becomes 1 month and 15 days. Only seconds will ever be
shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description
1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6
seconds

Traditional Postgres format: 1 year 2 months 3
days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

8.5.5. Interval Output
The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for interval
literal strings, if the interval value meets the standard’s restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

132

Chapter 8. Data Types

Table 8-18. Interval Output Style Examples

Style Specification Year-Month Interval Day-Time Interval Mixed Interval
sql_standard 1-2 3 4:05:06 -1-2 +3 -4:05:06

postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins
6 secs

@ 1 year 2 mons -3
days 4 hours 5 mins 6
secs ago

iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-
6S

8.6. Boolean Type
PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have
several states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8-19. Boolean Data Type

Name Storage Size Description
boolean 1 byte state of true or false

Valid literal values for the “true” state are:

TRUE

’t’

’true’

’y’

’yes’

’on’

’1’

For the “false” state, the following values can be used:

FALSE

’f’

’false’

’n’

’no’

’off’

’0’

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE are
the preferred (SQL-compliant) usage.

133

Chapter 8. Data Types

Example 8-2 shows that boolean values are output using the letters t and f.

Example 8-2. Using the boolean Type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, ’sic est’);
INSERT INTO test1 VALUES (FALSE, ’non est’);
SELECT * FROM test1;
a | b

---+---------
t | sic est
f | non est

SELECT * FROM test1 WHERE a;
a | b

---+---------
t | sic est

8.7. Enumerated Types
Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equivalent
to the enum types supported in a number of programming languages. An example of an enum type might
be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’happy’);
CREATE TABLE person (

name text,
current_mood mood

);
INSERT INTO person VALUES (’Moe’, ’happy’);
SELECT * FROM person WHERE current_mood = ’happy’;
name | current_mood

------+--------------
Moe | happy

(1 row)

134

Chapter 8. Data Types

8.7.2. Ordering
The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums. For
example:

INSERT INTO person VALUES (’Larry’, ’sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT * FROM person WHERE current_mood > ’sad’;
name | current_mood

-------+--------------
Moe | happy
Curly | ok

(2 rows)

SELECT * FROM person WHERE current_mood > ’sad’ ORDER BY current_mood;
name | current_mood

-------+--------------
Curly | ok
Moe | happy

(2 rows)

SELECT name
FROM person
WHERE current_mood = (SELECT MIN(current_mood) FROM person);
name

Larry

(1 row)

8.7.3. Type Safety
Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM (’happy’, ’very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks integer,
happiness happiness

);
INSERT INTO holidays(num_weeks,happiness) VALUES (4, ’happy’);
INSERT INTO holidays(num_weeks,happiness) VALUES (6, ’very happy’);
INSERT INTO holidays(num_weeks,happiness) VALUES (8, ’ecstatic’);
INSERT INTO holidays(num_weeks,happiness) VALUES (2, ’sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

135

Chapter 8. Data Types

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

------+-----------
Moe | 4

(1 row)

8.7.4. Implementation Details
An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by the
NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so ’happy’ is not the same as ’HAPPY’. White space in the labels is
significant too.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types
Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other types.

Table 8-20. Geometric Types

Name Storage Size Representation Description
point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line (not fully
implemented)

((x1,y1),(x2,y2))

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to
polygon)

((x1,y1),...)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to
closed path)

((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,

136

Chapter 8. Data Types

translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points
Points are the fundamental two-dimensional building block for geometric types. Values of type point are
specified using either of the following syntaxes:

(x , y)
x , y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Line Segments
Line segments (lseg) are represented by pairs of points. Values of type lseg are specified using any of
the following syntaxes:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
(x1 , y1) , (x2 , y2)

x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.3. Boxes
Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1 , y1) , (x2 , y2))
(x1 , y1) , (x2 , y2)

x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store the
upper right and lower left corners, in that order.

8.8.4. Paths
Paths are represented by lists of connected points. Paths can be open, where the first and last points in the
list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

137

Chapter 8. Data Types

[(x1 , y1) , ... , (xn , yn)]
((x1 , y1) , ... , (xn , yn))
(x1 , y1) , ... , (xn , yn)
(x1 , y1 , ... , xn , yn)

x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([]) indicate
an open path, while parentheses (()) indicate a closed path. When the outermost parentheses are omitted,
as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons
Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1 , y1) , ... , (xn , yn))
(x1 , y1) , ... , (xn , yn)
(x1 , y1 , ... , xn , yn)

x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles
Circles are represented by a center point and radius. Values of type circle are specified using any of the
following syntaxes:

< (x , y) , r >

((x , y) , r)
(x , y) , r

x , y , r

where (x,y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types
PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is better
to use these types instead of plain text types to store network addresses, because these types offer input
error checking and specialized operators and functions (see Section 9.12).

138

Chapter 8. Data Types

Table 8-21. Network Address Types

Name Storage Size Description
cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet
The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If the
netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host. In
IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want to
accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for IPv6,
so the value represents just a single host. On display, the /y portion is suppressed if the netmask specifies
a single host.

8.9.2. cidr
The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the netmask. If y
is omitted, it is calculated using assumptions from the older classful network numbering system, except
it will be at least large enough to include all of the octets written in the input. It is an error to specify a
network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Examples

cidr Input cidr Output abbrev(cidr)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

139

Chapter 8. Data Types

cidr Input cidr Output abbrev(cidr)

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64

2001:4f8:3:ba:2e0:81ff:fe22:d1f1/1282001:4f8:3:ba:2e0:81ff:fe22:d1f1/1282001:4f8:3:ba:2e0:81ff:fe22:d1f1

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120

::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.9.3. inet vs. cidr
The essential difference between inet and cidr data types is that inet accepts values with nonzero bits
to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr
The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

’08:00:2b:01:02:03’

’08-00-2b-01-02-03’

’08002b:010203’

’08002b-010203’

’0800.2b01.0203’

’08002b010203’

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through f. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-02-
03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is only relevant for obsolete
network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal, and all accepted
formats use the canonical LSB order.

The remaining four input formats are not part of any standard.

140

Chapter 8. Data Types

8.10. Bit String Types
Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types: bit(n) and bit varying(n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit(1), while bit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to bit

varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; see Section 9.6.

Example 8-3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00’);
INSERT INTO test VALUES (B’10’, B’101’);
ERROR: bit string length 2 does not match type bit(3)

INSERT INTO test VALUES (B’10’::bit(3), B’101’);
SELECT * FROM test;
a | b

-----+-----

101 | 00

100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types
PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a query.
The tsvector type represents a document in a form optimized for text search; the tsquery type simi-
larly represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

141

Chapter 8. Data Types

8.11.1. tsvector
A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT ’a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

--
’a’ ’and’ ’ate’ ’cat’ ’fat’ ’mat’ ’on’ ’rat’ ’sat’

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ’ ’ contains spaces$$::tsvector;
tsvector

’ ’ ’contains’ ’lexeme’ ’spaces’ ’the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having to
double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

--
’Joe”s’ ’a’ ’contains’ ’lexeme’ ’quote’ ’the’

Optionally, integer positions can be attached to lexemes:

SELECT ’a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

’a’:1,6,10 ’and’:8 ’ate’:9 ’cat’:3 ’fat’:2,11 ’mat’:7 ’on’:5 ’rat’:12 ’sat’:4

A position normally indicates the source word’s location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set to
16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT ’a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

’a’:1A ’cat’:5 ’fat’:2B,4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the tsvector type itself does not perform any normalization; it assumes
the words it is given are normalized appropriately for the application. For example,

select ’The Fat Rats’::tsvector;
tsvector

142

Chapter 8. Data Types

’Fat’ ’Rats’ ’The’

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector(’english’, ’The Fat Rats’);
to_tsvector

’fat’:2 ’rat’:3

Again, see Chapter 12 for more detail.

8.11.2. tsquery
A tsquery value stores lexemes that are to be searched for, and combines them honoring the Boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the operators:

SELECT ’fat & rat’::tsquery;
tsquery

’fat’ & ’rat’

SELECT ’fat & (rat | cat)’::tsquery;
tsquery

’fat’ & (’rat’ | ’cat’)

SELECT ’fat & rat & ! cat’::tsquery;
tsquery

’fat’ & ’rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than | (OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts them to
match only tsvector lexemes with matching weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

’fat’:AB & ’cat’

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT ’super:*’::tsquery;
tsquery

’super’:*

143

Chapter 8. Data Types

This query will match any word in a tsvector that begins with “super”. Note that prefixes are first
processed by text search configurations, which means this comparison returns true:

SELECT to_tsvector(’postgraduate’) @@ to_tsquery(’postgres:*’);
?column?

t

(1 row)

because postgres gets stemmed to postgr:

SELECT to_tsquery(’postgres:*’);
to_tsquery

’postgr’:*

(1 row)

which then matches postgraduate.

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery(’Fat:ab & Cats’);
to_tsquery

’fat’:AB & ’cat’

8.12. UUID Type
The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using the
same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness guarantee
than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by hyphens,
specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12 digits, for a
total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four digits.
Examples are:

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11

144

Chapter 8. Data Types

{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380a11}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not include
any function for generating UUIDs, because no single algorithm is well suited for every application. The
uuid-ossp module provides functions that implement several standard algorithms. Alternatively, UUIDs
could be generated by client applications or other libraries invoked through a server-side function.

8.13. XML Type
The xml data type can be used to store XML data. Its advantage over storing XML data in a text field is
that it checks the input values for well-formedness, and there are support functions to perform type-safe
operations on it; see Section 9.14. Use of this data type requires the installation to have been built with
configure --with-libxml.

The xml type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by the production XMLDecl? content in the XML standard. Roughly, this
means that content fragments can have more than one top-level element or character node. The expression
xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml value is a full document or
only a content fragment.

8.13.1. Creating XML Values
To produce a value of type xml from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapter></book>’)
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>’)

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
’<foo>bar</foo>’::xml

can also be used.

The xml type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xml, uses the function xmlserialize:

145

Chapter 8. Data Types

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again, according
to the SQL standard, this is the only way to convert between type xml and character types, but PostgreSQL
also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax

SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note: With the default XML option setting, you cannot directly cast character strings to type xml if
they contain a document type declaration, because the definition of XML content fragment does not
accept them. If you need to do that, either use XMLPARSE or change the XML option.

8.13.2. Encoding Handling
Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results to the
client (which is the normal mode), PostgreSQL converts all character data passed between the client and
the server and vice versa to the character encoding of the respective end; see Section 22.3. This includes
string representations of XML values, such as in the above examples. This would ordinarily mean that
encoding declarations contained in XML data can become invalid as the character data is converted to
other encodings while travelling between client and server, because the embedded encoding declaration
is not changed. To cope with this behavior, encoding declarations contained in character strings presented
for input to the xml type are ignored, and content is assumed to be in the current server encoding. Conse-
quently, for correct processing, character strings of XML data must be sent from the client in the current
client encoding. It is the responsibility of the client to either convert documents to the current client en-
coding before sending them to the server, or to adjust the client encoding appropriately. On output, values
of type xml will not have an encoding declaration, and clients should assume all data is in the current
client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration in
the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case it
will be omitted.

146

Chapter 8. Data Types

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution
Some XML-related functions may not work at all on non-ASCII data when the server
encoding is not UTF-8. This is known to be an issue for xpath() in particular.

8.13.3. Accessing XML Values
The xml data type is unusual in that it does not provide any comparison operators. This is because there
is no well-defined and universally useful comparison algorithm for XML data. One consequence of this
is that you cannot retrieve rows by comparing an xml column against a search value. XML values should
therefore typically be accompanied by a separate key field such as an ID. An alternative solution for com-
paring XML values is to convert them to character strings first, but note that character string comparison
has little to do with a useful XML comparison method.

Since there are no comparison operators for the xml data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the PostgreSQL distribution.

8.14. JSON Type
The json data type can be used to store JSON (JavaScript Object Notation) data, as specified in RFC
46271. Such data can also be stored as text, but the json data type has the advantage of checking that
each stored value is a valid JSON value. There are also related support functions available; see Section
9.15.

PostgreSQL allows only one server encoding per database. It is therefore not possible for JSON to conform
rigidly to the specification unless the server encoding is UTF-8. Attempts to directly include characters
which cannot be represented in the server encoding will fail; conversely, characters which can be repre-
sented in the server encoding but not in UTF-8 will be allowed. \uXXXX escapes are allowed regardless
of the server encoding, and are checked only for syntactic correctness.

8.15. Arrays
PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of domains

1. http://www.ietf.org/rfc/rfc4627.txt

147

Chapter 8. Data Types

are not yet supported.

8.15.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brackets ([]) to the data type name of the
array elements. The above command will create a table named sal_emp with a column of type text

(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee’s
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]

);

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the same
as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of a par-
ticular element type are all considered to be of the same type, regardless of size or number of dimensions.
So, declaring the array size or number of dimensions in CREATE TABLE is simply documentation; it does
not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],

Or, if no array size is to be specified:

pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input
To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

’{ val1 delim val2 delim ... }’

148

Chapter 8. Data Types

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the PostgreSQL distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of an
array constant is:

’{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
’{10000, 10000, 10000, 10000}’,
’{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
’{20000, 25000, 25000, 25000}’,
’{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
name | pay_by_quarter | schedule

-------+---------------------------+---
Bill | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}

(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error, for
example:

INSERT INTO sal_emp
VALUES (’Bill’,
’{10000, 10000, 10000, 10000}’,
’{{"meeting", "lunch"}, {"meeting"}}’);

ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp

149

Chapter 8. Data Types

VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 10000],
ARRAY[[’meeting’, ’lunch’], [’training’, ’presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[’breakfast’, ’consulting’], [’meeting’, ’lunch’]]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals are
single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor syntax
is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays
Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

name

Carol

(1 row)

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-based
numbering convention for arrays, that is, an array of n elements starts with array[1] and ends with
array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing lower-bound:upper-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’Bill’;

schedule

{{meeting},{training}}

(1 row)

150

Chapter 8. Data Types

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified. For
example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’Bill’;

schedule

{{meeting,lunch},{training,presentation}}

(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1], not [2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3][1:2] then referencing schedule[3][3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather than
an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’Carol’;

array_dims

[1:2][1:2]

(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_upper

2
(1 row)

array_length will return the length of a specified array dimension:

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_length

2
(1 row)

151

Chapter 8. Data Types

8.15.4. Modifying Arrays
An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}’
WHERE name = ’Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = ’{27000,27000}’
WHERE name = ’Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6];
myarray[5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, ||:

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}

(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?column?

{{5,6},{1,2},{3,4}}

(1 row)

152

Chapter 8. Data Types

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N -dimensional arrays, or an N -dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result is
an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1 || ’[0:1]={2,3}’::int[]);
array_dims

[0:2]

(1 row)

SELECT array_dims(ARRAY[1,2] || 3);
array_dims

[1:3]

(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand’s outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]

(1 row)

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
array_dims

[1:5][1:2]

(1 row)

When an N -dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N -dimensional sub-array is essentially an element of
the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_dims

[1:3][1:2]

(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over direct

153

Chapter 8. Data Types

use of these functions. In fact, these functions primarily exist for use in implementing the concatenation
operator. However, they might be directly useful in the creation of user-defined aggregates. Some
examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

{1,2,3}

(1 row)

SELECT array_append(ARRAY[1,2], 3);
array_append

{1,2,3}

(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}

(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}

(1 row)

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
array_cat

{{5,6},{1,2},{3,4}}

8.15.5. Searching in Arrays
To search for a value in an array, each value must be checked. This can be done manually, if you know the
size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

154

Chapter 8. Data Types

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT * FROM
(SELECT pay_by_quarter,

generate_subscripts(pay_by_quarter, 1) AS s
FROM sal_emp) AS foo

WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9-49.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will be
easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax
The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure. The
decoration consists of curly braces ({ and }) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a comma (,) but can be something else: it is determined
by the typdelim setting for the array’s element type. Among the standard data types provided in the
PostgreSQL distribution, all use a comma, except for type box, which uses a semicolon (;). In a multidi-
mensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and delimiters
must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays with
other lower bounds, the array subscript ranges can be specified explicitly before writing the array contents.
This decoration consists of square brackets ([]) around each array dimension’s lower and upper bounds,
with a colon (:) delimiter character in between. The array dimension decoration is followed by an equal
sign (=). For example:

SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
FROM (SELECT ’[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}’::int[] AS f1) AS ss;

e1 | e2
----+----
1 | 6

(1 row)

155

Chapter 8. Data Types

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL. The
presence of any quotes or backslashes disables this and allows the literal string value “NULL” to be
entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls configu-
ration parameter can be turned off to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or the data type’s delimiter character), double quotes,
backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings matching
the word NULL must be quoted, too. To put a double quote or backslash in a quoted array element value,
use escape string syntax and precede it with a backslash. Alternatively, you can avoid quotes and use
backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you’d need to write:

INSERT ... VALUES (E’{"\\\\","\\""}’);

The escape string processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\\","\""}. In turn, the strings fed to the text data type’s input routine become \

and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get one
backslash into the stored array element.) Dollar quoting (see Section 4.1.2.4) can be used to avoid
the need to double backslashes.

Tip: The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In ARRAY, individual element values are
written the same way they would be written when not members of an array.

8.16. Composite Types
A composite type represents the structure of a row or record; it is essentially just a list of field names and
their data types. PostgreSQL allows composite types to be used in many of the same ways that simple
types can be used. For example, a column of a table can be declared to be of a composite type.

156

Chapter 8. Data Types

8.16.1. Declaration of Composite Types
Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision

);

CREATE TYPE inventory_item AS (
name text,
supplier_id integer,
price numeric

);

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified; no
constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential; without
it, the system will think a different kind of CREATE TYPE command is meant, and you will get odd syntax
errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

);

INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);

or functions:

CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS ’SELECT $1.price * $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (
name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

);

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (A partial workaround is to use domain types as
members of composite types.)

157

Chapter 8. Data Types

8.16.2. Composite Value Input
To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

’(val1 , val2 , ...)’

An example is:

’("fuzzy dice",42,1.99)’

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third field:

’("fuzzy dice",42,)’

If you want an empty string rather than NULL, write double quotes:

’("",42,)’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section 4.1.2.7.
The constant is initially treated as a string and passed to the composite-type input conversion routine. An
explicit type specification might be necessary.)

The ROW expression syntax can also be used to construct composite values. In most cases this is consid-
erably simpler to use than the string-literal syntax since you don’t have to worry about multiple layers of
quoting. We already used this method above:

ROW(’fuzzy dice’, 42, 1.99)
ROW(”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so these
can simplify to:

(’fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The ROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types
To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

158

Chapter 8. Data Types

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:

SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

or if you need to use the table name as well (for instance in a multitable query), like this:

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you’d need to write something
like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

8.16.4. Modifying Composite Types
Here are some examples of the proper syntax for inserting and updating composite columns. First, insert-
ing or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name appearing
just after SET, but we do need parentheses when referencing the same column in the expression to the
right of the equal sign.

And we can specify subfields as targets for INSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Composite Type Input and Output Syntax
The external text representation of a composite value consists of items that are interpreted according to the
I/O conversion rules for the individual field types, plus decoration that indicates the composite structure.
The decoration consists of parentheses ((and)) around the whole value, plus commas (,) between

159

Chapter 8. Data Types

adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it is considered
part of the field value, and might or might not be significant depending on the input conversion rules for
the field data type. For example, in:

’(42)’

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space is
not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in a
composite value, you’d need to write:

INSERT ... VALUES (E’("\\"\\\\")’);

The string-literal processor removes one level of backslashes, so that what arrives at the composite-
value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input routine becomes
"\. (If we were working with a data type whose input routine also treated backslashes specially, bytea
for example, we might need as many as eight backslashes in the command to get one backslash into
the stored composite field.) Dollar quoting (see Section 4.1.2.4) can be used to avoid the need to
double backslashes.

Tip: The ROW constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In ROW, individual field values are written the same way
they would be written when not members of a composite.

8.17. Range Types
Range types are data types representing a range of values of some element type (called the range’s sub-
type). For instance, ranges of timestamp might be used to represent the ranges of time that a meeting
room is reserved. In this case the data type is tsrange (short for “timestamp range”), and timestamp

160

Chapter 8. Data Types

is the subtype. The subtype must have a total order so that it is well-defined whether element values are
within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for schedul-
ing purposes is the clearest example; but price ranges, measurement ranges from an instrument, and so
forth can also be useful.

8.17.1. Built-in Range Types
PostgreSQL comes with the following built-in range types:

• int4range — Range of integer

• int8range — Range of bigint

• numrange — Range of numeric

• tsrange — Range of timestamp without time zone

• tstzrange — Range of timestamp with time zone

• daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES

(1108, ’[2010-01-01 14:30, 2010-01-01 15:30)’);

-- Containment
SELECT int4range(10, 20) @> 3;

-- Overlaps
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

See Table 9-43 and Table 9-44 for complete lists of operators and functions on range types.

161

Chapter 8. Data Types

8.17.3. Inclusive and Exclusive Bounds
Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower bound
is represented by “(”. Likewise, an inclusive upper bound is represented by “]”, while an exclusive upper
bound is represented by “)”. (See Section 8.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

8.17.4. Infinite (Unbounded) Ranges
The lower bound of a range can be omitted, meaning that all points less than the upper bound are included
in the range. Likewise, if the upper bound of the range is omitted, then all points greater than the lower
bound are included in the range. If both lower and upper bounds are omitted, all values of the element
type are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus
infinity”, respectively. But note that these infinite values are never values of the range’s element type, and
can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you try to
write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, in timestamp ranges, [today,] means the same thing as
[today,). But [today,infinity] means something different from [today,infinity) — the latter
excludes the special timestamp value infinity.

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, respec-
tively.

8.17.5. Range Input/Output
The input for a range value must follow one of the following patterns:

(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range that
contains no points).

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to
indicate no upper bound.

162

Chapter 8. Data Types

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would oth-
erwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound value,
precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value is taken
to represent a double quote character, analogously to the rules for single quotes in SQL literal strings.)
Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters that would
otherwise be taken as range syntax. Also, to write a bound value that is an empty string, write "", since
writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might or
might not be significant.)

Note: These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.5 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in between
SELECT ’[3,7)’::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT ’(3,7)’::int4range;

-- includes only the single point 4
SELECT ’[4,4]’::int4range;

-- includes no points (and will be normalized to ’empty’)
SELECT ’[4,4)’::int4range;

8.17.6. Constructing Ranges
Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need for
extra quoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive), while
the three-argument form constructs a range with bounds of the form specified by the third argument. The
third argument must be one of the strings “()”, “(]”, “[)”, or “[]”. For example:

-- The full form is: lower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, ’(]’);

-- If the third argument is omitted, ’[)’ is assumed.
SELECT numrange(1.0, 14.0);

-- Although ’(]’ is specified here, on display the value will be converted to

163

Chapter 8. Data Types

-- canonical form, since int8range is a discrete range type (see below).
SELECT int8range(1, 14, ’(]’);

-- Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange(NULL, 2.2);

8.17.7. Discrete Range Types
A discrete range is one whose element type has a well-defined “step”, such as integer or date. In
these types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it’s always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a range
over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated
as discrete, it’s better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range’s bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4,8] and (3,9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for the
element type. The canonicalization function is charged with converting equivalent values of the range type
to have identical representations, in particular consistently inclusive or exclusive bounds. If a canonical-
ization function is not specified, then ranges with different formatting will always be treated as unequal,
even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other con-
ventions, however.

8.17.8. Defining New Range Types
Users can define their own range types. The most common reason to do this is to use ranges over subtypes
not provided among the built-in range types. For example, to define a new range type of subtype float8:

CREATE TYPE floatrange AS RANGE (
subtype = float8,
subtype_diff = float8mi

);

SELECT ’[1.234, 5.678]’::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output for

164

Chapter 8. Data Types

two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1, 8),
must be identical. It doesn’t matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over timestamp could be defined to have a step size of an hour, in
which case the canonicalization function would need to round off bounds that weren’t a multiple of an
hour, or perhaps throw an error instead.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

In addition, any range type that is meant to be used with GiST indexes should define a subtype difference,
or subtype_diff, function. (A GiST index will still work without subtype_diff, but it is likely to be
considerably less efficient than if a difference function is provided.) The subtype difference function takes
two input values of the subtype, and returns their difference (i.e., X minus Y) represented as a float8

value. In our example above, the function that underlies the regular float8 minus operator can be used;
but for any other subtype, some type conversion would be necessary. Some creative thought about how to
represent differences as numbers might be needed, too. To the greatest extent possible, the subtype_diff
function should agree with the sort ordering implied by the selected operator class and collation; that is,
its result should be positive whenever its first argument is greater than its second according to the sort
ordering.

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing
GiST indexes can be created for table columns of range types. For instance:

CREATE INDEX reservation_idx ON reservation USING gist (during);

A GiST index can accelerate queries involving these range operators: =, &&, <@, @>, <<, >>, -|-, &<,
and &> (see Table 9-43 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually
useful in the real world. Range types’ B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges
While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead, an
exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
during tsrange,

165

Chapter 8. Data Types

EXCLUDE USING gist (during WITH &&)
);

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
(’[2010-01-01 11:30, 2010-01-01 15:00)’);

INSERT 0 1

INSERT INTO reservation VALUES
(’[2010-01-01 14:45, 2010-01-01 15:45)’);

ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).

You can use the btree_gist extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after btree_gist is
installed, the following constraint will reject overlapping ranges only if the meeting room numbers are
equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (

room text,
during tsrange,
EXCLUDE USING gist (room WITH =, during WITH &&)

);

INSERT INTO room_reservation VALUES
(’123A’, ’[2010-01-01 14:00, 2010-01-01 15:00)’);

INSERT 0 1

INSERT INTO room_reservation VALUES
(’123A’, ’[2010-01-01 14:30, 2010-01-01 15:30)’);

ERROR: conflicting key value violates exclusion constraint "room_reservation_room_during_excl"
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) conflicts
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
(’123B’, ’[2010-01-01 14:30, 2010-01-01 15:30)’);

INSERT 0 1

8.18. Object Identifier Types
Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH OIDS is specified when the table is created, or
the default_with_oids configuration variable is enabled. Type oid represents an object identifier. There

166

Chapter 8. Data Types

are also several alias types for oid: regproc, regprocedure, regoper, regoperator, regclass,
regtype, regconfig, and regdictionary. Table 8-23 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT * FROM pg_attribute WHERE attrelid = ’mytable’::regclass;

rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table’s OID to regclass is handy for symbolic
display of a numeric OID.

Table 8-23. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier 564182

regproc pg_proc function name sum

regprocedure pg_proc function with argument
types

sum(int4)

regoper pg_operator operator name +

regoperator pg_operator operator with argument
types

*(integer,integer)

or -(NONE,integer)

regclass pg_class relation name pg_type

regtype pg_type data type name integer

regconfig pg_ts_config text search configuration english

regdictionary pg_ts_dict text search dictionary simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names on
output if the object would not be found in the current search path without being qualified. The regproc

167

Chapter 8. Data Types

and regoper alias types will only accept input names that are unique (not overloaded), so they are of
limited use; for most uses regprocedure or regoperator are more appropriate. For regoperator,
unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of
one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval(’my_seq’::regclass), PostgreSQL understands that the default expression depends on the
sequence my_seq; the system will not let the sequence be dropped without first removing the default
expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the system
columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.19. Pseudo-Types
The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL data type. Table 8-24
lists the existing pseudo-types.

Table 8-24. Pseudo-Types

Name Description
any Indicates that a function accepts any input data

type.

anyelement Indicates that a function accepts any data type (see
Section 35.2.5).

anyarray Indicates that a function accepts any array data
type (see Section 35.2.5).

anynonarray Indicates that a function accepts any non-array
data type (see Section 35.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 35.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data
type (see Section 35.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a
null-terminated C string.

168

Chapter 8. Data Types

Name Description
internal Indicates that a function accepts or returns a

server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

fdw_handler A foreign-data wrapper handler is declared to
return fdw_handler.

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to return trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all the
above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any of
these pseudo data types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present the procedural languages all forbid use of a pseudo-type as argument type, and allow
only void and record as a result type (plus trigger when the function is used as a trigger). Some also
support polymorphic functions using the types anyelement, anyarray, anynonarray, anyenum, and
anyrange.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

169

Chapter 9. Functions and Operators
PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as described in Part V. The psql commands \df and \do can be
used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described in this
chapter, with the exception of the most trivial arithmetic and comparison operators and some explicitly
marked functions, are not specified by the SQL standard. Some of this extended functionality is present in
other SQL database management systems, and in many cases this functionality is compatible and consis-
tent between the various implementations. This chapter is also not exhaustive; additional functions appear
in relevant sections of the manual.

9.1. Logical Operators
The usual logical operators are available:

AND

OR

NOT

SQL uses a three-valued logic system with true, false, and null, which represents “unknown”. Observe
the following truth tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of subex-
pressions.

170

Chapter 9. Functions and Operators

9.2. Comparison Operators
The usual comparison operators are available, shown in Table 9-1.

Table 9-1. Comparison Operators

Operator Description
< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary oper-
ators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because there is no
< operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the opposite
comparison:

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to the left
of AND be less than or equal to the argument on the right. If it is not, those two arguments are automatically
swapped, so that a nonempty range is always implied.

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL

171

Chapter 9. Functions and Operators

expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms to
the SQL standard.

Tip: Some applications might expect that expression = NULL returns true if expression evaluates
to the null value. It is highly recommended that these applications be modified to comply with the
SQL standard. However, if that cannot be done the transform_null_equals configuration variable is
available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

Note: If the expression is row-valued, then IS NULL is true when the row expression itself is null or
when all the row’s fields are null, while IS NOT NULL is true when the row expression itself is non-
null and all the row’s fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not
always return inverse results for row-valued expressions, i.e., a row-valued expression that contains
both NULL and non-null values will return false for both tests. This definition conforms to the SQL
standard, and is a change from the inconsistent behavior exhibited by PostgreSQL versions prior to
8.2.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input is
null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
the IS [NOT] DISTINCT FROM constructs:

expression IS DISTINCT FROM expression

expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is
identical to = for non-null inputs, but it returns true when both inputs are null, and false when only one
input is null. Thus, these constructs effectively act as though null were a normal data value, rather than
“unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input
is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effec-
tively the same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of
Boolean type.

172

Chapter 9. Functions and Operators

9.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without standard mathemati-
cal conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result
+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplication 2 * 3 6

/ division (integer
division truncates the
result)

4 / 2 2

% modulo (remainder) 5 % 4 1

^ exponentiation 2.0 ^ 3.0 8

|/ square root |/ 25.0 5

||/ cube root ||/ 27.0 3

! factorial 5 ! 120

!! factorial (prefix
operator)

!! 5 120

@ absolute value @ -5.0 5

& bitwise AND 91 & 15 11

| bitwise OR 32 | 3 35

bitwise XOR 17 # 5 20

~ bitwise NOT ~1 -2

<< bitwise shift left 1 << 4 16

>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as
shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with double precision data are mostly implemented on top of the host system’s C library; accuracy
and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs(x) (same as input) absolute value abs(-17.4) 17.4

173

Chapter 9. Functions and Operators

Function Return Type Description Example Result
cbrt(dp) dp cube root cbrt(27.0) 3

ceil(dp or

numeric)

(same as input) smallest integer not
less than argument

ceil(-42.8) -42

ceiling(dp or

numeric)

(same as input) smallest integer not
less than argument
(alias for ceil)

ceiling(-95.3) -95

degrees(dp) dp radians to degrees degrees(0.5) 28.6478897565412

div(y numeric,

x numeric)

numeric integer quotient of
y/x

div(9,4) 2

exp(dp or

numeric)

(same as input) exponential exp(1.0) 2.71828182845905

floor(dp or

numeric)

(same as input) largest integer not
greater than
argument

floor(-42.8) -43

ln(dp or

numeric)

(same as input) natural logarithm ln(2.0) 0.693147180559945

log(dp or

numeric)

(same as input) base 10 logarithm log(100.0) 2

log(b numeric, x

numeric)

numeric logarithm to base b log(2.0, 64.0) 6.0000000000

mod(y, x) (same as argument
types)

remainder of y/x mod(9,4) 1

pi() dp “π” constant pi() 3.14159265358979

power(a dp, b

dp)

dp a raised to the
power of b

power(9.0,

3.0)

729

power(a numeric,

b numeric)

numeric a raised to the
power of b

power(9.0,

3.0)

729

radians(dp) dp degrees to radians radians(45.0) 0.785398163397448

random() dp random value in
the range 0.0 <= x
< 1.0

random()

round(dp or

numeric)

(same as input) round to nearest
integer

round(42.4) 42

round(v numeric,

s int)

numeric round to s decimal
places

round(42.4382,

2)

42.44

174

Chapter 9. Functions and Operators

Function Return Type Description Example Result
setseed(dp) void set seed for

subsequent
random() calls
(value between
-1.0 and 1.0,
inclusive)

setseed(0.54823)

sign(dp or

numeric)

(same as input) sign of the
argument (-1, 0,
+1)

sign(-8.4) -1

sqrt(dp or

numeric)

(same as input) square root sqrt(2.0) 1.4142135623731

trunc(dp or

numeric)

(same as input) truncate toward
zero

trunc(42.8) 42

trunc(v numeric,

s int)

numeric truncate to s

decimal places
trunc(42.4382,

2)

42.43

width_bucket(op

numeric, b1

numeric, b2

numeric, count

int)

int return the bucket to
which operand

would be assigned
in an equidepth
histogram with
count buckets, in
the range b1 to b2

width_bucket(5.35,

0.024, 10.06,

5)

3

width_bucket(op

dp, b1 dp, b2 dp,

count int)

int return the bucket to
which operand

would be assigned
in an equidepth
histogram with
count buckets, in
the range b1 to b2

width_bucket(5.35,

0.024, 10.06,

5)

3

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take arguments
and return values of type double precision. Trigonometric functions arguments are expressed in radi-
ans. Inverse functions return values are expressed in radians. See unit transformation functions radians()
and degrees() above.

Table 9-4. Trigonometric Functions

Function Description
acos(x) inverse cosine

asin(x) inverse sine

atan(x) inverse tangent

atan2(y, x) inverse tangent of y/x

cos(x) cosine

cot(x) cotangent

175

Chapter 9. Functions and Operators

Function Description
sin(x) sine

tan(x) tangent

9.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings in
this context include values of the types character, character varying, and text. Unless otherwise
noted, all of the functions listed below work on all of these types, but be wary of potential effects of
automatic space-padding when using the character type. Some functions also exist natively for the
bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9-5. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-6).

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to text. Those coer-
cions have been removed because they frequently caused surprising behaviors. However, the string
concatenation operator (||) still accepts non-string input, so long as at least one input is of a string
type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if you need to duplicate
the previous behavior.

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result
string ||

string

text String
concatenation

’Post’ ||

’greSQL’

PostgreSQL

string ||

non-string or
non-string ||

string

text String
concatenation with
one non-string
input

’Value: ’ ||

42

Value: 42

bit_length(string)

int Number of bits in
string

bit_length(’jose’)32

char_length(string)

or
character_length(string)

int Number of
characters in string

char_length(’jose’)4

lower(string) text Convert string to
lower case

lower(’TOM’) tom

176

Chapter 9. Functions and Operators

Function Return Type Description Example Result

octet_length(string)

int Number of bytes in
string

octet_length(’jose’)4

overlay(string

placing string

from int [for

int])

text Replace substring overlay(’Txxxxas’

placing ’hom’

from 2 for 4)

Thomas

position(substring

in string)

int Location of
specified substring

position(’om’

in ’Thomas’)

3

substring(string

[from int] [for

int])

text Extract substring substring(’Thomas’

from 2 for 3)

hom

substring(string

from pattern)

text Extract substring
matching POSIX
regular expression.
See Section 9.7 for
more information
on pattern
matching.

substring(’Thomas’

from ’...$’)

mas

substring(string

from pattern for

escape)

text Extract substring
matching SQL
regular expression.
See Section 9.7 for
more information
on pattern
matching.

substring(’Thomas’

from

’%#"o_a#"_’

for ’#’)

oma

trim([leading |

trailing | both]

[characters] from

string)

text Remove the
longest string
containing only the
characters (a
space by default)
from the
start/end/both ends
of the string

trim(both ’x’

from ’xTomxx’)

Tom

upper(string) text Convert string to
upper case

upper(’tom’) TOM

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function Return Type Description Example Result

177

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ascii(string) int ASCII code of the

first character of
the argument. For
UTF8 returns the
Unicode code point
of the character.
For other multibyte
encodings, the
argument must be
an ASCII
character.

ascii(’x’) 120

btrim(string

text [,

characters text])

text Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(’xyxtrimyyx’,

’xy’)

trim

chr(int) text Character with the
given code. For
UTF8 the
argument is treated
as a Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr(65) A

concat(str

"any" [, str

"any" [, ...]])

text Concatenate all
arguments. NULL
arguments are
ignored.

concat(’abcde’,

2, NULL, 22)

abcde222

178

Chapter 9. Functions and Operators

Function Return Type Description Example Result
concat_ws(sep

text, str "any"

[, str "any" [,

...]])

text Concatenate all
but first arguments
with separators.
The first parameter
is used as a
separator. NULL
arguments are
ignored.

concat_ws(’,’,

’abcde’, 2,

NULL, 22)

abcde,2,22

convert(string

bytea,

src_encoding

name,

dest_encoding

name)

bytea Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding.
The string must
be valid in this
encoding.
Conversions can be
defined by CREATE

CONVERSION. Also
there are some
predefined
conversions. See
Table 9-7 for
available
conversions.

convert(’text_in_utf8’,

’UTF8’,

’LATIN1’)

text_in_utf8

represented in
Latin-1 encoding
(ISO 8859-1)

convert_from(string

bytea,

src_encoding

name)

text Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from(’text_in_utf8’,

’UTF8’)

text_in_utf8

represented in the
current database
encoding

convert_to(string

text,

dest_encoding

name)

bytea Convert string to
dest_encoding.

convert_to(’some

text’, ’UTF8’)

some text

represented in the
UTF8 encoding

179

Chapter 9. Functions and Operators

Function Return Type Description Example Result
decode(string

text, format

text)

bytea Decode binary
data from textual
representation in
string. Options
for format are
same as in
encode.

decode(’MTIzAAE=’,

’base64’)

\x3132330001

encode(data

bytea, format

text)

text Encode binary
data into a textual
representation.
Supported formats
are: base64, hex,
escape. escape
converts zero bytes
and high-bit-set
bytes to octal
sequences (\nnn)
and doubles
backslashes.

encode(E’123\\000\\001’,

’base64’)

MTIzAAE=

180

Chapter 9. Functions and Operators

Function Return Type Description Example Result

format(formatstr

text [, str

"any" [, ...]

])

text Format a string.
This function is
similar to the C
function sprintf;
but only the
following
conversion
specifications are
recognized: %s
interpolates the
corresponding
argument as a
string; %I escapes
its argument as an
SQL identifier; %L
escapes its
argument as an
SQL literal; %%
outputs a literal %.
A conversion can
reference an
explicit parameter
position by
preceding the
conversion
specifier with n$,
where n is the
argument position.
See also Example
39-1.

format(’Hello

%s, %1$s’,

’World’)

Hello World,

World

initcap(string) text Convert the first
letter of each word
to upper case and
the rest to lower
case. Words are
sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi

THOMAS’)

Hi Thomas

181

Chapter 9. Functions and Operators

Function Return Type Description Example Result
left(str text,

n int)

text Return first n
characters in the
string. When n is
negative, return all
but last |n|
characters.

left(’abcde’,

2)

ab

length(string) int Number of
characters in
string

length(’jose’) 4

length(string

bytea, encoding

name)

int Number of
characters in
string in the
given encoding.
The string must
be valid in this
encoding.

length(’jose’,

’UTF8’)

4

lpad(string

text, length int

[, fill text])

text Fill up the string
to length length

by prepending the
characters fill (a
space by default).
If the string is
already longer than
length then it is
truncated (on the
right).

lpad(’hi’, 5,

’xy’)

xyxhi

ltrim(string

text [,

characters text])

text Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of
string

ltrim(’zzzytrim’,

’xyz’)

trim

md5(string) text Calculates the
MD5 hash of
string, returning
the result in
hexadecimal

md5(’abc’) 900150983cd24fb0

d6963f7d28e17f72

pg_client_encoding()

name Current client
encoding name

pg_client_encoding()SQL_ASCII

182

Chapter 9. Functions and Operators

Function Return Type Description Example Result

quote_ident(string

text)

text Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 39-1.

quote_ident(’Foo

bar’)

"Foo bar"

quote_literal(string

text)

text Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal

returns null on null
input; if the
argument might be
null,
quote_nullable

is often more
suitable. See also
Example 39-1.

quote_literal(E’O\’Reilly’)’O”Reilly’

quote_literal(value

anyelement)

text Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal(42.5)’42.5’

183

Chapter 9. Functions and Operators

Function Return Type Description Example Result

quote_nullable(string

text)

text Return the given
string suitably
quoted to be used
as a string literal in
an SQL statement
string; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
39-1.

quote_nullable(NULL)NULL

quote_nullable(value

anyelement)

text Coerce the given
value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable(42.5)’42.5’

regexp_matches(string

text, pattern

text [, flags

text])

setof text[] Return all
captured substrings
resulting from
matching a POSIX
regular expression
against the
string. See
Section 9.7.3 for
more information.

regexp_matches(’foobarbequebaz’,

’(bar)(beque)’)

{bar,beque}

regexp_replace(string

text, pattern

text, replacement

text [, flags

text])

text Replace
substring(s)
matching a POSIX
regular expression.
See Section 9.7.3
for more
information.

regexp_replace(’Thomas’,

’.[mN]a.’,

’M’)

ThM

184

Chapter 9. Functions and Operators

Function Return Type Description Example Result

regexp_split_to_array(string

text, pattern

text [, flags

text])

text[] Split string
using a POSIX
regular expression
as the delimiter.
See Section 9.7.3
for more
information.

regexp_split_to_array(’hello

world’,

E’\\s+’)

{hello,world}

regexp_split_to_table(string

text, pattern

text [, flags

text])

setof text Split string
using a POSIX
regular expression
as the delimiter.
See Section 9.7.3
for more
information.

regexp_split_to_table(’hello

world’,

E’\\s+’)

helloworld (2
rows)

repeat(string

text, number int)

text Repeat string the
specified number

of times

repeat(’Pg’,

4)

PgPgPgPg

replace(string

text, from text,

to text)

text Replace all
occurrences in
string of
substring from

with substring to

replace(’abcdefabcdef’,

’cd’, ’XX’)

abXXefabXXef

reverse(str) text Return reversed
string.

reverse(’abcde’)edcba

right(str text,

n int)

text Return last n
characters in the
string. When n is
negative, return all
but first |n|
characters.

right(’abcde’,

2)

de

rpad(string

text, length int

[, fill text])

text Fill up the string
to length length

by appending the
characters fill (a
space by default).
If the string is
already longer than
length then it is
truncated.

rpad(’hi’, 5,

’xy’)

hixyx

185

Chapter 9. Functions and Operators

Function Return Type Description Example Result
rtrim(string

text [,

characters text])

text Remove the
longest string
containing only
characters from
characters (a
space by default)
from the end of
string

rtrim(’trimxxxx’,

’x’)

trim

split_part(string

text, delimiter

text, field int)

text Split string on
delimiter and
return the given
field (counting
from one)

split_part(’abc~@~def~@~ghi’,

’~@~’, 2)

def

strpos(string,

substring)

int Location of
specified substring
(same as
position(substring

in string), but
note the reversed
argument order)

strpos(’high’,

’ig’)

2

substr(string,

from [, count])

text Extract substring
(same as
substring(string

from from for

count))

substr(’alphabet’,

3, 2)

ph

to_ascii(string

text [, encoding

text])

text Convert string
to ASCII from
another encoding
(only supports
conversion from
LATIN1, LATIN2,
LATIN9, and
WIN1250

encodings)

to_ascii(’Karel’)Karel

to_hex(number

int or bigint)

text Convert number to
its equivalent
hexadecimal
representation

to_hex(2147483647)7fffffff

186

Chapter 9. Functions and Operators

Function Return Type Description Example Result

translate(string

text, from text,

to text)

text Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to
set. If from is
longer than to,
occurrences of the
extra characters in
from are removed.

translate(’12345’,

’143’, ’ax’)

a2x5

See also the aggregate function string_agg in Section 9.20.

Table 9-7. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL

ascii_to_utf8 SQL_ASCII UTF8

big5_to_euc_tw BIG5 EUC_TW

big5_to_mic BIG5 MULE_INTERNAL

big5_to_utf8 BIG5 UTF8

euc_cn_to_mic EUC_CN MULE_INTERNAL

euc_cn_to_utf8 EUC_CN UTF8

euc_jp_to_mic EUC_JP MULE_INTERNAL

euc_jp_to_sjis EUC_JP SJIS

euc_jp_to_utf8 EUC_JP UTF8

euc_kr_to_mic EUC_KR MULE_INTERNAL

euc_kr_to_utf8 EUC_KR UTF8

euc_tw_to_big5 EUC_TW BIG5

euc_tw_to_mic EUC_TW MULE_INTERNAL

euc_tw_to_utf8 EUC_TW UTF8

gb18030_to_utf8 GB18030 UTF8

gbk_to_utf8 GBK UTF8

iso_8859_10_to_utf8 LATIN6 UTF8

iso_8859_13_to_utf8 LATIN7 UTF8

iso_8859_14_to_utf8 LATIN8 UTF8

iso_8859_15_to_utf8 LATIN9 UTF8

iso_8859_16_to_utf8 LATIN10 UTF8

187

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
iso_8859_1_to_mic LATIN1 MULE_INTERNAL

iso_8859_1_to_utf8 LATIN1 UTF8

iso_8859_2_to_mic LATIN2 MULE_INTERNAL

iso_8859_2_to_utf8 LATIN2 UTF8

iso_8859_2_to_windows_1250LATIN2 WIN1250

iso_8859_3_to_mic LATIN3 MULE_INTERNAL

iso_8859_3_to_utf8 LATIN3 UTF8

iso_8859_4_to_mic LATIN4 MULE_INTERNAL

iso_8859_4_to_utf8 LATIN4 UTF8

iso_8859_5_to_koi8_r ISO_8859_5 KOI8R

iso_8859_5_to_mic ISO_8859_5 MULE_INTERNAL

iso_8859_5_to_utf8 ISO_8859_5 UTF8

iso_8859_5_to_windows_1251ISO_8859_5 WIN1251

iso_8859_5_to_windows_866 ISO_8859_5 WIN866

iso_8859_6_to_utf8 ISO_8859_6 UTF8

iso_8859_7_to_utf8 ISO_8859_7 UTF8

iso_8859_8_to_utf8 ISO_8859_8 UTF8

iso_8859_9_to_utf8 LATIN5 UTF8

johab_to_utf8 JOHAB UTF8

koi8_r_to_iso_8859_5 KOI8R ISO_8859_5

koi8_r_to_mic KOI8R MULE_INTERNAL

koi8_r_to_utf8 KOI8R UTF8

koi8_r_to_windows_1251 KOI8R WIN1251

koi8_r_to_windows_866 KOI8R WIN866

koi8_u_to_utf8 KOI8U UTF8

mic_to_ascii MULE_INTERNAL SQL_ASCII

mic_to_big5 MULE_INTERNAL BIG5

mic_to_euc_cn MULE_INTERNAL EUC_CN

mic_to_euc_jp MULE_INTERNAL EUC_JP

mic_to_euc_kr MULE_INTERNAL EUC_KR

mic_to_euc_tw MULE_INTERNAL EUC_TW

mic_to_iso_8859_1 MULE_INTERNAL LATIN1

mic_to_iso_8859_2 MULE_INTERNAL LATIN2

mic_to_iso_8859_3 MULE_INTERNAL LATIN3

mic_to_iso_8859_4 MULE_INTERNAL LATIN4

mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5

188

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
mic_to_koi8_r MULE_INTERNAL KOI8R

mic_to_sjis MULE_INTERNAL SJIS

mic_to_windows_1250 MULE_INTERNAL WIN1250

mic_to_windows_1251 MULE_INTERNAL WIN1251

mic_to_windows_866 MULE_INTERNAL WIN866

sjis_to_euc_jp SJIS EUC_JP

sjis_to_mic SJIS MULE_INTERNAL

sjis_to_utf8 SJIS UTF8

tcvn_to_utf8 WIN1258 UTF8

uhc_to_utf8 UHC UTF8

utf8_to_ascii UTF8 SQL_ASCII

utf8_to_big5 UTF8 BIG5

utf8_to_euc_cn UTF8 EUC_CN

utf8_to_euc_jp UTF8 EUC_JP

utf8_to_euc_kr UTF8 EUC_KR

utf8_to_euc_tw UTF8 EUC_TW

utf8_to_gb18030 UTF8 GB18030

utf8_to_gbk UTF8 GBK

utf8_to_iso_8859_1 UTF8 LATIN1

utf8_to_iso_8859_10 UTF8 LATIN6

utf8_to_iso_8859_13 UTF8 LATIN7

utf8_to_iso_8859_14 UTF8 LATIN8

utf8_to_iso_8859_15 UTF8 LATIN9

utf8_to_iso_8859_16 UTF8 LATIN10

utf8_to_iso_8859_2 UTF8 LATIN2

utf8_to_iso_8859_3 UTF8 LATIN3

utf8_to_iso_8859_4 UTF8 LATIN4

utf8_to_iso_8859_5 UTF8 ISO_8859_5

utf8_to_iso_8859_6 UTF8 ISO_8859_6

utf8_to_iso_8859_7 UTF8 ISO_8859_7

utf8_to_iso_8859_8 UTF8 ISO_8859_8

utf8_to_iso_8859_9 UTF8 LATIN5

utf8_to_johab UTF8 JOHAB

utf8_to_koi8_r UTF8 KOI8R

utf8_to_koi8_u UTF8 KOI8U

utf8_to_sjis UTF8 SJIS

utf8_to_tcvn UTF8 WIN1258

utf8_to_uhc UTF8 UHC

189

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
utf8_to_windows_1250 UTF8 WIN1250

utf8_to_windows_1251 UTF8 WIN1251

utf8_to_windows_1252 UTF8 WIN1252

utf8_to_windows_1253 UTF8 WIN1253

utf8_to_windows_1254 UTF8 WIN1254

utf8_to_windows_1255 UTF8 WIN1255

utf8_to_windows_1256 UTF8 WIN1256

utf8_to_windows_1257 UTF8 WIN1257

utf8_to_windows_866 UTF8 WIN866

utf8_to_windows_874 UTF8 WIN874

windows_1250_to_iso_8859_2WIN1250 LATIN2

windows_1250_to_mic WIN1250 MULE_INTERNAL

windows_1250_to_utf8 WIN1250 UTF8

windows_1251_to_iso_8859_5WIN1251 ISO_8859_5

windows_1251_to_koi8_r WIN1251 KOI8R

windows_1251_to_mic WIN1251 MULE_INTERNAL

windows_1251_to_utf8 WIN1251 UTF8

windows_1251_to_windows_866WIN1251 WIN866

windows_1252_to_utf8 WIN1252 UTF8

windows_1256_to_utf8 WIN1256 UTF8

windows_866_to_iso_8859_5 WIN866 ISO_8859_5

windows_866_to_koi8_r WIN866 KOI8R

windows_866_to_mic WIN866 MULE_INTERNAL

windows_866_to_utf8 WIN866 UTF8

windows_866_to_windows_1251WIN866 WIN

windows_874_to_utf8 WIN874 UTF8

euc_jis_2004_to_utf8 EUC_JIS_2004 UTF8

utf8_to_euc_jis_2004 UTF8 EUC_JIS_2004

shift_jis_2004_to_utf8 SHIFT_JIS_2004 UTF8

utf8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004

euc_jis_2004_to_shift_jis_2004EUC_JIS_2004 SHIFT_JIS_2004

shift_jis_2004_to_euc_jis_2004SHIFT_JIS_2004 EUC_JIS_2004

190

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
Notes:
a. The conversion names follow a standard naming scheme: The official name of the source encoding
with all non-alphanumeric characters replaced by underscores, followed by _to_, followed by the
similarly processed destination encoding name. Therefore, the names might deviate from the customary
encoding names.

9.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments. De-
tails are in Table 9-8. PostgreSQL also provides versions of these functions that use the regular function
invocation syntax (see Table 9-9).

Note: The sample results shown on this page assume that the server parameter bytea_output is set
to escape (the traditional PostgreSQL format).

Table 9-8. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string ||

string

bytea String
concatenation

E’\\\\Post’::bytea

||

E’\\047gres\\000’::bytea

\\Post’gres\000

octet_length(string)

int Number of bytes in
binary string

octet_length(E’jo\\000se’::bytea)5

overlay(string

placing string

from int [for

int])

bytea Replace substring overlay(E’Th\\000omas’::bytea

placing

E’\\002\\003’::bytea

from 2 for 3)

T\\002\\003mas

position(substring

in string)

int Location of
specified substring

position(E’\\000om’::bytea

in

E’Th\\000omas’::bytea)

3

substring(string

[from int] [for

int])

bytea Extract substring substring(E’Th\\000omas’::bytea

from 2 for 3)

h\000o

191

Chapter 9. Functions and Operators

Function Return Type Description Example Result
trim([both]

bytes from

string)

bytea Remove the
longest string
containing only the
bytes in bytes

from the start and
end of string

trim(E’\\000’::bytea

from

E’\\000Tom\\000’::bytea)

Tom

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

Function Return Type Description Example Result
btrim(string

bytea, bytes

bytea)

bytea Remove the
longest string
consisting only of
bytes in bytes

from the start and
end of string

btrim(E’\\000trim\\000’::bytea,

E’\\000’::bytea)

trim

decode(string

text, format

text)

bytea Decode binary
data from textual
representation in
string. Options
for format are
same as in
encode.

decode(E’123\\000456’,

’escape’)

123\000456

encode(data

bytea, format

text)

text Encode binary
data into a textual
representation.
Supported formats
are: base64, hex,
escape. escape
converts zero bytes
and high-bit-set
bytes to octal
sequences (\nnn)
and doubles
backslashes.

encode(E’123\\000456’::bytea,

’escape’)

123\000456

get_bit(string,

offset)

int Extract bit from
string

get_bit(E’Th\\000omas’::bytea,

45)

1

get_byte(string,

offset)

int Extract byte from
string

get_byte(E’Th\\000omas’::bytea,

4)

109

length(string) int Length of binary
string

length(E’jo\\000se’::bytea)5

192

Chapter 9. Functions and Operators

Function Return Type Description Example Result
md5(string) text Calculates the

MD5 hash of
string, returning
the result in
hexadecimal

md5(E’Th\\000omas’::bytea)8ab2d3c9689aaf18

b4958c334c82d8b1

set_bit(string,

offset, newvalue)

bytea Set bit in string set_bit(E’Th\\000omas’::bytea,

45, 0)

Th\000omAs

set_byte(string,

offset, newvalue)

bytea Set byte in string set_byte(E’Th\\000omas’::bytea,

4, 64)

Th\000o@as

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit

number bits from the right within each byte; for example bit 0 is the least significant bit of the first byte,
and bit 15 is the most significant bit of the second byte.

See also the aggregate function string_agg in Section 9.20.

9.6. Bit String Functions and Operators
This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. Aside from the usual comparison operators, the operators shown in
Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved, as shown in the examples.

Table 9-10. Bit String Operators

Operator Description Example Result
|| concatenation B’10001’ || B’011’ 10001011

& bitwise AND B’10001’ &

B’01101’

00001

| bitwise OR B’10001’ |

B’01101’

11101

bitwise XOR B’10001’

B’01101’

11100

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001’ << 3 01000

>> bitwise shift right B’10001’ >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When working

193

Chapter 9. Functions and Operators

with a bit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::bit(10) 0000101100
44::bit(3) 100
cast(-44 as bit(12)) 111111010100
’1110’::bit(4)::integer 14

Note that casting to just “bit” means casting to bit(1), and so will deliver only the least significant bit
of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit(n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width wider
than the integer itself will sign-extend on the left.

9.7. Pattern Matching
There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

9.7.1. LIKE
string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT

LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT

(string LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string itself;
in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any
single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

’abc’ LIKE ’abc’ true
’abc’ LIKE ’a%’ true
’abc’ LIKE ’_b_’ true
’abc’ LIKE ’c’ false

194

Chapter 9. Functions and Operators

LIKE pattern matching always covers the entire string. Therefore, if it’s desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but a
different one can be selected by using the ESCAPE clause. To match the escape character itself, write two
escape characters.

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~*
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-
specific.

9.7.2. SIMILAR TO Regular Expressions
string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a regular
expression. SQL regular expressions are a curious cross between LIKE notation and common regular
expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is un-
like common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and .* in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

• | denotes alternation (either of two alternatives).

• * denotes repetition of the previous item zero or more times.

• + denotes repetition of the previous item one or more times.

• ? denotes repetition of the previous item zero or one time.

• {m} denotes repetition of the previous item exactly m times.

195

Chapter 9. Functions and Operators

• {m,} denotes repetition of the previous item m or more times.

• {m,n} denotes repetition of the previous item at least m and not more than n times.

• Parentheses () can be used to group items into a single logical item.

• A bracket expression [...] specifies a character class, just as in POSIX regular expressions.

Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

’abc’ SIMILAR TO ’abc’ true
’abc’ SIMILAR TO ’a’ false
’abc’ SIMILAR TO ’%(b|d)%’ true
’abc’ SIMILAR TO ’(b|c)%’ false

The substring function with three parameters, substring(string from pattern for

escape-character), provides extraction of a substring that matches an SQL regular expression pattern.
As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails
and returns null. To indicate the part of the pattern that should be returned on success, the pattern must
contain two occurrences of the escape character followed by a double quote ("). The text matching the
portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring(’foobar’ from ’%#"o_b#"%’ for ’#’) oob
substring(’foobar’ from ’#"o_b#"%’ for ’#’) NULL

9.7.3. POSIX Regular Expressions
Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, case

sensitive
’thomas’ ~ ’.*thomas.*’

~* Matches regular expression, case
insensitive

’thomas’ ~* ’.*Thomas.*’

!~ Does not match regular
expression, case sensitive

’thomas’ !~ ’.*Thomas.*’

!~* Does not match regular
expression, case insensitive

’thomas’ !~* ’.*vadim.*’

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and

196

Chapter 9. Functions and Operators

SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are special
characters in the regular expression language — but regular expressions use different special characters
than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

’abc’ ~ ’abc’ true
’abc’ ~ ’^a’ true
’abc’ ~ ’(b|d)’ true
’abc’ ~ ’^(b|c)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides extrac-
tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthe-
sis comes first) is returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. If you need parentheses in the pattern before the
subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring(’foobar’ from ’o.b’) oob
substring(’foobar’ from ’o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags
]). The source string is returned unchanged if there is no match to the pattern. If there is a match,
the source string is returned with the replacement string substituted for the matching substring. The
replacement string can contain \n, where n is 1 through 9, to indicate that the source substring matching
the n’th parenthesized subexpression of the pattern should be inserted, and it can contain \& to indicate
that the substring matching the entire pattern should be inserted. Write \\ if you need to put a literal
backslash in the replacement text. The flags parameter is an optional text string containing zero or more
single-letter flags that change the function’s behavior. Flag i specifies case-insensitive matching, while
flag g specifies replacement of each matching substring rather than only the first one. Other supported
flags are described in Table 9-19.

Some examples:

regexp_replace(’foobarbaz’, ’b..’, ’X’)
fooXbaz

regexp_replace(’foobarbaz’, ’b..’, ’X’, ’g’)
fooXX

197

Chapter 9. Functions and Operators

regexp_replace(’foobarbaz’, ’b(..)’, E’X\\1Y’, ’g’)
fooXarYXazY

The regexp_matches function returns a text array of all of the captured substrings resulting from match-
ing a POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern [, flags
]). The function can return no rows, one row, or multiple rows (see the g flag below). If the pattern does
not match, the function returns no rows. If the pattern contains no parenthesized subexpressions, then
each row returned is a single-element text array containing the substring matching the whole pattern. If
the pattern contains parenthesized subexpressions, the function returns a text array whose n’th element is
the substring matching the n’th parenthesized subexpression of the pattern (not counting “non-capturing”
parentheses; see below for details). The flags parameter is an optional text string containing zero or more
single-letter flags that change the function’s behavior. Flag g causes the function to find each match in the
string, not only the first one, and return a row for each such match. Other supported flags are described in
Table 9-19.

Some examples:

SELECT regexp_matches(’foobarbequebaz’, ’(bar)(beque)’);
regexp_matches

{bar,beque}

(1 row)

SELECT regexp_matches(’foobarbequebazilbarfbonk’, ’(b[^b]+)(b[^b]+)’, ’g’);
regexp_matches

{bar,beque}
{bazil,barf}

(2 rows)

SELECT regexp_matches(’foobarbequebaz’, ’barbeque’);
regexp_matches

{barbeque}

(1 row)

It is possible to force regexp_matches() to always return one row by using a sub-select; this is partic-
ularly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT col1, (SELECT regexp_matches(col2, ’(bar)(beque)’)) FROM tab;

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is no
match to the pattern, the function returns the string. If there is at least one match, for each match
it returns the text from the end of the last match (or the beginning of the string) to the beginning of the
match. When there are no more matches, it returns the text from the end of the last match to the end of

198

Chapter 9. Functions and Operators

the string. The flags parameter is an optional text string containing zero or more single-letter flags that
change the function’s behavior. regexp_split_to_table supports the flags described in Table 9-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumped over the lazy dog’, E’\\s+’) AS foo;
foo

the
quick
brown
fox
jumped
over
the
lazy
dog

(9 rows)

SELECT regexp_split_to_array(’the quick brown fox jumped over the lazy dog’, E’\\s+’);
regexp_split_to_array

--
{the,quick,brown,fox,jumped,over,the,lazy,dog}

(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, E’\\s*’) AS foo;
foo

t
h
e
q
u
i
c
k
b
r
o
w
n
f
o
x

(16 rows)

199

Chapter 9. Functions and Operators

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition of
regexp matching that is implemented by regexp_matches, but is usually the most convenient behavior
in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset of
EREs, but BREs have several notational incompatibilities (as well as being much more limited). We first
describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how BREs
differ.

Note: PostgreSQL always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches
one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are shown in
Table 9-13.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can
be used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints
are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description
(re) (where re is any regular expression) matches a

match for re, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

200

Chapter 9. Functions and Operators

Atom Description
. matches any single character

[chars] a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

\c where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see
below)

x where x is a single character with no other
significance, matches that character

An RE cannot end with a backslash (\).

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom

{m,} a sequence of m or more matches of the atom

{m,n} a sequence of m through n (inclusive) matches of
the atom; m cannot exceed n

*? non-greedy version of *
+? non-greedy version of +

?? non-greedy version of ?

{m}? non-greedy version of {m}

{m,}? non-greedy version of {m,}

{m,n}? non-greedy version of {m,n}

The forms using {...} are known as bounds. The numbers m and n within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding nor-

201

Chapter 9. Functions and Operators

mal (greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See
Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., ** is invalid. A quantifier cannot
begin an expression or subexpression or follow ^ or |.

Table 9-14. Regular Expression Constraints

Constraint Description
^ matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a
substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from
the list (but see below). If the list begins with ^, it matches any single character not from the rest of the list.
If two characters in the list are separated by -, this is shorthand for the full range of characters between
those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It is
illegal for two ranges to share an endpoint, e.g., a-c-e. Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ^, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of a range, enclose it in [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression’s list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]*c matches the first five characters of chchcc.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

202

Chapter 9. Functions and Operators

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .].)
For example, if o and ^ are the members of an equivalence class, then [[=o=]], [[=^=]], and [o^] are
all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of
all characters belonging to that class. Standard character class names are: alnum, alpha, blank, cntrl,
digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character classes
defined in ctype. A locale can provide others. A character class cannot be used as an endpoint of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as
a sequence of word characters that is neither preceded nor followed by word characters. A word character
is an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable; they are no more standard,
but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed
by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs, there are no
escapes: outside a bracket expression, a \ followed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket expression, \ is an ordinary character. (The latter
is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an
escape. They are shown in Table 9-17.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc])\1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern as
an SQL string constant. For example:

’123’ ~ E’^\\d{3}’ true

203

Chapter 9. Functions and Operators

Table 9-15. Regular Expression Character-entry Escapes

Escape Description
\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of X, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)
the UTF16 (Unicode, 16-bit) character U+wxyz in
the local byte ordering

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a hypothetical Unicode
extension to 32 bits

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
0xhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not a
back reference) the character whose octal value is
0xy

\xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value
is 0xyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,
but \135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-shorthand Escapes

Escape Description
\d [[:digit:]]

204

Chapter 9. Functions and Operators

Escape Description
\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)

\D [^[:digit:]]

\S [^[:space:]]

\W [^[:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \S, and \W are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent to
[a-c^[:digit:]], is illegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description
\A matches only at the beginning of the string (see

Section 9.7.3.5 for how this differs from ^)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning or
end of a word

\Z matches only at the end of the string (see Section
9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description
\m (where m is a nonzero digit) a back reference to

the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some more
digits, and the decimal value mnn is not greater
than the number of closing capturing parentheses
seen so far) a back reference to the mnn’th
subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates an
octal escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a suitable
subexpression (i.e., the number is in the legal range for a back reference), and otherwise is taken as
octal.

205

Chapter 9. Functions and Operators

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***:, the rest of the RE
is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be AREs; but it
does have an effect if ERE or BRE mode had been specified by the flags parameter to a regex function.)
If an RE begins with ***=, the rest of the RE is taken to be a literal string, with all characters considered
ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options — in particular, they can override the case-sensitivity behavior implied by a regex operator, or the
flags parameter to a regex function. The available option letters are shown in Table 9-19. Note that these
same option letters are used in the flags parameters of regex functions.

Table 9-19. ARE Embedded-option Letters

Option Description
b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an
ARE (after the ***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

• a white-space character or # preceded by \ is retained

• white space or # within a bracket expression is retained

206

Chapter 9. Functions and Operators

• white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not con-
taining a)) is a comment, completely ignored. Again, this is not allowed between the characters of multi-
character symbols, like (?:. Such comments are more a historical artifact than a useful facility, and their
use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial ***= director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, either
the longest possible match or the shortest possible match will be taken, depending on whether the RE is
greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

• Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

• Adding parentheses around an RE does not change its greediness.

• A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly
none) as the atom itself.

• A quantified atom with other normal quantifiers (including {m,n} with m equal to n) is greedy (prefers
longest match).

• A quantified atom with a non-greedy quantifier (including {m,n}? with m equal to n) is non-greedy
(prefers shortest match).

• A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

• An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done in
such a way that the branch, or whole RE, matches the longest or shortest possible substring as a whole.
Once the length of the entire match is determined, the part of it that matches any particular subexpression
is determined on the basis of the greediness attribute of that subexpression, with subexpressions starting
earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING(’XY1234Z’, ’Y*([0-9]{1,3})’);
Result: 123

SELECT SUBSTRING(’XY1234Z’, ’Y*?([0-9]{1,3})’);
Result: 1

207

Chapter 9. Functions and Operators

In the first case, the RE as a whole is greedy because Y* is greedy. It can match beginning at the Y, and it
matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that,
or 123. In the second case, the RE as a whole is non-greedy because Y*? is non-greedy. It can match
beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9]{1,3} is greedy but it cannot change the decision as to the overall match length; so it is forced to
match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE. The
attributes assigned to the subexpressions only affect how much of that match they are allowed to “eat”
relative to each other.

The quantifiers {1,1} and {1,1}? can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bb* matches the three middle characters of abbbc;
(week|wee)(night|knights) matches all ten characters of weeknights; when (.*).* is matched
against abc the parenthesized subexpression matches all three characters; and when (a*)* is matched
against bc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a
bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g., x
becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.g., [x] becomes [xX] and [^x] becomes [^xX].

If newline-sensitive matching is specified, . and bracket expressions using ^ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ^and $ will
match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapes \A and \Z continue to match beginning or end of string
only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ^ and $.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the
POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a
few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special treatment
for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-

208

Chapter 9. Functions and Operators

sensitive matching, the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

• In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

• In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \\.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no
equivalent for their functionality. The delimiters for bounds are \{ and \}, with { and } by themselves
ordinary characters. The parentheses for nested subexpressions are \(and \), with (and) by themselves
ordinary characters. ^ is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpression, $ is an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and * is an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leading ^). Finally, single-digit back
references are available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively; no other
escapes are available in BREs.

9.8. Data Type Formatting Functions
The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data types. Table 9-20 lists them. These functions all follow a common calling convention: the
first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

A single-argument to_timestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time

zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-20. Formatting Functions

Function Return Type Description Example
to_char(timestamp,

text)

text convert time stamp to
string

to_char(current_timestamp,

’HH12:MI:SS’)

209

Chapter 9. Functions and Operators

Function Return Type Description Example
to_char(interval,

text)

text convert interval to string to_char(interval

’15h 2m 12s’,

’HH24:MI:SS’)

to_char(int, text) text convert integer to string to_char(125,

’999’)

to_char(double

precision, text)

text convert real/double
precision to string

to_char(125.8::real,

’999D9’)

to_char(numeric,

text)

text convert numeric to
string

to_char(-125.8,

’999D99S’)

to_date(text, text) date convert string to date to_date(’05 Dec 2000’,

’DD Mon YYYY’)

to_number(text,

text)

numeric convert string to
numeric

to_number(’12,454.8-’,

’99G999D9S’)

to_timestamp(text,

text)

timestamp with

time zone

convert string to time
stamp

to_timestamp(’05 Dec 2000’,

’DD Mon YYYY’)

to_timestamp(double

precision)

timestamp with

time zone

convert Unix epoch to
time stamp

to_timestamp(1284352323)

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns identify
the values to be supplied by the input data string.

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description
HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

US microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AM, am, PM or pm meridiem indicator (without periods)

A.M., a.m., P.M. or p.m. meridiem indicator (with periods)

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

210

Chapter 9. Functions and Operators

Pattern Description
Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

IY last 2 digits of ISO year

I last digit of ISO year

BC, bc, AD or ad era indicator (without periods)

B.C., b.c., A.D. or a.d. era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lower case month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD ISO day of year (001-371; day 1 of the year is
Monday of the first ISO week.)

DD day of month (01-31)

D day of the week, Sunday(1) to Saturday(7)

ID ISO day of the week, Monday(1) to Sunday(7)

W week of month (1-5) (The first week starts on the
first day of the month.)

211

Chapter 9. Functions and Operators

Pattern Description
WW week number of year (1-53) (The first week starts

on the first day of the year.)

IW ISO week number of year (01 - 53; the first
Thursday of the new year is in week 1.)

CC century (2 digits) (The twenty-first century starts
on 2001-01-01.)

J Julian Day (days since November 24, 4714 BC at
midnight)

Q quarter (ignored by to_date and
to_timestamp)

RM month in upper case Roman numerals (I-XII;
I=January)

rm month in lower case Roman numerals (i-xii;
i=January)

TZ upper case time-zone name

tz lower case time-zone name

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month
pattern with the FM modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress padding

blanks and trailing zeroes)
FMMonth

TH suffix upper case ordinal number suffix DDTH, e.g., 12TH

th suffix lower case ordinal number suffix DDth, e.g., 12th

FX prefix fixed format global option (see
usage notes)

FX Month DD Day

TM prefix translation mode (print localized
day and month names based on
lc_time)

TMMonth

SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

• FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of
a pattern be fixed-width. In PostgreSQL, FM modifies only the next specification, while in Oracle FM

affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

• TM does not include trailing blanks.

• to_timestamp and to_date skip multiple blank spaces in the input string unless the FX

option is used. For example, to_timestamp(’2000 JUN’, ’YYYY MON’) works, but

212

Chapter 9. Functions and Operators

to_timestamp(’2000 JUN’, ’FXYYYY MON’) returns an error because to_timestamp

expects one space only. FX must be specified as the first item in the template.

• Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ’"Hello Year "YYYY’, the YYYY will be replaced by the year data, but the single Y

in Year will not be. In to_date, to_number, and to_timestamp, double-quoted strings skip the
number of input characters contained in the string, e.g. "XX" skips two input characters.

• If you want to have a double quote in the output you must precede it with a backslash, for example
’\"YYYY Month\"’.

• If the year format specification is less than four digits, e.g. YYY, and the supplied year is less than four
digits, the year will be adjusted to be nearest to the year 2020, e.g. 95 becomes 1995.

• The YYYY conversion from string to timestamp or date has a restriction when processing years
with more than 4 digits. You must use some non-digit character or template after YYYY, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date(’200001131’,
’YYYYMMDD’) will be interpreted as a 4-digit year; instead use a non-digit separator after the year, like
to_date(’20000-1131’, ’YYYY-MMDD’) or to_date(’20000Nov31’, ’YYYYMonDD’).

• In conversions from string to timestamp or date, the CC (century) field is ignored if there is a YYY,
YYYY or Y,YYY field. If CC is used with YY or Y then the year is computed as (CC-1)*100+YY.

• An ISO week date (as distinct from a Gregorian date) can be specified to to_timestamp and to_date
in one of two ways:

• Year, week, and weekday: for example to_date(’2006-42-4’, ’IYYY-IW-ID’) returns the date
2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

• Year and day of year: for example to_date(’2006-291’, ’IYYY-IDDD’) also returns
2006-10-19.

Attempting to construct a date using a mixture of ISO week and Gregorian date fields is nonsensical,
and will cause an error. In the context of an ISO year, the concept of a “month” or “day of month”
has no meaning. In the context of a Gregorian year, the ISO week has no meaning. Users should avoid
mixing Gregorian and ISO date specifications.

• In a conversion from string to timestamp, millisecond (MS) or microsecond (US) values are used as
the seconds digits after the decimal point. For example to_timestamp(’12:3’, ’SS:MS’) is not 3
milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means for the format
SS:MS, the input values 12:3, 12:30, and 12:300 specify the same number of milliseconds. To get
three milliseconds, one must use 12:003, which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’15:12:02.020.001230’,

’HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds
= 2.021230 seconds.

• to_char(..., ’ID’)’s day of the week numbering matches the extract(isodow from ...)

function, but to_char(..., ’D’)’s does not match extract(dow from ...)’s day numbering.

• to_char(interval) formats HH and HH12 as shown on a 12-hour clock, i.e. zero hours and 36 hours
output as 12, while HH24 outputs the full hour value, which can exceed 23 for intervals.

Table 9-23 shows the template patterns available for formatting numeric values.

213

Chapter 9. Functions and Operators

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description
9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

TH or th ordinal number suffix

V shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

• A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char(-12,
’MI9999’) produces ’- 12’ but to_char(-12, ’S9999’) produces ’ -12’. The Oracle im-
plementation does not allow the use of MI before 9, but rather requires that 9 precede MI.

• 9 results in a value with the same number of digits as there are 9s. If a digit is not available it outputs a
space.

• TH does not convert values less than zero and does not convert fractional numbers.

• PL, SG, and TH are PostgreSQL extensions.

• V effectively multiplies the input values by 10^n, where n is the number of digits following V. to_char
does not support the use of V combined with a decimal point (e.g., 99.9V99 is not allowed).

• EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns or
modifiers other than digit and decimal point patterns, and must be at the end of the format string (e.g.,
9.99EEEE is a valid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM9999 is the
9999 pattern with the FM modifier. Table 9-24 shows the modifier patterns for numeric formatting.

Table 9-24. Template Pattern Modifiers for Numeric Formatting

214

Chapter 9. Functions and Operators

Modifier Description Example
FM prefix fill mode (suppress padding

blanks and trailing zeroes)
FM9999

TH suffix upper case ordinal number suffix 999TH

th suffix lower case ordinal number suffix 999th

Table 9-25 shows some examples of the use of the to_char function.

Table 9-25. to_char Examples

Expression Result
to_char(current_timestamp,

’Day, DD HH12:MI:SS’)

’Tuesday , 06 05:39:18’

to_char(current_timestamp,

’FMDay, FMDD HH12:MI:SS’)

’Tuesday, 6 05:39:18’

to_char(-0.1, ’99.99’) ’ -.10’

to_char(-0.1, ’FM9.99’) ’-.1’

to_char(0.1, ’0.9’) ’ 0.1’

to_char(12, ’9990999.9’) ’ 0012.0’

to_char(12, ’FM9990999.9’) ’0012.’

to_char(485, ’999’) ’ 485’

to_char(-485, ’999’) ’-485’

to_char(485, ’9 9 9’) ’ 4 8 5’

to_char(1485, ’9,999’) ’ 1,485’

to_char(1485, ’9G999’) ’ 1 485’

to_char(148.5, ’999.999’) ’ 148.500’

to_char(148.5, ’FM999.999’) ’148.5’

to_char(148.5, ’FM999.990’) ’148.500’

to_char(148.5, ’999D999’) ’ 148,500’

to_char(3148.5, ’9G999D999’) ’ 3 148,500’

to_char(-485, ’999S’) ’485-’

to_char(-485, ’999MI’) ’485-’

to_char(485, ’999MI’) ’485 ’

to_char(485, ’FM999MI’) ’485’

to_char(485, ’PL999’) ’+485’

to_char(485, ’SG999’) ’+485’

to_char(-485, ’SG999’) ’-485’

to_char(-485, ’9SG99’) ’4-85’

to_char(-485, ’999PR’) ’<485>’

to_char(485, ’L999’) ’DM 485

to_char(485, ’RN’) ’ CDLXXXV’

215

Chapter 9. Functions and Operators

Expression Result
to_char(485, ’FMRN’) ’CDLXXXV’

to_char(5.2, ’FMRN’) ’V’

to_char(482, ’999th’) ’ 482nd’

to_char(485, ’"Good number:"999’) ’Good number: 485’

to_char(485.8,

’"Pre:"999" Post:" .999’)

’Pre: 485 Post: .800’

to_char(12, ’99V999’) ’ 12000’

to_char(12.4, ’99V999’) ’ 12400’

to_char(12.45, ’99V9’) ’ 125’

to_char(0.0004859, ’9.99EEEE’) ’ 4.86e-04’

9.9. Date/Time Functions and Operators
Table 9-27 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9-26 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information on
date/time data types from Section 8.5.

All the functions and operators described below that take time or timestamp inputs actually come in two
variants: one that takes time with time zone or timestamp with time zone, and one that takes
time without time zone or timestamp without time zone. For brevity, these variants are not
shown separately. Also, the + and * operators come in commutative pairs (for example both date + integer
and integer + date); we show only one of each such pair.

Table 9-26. Date/Time Operators

Operator Example Result
+ date ’2001-09-28’ +

integer ’7’

date ’2001-10-05’

+ date ’2001-09-28’ +

interval ’1 hour’

timestamp ’2001-09-28

01:00:00’

+ date ’2001-09-28’ + time

’03:00’

timestamp ’2001-09-28

03:00:00’

+ interval ’1 day’ +

interval ’1 hour’

interval ’1 day

01:00:00’

+ timestamp ’2001-09-28

01:00’ + interval ’23

hours’

timestamp ’2001-09-29

00:00:00’

+ time ’01:00’ + interval

’3 hours’

time ’04:00:00’

- - interval ’23 hours’ interval ’-23:00:00’

216

Chapter 9. Functions and Operators

Operator Example Result
- date ’2001-10-01’ - date

’2001-09-28’

integer ’3’ (days)

- date ’2001-10-01’ -

integer ’7’

date ’2001-09-24’

- date ’2001-09-28’ -

interval ’1 hour’

timestamp ’2001-09-27

23:00:00’

- time ’05:00’ - time

’03:00’

interval ’02:00:00’

- time ’05:00’ - interval

’2 hours’

time ’03:00:00’

- timestamp ’2001-09-28

23:00’ - interval ’23

hours’

timestamp ’2001-09-28

00:00:00’

- interval ’1 day’ -

interval ’1 hour’

interval ’1 day

-01:00:00’

- timestamp ’2001-09-29

03:00’ - timestamp

’2001-09-27 12:00’

interval ’1 day

15:00:00’

* 900 * interval ’1

second’

interval ’00:15:00’

* 21 * interval ’1 day’ interval ’21 days’

* double precision ’3.5’ *
interval ’1 hour’

interval ’03:30:00’

/ interval ’1 hour’ /

double precision ’1.5’

interval ’00:40:00’

Table 9-27. Date/Time Functions

Function Return Type Description Example Result
age(timestamp,

timestamp)

interval Subtract
arguments,
producing a
“symbolic” result
that uses years and
months

age(timestamp

’2001-04-10’,

timestamp

’1957-06-13’)

43 years 9

mons 27 days

age(timestamp) interval Subtract from
current_date (at
midnight)

age(timestamp

’1957-06-13’)

43 years 8

mons 3 days

clock_timestamp()

timestamp with

time zone

Current date and
time (changes
during statement
execution); see
Section 9.9.4

217

Chapter 9. Functions and Operators

Function Return Type Description Example Result
current_date date Current date; see

Section 9.9.4

current_time time with time

zone

Current time of
day; see Section
9.9.4

current_timestamp

timestamp with

time zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

date_part(text,

timestamp)

double

precision

Get subfield
(equivalent to
extract); see
Section 9.9.1

date_part(’hour’,

timestamp

’2001-02-16

20:38:40’)

20

date_part(text,

interval)

double

precision

Get subfield
(equivalent to
extract); see
Section 9.9.1

date_part(’month’,

interval ’2

years 3

months’)

3

date_trunc(text,

timestamp)

timestamp Truncate to
specified precision;
see also Section
9.9.2

date_trunc(’hour’,

timestamp

’2001-02-16

20:38:40’)

2001-02-16

20:00:00

extract(field

from timestamp)

double

precision

Get subfield; see
Section 9.9.1

extract(hour

from timestamp

’2001-02-16

20:38:40’)

20

extract(field

from interval)

double

precision

Get subfield; see
Section 9.9.1

extract(month

from interval

’2 years 3

months’)

3

isfinite(date) boolean Test for finite date
(not +/-infinity)

isfinite(date

’2001-02-16’)

true

isfinite(timestamp)boolean Test for finite time
stamp (not
+/-infinity)

isfinite(timestamp

’2001-02-16

21:28:30’)

true

isfinite(interval)boolean Test for finite
interval

isfinite(interval

’4 hours’)

true

justify_days(interval)

interval Adjust interval so
30-day time
periods are
represented as
months

justify_days(interval

’35 days’)

1 mon 5 days

218

Chapter 9. Functions and Operators

Function Return Type Description Example Result

justify_hours(interval)

interval Adjust interval so
24-hour time
periods are
represented as days

justify_hours(interval

’27 hours’)

1 day 03:00:00

justify_interval(interval)

interval Adjust interval
using
justify_days

and
justify_hours,
with additional
sign adjustments

justify_interval(interval

’1 mon -1

hour’)

29 days

23:00:00

localtime time Current time of
day; see Section
9.9.4

localtimestamp timestamp Current date and
time (start of
current
transaction); see
Section 9.9.4

now() timestamp with

time zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

statement_timestamp()

timestamp with

time zone

Current date and
time (start of
current statement);
see Section 9.9.4

timeofday() text Current date and
time (like
clock_timestamp,
but as a text
string); see Section
9.9.4

transaction_timestamp()

timestamp with

time zone

Current date and
time (start of
current
transaction); see
Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

219

Chapter 9. Functions and Operators

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval. When a pair of values is provided, either the start or the end can be
written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time period is
considered to represent the half-open interval start <= time < end, unless start and end are equal in
which case it represents that single time instant. This means for instance that two time periods with only
an endpoint in common do not overlap.

SELECT (DATE ’2001-02-16’, DATE ’2001-12-21’) OVERLAPS
(DATE ’2001-10-30’, DATE ’2002-10-30’);

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS
(DATE ’2001-10-30’, DATE ’2002-10-30’);

Result: false

SELECT (DATE ’2001-10-29’, DATE ’2001-10-30’) OVERLAPS
(DATE ’2001-10-30’, DATE ’2001-10-31’);

Result: false

SELECT (DATE ’2001-10-30’, DATE ’2001-10-30’) OVERLAPS
(DATE ’2001-10-30’, DATE ’2001-10-31’);

Result: true

When adding an interval value to (or subtracting an interval value from) a timestamp with

time zone value, the days component advances (or decrements) the date of the timestamp with

time zone by the indicated number of days. Across daylight saving time changes (with the session time
zone set to a time zone that recognizes DST), this means interval ’1 day’ does not necessarily
equal interval ’24 hours’. For example, with the session time zone set to CST7CDT, timestamp
with time zone ’2005-04-02 12:00-07’ + interval ’1 day’ will produce timestamp

with time zone ’2005-04-03 12:00-06’, while adding interval ’24 hours’ to the same
initial timestamp with time zone produces timestamp with time zone ’2005-04-03

13:00-06’, as there is a change in daylight saving time at 2005-04-03 02:00 in time zone CST7CDT.

Note there can be ambiguity in the months returned by age because different months have a different
number of days. PostgreSQL’s approach uses the month from the earlier of the two dates when calculating
partial months. For example, age(’2004-06-01’, ’2004-04-30’) uses April to yield 1 mon 1 day,
while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

9.9.1. EXTRACT, date_part
EXTRACT(field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must
be a value expression of type timestamp, time, or interval. (Expressions of type date are cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field to
extract from the source value. The extract function returns values of type double precision. The
following are valid field names:

century

The century

220

Chapter 9. Functions and Operators

SELECT EXTRACT(CENTURY FROM TIMESTAMP ’2000-12-16 12:21:13’);
Result: 20

SELECT EXTRACT(CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from
-1 century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral
Saint-Peter of Roma, Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day

For timestamp values, the day (of the month) field (1 - 31) ; for interval values, the number of
days

SELECT EXTRACT(DAY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

SELECT EXTRACT(DAY FROM INTERVAL ’40 days 1 minute’);
Result: 40

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 200

dow

The day of the week as Sunday(0) to Saturday(6)

SELECT EXTRACT(DOW FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 5

Note that extract’s day of the week numbering differs from that of the to_char(..., ’D’)

function.

doy

The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 47

epoch

For timestamp with time zone values, the number of seconds since 1970-01-01 00:00:00
UTC (can be negative); for date and timestamp values, the number of seconds since 1970-01-01
00:00:00 local time; for interval values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40.12-08’);
Result: 982384720.12

SELECT EXTRACT(EPOCH FROM INTERVAL ’5 days 3 hours’);
Result: 442800

Here is how you can convert an epoch value back to a time stamp:

221

Chapter 9. Functions and Operators

SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720.12 * INTERVAL ’1 second’;

(The to_timestamp function encapsulates the above conversion.)

hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

isodow

The day of the week as Monday(1) to Sunday(7)

SELECT EXTRACT(ISODOW FROM TIMESTAMP ’2001-02-18 20:38:40’);
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.

isoyear

The ISO 8601 year that the date falls in (not applicable to intervals)

SELECT EXTRACT(ISOYEAR FROM DATE ’2006-01-01’);
Result: 2005

SELECT EXTRACT(ISOYEAR FROM DATE ’2006-01-02’);
Result: 2006

Each ISO year begins with the Monday of the week containing the 4th of January, so in early January
or late December the ISO year may be different from the Gregorian year. See the week field for more
information.

This field is not available in PostgreSQL releases prior to 8.3.

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT(MICROSECONDS FROM TIME ’17:12:28.5’);
Result: 28500000

millennium

The millennium

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME ’17:12:28.5’);
Result: 28500

222

Chapter 9. Functions and Operators

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 38

month

For timestamp values, the number of the month within the year (1 - 12) ; for interval values, the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

quarter

The quarter of the year (1 - 4) that the date is in

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 1

second

The seconds field, including fractional parts (0 - 591)

SELECT EXTRACT(SECOND FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 40

SELECT EXTRACT(SECOND FROM TIME ’17:12:28.5’);
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC. (Technically, PostgreSQL uses UT1 because leap
seconds are not handled.)

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

week

The number of the week of the year that the day is in. By definition (ISO 8601), weeks start on
Mondays and the first week of a year contains January 4 of that year. In other words, the first Thursday
of a year is in week 1 of that year.

In the ISO definition, it is possible for early-January dates to be part of the 52nd or 53rd week of the
previous year, and for late-December dates to be part of the first week of the next year. For example,

60 if leap seconds are implemented by the operating system

223

Chapter 9. Functions and Operators

2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of the 52nd week of year
2005, while 2012-12-31 is part of the first week of 2013. It’s recommended to use the isoyear

field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time val-
ues for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part(’field’, source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part(’day’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

SELECT date_part(’hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc
The function date_trunc is conceptually similar to the trunc function for numbers.

date_trunc(’field’, source)

source is a value expression of type timestamp or interval. (Values of type date and time are cast
automatically to timestamp or interval, respectively.) field selects to which precision to truncate the
input value. The return value is of type timestamp or interval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds

milliseconds

second

minute

hour

day

224

Chapter 9. Functions and Operators

week

month

quarter

year

decade

century

millennium

Examples:

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-28
shows its variants.

Table 9-28. AT TIME ZONE Variants

Expression Return Type Description
timestamp without time zone

AT TIME ZONE zone

timestamp with time zone Treat given time stamp without
time zone as located in the
specified time zone

timestamp with time zone

AT TIME ZONE zone

timestamp without time

zone

Convert given time stamp with
time zone to the new time zone,
with no time zone designation

time with time zone AT

TIME ZONE zone

time with time zone Convert given time with time
zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., ’PST’) or
as an interval (e.g., INTERVAL ’-08:00’). In the text case, a time zone name can be specified in any of
the ways described in Section 8.5.3.

Examples (assuming the local time zone is PST8PDT):

SELECT TIMESTAMP ’2001-02-16 20:38:40’ AT TIME ZONE ’MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05’ AT TIME ZONE ’MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which

225

Chapter 9. Functions and Operators

is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in EST
(UTC-5) and converts it to local time in MST (UTC-7).

The function timezone(zone, timestamp) is equivalent to the SQL-conforming construct timestamp
AT TIME ZONE zone.

9.9.4. Current Date/Time
PostgreSQL provides a number of functions that return values related to the current date and time. These
SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a pre-
cision parameter, which causes the result to be rounded to that many fractional digits in the seconds field.
Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same time
stamp.

226

Chapter 9. Functions and Operators

Note: Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual
current time at the instant the function is called. The complete list of non-SQL-standard time functions is:

transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
now()

transaction_timestamp() is equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect
what it returns. statement_timestamp() returns the start time of the current statement (more specif-
ically, the time of receipt of the latest command message from the client). statement_timestamp()
and transaction_timestamp() return the same value during the first command of a transaction,
but might differ during subsequent commands. clock_timestamp() returns the actual current time,
and therefore its value changes even within a single SQL command. timeofday() is a historical Post-
greSQL function. Like clock_timestamp(), it returns the actual current time, but as a formatted text

string rather than a timestamp with time zone value. now() is a traditional PostgreSQL equivalent
to transaction_timestamp().

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’now’; -- incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a DEFAULT clause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution
The following function is available to delay execution of the server process:

pg_sleep(seconds)

pg_sleep makes the current session’s process sleep until seconds seconds have elapsed. seconds is a
value of type double precision, so fractional-second delays can be specified. For example:

SELECT pg_sleep(1.5);

227

Chapter 9. Functions and Operators

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It might be longer depending on factors
such as server load.

Warning
Make sure that your session does not hold more locks than necessary when calling
pg_sleep. Otherwise other sessions might have to wait for your sleeping process,
slowing down the entire system.

9.10. Enum Support Functions
For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9-29. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM (’red’, ’orange’, ’yellow’, ’green’, ’blue’, ’purple’);

Table 9-29. Enum Support Functions

Function Description Example Example Result

enum_first(anyenum)

Returns the first value of
the input enum type

enum_first(null::rainbow)red

enum_last(anyenum)

Returns the last value of
the input enum type

enum_last(null::rainbow)purple

enum_range(anyenum)

Returns all values of the
input enum type in an
ordered array

enum_range(null::rainbow){red,orange,yellow,green,blue,purple}

enum_range(anyenum,

anyenum)

Returns the range
between the two given
enum values, as an
ordered array. The
values must be from the
same enum type. If the
first parameter is null,
the result will start with
the first value of the
enum type. If the second
parameter is null, the
result will end with the
last value of the enum
type.

enum_range(’orange’::rainbow,

’green’::rainbow)

{orange,yellow,green}

228

Chapter 9. Functions and Operators

Function Description Example Example Result
enum_range(NULL,

’green’::rainbow)

{red,orange,yellow,green}

enum_range(’orange’::rainbow,

NULL)

{orange,yellow,green,blue,purple}

Notice that except for the two-argument form of enum_range, these functions disregard the specific value
passed to them; they care only about its declared data type. Either null or a specific value of the type can
be passed, with the same result. It is more common to apply these functions to a table column or function
argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators
The geometric types point, box, lseg, line, path, polygon, and circle have a large set of native
support functions and operators, shown in Table 9-30, Table 9-31, and Table 9-32.

Caution
Note that the “same as” operator, ~=, represents the usual notion of equality for the
point, box, polygon, and circle types. Some of these types also have an = op-
erator, but = compares for equal areas only. The other scalar comparison operators
(<= and so on) likewise compare areas for these types.

Table 9-30. Geometric Operators

Operator Description Example
+ Translation box ’((0,0),(1,1))’ +

point ’(2.0,0)’

- Translation box ’((0,0),(1,1))’ -

point ’(2.0,0)’

* Scaling/rotation box ’((0,0),(1,1))’ *
point ’(2.0,0)’

/ Scaling/rotation box ’((0,0),(2,2))’ /

point ’(2.0,0)’

Point or box of intersection ’((1,-1),(-1,1))’

’((1,1),(-1,-1))’

Number of points in path or
polygon

’((1,0),(0,1),(-1,0))’

229

Chapter 9. Functions and Operators

Operator Description Example
@-@ Length or circumference @-@ path ’((0,0),(1,0))’

@@ Center @@ circle ’((0,0),10)’

Closest point to first operand on
second operand

point ’(0,0)’ ## lseg

’((2,0),(0,2))’

<-> Distance between circle ’((0,0),1)’ <->

circle ’((5,0),1)’

&& Overlaps? (One point in common
makes this true.)

box ’((0,0),(1,1))’ &&

box ’((0,0),(2,2))’

<< Is strictly left of? circle ’((0,0),1)’ <<

circle ’((5,0),1)’

>> Is strictly right of? circle ’((5,0),1)’ >>

circle ’((0,0),1)’

&< Does not extend to the right of? box ’((0,0),(1,1))’ &<

box ’((0,0),(2,2))’

&> Does not extend to the left of? box ’((0,0),(3,3))’ &>

box ’((0,0),(2,2))’

<<| Is strictly below? box ’((0,0),(3,3))’ <<|

box ’((3,4),(5,5))’

|>> Is strictly above? box ’((3,4),(5,5))’ |>>

box ’((0,0),(3,3))’

&<| Does not extend above? box ’((0,0),(1,1))’ &<|

box ’((0,0),(2,2))’

|&> Does not extend below? box ’((0,0),(3,3))’ |&>

box ’((0,0),(2,2))’

<^ Is below (allows touching)? circle ’((0,0),1)’ <^

circle ’((0,5),1)’

>^ Is above (allows touching)? circle ’((0,5),1)’ >^

circle ’((0,0),1)’

?# Intersects? lseg ’((-1,0),(1,0))’ ?#

box ’((-2,-2),(2,2))’

?- Is horizontal? ?- lseg ’((-1,0),(1,0))’

?- Are horizontally aligned? point ’(1,0)’ ?- point

’(0,0)’

?| Is vertical? ?| lseg ’((-1,0),(1,0))’

?| Are vertically aligned? point ’(0,1)’ ?| point

’(0,0)’

?-| Is perpendicular? lseg ’((0,0),(0,1))’ ?-|

lseg ’((0,0),(1,0))’

?|| Are parallel? lseg ’((-1,0),(1,0))’

?|| lseg

’((-1,2),(1,2))’

230

Chapter 9. Functions and Operators

Operator Description Example
@> Contains? circle ’((0,0),2)’ @>

point ’(1,1)’

<@ Contained in or on? point ’(1,1)’ <@ circle

’((0,0),2)’

~= Same as? polygon ’((0,0),(1,1))’

~= polygon

’((1,1),(0,0))’

Note: Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called ~ and
@. These names are still available, but are deprecated and will eventually be removed.

Table 9-31. Geometric Functions

Function Return Type Description Example
area(object) double precision area area(box

’((0,0),(1,1))’)

center(object) point center center(box

’((0,0),(1,2))’)

diameter(circle) double precision diameter of circle diameter(circle

’((0,0),2.0)’)

height(box) double precision vertical size of box height(box

’((0,0),(1,1))’)

isclosed(path) boolean a closed path? isclosed(path

’((0,0),(1,1),(2,0))’)

isopen(path) boolean an open path? isopen(path

’[(0,0),(1,1),(2,0)]’)

length(object) double precision length length(path

’((-1,0),(1,0))’)

npoints(path) int number of points npoints(path

’[(0,0),(1,1),(2,0)]’)

npoints(polygon) int number of points npoints(polygon

’((1,1),(0,0))’)

pclose(path) path convert path to closed pclose(path

’[(0,0),(1,1),(2,0)]’)

popen(path) path convert path to open popen(path

’((0,0),(1,1),(2,0))’)

231

Chapter 9. Functions and Operators

Function Return Type Description Example
radius(circle) double precision radius of circle radius(circle

’((0,0),2.0)’)

width(box) double precision horizontal size of box width(box

’((0,0),(1,1))’)

Table 9-32. Geometric Type Conversion Functions

Function Return Type Description Example
box(circle) box circle to box box(circle

’((0,0),2.0)’)

box(point, point) box points to box box(point ’(0,0)’,

point ’(1,1)’)

box(polygon) box polygon to box box(polygon

’((0,0),(1,1),(2,0))’)

circle(box) circle box to circle circle(box

’((0,0),(1,1))’)

circle(point, double

precision)

circle center and radius to
circle

circle(point

’(0,0)’, 2.0)

circle(polygon) circle polygon to circle circle(polygon

’((0,0),(1,1),(2,0))’)

lseg(box) lseg box diagonal to line
segment

lseg(box

’((-1,0),(1,0))’)

lseg(point, point) lseg points to line segment lseg(point

’(-1,0)’, point

’(1,0)’)

path(polygon) path polygon to path path(polygon

’((0,0),(1,1),(2,0))’)

point(double

precision, double

precision)

point construct point point(23.4, -44.5)

point(box) point center of box point(box

’((-1,0),(1,0))’)

point(circle) point center of circle point(circle

’((0,0),2.0)’)

point(lseg) point center of line segment point(lseg

’((-1,0),(1,0))’)

point(polygon) point center of polygon point(polygon

’((0,0),(1,1),(2,0))’)

232

Chapter 9. Functions and Operators

Function Return Type Description Example
polygon(box) polygon box to 4-point polygon polygon(box

’((0,0),(1,1))’)

polygon(circle) polygon circle to 12-point
polygon

polygon(circle

’((0,0),2.0)’)

polygon(npts, circle) polygon circle to npts-point
polygon

polygon(12, circle

’((0,0),2.0)’)

polygon(path) polygon path to polygon polygon(path

’((0,0),(1,1),(2,0))’)

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of type
box or lseg can be treated as an array of two point values.

The area function works for the types box, circle, and path. The area function only
works on the path data type if the points in the path are non-intersecting. For example,
the path ’((0,0),(0,1),(2,1),(2,2),(1,2),(1,0),(0,0))’::PATH

will not work; however, the following visually identical path

’((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0),(0,0))’::PATH

will work. If the concept of an intersecting versus non-intersecting path is confusing, draw both of the
above paths side by side on a piece of graph paper.

9.12. Network Address Functions and Operators
Table 9-33 shows the operators available for the cidr and inet types. The operators <<, <<=, >>, and
>>= test for subnet inclusion. They consider only the network parts of the two addresses (ignoring any
host part) and determine whether one network is identical to or a subnet of the other.

Table 9-33. cidr and inet Operators

Operator Description Example
< is less than inet ’192.168.1.5’ <

inet ’192.168.1.6’

<= is less than or equal inet ’192.168.1.5’ <=

inet ’192.168.1.5’

= equals inet ’192.168.1.5’ =

inet ’192.168.1.5’

>= is greater or equal inet ’192.168.1.5’ >=

inet ’192.168.1.5’

> is greater than inet ’192.168.1.5’ >

inet ’192.168.1.4’

<> is not equal inet ’192.168.1.5’ <>

inet ’192.168.1.4’

233

Chapter 9. Functions and Operators

Operator Description Example
<< is contained within inet ’192.168.1.5’ <<

inet ’192.168.1/24’

<<= is contained within or equals inet ’192.168.1/24’ <<=

inet ’192.168.1/24’

>> contains inet ’192.168.1/24’ >>

inet ’192.168.1.5’

>>= contains or equals inet ’192.168.1/24’ >>=

inet ’192.168.1/24’

~ bitwise NOT ~ inet ’192.168.1.6’

& bitwise AND inet ’192.168.1.6’ &

inet ’0.0.0.255’

| bitwise OR inet ’192.168.1.6’ |

inet ’0.0.0.255’

+ addition inet ’192.168.1.6’ + 25

- subtraction inet ’192.168.1.43’ - 36

- subtraction inet ’192.168.1.43’ -

inet ’192.168.1.19’

Table 9-34 shows the functions available for use with the cidr and inet types. The abbrev, host, and
text functions are primarily intended to offer alternative display formats.

Table 9-34. cidr and inet Functions

Function Return Type Description Example Result
abbrev(inet) text abbreviated display

format as text
abbrev(inet

’10.1.0.0/16’)

10.1.0.0/16

abbrev(cidr) text abbreviated display
format as text

abbrev(cidr

’10.1.0.0/16’)

10.1/16

broadcast(inet) inet broadcast address
for network

broadcast(’192.168.1.5/24’)192.168.1.255/24

family(inet) int extract family of
address; 4 for
IPv4, 6 for IPv6

family(’::1’) 6

host(inet) text extract IP address
as text

host(’192.168.1.5/24’)192.168.1.5

hostmask(inet) inet construct host
mask for network

hostmask(’192.168.23.20/30’)0.0.0.3

masklen(inet) int extract netmask
length

masklen(’192.168.1.5/24’)24

netmask(inet) inet construct netmask
for network

netmask(’192.168.1.5/24’)255.255.255.0

network(inet) cidr extract network
part of address

network(’192.168.1.5/24’)192.168.1.0/24

234

Chapter 9. Functions and Operators

Function Return Type Description Example Result

set_masklen(inet,

int)

inet set netmask length
for inet value

set_masklen(’192.168.1.5/24’,

16)

192.168.1.5/16

set_masklen(cidr,

int)

cidr set netmask length
for cidr value

set_masklen(’192.168.1.0/24’::cidr,

16)

192.168.0.0/16

text(inet) text extract IP address
and netmask length
as text

text(inet

’192.168.1.5’)

192.168.1.5/32

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr, it
is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet value
to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a valid cidr

value. In addition, you can cast a text value to inet or cidr using normal casting syntax: for example,
inet(expression) or colname::cidr.

Table 9-35 shows the functions available for use with the macaddr type. The function trunc(macaddr)

returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining prefix
with a manufacturer.

Table 9-35. macaddr Functions

Function Return Type Description Example Result
trunc(macaddr) macaddr set last 3 bytes to

zero
trunc(macaddr

’12:34:56:78:90:ab’)

12:34:56:00:00:00

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical order-
ing, and the bitwise arithmetic operators (~, & and |) for NOT, AND and OR.

9.13. Text Search Functions and Operators
Table 9-36, Table 9-37 and Table 9-38 summarize the functions and operators that are provided for full
text searching. See Chapter 12 for a detailed explanation of PostgreSQL’s text search facility.

Table 9-36. Text Search Operators

Operator Description Example Result
@@ tsvector matches

tsquery ?
to_tsvector(’fat

cats ate rats’) @@

to_tsquery(’cat &

rat’)

t

235

Chapter 9. Functions and Operators

Operator Description Example Result
@@@ deprecated synonym for

@@

to_tsvector(’fat

cats ate rats’)

@@@

to_tsquery(’cat &

rat’)

t

|| concatenate tsvectors ’a:1

b:2’::tsvector ||

’c:1 d:2

b:3’::tsvector

’a’:1 ’b’:2,5

’c’:3 ’d’:4

&& AND tsquerys
together

’fat |

rat’::tsquery &&

’cat’::tsquery

(’fat’ | ’rat’)

& ’cat’

|| OR tsquerys together ’fat |

rat’::tsquery ||

’cat’::tsquery

(’fat’ | ’rat’)

| ’cat’

!! negate a tsquery !! ’cat’::tsquery !’cat’

@> tsquery contains
another ?

’cat’::tsquery @>

’cat &

rat’::tsquery

f

<@ tsquery is contained in
?

’cat’::tsquery <@

’cat &

rat’::tsquery

t

Note: The tsquery containment operators consider only the lexemes listed in the two queries, ignor-
ing the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc) are
defined for types tsvector and tsquery. These are not very useful for text searching but allow, for
example, unique indexes to be built on columns of these types.

Table 9-37. Text Search Functions

Function Return Type Description Example Result

get_current_ts_config()

regconfig get default text
search
configuration

get_current_ts_config()english

length(tsvector)

integer number of lexemes
in tsvector

length(’fat:2,4

cat:3

rat:5A’::tsvector)

3

numnode(tsquery)

integer number of lexemes
plus operators in
tsquery

numnode(’(fat

& rat) |

cat’::tsquery)

5

236

Chapter 9. Functions and Operators

Function Return Type Description Example Result

plainto_tsquery([

config regconfig

,] query text)

tsquery produce tsquery
ignoring
punctuation

plainto_tsquery(’english’,

’The Fat

Rats’)

’fat’ & ’rat’

querytree(query

tsquery)

text get indexable part
of a tsquery

querytree(’foo

& !

bar’::tsquery)

’foo’

setweight(tsvector,

"char")

tsvector assign weight to
each element of
tsvector

setweight(’fat:2,4

cat:3

rat:5B’::tsvector,

’A’)

’cat’:3A

’fat’:2A,4A

’rat’:5A

strip(tsvector) tsvector remove positions
and weights from
tsvector

strip(’fat:2,4

cat:3

rat:5A’::tsvector)

’cat’ ’fat’

’rat’

to_tsquery([

config regconfig

,] query text)

tsquery normalize words
and convert to
tsquery

to_tsquery(’english’,

’The & Fat &

Rats’)

’fat’ & ’rat’

to_tsvector([

config regconfig

,] document

text)

tsvector reduce document
text to tsvector

to_tsvector(’english’,

’The Fat

Rats’)

’fat’:2

’rat’:3

ts_headline([

config regconfig,

] document text,

query tsquery [,

options text])

text display a query
match

ts_headline(’x

y z’,

’z’::tsquery)

x y z

ts_rank([

weights float4[],

] vector

tsvector, query

tsquery [,

normalization

integer])

float4 rank document for
query

ts_rank(textsearch,

query)

0.818

ts_rank_cd([

weights float4[],

] vector

tsvector, query

tsquery [,

normalization

integer])

float4 rank document for
query using cover
density

ts_rank_cd(’{0.1,

0.2, 0.4,

1.0}’,

textsearch,

query)

2.01317

237

Chapter 9. Functions and Operators

Function Return Type Description Example Result

ts_rewrite(query

tsquery, target

tsquery,

substitute

tsquery)

tsquery replace target with
substitute within
query

ts_rewrite(’a

& b’::tsquery,

’a’::tsquery,

’foo|bar’::tsquery)

’b’ & (’foo’

| ’bar’)

ts_rewrite(query

tsquery, select

text)

tsquery replace using
targets and
substitutes from a
SELECT command

SELECT

ts_rewrite(’a

& b’::tsquery,

’SELECT t,s

FROM aliases’)

’b’ & (’foo’

| ’bar’)

tsvector_update_trigger()

trigger trigger function for
automatic
tsvector column
update

CREATE TRIGGER

...

tsvector_update_trigger(tsvcol,

’pg_catalog.swedish’,

title, body)

tsvector_update_trigger_column()

trigger trigger function for
automatic
tsvector column
update

CREATE TRIGGER

...

tsvector_update_trigger_column(tsvcol,

configcol,

title, body)

Note: All the text search functions that accept an optional regconfig argument will use the configu-
ration specified by default_text_search_config when that argument is omitted.

The functions in Table 9-38 are listed separately because they are not usually used in everyday text search-
ing operations. They are helpful for development and debugging of new text search configurations.

Table 9-38. Text Search Debugging Functions

Function Return Type Description Example Result
ts_debug([

config regconfig,

] document text,

OUT alias text,

OUT description

text, OUT token

text, OUT

dictionaries

regdictionary[],

OUT dictionary

regdictionary,

OUT lexemes

text[])

setof record test a configuration ts_debug(’english’,

’The Brightest

supernovaes’)

(asciiword,"Word,

all

ASCII",The,{english_stem},english_stem,{})

...

238

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_lexize(dict

regdictionary,

token text)

text[] test a dictionary ts_lexize(’english_stem’,

’stars’)

{star}

ts_parse(parser_name

text, document

text, OUT tokid

integer, OUT

token text)

setof record test a parser ts_parse(’default’,

’foo - bar’)

(1,foo) ...

ts_parse(parser_oid

oid, document

text, OUT tokid

integer, OUT

token text)

setof record test a parser ts_parse(3722,

’foo - bar’)

(1,foo) ...

ts_token_type(parser_name

text, OUT tokid

integer, OUT

alias text, OUT

description text)

setof record get token types
defined by parser

ts_token_type(’default’)(1,asciiword,"Word,

all ASCII")

...

ts_token_type(parser_oid

oid, OUT tokid

integer, OUT

alias text, OUT

description text)

setof record get token types
defined by parser

ts_token_type(3722)(1,asciiword,"Word,

all ASCII")

...

ts_stat(sqlquery

text, [weights

text,] OUT word

text, OUT ndoc

integer, OUT

nentry integer)

setof record get statistics of a
tsvector column

ts_stat(’SELECT

vector from

apod’)

(foo,10,15)

...

9.14. XML Functions
The functions and function-like expressions described in this section operate on values of type xml.
Check Section 8.13 for information about the xml type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are not repeated here. Use of most of these functions
requires the installation to have been built with configure --with-libxml.

239

Chapter 9. Functions and Operators

9.14.1. Producing XML Content
A set of functions and function-like expressions are available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing in
client applications.

9.14.1.1. xmlcomment

xmlcomment(text)

The function xmlcomment creates an XML value containing an XML comment with the specified text
as content. The text cannot contain “--” or end with a “-” so that the resulting construct is a valid XML
comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment(’hello’);

xmlcomment

<!--hello-->

9.14.1.2. xmlconcat

xmlconcat(xml[, ...])

The function xmlconcat concatenates a list of individual XML values to create a single value containing
an XML content fragment. Null values are omitted; the result is only null if there are no nonnull arguments.

Example:

SELECT xmlconcat(’<abc/>’, ’<bar>foo</bar>’);

xmlconcat

<abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version
declaration, that version is used in the result, else no version is used. If all argument values have the
standalone declaration value “yes”, then that value is used in the result. If all argument values have a
standalone declaration value and at least one is “no”, then that is used in the result. Else the result will
have no standalone declaration. If the result is determined to require a standalone declaration but no
version declaration, a version declaration with version 1.0 will be used because XML requires an XML
declaration to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:

SELECT xmlconcat(’<?xml version="1.1"?><foo/>’, ’<?xml version="1.1" standalone="no"?><bar/>’);

240

Chapter 9. Functions and Operators

xmlconcat

<?xml version="1.1"?><foo/><bar/>

9.14.1.3. xmlelement

xmlelement(name name [, xmlattributes(value [AS attname] [, ...])] [, content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement(name foo);

xmlelement

<foo/>

SELECT xmlelement(name foo, xmlattributes(’xyz’ as bar));

xmlelement

<foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar), ’cont’, ’ent’);

xmlelement

<foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending charac-
ters by the sequence _xHHHH_, where HHHH is the character’s Unicode codepoint in hexadecimal notation.
For example:

SELECT xmlelement(name "foo$bar", xmlattributes(’xyz’ as "a&b"));

xmlelement

<foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case
the column’s name will be used as the attribute name by default. In other cases, the attribute must be given
an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;

241

Chapter 9. Functions and Operators

But these are not:

SELECT xmlelement(name test, xmlattributes(’constant’), a, b) FROM test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xml, complex XML documents can be constructed. For example:

SELECT xmlelement(name foo, xmlattributes(’xyz’ as bar),
xmlelement(name abc),
xmlcomment(’test’),
xmlelement(name xyz));

xmlelement
--
<foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented in
base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The particular
behavior for individual data types is expected to evolve in order to align the SQL and PostgreSQL data
types with the XML Schema specification, at which point a more precise description will appear.

9.14.1.4. xmlforest

xmlforest(content [AS name] [, ...])

The xmlforest expression produces an XML forest (sequence) of elements using the given names and
content.

Examples:

SELECT xmlforest(’abc’ AS foo, 123 AS bar);

xmlforest

<foo>abc</foo><bar>123</bar>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = ’pg_catalog’;

xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>
<table_name>pg_authid</table_name><column_name>rolsuper</column_name>
...

242

Chapter 9. Functions and Operators

As seen in the second example, the element name can be omitted if the content value is a column reference,
in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xml.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi(name target [, content])

The xmlpi expression creates an XML processing instruction. The content, if present, must not contain
the character sequence ?>.

Example:

SELECT xmlpi(name php, ’echo "hello world";’);

xmlpi

<?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot(xml, version text | no value [, standalone yes|no|no value])

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified,
it replaces the value in the root node’s version declaration; if a standalone setting is specified, it replaces
the value in the root node’s standalone declaration.

SELECT xmlroot(xmlparse(document ’<?xml version="1.1"?><content>abc</content>’),
version ’1.0’, standalone yes);

xmlroot
--
<?xml version="1.0" standalone="yes"?>
<content>abc</content>

9.14.1.7. xmlagg

xmlagg(xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like xmlconcat does, except that concatenation oc-

243

Chapter 9. Functions and Operators

curs across rows rather than across expressions in a single row. See Section 9.20 for additional information
about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, ’<foo>abc</foo>’);
INSERT INTO test VALUES (2, ’<bar/>’);
SELECT xmlagg(x) FROM test;

xmlagg

<foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call as
described in Section 4.2.7. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
xmlagg

<bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
xmlagg

<bar/><foo>abc</foo>

9.14.2. XML Predicates
The expressions described in this section check properties of xml values.

9.14.2.1. IS DOCUMENT

xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false
if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

244

Chapter 9. Functions and Operators

9.14.2.2. XMLEXISTS

XMLEXISTS(text PASSING [BY REF] xml [BY REF])

The function xmlexists returns true if the XPath expression in the first argument returns any nodes, and
false otherwise. (If either argument is null, the result is null.)

Example:

SELECT xmlexists(’//town[text() = ”Toronto”]’ PASSING BY REF ’<towns><town>Toronto</town><town>Ottawa</town></towns>’);

xmlexists

t

(1 row)

The BY REF clauses have no effect in PostgreSQL, but are allowed for SQL conformance and compati-
bility with other implementations. Per SQL standard, the first BY REF is required, the second is optional.
Also note that the SQL standard specifies the xmlexists construct to take an XQuery expression as first
argument, but PostgreSQL currently only supports XPath, which is a subset of XQuery.

9.14.2.3. xml_is_well_formed

xml_is_well_formed(text)
xml_is_well_formed_document(text)
xml_is_well_formed_content(text)

These functions check whether a text string is well-formed XML, returning a Boolean
result. xml_is_well_formed_document checks for a well-formed document, while
xml_is_well_formed_content checks for well-formed content. xml_is_well_formed does the
former if the xmloption configuration parameter is set to DOCUMENT, or the latter if it is set to CONTENT.
This means that xml_is_well_formed is useful for seeing whether a simple cast to type xml will
succeed, whereas the other two functions are useful for seeing whether the corresponding variants of
XMLPARSE will succeed.

Examples:

SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed(’<>’);
xml_is_well_formed

f

(1 row)

SELECT xml_is_well_formed(’<abc/>’);
xml_is_well_formed

t

(1 row)

245

Chapter 9. Functions and Operators

SET xmloption TO CONTENT;
SELECT xml_is_well_formed(’abc’);
xml_is_well_formed

t

(1 row)

SELECT xml_is_well_formed_document(’<pg:foo xmlns:pg="http://postgresql.org/stuff">bar</pg:foo>’);
xml_is_well_formed_document

t

(1 row)

SELECT xml_is_well_formed_document(’<pg:foo xmlns:pg="http://postgresql.org/stuff">bar</my:foo>’);
xml_is_well_formed_document

f

(1 row)

The last example shows that the checks include whether namespaces are correctly matched.

9.14.3. Processing XML
To process values of data type xml, PostgreSQL offers the functions xpath and xpath_exists, which
evaluate XPath 1.0 expressions.

xpath(xpath, xml [, nsarray])

The function xpath evaluates the XPath expression xpath (a text value) against the XML value xml.
It returns an array of XML values corresponding to the node set produced by the XPath expression. If the
XPath expression returns a scalar value rather than a node set, a single-element array is returned.

The second argument must be a well formed XML document. In particular, it must have a single root node
element.

The optional third argument of the function is an array of namespace mappings. This array should be
a two-dimensional text array with the length of the second axis being equal to 2 (i.e., it should be an
array of arrays, each of which consists of exactly 2 elements). The first element of each array entry is
the namespace name (alias), the second the namespace URI. It is not required that aliases provided in
this array be the same as those being used in the XML document itself (in other words, both in the XML
document and in the xpath function context, aliases are local).

Example:

SELECT xpath(’/my:a/text()’, ’<my:a xmlns:my="http://example.com">test</my:a>’,
ARRAY[ARRAY[’my’, ’http://example.com’]]);

xpath

{test}

(1 row)

246

Chapter 9. Functions and Operators

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath(’//mydefns:b/text()’, ’test’,
ARRAY[ARRAY[’mydefns’, ’http://example.com’]]);

xpath

{test}

(1 row)

xpath_exists(xpath, xml [, nsarray])

The function xpath_exists is a specialized form of the xpath function. Instead of returning the indi-
vidual XML values that satisfy the XPath, this function returns a Boolean indicating whether the query
was satisfied or not. This function is equivalent to the standard XMLEXISTS predicate, except that it also
offers support for a namespace mapping argument.

Example:

SELECT xpath_exists(’/my:a/text()’, ’<my:a xmlns:my="http://example.com">test</my:a>’,
ARRAY[ARRAY[’my’, ’http://example.com’]]);

xpath_exists

t

(1 row)

9.14.4. Mapping Tables to XML
The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:

table_to_xml(tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml(query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xml(cursor refcursor, count int, nulls boolean,

tableforest boolean, targetns text)

The return type of each function is xml.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications and
double quotes. query_to_xml executes the query whose text is passed as parameter query and maps
the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the
parameter cursor. This variant is recommended if large tables have to be mapped, because the result
value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:

247

Chapter 9. Functions and Operators

<tablename>
<row>
<columnname1>data</columnname1>
<columnname2>data</columnname2>

</row>

<row>
...

</row>

...
</tablename>

If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>
<columnname1>data</columnname1>
<columnname2>data</columnname2>

</tablename>

<tablename>
...

</tablename>

...

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the
first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which will
be important in many applications. The second format tends to be more useful in the cursor_to_xml

function if the result values are to be reassembled into one document later on. The functions for producing
XML content discussed above, in particular xmlelement, can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null values
in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace declara-
tion will be added to the result value. If false, columns containing null values are simply omitted from the
output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the cor-
responding functions above:

table_to_xmlschema(tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xmlschema(query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xmlschema(cursor refcursor, nulls boolean, tableforest boolean, targetns text)

248

Chapter 9. Functions and Operators

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one docu-
ment (or forest), linked together. They can be useful where self-contained and self-describing results are
wanted:

table_to_xml_and_xmlschema(tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml_and_xmlschema(query text, nulls boolean, tableforest boolean, targetns text)

In addition, the following functions are available to produce analogous mappings of entire schemas or the
entire current database:

schema_to_xml(schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xmlschema(schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xml_and_xmlschema(schema name, nulls boolean, tableforest boolean, targetns text)

database_to_xml(nulls boolean, tableforest boolean, targetns text)
database_to_xmlschema(nulls boolean, tableforest boolean, targetns text)
database_to_xml_and_xmlschema(nulls boolean, tableforest boolean, targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>

table1-mapping

table2-mapping

...

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>

<schema1name>
...

</schema1name>

<schema2name>
...

</schema2name>

...

249

Chapter 9. Functions and Operators

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Figure 9-1 shows an XSLT stylesheet that
converts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular
rendition of the table data. In a similar manner, the results from these functions can be converted into
other XML-based formats.

Figure 9-1. XSLT Stylesheet for Converting SQL/XML Output to HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/1999/xhtml"

>

<xsl:output method="xml"
doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
indent="yes"/>

<xsl:template match="/*">
<xsl:variable name="schema" select="//xsd:schema"/>
<xsl:variable name="tabletypename"

select="$schema/xsd:element[@name=name(current())]/@type"/>
<xsl:variable name="rowtypename"

select="$schema/xsd:complexType[@name=$tabletypename]/xsd:sequence/xsd:element[@name=’row’]/@type"/>

<html>
<head>
<title><xsl:value-of select="name(current())"/></title>

</head>
<body>
<table>
<tr>
<xsl:for-each select="$schema/xsd:complexType[@name=$rowtypename]/xsd:sequence/xsd:element/@name">
<th><xsl:value-of select="."/></th>

</xsl:for-each>
</tr>

<xsl:for-each select="row">
<tr>
<xsl:for-each select="*">

<td><xsl:value-of select="."/></td>
</xsl:for-each>

</tr>
</xsl:for-each>

</table>
</body>

</html>
</xsl:template>

250

Chapter 9. Functions and Operators

</xsl:stylesheet>

9.15. JSON Functions
Table 9-39 shows the functions that are available for creating JSON (see Section 8.14) data.

Table 9-39. JSON Support Functions

Function Description Example Example Result

array_to_json(anyarray

[, pretty_bool])

Returns the array as
JSON. A PostgreSQL
multidimensional array
becomes a JSON array
of arrays. Line feeds
will be added between
dimension 1 elements if
pretty_bool is true.

array_to_json(’{{1,5},{99,100}}’::int[])[[1,5],[99,100]]

row_to_json(record

[, pretty_bool])

Returns the row as
JSON. Line feeds will
be added between level
1 elements if
pretty_bool is true.

row_to_json(row(1,’foo’)){"f1":1,"f2":"foo"}

9.16. Sequence Manipulation Functions
This section describes functions for operating on sequence objects, also called sequence generators or just
sequences. Sequence objects are special single-row tables created with CREATE SEQUENCE. Sequence
objects are commonly used to generate unique identifiers for rows of a table. The sequence functions,
listed in Table 9-40, provide simple, multiuser-safe methods for obtaining successive sequence values
from sequence objects.

Table 9-40. Sequence Functions

Function Return Type Description
currval(regclass) bigint Return value most recently

obtained with nextval for
specified sequence

lastval() bigint Return value most recently
obtained with nextval for any
sequence

251

Chapter 9. Functions and Operators

Function Return Type Description
nextval(regclass) bigint Advance sequence and return

new value

setval(regclass, bigint) bigint Set sequence’s current value

setval(regclass, bigint,

boolean)

bigint Set sequence’s current value and
is_called flag

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID
by hand, however, since the regclass data type’s input converter will do the work for you. Just write
the sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility with
the handling of ordinary SQL names, the string will be converted to lower case unless it contains double
quotes around the sequence name. Thus:

nextval(’foo’) operates on sequence foo

nextval(’FOO’) operates on sequence foo

nextval(’"Foo"’) operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval(’myschema.foo’) operates on myschema.foo

nextval(’"myschema".foo’) same as above
nextval(’foo’) searches search path for foo

See Section 8.18 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backward compatibility, this facility still exists, but internally it is now
handled as an implicit coercion from text to regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes a
constant of type regclass. Since this is really just an OID, it will track the originally identified sequence
despite later renaming, schema reassignment, etc. This “early binding” behavior is usually desirable
for sequence references in column defaults and views. But sometimes you might want “late binding”
where the sequence reference is resolved at run time. To get late-binding behavior, force the constant
to be stored as a text constant instead of regclass:

nextval(’foo’::text) foo is looked up at runtime

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is a
text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

252

Chapter 9. Functions and Operators

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even if
multiple sessions execute nextval concurrently, each will safely receive a distinct sequence value.

If a sequence object has been created with default parameters, successive nextval calls will return
successive values beginning with 1. Other behaviors can be obtained by using special parameters in
the CREATE SEQUENCE command; see its command reference page for more information.

Important: To avoid blocking concurrent transactions that obtain numbers from the same se-
quence, a nextval operation is never rolled back; that is, once a value has been fetched it
is considered used, even if the transaction that did the nextval later aborts. This means that
aborted transactions might leave unused “holes” in the sequence of assigned values.

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

lastval

Return the value most recently returned by nextval in the current session. This function is identical
to currval, except that instead of taking the sequence name as an argument it fetches the value of
the last sequence used by nextval in the current session. It is an error to call lastval if nextval
has not yet been called in the current session.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s last_value
field to the specified value and sets its is_called field to true, meaning that the next nextval
will advance the sequence before returning a value. The value reported by currval is also set to the
specified value. In the three-parameter form, is_called can be set to either true or false. true
has the same effect as the two-parameter form. If it is set to false, the next nextval will return
exactly the specified value, and sequence advancement commences with the following nextval.
Furthermore, the value reported by currval is not changed in this case (this is a change from pre-
8.3 behavior). For example,

SELECT setval(’foo’, 42); Next nextval will return 43
SELECT setval(’foo’, 42, true); Same as above
SELECT setval(’foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

Important: Because sequences are non-transactional, changes made by setval are not undone
if the transaction rolls back.

253

Chapter 9. Functions and Operators

9.17. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a stored procedure in a more expressive programming language.

9.17.1. CASE
The SQL CASE expression is a generic conditional expression, similar to if/else statements in other pro-
gramming languages:

CASE WHEN condition THEN result

[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns
a boolean result. If the condition’s result is true, the value of the CASE expression is the result that
follows the condition, and the remainder of the CASE expression is not processed. If the condition’s result
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields
true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and
no condition is true, the result is null.

An example:

SELECT * FROM test;

a

1
2
3

SELECT a,
CASE WHEN a=1 THEN ’one’

WHEN a=2 THEN ’two’
ELSE ’other’

END
FROM test;

a | case
---+-------
1 | one
2 | two
3 | other

254

Chapter 9. Functions and Operators

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression

WHEN value THEN result

[WHEN ...]
[ELSE result]

END

The first expression is computed, then compared to each of the value expressions in the WHEN clauses
until one is found that is equal to it. If no match is found, the result of the ELSE clause (or a null value)
is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ’one’

WHEN 2 THEN ’two’
ELSE ’other’

END
FROM test;

a | case
---+-------
1 | one
2 | two
3 | other

A CASE expression does not evaluate any subexpressions that are not needed to determine the result. For
example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

Note: As described in Section 35.6, functions and operators marked IMMUTABLE can be evaluated
when the query is planned rather than when it is executed. This means that constant parts of a subex-
pression that is not evaluated during query execution might still be evaluated during query planning.

9.17.2. COALESCE
COALESCE(value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved for
display, for example:

255

Chapter 9. Functions and Operators

SELECT COALESCE(description, short_description, ’(none)’) ...

This returns description if it is not null, otherwise short_description if it is not null, otherwise
(none).

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result;
that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard function
provides capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.17.3. NULLIF
NULLIF(value1, value2)

The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1. This
can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF(value, ’(none)’) ...

In this example, if value is (none), null is returned, otherwise the value of value is returned.

9.17.4. GREATEST and LEAST

GREATEST(value [, ...])

LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of the
result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL only if
all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.18. Array Functions and Operators
Table 9-41 shows the operators available for array types.

Table 9-41. Array Operators

Operator Description Example Result
= equal ARRAY[1.1,2.1,3.1]::int[]

= ARRAY[1,2,3]

t

256

Chapter 9. Functions and Operators

Operator Description Example Result
<> not equal ARRAY[1,2,3] <>

ARRAY[1,2,4]

t

< less than ARRAY[1,2,3] <

ARRAY[1,2,4]

t

> greater than ARRAY[1,4,3] >

ARRAY[1,2,4]

t

<= less than or equal ARRAY[1,2,3] <=

ARRAY[1,2,3]

t

>= greater than or equal ARRAY[1,4,3] >=

ARRAY[1,4,3]

t

@> contains ARRAY[1,4,3] @>

ARRAY[3,1]

t

<@ is contained by ARRAY[2,7] <@

ARRAY[1,7,4,2,6]

t

&& overlap (have elements
in common)

ARRAY[1,4,3] &&

ARRAY[2,1]

t

|| array-to-array
concatenation

ARRAY[1,2,3] ||

ARRAY[4,5,6]

{1,2,3,4,5,6}

|| array-to-array
concatenation

ARRAY[1,2,3] ||

ARRAY[[4,5,6],[7,8,9]]

{{1,2,3},{4,5,6},{7,8,9}}

|| element-to-array
concatenation

3 || ARRAY[4,5,6] {3,4,5,6}

|| array-to-element
concatenation

ARRAY[4,5,6] || 7 {4,5,6,7}

Array comparisons compare the array contents element-by-element, using the default B-tree comparison
function for the element data type. In multidimensional arrays the elements are visited in row-major
order (last subscript varies most rapidly). If the contents of two arrays are equal but the dimensionality
is different, the first difference in the dimensionality information determines the sort order. (This is a
change from versions of PostgreSQL prior to 8.2: older versions would claim that two arrays with the
same contents were equal, even if the number of dimensions or subscript ranges were different.)

See Section 8.15 for more details about array operator behavior.

Table 9-42 shows the functions available for use with array types. See Section 8.15 for more information
and examples of the use of these functions.

Table 9-42. Array Functions

Function Return Type Description Example Result

array_append(anyarray,

anyelement)

anyarray append an element
to the end of an
array

array_append(ARRAY[1,2],

3)

{1,2,3}

257

Chapter 9. Functions and Operators

Function Return Type Description Example Result

array_cat(anyarray,

anyarray)

anyarray concatenate two
arrays

array_cat(ARRAY[1,2,3],

ARRAY[4,5])

{1,2,3,4,5}

array_ndims(anyarray)

int returns the number
of dimensions of
the array

array_ndims(ARRAY[[1,2,3],

[4,5,6]])

2

array_dims(anyarray)

text returns a text
representation of
array’s dimensions

array_dims(ARRAY[[1,2,3],

[4,5,6]])

[1:2][1:3]

array_fill(anyelement,

int[], [,

int[]])

anyarray returns an array
initialized with
supplied value and
dimensions,
optionally with
lower bounds other
than 1

array_fill(7,

ARRAY[3],

ARRAY[2])

[2:4]={7,7,7}

array_length(anyarray,

int)

int returns the length
of the requested
array dimension

array_length(array[1,2,3],

1)

3

array_lower(anyarray,

int)

int returns lower
bound of the
requested array
dimension

array_lower(’[0:2]={1,2,3}’::int[],

1)

0

array_prepend(anyelement,

anyarray)

anyarray append an element
to the beginning of
an array

array_prepend(1,

ARRAY[2,3])

{1,2,3}

array_to_string(anyarray,

text [, text])

text concatenates array
elements using
supplied delimiter
and optional null
string

array_to_string(ARRAY[1,

2, 3, NULL,

5], ’,’, ’*’)

1,2,3,*,5

array_upper(anyarray,

int)

int returns upper
bound of the
requested array
dimension

array_upper(ARRAY[1,8,3,7],

1)

4

string_to_array(text,

text [, text])

text[] splits string into
array elements
using supplied
delimiter and
optional null string

string_to_array(’xx~^~yy~^~zz’,

’~^~’, ’yy’)

{xx,NULL,zz}

unnest(anyarray)

setof

anyelement

expand an array to
a set of rows

unnest(ARRAY[1,2])1 2 (2 rows)

In string_to_array, if the delimiter parameter is NULL, each character in the input string will become

258

Chapter 9. Functions and Operators

a separate element in the resulting array. If the delimiter is an empty string, then the entire input string
is returned as a one-element array. Otherwise the input string is split at each occurrence of the delimiter
string.

In string_to_array, if the null-string parameter is omitted or NULL, none of the substrings of the
input will be replaced by NULL. In array_to_string, if the null-string parameter is omitted or NULL,
any null elements in the array are simply skipped and not represented in the output string.

Note: There are two differences in the behavior of string_to_array from pre-9.1 versions of Post-
greSQL. First, it will return an empty (zero-element) array rather than NULL when the input string
is of zero length. Second, if the delimiter string is NULL, the function splits the input into individual
characters, rather than returning NULL as before.

See also Section 9.20 about the aggregate function array_agg for use with arrays.

9.19. Range Functions and Operators
See Section 8.17 for an overview of range types.

Table 9-43 shows the operators available for range types.

Table 9-43. Range Operators

Operator Description Example Result
= equal int4range(1,5) =

’[1,4]’::int4range

t

<> not equal numrange(1.1,2.2)

<>

numrange(1.1,2.3)

t

< less than int4range(1,10) <

int4range(2,3)

t

> greater than int4range(1,10) >

int4range(1,5)

t

<= less than or equal numrange(1.1,2.2)

<=

numrange(1.1,2.2)

t

>= greater than or equal numrange(1.1,2.2)

>=

numrange(1.1,2.0)

t

@> contains range int4range(2,4) @>

int4range(2,3)

t

259

Chapter 9. Functions and Operators

Operator Description Example Result
@> contains element ’[2011-01-01,2011-03-01)’::tsrange

@>

’2011-01-10’::timestamp

t

<@ range is contained by int4range(2,4) <@

int4range(1,7)

t

<@ element is contained by 42 <@

int4range(1,7)

f

&& overlap (have points in
common)

int8range(3,7) &&

int8range(4,12)

t

<< strictly left of int8range(1,10)

<<

int8range(100,110)

t

>> strictly right of int8range(50,60)

>>

int8range(20,30)

t

&< does not extend to the
right of

int8range(1,20) &<

int8range(18,20)

t

&> does not extend to the
left of

int8range(7,20) &>

int8range(5,10)

t

-|- is adjacent to numrange(1.1,2.2)

-|-

numrange(2.2,3.3)

t

+ union numrange(5,15) +

numrange(10,20)

[5,20)

* intersection int8range(5,15) *
int8range(10,20)

[10,15)

- difference int8range(5,15) -

int8range(10,20)

[5,10)

The simple comparison operators <, >, <=, and >= compare the lower bounds first, and only if those
are equal, compare the upper bounds. These comparisons are not usually very useful for ranges, but are
provided to allow B-tree indexes to be constructed on ranges.

The left-of/right-of/adjacent operators always return false when an empty range is involved; that is, an
empty range is not considered to be either before or after any other range.

The union and difference operators will fail if the resulting range would need to contain two disjoint
sub-ranges, as such a range cannot be represented.

Table 9-44 shows the functions available for use with range types.

Table 9-44. Range Functions

Function Return Type Description Example Result

260

Chapter 9. Functions and Operators

Function Return Type Description Example Result

lower(anyrange)

range’s element
type

lower bound of
range

lower(numrange(1.1,2.2))1.1

upper(anyrange)

range’s element
type

upper bound of
range

upper(numrange(1.1,2.2))2.2

isempty(anyrange)

boolean is the range empty? isempty(numrange(1.1,2.2))false

lower_inc(anyrange)

boolean is the lower bound
inclusive?

lower_inc(numrange(1.1,2.2))true

upper_inc(anyrange)

boolean is the upper bound
inclusive?

upper_inc(numrange(1.1,2.2))false

lower_inf(anyrange)

boolean is the lower bound
infinite?

lower_inf(’(,)’::daterange)true

upper_inf(anyrange)

boolean is the upper bound
infinite?

upper_inf(’(,)’::daterange)true

The lower and upper functions return null if the range is empty or the requested bound is infinite. The
lower_inc, upper_inc, lower_inf, and upper_inf functions all return false for an empty range.

9.20. Aggregate Functions
Aggregate functions compute a single result from a set of input values. The built-in aggregate functions
are listed in Table 9-45 and Table 9-46. The special syntax considerations for aggregate functions are
explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-45. General-Purpose Aggregate Functions

Function Argument Type(s) Return Type Description

array_agg(expression)

any array of the argument
type

input values, including
nulls, concatenated into
an array

261

Chapter 9. Functions and Operators

Function Argument Type(s) Return Type Description
avg(expression) smallint, int,

bigint, real, double
precision, numeric,
or interval

numeric for any
integer-type argument,
double precision

for a floating-point
argument, otherwise the
same as the argument
data type

the average (arithmetic
mean) of all input values

bit_and(expression)

smallint, int,
bigint, or bit

same as argument data
type

the bitwise AND of all
non-null input values, or
null if none

bit_or(expression) smallint, int,
bigint, or bit

same as argument data
type

the bitwise OR of all
non-null input values, or
null if none

bool_and(expression)

bool bool true if all input values
are true, otherwise false

bool_or(expression)

bool bool true if at least one input
value is true, otherwise
false

count(*) bigint number of input rows

count(expression) any bigint number of input rows
for which the value of
expression is not null

every(expression) bool bool equivalent to bool_and

max(expression) any array, numeric,
string, or date/time type

same as argument type maximum value of
expression across all
input values

min(expression) any array, numeric,
string, or date/time type

same as argument type minimum value of
expression across all
input values

string_agg(expression,

delimiter)

(text, text) or
(bytea, bytea)

same as argument types input values
concatenated into a
string, separated by
delimiter

sum(expression) smallint, int,
bigint, real, double
precision, numeric,
or interval

bigint for smallint
or int arguments,
numeric for bigint
arguments, double
precision for
floating-point
arguments, otherwise
the same as the
argument data type

sum of expression
across all input values

262

Chapter 9. Functions and Operators

Function Argument Type(s) Return Type Description
xmlagg(expression) xml xml concatenation of XML

values (see also Section
9.14.1.7)

It should be noted that except for count, these functions return a null value when no rows are selected. In
particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather
than an empty array when there are no input rows. The coalesce function can be used to substitute zero
or an empty array for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates every

and any or some. As for any and some, it seems that there is an ambiguity built into the standard
syntax:

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

Here ANY can be considered either as introducing a subquery, or as being an aggregate function, if
the subquery returns one row with a Boolean value. Thus the standard name cannot be given to these
aggregates.

Note: Users accustomed to working with other SQL database management systems might be dis-
appointed by the performance of the count aggregate when it is applied to the entire table. A query
like:

SELECT count(*) FROM sometable;

will require effort proportional to the size of the table: PostgreSQL will need to scan either the entire
table or the entirety of an index which includes all rows in the table.

The aggregate functions array_agg, string_agg, and xmlagg, as well as similar user-defined aggre-
gate functions, produce meaningfully different result values depending on the order of the input values.
This ordering is unspecified by default, but can be controlled by writing an ORDER BY clause within the
aggregate call, as shown in Section 4.2.7. Alternatively, supplying the input values from a sorted subquery
will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

But this syntax is not allowed in the SQL standard, and is not portable to other database systems.

Table 9-46 shows aggregate functions typically used in statistical analysis. (These are separated out merely
to avoid cluttering the listing of more-commonly-used aggregates.) Where the description mentions N , it
means the number of input rows for which all the input expressions are non-null. In all cases, null is
returned if the computation is meaningless, for example when N is zero.

Table 9-46. Aggregate Functions for Statistics

Function Argument Type Return Type Description

263

Chapter 9. Functions and Operators

Function Argument Type Return Type Description
corr(Y, X) double precision double precision correlation coefficient

covar_pop(Y, X) double precision double precision population covariance

covar_samp(Y, X) double precision double precision sample covariance

regr_avgx(Y, X) double precision double precision average of the
independent variable
(sum(X)/N)

regr_avgy(Y, X) double precision double precision average of the
dependent variable
(sum(Y)/N)

regr_count(Y, X) double precision bigint number of input rows in
which both expressions
are nonnull

regr_intercept(Y,

X)

double precision double precision y-intercept of the
least-squares-fit linear
equation determined by
the (X, Y) pairs

regr_r2(Y, X) double precision double precision square of the correlation
coefficient

regr_slope(Y, X) double precision double precision slope of the
least-squares-fit linear
equation determined by
the (X, Y) pairs

regr_sxx(Y, X) double precision double precision sum(X^2) -

sum(X)^2/N (“sum of
squares” of the
independent variable)

regr_sxy(Y, X) double precision double precision sum(X*Y) - sum(X)

* sum(Y)/N (“sum of
products” of
independent times
dependent variable)

regr_syy(Y, X) double precision double precision sum(Y^2) -

sum(Y)^2/N (“sum of
squares” of the
dependent variable)

stddev(expression) smallint, int,
bigint, real, double
precision, or
numeric

double precision

for floating-point
arguments, otherwise
numeric

historical alias for
stddev_samp

stddev_pop(expression)

smallint, int,
bigint, real, double
precision, or
numeric

double precision

for floating-point
arguments, otherwise
numeric

population standard
deviation of the input
values

264

Chapter 9. Functions and Operators

Function Argument Type Return Type Description

stddev_samp(expression)

smallint, int,
bigint, real, double
precision, or
numeric

double precision

for floating-point
arguments, otherwise
numeric

sample standard
deviation of the input
values

variance(expression)
smallint, int,
bigint, real, double
precision, or
numeric

double precision

for floating-point
arguments, otherwise
numeric

historical alias for
var_samp

var_pop(expression)
smallint, int,
bigint, real, double
precision, or
numeric

double precision

for floating-point
arguments, otherwise
numeric

population variance of
the input values (square
of the population
standard deviation)

var_samp(expression)
smallint, int,
bigint, real, double
precision, or
numeric

double precision

for floating-point
arguments, otherwise
numeric

sample variance of the
input values (square of
the sample standard
deviation)

9.21. Window Functions
Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature.

The built-in window functions are listed in Table 9-47. Note that these functions must be invoked using
window function syntax; that is an OVER clause is required.

In addition to these functions, any built-in or user-defined aggregate function can be used as a window
function (see Section 9.20 for a list of the built-in aggregates). Aggregate functions act as window func-
tions only when an OVER clause follows the call; otherwise they act as regular aggregates.

Table 9-47. General-Purpose Window Functions

Function Return Type Description
row_number() bigint number of the current row within

its partition, counting from 1

rank() bigint rank of the current row with
gaps; same as row_number of its
first peer

dense_rank() bigint rank of the current row without
gaps; this function counts peer
groups

percent_rank() double precision relative rank of the current row:
(rank - 1) / (total rows - 1)

265

Chapter 9. Functions and Operators

Function Return Type Description
cume_dist() double precision relative rank of the current row:

(number of rows preceding or
peer with current row) / (total
rows)

ntile(num_buckets

integer)

integer integer ranging from 1 to the
argument value, dividing the
partition as equally as possible

lag(value any [, offset

integer [, default any]])

same type as value returns value evaluated at the
row that is offset rows before
the current row within the
partition; if there is no such row,
instead return default. Both
offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to
null

lead(value any [, offset

integer [, default any]])

same type as value returns value evaluated at the
row that is offset rows after the
current row within the partition;
if there is no such row, instead
return default. Both offset

and default are evaluated with
respect to the current row. If
omitted, offset defaults to 1
and default to null

first_value(value any) same type as value returns value evaluated at the
row that is the first row of the
window frame

last_value(value any) same type as value returns value evaluated at the
row that is the last row of the
window frame

nth_value(value any, nth

integer)

same type as value returns value evaluated at the
row that is the nth row of the
window frame (counting from 1);
null if no such row

All of the functions listed in Table 9-47 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct in the ORDER BY ordering are said to be
peers; the four ranking functions are defined so that they give the same answer for any two peer rows.

Note that first_value, last_value, and nth_value consider only the rows within the “window
frame”, which by default contains the rows from the start of the partition through the last peer of the
current row. This is likely to give unhelpful results for last_value and sometimes also nth_value.
You can redefine the frame by adding a suitable frame specification (RANGE or ROWS) to the OVER clause.
See Section 4.2.8 for more information about frame specifications.

266

Chapter 9. Functions and Operators

When an aggregate function is used as a window function, it aggregates over the rows within the cur-
rent row’s window frame. An aggregate used with ORDER BY and the default window frame definition
produces a “running sum” type of behavior, which may or may not be what’s wanted. To obtain aggre-
gation over the whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND

UNBOUNDED FOLLOWING. Other frame specifications can be used to obtain other effects.

Note: The SQL standard defines a RESPECT NULLS or IGNORE NULLS option for lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the behavior is
always the same as the standard’s default, namely RESPECT NULLS. Likewise, the standard’s FROM

FIRST or FROM LAST option for nth_value is not implemented: only the default FROM FIRST behavior
is supported. (You can achieve the result of FROM LAST by reversing the ORDER BY ordering.)

9.22. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.22.1. EXISTS
EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”; if the
subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally unimportant. A common coding convention is to write all EXISTS
tests in the form EXISTS(SELECT 1 WHERE ...). There are exceptions to this rule however, such as
subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1

row, even if there are several matching tab2 rows:

SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

267

Chapter 9. Functions and Operators

9.22.2. IN
expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if any
equal subquery row is found. The result is “false” if no equal row is found (including the case where the
subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance with
SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of IN is null.

9.22.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is “true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.13. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of NOT IN is “true” if only unequal subquery rows are found (including the
case where the subquery returns no rows). The result is “false” if any equal row is found.

268

Chapter 9. Functions and Operators

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the per-row results are either unequal or null, with at least one null, then the result
of NOT IN is null.

9.22.4. ANY/SOME
expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules for
Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including
the case where the subquery returns no rows). The result is NULL if the comparison does not return true
for any row, and it returns NULL for at least one row.

See Section 9.23.5 for details about the meaning of a row-wise comparison.

9.22.5. ALL
expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL
if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT IN is equivalent to <> ALL.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

269

Chapter 9. Functions and Operators

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true
for all subquery rows (including the case where the subquery returns no rows). The result is “false” if the
comparison returns false for any subquery row. The result is NULL if the comparison does not return false
for any subquery row, and it returns NULL for at least one row.

See Section 9.23.5 for details about the meaning of a row-wise comparison.

9.22.6. Row-wise Comparison
row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthe-
sized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the result is taken to
be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.

See Section 9.23.5 for details about the meaning of a row-wise comparison.

9.23. Row and Array Comparisons
This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.23.1. IN
expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = value1

OR
expression = value2

OR
...

270

Chapter 9. Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL’s normal rules for Boolean combinations of null values.

9.23.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> value1

AND
expression <> value2

AND
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN. It is best to express
your condition positively if possible.

9.23.3. ANY/SOME (array)
expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false” if no true
result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result is
obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This is
in accordance with SQL’s normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

271

Chapter 9. Functions and Operators

9.23.4. ALL (array)
expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using the given operator, which must yield
a Boolean result. The result of ALL is “true” if all comparisons yield true (including the case where the
array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result is
obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

9.23.5. Row-wise Comparison
row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Row comparisons are allowed
when the operator is =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific,
an operator can be a row comparison operator if it is a member of a B-tree operator class, or is the negator
of the = member of a B-tree operator class.)

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members are
non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an
unequal or null pair of elements is found. If either of this pair of elements is null, the result of the row
comparison is unknown (null); otherwise comparison of this pair of elements determines the result. For
example, ROW(1,2,NULL) < ROW(1,3,0) yields true, not null, because the third pair of elements are
not considered.

Note: Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison like ROW(a,b) < ROW(c,d) was implemented as a < c AND b < d whereas the correct
behavior is equivalent to a < c OR (a = c AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

272

Chapter 9. Functions and Operators

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null
value is considered unequal to (distinct from) any non-null value, and any two nulls are considered equal
(not distinct). Thus the result will always be either true or false, never null.

Note: The SQL specification requires row-wise comparison to return NULL if the result depends on
comparing two NULL values or a NULL and a non-NULL. PostgreSQL does this only when comparing
the results of two row constructors or comparing a row constructor to the output of a subquery (as
in Section 9.22). In other contexts where two composite-type values are compared, two NULL field
values are considered equal, and a NULL is considered larger than a non-NULL. This is necessary in
order to have consistent sorting and indexing behavior for composite types.

9.24. Set Returning Functions
This section describes functions that possibly return more than one row. Currently the only functions in
this class are series generating functions, as detailed in Table 9-48 and Table 9-49.

Table 9-48. Series Generating Functions

Function Argument Type Return Type Description
generate_series(start,

stop)

int or bigint setof int or setof
bigint (same as
argument type)

Generate a series of
values, from start to
stop with a step size of
one

generate_series(start,

stop, step)

int or bigint setof int or setof
bigint (same as
argument type)

Generate a series of
values, from start to
stop with a step size of
step

generate_series(start,

stop, step interval)

timestamp or
timestamp with

time zone

setof timestamp or
setof timestamp

with time zone

(same as argument type)

Generate a series of
values, from start to
stop with a step size of
step

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL inputs.
It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

2
3
4

(3 rows)

273

Chapter 9. Functions and Operators

SELECT * FROM generate_series(5,1,-2);
generate_series

5
3
1

(3 rows)

SELECT * FROM generate_series(4,3);
generate_series

(0 rows)

-- this example relies on the date-plus-integer operator
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);

dates

2004-02-05
2004-02-12
2004-02-19

(3 rows)

SELECT * FROM generate_series(’2008-03-01 00:00’::timestamp,
’2008-03-04 12:00’, ’10 hours’);

generate_series

2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00
2008-03-03 22:00:00
2008-03-04 08:00:00

(9 rows)

Table 9-49. Subscript Generating Functions

Function Return Type Description
generate_subscripts(array

anyarray, dim int)

setof int Generate a series comprising the
given array’s subscripts.

generate_subscripts(array

anyarray, dim int, reverse

boolean)

setof int Generate a series comprising the
given array’s subscripts. When
reverse is true, the series is
returned in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the spec-
ified dimension of the given array. Zero rows are returned for arrays that do not have the requested dimen-

274

Chapter 9. Functions and Operators

sion, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some examples
follow:

-- basic usage
SELECT generate_subscripts(’{NULL,1,NULL,2}’::int[], 1) AS s;
s

1
2
3
4

(4 rows)

-- presenting an array, the subscript and the subscripted
-- value requires a subquery
SELECT * FROM arrays;

a

{-1,-2}
{100,200,300}

(2 rows)

SELECT a AS array, s AS subscript, a[s] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;

array | subscript | value
---------------+-----------+-------
{-1,-2} | 1 | -1
{-1,-2} | 2 | -2
{100,200,300} | 1 | 100
{100,200,300} | 2 | 200
{100,200,300} | 3 | 300

(5 rows)

-- unnest a 2D array
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][j]

from generate_subscripts($1,1) g1(i),
generate_subscripts($1,2) g2(j);

$$ LANGUAGE sql IMMUTABLE;
CREATE FUNCTION
postgres=# SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
unnest2

1
2
3
4

(4 rows)

275

Chapter 9. Functions and Operators

9.25. System Information Functions
Table 9-50 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 27.2.2 for more information.

Table 9-50. Session Information Functions

Name Return Type Description
current_catalog name name of current database (called

“catalog” in the SQL standard)

current_database() name name of current database

current_query() text text of the currently executing
query, as submitted by the client
(might contain more than one
statement)

current_schema[()] name name of current schema

current_schemas(boolean) name[] names of schemas in search path,
optionally including implicit
schemas

current_user name user name of current execution
context

inet_client_addr() inet address of the remote connection

inet_client_port() int port of the remote connection

inet_server_addr() inet address of the local connection

inet_server_port() int port of the local connection

pg_backend_pid() int Process ID of the server process
attached to the current session

pg_conf_load_time() timestamp with time zone configuration load time

pg_is_other_temp_schema(oid) boolean is schema another session’s
temporary schema?

pg_listening_channels() setof text channel names that the session is
currently listening on

pg_my_temp_schema() oid OID of session’s temporary
schema, or 0 if none

pg_postmaster_start_time() timestamp with time zone server start time

pg_trigger_depth() int current nesting level of
PostgreSQL triggers (0 if not
called, directly or indirectly,
from inside a trigger)

session_user name session user name

user name equivalent to current_user

version() text PostgreSQL version information

276

Chapter 9. Functions and Operators

Note: current_catalog, current_schema, current_user, session_user, and user have special
syntactic status in SQL: they must be called without trailing parentheses. (In PostgreSQL, parentheses
can optionally be used with current_schema, but not with the others.)

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally it is equal to the session user, but it can be changed
with SET ROLE. It also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”.

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that are
created without specifying a target schema. current_schemas(boolean) returns an array of the names
of all schemas presently in the search path. The Boolean option determines whether or not implicitly
included system schemas such as pg_catalog are included in the returned search path.

Note: The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

pg_listening_channels returns a set of names of channels that the current session is listening to. See
LISTEN for more information.

inet_client_addr returns the IP address of the current client, and inet_client_port returns the
port number. inet_server_addr returns the IP address on which the server accepted the current con-
nection, and inet_server_port returns the port number. All these functions return NULL if the current
connection is via a Unix-domain socket.

pg_my_temp_schema returns the OID of the current session’s temporary schema, or zero if it has none
(because it has not created any temporary tables). pg_is_other_temp_schema returns true if the given
OID is the OID of another session’s temporary schema. (This can be useful, for example, to exclude other
sessions’ temporary tables from a catalog display.)

pg_postmaster_start_time returns the timestamp with time zone when the server started.

pg_conf_load_time returns the timestamp with time zone when the server configuration files
were last loaded. (If the current session was alive at the time, this will be the time when the session itself
re-read the configuration files, so the reading will vary a little in different sessions. Otherwise it is the time
when the postmaster process re-read the configuration files.)

version returns a string describing the PostgreSQL server’s version.

Table 9-51 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-51. Access Privilege Inquiry Functions

Name Return Type Description

277

Chapter 9. Functions and Operators

Name Return Type Description
has_any_column_privilege(user,

table, privilege)

boolean does user have privilege for any
column of table

has_any_column_privilege(table,

privilege)

boolean does current user have privilege
for any column of table

has_column_privilege(user,

table, column, privilege)

boolean does user have privilege for
column

has_column_privilege(table,

column, privilege)

boolean does current user have privilege
for column

has_database_privilege(user,

database, privilege)

boolean does user have privilege for
database

has_database_privilege(database,

privilege)

boolean does current user have privilege
for database

has_foreign_data_wrapper_privilege(user,

fdw, privilege)

boolean does user have privilege for
foreign-data wrapper

has_foreign_data_wrapper_privilege(fdw,

privilege)

boolean does current user have privilege
for foreign-data wrapper

has_function_privilege(user,

function, privilege)

boolean does user have privilege for
function

has_function_privilege(function,

privilege)

boolean does current user have privilege
for function

has_language_privilege(user,

language, privilege)

boolean does user have privilege for
language

has_language_privilege(language,

privilege)

boolean does current user have privilege
for language

has_schema_privilege(user,

schema, privilege)

boolean does user have privilege for
schema

has_schema_privilege(schema,

privilege)

boolean does current user have privilege
for schema

has_sequence_privilege(user,

sequence, privilege)

boolean does user have privilege for
sequence

has_sequence_privilege(sequence,

privilege)

boolean does current user have privilege
for sequence

has_server_privilege(user,

server, privilege)

boolean does user have privilege for
foreign server

has_server_privilege(server,

privilege)

boolean does current user have privilege
for foreign server

has_table_privilege(user,

table, privilege)

boolean does user have privilege for table

has_table_privilege(table,

privilege)

boolean does current user have privilege
for table

has_tablespace_privilege(user,

tablespace, privilege)

boolean does user have privilege for
tablespace

278

Chapter 9. Functions and Operators

Name Return Type Description
has_tablespace_privilege(tablespace,

privilege)

boolean does current user have privilege
for tablespace

pg_has_role(user, role,

privilege)

boolean does user have privilege for role

pg_has_role(role,

privilege)

boolean does current user have privilege
for role

has_table_privilege checks whether a user can access a table in a particular way. The user can be
specified by name, by OID (pg_authid.oid), public to indicate the PUBLIC pseudo-role, or if the
argument is omitted current_user is assumed. The table can be specified by name or by OID. (Thus,
there are actually six variants of has_table_privilege, which can be distinguished by the number
and types of their arguments.) When specifying by name, the name can be schema-qualified if necessary.
The desired access privilege type is specified by a text string, which must evaluate to one of the values
SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER. Optionally, WITH GRANT

OPTION can be added to a privilege type to test whether the privilege is held with grant option. Also,
multiple privilege types can be listed separated by commas, in which case the result will be true if any of
the listed privileges is held. (Case of the privilege string is not significant, and extra whitespace is allowed
between but not within privilege names.) Some examples:

SELECT has_table_privilege(’myschema.mytable’, ’select’);
SELECT has_table_privilege(’joe’, ’mytable’, ’INSERT, SELECT WITH GRANT OPTION’);

has_sequence_privilege checks whether a user can access a sequence in a particular way. The pos-
sibilities for its arguments are analogous to has_table_privilege. The desired access privilege type
must evaluate to one of USAGE, SELECT, or UPDATE.

has_any_column_privilege checks whether a user can access any column of a table in a particular
way. Its argument possibilities are analogous to has_table_privilege, except that the desired access
privilege type must evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES. Note
that having any of these privileges at the table level implicitly grants it for each column of the table, so
has_any_column_privilege will always return true if has_table_privilege does for the same
arguments. But has_any_column_privilege also succeeds if there is a column-level grant of the priv-
ilege for at least one column.

has_column_privilege checks whether a user can access a column in a particular way. Its argument
possibilities are analogous to has_table_privilege, with the addition that the column can be specified
either by name or attribute number. The desired access privilege type must evaluate to some combination
of SELECT, INSERT, UPDATE, or REFERENCES. Note that having any of these privileges at the table level
implicitly grants it for each column of the table.

has_database_privilege checks whether a user can access a database in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent to
TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. Its argument
possibilities are analogous to has_table_privilege. When specifying a function by a text string rather

279

Chapter 9. Functions and Operators

than by OID, the allowed input is the same as for the regprocedure data type (see Section 8.18). The
desired access privilege type must evaluate to EXECUTE. An example is:

SELECT has_function_privilege(’joeuser’, ’myfunc(int, text)’, ’execute’);

has_foreign_data_wrapper_privilege checks whether a user can access a foreign-data wrapper in
a particular way. Its argument possibilities are analogous to has_table_privilege. The desired access
privilege type must evaluate to USAGE.

has_language_privilege checks whether a user can access a procedural language in a particular way.
Its argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to USAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. Its argument
possibilities are analogous to has_table_privilege. The desired access privilege type must evaluate
to some combination of CREATE or USAGE.

has_server_privilege checks whether a user can access a foreign server in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to USAGE.

has_tablespace_privilege checks whether a user can access a tablespace in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to CREATE.

pg_has_role checks whether a user can access a role in a particular way. Its argument possibilities are
analogous to has_table_privilege, except that public is not allowed as a user name. The desired
access privilege type must evaluate to some combination of MEMBER or USAGE. MEMBER denotes direct
or indirect membership in the role (that is, the right to do SET ROLE), while USAGE denotes whether the
privileges of the role are immediately available without doing SET ROLE.

Table 9-52 shows functions that determine whether a certain object is visible in the current schema search
path. For example, a table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table can
be referenced by name without explicit schema qualification. To list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 9-52. Schema Visibility Inquiry Functions

Name Return Type Description
pg_collation_is_visible(collation_oid)boolean is collation visible in search path

pg_conversion_is_visible(conversion_oid)boolean is conversion visible in search
path

pg_function_is_visible(function_oid)boolean is function visible in search path

280

Chapter 9. Functions and Operators

Name Return Type Description
pg_opclass_is_visible(opclass_oid)boolean is operator class visible in search

path

pg_operator_is_visible(operator_oid)boolean is operator visible in search path

pg_opfamily_is_visible(opclass_oid)boolean is operator family visible in
search path

pg_table_is_visible(table_oid)boolean is table visible in search path

pg_ts_config_is_visible(config_oid)boolean is text search configuration
visible in search path

pg_ts_dict_is_visible(dict_oid)boolean is text search dictionary visible
in search path

pg_ts_parser_is_visible(parser_oid)boolean is text search parser visible in
search path

pg_ts_template_is_visible(template_oid)boolean is text search template visible in
search path

pg_type_is_visible(type_oid) boolean is type (or domain) visible in
search path

Each function performs the visibility check for one type of database object. Note that
pg_table_is_visible can also be used with views, indexes and sequences; pg_type_is_visible
can also be used with domains. For functions and operators, an object in the search path is visible if there
is no object of the same name and argument data type(s) earlier in the path. For operator classes, both
name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an object by
name, it is convenient to use the OID alias types (regclass, regtype, regprocedure, regoperator,
regconfig, or regdictionary), for example:

SELECT pg_type_is_visible(’myschema.widget’::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the
name can be recognized at all, it must be visible.

Table 9-53 lists functions that extract information from the system catalogs.

Table 9-53. System Catalog Information Functions

Name Return Type Description
format_type(type_oid,

typemod)

text get SQL name of a data type

pg_describe_object(catalog_id,

object_id, object_sub_id)

text get description of a database
object

pg_get_constraintdef(constraint_oid)text get definition of a constraint

281

Chapter 9. Functions and Operators

Name Return Type Description
pg_get_constraintdef(constraint_oid,

pretty_bool)

text get definition of a constraint

pg_get_expr(pg_node_tree,

relation_oid)

text decompile internal form of an
expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

pg_get_expr(pg_node_tree,

relation_oid, pretty_bool)

text decompile internal form of an
expression, assuming that any
Vars in it refer to the relation
indicated by the second
parameter

pg_get_functiondef(func_oid) text get definition of a function

pg_get_function_arguments(func_oid)text get argument list of function’s
definition (with default values)

pg_get_function_identity_arguments(func_oid)text get argument list to identify a
function (without default values)

pg_get_function_result(func_oid)text get RETURNS clause for function

pg_get_indexdef(index_oid) text get CREATE INDEX command
for index

pg_get_indexdef(index_oid,

column_no, pretty_bool)

text get CREATE INDEX command
for index, or definition of just
one index column when
column_no is not zero

pg_get_keywords() setof record get list of SQL keywords and
their categories

pg_get_ruledef(rule_oid) text get CREATE RULE command for
rule

pg_get_ruledef(rule_oid,

pretty_bool)

text get CREATE RULE command for
rule

pg_get_serial_sequence(table_name,

column_name)

text get name of the sequence that a
serial, smallserial or
bigserial column uses

pg_get_triggerdef(trigger_oid)text get CREATE [CONSTRAINT]

TRIGGER command for trigger

pg_get_triggerdef(trigger_oid,
pretty_bool)

text get CREATE [CONSTRAINT]

TRIGGER command for trigger

pg_get_userbyid(role_oid) name get role name with given OID

pg_get_viewdef(view_name) text get underlying SELECT

command for view (deprecated)

282

Chapter 9. Functions and Operators

Name Return Type Description
pg_get_viewdef(view_name,

pretty_bool)

text get underlying SELECT

command for view; lines with
fields are wrapped to 80 columns
if pretty_bool is true
(deprecated)

pg_get_viewdef(view_oid) text get underlying SELECT

command for view

pg_get_viewdef(view_oid,

pretty_bool)

text get underlying SELECT

command for view; lines with
fields are wrapped to 80 columns
if pretty_bool is true

pg_get_viewdef(view_oid,

wrap_column_int)

text get underlying SELECT

command for view; lines with
fields are wrapped to specified
number of columns, pretty
printing is implied

pg_options_to_table(reloptions)setof record get the set of storage option
name/value pairs

pg_tablespace_databases(tablespace_oid)setof oid get the set of database OIDs that
have objects in the tablespace

pg_tablespace_location(tablespace_oid)text get the path in the file system that
this tablespace is located in

pg_typeof(any) regtype get the data type of any value

collation for (any) text get the collation of the argument

format_type returns the SQL name of a data type that is identified by its type OID and possibly a type
modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get_keywords returns a set of records describing the SQL keywords recognized by the server. The
word column contains the keyword. The catcode column contains a category code: U for unreserved,
C for column name, T for type or function name, or R for reserved. The catdesc column contains a
possibly-localized string describing the category.

pg_get_constraintdef, pg_get_indexdef, pg_get_ruledef, and pg_get_triggerdef, respec-
tively reconstruct the creating command for a constraint, index, rule, or trigger. (Note that this is a decom-
piled reconstruction, not the original text of the command.) pg_get_expr decompiles the internal form
of an individual expression, such as the default value for a column. It can be useful when examining the
contents of system catalogs. If the expression might contain Vars, specify the OID of the relation they refer
to as the second parameter; if no Vars are expected, zero is sufficient. pg_get_viewdef reconstructs the
SELECT query that defines a view. Most of these functions come in two variants, one of which can option-
ally “pretty-print” the result. The pretty-printed format is more readable, but the default format is more
likely to be interpreted the same way by future versions of PostgreSQL; avoid using pretty-printed output
for dump purposes. Passing false for the pretty-print parameter yields the same result as the variant that
does not have the parameter at all.

pg_get_functiondef returns a complete CREATE OR REPLACE FUNCTION statement for a function.
pg_get_function_arguments returns the argument list of a function, in the form it would need to

283

Chapter 9. Functions and Operators

appear in within CREATE FUNCTION. pg_get_function_result similarly returns the appropriate
RETURNS clause for the function. pg_get_function_identity_arguments returns the argument list
necessary to identify a function, in the form it would need to appear in within ALTER FUNCTION, for
instance. This form omits default values.

pg_get_serial_sequence returns the name of the sequence associated with a column, or NULL if no
sequence is associated with the column. The first input parameter is a table name with optional schema,
and the second parameter is a column name. Because the first parameter is potentially a schema and
table, it is not treated as a double-quoted identifier, meaning it is lower cased by default, while the second
parameter, being just a column name, is treated as double-quoted and has its case preserved. The function
returns a value suitably formatted for passing to sequence functions (see Section 9.16). This association
can be modified or removed with ALTER SEQUENCE OWNED BY. (The function probably should have
been called pg_get_owned_sequence; its current name reflects the fact that it’s typically used with
serial or bigserial columns.)

pg_get_userbyid extracts a role’s name given its OID.

pg_options_to_table returns the set of storage option name/value pairs
(option_name/option_value) when passed pg_class.reloptions or
pg_attribute.attoptions.

pg_tablespace_databases allows a tablespace to be examined. It returns the set of OIDs of databases
that have objects stored in the tablespace. If this function returns any rows, the tablespace is not empty
and cannot be dropped. To display the specific objects populating the tablespace, you will need to connect
to the databases identified by pg_tablespace_databases and query their pg_class catalogs.

pg_describe_object returns a description of a database object specified by catalog OID, object OID
and a (possibly zero) sub-object ID. This is useful to determine the identity of an object as stored in the
pg_depend catalog.

pg_typeof returns the OID of the data type of the value that is passed to it. This can be helpful for
troubleshooting or dynamically constructing SQL queries. The function is declared as returning regtype,
which is an OID alias type (see Section 8.18); this means that it is the same as an OID for comparison
purposes but displays as a type name. For example:

SELECT pg_typeof(33);

pg_typeof

integer

(1 row)

SELECT typlen FROM pg_type WHERE oid = pg_typeof(33);
typlen

4

(1 row)

The expression collation for returns the collation of the value that is passed to it. Example:

SELECT collation for (description) FROM pg_description LIMIT 1;
pg_collation_for

284

Chapter 9. Functions and Operators

"default"

(1 row)

SELECT collation for (’foo’ COLLATE "de_DE");
pg_collation_for

"de_DE"

(1 row)

The value might be quoted and schema-qualified. If no collation is derived for the argument expression,
then a null value is returned. If the argument is not of a collatable data type, then an error is raised.

The functions shown in Table 9-54 extract comments previously stored with the COMMENT command.
A null value is returned if no comment could be found for the specified parameters.

Table 9-54. Comment Information Functions

Name Return Type Description
col_description(table_oid,

column_number)

text get comment for a table column

obj_description(object_oid,

catalog_name)

text get comment for a database
object

obj_description(object_oid) text get comment for a database
object (deprecated)

shobj_description(object_oid,

catalog_name)

text get comment for a shared
database object

col_description returns the comment for a table column, which is specified by the OID of its table
and its column number. (obj_description cannot be used for table columns since columns do not have
OIDs of their own.)

The two-parameter form of obj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,’pg_class’) would retrieve the comment for the table with OID
123456. The one-parameter form of obj_description requires only the object OID. It is deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment might be returned.

shobj_description is used just like obj_description except it is used for retrieving comments on
shared objects. Some system catalogs are global to all databases within each cluster, and the descriptions
for objects in them are stored globally as well.

The functions shown in Table 9-55 provide server transaction information in an exportable form. The main
use of these functions is to determine which transactions were committed between two snapshots.

Table 9-55. Transaction IDs and Snapshots

Name Return Type Description
txid_current() bigint get current transaction ID

285

Chapter 9. Functions and Operators

Name Return Type Description
txid_current_snapshot() txid_snapshot get current snapshot

txid_snapshot_xip(txid_snapshot)setof bigint get in-progress transaction IDs in
snapshot

txid_snapshot_xmax(txid_snapshot)bigint get xmax of snapshot

txid_snapshot_xmin(txid_snapshot)bigint get xmin of snapshot

txid_visible_in_snapshot(bigint,

txid_snapshot)

boolean is transaction ID visible in
snapshot? (do not use with
subtransaction ids)

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4 billion transactions.
However, these functions export a 64-bit format that is extended with an “epoch” counter so it will not
wrap around during the life of an installation. The data type used by these functions, txid_snapshot,
stores information about transaction ID visibility at a particular moment in time. Its components are
described in Table 9-56.

Table 9-56. Snapshot Components

Name Description
xmin Earliest transaction ID (txid) that is still active.

All earlier transactions will either be committed
and visible, or rolled back and dead.

xmax First as-yet-unassigned txid. All txids greater than
or equal to this are not yet started as of the time of
the snapshot, and thus invisible.

xip_list Active txids at the time of the snapshot. The list
includes only those active txids between xmin and
xmax; there might be active txids higher than
xmax. A txid that is xmin <= txid < xmax and
not in this list was already completed at the time of
the snapshot, and thus either visible or dead
according to its commit status. The list does not
include txids of subtransactions.

txid_snapshot’s textual representation is xmin:xmax:xip_list. For example 10:20:10,14,15

means xmin=10, xmax=20, xip_list=10, 14, 15.

9.26. System Administration Functions
The functions described in this section are used to control and monitor a PostgreSQL installation.

286

Chapter 9. Functions and Operators

9.26.1. Configuration Settings Functions
Table 9-57 shows the functions available to query and alter run-time configuration parameters.

Table 9-57. Configuration Settings Functions

Name Return Type Description

current_setting(setting_name)

text get current value of setting

set_config(setting_name,

new_value, is_local)

text set parameter and return new
value

The function current_setting yields the current value of the setting setting_name. It corresponds
to the SQL command SHOW. An example:

SELECT current_setting(’datestyle’);

current_setting

ISO, MDY

(1 row)

set_config sets the parameter setting_name to new_value. If is_local is true, the new value
will only apply to the current transaction. If you want the new value to apply for the current session, use
false instead. The function corresponds to the SQL command SET. An example:

SELECT set_config(’log_statement_stats’, ’off’, false);

set_config

off

(1 row)

9.26.2. Server Signalling Functions
The functions shown in Table 9-58 send control signals to other server processes. Use of these functions
is usually restricted to superusers, with noted exceptions.

Table 9-58. Server Signalling Functions

Name Return Type Description

287

Chapter 9. Functions and Operators

Name Return Type Description
pg_cancel_backend(pid int) boolean Cancel a backend’s current

query. You can execute this
against another backend that has
exactly the same role as the user
calling the function. In all other
cases, you must be a superuser.

pg_reload_conf() boolean Cause server processes to reload
their configuration files

pg_rotate_logfile() boolean Rotate server’s log file

pg_terminate_backend(pid

int)

boolean Terminate a backend. You can
execute this against another
backend that has exactly the
same role as the user calling the
function. In all other cases, you
must be a superuser.

Each of these functions returns true if successful and false otherwise.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respectively)
to backend processes identified by process ID. The process ID of an active backend can be found from
the pid column of the pg_stat_activity view, or by listing the postgres processes on the server
(using ps on Unix or the Task Manager on Windows). The role of an active backend can be found from
the usename column of the pg_stat_activity view.

pg_reload_conf sends a SIGHUP signal to the server, causing configuration files to be reloaded by all
server processes.

pg_rotate_logfile signals the log-file manager to switch to a new output file immediately. This works
only when the built-in log collector is running, since otherwise there is no log-file manager subprocess.

9.26.3. Backup Control Functions
The functions shown in Table 9-59 assist in making on-line backups. These functions cannot be executed
during recovery (except pg_xlog_location_diff).

Table 9-59. Backup Control Functions

Name Return Type Description

pg_create_restore_point(name

text)

text Create a named point for
performing restore (restricted to
superusers)

pg_current_xlog_insert_location()

text Get current transaction log insert
location

pg_current_xlog_location() text Get current transaction log write
location

288

Chapter 9. Functions and Operators

Name Return Type Description
pg_start_backup(label text

[, fast boolean])

text Prepare for performing on-line
backup (restricted to superusers
or replication roles)

pg_stop_backup() text Finish performing on-line
backup (restricted to superusers
or replication roles)

pg_switch_xlog() text Force switch to a new transaction
log file (restricted to superusers)

pg_xlogfile_name(location

text)

text Convert transaction log location
string to file name

pg_xlogfile_name_offset(location

text)

text, integer Convert transaction log location
string to file name and decimal
byte offset within file

pg_xlog_location_diff(location

text, location text)

numeric Calculate the difference between
two transaction log locations

pg_start_backup accepts an arbitrary user-defined label for the backup. (Typically this would be
the name under which the backup dump file will be stored.) The function writes a backup label file
(backup_label) into the database cluster’s data directory, performs a checkpoint, and then returns the
backup’s starting transaction log location as text. The user can ignore this result value, but it is provided
in case it is useful.

postgres=# select pg_start_backup(’label_goes_here’);
pg_start_backup

0/D4445B8

(1 row)

There is an optional second parameter of type boolean. If true, it specifies executing
pg_start_backup as quickly as possible. This forces an immediate checkpoint which will cause a
spike in I/O operations, slowing any concurrently executing queries.

pg_stop_backup removes the label file created by pg_start_backup, and creates a backup history
file in the transaction log archive area. The history file includes the label given to pg_start_backup,
the starting and ending transaction log locations for the backup, and the starting and ending times of the
backup. The return value is the backup’s ending transaction log location (which again can be ignored).
After recording the ending location, the current transaction log insertion point is automatically advanced
to the next transaction log file, so that the ending transaction log file can be archived immediately to
complete the backup.

pg_switch_xlog moves to the next transaction log file, allowing the current file to be archived (assum-
ing you are using continuous archiving). The return value is the ending transaction log location + 1 within
the just-completed transaction log file. If there has been no transaction log activity since the last transac-
tion log switch, pg_switch_xlog does nothing and returns the start location of the transaction log file
currently in use.

289

Chapter 9. Functions and Operators

pg_create_restore_point creates a named transaction log record that can be used as recovery target,
and returns the corresponding transaction log location. The given name can then be used with recov-
ery_target_name to specify the point up to which recovery will proceed. Avoid creating multiple restore
points with the same name, since recovery will stop at the first one whose name matches the recovery
target.

pg_current_xlog_location displays the current transaction log write location in the same format
used by the above functions. Similarly, pg_current_xlog_insert_location displays the current
transaction log insertion point. The insertion point is the “logical” end of the transaction log at any instant,
while the write location is the end of what has actually been written out from the server’s internal buffers.
The write location is the end of what can be examined from outside the server, and is usually what you
want if you are interested in archiving partially-complete transaction log files. The insertion point is made
available primarily for server debugging purposes. These are both read-only operations and do not require
superuser permissions.

You can use pg_xlogfile_name_offset to extract the corresponding transaction log file name and
byte offset from the results of any of the above functions. For example:

postgres=# SELECT * FROM pg_xlogfile_name_offset(pg_stop_backup());
file_name | file_offset

--------------------------+-------------
00000001000000000000000D | 4039624

(1 row)

Similarly, pg_xlogfile_name extracts just the transaction log file name. When the given transaction log
location is exactly at a transaction log file boundary, both these functions return the name of the preceding
transaction log file. This is usually the desired behavior for managing transaction log archiving behavior,
since the preceding file is the last one that currently needs to be archived.

pg_xlog_location_diff calculates the difference in bytes between two transaction log locations. It
can be used with pg_stat_replication or some functions shown in Table 9-59 to get the replication
lag.

For details about proper usage of these functions, see Section 24.3.

9.26.4. Recovery Control Functions
The functions shown in Table 9-60 provide information about the current status of the standby. These
functions may be executed both during recovery and in normal running.

Table 9-60. Recovery Information Functions

Name Return Type Description
pg_is_in_recovery() bool True if recovery is still in

progress.

290

Chapter 9. Functions and Operators

Name Return Type Description

pg_last_xlog_receive_location()

text Get last transaction log location
received and synced to disk by
streaming replication. While
streaming replication is in
progress this will increase
monotonically. If recovery has
completed this will remain static
at the value of the last WAL
record received and synced to
disk during recovery. If
streaming replication is disabled,
or if it has not yet started, the
function returns NULL.

pg_last_xlog_replay_location()

text Get last transaction log location
replayed during recovery. If
recovery is still in progress this
will increase monotonically. If
recovery has completed then this
value will remain static at the
value of the last WAL record
applied during that recovery.
When the server has been started
normally without recovery the
function returns NULL.

pg_last_xact_replay_timestamp()

timestamp with time zone Get time stamp of last
transaction replayed during
recovery. This is the time at
which the commit or abort WAL
record for that transaction was
generated on the primary. If no
transactions have been replayed
during recovery, this function
returns NULL. Otherwise, if
recovery is still in progress this
will increase monotonically. If
recovery has completed then this
value will remain static at the
value of the last transaction
applied during that recovery.
When the server has been started
normally without recovery the
function returns NULL.

The functions shown in Table 9-61 control the progress of recovery. These functions may be executed
only during recovery.

291

Chapter 9. Functions and Operators

Table 9-61. Recovery Control Functions

Name Return Type Description
pg_is_xlog_replay_paused() bool True if recovery is paused.

pg_xlog_replay_pause() void Pauses recovery immediately.

pg_xlog_replay_resume() void Restarts recovery if it was
paused.

While recovery is paused no further database changes are applied. If in hot standby, all new queries will
see the same consistent snapshot of the database, and no further query conflicts will be generated until
recovery is resumed.

If streaming replication is disabled, the paused state may continue indefinitely without problem. While
streaming replication is in progress WAL records will continue to be received, which will eventually fill
available disk space, depending upon the duration of the pause, the rate of WAL generation and available
disk space.

9.26.5. Snapshot Synchronization Functions
PostgreSQL allows database sessions to synchronize their snapshots. A snapshot determines which data
is visible to the transaction that is using the snapshot. Synchronized snapshots are necessary when two
or more sessions need to see identical content in the database. If two sessions just start their transactions
independently, there is always a possibility that some third transaction commits between the executions
of the two START TRANSACTION commands, so that one session sees the effects of that transaction and
the other does not.

To solve this problem, PostgreSQL allows a transaction to export the snapshot it is using. As long as the
exporting transaction remains open, other transactions can import its snapshot, and thereby be guaranteed
that they see exactly the same view of the database that the first transaction sees. But note that any database
changes made by any one of these transactions remain invisible to the other transactions, as is usual for
changes made by uncommitted transactions. So the transactions are synchronized with respect to pre-
existing data, but act normally for changes they make themselves.

Snapshots are exported with the pg_export_snapshot function, shown in Table 9-62, and imported
with the SET TRANSACTION command.

Table 9-62. Snapshot Synchronization Functions

Name Return Type Description
pg_export_snapshot() text Save the current snapshot and

return its identifier

The function pg_export_snapshot saves the current snapshot and returns a text string identifying the
snapshot. This string must be passed (outside the database) to clients that want to import the snapshot.
The snapshot is available for import only until the end of the transaction that exported it. A transaction
can export more than one snapshot, if needed. Note that doing so is only useful in READ COMMITTED

transactions, since in REPEATABLE READ and higher isolation levels, transactions use the same snap-
shot throughout their lifetime. Once a transaction has exported any snapshots, it cannot be prepared with

292

Chapter 9. Functions and Operators

PREPARE TRANSACTION.

See SET TRANSACTION for details of how to use an exported snapshot.

9.26.6. Database Object Management Functions
The functions shown in Table 9-63 calculate the disk space usage of database objects.

Table 9-63. Database Object Size Functions

Name Return Type Description
pg_column_size(any) int Number of bytes used to store a

particular value (possibly
compressed)

pg_database_size(oid) bigint Disk space used by the database
with the specified OID

pg_database_size(name) bigint Disk space used by the database
with the specified name

pg_indexes_size(regclass) bigint Total disk space used by indexes
attached to the specified table

pg_relation_size(relation

regclass, fork text)

bigint Disk space used by the specified
fork (’main’, ’fsm’ or ’vm’)
of the specified table or index

pg_relation_size(relation

regclass)

bigint Shorthand for
pg_relation_size(...,

’main’)

pg_size_pretty(bigint) text Converts a size in bytes
expressed as a 64-bit integer into
a human-readable format with
size units

pg_size_pretty(numeric) text Converts a size in bytes
expressed as a numeric value into
a human-readable format with
size units

pg_table_size(regclass) bigint Disk space used by the specified
table, excluding indexes (but
including TOAST, free space
map, and visibility map)

pg_tablespace_size(oid) bigint Disk space used by the
tablespace with the specified
OID

pg_tablespace_size(name) bigint Disk space used by the
tablespace with the specified
name

293

Chapter 9. Functions and Operators

Name Return Type Description

pg_total_relation_size(regclass)

bigint Total disk space used by the
specified table, including all
indexes and TOAST data

pg_column_size shows the space used to store any individual data value.

pg_total_relation_size accepts the OID or name of a table or toast table, and returns the to-
tal on-disk space used for that table, including all associated indexes. This function is equivalent to
pg_table_size + pg_indexes_size.

pg_table_size accepts the OID or name of a table and returns the disk space needed for that table,
exclusive of indexes. (TOAST space, free space map, and visibility map are included.)

pg_indexes_size accepts the OID or name of a table and returns the total disk space used by all the
indexes attached to that table.

pg_database_size and pg_tablespace_size accept the OID or name of a database or tablespace,
and return the total disk space used therein.

pg_relation_size accepts the OID or name of a table, index or toast table, and returns the on-disk size
in bytes. Specifying ’main’ or leaving out the second argument returns the size of the main data fork of
the relation. Specifying ’fsm’ returns the size of the Free Space Map (see Section 56.3) associated with
the relation. Specifying ’vm’ returns the size of the Visibility Map (see Section 56.4) associated with the
relation. Note that this function shows the size of only one fork; for most purposes it is more convenient
to use the higher-level functions pg_total_relation_size or pg_table_size.

pg_size_pretty can be used to format the result of one of the other functions in a human-readable way,
using kB, MB, GB or TB as appropriate.

The functions above that operate on tables or indexes accept a regclass argument, which is simply the
OID of the table or index in the pg_class system catalog. You do not have to look up the OID by hand,
however, since the regclass data type’s input converter will do the work for you. Just write the table
name enclosed in single quotes so that it looks like a literal constant. For compatibility with the handling
of ordinary SQL names, the string will be converted to lower case unless it contains double quotes around
the table name.

If an OID that does not represent an existing object is passed as argument to one of the above functions,
NULL is returned.

The functions shown in Table 9-64 assist in identifying the specific disk files associated with database
objects.

Table 9-64. Database Object Location Functions

Name Return Type Description

pg_relation_filenode(relation

regclass)

oid Filenode number of the specified
relation

pg_relation_filepath(relation

regclass)

text File path name of the specified
relation

294

Chapter 9. Functions and Operators

pg_relation_filenode accepts the OID or name of a table, index, sequence, or toast table, and returns
the “filenode” number currently assigned to it. The filenode is the base component of the file name(s)
used for the relation (see Section 56.1 for more information). For most tables the result is the same as
pg_class.relfilenode, but for certain system catalogs relfilenode is zero and this function must
be used to get the correct value. The function returns NULL if passed a relation that does not have storage,
such as a view.

pg_relation_filepath is similar to pg_relation_filenode, but it returns the entire file path name
(relative to the database cluster’s data directory PGDATA) of the relation.

9.26.7. Generic File Access Functions
The functions shown in Table 9-65 provide native access to files on the machine hosting the server. Only
files within the database cluster directory and the log_directory can be accessed. Use a relative path
for files in the cluster directory, and a path matching the log_directory configuration setting for log
files. Use of these functions is restricted to superusers.

Table 9-65. Generic File Access Functions

Name Return Type Description
pg_ls_dir(dirname text) setof text List the contents of a directory

pg_read_file(filename text

[, offset bigint, length

bigint])

text Return the contents of a text file

pg_read_binary_file(filename

text [, offset bigint, length

bigint])

bytea Return the contents of a file

pg_stat_file(filename text) record Return information about a file

pg_ls_dir returns all the names in the specified directory, except the special entries “.” and “..”.

pg_read_file returns part of a text file, starting at the given offset, returning at most length bytes
(less if the end of file is reached first). If offset is negative, it is relative to the end of the file. If offset
and length are omitted, the entire file is returned. The bytes read from the file are interpreted as a string
in the server encoding; an error is thrown if they are not valid in that encoding.

pg_read_binary_file is similar to pg_read_file, except that the result is a bytea value; accord-
ingly, no encoding checks are performed. In combination with the convert_from function, this function
can be used to read a file in a specified encoding:

SELECT convert_from(pg_read_binary_file(’file_in_utf8.txt’), ’UTF8’);

pg_stat_file returns a record containing the file size, last accessed time stamp, last modified time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Windows only),
and a boolean indicating if it is a directory. Typical usages include:

SELECT * FROM pg_stat_file(’filename’);

295

Chapter 9. Functions and Operators

SELECT (pg_stat_file(’filename’)).modification;

9.26.8. Advisory Lock Functions
The functions shown in Table 9-66 manage advisory locks. For details about proper use of these functions,
see Section 13.3.4.

Table 9-66. Advisory Lock Functions

Name Return Type Description
pg_advisory_lock(key

bigint)

void Obtain exclusive session level
advisory lock

pg_advisory_lock(key1 int,

key2 int)

void Obtain exclusive session level
advisory lock

pg_advisory_lock_shared(key

bigint)

void Obtain shared session level
advisory lock

pg_advisory_lock_shared(key1

int, key2 int)

void Obtain shared session level
advisory lock

pg_advisory_unlock(key

bigint)

boolean Release an exclusive session
level advisory lock

pg_advisory_unlock(key1

int, key2 int)

boolean Release an exclusive session
level advisory lock

pg_advisory_unlock_all() void Release all session level advisory
locks held by the current session

pg_advisory_unlock_shared(key

bigint)

boolean Release a shared session level
advisory lock

pg_advisory_unlock_shared(key1

int, key2 int)

boolean Release a shared session level
advisory lock

pg_advisory_xact_lock(key

bigint)

void Obtain exclusive transaction
level advisory lock

pg_advisory_xact_lock(key1

int, key2 int)

void Obtain exclusive transaction
level advisory lock

pg_advisory_xact_lock_shared(key

bigint)

void Obtain shared transaction level
advisory lock

pg_advisory_xact_lock_shared(key1

int, key2 int)

void Obtain shared transaction level
advisory lock

296

Chapter 9. Functions and Operators

Name Return Type Description
pg_try_advisory_lock(key

bigint)

boolean Obtain exclusive session level
advisory lock if available

pg_try_advisory_lock(key1

int, key2 int)

boolean Obtain exclusive session level
advisory lock if available

pg_try_advisory_lock_shared(key

bigint)

boolean Obtain shared session level
advisory lock if available

pg_try_advisory_lock_shared(key1

int, key2 int)

boolean Obtain shared session level
advisory lock if available

pg_try_advisory_xact_lock(key

bigint)

boolean Obtain exclusive transaction
level advisory lock if available

pg_try_advisory_xact_lock(key1

int, key2 int)

boolean Obtain exclusive transaction
level advisory lock if available

pg_try_advisory_xact_lock_shared(key

bigint)

boolean Obtain shared transaction level
advisory lock if available

pg_try_advisory_xact_lock_shared(key1

int, key2 int)

boolean Obtain shared transaction level
advisory lock if available

pg_advisory_lock locks an application-defined resource, which can be identified either by a single 64-
bit key value or two 32-bit key values (note that these two key spaces do not overlap). If another session
already holds a lock on the same resource identifier, this function will wait until the resource becomes
available. The lock is exclusive. Multiple lock requests stack, so that if the same resource is locked three
times it must then be unlocked three times to be released for other sessions’ use.

pg_advisory_lock_shared works the same as pg_advisory_lock, except the lock can be shared
with other sessions requesting shared locks. Only would-be exclusive lockers are locked out.

pg_try_advisory_lock is similar to pg_advisory_lock, except the function will not wait for the
lock to become available. It will either obtain the lock immediately and return true, or return false if
the lock cannot be acquired immediately.

pg_try_advisory_lock_shared works the same as pg_try_advisory_lock, except it attempts to
acquire a shared rather than an exclusive lock.

pg_advisory_unlock will release a previously-acquired exclusive session level advisory lock. It returns
true if the lock is successfully released. If the lock was not held, it will return false, and in addition, an
SQL warning will be reported by the server.

pg_advisory_unlock_shared works the same as pg_advisory_unlock, except it releases a shared
session level advisory lock.

pg_advisory_unlock_all will release all session level advisory locks held by the current session.
(This function is implicitly invoked at session end, even if the client disconnects ungracefully.)

297

Chapter 9. Functions and Operators

pg_advisory_xact_lock works the same as pg_advisory_lock, except the lock is automatically
released at the end of the current transaction and cannot be released explicitly.

pg_advisory_xact_lock_shared works the same as pg_advisory_lock_shared, except the lock
is automatically released at the end of the current transaction and cannot be released explicitly.

pg_try_advisory_xact_lock works the same as pg_try_advisory_lock, except the lock, if ac-
quired, is automatically released at the end of the current transaction and cannot be released explicitly.

pg_try_advisory_xact_lock_shared works the same as pg_try_advisory_lock_shared, ex-
cept the lock, if acquired, is automatically released at the end of the current transaction and cannot be
released explicitly.

9.27. Trigger Functions
Currently PostgreSQL provides one built in trigger function,
suppress_redundant_updates_trigger, which will prevent any update that
does not actually change the data in the row from taking place, in contrast to the normal behavior which
always performs the update regardless of whether or not the data has changed. (This normal behavior
makes updates run faster, since no checking is required, and is also useful in certain cases.)

Ideally, you should normally avoid running updates that don’t actually change the data in the record.
Redundant updates can cost considerable unnecessary time, especially if there are lots of indexes to alter,
and space in dead rows that will eventually have to be vacuumed. However, detecting such situations in
client code is not always easy, or even possible, and writing expressions to detect them can be error-prone.
An alternative is to use suppress_redundant_updates_trigger, which will skip updates that don’t
change the data. You should use this with care, however. The trigger takes a small but non-trivial time for
each record, so if most of the records affected by an update are actually changed, use of this trigger will
actually make the update run slower.

The suppress_redundant_updates_trigger function can be added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE PROCEDURE suppress_redundant_updates_trigger();

In most cases, you would want to fire this trigger last for each row. Bearing in mind that triggers fire in
name order, you would then choose a trigger name that comes after the name of any other trigger you
might have on the table.

For more information about creating triggers, see CREATE TRIGGER.

298

Chapter 10. Type Conversion
SQL statements can, intentionally or not, require the mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism. However,
implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these results
can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the rele-
vant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed functions
and operators.

10.1. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which determines its
behavior and allowed usage. PostgreSQL has an extensible type system that is more general and flexible
than other SQL implementations. Hence, most type conversion behavior in PostgreSQL is governed by
general rules rather than by ad hoc heuristics. This allows the use of mixed-type expressions even with
user-defined types.

The PostgreSQL scanner/parser divides lexical elements into five fundamental categories: integers, non-
integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are first classi-
fied as strings. The SQL language definition allows specifying type names with strings, and this mecha-
nism can be used in PostgreSQL to start the parser down the correct path. For example, the query:

SELECT text ’Origin’ AS "label", point ’(0,0)’ AS "value";

label | value
--------+-------
Origin | (0,0)

(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then the
placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have one
or more arguments. Since PostgreSQL permits function overloading, the function name alone does
not uniquely identify the function to be called; the parser must select the right function based on the
data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators. Like functions, operators can be overloaded, so the same problem
of selecting the right operator exists.

299

Chapter 10. Type Conversion

Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a table. The expressions
in the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a single set of columns,
the types of the results of each SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be converted to a common type so that the
CASE expression as a whole has a known output type. The same holds for ARRAY constructs, and for
the GREATEST and LEAST functions.

The system catalogs store information about which conversions, or casts, exist between which data types,
and how to perform those conversions. Additional casts can be added by the user with the CREATE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between
built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper casting be-
havior among groups of types that have implicit casts. Data types are divided into several basic type
categories, including boolean, numeric, string, bitstring, datetime, timespan, geometric,
network, and user-defined. (For a list see Table 45-51; but note it is also possible to create custom type
categories.) Within each category there can be one or more preferred types, which are preferred when
there is a choice of possible types. With careful selection of preferred types and available implicit casts, it
is possible to ensure that ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed with several principles in mind:

• Implicit conversions should never have surprising or unpredictable outcomes.

• There should be no extra overhead in the parser or executor if a query does not need implicit type
conversion. That is, if a query is well-formed and the types already match, then the query should execute
without spending extra time in the parser and without introducing unnecessary implicit conversion calls
in the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and no
longer do implicit conversion to use the old function.

10.2. Operators
The specific operator that is referenced by an operator expression is determined using the following pro-
cedure. Note that this procedure is indirectly affected by the precedence of the involved operators, since
that will determine which sub-expressions are taken to be the inputs of which operators. See Section 4.1.6
for more information.

300

Chapter 10. Type Conversion

Operator Type Resolution

1. Select the operators to be considered from the pg_operator system catalog. If a non-schema-
qualified operator name was used (the usual case), the operators considered are those with the match-
ing name and argument count that are visible in the current search path (see Section 5.7.3). If a
qualified operator name was given, only operators in the specified schema are considered.

a. If the search path finds multiple operators with identical argument types, only the one ap-
pearing earliest in the path is considered. Operators with different argument types are con-
sidered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of the unknown type, then assume it is the
same type as the other argument for this check. Invocations involving two unknown inputs,
or a unary operator with an unknown input, will never find a match at this step.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have exact matches. If only one candidate remains, use it; else continue to the next
step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be de-
duced without more clues. Now discard candidates that do not accept the selected type
category. Furthermore, if any candidate accepts a preferred type in that category, discard
candidates that accept non-preferred types for that argument. Keep all candidates if none
survive these tests. If only one candidate remains, use it; else continue to the next step.

e. If there are both unknown and known-type arguments, and all the known-type arguments
have the same type, assume that the unknown arguments are also of that type, and check
which candidates can accept that type at the unknown-argument positions. If exactly one
candidate passes this test, use it. Otherwise, fail.

Some examples follow.

301

Chapter 10. Type Conversion

Example 10-1. Factorial Operator Type Resolution

There is only one factorial operator (postfix !) defined in the standard catalog, and it takes an argument
of type bigint. The scanner assigns an initial type of integer to the argument in this query expression:

SELECT 40 ! AS "40 factorial";

40 factorial
--
815915283247897734345611269596115894272000000000

(1 row)

So the parser does a type conversion on the operand and the query is equivalent to:
SELECT CAST(40 AS bigint) ! AS "40 factorial";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text ’abc’ || ’def’ AS "text and unknown";

text and unknown

abcdef

(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there is,
it assumes that the second argument should be interpreted as type text.

Here is a concatenation of two values of unspecified types:

SELECT ’abc’ || ’def’ AS "unspecified";

unspecified

abcdef

(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the preferred type for strings, text, is used as the specific type to resolve the unknown-type
literals as.

Example 10-3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type float8, which

302

Chapter 10. Type Conversion

is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
an unknown input:

SELECT @ ’-4.5’ AS "abs";
abs

4.5

(1 row)

Here the system has implicitly resolved the unknown-type literal as type float8 before applying the
chosen operator. We can verify that float8 and not some other type was used:
SELECT @ ’-4.5e500’ AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not for
float8. So, if we try a similar case with ~, we get:

SELECT ~ ’20’ AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You might need to add
explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be pre-
ferred. We can help it out with an explicit cast:
SELECT ~ CAST(’20’ AS int8) AS "negation";

negation

-21
(1 row)

Example 10-4. Array Inclusion Operator Type Resolution

Here is another example of resolving an operator with one known and one unknown input:

SELECT array[1,2] <@ ’{1,2,3}’ as "is subset";

is subset

t

(1 row)

The PostgreSQL operator catalog has several entries for the infix operator <@, but the only two that could
possibly accept an integer array on the left-hand side are array inclusion (anyarray <@ anyarray)
and range inclusion (anyelement <@ anyrange). Since none of these polymorphic pseudo-types (see
Section 8.19) are considered preferred, the parser cannot resolve the ambiguity on that basis. However, the
last resolution rule tells it to assume that the unknown-type literal is of the same type as the other input,
that is, integer array. Now only one of the two operators can match, so array inclusion is selected. (Had
range inclusion been selected, we would have gotten an error, because the string does not have the right
format to be a range literal.)

303

Chapter 10. Type Conversion

10.3. Functions
The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1. Select the functions to be considered from the pg_proc system catalog. If a non-schema-qualified
function name was used, the functions considered are those with the matching name and argument
count that are visible in the current search path (see Section 5.7.3). If a qualified function name was
given, only functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one appear-
ing earliest in the path is considered. Functions of different argument types are considered
on an equal footing regardless of search path position.

b. If a function is declared with a VARIADIC array parameter, and the call does not use the
VARIADIC keyword, then the function is treated as if the array parameter were replaced
by one or more occurrences of its element type, as needed to match the call. After such
expansion the function might have effective argument types identical to some non-variadic
function. In that case the function appearing earlier in the search path is used, or if the two
functions are in the same schema, the non-variadic one is preferred.

c. Functions that have default values for parameters are considered to match any call that omits
zero or more of the defaultable parameter positions. If more than one such function matches
a call, the one appearing earliest in the search path is used. If there are two or more such
functions in the same schema with identical parameter types in the non-defaulted positions
(which is possible if they have different sets of defaultable parameters), the system will not
be able to determine which to prefer, and so an “ambiguous function call” error will result
if no better match to the call can be found.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. (Cases involving unknown will never find a
match at this step.)

3. If no exact match is found, see if the function call appears to be a special type conversion request. This
happens if the function call has just one argument and the function name is the same as the (internal)
name of some data type. Furthermore, the function argument must be either an unknown-type literal,
or a type that is binary-coercible to the named data type, or a type that could be converted to the
named data type by applying that type’s I/O functions (that is, the conversion is either to or from one
of the standard string types). When these conditions are met, the function call is treated as a form of
CAST specification. 1

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

1. The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function. If
there is a cast function, it is conventionally named after its output type, and so there is no need to have a special case. See CREATE
CAST for additional commentary.

304

Chapter 10. Type Conversion

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have exact matches. If only one candidate remains, use it; else continue to the next
step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same
type category, select that category; otherwise fail because the correct choice cannot be de-
duced without more clues. Now discard candidates that do not accept the selected type
category. Furthermore, if any candidate accepts a preferred type in that category, discard
candidates that accept non-preferred types for that argument. Keep all candidates if none
survive these tests. If only one candidate remains, use it; else continue to the next step.

e. If there are both unknown and known-type arguments, and all the known-type arguments
have the same type, assume that the unknown arguments are also of that type, and check
which candidates can accept that type at the unknown-argument positions. If exactly one
candidate passes this test, use it. Otherwise, fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10-5. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric and
a second argument of type integer. So the following query automatically converts the first argument of
type integer to numeric:

SELECT round(4, 4);

round

4.0000

(1 row)

That query is actually transformed by the parser to:
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type numeric, the following query
will require no type conversion and therefore might be slightly more efficient:

SELECT round(4.0, 4);

305

Chapter 10. Type Conversion

Example 10-6. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred category string (namely of type text).

SELECT substr(’1234’, 3);

substr

34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr(varchar ’1234’, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become:
SELECT substr(CAST (varchar ’1234’ AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to
text:

SELECT substr(1234, 3);
ERROR: function substr(integer, integer) does not exist
HINT: No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will work,
however:
SELECT substr(CAST (1234 AS text), 3);

substr

34
(1 row)

306

Chapter 10. Type Conversion

10.4. Value Storage
Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type to
itself. If one is found in the pg_cast catalog, apply it to the expression before storing into the
destination column. The implementation function for such a cast always takes an extra parameter
of type integer, which receives the destination column’s atttypmod value (typically its declared
length, although the interpretation of atttypmod varies for different data types), and it may take
a third boolean parameter that says whether the cast is explicit or implicit. The cast function is
responsible for applying any length-dependent semantics such as size checking or truncation.

Example 10-7. character Storage Type Conversion

For a target column declared as character(20) the following statement shows that the stored value is
sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT ’abc’ || ’def’;
SELECT v, octet_length(v) FROM vv;

v | octet_length
----------------------+--------------
abcdef | 20

(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, allowing
the || operator to be resolved as text concatenation. Then the text result of the operator is converted to
bpchar (“blank-padded char”, the internal name of the character data type) to match the target column
type. (Since the conversion from text to bpchar is binary-coercible, this conversion does not insert
any real function call.) Finally, the sizing function bpchar(bpchar, integer, boolean) is found in
the system catalog and applied to the operator’s result and the stored column length. This type-specific
function performs the required length check and addition of padding spaces.

10.5. UNION, CASE, and Related Constructs
SQL UNION constructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union query. The INTERSECT and EXCEPT
constructs resolve dissimilar types in the same way as UNION. The CASE, ARRAY, VALUES, GREATEST and

307

Chapter 10. Type Conversion

LEAST constructs use the identical algorithm to match up their component expressions and select a result
data type.

Type Resolution for UNION, CASE, and Related Constructs

1. If all inputs are of the same type, and it is not unknown, resolve as that type. Otherwise, replace any
domain types in the list with their underlying base types.

2. If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored.

3. If the non-unknown inputs are not all of the same type category, fail.

4. Choose the first non-unknown input type which is a preferred type in that category, if there is one.

5. Otherwise, choose the last non-unknown input type that allows all the preceding non-unknown inputs
to be implicitly converted to it. (There always is such a type, since at least the first type in the list
must satisfy this condition.)

6. Convert all inputs to the selected type. Fail if there is not a conversion from a given input to the
selected type.

Some examples follow.

Example 10-8. Type Resolution with Underspecified Types in a Union

SELECT text ’a’ AS "text" UNION SELECT ’b’;

text

a
b

(2 rows)

Here, the unknown-type literal ’b’ will be resolved to type text.

Example 10-9. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1
1.2

(2 rows)

The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so that
type is used.

308

Chapter 10. Type Conversion

Example 10-10. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST(’2.2’ AS REAL);

real

1
2.2

(2 rows)

Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to real,
the union result type is resolved as real.

309

Chapter 11. Indexes
Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to
the database system as a whole, so they should be used sensibly.

11.1. Introduction
Suppose we have a table similar to this:

CREATE TABLE test1 (
id integer,
content varchar

);

and the application issues many queries of the form:

SELECT content FROM test1 WHERE id = constant;

With no advance preparation, the system would have to scan the entire test1 table, row by row, to find all
matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one) that would
be returned by such a query, this is clearly an inefficient method. But if the system has been instructed to
maintain an index on the id column, it can use a more efficient method for locating matching rows. For
instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked up
by readers are collected in an alphabetic index at the end of the book. The interested reader can scan the
index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book to
find the material of interest. Just as it is the task of the author to anticipate the items that readers are likely
to look up, it is the task of the database programmer to foresee which indexes will be useful.

The following command can be used to create an index on the id column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from tables at
any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient than
a sequential table scan. But you might have to run the ANALYZE command regularly to update statistics
to allow the query planner to make educated decisions. See Chapter 14 for information about how to find
out whether an index is used and when and why the planner might choose not to use an index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can moreover
be used in join searches. Thus, an index defined on a column that is part of a join condition can also
significantly speed up queries with joins.

310

Chapter 11. Indexes

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads (SELECT
statements) to occur on the table in parallel with index creation, but writes (INSERT, UPDATE, DELETE)
are blocked until the index build is finished. In production environments this is often unacceptable. It is
possible to allow writes to occur in parallel with index creation, but there are several caveats to be aware
of — for more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead to data
manipulation operations. Therefore indexes that are seldom or never used in queries should be removed.

11.2. Index Types
PostgreSQL provides several index types: B-tree, Hash, GiST, SP-GiST and GIN. Each index type uses
a different algorithm that is best suited to different types of queries. By default, the CREATE INDEX

command creates B-tree indexes, which fit the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In particular,
the PostgreSQL query planner will consider using a B-tree index whenever an indexed column is involved
in a comparison using one of these operators:

<

<=

=

>=

>

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be imple-
mented with a B-tree index search. Also, an IS NULL or IS NOT NULL condition on an index column
can be used with a B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE and
~ if the pattern is a constant and is anchored to the beginning of the string — for example, col LIKE

’foo%’ or col ~ ’^foo’, but not col LIKE ’%bar’. However, if your database does not use the
C locale you will need to create the index with a special operator class to support indexing of pattern-
matching queries; see Section 11.9 below. It is also possible to use B-tree indexes for ILIKE and ~*, but
only if the pattern starts with non-alphabetic characters, i.e., characters that are not affected by upper/lower
case conversion.

B-tree indexes can also be used to retrieve data in sorted order. This is not always faster than a simple scan
and sort, but it is often helpful.

Hash indexes can only handle simple equality comparisons. The query planner will consider using a
hash index whenever an indexed column is involved in a comparison using the = operator. The following
command is used to create a hash index:

CREATE INDEX name ON table USING hash (column);

311

Chapter 11. Indexes

Caution
Hash index operations are not presently WAL-logged, so hash indexes might need
to be rebuilt with REINDEX after a database crash if there were unwritten changes.
Also, changes to hash indexes are not replicated over streaming or file-based repli-
cation after the initial base backup, so they give wrong answers to queries that
subsequently use them. For these reasons, hash index use is presently discour-
aged.

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST index
can be used vary depending on the indexing strategy (the operator class). As an example, the standard
distribution of PostgreSQL includes GiST operator classes for several two-dimensional geometric data
types, which support indexed queries using these operators:

<<

&<

&>

>>

<<|

&<|

|&>

|>>

@>

<@

~=

&&

(See Section 9.11 for the meaning of these operators.) Many other GiST operator classes are available in
the contrib collection or as separate projects. For more information see Chapter 53.

GiST indexes are also capable of optimizing “nearest-neighbor” searches, such as

SELECT * FROM places ORDER BY location <-> point ’(101,456)’ LIMIT 10;

which finds the ten places closest to a given target point. The ability to do this is again dependent on the
particular operator class being used.

SP-GiST indexes, like GiST indexes, offer an infrastructure that supports various kinds of searches. SP-
GiST permits implementation of a wide range of different non-balanced disk-based data structures, such
as quadtrees, k-d trees, and suffix trees (tries). As an example, the standard distribution of PostgreSQL
includes SP-GiST operator classes for two-dimensional points, which support indexed queries using these
operators:

<<

>>

~=

<@

<^

>^

312

Chapter 11. Indexes

(See Section 9.11 for the meaning of these operators.) For more information see Chapter 54.

GIN indexes are inverted indexes which can handle values that contain more than one key, arrays for
example. Like GiST and SP-GiST, GIN can support many different user-defined indexing strategies and
the particular operators with which a GIN index can be used vary depending on the indexing strategy. As
an example, the standard distribution of PostgreSQL includes GIN operator classes for one-dimensional
arrays, which support indexed queries using these operators:

<@

@>

=

&&

(See Section 9.18 for the meaning of these operators.) Many other GIN operator classes are available in
the contrib collection or as separate projects. For more information see Chapter 55.

11.3. Multicolumn Indexes
An index can be defined on more than one column of a table. For example, if you have a table of this
form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

);

(say, you keep your /dev directory in a database...) and you frequently issue queries like:

SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree, GiST and GIN index types support multicolumn indexes. Up to 32 columns can
be specified. (This limit can be altered when building PostgreSQL; see the file pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index’s
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the first
column that does not have an equality constraint, will be used to limit the portion of the index that is
scanned. Constraints on columns to the right of these columns are checked in the index, so they save visits
to the table proper, but they do not reduce the portion of the index that has to be scanned. For example,
given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND c < 77, the
index would have to be scanned from the first entry with a = 5 and b = 42 up through the last entry with a

= 5. Index entries with c >= 77 would be skipped, but they’d still have to be scanned through. This index
could in principle be used for queries that have constraints on b and/or c with no constraint on a — but

313

Chapter 11. Indexes

the entire index would have to be scanned, so in most cases the planner would prefer a sequential table
scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index’s
columns. Conditions on additional columns restrict the entries returned by the index, but the condition on
the first column is the most important one for determining how much of the index needs to be scanned. A
GiST index will be relatively ineffective if its first column has only a few distinct values, even if there are
many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index’s
columns. Unlike B-tree or GiST, index search effectiveness is the same regardless of which index col-
umn(s) the query conditions use.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are unlikely to be helpful unless the usage
of the table is extremely stylized. See also Section 11.5 for some discussion of the merits of different index
configurations.

11.4. Indexes and ORDER BY

In addition to simply finding the rows to be returned by a query, an index may be able to deliver them
in a specific sorted order. This allows a query’s ORDER BY specification to be honored without a separate
sorting step. Of the index types currently supported by PostgreSQL, only B-tree can produce sorted output
— the other index types return matching rows in an unspecified, implementation-dependent order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index
that matches the specification, or by scanning the table in physical order and doing an explicit sort. For a
query that requires scanning a large fraction of the table, an explicit sort is likely to be faster than using
an index because it requires less disk I/O due to following a sequential access pattern. Indexes are more
useful when only a few rows need be fetched. An important special case is ORDER BY in combination
with LIMIT n: an explicit sort will have to process all the data to identify the first n rows, but if there is an
index matching the ORDER BY, the first n rows can be retrieved directly, without scanning the remainder
at all.

By default, B-tree indexes store their entries in ascending order with nulls last. This means that a forward
scan of an index on column x produces output satisfying ORDER BY x (or more verbosely, ORDER BY

x ASC NULLS LAST). The index can also be scanned backward, producing output satisfying ORDER BY

x DESC (or more verbosely, ORDER BY x DESC NULLS FIRST, since NULLS FIRST is the default for
ORDER BY DESC).

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST, and/or
NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS FIRST

or ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

314

Chapter 11. Indexes

You might wonder why bother providing all four options, when two options together with the possibility of
backward scan would cover all the variants of ORDER BY. In single-column indexes the options are indeed
redundant, but in multicolumn indexes they can be useful. Consider a two-column index on (x, y): this
can satisfy ORDER BY x, y if we scan forward, or ORDER BY x DESC, y DESC if we scan backward.
But it might be that the application frequently needs to use ORDER BY x ASC, y DESC. There is no way
to get that ordering from a plain index, but it is possible if the index is defined as (x ASC, y DESC) or
(x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they can
produce tremendous speedups for certain queries. Whether it’s worth maintaining such an index depends
on how often you use queries that require a special sort ordering.

11.5. Combining Multiple Indexes
A single index scan can only use query clauses that use the index’s columns with operators of its operator
class and are joined with AND. For example, given an index on (a, b) a query condition like WHERE a

= 5 AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6 could not directly use
the index.

Fortunately, PostgreSQL has the ability to combine multiple indexes (including multiple uses of the same
index) to handle cases that cannot be implemented by single index scans. The system can form AND and OR
conditions across several index scans. For example, a query like WHERE x = 42 OR x = 47 OR x =

53 OR x = 99 could be broken down into four separate scans of an index on x, each scan using one of the
query clauses. The results of these scans are then ORed together to produce the result. Another example
is that if we have separate indexes on x and y, one possible implementation of a query like WHERE x =

5 AND y = 6 is to use each index with the appropriate query clause and then AND together the index
results to identify the result rows.

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index’s conditions. The bitmaps are
then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited and
returned. The table rows are visited in physical order, because that is how the bitmap is laid out; this
means that any ordering of the original indexes is lost, and so a separate sort step will be needed if the
query has an ORDER BY clause. For this reason, and because each additional index scan adds extra time,
the planner will sometimes choose to use a simple index scan even though additional indexes are available
that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful, and
the database developer must make trade-offs to decide which indexes to provide. Sometimes multicolumn
indexes are best, but sometimes it’s better to create separate indexes and rely on the index-combination
feature. For example, if your workload includes a mix of queries that sometimes involve only column
x, sometimes only column y, and sometimes both columns, you might choose to create two separate
indexes on x and y, relying on index combination to process the queries that use both columns. You
could also create a multicolumn index on (x, y). This index would typically be more efficient than
index combination for queries involving both columns, but as discussed in Section 11.3, it would be
almost useless for queries involving only y, so it should not be the only index. A combination of the
multicolumn index and a separate index on y would serve reasonably well. For queries involving only
x, the multicolumn index could be used, though it would be larger and hence slower than an index on x

alone. The last alternative is to create all three indexes, but this is probably only reasonable if the table is

315

Chapter 11. Indexes

searched much more often than it is updated and all three types of query are common. If one of the types
of query is much less common than the others, you’d probably settle for creating just the two indexes that
best match the common types.

11.6. Unique Indexes
Indexes can also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed. Null
values are not considered equal. A multicolumn unique index will only reject cases where all indexed
columns are equal in multiple rows.

PostgreSQL automatically creates a unique index when a unique constraint or primary key is defined for
a table. The index covers the columns that make up the primary key or unique constraint (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT.
The use of indexes to enforce unique constraints could be considered an implementation detail that
should not be accessed directly. One should, however, be aware that there’s no need to manually
create indexes on unique columns; doing so would just duplicate the automatically-created index.

11.7. Indexes on Expressions
An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the lower function:

SELECT * FROM test1 WHERE lower(col1) = ’value’;

This query can use an index if one has been defined on the result of the lower(col1) function:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

If we were to declare this index UNIQUE, it would prevent creation of rows whose col1 values differ only
in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions can be
used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:

316

Chapter 11. Indexes

SELECT * FROM people WHERE (first_name || ’ ’ || last_name) = ’John Smith’;

then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ’ ’ || last_name));

The syntax of the CREATE INDEX command normally requires writing parentheses around index expres-
sions, as shown in the second example. The parentheses can be omitted when the expression is just a
function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be com-
puted for each row upon insertion and whenever it is updated. However, the index expressions are not
recomputed during an indexed search, since they are already stored in the index. In both examples above,
the system sees the query as just WHERE indexedcolumn = ’constant’ and so the speed of the search
is equivalent to any other simple index query. Thus, indexes on expressions are useful when retrieval speed
is more important than insertion and update speed.

11.8. Partial Indexes
A partial index is an index built over a subset of a table; the subset is defined by a conditional expression
(called the predicate of the partial index). The index contains entries only for those table rows that satisfy
the predicate. Partial indexes are a specialized feature, but there are several situations in which they are
useful.

One major reason for using a partial index is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use the
index anyway, there is no point in keeping those rows in the index at all. This reduces the size of the index,
which will speed up those queries that do use the index. It will also speed up many table update operations
because the index does not need to be updated in all cases. Example 11-1 shows a possible application of
this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP address
range of your organization but some are from elsewhere (say, employees on dial-up connections). If your
searches by IP are primarily for outside accesses, you probably do not need to index the IP range that
corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,
...

);

To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0’ AND

317

Chapter 11. Indexes

client_ip < inet ’192.168.100.255’);

A typical query that can use this index would be:

SELECT *
FROM access_log
WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32’;

A query that cannot use this index is:
SELECT *
FROM access_log
WHERE client_ip = inet ’192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined, so such partial
indexes are best used for data distributions that do not change. The indexes can be recreated occasionally
to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query workload
is not interested in; this is shown in Example 11-2. This results in the same advantages as listed above,
but it prevents the “uninteresting” values from being accessed via that index, even if an index scan might
be profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot
of care and experimentation.

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be:

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan the
entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the unbilled
orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;

The order 3501 might be among the billed or unbilled orders.

Example 11-2 also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be
used in a query only if the system can recognize that the WHERE condition of the query mathematically
implies the predicate of the index. PostgreSQL does not have a sophisticated theorem prover that can
recognize mathematically equivalent expressions that are written in different forms. (Not only is such

318

Chapter 11. Indexes

a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for example “x < 1” implies “x < 2”;
otherwise the predicate condition must exactly match part of the query’s WHERE condition or the index
will not be recognized as usable. Matching takes place at query planning time, not at run time. As a
result, parameterized query clauses do not work with a partial index. For example a prepared query with a
parameter might specify “x < ?” which will never imply “x < 2” for all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “success-
ful” entry for a given subject and target combination, but there might be any number of “unsuccessful”
entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,
...

);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

This is a particularly efficient approach when there are few successful tests and many unsuccessful ones.

Finally, a partial index can also be used to override the system’s query plan choices. Also, data sets
with peculiar distributions might cause the system to use an index when it really should not. In that case
the index can be set up so that it is not available for the offending query. Normally, PostgreSQL makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier
example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires ex-
perience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a partial
index over a regular index will be minimal.

More information about partial indexes can be found in The case for partial indexes , Partial indexing in
POSTGRES: research project, and Generalized Partial Indexes (cached version) .

11.9. Operator Classes and Operator Families
An index definition can specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [sort options] [, ...]);

319

Chapter 11. Indexes

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column’s data type is
usually sufficient. The main reason for having operator classes is that for some data types, there could be
more than one meaningful index behavior. For example, we might want to sort a complex-number data
type either by absolute value or by real part. We could do this by defining two operator classes for the
data type and then selecting the proper class when making an index. The operator class determines the
basic sort ordering (which can then be modified by adding sort options COLLATE, ASC/DESC and/or NULLS
FIRST/NULLS LAST).

There are also some built-in operator classes besides the default ones:

• The operator classes text_pattern_ops, varchar_pattern_ops, and bpchar_pattern_ops

support B-tree indexes on the types text, varchar, and char respectively. The difference from the
default operator classes is that the values are compared strictly character by character rather than
according to the locale-specific collation rules. This makes these operator classes suitable for use
by queries involving pattern matching expressions (LIKE or POSIX regular expressions) when the
database does not use the standard “C” locale. As an example, you might index a varchar column
like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries involving
ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the xxx_pattern_ops
operator classes. (Ordinary equality comparisons can use these operator classes, however.) It is possible
to create multiple indexes on the same column with different operator classes. If you do use the C locale,
you do not need the xxx_pattern_ops operator classes, because an index with the default operator
class is usable for pattern-matching queries in the C locale.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name

FROM pg_am am, pg_opclass opc
WHERE opc.opcmethod = am.oid
ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators and
allow these to work with indexes. To do this, the operator classes for each of the types must be grouped
into the same operator family. The cross-type operators are members of the family, but are not associated
with any single class within the family.

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
opf.opfname AS opfamily_name,
amop.amopopr::regoperator AS opfamily_operator

FROM pg_am am, pg_opfamily opf, pg_amop amop
WHERE opf.opfmethod = am.oid AND

320

Chapter 11. Indexes

amop.amopfamily = opf.oid
ORDER BY index_method, opfamily_name, opfamily_operator;

11.10. Indexes and Collations
An index can support only one collation per index column. If multiple collations are of interest, multiple
indexes may be needed.

Consider these statements:

CREATE TABLE test1c (
id integer,
content varchar COLLATE "x"

);

CREATE INDEX test1c_content_index ON test1c (content);

The index automatically uses the collation of the underlying column. So a query of the form

SELECT * FROM test1c WHERE content > constant;

could use the index, because the comparison will by default use the collation of the column. However, this
index cannot accelerate queries that involve some other collation. So if queries of the form, say,

SELECT * FROM test1c WHERE content > constant COLLATE "y";

are also of interest, an additional index could be created that supports the "y" collation, like this:

CREATE INDEX test1c_content_y_index ON test1c (content COLLATE "y");

11.11. Examining Index Usage
Although indexes in PostgreSQL do not need maintenance or tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with the EXPLAIN command; its application for this purpose is illustrated in Section 14.1. It is
also possible to gather overall statistics about index usage in a running server, as described in Section
27.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation is often necessary. The rest of this section gives some tips for that:

• Always run ANALYZE first. This command collects statistics about the distribution of the values in the
table. This information is required to estimate the number of rows returned by a query, which is needed
by the planner to assign realistic costs to each possible query plan. In absence of any real statistics, some

321

Chapter 11. Indexes

default values are assumed, which are almost certain to be inaccurate. Examining an application’s index
usage without having run ANALYZE is therefore a lost cause. See Section 23.1.3 and Section 23.1.6 for
more information.

• Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows could be
a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows probably fit
within a single disk page, and there is no plan that can beat sequentially fetching 1 disk page.

Also be careful when making up test data, which is often unavoidable when the application is not yet in
production. Values that are very similar, completely random, or inserted in sorted order will skew the
statistics away from the distribution that real data would have.

• When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (see Section 18.7.1). For instance, turning off sequential scans
(enable_seqscan) and nested-loop joins (enable_nestloop), which are the most basic plans, will
force the system to use a different plan. If the system still chooses a sequential scan or nested-loop join
then there is probably a more fundamental reason why the index is not being used; for example, the
query condition does not match the index. (What kind of query can use what kind of index is explained
in the previous sections.)

• If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting
reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE command
can be useful here.

• If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node. The
costs estimated for the plan nodes can be adjusted via run-time parameters (described in Section 18.7.2).
An inaccurate selectivity estimate is due to insufficient statistics. It might be possible to improve this
by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort to
forcing index usage explicitly. You might also want to contact the PostgreSQL developers to examine
the issue.

322

Chapter 12. Full Text Search

12.1. Introduction
Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type of
search is to find all documents containing given query terms and return them in order of their similarity
to the query. Notions of query and similarity are very flexible and depend on the specific application.
The simplest search considers query as a set of words and similarity as the frequency of query words
in the document.

Textual search operators have existed in databases for years. PostgreSQL has ~, ~*, LIKE, and ILIKE

operators for textual data types, but they lack many essential properties required by modern information
systems:

• There is no linguistic support, even for English. Regular expressions are not sufficient because they
cannot easily handle derived words, e.g., satisfies and satisfy. You might miss documents that
contain satisfies, although you probably would like to find them when searching for satisfy. It is
possible to use OR to search for multiple derived forms, but this is tedious and error-prone (some words
can have several thousand derivatives).

• They provide no ordering (ranking) of search results, which makes them ineffective when thousands of
matching documents are found.

• They tend to be slow because there is no index support, so they must process all documents for every
search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers, words,
complex words, email addresses, so that they can be processed differently. In principle token classes
depend on the specific application, but for most purposes it is adequate to use a predefined set of classes.
PostgreSQL uses a parser to perform this step. A standard parser is provided, and custom parsers can
be created for specific needs.

Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization almost always includes
folding upper-case letters to lower-case, and often involves removal of suffixes (such as s or es in
English). This allows searches to find variant forms of the same word, without tediously entering all the
possible variants. Also, this step typically eliminates stop words, which are words that are so common
that they are useless for searching. (In short, then, tokens are raw fragments of the document text, while
lexemes are words that are believed useful for indexing and searching.) PostgreSQL uses dictionaries
to perform this step. Various standard dictionaries are provided, and custom ones can be created for
specific needs.

Storing preprocessed documents optimized for searching. For example, each document can be repre-
sented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable to store
positional information to use for proximity ranking, so that a document that contains a more “dense”
region of query words is assigned a higher rank than one with scattered query words.

323

Chapter 12. Full Text Search

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries,
you can:

• Define stop words that should not be indexed.
• Map synonyms to a single word using Ispell.
• Map phrases to a single word using a thesaurus.
• Map different variations of a word to a canonical form using an Ispell dictionary.
• Map different variations of a word to a canonical form using Snowball stemmer rules.

A data type tsvector is provided for storing preprocessed documents, along with a type tsquery for
representing processed queries (Section 8.11). There are many functions and operators available for these
data types (Section 9.13), the most important of which is the match operator @@, which we introduce in
Section 12.1.2. Full text searches can be accelerated using indexes (Section 12.9).

12.1.1. What Is a Document?
A document is the unit of searching in a full text search system; for example, a magazine article or email
message. The text search engine must be able to parse documents and store associations of lexemes (key
words) with their parent document. Later, these associations are used to search for documents that contain
query words.

For searches within PostgreSQL, a document is normally a textual field within a row of a database table,
or possibly a combination (concatenation) of such fields, perhaps stored in several tables or obtained
dynamically. In other words, a document can be constructed from different parts for indexing and it might
not be stored anywhere as a whole. For example:

SELECT title || ’ ’ || author || ’ ’ || abstract || ’ ’ || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || ’ ’ || m.author || ’ ’ || m.abstract || ’ ’ || d.body AS document
FROM messages m, docs d
WHERE mid = did AND mid = 12;

Note: Actually, in these example queries, coalesce should be used to prevent a single NULL attribute
from causing a NULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the database
can be used to store the full text index and to execute searches, and some unique identifier can be used to
retrieve the document from the file system. However, retrieving files from outside the database requires
superuser permissions or special function support, so this is usually less convenient than keeping all the
data inside PostgreSQL. Also, keeping everything inside the database allows easy access to document
metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed tsvector format. Search-
ing and ranking are performed entirely on the tsvector representation of a document — the original
text need only be retrieved when the document has been selected for display to a user. We therefore often

324

Chapter 12. Full Text Search

speak of the tsvector as being the document, but of course it is only a compact representation of the
full document.

12.1.2. Basic Text Matching
Full text searching in PostgreSQL is based on the match operator @@, which returns true if a tsvector
(document) matches a tsquery (query). It doesn’t matter which data type is written first:

SELECT ’a fat cat sat on a mat and ate a fat rat’::tsvector @@ ’cat & rat’::tsquery;
?column?

t

SELECT ’fat & cow’::tsquery @@ ’a fat cat sat on a mat and ate a fat rat’::tsvector;
?column?

f

As the above example suggests, a tsquery is not just raw text, any more than a tsvector is. A tsquery

contains search terms, which must be already-normalized lexemes, and may combine multiple terms using
AND, OR, and NOT operators. (For details see Section 8.11.) There are functions to_tsquery and
plainto_tsquery that are helpful in converting user-written text into a proper tsquery, for example
by normalizing words appearing in the text. Similarly, to_tsvector is used to parse and normalize a
document string. So in practice a text search match would look more like this:

SELECT to_tsvector(’fat cats ate fat rats’) @@ to_tsquery(’fat & rat’);
?column?

t

Observe that this match would not succeed if written as

SELECT ’fat cats ate fat rats’::tsvector @@ to_tsquery(’fat & rat’);
?column?

f

since here no normalization of the word rats will occur. The elements of a tsvector are lexemes, which
are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector or
tsquery to be skipped in simple cases. The variants available are:

tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text

325

Chapter 12. Full Text Search

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector(x)

@@ y. The form text @@ text is equivalent to to_tsvector(x) @@ plainto_tsquery(y).

12.1.3. Configurations
The above are all simple text search examples. As mentioned before, full text search functionality includes
the ability to do many more things: skip indexing certain words (stop words), process synonyms, and use
sophisticated parsing, e.g., parse based on more than just white space. This functionality is controlled by
text search configurations. PostgreSQL comes with predefined configurations for many languages, and
you can easily create your own configurations. (psql’s \dF command shows all available configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set accord-
ingly in postgresql.conf. If you are using the same text search configuration for the entire cluster you
can use the value in postgresql.conf. To use different configurations throughout the cluster but the
same configuration within any one database, use ALTER DATABASE ... SET. Otherwise, you can set
default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so that
the configuration to use can be specified explicitly. default_text_search_config is used only when
this argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from simpler
database objects. PostgreSQL’s text search facility provides four types of configuration-related database
objects:

• Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

• Text search dictionaries convert tokens to normalized form and reject stop words.
• Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies a

template and a set of parameters for the template.)
• Text search configurations select a parser and a set of dictionaries to use to normalize the tokens pro-

duced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C program-
ming ability to develop new ones, and superuser privileges to install one into a database. (There are
examples of add-on parsers and templates in the contrib/ area of the PostgreSQL distribution.) Since
dictionaries and configurations just parameterize and connect together some underlying parsers and tem-
plates, no special privilege is needed to create a new dictionary or configuration. Examples of creating
custom dictionaries and configurations appear later in this chapter.

12.2. Tables and Indexes
The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

326

Chapter 12. Full Text Search

12.2.1. Searching a Table
It is possible to do a full text search without an index. A simple query to print the title of each row that
contains the word friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector(’english’, body) @@ to_tsquery(’english’, ’friend’);

This will also find related words such as friends and friendly, since all these are reduced to the same
normalized lexeme.

The query above specifies that the english configuration is to be used to parse and normalize the strings.
Alternatively we could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery(’friend’);

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table in
the title or body:

SELECT title
FROM pgweb
WHERE to_tsvector(title || ’ ’ || body) @@ to_tsquery(’create & table’)
ORDER BY last_mod_date DESC
LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain NULL
in one of the two fields.

Although these queries will work without an index, most applications will find this approach too slow,
except perhaps for occasional ad-hoc searches. Practical use of text searching usually requires creating an
index.

12.2.2. Creating Indexes
We can create a GIN index (Section 12.9) to speed up text searches:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector(’english’, body));

Notice that the 2-argument version of to_tsvector is used. Only text search functions that specify a
configuration name can be used in expression indexes (Section 11.7). This is because the index contents
must be unaffected by default_text_search_config. If they were affected, the index contents might be
inconsistent because different entries could contain tsvectors that were created with different text search
configurations, and there would be no way to guess which was which. It would be impossible to dump
and restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query reference
that uses the 2-argument version of to_tsvector with the same configuration name will use that in-
dex. That is, WHERE to_tsvector(’english’, body) @@ ’a & b’ can use the index, but WHERE

327

Chapter 12. Full Text Search

to_tsvector(body) @@ ’a & b’ cannot. This ensures that an index will be used only with the same
configuration used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified by
another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector(config_name, body));

where config_name is a column in the pgweb table. This allows mixed configurations in the same index
while recording which configuration was used for each index entry. This would be useful, for example,
if the document collection contained documents in different languages. Again, queries that are meant to
use the index must be phrased to match, e.g., WHERE to_tsvector(config_name, body) @@ ’a &

b’.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector(’english’, title || ’ ’ || body));

Another approach is to create a separate tsvector column to hold the output of to_tsvector. This
example is a concatenation of title and body, using coalesce to ensure that one field will still be
indexed when the other is NULL:

ALTER TABLE pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE pgweb SET textsearchable_index_col =

to_tsvector(’english’, coalesce(title,”) || ’ ’ || coalesce(body,”));

Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING gin(textsearchable_index_col);

Now we are ready to perform a fast full text search:

SELECT title
FROM pgweb
WHERE textsearchable_index_col @@ to_tsquery(’create & table’)
ORDER BY last_mod_date DESC
LIMIT 10;

When using a separate column to store the tsvector representation, it is necessary to create a trigger to
keep the tsvector column current anytime title or body changes. Section 12.4.3 explains how to do
that.

One advantage of the separate-column approach over an expression index is that it is not necessary to
explicitly specify the text search configuration in queries in order to make use of the index. As shown
in the example above, the query can depend on default_text_search_config. Another advantage
is that searches will be faster, since it will not be necessary to redo the to_tsvector calls to verify
index matches. (This is more important when using a GiST index than a GIN index; see Section 12.9.)
The expression-index approach is simpler to set up, however, and it requires less disk space since the
tsvector representation is not stored explicitly.

328

Chapter 12. Full Text Search

12.3. Controlling Text Search
To implement full text searching there must be a function to create a tsvector from a document and a
tsquery from a user query. Also, we need to return results in a useful order, so we need a function that
compares documents with respect to their relevance to the query. It’s also important to be able to display
the results nicely. PostgreSQL provides support for all of these functions.

12.3.1. Parsing Documents
PostgreSQL provides the function to_tsvector for converting a document to the tsvector data type.

to_tsvector([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a
tsvector which lists the lexemes together with their positions in the document. The document is
processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector(’english’, ’a fat cat sat on a mat - it ate a fat rats’);
to_tsvector

’ate’:9 ’cat’:3 ’fat’:2,11 ’mat’:7 ’rat’:12 ’sat’:4

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the
word rats became rat, and the punctuation sign - was ignored.

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where
the list can vary depending on the token type. The first dictionary that recognizes the token emits one
or more normalized lexemes to represent the token. For example, rats became rat because one of the
dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop
words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful in
searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token then
it is also ignored. In this example that happened to the punctuation sign - because there are in fact no
dictionaries assigned for its token type (Space symbols), meaning space tokens will never be indexed.
The choices of parser, dictionaries and which types of tokens to index are determined by the selected
text search configuration (Section 12.7). It is possible to have many different configurations in the same
database, and predefined configurations are available for various languages. In our example we used the
default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a
weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts
of a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field
might be null. Here is the recommended method for creating a tsvector from a structured document:

UPDATE tt SET ti =
setweight(to_tsvector(coalesce(title,”)), ’A’) ||
setweight(to_tsvector(coalesce(keyword,”)), ’B’) ||
setweight(to_tsvector(coalesce(abstract,”)), ’C’) ||

329

Chapter 12. Full Text Search

setweight(to_tsvector(coalesce(body,”)), ’D’);

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then
merged the labeled tsvector values using the tsvector concatenation operator ||. (Section 12.4.1
gives details about these operations.)

12.3.2. Parsing Queries
PostgreSQL provides the functions to_tsquery and plainto_tsquery for converting a query to the
tsquery data type. to_tsquery offers access to more features than plainto_tsquery, but is less
forgiving about its input.

to_tsquery([config regconfig,] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single tokens separated
by the Boolean operators & (AND), | (OR) and ! (NOT). These operators can be grouped using parenthe-
ses. In other words, the input to to_tsquery must already follow the general rules for tsquery input, as
described in Section 8.11. The difference is that while basic tsquery input takes the tokens at face value,
to_tsquery normalizes each token to a lexeme using the specified or default configuration, and discards
any tokens that are stop words according to the configuration. For example:

SELECT to_tsquery(’english’, ’The & Fat & Rats’);
to_tsquery

’fat’ & ’rat’

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only tsvector
lexemes of those weight(s). For example:

SELECT to_tsquery(’english’, ’Fat | Rats:AB’);
to_tsquery

’fat’ | ’rat’:AB

Also, * can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery(’supern:*A & star:A*B’);
to_tsquery

’supern’:*A & ’star’:*AB

Such a lexeme will match any word in a tsvector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration in-
cludes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus contains
the rule supernovae stars : sn:

SELECT to_tsquery(”’supernovae stars” & !crab’);
to_tsquery

’sn’ & !’crab’

330

Chapter 12. Full Text Search

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND or
OR operator.

plainto_tsquery([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms unformatted text querytext to tsquery. The text is parsed and nor-
malized much as for to_tsvector, then the & (AND) Boolean operator is inserted between surviving
words.

Example:

SELECT plainto_tsquery(’english’, ’The Fat Rats’);
plainto_tsquery

’fat’ & ’rat’

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or prefix-match labels
in its input:

SELECT plainto_tsquery(’english’, ’The Fat & Rats:C’);
plainto_tsquery

’fat’ & ’rat’ & ’c’

Here, all the input punctuation was discarded as being space symbols.

12.3.3. Ranking Search Results
Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. PostgreSQL provides two predefined ranking
functions, which take into account lexical, proximity, and structural information; that is, they consider
how often the query terms appear in the document, how close together the terms are in the document, and
how important is the part of the document where they occur. However, the concept of relevancy is vague
and very application-specific. Different applications might require additional information for ranking, e.g.,
document modification time. The built-in ranking functions are only examples. You can write your own
ranking functions and/or combine their results with additional factors to fit your specific needs.

The two ranking functions currently available are:

ts_rank([weights float4[],] vector tsvector,
query tsquery [, normalization integer]) returns float4

Ranks vectors based on the frequency of their matching lexemes.

ts_rank_cd([weights float4[],] vector tsvector,
query tsquery [, normalization integer]) returns float4

This function computes the cover density ranking for the given document vector and query, as de-
scribed in Clarke, Cormack, and Tudhope’s "Relevance Ranking for One to Three Term Queries" in
the journal "Information Processing and Management", 1999.

This function requires positional information in its input. Therefore it will not work on “stripped”
tsvector values — it will always return zero.

331

Chapter 12. Full Text Search

For both these functions, the optional weights argument offers the ability to weigh word instances more
or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each
category of word, in the order:

{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used:

{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into
account document size, e.g., a hundred-word document with five instances of a search word is probably
more relevant than a thousand-word document with five instances. Both ranking functions take an integer
normalization option that specifies whether and how a document’s length should impact its rank. The
integer option controls several behaviors, so it is a bit mask: you can specify one or more behaviors using
| (for example, 2|4).

• 0 (the default) ignores the document length
• 1 divides the rank by 1 + the logarithm of the document length
• 2 divides the rank by the document length
• 4 divides the rank by the mean harmonic distance between extents (this is implemented only by
ts_rank_cd)

• 8 divides the rank by the number of unique words in document
• 16 divides the rank by 1 + the logarithm of the number of unique words in document
• 32 divides the rank by itself + 1

If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impos-
sible to produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32
(rank/(rank+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a
cosmetic change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:

SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery(’neutrino|(dark & matter)’) query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;

title | rank
---+----------
Neutrinos in the Sun | 3.1
The Sudbury Neutrino Detector | 2.4
A MACHO View of Galactic Dark Matter | 2.01317
Hot Gas and Dark Matter | 1.91171
The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
Rafting for Solar Neutrinos | 1.9

332

Chapter 12. Full Text Search

NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
Hot Gas and Dark Matter | 1.6123
Ice Fishing for Cosmic Neutrinos | 1.6
Weak Lensing Distorts the Universe | 0.818218

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */) AS rank
FROM apod, to_tsquery(’neutrino|(dark & matter)’) query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;

title | rank
---+-------------------
Neutrinos in the Sun | 0.756097569485493
The Sudbury Neutrino Detector | 0.705882361190954
A MACHO View of Galactic Dark Matter | 0.668123210574724
Hot Gas and Dark Matter | 0.65655958650282
The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
Rafting for Solar Neutrinos | 0.655172410958162
NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
Hot Gas and Dark Matter | 0.617195790024749
Ice Fishing for Cosmic Neutrinos | 0.615384618911517
Weak Lensing Distorts the Universe | 0.450010798361481

Ranking can be expensive since it requires consulting the tsvector of each matching document, which
can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical queries
often result in large numbers of matches.

12.3.4. Highlighting Results
To present search results it is ideal to show a part of each document and how it is related to the query.
Usually, search engines show fragments of the document with marked search terms. PostgreSQL provides
a function ts_headline that implements this functionality.

ts_headline([config regconfig,] document text, query tsquery [, options text]) returns text

ts_headline accepts a document along with a query, and returns an excerpt from the document in which
terms from the query are highlighted. The configuration to be used to parse the document can be specified
by config; if config is omitted, the default_text_search_config configuration is used.

If an options string is specified it must consist of a comma-separated list of one or more option=value
pairs. The available options are:

• StartSel, StopSel: the strings with which to delimit query words appearing in the document, to dis-
tinguish them from other excerpted words. You must double-quote these strings if they contain spaces
or commas.

• MaxWords, MinWords: these numbers determine the longest and shortest headlines to output.

333

Chapter 12. Full Text Search

• ShortWord: words of this length or less will be dropped at the start and end of a headline. The default
value of three eliminates common English articles.

• HighlightAll: Boolean flag; if true the whole document will be used as the headline, ignoring the
preceding three parameters.

• MaxFragments: maximum number of text excerpts or fragments to display. The default value of zero
selects a non-fragment-oriented headline generation method. A value greater than zero selects fragment-
based headline generation. This method finds text fragments with as many query words as possible and
stretches those fragments around the query words. As a result query words are close to the middle of
each fragment and have words on each side. Each fragment will be of at most MaxWords and words of
length ShortWord or less are dropped at the start and end of each fragment. If not all query words are
found in the document, then a single fragment of the first MinWords in the document will be displayed.

• FragmentDelimiter: When more than one fragment is displayed, the fragments will be separated by
this string.

Any unspecified options receive these defaults:

StartSel=, StopSel=,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline(’english’,
’The most common type of search

is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,
to_tsquery(’query & similarity’));

ts_headline
--
containing given query terms
and return them in order of their similarity to the
query.

SELECT ts_headline(’english’,
’The most common type of search

is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,
to_tsquery(’query & similarity’),
’StartSel = <, StopSel = >’);

ts_headline

containing given <query> terms
and return them in order of their <similarity> to the
<query>.

334

Chapter 12. Full Text Search

ts_headline uses the original document, not a tsvector summary, so it can be slow and should be
used with care. A typical mistake is to call ts_headline for every matching document when only ten
documents are to be shown. SQL subqueries can help; here is an example:

SELECT id, ts_headline(body, q), rank
FROM (SELECT id, body, q, ts_rank_cd(ti, q) AS rank

FROM apod, to_tsquery(’stars’) q
WHERE ti @@ q
ORDER BY rank DESC
LIMIT 10) AS foo;

12.4. Additional Features
This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents
Section 12.3.1 showed how raw textual documents can be converted into tsvector values. PostgreSQL
also provides functions and operators that can be used to manipulate documents that are already in
tsvector form.

tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and positional
information of the two vectors given as arguments. Positions and weight labels are retained during
the concatenation. Positions appearing in the right-hand vector are offset by the largest position
mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing
to_tsvector on the concatenation of the two original document strings. (The equivalence is not
exact, because any stop-words removed from the end of the left-hand argument will not affect the
result, whereas they would have affected the positions of the lexemes in the right-hand argument if
textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before ap-
plying to_tsvector, is that you can use different configurations to parse different sections of the
document. Also, because the setweight function marks all lexemes of the given vector the same
way, it is necessary to parse the text and do setweight before concatenating if you want to label
different parts of the document with different weights.

setweight(vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the
given weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on
output.) These labels are retained when vectors are concatenated, allowing words from different parts
of a document to be weighted differently by ranking functions.

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of
positions then setweight does nothing.

335

Chapter 12. Full Text Search

length(vector tsvector) returns integer

Returns the number of lexemes stored in the vector.

strip(vector tsvector) returns tsvector

Returns a vector which lists the same lexemes as the given vector, but which lacks any position
or weight information. While the returned vector is much less useful than an unstripped vector for
relevance ranking, it will usually be much smaller.

12.4.2. Manipulating Queries
Section 12.3.2 showed how raw textual queries can be converted into tsquery values. PostgreSQL also
provides functions and operators that can be used to manipulate queries that are already in tsquery form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

!! tsquery

Returns the negation (NOT) of the given query.

numnode(query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a tsquery. This function is useful to de-
termine if the query is meaningful (returns > 0), or contains only stop words (returns 0). Examples:

SELECT numnode(plainto_tsquery(’the any’));
NOTICE: query contains only stopword(s) or doesn’t contain lexeme(s), ignored
numnode

0

SELECT numnode(’foo & bar’::tsquery);
numnode

3

querytree(query tsquery) returns text

Returns the portion of a tsquery that can be used for searching an index. This function is useful for
detecting unindexable queries, for example those containing only stop words or only negated terms.
For example:

SELECT querytree(to_tsquery(’!defined’));
querytree

336

Chapter 12. Full Text Search

12.4.2.1. Query Rewriting

The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery, and
replace each occurrence with a substitute subquery. In essence this operation is a tsquery-specific version
of substring replacement. A target and substitute combination can be thought of as a query rewrite rule.
A collection of such rewrite rules can be a powerful search aid. For example, you can expand the search
using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search to direct the user to
some hot topic. There is some overlap in functionality between this feature and thesaurus dictionaries
(Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly without reindexing, whereas
updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by substitute
wherever it appears in query. For example:

SELECT ts_rewrite(’a & b’::tsquery, ’a’::tsquery, ’c’::tsquery);
ts_rewrite

’b’ & ’c’

ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and a SQL select command, which is given
as a text string. The select must yield two columns of tsquery type. For each row of the select
result, occurrences of the first column value (the target) are replaced by the second column value (the
substitute) within the current query value. For example:

CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES(’a’, ’c’);

SELECT ts_rewrite(’a & b’::tsquery, ’SELECT t,s FROM aliases’);
ts_rewrite

’b’ & ’c’

Note that when multiple rewrite rules are applied in this way, the order of application can be impor-
tant; so in practice you will want the source query to ORDER BY some ordering key.

Let’s consider a real-life astronomical example. We’ll expand query supernovae using table-driven
rewriting rules:

CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery(’supernovae’), to_tsquery(’supernovae|sn’));

SELECT ts_rewrite(to_tsquery(’supernovae & crab’), ’SELECT * FROM aliases’);
ts_rewrite

’crab’ & (’supernova’ | ’sn’)

We can change the rewriting rules just by updating the table:

UPDATE aliases
SET s = to_tsquery(’supernovae|sn & !nebulae’)
WHERE t = to_tsquery(’supernovae’);

337

Chapter 12. Full Text Search

SELECT ts_rewrite(to_tsquery(’supernovae & crab’), ’SELECT * FROM aliases’);
ts_rewrite

’crab’ & (’supernova’ | ’sn’ & !’nebula’)

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible match.
To filter out obvious non-candidate rules we can use the containment operators for the tsquery type. In
the example below, we select only those rules which might match the original query:

SELECT ts_rewrite(’a & b’::tsquery,
’SELECT t,s FROM aliases WHERE ”a & b”::tsquery @> t’);

ts_rewrite

’b’ & ’c’

12.4.3. Triggers for Automatic Updates
When using a separate column to store the tsvector representation of your documents, it is necessary
to create a trigger to update the tsvector column when the document content columns change. Two
built-in trigger functions are available for this, or you can write your own.

tsvector_update_trigger(tsvector_column_name, config_name, text_column_name [, ...])
tsvector_update_trigger_column(tsvector_column_name, config_column_name, text_column_name [, ...])

These trigger functions automatically compute a tsvector column from one or more textual columns,
under the control of parameters specified in the CREATE TRIGGER command. An example of their use is:

CREATE TABLE messages (
title text,
body text,
tsv tsvector

);

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE PROCEDURE
tsvector_update_trigger(tsv, ’pg_catalog.english’, title, body);

INSERT INTO messages VALUES(’title here’, ’the body text is here’);

SELECT * FROM messages;
title | body | tsv

------------+-----------------------+----------------------------
title here | the body text is here | ’bodi’:4 ’text’:5 ’titl’:1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery(’title & body’);
title | body

338

Chapter 12. Full Text Search

------------+-----------------------
title here | the body text is here

Having created this trigger, any change in title or body will automatically be reflected into tsv, without
the application having to worry about it.

The first trigger argument must be the name of the tsvector column to be updated. The second
argument specifies the text search configuration to be used to perform the conversion. For
tsvector_update_trigger, the configuration name is simply given as the second trigger argument. It
must be schema-qualified as shown above, so that the trigger behavior will not change with changes
in search_path. For tsvector_update_trigger_column, the second trigger argument is the
name of another table column, which must be of type regconfig. This allows a per-row selection of
configuration to be made. The remaining argument(s) are the names of textual columns (of type text,
varchar, or char). These will be included in the document in the order given. NULL values will be
skipped (but the other columns will still be indexed).

A limitation of these built-in triggers is that they treat all the input columns alike. To process columns
differently — for example, to weight title differently from body — it is necessary to write a custom
trigger. Here is an example using PL/pgSQL as the trigger language:

CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin
new.tsv :=

setweight(to_tsvector(’pg_catalog.english’, coalesce(new.title,”)), ’A’) ||
setweight(to_tsvector(’pg_catalog.english’, coalesce(new.body,”)), ’D’);

return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE PROCEDURE messages_trigger();

Keep in mind that it is important to specify the configuration name explicitly when creating
tsvector values inside triggers, so that the column’s contents will not be affected by changes to
default_text_search_config. Failure to do this is likely to lead to problems such as search results
changing after a dump and reload.

12.4.4. Gathering Document Statistics
The function ts_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat(sqlquery text, [weights text,]
OUT word text, OUT ndoc integer,
OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single tsvector column.
ts_stat executes the query and returns statistics about each distinct lexeme (word) contained in the
tsvector data. The columns returned are

339

Chapter 12. Full Text Search

• word text — the value of a lexeme
• ndoc integer — number of documents (tsvectors) the word occurred in
• nentry integer — total number of occurrences of the word

If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:

SELECT * FROM ts_stat(’SELECT vector FROM apod’)
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:

SELECT * FROM ts_stat(’SELECT vector FROM apod’, ’ab’)
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

12.5. Parsers
Text search parsers are responsible for splitting raw document text into tokens and identifying each token’s
type, where the set of possible types is defined by the parser itself. Note that a parser does not modify the
text at all — it simply identifies plausible word boundaries. Because of this limited scope, there is less
need for application-specific custom parsers than there is for custom dictionaries. At present PostgreSQL
provides just one built-in parser, which has been found to be useful for a wide range of applications.

The built-in parser is named pg_catalog.default. It recognizes 23 token types, shown in Table 12-1.

Table 12-1. Default Parser’s Token Types

Alias Description Example
asciiword Word, all ASCII letters elephant

word Word, all letters mañana

numword Word, letters and digits beta1

asciihword Hyphenated word, all ASCII up-to-date

hword Hyphenated word, all letters lógico-matemática

numhword Hyphenated word, letters and
digits

postgresql-beta1

hword_asciipart Hyphenated word part, all ASCII postgresql in the context
postgresql-beta1

hword_part Hyphenated word part, all letters lógico or matemática in the
context lógico-matemática

hword_numpart Hyphenated word part, letters
and digits

beta1 in the context
postgresql-beta1

340

Chapter 12. Full Text Search

Alias Description Example
email Email address foo@example.com

protocol Protocol head http://

url URL example.com/stuff/index.html

host Host example.com

url_path URL path /stuff/index.html, in the
context of a URL

file File or path name /usr/local/foo.txt, if not
within a URL

sfloat Scientific notation -1.234e56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag

entity XML entity &

blank Space symbols (any whitespace or punctuation
not otherwise recognized)

Note: The parser’s notion of a “letter” is determined by the database’s locale setting, specifically
lc_ctype. Words containing only the basic ASCII letters are reported as a separate token type,
since it is sometimes useful to distinguish them. In most European languages, token types word

and asciiword should be treated alike.

email does not support all valid email characters as defined by RFC 5322. Specifically, the only
non-alphanumeric characters supported for email user names are period, dash, and underscore.

It is possible for the parser to produce overlapping tokens from the same piece of text. As an example, a
hyphenated word will be reported both as the entire word and as each component:

SELECT alias, description, token FROM ts_debug(’foo-bar-beta1’);
alias | description | token

-----------------+--+---------------
numhword | Hyphenated word, letters and digits | foo-bar-beta1
hword_asciipart | Hyphenated word part, all ASCII | foo
blank | Space symbols | -
hword_asciipart | Hyphenated word part, all ASCII | bar
blank | Space symbols | -
hword_numpart | Hyphenated word part, letters and digits | beta1

This behavior is desirable since it allows searches to work for both the whole compound word and for
components. Here is another instructive example:

341

Chapter 12. Full Text Search

SELECT alias, description, token FROM ts_debug(’http://example.com/stuff/index.html’);
alias | description | token

----------+---------------+------------------------------
protocol | Protocol head | http://
url | URL | example.com/stuff/index.html
host | Host | example.com
url_path | URL path | /stuff/index.html

12.6. Dictionaries
Dictionaries are used to eliminate words that should not be considered in a search (stop words), and to
normalize words so that different derived forms of the same word will match. A successfully normal-
ized word is called a lexeme. Aside from improving search quality, normalization and removal of stop
words reduce the size of the tsvector representation of a document, thereby improving performance.
Normalization does not always have linguistic meaning and usually depends on application semantics.

Some examples of normalization:

• Linguistic - Ispell dictionaries try to reduce input words to a normalized form; stemmer dictionaries
remove word endings

• URL locations can be canonicalized to make equivalent URLs match:
• http://www.pgsql.ru/db/mw/index.html
• http://www.pgsql.ru/db/mw/
• http://www.pgsql.ru/db/../db/mw/index.html

• Color names can be replaced by their hexadecimal values, e.g., red, green, blue, magenta ->

FF0000, 00FF00, 0000FF, FF00FF

• If indexing numbers, we can remove some fractional digits to reduce the range of possible numbers, so
for example 3.14159265359, 3.1415926, 3.14 will be the same after normalization if only two digits
are kept after the decimal point.

A dictionary is a program that accepts a token as input and returns:

• an array of lexemes if the input token is known to the dictionary (notice that one token can produce
more than one lexeme)

• a single lexeme with the TSL_FILTER flag set, to replace the original token with a new token to be
passed to subsequent dictionaries (a dictionary that does this is called a filtering dictionary)

• an empty array if the dictionary knows the token, but it is a stop word
• NULL if the dictionary does not recognize the input token

PostgreSQL provides predefined dictionaries for many languages. There are also several predefined tem-
plates that can be used to create new dictionaries with custom parameters. Each predefined dictionary
template is described below. If no existing template is suitable, it is possible to create new ones; see the
contrib/ area of the PostgreSQL distribution for examples.

342

Chapter 12. Full Text Search

A text search configuration binds a parser together with a set of dictionaries to process the parser’s output
tokens. For each token type that the parser can return, a separate list of dictionaries is specified by the
configuration. When a token of that type is found by the parser, each dictionary in the list is consulted
in turn, until some dictionary recognizes it as a known word. If it is identified as a stop word, or if no
dictionary recognizes the token, it will be discarded and not indexed or searched for. Normally, the first
dictionary that returns a non-NULL output determines the result, and any remaining dictionaries are not
consulted; but a filtering dictionary can replace the given word with a modified word, which is then passed
to subsequent dictionaries.

The general rule for configuring a list of dictionaries is to place first the most narrow, most specific dictio-
nary, then the more general dictionaries, finishing with a very general dictionary, like a Snowball stemmer
or simple, which recognizes everything. For example, for an astronomy-specific search (astro_en con-
figuration) one could bind token type asciiword (ASCII word) to a synonym dictionary of astronomical
terms, a general English dictionary and a Snowball English stemmer:

ALTER TEXT SEARCH CONFIGURATION astro_en
ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;

A filtering dictionary can be placed anywhere in the list, except at the end where it’d be useless. Filtering
dictionaries are useful to partially normalize words to simplify the task of later dictionaries. For example,
a filtering dictionary could be used to remove accents from accented letters, as is done by the unaccent
module.

12.6.1. Stop Words
Stop words are words that are very common, appear in almost every document, and have no discrimination
value. Therefore, they can be ignored in the context of full text searching. For example, every English text
contains words like a and the, so it is useless to store them in an index. However, stop words do affect
the positions in tsvector, which in turn affect ranking:

SELECT to_tsvector(’english’,’in the list of stop words’);
to_tsvector

’list’:3 ’stop’:5 ’word’:6

The missing positions 1,2,4 are because of stop words. Ranks calculated for documents with and without
stop words are quite different:

SELECT ts_rank_cd (to_tsvector(’english’,’in the list of stop words’), to_tsquery(’list & stop’));
ts_rank_cd

0.05

SELECT ts_rank_cd (to_tsvector(’english’,’list stop words’), to_tsquery(’list & stop’));
ts_rank_cd

0.1

343

Chapter 12. Full Text Search

It is up to the specific dictionary how it treats stop words. For example, ispell dictionaries first normalize
words and then look at the list of stop words, while Snowball stemmers first check the list of stop words.
The reason for the different behavior is an attempt to decrease noise.

12.6.2. Simple Dictionary
The simple dictionary template operates by converting the input token to lower case and checking it
against a file of stop words. If it is found in the file then an empty array is returned, causing the token to
be discarded. If not, the lower-cased form of the word is returned as the normalized lexeme. Alternatively,
the dictionary can be configured to report non-stop-words as unrecognized, allowing them to be passed
on to the next dictionary in the list.

Here is an example of a dictionary definition using the simple template:

CREATE TEXT SEARCH DICTIONARY public.simple_dict (
TEMPLATE = pg_catalog.simple,
STOPWORDS = english

);

Here, english is the base name of a file of stop words. The file’s full name will be
$SHAREDIR/tsearch_data/english.stop, where $SHAREDIR means the PostgreSQL installation’s
shared-data directory, often /usr/local/share/postgresql (use pg_config --sharedir to
determine it if you’re not sure). The file format is simply a list of words, one per line. Blank lines and
trailing spaces are ignored, and upper case is folded to lower case, but no other processing is done on the
file contents.

Now we can test our dictionary:

SELECT ts_lexize(’public.simple_dict’,’YeS’);
ts_lexize

{yes}

SELECT ts_lexize(’public.simple_dict’,’The’);
ts_lexize

{}

We can also choose to return NULL, instead of the lower-cased word, if it is not found in the stop words
file. This behavior is selected by setting the dictionary’s Accept parameter to false. Continuing the
example:

ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);

SELECT ts_lexize(’public.simple_dict’,’YeS’);
ts_lexize

SELECT ts_lexize(’public.simple_dict’,’The’);

344

Chapter 12. Full Text Search

ts_lexize

{}

With the default setting of Accept = true, it is only useful to place a simple dictionary at the end of a
list of dictionaries, since it will never pass on any token to a following dictionary. Conversely, Accept =
false is only useful when there is at least one following dictionary.

Caution
Most types of dictionaries rely on configuration files, such as files of stop words.
These files must be stored in UTF-8 encoding. They will be translated to the actual
database encoding, if that is different, when they are read into the server.

Caution
Normally, a database session will read a dictionary configuration file only once,
when it is first used within the session. If you modify a configuration file and want to
force existing sessions to pick up the new contents, issue an ALTER TEXT SEARCH

DICTIONARY command on the dictionary. This can be a “dummy” update that doesn’t
actually change any parameter values.

12.6.3. Synonym Dictionary
This dictionary template is used to create dictionaries that replace a word with a synonym. Phrases are
not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can be used to
overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing the
word “Paris” to “pari”. It is enough to have a Paris paris line in the synonym dictionary and put it
before the english_stem dictionary. For example:

SELECT * FROM ts_debug(’english’, ’Paris’);
alias | description | token | dictionaries | dictionary | lexemes

-----------+-----------------+-------+----------------+--------------+---------
asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
TEMPLATE = synonym,
SYNONYMS = my_synonyms

);

ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR asciiword
WITH my_synonym, english_stem;

SELECT * FROM ts_debug(’english’, ’Paris’);
alias | description | token | dictionaries | dictionary | lexemes

-----------+-----------------+-------+---------------------------+------------+---------

345

Chapter 12. Full Text Search

asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}

The only parameter required by the synonym template is SYNONYMS, which is the base name
of its configuration file — my_synonyms in the above example. The file’s full name will be
$SHAREDIR/tsearch_data/my_synonyms.syn (where $SHAREDIR means the PostgreSQL
installation’s shared-data directory). The file format is just one line per word to be substituted, with the
word followed by its synonym, separated by white space. Blank lines and trailing spaces are ignored.

The synonym template also has an optional parameter CaseSensitive, which defaults to false. When
CaseSensitive is false, words in the synonym file are folded to lower case, as are input tokens. When
it is true, words and tokens are not folded to lower case, but are compared as-is.

An asterisk (*) can be placed at the end of a synonym in the configuration file. This indicates that the
synonym is a prefix. The asterisk is ignored when the entry is used in to_tsvector(), but when it is
used in to_tsquery(), the result will be a query item with the prefix match marker (see Section 12.3.2).
For example, suppose we have these entries in $SHAREDIR/tsearch_data/synonym_sample.syn:

postgres pgsql
postgresql pgsql
postgre pgsql
gogle googl
indices index*

Then we will get these results:

mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms=’synonym_sample’);
mydb=# SELECT ts_lexize(’syn’,’indices’);
ts_lexize

{index}

(1 row)

mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
mydb=# SELECT to_tsvector(’tst’,’indices’);
to_tsvector

’index’:1

(1 row)

mydb=# SELECT to_tsquery(’tst’,’indices’);
to_tsquery

’index’:*

(1 row)

mydb=# SELECT ’indexes are very useful’::tsvector;
tsvector

’are’ ’indexes’ ’useful’ ’very’

(1 row)

346

Chapter 12. Full Text Search

mydb=# SELECT ’indexes are very useful’::tsvector @@ to_tsquery(’tst’,’indices’);
?column?

t

(1 row)

12.6.4. Thesaurus Dictionary
A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that includes information
about the relationships of words and phrases, i.e., broader terms (BT), narrower terms (NT), preferred
terms, non-preferred terms, related terms, etc.

Basically a thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally,
preserves the original terms for indexing as well. PostgreSQL’s current implementation of the thesaurus
dictionary is an extension of the synonym dictionary with added phrase support. A thesaurus dictionary
requires a configuration file of the following format:

this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...

where the colon (:) symbol acts as a delimiter between a a phrase and its replacement.

A thesaurus dictionary uses a subdictionary (which is specified in the dictionary’s configuration) to nor-
malize the input text before checking for phrase matches. It is only possible to select one subdictionary.
An error is reported if the subdictionary fails to recognize a word. In that case, you should remove the use
of the word or teach the subdictionary about it. You can place an asterisk (*) at the beginning of an indexed
word to skip applying the subdictionary to it, but all sample words must be known to the subdictionary.

The thesaurus dictionary chooses the longest match if there are multiple phrases matching the input, and
ties are broken by using the last definition.

Specific stop words recognized by the subdictionary cannot be specified; instead use ? to mark the location
where any stop word can appear. For example, assuming that a and the are stop words according to the
subdictionary:

? one ? two : swsw

matches a one the two and the one a two; both would be replaced by swsw.

Since a thesaurus dictionary has the capability to recognize phrases it must remember its state and interact
with the parser. A thesaurus dictionary uses these assignments to check if it should handle the next word or
stop accumulation. The thesaurus dictionary must be configured carefully. For example, if the thesaurus
dictionary is assigned to handle only the asciiword token, then a thesaurus dictionary definition like
one 7 will not work since token type uint is not assigned to the thesaurus dictionary.

347

Chapter 12. Full Text Search

Caution
Thesauruses are used during indexing so any change in the thesaurus dictionary’s
parameters requires reindexing. For most other dictionary types, small changes
such as adding or removing stopwords does not force reindexing.

12.6.4.1. Thesaurus Configuration

To define a new thesaurus dictionary, use the thesaurus template. For example:

CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
TEMPLATE = thesaurus,
DictFile = mythesaurus,
Dictionary = pg_catalog.english_stem

);

Here:

• thesaurus_simple is the new dictionary’s name
• mythesaurus is the base name of the thesaurus configuration file. (Its full name will be
$SHAREDIR/tsearch_data/mythesaurus.ths, where $SHAREDIR means the installation
shared-data directory.)

• pg_catalog.english_stem is the subdictionary (here, a Snowball English stemmer) to use for the-
saurus normalization. Notice that the subdictionary will have its own configuration (for example, stop
words), which is not shown here.

Now it is possible to bind the thesaurus dictionary thesaurus_simple to the desired token types in a
configuration, for example:

ALTER TEXT SEARCH CONFIGURATION russian
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
WITH thesaurus_simple;

12.6.4.2. Thesaurus Example

Consider a simple astronomical thesaurus thesaurus_astro, which contains some astronomical word
combinations:

supernovae stars : sn
crab nebulae : crab

Below we create a dictionary and bind some token types to an astronomical thesaurus and English stem-
mer:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
TEMPLATE = thesaurus,
DictFile = thesaurus_astro,

348

Chapter 12. Full Text Search

Dictionary = english_stem
);

ALTER TEXT SEARCH CONFIGURATION russian
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
WITH thesaurus_astro, english_stem;

Now we can see how it works. ts_lexize is not very useful for testing a thesaurus, because it treats its
input as a single token. Instead we can use plainto_tsquery and to_tsvector which will break their
input strings into multiple tokens:

SELECT plainto_tsquery(’supernova star’);
plainto_tsquery

’sn’

SELECT to_tsvector(’supernova star’);
to_tsvector

’sn’:1

In principle, one can use to_tsquery if you quote the argument:

SELECT to_tsquery(”’supernova star”’);
to_tsquery

’sn’

Notice that supernova star matches supernovae stars in thesaurus_astro because we speci-
fied the english_stem stemmer in the thesaurus definition. The stemmer removed the e and s.

To index the original phrase as well as the substitute, just include it in the right-hand part of the definition:

supernovae stars : sn supernovae stars

SELECT plainto_tsquery(’supernova star’);
plainto_tsquery

’sn’ & ’supernova’ & ’star’

12.6.5. Ispell Dictionary
The Ispell dictionary template supports morphological dictionaries, which can normalize many different
linguistic forms of a word into the same lexeme. For example, an English Ispell dictionary can match
all declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks’, and
bank’s.

349

Chapter 12. Full Text Search

The standard PostgreSQL distribution does not include any Ispell configuration files. Dictionaries for a
large number of languages are available from Ispell1. Also, some more modern dictionary file formats are
supported — MySpell2 (OO< 2.0.1) and Hunspell3 (OO>= 2.0.2). A large list of dictionaries is available
on the OpenOffice Wiki4.

To create an Ispell dictionary, use the built-in ispell template and specify several parameters:

CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english

);

Here, DictFile, AffFile, and StopWords specify the base names of the dictionary, affixes, and stop-
words files. The stop-words file has the same format explained above for the simple dictionary type. The
format of the other files is not specified here but is available from the above-mentioned web sites.

Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader
dictionary; for example, a Snowball dictionary, which recognizes everything.

Ispell dictionaries support splitting compound words; a useful feature. Notice that the affix file should
specify a special flag using the compoundwords controlled statement that marks dictionary words
that can participate in compound formation:

compoundwords controlled z

Here are some examples for the Norwegian language:

SELECT ts_lexize(’norwegian_ispell’, ’overbuljongterningpakkmesterassistent’);
{over,buljong,terning,pakk,mester,assistent}

SELECT ts_lexize(’norwegian_ispell’, ’sjokoladefabrikk’);
{sjokoladefabrikk,sjokolade,fabrikk}

Note: MySpell does not support compound words. Hunspell has sophisticated support for compound
words. At present, PostgreSQL implements only the basic compound word operations of Hunspell.

12.6.6. Snowball Dictionary
The Snowball dictionary template is based on a project by Martin Porter, inventor of the popular Porter’s
stemming algorithm for the English language. Snowball now provides stemming algorithms for many lan-
guages (see the Snowball site5 for more information). Each algorithm understands how to reduce common
variant forms of words to a base, or stem, spelling within its language. A Snowball dictionary requires a

1. http://ficus-www.cs.ucla.edu/geoff/ispell.html
2. http://en.wikipedia.org/wiki/MySpell
3. http://sourceforge.net/projects/hunspell/
4. http://wiki.services.openoffice.org/wiki/Dictionaries
5. http://snowball.tartarus.org

350

Chapter 12. Full Text Search

language parameter to identify which stemmer to use, and optionally can specify a stopword file name
that gives a list of words to eliminate. (PostgreSQL’s standard stopword lists are also provided by the
Snowball project.) For example, there is a built-in definition equivalent to

CREATE TEXT SEARCH DICTIONARY english_stem (
TEMPLATE = snowball,
Language = english,
StopWords = english

);

The stopword file format is the same as already explained.

A Snowball dictionary recognizes everything, whether or not it is able to simplify the word, so it should
be placed at the end of the dictionary list. It is useless to have it before any other dictionary because a
token will never pass through it to the next dictionary.

12.7. Configuration Example
A text search configuration specifies all options necessary to transform a document into a tsvector: the
parser to use to break text into tokens, and the dictionaries to use to transform each token into a lexeme.
Every call of to_tsvector or to_tsquery needs a text search configuration to perform its processing.
The configuration parameter default_text_search_config specifies the name of the default configuration,
which is the one used by text search functions if an explicit configuration parameter is omitted. It can be
set in postgresql.conf, or set for an individual session using the SET command.

Several predefined text search configurations are available, and you can create custom configurations
easily. To facilitate management of text search objects, a set of SQL commands is available, and there are
several psql commands that display information about text search objects (Section 12.10).

As an example we will create a configuration pg, starting by duplicating the built-in english configura-
tion:

CREATE TEXT SEARCH CONFIGURATION public.pg (COPY = pg_catalog.english);

We will use a PostgreSQL-specific synonym list and store it in
$SHAREDIR/tsearch_data/pg_dict.syn. The file contents look
like:

postgres pg
pgsql pg
postgresql pg

We define the synonym dictionary like this:

CREATE TEXT SEARCH DICTIONARY pg_dict (
TEMPLATE = synonym,
SYNONYMS = pg_dict

);

351

Chapter 12. Full Text Search

Next we register the Ispell dictionary english_ispell, which has its own configuration files:

CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english

);

Now we can set up the mappings for words in configuration pg:

ALTER TEXT SEARCH CONFIGURATION pg
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,

word, hword, hword_part
WITH pg_dict, english_ispell, english_stem;

We choose not to index or search some token types that the built-in configuration does handle:

ALTER TEXT SEARCH CONFIGURATION pg
DROP MAPPING FOR email, url, url_path, sfloat, float;

Now we can test our configuration:

SELECT * FROM ts_debug(’public.pg’, ’
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software.
’);

The next step is to set the session to use the new configuration, which was created in the public schema:

=> \dF
List of text search configurations

Schema | Name | Description
---------+------+-------------
public | pg |

SET default_text_search_config = ’public.pg’;
SET

SHOW default_text_search_config;
default_text_search_config

public.pg

352

Chapter 12. Full Text Search

12.8. Testing and Debugging Text Search
The behavior of a custom text search configuration can easily become confusing. The functions described
in this section are useful for testing text search objects. You can test a complete configuration, or test
parsers and dictionaries separately.

12.8.1. Configuration Testing
The function ts_debug allows easy testing of a text search configuration.

ts_debug([config regconfig,] document text,
OUT alias text,
OUT description text,
OUT token text,
OUT dictionaries regdictionary[],
OUT dictionary regdictionary,
OUT lexemes text[])
returns setof record

ts_debug displays information about every token of document as produced by the parser
and processed by the configured dictionaries. It uses the configuration specified by config, or
default_text_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The columns returned are

• alias text — short name of the token type
• description text — description of the token type
• token text — text of the token
• dictionaries regdictionary[] — the dictionaries selected by the configuration for this token

type
• dictionary regdictionary — the dictionary that recognized the token, or NULL if none did
• lexemes text[] — the lexeme(s) produced by the dictionary that recognized the token, or NULL if

none did; an empty array ({}) means it was recognized as a stop word

Here is a simple example:

SELECT * FROM ts_debug(’english’,’a fat cat sat on a mat - it ate a fat rats’);
alias | description | token | dictionaries | dictionary | lexemes

-----------+-----------------+-------+----------------+--------------+---------
asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}

353

Chapter 12. Full Text Search

blank | Space symbols | | {} | |
asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
blank | Space symbols | | {} | |
blank | Space symbols | - | {} | |
asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}

For a more extensive demonstration, we first create a public.english configuration and Ispell dictio-
nary for the English language:

CREATE TEXT SEARCH CONFIGURATION public.english (COPY = pg_catalog.english);

CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english

);

ALTER TEXT SEARCH CONFIGURATION public.english
ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;

SELECT * FROM ts_debug(’public.english’,’The Brightest supernovaes’);
alias | description | token | dictionaries | dictionary | lexemes

-----------+-----------------+-------------+-------------------------------+----------------+-------------
asciiword | Word, all ASCII | The | {english_ispell,english_stem} | english_ispell | {}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem} | english_ispell | {bright}
blank | Space symbols | | {} | |
asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} | english_stem | {supernova}

In this example, the word Brightest was recognized by the parser as an ASCII word (alias
asciiword). For this token type the dictionary list is english_ispell and english_stem. The word
was recognized by english_ispell, which reduced it to the noun bright. The word supernovaes is
unknown to the english_ispell dictionary so it was passed to the next dictionary, and, fortunately,
was recognized (in fact, english_stem is a Snowball dictionary which recognizes everything; that is
why it was placed at the end of the dictionary list).

The word The was recognized by the english_ispell dictionary as a stop word (Section 12.6.1) and
will not be indexed. The spaces are discarded too, since the configuration provides no dictionaries at all
for them.

You can reduce the width of the output by explicitly specifying which columns you want to see:

SELECT alias, token, dictionary, lexemes

354

Chapter 12. Full Text Search

FROM ts_debug(’public.english’,’The Brightest supernovaes’);
alias | token | dictionary | lexemes

-----------+-------------+----------------+-------------
asciiword | The | english_ispell | {}
blank | | |
asciiword | Brightest | english_ispell | {bright}
blank | | |
asciiword | supernovaes | english_stem | {supernova}

12.8.2. Parser Testing
The following functions allow direct testing of a text search parser.

ts_parse(parser_name text, document text,
OUT tokid integer, OUT token text) returns setof record

ts_parse(parser_oid oid, document text,
OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each token produced by
parsing. Each record includes a tokid showing the assigned token type and a token which is the text of
the token. For example:

SELECT * FROM ts_parse(’default’, ’123 - a number’);
tokid | token

-------+--------
22 | 123
12 |
12 | -
1 | a

12 |
1 | number

ts_token_type(parser_name text, OUT tokid integer,
OUT alias text, OUT description text) returns setof record

ts_token_type(parser_oid oid, OUT tokid integer,
OUT alias text, OUT description text) returns setof record

ts_token_type returns a table which describes each type of token the specified parser can recognize.
For each token type, the table gives the integer tokid that the parser uses to label a token of that type, the
alias that names the token type in configuration commands, and a short description. For example:

SELECT * FROM ts_token_type(’default’);
tokid | alias | description
-------+-----------------+--

1 | asciiword | Word, all ASCII
2 | word | Word, all letters
3 | numword | Word, letters and digits
4 | email | Email address

355

Chapter 12. Full Text Search

5 | url | URL
6 | host | Host
7 | sfloat | Scientific notation
8 | version | Version number
9 | hword_numpart | Hyphenated word part, letters and digits

10 | hword_part | Hyphenated word part, all letters
11 | hword_asciipart | Hyphenated word part, all ASCII
12 | blank | Space symbols
13 | tag | XML tag
14 | protocol | Protocol head
15 | numhword | Hyphenated word, letters and digits
16 | asciihword | Hyphenated word, all ASCII
17 | hword | Hyphenated word, all letters
18 | url_path | URL path
19 | file | File or path name
20 | float | Decimal notation
21 | int | Signed integer
22 | uint | Unsigned integer
23 | entity | XML entity

12.8.3. Dictionary Testing
The ts_lexize function facilitates dictionary testing.

ts_lexize(dict regdictionary, token text) returns text[]

ts_lexize returns an array of lexemes if the input token is known to the dictionary, or an empty array
if the token is known to the dictionary but it is a stop word, or NULL if it is an unknown word.

Examples:

SELECT ts_lexize(’english_stem’, ’stars’);
ts_lexize

{star}

SELECT ts_lexize(’english_stem’, ’a’);
ts_lexize

{}

Note: The ts_lexize function expects a single token, not text. Here is a case where this can be
confusing:

SELECT ts_lexize(’thesaurus_astro’,’supernovae stars’) is null;
?column?

t

356

Chapter 12. Full Text Search

The thesaurus dictionary thesaurus_astro does know the phrase supernovae stars, but
ts_lexize fails since it does not parse the input text but treats it as a single token. Use
plainto_tsquery or to_tsvector to test thesaurus dictionaries, for example:

SELECT plainto_tsquery(’supernovae stars’);
plainto_tsquery

’sn’

12.9. GiST and GIN Index Types
There are two kinds of indexes that can be used to speed up full text searches. Note that indexes are not
mandatory for full text searching, but in cases where a column is searched on a regular basis, an index is
usually desirable.

CREATE INDEX name ON table USING gist(column);

Creates a GiST (Generalized Search Tree)-based index. The column can be of tsvector or
tsquery type.

CREATE INDEX name ON table USING gin(column);

Creates a GIN (Generalized Inverted Index)-based index. The column must be of tsvector type.

There are substantial performance differences between the two index types, so it is important to understand
their characteristics.

A GiST index is lossy, meaning that the index may produce false matches, and it is necessary to check
the actual table row to eliminate such false matches. (PostgreSQL does this automatically when needed.)
GiST indexes are lossy because each document is represented in the index by a fixed-length signature.
The signature is generated by hashing each word into a single bit in an n-bit string, with all these bits
OR-ed together to produce an n-bit document signature. When two words hash to the same bit position
there will be a false match. If all words in the query have matches (real or false) then the table row must
be retrieved to see if the match is correct.

Lossiness causes performance degradation due to unnecessary fetches of table records that turn out to be
false matches. Since random access to table records is slow, this limits the usefulness of GiST indexes.
The likelihood of false matches depends on several factors, in particular the number of unique words, so
using dictionaries to reduce this number is recommended.

GIN indexes are not lossy for standard queries, but their performance depends logarithmically on the
number of unique words. (However, GIN indexes store only the words (lexemes) of tsvector values,
and not their weight labels. Thus a table row recheck is needed when using a query that involves weights.)

In choosing which index type to use, GiST or GIN, consider these performance differences:

357

Chapter 12. Full Text Search

• GIN index lookups are about three times faster than GiST
• GIN indexes take about three times longer to build than GiST
• GIN indexes are moderately slower to update than GiST indexes, but about 10 times slower if fast-

update support was disabled (see Section 55.3.1 for details)
• GIN indexes are two-to-three times larger than GiST indexes

As a rule of thumb, GIN indexes are best for static data because lookups are faster. For dynamic data,
GiST indexes are faster to update. Specifically, GiST indexes are very good for dynamic data and fast if
the number of unique words (lexemes) is under 100,000, while GIN indexes will handle 100,000+ lexemes
better but are slower to update.

Note that GIN index build time can often be improved by increasing maintenance_work_mem, while
GiST index build time is not sensitive to that parameter.

Partitioning of big collections and the proper use of GiST and GIN indexes allows the implementation of
very fast searches with online update. Partitioning can be done at the database level using table inheritance,
or by distributing documents over servers and collecting search results using the dblink module. The latter
is possible because ranking functions use only local information.

12.10. psql Support
Information about text search configuration objects can be obtained in psql using a set of commands:

\dF{d,p,t}[+] [PATTERN]

An optional + produces more details.

The optional parameter PATTERN can be the name of a text search object, optionally schema-qualified. If
PATTERN is omitted then information about all visible objects will be displayed. PATTERN can be a regular
expression and can provide separate patterns for the schema and object names. The following examples
illustrate this:

=> \dF *fulltext*
List of text search configurations

Schema | Name | Description
--------+--------------+-------------
public | fulltext_cfg |

=> \dF *.fulltext*
List of text search configurations

Schema | Name | Description
----------+----------------------------
fulltext | fulltext_cfg |
public | fulltext_cfg |

The available commands are:

358

Chapter 12. Full Text Search

\dF[+] [PATTERN]

List text search configurations (add + for more detail).

=> \dF russian
List of text search configurations

Schema | Name | Description
------------+---------+------------------------------------
pg_catalog | russian | configuration for russian language

=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"

Token | Dictionaries
-----------------+--------------
asciihword | english_stem
asciiword | english_stem
email | simple
file | simple
float | simple
host | simple
hword | russian_stem
hword_asciipart | english_stem
hword_numpart | simple
hword_part | russian_stem
int | simple
numhword | simple
numword | simple
sfloat | simple
uint | simple
url | simple
url_path | simple
version | simple
word | russian_stem

\dFd[+] [PATTERN]

List text search dictionaries (add + for more detail).

=> \dFd
List of text search dictionaries

Schema | Name | Description
------------+-----------------+---
pg_catalog | danish_stem | snowball stemmer for danish language
pg_catalog | dutch_stem | snowball stemmer for dutch language
pg_catalog | english_stem | snowball stemmer for english language
pg_catalog | finnish_stem | snowball stemmer for finnish language
pg_catalog | french_stem | snowball stemmer for french language
pg_catalog | german_stem | snowball stemmer for german language
pg_catalog | hungarian_stem | snowball stemmer for hungarian language
pg_catalog | italian_stem | snowball stemmer for italian language
pg_catalog | norwegian_stem | snowball stemmer for norwegian language
pg_catalog | portuguese_stem | snowball stemmer for portuguese language
pg_catalog | romanian_stem | snowball stemmer for romanian language
pg_catalog | russian_stem | snowball stemmer for russian language

359

Chapter 12. Full Text Search

pg_catalog | simple | simple dictionary: just lower case and check for stopword
pg_catalog | spanish_stem | snowball stemmer for spanish language
pg_catalog | swedish_stem | snowball stemmer for swedish language
pg_catalog | turkish_stem | snowball stemmer for turkish language

\dFp[+] [PATTERN]

List text search parsers (add + for more detail).

=> \dFp
List of text search parsers

Schema | Name | Description
------------+---------+---------------------
pg_catalog | default | default word parser

=> \dFp+
Text search parser "pg_catalog.default"
Method | Function | Description

-----------------+----------------+-------------
Start parse | prsd_start |
Get next token | prsd_nexttoken |
End parse | prsd_end |
Get headline | prsd_headline |
Get token types | prsd_lextype |

Token types for parser "pg_catalog.default"
Token name | Description

-----------------+--
asciihword | Hyphenated word, all ASCII
asciiword | Word, all ASCII
blank | Space symbols
email | Email address
entity | XML entity
file | File or path name
float | Decimal notation
host | Host
hword | Hyphenated word, all letters
hword_asciipart | Hyphenated word part, all ASCII
hword_numpart | Hyphenated word part, letters and digits
hword_part | Hyphenated word part, all letters
int | Signed integer
numhword | Hyphenated word, letters and digits
numword | Word, letters and digits
protocol | Protocol head
sfloat | Scientific notation
tag | XML tag
uint | Unsigned integer
url | URL
url_path | URL path
version | Version number
word | Word, all letters

(23 rows)

360

Chapter 12. Full Text Search

\dFt[+] [PATTERN]

List text search templates (add + for more detail).

=> \dFt
List of text search templates

Schema | Name | Description
------------+-----------+---
pg_catalog | ispell | ispell dictionary
pg_catalog | simple | simple dictionary: just lower case and check for stopword
pg_catalog | snowball | snowball stemmer
pg_catalog | synonym | synonym dictionary: replace word by its synonym
pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution

12.11. Limitations
The current limitations of PostgreSQL’s text search features are:

• The length of each lexeme must be less than 2K bytes
• The length of a tsvector (lexemes + positions) must be less than 1 megabyte
• The number of lexemes must be less than 264

• Position values in tsvector must be greater than 0 and no more than 16,383
• No more than 256 positions per lexeme
• The number of nodes (lexemes + operators) in a tsquery must be less than 32,768

For comparison, the PostgreSQL 8.1 documentation contained 10,441 unique words, a total of 335,420
words, and the most frequent word “postgresql” was mentioned 6,127 times in 655 documents.

Another example — the PostgreSQL mailing list archives contained 910,989 unique words with
57,491,343 lexemes in 461,020 messages.

12.12. Migration from Pre-8.3 Text Search
Applications that use the tsearch2 module for text searching will need some adjustments to work with the
built-in features:

• Some functions have been renamed or had small adjustments in their argument lists, and all of them are
now in the pg_catalog schema, whereas in a previous installation they would have been in public

or another non-system schema. There is a new version of tsearch2 that provides a compatibility layer
to solve most problems in this area.

• The old tsearch2 functions and other objects must be suppressed when loading pg_dump output from
a pre-8.3 database. While many of them won’t load anyway, a few will and then cause problems. One
simple way to deal with this is to load the new tsearch2 module before restoring the dump; then it will
block the old objects from being loaded.

361

Chapter 12. Full Text Search

• Text search configuration setup is completely different now. Instead of manually inserting rows into
configuration tables, search is configured through the specialized SQL commands shown earlier in this
chapter. There is no automated support for converting an existing custom configuration for 8.3; you’re
on your own here.

• Most types of dictionaries rely on some outside-the-database configuration files. These are largely com-
patible with pre-8.3 usage, but note the following differences:
• Configuration files now must be placed in a single specified directory

($SHAREDIR/tsearch_data), and must have a specific extension depending on the type of file, as
noted previously in the descriptions of the various dictionary types. This restriction was added to
forestall security problems.

• Configuration files must be encoded in UTF-8 encoding, regardless of what database encoding is
used.

• In thesaurus configuration files, stop words must be marked with ?.

362

Chapter 13. Concurrency Control
This chapter describes the behavior of the PostgreSQL database system when two or more sessions try
to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should be
familiar with the topics covered in this chapter.

13.1. Introduction
PostgreSQL provides a rich set of tools for developers to manage concurrent access to data. Internally, data
consistency is maintained by using a multiversion model (Multiversion Concurrency Control, MVCC).
This means that while querying a database each transaction sees a snapshot of data (a database version)
as it was some time ago, regardless of the current state of the underlying data. This protects the transaction
from viewing inconsistent data that could be caused by (other) concurrent transaction updates on the same
data rows, providing transaction isolation for each database session. MVCC, by eschewing the locking
methodologies of traditional database systems, minimizes lock contention in order to allow for reasonable
performance in multiuser environments.

The main advantage of using the MVCC model of concurrency control rather than locking is that in
MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing data,
and so reading never blocks writing and writing never blocks reading. PostgreSQL maintains this guar-
antee even when providing the strictest level of transaction isolation through the use of an innovative
Serializable Snapshot Isolation (SSI) level.

Table- and row-level locking facilities are also available in PostgreSQL for applications which don’t gen-
erally need full transaction isolation and prefer to explicitly manage particular points of conflict. How-
ever, proper use of MVCC will generally provide better performance than locks. In addition, application-
defined advisory locks provide a mechanism for acquiring locks that are not tied to a single transaction.

13.2. Transaction Isolation
The SQL standard defines four levels of transaction isolation. The most strict is Serializable, which is
defined by the standard in a paragraph which says that any concurrent execution of a set of Serializable
transactions is guaranteed to produce the same effect as running them one at a time in some order. The
other three levels are defined in terms of phenomena, resulting from interaction between concurrent trans-
actions, which must not occur at each level. The standard notes that due to the definition of Serializable,
none of these phenomena are possible at that level. (This is hardly surprising -- if the effect of the trans-
actions must be consistent with having been run one at a time, how could you see any phenomena caused
by interactions?)

The phenomena which are prohibited at various levels are:

dirty read

A transaction reads data written by a concurrent uncommitted transaction.

363

Chapter 13. Concurrency Control

nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

The four transaction isolation levels and the corresponding behaviors are described in Table 13-1.

Table 13-1. Standard SQL Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable
Read

Phantom Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

In PostgreSQL, you can request any of the four standard transaction isolation levels. But internally, there
are only three distinct isolation levels, which correspond to the levels Read Committed, Repeatable Read,
and Serializable. When you select the level Read Uncommitted you really get Read Committed, and
phantom reads are not possible in the PostgreSQL implementation of Repeatable Read, so the actual
isolation level might be stricter than what you select. This is permitted by the SQL standard: the four
isolation levels only define which phenomena must not happen, they do not define which phenomena
must happen. The reason that PostgreSQL only provides three isolation levels is that this is the only
sensible way to map the standard isolation levels to the multiversion concurrency control architecture.
The behavior of the available isolation levels is detailed in the following subsections.

To set the transaction isolation level of a transaction, use the command SET TRANSACTION.

13.2.1. Read Committed Isolation Level
Read Committed is the default isolation level in PostgreSQL. When a transaction uses this isolation level,
a SELECT query (without a FOR UPDATE/SHARE clause) sees only data committed before the query be-
gan; it never sees either uncommitted data or changes committed during query execution by concurrent
transactions. In effect, a SELECT query sees a snapshot of the database as of the instant the query begins
to run. However, SELECT does see the effects of previous updates executed within its own transaction,
even though they are not yet committed. Also note that two successive SELECT commands can see dif-
ferent data, even though they are within a single transaction, if other transactions commit changes during
execution of the first SELECT.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as of
the command start time. However, such a target row might have already been updated (or deleted or
locked) by another concurrent transaction by the time it is found. In this case, the would-be updater will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater

364

Chapter 13. Concurrency Control

rolls back, then its effects are negated and the second updater can proceed with updating the originally
found row. If the first updater commits, the second updater will ignore the row if the first updater deleted
it, otherwise it will attempt to apply its operation to the updated version of the row. The search condition
of the command (the WHERE clause) is re-evaluated to see if the updated version of the row still matches
the search condition. If so, the second updater proceeds with its operation using the updated version of
the row. In the case of SELECT FOR UPDATE and SELECT FOR SHARE, this means it is the updated
version of the row that is locked and returned to the client.

Because of the above rule, it is possible for an updating command to see an inconsistent snapshot: it can
see the effects of concurrent updating commands on the same rows it is trying to update, but it does not
see effects of those commands on other rows in the database. This behavior makes Read Committed mode
unsuitable for commands that involve complex search conditions; however, it is just right for simpler
cases. For example, consider updating bank balances with transactions like:

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start with the updated version of the account’s row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

More complex usage can produce undesirable results in Read Committed mode. For example, consider a
DELETE command operating on data that is being both added and removed from its restriction criteria by
another command, e.g., assume website is a two-row table with website.hits equaling 9 and 10:

BEGIN;
UPDATE website SET hits = hits + 1;
-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

The DELETE will have no effect even though there is a website.hits = 10 row before and after the
UPDATE. This occurs because the pre-update row value 9 is skipped, and when the UPDATE completes and
DELETE obtains a lock, the new row value is no longer 10 but 11, which no longer matches the criteria.

Because Read Committed mode starts each command with a new snapshot that includes all transactions
committed up to that instant, subsequent commands in the same transaction will see the effects of the
committed concurrent transaction in any case. The point at issue above is whether or not a single command
sees an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applications,
and this mode is fast and simple to use; however, it is not sufficient for all cases. Applications that do
complex queries and updates might require a more rigorously consistent view of the database than Read
Committed mode provides.

13.2.2. Repeatable Read Isolation Level
The Repeatable Read isolation level only sees data committed before the transaction began; it never sees
either uncommitted data or changes committed during transaction execution by concurrent transactions.

365

Chapter 13. Concurrency Control

(However, the query does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.) This is a stronger guarantee than is required by the SQL standard for
this isolation level, and prevents all of the phenomena described in Table 13-1. As mentioned above, this
is specifically allowed by the standard, which only describes the minimum protections each isolation level
must provide.

This level is different from Read Committed in that a query in a repeatable read transaction sees a snapshot
as of the start of the transaction, not as of the start of the current query within the transaction. Thus,
successive SELECT commands within a single transaction see the same data, i.e., they do not see changes
made by other transactions that committed after their own transaction started.

Applications using this level must be prepared to retry transactions due to serialization failures.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as
SELECT in terms of searching for target rows: they will only find target rows that were committed as of
the transaction start time. However, such a target row might have already been updated (or deleted
or locked) by another concurrent transaction by the time it is found. In this case, the repeatable read
transaction will wait for the first updating transaction to commit or roll back (if it is still in progress). If
the first updater rolls back, then its effects are negated and the repeatable read transaction can proceed
with updating the originally found row. But if the first updater commits (and actually updated or deleted
the row, not just locked it) then the repeatable read transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a repeatable read transaction cannot modify or lock rows changed by other transactions after the
repeatable read transaction began.

When an application receives this error message, it should abort the current transaction and retry the
whole transaction from the beginning. The second time through, the transaction will see the previously-
committed change as part of its initial view of the database, so there is no logical conflict in using the new
version of the row as the starting point for the new transaction’s update.

Note that only updating transactions might need to be retried; read-only transactions will never have
serialization conflicts.

The Repeatable Read mode provides a rigorous guarantee that each transaction sees a completely stable
view of the database. However, this view will not necessarily always be consistent with some serial (one at
a time) execution of concurrent transactions of the same level. For example, even a read only transaction
at this level may see a control record updated to show that a batch has been completed but not see one
of the detail records which is logically part of the batch because it read an earlier revision of the control
record. Attempts to enforce business rules by transactions running at this isolation level are not likely to
work correctly without careful use of explicit locks to block conflicting transactions.

Note: Prior to PostgreSQL version 9.1, a request for the Serializable transaction isolation level pro-
vided exactly the same behavior described here. To retain the legacy Serializable behavior, Repeat-
able Read should now be requested.

366

Chapter 13. Concurrency Control

13.2.3. Serializable Isolation Level
The Serializable isolation level provides the strictest transaction isolation. This level emulates serial trans-
action execution, as if transactions had been executed one after another, serially, rather than concurrently.
However, like the Repeatable Read level, applications using this level must be prepared to retry trans-
actions due to serialization failures. In fact, this isolation level works exactly the same as Repeatable
Read except that it monitors for conditions which could make execution of a concurrent set of serializable
transactions behave in a manner inconsistent with all possible serial (one at a time) executions of those
transactions. This monitoring does not introduce any blocking beyond that present in repeatable read, but
there is some overhead to the monitoring, and detection of the conditions which could cause a serialization
anomaly will trigger a serialization failure.

As an example, consider a table mytab, initially containing:

class | value
-------+-------

1 | 10
1 | 20
2 | 100
2 | 200

Suppose that serializable transaction A computes:

SELECT SUM(value) FROM mytab WHERE class = 1;

and then inserts the result (30) as the value in a new row with class = 2. Concurrently, serializable
transaction B computes:

SELECT SUM(value) FROM mytab WHERE class = 2;

and obtains the result 300, which it inserts in a new row with class = 1. Then both transactions try to
commit. If either transaction were running at the Repeatable Read isolation level, both would be allowed
to commit; but since there is no serial order of execution consistent with the result, using Serializable
transactions will allow one transaction to commit and will roll the other back with this message:

ERROR: could not serialize access due to read/write dependencies among transactions

This is because if A had executed before B, B would have computed the sum 330, not 300, and similarly
the other order would have resulted in a different sum computed by A.

To guarantee true serializability PostgreSQL uses predicate locking, which means that it keeps locks
which allow it to determine when a write would have had an impact on the result of a previous read from a
concurrent transaction, had it run first. In PostgreSQL these locks do not cause any blocking and therefore
can not play any part in causing a deadlock. They are used to identify and flag dependencies among
concurrent serializable transactions which in certain combinations can lead to serialization anomalies. In
contrast, a Read Committed or Repeatable Read transaction which wants to ensure data consistency may
need to take out a lock on an entire table, which could block other users attempting to use that table, or it
may use SELECT FOR UPDATE or SELECT FOR SHARE which not only can block other transactions but
cause disk access.

Predicate locks in PostgreSQL, like in most other database systems, are based on data actually accessed
by a transaction. These will show up in the pg_locks system view with a mode of SIReadLock. The

367

Chapter 13. Concurrency Control

particular locks acquired during execution of a query will depend on the plan used by the query, and mul-
tiple finer-grained locks (e.g., tuple locks) may be combined into fewer coarser-grained locks (e.g., page
locks) during the course of the transaction to prevent exhaustion of the memory used to track the locks.
A READ ONLY transaction may be able to release its SIRead locks before completion, if it detects that
no conflicts can still occur which could lead to a serialization anomaly. In fact, READ ONLY transactions
will often be able to establish that fact at startup and avoid taking any predicate locks. If you explicitly
request a SERIALIZABLE READ ONLY DEFERRABLE transaction, it will block until it can establish this
fact. (This is the only case where Serializable transactions block but Repeatable Read transactions don’t.)
On the other hand, SIRead locks often need to be kept past transaction commit, until overlapping read
write transactions complete.

Consistent use of Serializable transactions can simplify development. The guarantee that any set of con-
current serializable transactions will have the same effect as if they were run one at a time means that if
you can demonstrate that a single transaction, as written, will do the right thing when run by itself, you
can have confidence that it will do the right thing in any mix of serializable transactions, even without
any information about what those other transactions might do. It is important that an environment which
uses this technique have a generalized way of handling serialization failures (which always return with a
SQLSTATE value of ’40001’), because it will be very hard to predict exactly which transactions might
contribute to the read/write dependencies and need to be rolled back to prevent serialization anomalies.
The monitoring of read/write dependencies has a cost, as does the restart of transactions which are ter-
minated with a serialization failure, but balanced against the cost and blocking involved in use of explicit
locks and SELECT FOR UPDATE or SELECT FOR SHARE, Serializable transactions are the best perfor-
mance choice for some environments.

For optimal performance when relying on Serializable transactions for concurrency control, these issues
should be considered:

• Declare transactions as READ ONLY when possible.

• Control the number of active connections, using a connection pool if needed. This is always an impor-
tant performance consideration, but it can be particularly important in a busy system using Serializable
transactions.

• Don’t put more into a single transaction than needed for integrity purposes.

• Don’t leave connections dangling “idle in transaction” longer than necessary.

• Eliminate explicit locks, SELECT FOR UPDATE, and SELECT FOR SHARE where no longer needed
due to the protections automatically provided by Serializable transactions.

• When the system is forced to combine multiple page-level predicate locks into a single relation-level
predicate lock because the predicate lock table is short of memory, an increase in the rate of serialization
failures may occur. You can avoid this by increasing max_pred_locks_per_transaction.

• A sequential scan will always necessitate a relation-level predicate lock. This can result in an increased
rate of serialization failures. It may be helpful to encourage the use of index scans by reducing ran-
dom_page_cost and/or increasing cpu_tuple_cost. Be sure to weigh any decrease in transaction roll-
backs and restarts against any overall change in query execution time.

368

Chapter 13. Concurrency Control

Warning
Support for the Serializable transaction isolation level has not yet been added to
Hot Standby replication targets (described in Section 25.5). The strictest isolation
level currently supported in hot standby mode is Repeatable Read. While perform-
ing all permanent database writes within Serializable transactions on the master
will ensure that all standbys will eventually reach a consistent state, a Repeatable
Read transaction run on the standby can sometimes see a transient state which is
inconsistent with any serial execution of serializable transactions on the master.

13.3. Explicit Locking
PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes can
be used for application-controlled locking in situations where MVCC does not give the desired behav-
ior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to ensure that
referenced tables are not dropped or modified in incompatible ways while the command executes. (For
example, TRUNCATE cannot safely be executed concurrently with other operations on the same table, so it
obtains an exclusive lock on the table to enforce that.)

To examine a list of the currently outstanding locks in a database server, use the pg_locks system view.
For more information on monitoring the status of the lock manager subsystem, refer to Chapter 27.

13.3.1. Table-level Locks
The list below shows the available lock modes and the contexts in which they are used automatically by
PostgreSQL. You can also acquire any of these locks explicitly with the command LOCK. Remember
that all of these lock modes are table-level locks, even if the name contains the word “row”; the names
of the lock modes are historical. To some extent the names reflect the typical usage of each lock mode
— but the semantics are all the same. The only real difference between one lock mode and another is
the set of lock modes with which each conflicts (see Table 13-2). Two transactions cannot hold locks
of conflicting modes on the same table at the same time. (However, a transaction never conflicts with
itself. For example, it might acquire ACCESS EXCLUSIVE lock and later acquire ACCESS SHARE lock on
the same table.) Non-conflicting lock modes can be held concurrently by many transactions. Notice in
particular that some lock modes are self-conflicting (for example, an ACCESS EXCLUSIVE lock cannot be
held by more than one transaction at a time) while others are not self-conflicting (for example, an ACCESS
SHARE lock can be held by multiple transactions).

Table-level Lock Modes

ACCESS SHARE

Conflicts with the ACCESS EXCLUSIVE lock mode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query that
only reads a table and does not modify it will acquire this lock mode.

369

Chapter 13. Concurrency Control

ROW SHARE

Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a lock of this mode on the
target table(s) (in addition to ACCESS SHARE locks on any other tables that are referenced but not
selected FOR UPDATE/FOR SHARE).

ROW EXCLUSIVE

Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock
modes.

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the target table (in addition
to ACCESS SHARE locks on any other referenced tables). In general, this lock mode will be acquired
by any command that modifies data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE,
and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent schema
changes and VACUUM runs.

Acquired by VACUUM (without FULL), ANALYZE, CREATE INDEX CONCURRENTLY, and some forms
of ALTER TABLE.

SHARE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent
data changes.

Acquired by CREATE INDEX (without CONCURRENTLY).

SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW

EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against
concurrent data changes, and is self-exclusive so that only one session can hold it at a time.

This lock mode is not automatically acquired by any PostgreSQL command.

EXCLUSIVE

Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE
ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode allows only
concurrent ACCESS SHARE locks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode.

This lock mode is not automatically acquired on tables by any PostgreSQL command.

ACCESS EXCLUSIVE

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE

EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE). This mode
guarantees that the holder is the only transaction accessing the table in any way.

Acquired by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX, CLUSTER, and VACUUM FULL

commands. This is also the default lock mode for LOCK TABLE statements that do not specify a mode
explicitly.

370

Chapter 13. Concurrency Control

Tip: Only an ACCESS EXCLUSIVE lock blocks a SELECT (without FOR UPDATE/SHARE) statement.

Once acquired, a lock is normally held till end of transaction. But if a lock is acquired after establishing
a savepoint, the lock is released immediately if the savepoint is rolled back to. This is consistent with
the principle that ROLLBACK cancels all effects of the commands since the savepoint. The same holds for
locks acquired within a PL/pgSQL exception block: an error escape from the block releases locks acquired
within it.

Table 13-2. Conflicting Lock Modes

Requested
Lock
Mode

Current Lock Mode

ACCESS
SHARE

ROW
SHARE

ROW
EXCLU-
SIVE

SHARE
UPDATE
EXCLU-
SIVE

SHARE SHARE
ROW
EXCLU-
SIVE

EXCLUSIVEACCESS
EXCLU-
SIVE

ACCESS
SHARE

X

ROW
SHARE

X X

ROW
EXCLU-
SIVE

X X X X

SHARE
UPDATE
EXCLU-
SIVE

X X X X X

SHARE X X X X X

SHARE
ROW
EXCLU-
SIVE

X X X X X X

EXCLUSIVE X X X X X X X

ACCESS
EXCLU-
SIVE

X X X X X X X X

371

Chapter 13. Concurrency Control

13.3.2. Row-level Locks
In addition to table-level locks, there are row-level locks, which can be exclusive or shared locks. An
exclusive row-level lock on a specific row is automatically acquired when the row is updated or deleted.
The lock is held until the transaction commits or rolls back, just like table-level locks. Row-level locks do
not affect data querying; they block only writers to the same row.

To acquire an exclusive row-level lock on a row without actually modifying the row, select the row with
SELECT FOR UPDATE. Note that once the row-level lock is acquired, the transaction can update the row
multiple times without fear of conflicts.

To acquire a shared row-level lock on a row, select the row with SELECT FOR SHARE. A shared lock does
not prevent other transactions from acquiring the same shared lock. However, no transaction is allowed to
update, delete, or exclusively lock a row on which any other transaction holds a shared lock. Any attempt
to do so will block until the shared lock(s) have been released.

PostgreSQL doesn’t remember any information about modified rows in memory, so there is no limit on
the number of rows locked at one time. However, locking a row might cause a disk write, e.g., SELECT
FOR UPDATE modifies selected rows to mark them locked, and so will result in disk writes.

In addition to table and row locks, page-level share/exclusive locks are used to control read/write access
to table pages in the shared buffer pool. These locks are released immediately after a row is fetched
or updated. Application developers normally need not be concerned with page-level locks, but they are
mentioned here for completeness.

13.3.3. Deadlocks
The use of explicit locking can increase the likelihood of deadlocks, wherein two (or more) transactions
each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock on table A
and then tries to acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked
table B and now wants an exclusive lock on table A, then neither one can proceed. PostgreSQL automati-
cally detects deadlock situations and resolves them by aborting one of the transactions involved, allowing
the other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and should not
be relied upon.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even if
explicit locking is not used). Consider the case in which two concurrent transactions modify a table. The
first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second transaction
executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The first UPDATE statement successfully acquires a row-level lock on the specified row, so it succeeds in
updating that row. However, the second UPDATE statement finds that the row it is attempting to update has
already been locked, so it waits for the transaction that acquired the lock to complete. Transaction two is
now waiting on transaction one to complete before it continues execution. Now, transaction one executes:

372

Chapter 13. Concurrency Control

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction two
already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is blocked
on transaction two, and transaction two is blocked on transaction one: a deadlock condition. PostgreSQL
will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications using a
database acquire locks on multiple objects in a consistent order. In the example above, if both transactions
had updated the rows in the same order, no deadlock would have occurred. One should also ensure that
the first lock acquired on an object in a transaction is the most restrictive mode that will be needed for that
object. If it is not feasible to verify this in advance, then deadlocks can be handled on-the-fly by retrying
transactions that abort due to deadlocks.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications to
hold transactions open for long periods of time (e.g., while waiting for user input).

13.3.4. Advisory Locks
PostgreSQL provides a means for creating locks that have application-defined meanings. These are called
advisory locks, because the system does not enforce their use — it is up to the application to use them
correctly. Advisory locks can be useful for locking strategies that are an awkward fit for the MVCC model.
For example, a common use of advisory locks is to emulate pessimistic locking strategies typical of so
called “flat file” data management systems. While a flag stored in a table could be used for the same
purpose, advisory locks are faster, avoid table bloat, and are automatically cleaned up by the server at the
end of the session.

There are two ways to acquire an advisory lock in PostgreSQL: at session level or at transaction level.
Once acquired at session level, an advisory lock is held until explicitly released or the session ends. Unlike
standard lock requests, session-level advisory lock requests do not honor transaction semantics: a lock
acquired during a transaction that is later rolled back will still be held following the rollback, and likewise
an unlock is effective even if the calling transaction fails later. A lock can be acquired multiple times by
its owning process; for each completed lock request there must be a corresponding unlock request before
the lock is actually released. Transaction-level lock requests, on the other hand, behave more like regular
lock requests: they are automatically released at the end of the transaction, and there is no explicit unlock
operation. This behavior is often more convenient than the session-level behavior for short-term usage of
an advisory lock. Session-level and transaction-level lock requests for the same advisory lock identifier
will block each other in the expected way. If a session already holds a given advisory lock, additional
requests by it will always succeed, even if other sessions are awaiting the lock; this statement is true
regardless of whether the existing lock hold and new request are at session level or transaction level.

Like all locks in PostgreSQL, a complete list of advisory locks currently held by any session can be found
in the pg_locks system view.

Both advisory locks and regular locks are stored in a shared memory pool whose size is defined by
the configuration variables max_locks_per_transaction and max_connections. Care must be taken not to
exhaust this memory or the server will be unable to grant any locks at all. This imposes an upper limit
on the number of advisory locks grantable by the server, typically in the tens to hundreds of thousands
depending on how the server is configured.

373

Chapter 13. Concurrency Control

In certain cases using advisory locking methods, especially in queries involving explicit ordering and
LIMIT clauses, care must be taken to control the locks acquired because of the order in which SQL
expressions are evaluated. For example:

SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- danger!
SELECT pg_advisory_lock(q.id) FROM
(
SELECT id FROM foo WHERE id > 12345 LIMIT 100

) q; -- ok

In the above queries, the second form is dangerous because the LIMIT is not guaranteed to be applied
before the locking function is executed. This might cause some locks to be acquired that the application
was not expecting, and hence would fail to release (until it ends the session). From the point of view of
the application, such locks would be dangling, although still viewable in pg_locks.

The functions provided to manipulate advisory locks are described in Section 9.26.8.

13.4. Data Consistency Checks at the Application Level
It is very difficult to enforce business rules regarding data integrity using Read Committed transactions
because the view of the data is shifting with each statement, and even a single statement may not restrict
itself to the statement’s snapshot if a write conflict occurs.

While a Repeatable Read transaction has a stable view of the data throughout its execution, there is a
subtle issue with using MVCC snapshots for data consistency checks, involving something known as
read/write conflicts. If one transaction writes data and a concurrent transaction attempts to read the same
data (whether before or after the write), it cannot see the work of the other transaction. The reader then
appears to have executed first regardless of which started first or which committed first. If that is as far as it
goes, there is no problem, but if the reader also writes data which is read by a concurrent transaction there
is now a transaction which appears to have run before either of the previously mentioned transactions.
If the transaction which appears to have executed last actually commits first, it is very easy for a cycle
to appear in a graph of the order of execution of the transactions. When such a cycle appears, integrity
checks will not work correctly without some help.

As mentioned in Section 13.2.3, Serializable transactions are just Repeatable Read transactions which add
non-blocking monitoring for dangerous patterns of read/write conflicts. When a pattern is detected which
could cause a cycle in the apparent order of execution, one of the transactions involved is rolled back to
break the cycle.

13.4.1. Enforcing Consistency With Serializable Transactions
If the Serializable transaction isolation level is used for all writes and for all reads which need a consistent
view of the data, no other effort is required to ensure consistency. Software from other environments
which is written to use serializable transactions to ensure consistency should “just work” in this regard in
PostgreSQL.

374

Chapter 13. Concurrency Control

When using this technique, it will avoid creating an unnecessary burden for application programmers if the
application software goes through a framework which automatically retries transactions which are rolled
back with a serialization failure. It may be a good idea to set default_transaction_isolation to
serializable. It would also be wise to take some action to ensure that no other transaction isolation
level is used, either inadvertently or to subvert integrity checks, through checks of the transaction isolation
level in triggers.

See Section 13.2.3 for performance suggestions.

Warning
This level of integrity protection using Serializable transactions does not yet extend
to hot standby mode (Section 25.5). Because of that, those using hot standby may
want to use Repeatable Read and explicit locking.on the master.

13.4.2. Enforcing Consistency With Explicit Blocking Locks
When non-serializable writes are possible, to ensure the current validity of a row and protect it against
concurrent updates one must use SELECT FOR UPDATE, SELECT FOR SHARE, or an appropriate LOCK

TABLE statement. (SELECT FOR UPDATE and SELECT FOR SHARE lock just the returned rows against
concurrent updates, while LOCK TABLE locks the whole table.) This should be taken into account when
porting applications to PostgreSQL from other environments.

Also of note to those converting from other environments is the fact that SELECT FOR UPDATE does not
ensure that a concurrent transaction will not update or delete a selected row. To do that in PostgreSQL you
must actually update the row, even if no values need to be changed. SELECT FOR UPDATE temporarily
blocks other transactions from acquiring the same lock or executing an UPDATE or DELETE which would
affect the locked row, but once the transaction holding this lock commits or rolls back, a blocked transac-
tion will proceed with the conflicting operation unless an actual UPDATE of the row was performed while
the lock was held.

Global validity checks require extra thought under non-serializable MVCC. For example, a banking appli-
cation might wish to check that the sum of all credits in one table equals the sum of debits in another table,
when both tables are being actively updated. Comparing the results of two successive SELECT sum(...)

commands will not work reliably in Read Committed mode, since the second query will likely include
the results of transactions not counted by the first. Doing the two sums in a single repeatable read transac-
tion will give an accurate picture of only the effects of transactions that committed before the repeatable
read transaction started — but one might legitimately wonder whether the answer is still relevant by the
time it is delivered. If the repeatable read transaction itself applied some changes before trying to make
the consistency check, the usefulness of the check becomes even more debatable, since now it includes
some but not all post-transaction-start changes. In such cases a careful person might wish to lock all tables
needed for the check, in order to get an indisputable picture of current reality. A SHARE mode (or higher)
lock guarantees that there are no uncommitted changes in the locked table, other than those of the current
transaction.

Note also that if one is relying on explicit locking to prevent concurrent changes, one should either use
Read Committed mode, or in Repeatable Read mode be careful to obtain locks before performing queries.
A lock obtained by a repeatable read transaction guarantees that no other transactions modifying the table
are still running, but if the snapshot seen by the transaction predates obtaining the lock, it might predate

375

Chapter 13. Concurrency Control

some now-committed changes in the table. A repeatable read transaction’s snapshot is actually frozen at
the start of its first query or data-modification command (SELECT, INSERT, UPDATE, or DELETE), so it is
possible to obtain locks explicitly before the snapshot is frozen.

13.5. Locking and Indexes
Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write access
is not currently offered for every index access method implemented in PostgreSQL. The various index
types are handled as follows:

B-tree, GiST and SP-GiST indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released imme-
diately after each index row is fetched or inserted. These index types provide the highest concurrency
without deadlock conditions.

Hash indexes

Share/exclusive hash-bucket-level locks are used for read/write access. Locks are released after the
whole bucket is processed. Bucket-level locks provide better concurrency than index-level ones, but
deadlock is possible since the locks are held longer than one index operation.

GIN indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released im-
mediately after each index row is fetched or inserted. But note that insertion of a GIN-indexed value
usually produces several index key insertions per row, so GIN might do substantial work for a single
value’s insertion.

Currently, B-tree indexes offer the best performance for concurrent applications; since they also have more
features than hash indexes, they are the recommended index type for concurrent applications that need to
index scalar data. When dealing with non-scalar data, B-trees are not useful, and GiST, SP-GiST or GIN
indexes should be used instead.

376

Chapter 14. Performance Tips
Query performance can be affected by many things. Some of these can be controlled by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

14.1. Using EXPLAIN

PostgreSQL devises a query plan for each query it receives. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance, so the system includes
a complex planner that tries to choose good plans. You can use the EXPLAIN command to see what query
plan the planner creates for any query. Plan-reading is an art that requires some experience to master, but
this section attempts to cover the basics.

Examples in this section are drawn from the regression test database after doing a VACUUM ANALYZE,
using 9.2 development sources. You should be able to get similar results if you try the examples yourself,
but your estimated costs and row counts might vary slightly because ANALYZE’s statistics are random
samples rather than exact, and because costs are inherently somewhat platform-dependent.

The examples use EXPLAIN’s default “text” output format, which is compact and convenient for humans
to read. If you want to feed EXPLAIN’s output to a program for further analysis, you should use one of its
machine-readable output formats (XML, JSON, or YAML) instead.

14.1.1. EXPLAIN Basics
The structure of a query plan is a tree of plan nodes. Nodes at the bottom level of the tree are scan
nodes: they return raw rows from a table. There are different types of scan nodes for different table access
methods: sequential scans, index scans, and bitmap index scans. There are also non-table row sources,
such as VALUES clauses and set-returning functions in FROM, which have their own scan node types. If
the query requires joining, aggregation, sorting, or other operations on the raw rows, then there will be
additional nodes above the scan nodes to perform these operations. Again, there is usually more than one
possible way to do these operations, so different node types can appear here too. The output of EXPLAIN
has one line for each node in the plan tree, showing the basic node type plus the cost estimates that the
planner made for the execution of that plan node. Additional lines might appear, indented from the node’s
summary line, to show additional properties of the node. The very first line (the summary line for the
topmost node) has the estimated total execution cost for the plan; it is this number that the planner seeks
to minimize.

Here is a trivial example, just to show what the output looks like:

EXPLAIN SELECT * FROM tenk1;

QUERY PLAN

Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

377

Chapter 14. Performance Tips

Since this query has no WHERE clause, it must scan all the rows of the table, so the planner has chosen to
use a simple sequential scan plan. The numbers that are quoted in parentheses are (left to right):

• Estimated start-up cost. This is the time expended before the output phase can begin, e.g., time to do
the sorting in a sort node.

• Estimated total cost. This is stated on the assumption that the plan node is run to completion, i.e., all
available rows are retrieved. In practice a node’s parent node might stop short of reading all available
rows (see the LIMIT example below).

• Estimated number of rows output by this plan node. Again, the node is assumed to be run to completion.

• Estimated average width of rows output by this plan node (in bytes).

The costs are measured in arbitrary units determined by the planner’s cost parameters (see Section 18.7.2).
Traditional practice is to measure the costs in units of disk page fetches; that is, seq_page_cost is conven-
tionally set to 1.0 and the other cost parameters are set relative to that. The examples in this section are
run with the default cost parameters.

It’s important to understand that the cost of an upper-level node includes the cost of all its child nodes. It’s
also important to realize that the cost only reflects things that the planner cares about. In particular, the
cost does not consider the time spent transmitting result rows to the client, which could be an important
factor in the real elapsed time; but the planner ignores it because it cannot change it by altering the plan.
(Every correct plan will output the same row set, we trust.)

The rows value is a little tricky because it is not the number of rows processed or scanned by the plan
node, but rather the number emitted by the node. This is often less than the number scanned, as a result
of filtering by any WHERE-clause conditions that are being applied at the node. Ideally the top-level rows
estimate will approximate the number of rows actually returned, updated, or deleted by the query.

Returning to our example:

EXPLAIN SELECT * FROM tenk1;

QUERY PLAN

Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

These numbers are derived very straightforwardly. If you do:

SELECT relpages, reltuples FROM pg_class WHERE relname = ’tenk1’;

you will find that tenk1 has 358 disk pages and 10000 rows. The estimated cost is computed as (disk
pages read * seq_page_cost) + (rows scanned * cpu_tuple_cost). By default, seq_page_cost is 1.0 and
cpu_tuple_cost is 0.01, so the estimated cost is (358 * 1.0) + (10000 * 0.01) = 458.

Now let’s modify the query to add a WHERE condition:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;

QUERY PLAN
--

378

Chapter 14. Performance Tips

Seq Scan on tenk1 (cost=0.00..483.00 rows=7001 width=244)
Filter: (unique1 < 7000)

Notice that the EXPLAIN output shows the WHERE clause being applied as a “filter” condition attached to
the Seq Scan plan node. This means that the plan node checks the condition for each row it scans, and
outputs only the ones that pass the condition. The estimate of output rows has been reduced because of
the WHERE clause. However, the scan will still have to visit all 10000 rows, so the cost hasn’t decreased;
in fact it has gone up a bit (by 10000 * cpu_operator_cost, to be exact) to reflect the extra CPU time spent
checking the WHERE condition.

The actual number of rows this query would select is 7000, but the rows estimate is only approximate.
If you try to duplicate this experiment, you will probably get a slightly different estimate; moreover, it
can change after each ANALYZE command, because the statistics produced by ANALYZE are taken from a
randomized sample of the table.

Now, let’s make the condition more restrictive:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;

QUERY PLAN
--
Bitmap Heap Scan on tenk1 (cost=5.03..229.17 rows=101 width=244)
Recheck Cond: (unique1 < 100)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0)

Index Cond: (unique1 < 100)

Here the planner has decided to use a two-step plan: the child plan node visits an index to find the locations
of rows matching the index condition, and then the upper plan node actually fetches those rows from the
table itself. Fetching rows separately is much more expensive than reading them sequentially, but because
not all the pages of the table have to be visited, this is still cheaper than a sequential scan. (The reason
for using two plan levels is that the upper plan node sorts the row locations identified by the index into
physical order before reading them, to minimize the cost of separate fetches. The “bitmap” mentioned in
the node names is the mechanism that does the sorting.)

Now let’s add another condition to the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = ’xxx’;

QUERY PLAN
--
Bitmap Heap Scan on tenk1 (cost=5.01..229.40 rows=1 width=244)
Recheck Cond: (unique1 < 100)
Filter: (stringu1 = ’xxx’::name)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0)

Index Cond: (unique1 < 100)

The added condition stringu1 = ’xxx’ reduces the output row count estimate, but not the cost because
we still have to visit the same set of rows. Notice that the stringu1 clause cannot be applied as an index
condition, since this index is only on the unique1 column. Instead it is applied as a filter on the rows
retrieved by the index. Thus the cost has actually gone up slightly to reflect this extra checking.

In some cases the planner will prefer a “simple” index scan plan:

379

Chapter 14. Performance Tips

EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42;

QUERY PLAN

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..8.27 rows=1 width=244)
Index Cond: (unique1 = 42)

In this type of plan the table rows are fetched in index order, which makes them even more expensive
to read, but there are so few that the extra cost of sorting the row locations is not worth it. You’ll most
often see this plan type for queries that fetch just a single row. It’s also often used for queries that have an
ORDER BY condition that matches the index order, because then no extra sort step is needed to satisfy the
ORDER BY.

If there are indexes on several columns referenced in WHERE, the planner might choose to use an AND or
OR combination of the indexes:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

QUERY PLAN

Bitmap Heap Scan on tenk1 (cost=25.01..60.14 rows=10 width=244)
Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
-> BitmapAnd (cost=25.01..25.01 rows=10 width=0)

-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0)
Index Cond: (unique1 < 100)

-> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.74 rows=999 width=0)
Index Cond: (unique2 > 9000)

But this requires visiting both indexes, so it’s not necessarily a win compared to using just one index
and treating the other condition as a filter. If you vary the ranges involved you’ll see the plan change
accordingly.

Here is an example showing the effects of LIMIT:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

QUERY PLAN

Limit (cost=0.00..14.25 rows=2 width=244)
-> Index Scan using tenk1_unique2 on tenk1 (cost=0.00..71.23 rows=10 width=244)

Index Cond: (unique2 > 9000)
Filter: (unique1 < 100)

This is the same query as above, but we added a LIMIT so that not all the rows need be retrieved, and the
planner changed its mind about what to do. Notice that the total cost and row count of the Index Scan node
are shown as if it were run to completion. However, the Limit node is expected to stop after retrieving
only a fifth of those rows, so its total cost is only a fifth as much, and that’s the actual estimated cost of
the query. This plan is preferred over adding a Limit node to the previous plan because the Limit could
not avoid paying the startup cost of the bitmap scan, so the total cost would be something over 25 units
with that approach.

Let’s try joining two tables, using the columns we have been discussing:

380

Chapter 14. Performance Tips

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

QUERY PLAN
--
Nested Loop (cost=4.33..118.25 rows=10 width=488)
-> Bitmap Heap Scan on tenk1 t1 (cost=4.33..39.44 rows=10 width=244)

Recheck Cond: (unique1 < 10)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.33 rows=10 width=0)

Index Cond: (unique1 < 10)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..7.87 rows=1 width=244)

Index Cond: (unique2 = t1.unique2)

In this plan, we have a nested-loop join node with two table scans as inputs, or children. The indentation
of the node summary lines reflects the plan tree structure. The join’s first, or “outer”, child is a bitmap
scan similar to those we saw before. Its cost and row count are the same as we’d get from SELECT ...

WHERE unique1 < 10 because we are applying the WHERE clause unique1 < 10 at that node. The
t1.unique2 = t2.unique2 clause is not relevant yet, so it doesn’t affect the row count of the outer
scan. The nested-loop join node will run its second, or “inner” child once for each row obtained from
the outer child. Column values from the current outer row can be plugged into the inner scan; here, the
t1.unique2 value from the outer row is available, so we get a plan and costs similar to what we saw
above for a simple SELECT ... WHERE t2.unique2 = constant case. (The estimated cost is actually
a bit lower than what was seen above, as a result of caching that’s expected to occur during the repeated
index scans on t2.) The costs of the loop node are then set on the basis of the cost of the outer scan,
plus one repetition of the inner scan for each outer row (10 * 7.87, here), plus a little CPU time for join
processing.

In this example the join’s output row count is the same as the product of the two scans’ row counts, but
that’s not true in all cases because there can be additional WHERE clauses that mention both tables and so
can only be applied at the join point, not to either input scan. For example, if we add one more condition:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2 AND t1.hundred < t2.hundred;

QUERY PLAN
--
Nested Loop (cost=4.33..118.28 rows=3 width=488)
Join Filter: (t1.hundred < t2.hundred)
-> Bitmap Heap Scan on tenk1 t1 (cost=4.33..39.44 rows=10 width=244)

Recheck Cond: (unique1 < 10)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.33 rows=10 width=0)

Index Cond: (unique1 < 10)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..7.87 rows=1 width=244)

Index Cond: (unique2 = t1.unique2)

The extra condition t1.hundred < t2.hundred can’t be tested in the tenk2_unique2 index, so it’s
applied at the join node. This reduces the estimated output row count of the join node, but does not change
either input scan.

381

Chapter 14. Performance Tips

When dealing with outer joins, you might see join plan nodes with both “Join Filter” and plain “Filter”
conditions attached. Join Filter conditions come from the outer join’s ON clause, so a row that fails the
Join Filter condition could still get emitted as a null-extended row. But a plain Filter condition is applied
after the outer-join rules and so acts to remove rows unconditionally. In an inner join there is no semantic
difference between these types of filters.

If we change the query’s selectivity a bit, we might get a very different join plan:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

QUERY PLAN
--
Hash Join (cost=230.43..713.94 rows=101 width=488)
Hash Cond: (t2.unique2 = t1.unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244)
-> Hash (cost=229.17..229.17 rows=101 width=244)

-> Bitmap Heap Scan on tenk1 t1 (cost=5.03..229.17 rows=101 width=244)
Recheck Cond: (unique1 < 100)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0)

Index Cond: (unique1 < 100)

Here, the planner has chosen to use a hash join, in which rows of one table are entered into an in-memory
hash table, after which the other table is scanned and the hash table is probed for matches to each row.
Again note how the indentation reflects the plan structure: the bitmap scan on tenk1 is the input to the
Hash node, which constructs the hash table. That’s then returned to the Hash Join node, which reads rows
from its outer child plan and searches the hash table for each one.

Another possible type of join is a merge join, illustrated here:

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

QUERY PLAN
--
Merge Join (cost=197.83..267.93 rows=10 width=488)
Merge Cond: (t1.unique2 = t2.unique2)
-> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.00..656.25 rows=101 width=244)

Filter: (unique1 < 100)
-> Sort (cost=197.83..200.33 rows=1000 width=244)

Sort Key: t2.unique2
-> Seq Scan on onek t2 (cost=0.00..148.00 rows=1000 width=244)

Merge join requires its input data to be sorted on the join keys. In this plan the tenk1 data is sorted by
using an index scan to visit the rows in the correct order, but a sequential scan and sort is preferred for
onek, because there are many more rows to be visited in that table. (Sequential-scan-and-sort frequently
beats an index scan for sorting many rows, because of the nonsequential disk access required by the index
scan.)

382

Chapter 14. Performance Tips

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was the
cheapest, using the enable/disable flags described in Section 18.7.1. (This is a crude tool, but useful. See
also Section 14.3.) For example, if we’re unconvinced that sequential-scan-and-sort is the best way to deal
with table onek in the previous example, we could try

SET enable_sort = off;

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

QUERY PLAN
--
Merge Join (cost=0.00..292.36 rows=10 width=488)
Merge Cond: (t1.unique2 = t2.unique2)
-> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.00..656.25 rows=101 width=244)

Filter: (unique1 < 100)
-> Index Scan using onek_unique2 on onek t2 (cost=0.00..224.76 rows=1000 width=244)

which shows that the planner thinks that sorting onek by index-scanning is about 12% more expensive
than sequential-scan-and-sort. Of course, the next question is whether it’s right about that. We can inves-
tigate that using EXPLAIN ANALYZE, as discussed below.

14.1.2. EXPLAIN ANALYZE

It is possible to check the accuracy of the planner’s estimates by using EXPLAIN’s ANALYZE option. With
this option, EXPLAIN actually executes the query, and then displays the true row counts and true run
time accumulated within each plan node, along with the same estimates that a plain EXPLAIN shows. For
example, we might get a result like this:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

QUERY PLAN

Nested Loop (cost=4.33..118.25 rows=10 width=488) (actual time=0.370..1.126 rows=10 loops=1)
-> Bitmap Heap Scan on tenk1 t1 (cost=4.33..39.44 rows=10 width=244) (actual time=0.254..0.380 rows=10 loops=1)

Recheck Cond: (unique1 < 10)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.33 rows=10 width=0) (actual time=0.164..0.164 rows=10 loops=1)

Index Cond: (unique1 < 10)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..7.87 rows=1 width=244) (actual time=0.041..0.048 rows=1 loops=10)

Index Cond: (unique2 = t1.unique2)
Total runtime: 2.414 ms

Note that the “actual time” values are in milliseconds of real time, whereas the cost estimates are ex-
pressed in arbitrary units; so they are unlikely to match up. The thing that’s usually most important to look
for is whether the estimated row counts are reasonably close to reality. In this example the estimates were
all dead-on, but that’s quite unusual in practice.

383

Chapter 14. Performance Tips

In some query plans, it is possible for a subplan node to be executed more than once. For example, the
inner index scan will be executed once per outer row in the above nested-loop plan. In such cases, the
loops value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that the
cost estimates are shown. Multiply by the loops value to get the total time actually spent in the node. In
the above example, we spent a total of 0.480 milliseconds executing the index scans on tenk2.

In some cases EXPLAIN ANALYZE shows additional execution statistics beyond the plan node execution
times and row counts. For example, Sort and Hash nodes provide extra information:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous;

QUERY PLAN
--
Sort (cost=717.30..717.56 rows=101 width=488) (actual time=104.950..105.327 rows=100 loops=1)
Sort Key: t1.fivethous
Sort Method: quicksort Memory: 68kB
-> Hash Join (cost=230.43..713.94 rows=101 width=488) (actual time=3.680..102.396 rows=100 loops=1)

Hash Cond: (t2.unique2 = t1.unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual time=0.046..46.219 rows=10000 loops=1)
-> Hash (cost=229.17..229.17 rows=101 width=244) (actual time=3.184..3.184 rows=100 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 27kB
-> Bitmap Heap Scan on tenk1 t1 (cost=5.03..229.17 rows=101 width=244) (actual time=0.612..1.959 rows=100 loops=1)

Recheck Cond: (unique1 < 100)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) (actual time=0.390..0.390 rows=100 loops=1)

Index Cond: (unique1 < 100)
Total runtime: 107.392 ms

The Sort node shows the sort method used (in particular, whether the sort was in-memory or on-disk)
and the amount of memory or disk space needed. The Hash node shows the number of hash buckets and
batches as well as the peak amount of memory used for the hash table. (If the number of batches exceeds
one, there will also be disk space usage involved, but that is not shown.)

Another type of extra information is the number of rows removed by a filter condition:

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;

QUERY PLAN
--
Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual time=0.111..59.249 rows=7000 loops=1)
Filter: (ten < 7)
Rows Removed by Filter: 3000

Total runtime: 85.340 ms

These counts can be particularly valuable for filter conditions applied at join nodes. The “Rows Removed”
line only appears when at least one scanned row, or potential join pair in the case of a join node, is rejected
by the filter condition.

A case similar to filter conditions occurs with “lossy” index scans. For example, consider this search for
polygons containing a specific point:

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon ’(0.5,2.0)’;

384

Chapter 14. Performance Tips

QUERY PLAN
--
Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual time=0.251..0.251 rows=0 loops=1)
Filter: (f1 @> ’((0.5,2))’::polygon)
Rows Removed by Filter: 4

Total runtime: 0.517 ms

The planner thinks (quite correctly) that this sample table is too small to bother with an index scan, so we
have a plain sequential scan in which all the rows got rejected by the filter condition. But if we force an
index scan to be used, we see:

SET enable_seqscan TO off;

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon ’(0.5,2.0)’;

QUERY PLAN
--
Index Scan using gpolygonind on polygon_tbl (cost=0.00..8.27 rows=1 width=32) (actual time=0.293..0.293 rows=0 loops=1)
Index Cond: (f1 @> ’((0.5,2))’::polygon)
Rows Removed by Index Recheck: 1

Total runtime: 1.054 ms

Here we can see that the index returned one candidate row, which was then rejected by a recheck of the
index condition. This happens because a GiST index is “lossy” for polygon containment tests: it actually
returns the rows with polygons that overlap the target, and then we have to do the exact containment test
on those rows.

EXPLAIN has a BUFFERS option that can be used with ANALYZE to get even more runtime statistics:

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

QUERY PLAN

Bitmap Heap Scan on tenk1 (cost=25.07..60.23 rows=10 width=244) (actual time=3.069..3.213 rows=10 loops=1)
Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
Buffers: shared hit=16
-> BitmapAnd (cost=25.07..25.07 rows=10 width=0) (actual time=2.967..2.967 rows=0 loops=1)

Buffers: shared hit=7
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.02 rows=102 width=0) (actual time=0.732..0.732 rows=200 loops=1)

Index Cond: (unique1 < 100)
Buffers: shared hit=2

-> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.80 rows=1007 width=0) (actual time=2.015..2.015 rows=1009 loops=1)
Index Cond: (unique2 > 9000)
Buffers: shared hit=5

Total runtime: 3.917 ms

The numbers provided by BUFFERS help to identify which parts of the query are the most I/O-intensive.

Keep in mind that because EXPLAIN ANALYZE actually runs the query, any side-effects will happen as
usual, even though whatever results the query might output are discarded in favor of printing the EXPLAIN
data. If you want to analyze a data-modifying query without changing your tables, you can roll the com-
mand back afterwards, for example:

385

Chapter 14. Performance Tips

BEGIN;

EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100;

QUERY PLAN
--
Update on tenk1 (cost=5.03..229.42 rows=101 width=250) (actual time=81.055..81.055 rows=0 loops=1)
-> Bitmap Heap Scan on tenk1 (cost=5.03..229.42 rows=101 width=250) (actual time=0.766..3.396 rows=100 loops=1)

Recheck Cond: (unique1 < 100)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.01 rows=101 width=0) (actual time=0.461..0.461 rows=100 loops=1)

Index Cond: (unique1 < 100)
Total runtime: 81.922 ms

ROLLBACK;

As seen in this example, when the query is an INSERT, UPDATE, or DELETE command, the actual work
of applying the table changes is done by a top-level Insert, Update, or Delete plan node. The plan nodes
underneath this node perform the work of locating the old rows and/or computing the new data. So above,
we see the same sort of bitmap table scan we’ve seen already, and its output is fed to an Update node that
stores the updated rows. It’s worth noting that although the data-modifying node can take a considerable
amount of runtime (here, it’s consuming the lion’s share of the time), the planner does not currently add
anything to the cost estimates to account for that work. That’s because the work to be done is the same for
every correct query plan, so it doesn’t affect planning decisions.

The Total runtime shown by EXPLAIN ANALYZE includes executor start-up and shut-down time, as
well as the time to run any triggers that are fired, but it does not include parsing, rewriting, or planning
time. Time spent executing BEFORE triggers, if any, is included in the time for the related Insert, Update,
or Delete node; but time spent executing AFTER triggers is not counted there because AFTER triggers are
fired after completion of the whole plan. The total time spent in each trigger (either BEFORE or AFTER) is
also shown separately. Note that deferred constraint triggers will not be executed until end of transaction
and are thus not shown at all by EXPLAIN ANALYZE.

14.1.3. Caveats
There are two significant ways in which run times measured by EXPLAIN ANALYZE can deviate from
normal execution of the same query. First, since no output rows are delivered to the client, network trans-
mission costs and I/O conversion costs are not included. Second, the measurement overhead added by
EXPLAIN ANALYZE can be significant, especially on machines with slow gettimeofday() operating-
system calls. You can use the pg_test_timing tool to measure the overhead of timing on your system.

EXPLAIN results should not be extrapolated to situations much different from the one you are actually
testing; for example, results on a toy-sized table cannot be assumed to apply to large tables. The planner’s
cost estimates are not linear and so it might choose a different plan for a larger or smaller table. An
extreme example is that on a table that only occupies one disk page, you’ll nearly always get a sequential
scan plan whether indexes are available or not. The planner realizes that it’s going to take one disk page
read to process the table in any case, so there’s no value in expending additional page reads to look at an
index. (We saw this happening in the polygon_tbl example above.)

386

Chapter 14. Performance Tips

There are cases in which the actual and estimated values won’t match up well, but nothing is really
wrong. One such case occurs when plan node execution is stopped short by a LIMIT or similar effect. For
example, in the LIMIT query we used before,

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

QUERY PLAN

Limit (cost=0.00..14.25 rows=2 width=244) (actual time=1.652..2.293 rows=2 loops=1)
-> Index Scan using tenk1_unique2 on tenk1 (cost=0.00..71.23 rows=10 width=244) (actual time=1.631..2.259 rows=2 loops=1)

Index Cond: (unique2 > 9000)
Filter: (unique1 < 100)
Rows Removed by Filter: 287

Total runtime: 2.857 ms

the estimated cost and row count for the Index Scan node are shown as though it were run to completion.
But in reality the Limit node stopped requesting rows after it got two, so the actual row count is only 2 and
the runtime is less than the cost estimate would suggest. This is not an estimation error, only a discrepancy
in the way the estimates and true values are displayed.

Merge joins also have measurement artifacts that can confuse the unwary. A merge join will stop reading
one input if it’s exhausted the other input and the next key value in the one input is greater than the last
key value of the other input; in such a case there can be no more matches and so no need to scan the rest
of the first input. This results in not reading all of one child, with results like those mentioned for LIMIT.
Also, if the outer (first) child contains rows with duplicate key values, the inner (second) child is backed
up and rescanned for the portion of its rows matching that key value. EXPLAIN ANALYZE counts these
repeated emissions of the same inner rows as if they were real additional rows. When there are many outer
duplicates, the reported actual row count for the inner child plan node can be significantly larger than the
number of rows that are actually in the inner relation.

BitmapAnd and BitmapOr nodes always report their actual row counts as zero, due to implementation
limitations.

14.2. Statistics Used by the Planner
As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the number
of disk blocks occupied by each table and index. This information is kept in the table pg_class, in the
columns reltuples and relpages. We can look at it with queries similar to this one:

SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE ’tenk1%’;

relname | relkind | reltuples | relpages
----------------------+---------+-----------+----------
tenk1 | r | 10000 | 358

387

Chapter 14. Performance Tips

tenk1_hundred | i | 10000 | 30
tenk1_thous_tenthous | i | 10000 | 30
tenk1_unique1 | i | 10000 | 30
tenk1_unique2 | i | 10000 | 30
(5 rows)

Here we can see that tenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasons, reltuples and relpages are not updated on-the-fly, and so they usually contain
somewhat out-of-date values. They are updated by VACUUM, ANALYZE, and a few DDL commands such as
CREATE INDEX. A VACUUM or ANALYZE operation that does not scan the entire table (which is commonly
the case) will incrementally update the reltuples count on the basis of the part of the table it did scan,
resulting in an approximate value. In any case, the planner will scale the values it finds in pg_class to
match the current physical table size, thus obtaining a closer approximation.

Most queries retrieve only a fraction of the rows in a table, due to WHERE clauses that restrict the rows
to be examined. The planner thus needs to make an estimate of the selectivity of WHERE clauses, that is,
the fraction of rows that match each condition in the WHERE clause. The information used for this task is
stored in the pg_statistic system catalog. Entries in pg_statistic are updated by the ANALYZE and
VACUUM ANALYZE commands, and are always approximate even when freshly updated.

Rather than look at pg_statistic directly, it’s better to look at its view pg_stats when examining the
statistics manually. pg_stats is designed to be more easily readable. Furthermore, pg_stats is readable
by all, whereas pg_statistic is only readable by a superuser. (This prevents unprivileged users from
learning something about the contents of other people’s tables from the statistics. The pg_stats view is
restricted to show only rows about tables that the current user can read.) For example, we might do:

SELECT attname, inherited, n_distinct,
array_to_string(most_common_vals, E’\n’) as most_common_vals

FROM pg_stats
WHERE tablename = ’road’;

attname | inherited | n_distinct | most_common_vals
---------+-----------+------------+------------------------------------
name | f | -0.363388 | I- 580 Ramp+

| | | I- 880 Ramp+
| | | Sp Railroad +
| | | I- 580 +
| | | I- 680 Ramp

name | t | -0.284859 | I- 880 Ramp+
| | | I- 580 Ramp+
| | | I- 680 Ramp+
| | | I- 580 +
| | | State Hwy 13 Ramp

(2 rows)

Note that two rows are displayed for the same column, one corresponding to the complete inheritance
hierarchy starting at the road table (inherited=t), and another one including only the road table itself
(inherited=f).

The amount of information stored in pg_statistic by ANALYZE, in particular the maximum number
of entries in the most_common_vals and histogram_bounds arrays for each column, can be set on a

388

Chapter 14. Performance Tips

column-by-column basis using the ALTER TABLE SET STATISTICS command, or globally by setting
the default_statistics_target configuration variable. The default limit is presently 100 entries. Raising the
limit might allow more accurate planner estimates to be made, particularly for columns with irregular data
distributions, at the price of consuming more space in pg_statistic and slightly more time to compute
the estimates. Conversely, a lower limit might be sufficient for columns with simple data distributions.

Further details about the planner’s use of statistics can be found in Chapter 58.

14.3. Controlling the Planner with Explicit JOIN Clauses
It is possible to control the query planner to some extent by using the explicit JOIN syntax. To see why
this matters, we first need some background.

In a simple join query, such as:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan that
joins A to B, using the WHERE condition a.id = b.id, and then joins C to this joined table, using the
other WHERE condition. Or it could join B to C and then join A to that result. Or it could join A to C and then
join them with B — but that would be inefficient, since the full Cartesian product of A and C would have
to be formed, there being no applicable condition in the WHERE clause to allow optimization of the join.
(All joins in the PostgreSQL executor happen between two input tables, so it’s necessary to build up the
result in one or another of these fashions.) The important point is that these different join possibilities give
semantically equivalent results but might have hugely different execution costs. Therefore, the planner
will explore all of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it’s no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning might take an annoyingly long time. When there are too many input tables, the
PostgreSQL planner will switch from exhaustive search to a genetic probabilistic search through a limited
number of possibilities. (The switch-over threshold is set by the geqo_threshold run-time parameter.) The
genetic search takes less time, but it won’t necessarily find the best possible plan.

When the query involves outer joins, the planner has less freedom than it does for plain (inner) joins. For
example, consider:

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B and
C. Therefore the planner has no choice of join order here: it must join B to C and then join A to that result.
Accordingly, this query takes less time to plan than the previous query. In other cases, the planner might
be able to determine that more than one join order is safe. For example, given:

SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c ON (a.cid = c.id);

it is valid to join A to either B or C first. Currently, only FULL JOIN completely constrains the join order.
Most practical cases involving LEFT JOIN or RIGHT JOIN can be rearranged to some extent.

389

Chapter 14. Performance Tips

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadorned JOIN) is semantically the same as
listing the input relations in FROM, so it does not constrain the join order.

Even though most kinds of JOIN don’t completely constrain the join order, it is possible to instruct the
PostgreSQL query planner to treat all JOIN clauses as constraining the join order anyway. For example,
these three queries are logically equivalent:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor the JOIN order, the second and third take less time to plan than the first.
This effect is not worth worrying about for only three tables, but it can be a lifesaver with many tables.

To force the planner to follow the join order laid out by explicit JOINs, set the join_collapse_limit run-time
parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it’s OK to use
JOIN operators within items of a plain FROM list. For example, consider:

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn’t constrain its choices otherwise. In this example, the number of possible join orders is
reduced by a factor of 5.

Constraining the planner’s search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you can
force it to choose a better order via JOIN syntax — assuming that you know of a better order, that is.
Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query. For
example, consider:

SELECT *
FROM x, y,

(SELECT * FROM a, b, c WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view’s SELECT rule will be inserted
in place of the view reference, yielding a query much like the above. Normally, the planner will try to
collapse the subquery into the parent, yielding:

SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer WHERE
conditions might be such that joining X to A first eliminates many rows of A, thus avoiding the need
to form the full logical output of the subquery.) But at the same time, we have increased the plan-
ning time; here, we have a five-way join problem replacing two separate three-way join problems. Be-
cause of the exponential growth of the number of possibilities, this makes a big difference. The plan-
ner tries to avoid getting stuck in huge join search problems by not collapsing a subquery if more than
from_collapse_limit FROM items would result in the parent query. You can trade off planning time
against quality of plan by adjusting this run-time parameter up or down.

390

Chapter 14. Performance Tips

from_collapse_limit and join_collapse_limit are similarly named because they do almost the same thing:
one controls when the planner will “flatten out” subqueries, and the other controls when it will flatten out
explicit joins. Typically you would either set join_collapse_limit equal to from_collapse_limit
(so that explicit joins and subqueries act similarly) or set join_collapse_limit to 1 (if you want to
control join order with explicit joins). But you might set them differently if you are trying to fine-tune the
trade-off between planning time and run time.

14.4. Populating a Database
One might need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

14.4.1. Disable Autocommit
When using multiple INSERTs, turn off autocommit and just do one commit at the end. (In plain SQL,
this means issuing BEGIN at the start and COMMIT at the end. Some client libraries might do this behind
your back, in which case you need to make sure the library does it when you want it done.) If you allow
each insertion to be committed separately, PostgreSQL is doing a lot of work for each row that is added.
An additional benefit of doing all insertions in one transaction is that if the insertion of one row were to
fail then the insertion of all rows inserted up to that point would be rolled back, so you won’t be stuck
with partially loaded data.

14.4.2. Use COPY

Use COPY to load all the rows in one command, instead of using a series of INSERT commands. The
COPY command is optimized for loading large numbers of rows; it is less flexible than INSERT, but incurs
significantly less overhead for large data loads. Since COPY is a single command, there is no need to
disable autocommit if you use this method to populate a table.

If you cannot use COPY, it might help to use PREPARE to create a prepared INSERT statement, and then
use EXECUTE as many times as required. This avoids some of the overhead of repeatedly parsing and plan-
ning INSERT. Different interfaces provide this facility in different ways; look for “prepared statements”
in the interface documentation.

Note that loading a large number of rows using COPY is almost always faster than using INSERT, even if
PREPARE is used and multiple insertions are batched into a single transaction.

COPY is fastest when used within the same transaction as an earlier CREATE TABLE or TRUNCATE com-
mand. In such cases no WAL needs to be written, because in case of an error, the files containing the
newly loaded data will be removed anyway. However, this consideration only applies when wal_level is
minimal as all commands must write WAL otherwise.

14.4.3. Remove Indexes
If you are loading a freshly created table, the fastest method is to create the table, bulk load the table’s

391

Chapter 14. Performance Tips

data using COPY, then create any indexes needed for the table. Creating an index on pre-existing data is
quicker than updating it incrementally as each row is loaded.

If you are adding large amounts of data to an existing table, it might be a win to drop the indexes, load
the table, and then recreate the indexes. Of course, the database performance for other users might suffer
during the time the indexes are missing. One should also think twice before dropping a unique index,
since the error checking afforded by the unique constraint will be lost while the index is missing.

14.4.4. Remove Foreign Key Constraints
Just as with indexes, a foreign key constraint can be checked “in bulk” more efficiently than row-by-row.
So it might be useful to drop foreign key constraints, load data, and re-create the constraints. Again, there
is a trade-off between data load speed and loss of error checking while the constraint is missing.

What’s more, when you load data into a table with existing foreign key constraints, each new row requires
an entry in the server’s list of pending trigger events (since it is the firing of a trigger that checks the row’s
foreign key constraint). Loading many millions of rows can cause the trigger event queue to overflow
available memory, leading to intolerable swapping or even outright failure of the command. Therefore it
may be necessary, not just desirable, to drop and re-apply foreign keys when loading large amounts of
data. If temporarily removing the constraint isn’t acceptable, the only other recourse may be to split up
the load operation into smaller transactions.

14.4.5. Increase maintenance_work_mem

Temporarily increasing the maintenance_work_mem configuration variable when loading large amounts
of data can lead to improved performance. This will help to speed up CREATE INDEX commands and
ALTER TABLE ADD FOREIGN KEY commands. It won’t do much for COPY itself, so this advice is only
useful when you are using one or both of the above techniques.

14.4.6. Increase checkpoint_segments

Temporarily increasing the checkpoint_segments configuration variable can also make large data loads
faster. This is because loading a large amount of data into PostgreSQL will cause checkpoints to occur
more often than the normal checkpoint frequency (specified by the checkpoint_timeout configura-
tion variable). Whenever a checkpoint occurs, all dirty pages must be flushed to disk. By increasing
checkpoint_segments temporarily during bulk data loads, the number of checkpoints that are required
can be reduced.

14.4.7. Disable WAL Archival and Streaming Replication
When loading large amounts of data into an installation that uses WAL archiving or streaming replication,
it might be faster to take a new base backup after the load has completed than to process a large amount
of incremental WAL data. To prevent incremental WAL logging while loading, disable archiving and
streaming replication, by setting wal_level to minimal, archive_mode to off, and max_wal_senders to
zero. But note that changing these settings requires a server restart.

392

Chapter 14. Performance Tips

Aside from avoiding the time for the archiver or WAL sender to process the WAL data, doing this will
actually make certain commands faster, because they are designed not to write WAL at all if wal_level
is minimal. (They can guarantee crash safety more cheaply by doing an fsync at the end than by writing
WAL.) This applies to the following commands:

• CREATE TABLE AS SELECT

• CREATE INDEX (and variants such as ALTER TABLE ADD PRIMARY KEY)

• ALTER TABLE SET TABLESPACE

• CLUSTER

• COPY FROM, when the target table has been created or truncated earlier in the same transaction

14.4.8. Run ANALYZE Afterwards
Whenever you have significantly altered the distribution of data within a table, running ANALYZE is
strongly recommended. This includes bulk loading large amounts of data into the table. Running ANALYZE
(or VACUUM ANALYZE) ensures that the planner has up-to-date statistics about the table. With no statistics
or obsolete statistics, the planner might make poor decisions during query planning, leading to poor per-
formance on any tables with inaccurate or nonexistent statistics. Note that if the autovacuum daemon is
enabled, it might run ANALYZE automatically; see Section 23.1.3 and Section 23.1.6 for more information.

14.4.9. Some Notes About pg_dump
Dump scripts generated by pg_dump automatically apply several, but not all, of the above guidelines. To
reload a pg_dump dump as quickly as possible, you need to do a few extra things manually. (Note that
these points apply while restoring a dump, not while creating it. The same points apply whether loading
a text dump with psql or using pg_restore to load from a pg_dump archive file.)

By default, pg_dump uses COPY, and when it is generating a complete schema-and-data dump, it is careful
to load data before creating indexes and foreign keys. So in this case several guidelines are handled
automatically. What is left for you to do is to:

• Set appropriate (i.e., larger than normal) values for maintenance_work_mem and
checkpoint_segments.

• If using WAL archiving or streaming replication, consider disabling them during the restore. To do that,
set archive_mode to off, wal_level to minimal, and max_wal_senders to zero before loading
the dump. Afterwards, set them back to the right values and take a fresh base backup.

• Consider whether the whole dump should be restored as a single transaction. To do that, pass the -1

or --single-transaction command-line option to psql or pg_restore. When using this mode, even
the smallest of errors will rollback the entire restore, possibly discarding many hours of processing.
Depending on how interrelated the data is, that might seem preferable to manual cleanup, or not. COPY
commands will run fastest if you use a single transaction and have WAL archiving turned off.

393

Chapter 14. Performance Tips

• If multiple CPUs are available in the database server, consider using pg_restore’s --jobs option. This
allows concurrent data loading and index creation.

• Run ANALYZE afterwards.

A data-only dump will still use COPY, but it does not drop or recreate indexes, and it does not normally
touch foreign keys. 1 So when loading a data-only dump, it is up to you to drop and recreate indexes and
foreign keys if you wish to use those techniques. It’s still useful to increase checkpoint_segments

while loading the data, but don’t bother increasing maintenance_work_mem; rather, you’d do that while
manually recreating indexes and foreign keys afterwards. And don’t forget to ANALYZE when you’re done;
see Section 23.1.3 and Section 23.1.6 for more information.

14.5. Non-Durable Settings
Durability is a database feature that guarantees the recording of committed transactions even if the server
crashes or loses power. However, durability adds significant database overhead, so if your site does not
require such a guarantee, PostgreSQL can be configured to run much faster. The following are configu-
ration changes you can make to improve performance in such cases. Except as noted below, durability is
still guaranteed in case of a crash of the database software; only abrupt operating system stoppage creates
a risk of data loss or corruption when these settings are used.

• Place the database cluster’s data directory in a memory-backed file system (i.e. RAM disk). This elim-
inates all database disk I/O, but limits data storage to the amount of available memory (and perhaps
swap).

• Turn off fsync; there is no need to flush data to disk.

• Turn off full_page_writes; there is no need to guard against partial page writes.

• Increase checkpoint_segments and checkpoint_timeout ; this reduces the frequency of checkpoints, but
increases the storage requirements of /pg_xlog.

• Turn off synchronous_commit; there might be no need to write the WAL to disk on every commit. This
setting does risk transaction loss (though not data corruption) in case of a crash of the database alone.

1. You can get the effect of disabling foreign keys by using the --disable-triggers option — but realize that that eliminates,
rather than just postpones, foreign key validation, and so it is possible to insert bad data if you use it.

394

III. Server Administration
This part covers topics that are of interest to a PostgreSQL database administrator. This includes instal-
lation of the software, set up and configuration of the server, management of users and databases, and
maintenance tasks. Anyone who runs a PostgreSQL server, even for personal use, but especially in pro-
duction, should be familiar with the topics covered in this part.

The information in this part is arranged approximately in the order in which a new user should read it.
But the chapters are self-contained and can be read individually as desired. The information in this part is
presented in a narrative fashion in topical units. Readers looking for a complete description of a particular
command should see Part VI.

The first few chapters are written so they can be understood without prerequisite knowledge, so new
users who need to set up their own server can begin their exploration with this part. The rest of this part
is about tuning and management; that material assumes that the reader is familiar with the general use
of the PostgreSQL database system. Readers are encouraged to look at Part I and Part II for additional
information.

Chapter 15. Installation from Source Code
This chapter describes the installation of PostgreSQL using the source code distribution. (If you are in-
stalling a pre-packaged distribution, such as an RPM or Debian package, ignore this chapter and read the
packager’s instructions instead.)

15.1. Short Version

./configure
gmake
su
gmake install
adduser postgres
mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data >logfile 2>&1 &
/usr/local/pgsql/bin/createdb test
/usr/local/pgsql/bin/psql test

The long version is the rest of this chapter.

15.2. Requirements
In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms that had
received specific testing at the time of release are listed in Section 15.6 below. In the doc subdirectory of
the distribution there are several platform-specific FAQ documents you might wish to consult if you are
having trouble.

The following software packages are required for building PostgreSQL:

• GNU make version 3.80 or newer is required; other make programs or older GNU make versions will
not work. GNU make is often installed under the name gmake; this document will always refer to it
by that name. (On some systems GNU make is the default tool with the name make.) To test for GNU
make enter:

gmake --version

• You need an ISO/ANSI C compiler (at least C89-compliant). Recent versions of GCC are recom-
mended, but PostgreSQL is known to build using a wide variety of compilers from different vendors.

• tar is required to unpack the source distribution, in addition to either gzip or bzip2.

• The GNU Readline library is used by default. It allows psql (the PostgreSQL command line SQL
interpreter) to remember each command you type, and allows you to use arrow keys to recall and edit
previous commands. This is very helpful and is strongly recommended. If you don’t want to use it then
you must specify the --without-readline option to configure. As an alternative, you can often

397

Chapter 15. Installation from Source Code

use the BSD-licensed libedit library, originally developed on NetBSD. The libedit library is GNU
Readline-compatible and is used if libreadline is not found, or if --with-libedit-preferred is
used as an option to configure. If you are using a package-based Linux distribution, be aware that you
need both the readline and readline-devel packages, if those are separate in your distribution.

• The zlib compression library is used by default. If you don’t want to use it then you must specify the
--without-zlib option to configure. Using this option disables support for compressed archives
in pg_dump and pg_restore.

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below:

• To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. Since PL/Perl will be a shared library, the libperl library
must be a shared library also on most platforms. This appears to be the default in recent Perl versions,
but it was not in earlier versions, and in any case it is the choice of whomever installed Perl at your site.
If you intend to make more than incidental use of PL/Perl, you should ensure that the Perl installation
was built with the usemultiplicity option enabled (perl -V will show whether this is the case).

If you don’t have the shared library but you need one, a message like this will appear during the Post-
greSQL build to point out this fact:

*** Cannot build PL/Perl because libperl is not a shared library.

*** You might have to rebuild your Perl installation. Refer to

*** the documentation for details.

(If you don’t follow the on-screen output you will merely notice that the PL/Perl library object,
plperl.so or similar, will not be installed.) If you see this, you will have to rebuild and install Perl
manually to be able to build PL/Perl. During the configuration process for Perl, request a shared
library.

• To build the PL/Python server programming language, you need a Python installation with the header
files and the distutils module. The minimum required version is Python 2.3. Python 3 is supported if
it’s version 3.1 or later; but see Section 42.1 when using Python 3.

Since PL/Python will be a shared library, the libpython library must be a shared library also on
most platforms. This is not the case in a default Python installation. If after building and installing
PostgreSQL you have a file called plpython.so (possibly a different extension), then everything went
well. Otherwise you should have seen a notice like this flying by:

*** Cannot build PL/Python because libpython is not a shared library.

*** You might have to rebuild your Python installation. Refer to

*** the documentation for details.

That means you have to rebuild (part of) your Python installation to create this shared library.

If you have problems, run Python 2.3 or later’s configure using the --enable-shared flag. On some
operating systems you don’t have to build a shared library, but you will have to convince the PostgreSQL
build system of this. Consult the Makefile in the src/pl/plpython directory for details.

• To build the PL/Tcl procedural language, you of course need a Tcl installation. If you are using a pre-8.4
release of Tcl, ensure that it was built without multithreading support.

• To enable Native Language Support (NLS), that is, the ability to display a program’s messages in a
language other than English, you need an implementation of the Gettext API. Some operating systems

398

Chapter 15. Installation from Source Code

have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download an add-on package
from http://www.gnu.org/software/gettext/. If you are using the Gettext implementation in the GNU C
library then you will additionally need the GNU Gettext package for some utility programs. For any of
the other implementations you will not need it.

• You need Kerberos, OpenSSL, OpenLDAP, and/or PAM, if you want to support authentication or en-
cryption using those services.

If you are building from a Git tree instead of using a released source package, or if you want to do server
development, you also need the following packages:

• GNU Flex and Bison are needed to build from a Git checkout, or if you changed the actual scanner
and parser definition files. If you need them, be sure to get Flex 2.5.31 or later and Bison 1.875 or later.
Other lex and yacc programs cannot be used.

• Perl 5.8 or later is needed to build from a Git checkout, or if you changed the input files for any of the
build steps that use Perl scripts. If building on Windows you will need Perl in any case.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://www.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 100 MB for the source tree during
compilation and about 20 MB for the installation directory. An empty database cluster takes about 35 MB;
databases take about five times the amount of space that a flat text file with the same data would take. If
you are going to run the regression tests you will temporarily need up to an extra 150 MB. Use the df

command to check free disk space.

15.3. Getting The Source
The PostgreSQL 9.2.7 sources can be obtained by anonymous FTP from
ftp://ftp.postgresql.org/pub/source/v9.2.7/postgresql-9.2.7.tar.gz. Other download options can be found
on our website: http://www.postgresql.org/download/. After you have obtained the file, unpack it:

gunzip postgresql-9.2.7.tar.gz

tar xf postgresql-9.2.7.tar

This will create a directory postgresql-9.2.7 under the current directory with the PostgreSQL sources.
Change into that directory for the rest of the installation procedure.

You can also get the source directly from the version control repository, see Appendix I.

15.4. Installation Procedure

1. Configuration

399

Chapter 15. Installation from Source Code

The first step of the installation procedure is to configure the source tree for your system and choose
the options you would like. This is done by running the configure script. For a default installation
simply enter:

./configure

This script will run a number of tests to determine values for various system dependent variables and
detect any quirks of your operating system, and finally will create several files in the build tree to
record what it found. You can also run configure in a directory outside the source tree, if you want
to keep the build directory separate. This procedure is also called a VPATH build. Here’s how:

mkdir build_dir

cd build_dir

/path/to/source/tree/configure [options go here]

gmake

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed under /usr/local/pgsql by
default.

You can customize the build and installation process by supplying one or more of the following
command line options to configure:

--prefix=PREFIX

Install all files under the directory PREFIX instead of /usr/local/pgsql. The actual files will
be installed into various subdirectories; no files will ever be installed directly into the PREFIX

directory.

If you have special needs, you can also customize the individual subdirectories with the follow-
ing options. However, if you leave these with their defaults, the installation will be relocatable,
meaning you can move the directory after installation. (The man and doc locations are not af-
fected by this.)

For relocatable installs, you might want to use configure’s --disable-rpath option. Also,
you will need to tell the operating system how to find the shared libraries.

--exec-prefix=EXEC-PREFIX

You can install architecture-dependent files under a different prefix, EXEC-PREFIX, than what
PREFIX was set to. This can be useful to share architecture-independent files between hosts. If
you omit this, then EXEC-PREFIX is set equal to PREFIX and both architecture-dependent and
independent files will be installed under the same tree, which is probably what you want.

--bindir=DIRECTORY

Specifies the directory for executable programs. The default is EXEC-PREFIX/bin, which nor-
mally means /usr/local/pgsql/bin.

--sysconfdir=DIRECTORY

Sets the directory for various configuration files, PREFIX/etc by default.

--libdir=DIRECTORY

Sets the location to install libraries and dynamically loadable modules. The default is
EXEC-PREFIX/lib.

400

Chapter 15. Installation from Source Code

--includedir=DIRECTORY

Sets the directory for installing C and C++ header files. The default is PREFIX/include.

--datarootdir=DIRECTORY

Sets the root directory for various types of read-only data files. This only sets the default for
some of the following options. The default is PREFIX/share.

--datadir=DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
DATAROOTDIR. Note that this has nothing to do with where your database files will be placed.

--localedir=DIRECTORY

Sets the directory for installing locale data, in particular message translation catalog files. The
default is DATAROOTDIR/locale.

--mandir=DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their respec-
tive manx subdirectories. The default is DATAROOTDIR/man.

--docdir=DIRECTORY

Sets the root directory for installing documentation files, except “man” pages. This
only sets the default for the following options. The default value for this option is
DATAROOTDIR/doc/postgresql.

--htmldir=DIRECTORY

The HTML-formatted documentation for PostgreSQL will be installed under this directory. The
default is DATAROOTDIR.

Note: Care has been taken to make it possible to install PostgreSQL into shared installation
locations (such as /usr/local/include) without interfering with the namespace of the rest of
the system. First, the string “/postgresql” is automatically appended to datadir, sysconfdir,
and docdir, unless the fully expanded directory name already contains the string “postgres”
or “pgsql”. For example, if you choose /usr/local as prefix, the documentation will be
installed in /usr/local/doc/postgresql, but if the prefix is /opt/postgres, then it will be
in /opt/postgres/doc. The public C header files of the client interfaces are installed into
includedir and are namespace-clean. The internal header files and the server header files are
installed into private directories under includedir. See the documentation of each interface for
information about how to access its header files. Finally, a private subdirectory will also be
created, if appropriate, under libdir for dynamically loadable modules.

--with-includes=DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the com-
piler searches for header files. If you have optional packages (such as GNU Readline) installed
in a non-standard location, you have to use this option and probably also the corresponding
--with-libraries option.

Example: --with-includes=/opt/gnu/include:/usr/sup/include.

401

Chapter 15. Installation from Source Code

--with-libraries=DIRECTORIES

DIRECTORIES is a colon-separated list of directories to search for libraries. You will probably
have to use this option (and the corresponding --with-includes option) if you have packages
installed in non-standard locations.

Example: --with-libraries=/opt/gnu/lib:/usr/sup/lib.

--enable-nls[=LANGUAGES]

Enables Native Language Support (NLS), that is, the ability to display a program’s messages in
a language other than English. LANGUAGES is an optional space-separated list of codes of the
languages that you want supported, for example --enable-nls=’de fr’. (The intersection
between your list and the set of actually provided translations will be computed automatically.)
If you do not specify a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API; see above.

--with-pgport=NUMBER

Set NUMBER as the default port number for server and clients. The default is 5432. The port can
always be changed later on, but if you specify it here then both server and clients will have the
same default compiled in, which can be very convenient. Usually the only good reason to select
a non-default value is if you intend to run multiple PostgreSQL servers on the same machine.

--with-perl

Build the PL/Perl server-side language.

--with-python

Build the PL/Python server-side language.

--with-tcl

Build the PL/Tcl server-side language.

--with-tclconfig=DIRECTORY

Tcl installs the file tclConfig.sh, which contains configuration information needed to build
modules interfacing to Tcl. This file is normally found automatically at a well-known location,
but if you want to use a different version of Tcl you can specify the directory in which to look
for it.

--with-gssapi

Build with support for GSSAPI authentication. On many systems, the GSSAPI (usually a part
of the Kerberos installation) system is not installed in a location that is searched by default
(e.g., /usr/include, /usr/lib), so you must use the options --with-includes and
--with-libraries in addition to this option. configure will check for the required header
files and libraries to make sure that your GSSAPI installation is sufficient before proceeding.

--with-krb5

Build with support for Kerberos 5 authentication. On many systems, the Kerberos system is
not installed in a location that is searched by default (e.g., /usr/include, /usr/lib), so you
must use the options --with-includes and --with-libraries in addition to this option.
configure will check for the required header files and libraries to make sure that your Kerberos
installation is sufficient before proceeding.

402

Chapter 15. Installation from Source Code

--with-krb-srvnam=NAME

The default name of the Kerberos service principal (also used by GSSAPI). postgres is the
default. There’s usually no reason to change this unless you have a Windows environment, in
which case it must be set to upper case POSTGRES.

--with-openssl

Build with support for SSL (encrypted) connections. This requires the OpenSSL package to be
installed. configure will check for the required header files and libraries to make sure that
your OpenSSL installation is sufficient before proceeding.

--with-pam

Build with PAM (Pluggable Authentication Modules) support.

--with-ldap

Build with LDAP support for authentication and connection parameter lookup (see Section 31.17
and Section 19.3.8 for more information). On Unix, this requires the OpenLDAP package to be
installed. On Windows, the default WinLDAP library is used. configure will check for the
required header files and libraries to make sure that your OpenLDAP installation is sufficient
before proceeding.

--without-readline

Prevents use of the Readline library (and libedit as well). This option disables command-line
editing and history in psql, so it is not recommended.

--with-libedit-preferred

Favors the use of the BSD-licensed libedit library rather than GPL-licensed Readline. This op-
tion is significant only if you have both libraries installed; the default in that case is to use
Readline.

--with-bonjour

Build with Bonjour support. This requires Bonjour support in your operating system. Recom-
mended on Mac OS X.

--with-ossp-uuid

Build components using the OSSP UUID library1. Specifically, build the uuid-ossp module,
which provides functions to generate UUIDs.

--with-libxml

Build with libxml (enables SQL/XML support). Libxml version 2.6.23 or later is required for
this feature.

Libxml installs a program xml2-config that can be used to detect the required compiler and
linker options. PostgreSQL will use it automatically if found. To specify a libxml installation
at an unusual location, you can either set the environment variable XML2_CONFIG to point to
the xml2-config program belonging to the installation, or use the options --with-includes
and --with-libraries.

1. http://www.ossp.org/pkg/lib/uuid/

403

Chapter 15. Installation from Source Code

--with-libxslt

Use libxslt when building the xml2 module. xml2 relies on this library to perform XSL transfor-
mations of XML.

--disable-integer-datetimes

Disable support for 64-bit integer storage for timestamps and intervals, and store datetime values
as floating-point numbers instead. Floating-point datetime storage was the default in PostgreSQL
releases prior to 8.4, but it is now deprecated, because it does not support microsecond precision
for the full range of timestamp values. However, integer-based datetime storage requires a
64-bit integer type. Therefore, this option can be used when no such type is available, or for
compatibility with applications written for prior versions of PostgreSQL. See Section 8.5 for
more information.

--disable-float4-byval

Disable passing float4 values “by value”, causing them to be passed “by reference” instead. This
option costs performance, but may be needed for compatibility with old user-defined functions
that are written in C and use the “version 0” calling convention. A better long-term solution is
to update any such functions to use the “version 1” calling convention.

--disable-float8-byval

Disable passing float8 values “by value”, causing them to be passed “by reference” instead.
This option costs performance, but may be needed for compatibility with old user-defined func-
tions that are written in C and use the “version 0” calling convention. A better long-term so-
lution is to update any such functions to use the “version 1” calling convention. Note that
this option affects not only float8, but also int8 and some related types such as timestamp.
On 32-bit platforms, --disable-float8-byval is the default and it is not allowed to select
--enable-float8-byval.

--with-segsize=SEGSIZE

Set the segment size, in gigabytes. Large tables are divided into multiple operating-system files,
each of size equal to the segment size. This avoids problems with file size limits that exist
on many platforms. The default segment size, 1 gigabyte, is safe on all supported platforms.
If your operating system has “largefile” support (which most do, nowadays), you can use a
larger segment size. This can be helpful to reduce the number of file descriptors consumed when
working with very large tables. But be careful not to select a value larger than is supported by
your platform and the file systems you intend to use. Other tools you might wish to use, such
as tar, could also set limits on the usable file size. It is recommended, though not absolutely
required, that this value be a power of 2. Note that changing this value requires an initdb.

--with-blocksize=BLOCKSIZE

Set the block size, in kilobytes. This is the unit of storage and I/O within tables. The default, 8
kilobytes, is suitable for most situations; but other values may be useful in special cases. The
value must be a power of 2 between 1 and 32 (kilobytes). Note that changing this value requires
an initdb.

--with-wal-segsize=SEGSIZE

Set the WAL segment size, in megabytes. This is the size of each individual file in the WAL log.
It may be useful to adjust this size to control the granularity of WAL log shipping. The default

404

Chapter 15. Installation from Source Code

size is 16 megabytes. The value must be a power of 2 between 1 and 64 (megabytes). Note that
changing this value requires an initdb.

--with-wal-blocksize=BLOCKSIZE

Set the WAL block size, in kilobytes. This is the unit of storage and I/O within the WAL log.
The default, 8 kilobytes, is suitable for most situations; but other values may be useful in special
cases. The value must be a power of 2 between 1 and 64 (kilobytes). Note that changing this
value requires an initdb.

--disable-spinlocks

Allow the build to succeed even if PostgreSQL has no CPU spinlock support for the platform.
The lack of spinlock support will result in poor performance; therefore, this option should only
be used if the build aborts and informs you that the platform lacks spinlock support. If this option
is required to build PostgreSQL on your platform, please report the problem to the PostgreSQL
developers.

--disable-thread-safety

Disable the thread-safety of client libraries. This prevents concurrent threads in libpq and ECPG
programs from safely controlling their private connection handles.

--with-system-tzdata=DIRECTORY

PostgreSQL includes its own time zone database, which it requires for date and time operations.
This time zone database is in fact compatible with the “zoneinfo” time zone database provided
by many operating systems such as FreeBSD, Linux, and Solaris, so it would be redundant to
install it again. When this option is used, the system-supplied time zone database in DIRECTORY
is used instead of the one included in the PostgreSQL source distribution. DIRECTORY must be
specified as an absolute path. /usr/share/zoneinfo is a likely directory on some operating
systems. Note that the installation routine will not detect mismatching or erroneous time zone
data. If you use this option, you are advised to run the regression tests to verify that the time
zone data you have pointed to works correctly with PostgreSQL.

This option is mainly aimed at binary package distributors who know their target operating
system well. The main advantage of using this option is that the PostgreSQL package won’t
need to be upgraded whenever any of the many local daylight-saving time rules change. Another
advantage is that PostgreSQL can be cross-compiled more straightforwardly if the time zone
database files do not need to be built during the installation.

--without-zlib

Prevents use of the Zlib library. This disables support for compressed archives in pg_dump and
pg_restore. This option is only intended for those rare systems where this library is not available.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run the
programs in a debugger to analyze problems. This enlarges the size of the installed executables
considerably, and on non-GCC compilers it usually also disables compiler optimization, causing
slowdowns. However, having the symbols available is extremely helpful for dealing with any
problems that might arise. Currently, this option is recommended for production installations
only if you use GCC. But you should always have it on if you are doing development work or
running a beta version.

405

Chapter 15. Installation from Source Code

--enable-coverage

If using GCC, all programs and libraries are compiled with code coverage testing instrumenta-
tion. When run, they generate files in the build directory with code coverage metrics. See Section
30.4 for more information. This option is for use only with GCC and when doing development
work.

--enable-profiling

If using GCC, all programs and libraries are compiled so they can be profiled. On backend exit,
a subdirectory will be created that contains the gmon.out file for use in profiling. This option is
for use only with GCC and when doing development work.

--enable-cassert

Enables assertion checks in the server, which test for many “cannot happen” conditions. This is
invaluable for code development purposes, but the tests can slow down the server significantly.
Also, having the tests turned on won’t necessarily enhance the stability of your server! The
assertion checks are not categorized for severity, and so what might be a relatively harmless bug
will still lead to server restarts if it triggers an assertion failure. This option is not recommended
for production use, but you should have it on for development work or when running a beta
version.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that all
affected object files will be rebuilt when any header file is changed. This is useful if you are
doing development work, but is just wasted overhead if you intend only to compile once and
install. At present, this option only works with GCC.

--enable-dtrace

Compiles PostgreSQL with support for the dynamic tracing tool DTrace. See Section 27.4 for
more information.

To point to the dtrace program, the environment variable DTRACE can be set. This will often be
necessary because dtrace is typically installed under /usr/sbin, which might not be in the
path.

Extra command-line options for the dtrace program can be specified in the environment vari-
able DTRACEFLAGS. On Solaris, to include DTrace support in a 64-bit binary, you must specify
DTRACEFLAGS="-64" to configure. For example, using the GCC compiler:

./configure CC=’gcc -m64’ --enable-dtrace DTRACEFLAGS=’-64’ ...

Using Sun’s compiler:

./configure CC=’/opt/SUNWspro/bin/cc -xtarget=native64’ --enable-dtrace DTRACEFLAGS=’-64’ ...

If you prefer a C compiler different from the one configure picks, you can set the environment
variable CC to the program of your choice. By default, configure will pick gcc if available, else the
platform’s default (usually cc). Similarly, you can override the default compiler flags if needed with
the CFLAGS variable.

You can specify environment variables on the configure command line, for example:

./configure CC=/opt/bin/gcc CFLAGS=’-O2 -pipe’

406

Chapter 15. Installation from Source Code

Here is a list of the significant variables that can be set in this manner:

BISON

Bison program

CC

C compiler

CFLAGS

options to pass to the C compiler

CPP

C preprocessor

CPPFLAGS

options to pass to the C preprocessor

DTRACE

location of the dtrace program

DTRACEFLAGS

options to pass to the dtrace program

FLEX

Flex program

LDFLAGS

options to use when linking either executables or shared libraries

LDFLAGS_EX

additional options for linking executables only

LDFLAGS_SL

additional options for linking shared libraries only

MSGFMT

msgfmt program for native language support

PERL

Full path to the Perl interpreter. This will be used to determine the dependencies for building
PL/Perl.

PYTHON

Full path to the Python interpreter. This will be used to determine the dependencies for building
PL/Python. Also, whether Python 2 or 3 is specified here (or otherwise implicitly chosen) deter-
mines which variant of the PL/Python language becomes available. See Section 42.1 for more
information.

TCLSH

Full path to the Tcl interpreter. This will be used to determine the dependencies for building
PL/Tcl, and it will be substituted into Tcl scripts.

407

Chapter 15. Installation from Source Code

XML2_CONFIG

xml2-config program used to locate the libxml installation.

Note: When developing code inside the server, it is recommended to use the configure options
--enable-cassert (which turns on many run-time error checks) and --enable-debug (which
improves the usefulness of debugging tools).

If using GCC, it is best to build with an optimization level of at least -O1, because using no
optimization (-O0) disables some important compiler warnings (such as the use of uninitialized
variables). However, non-zero optimization levels can complicate debugging because stepping
through compiled code will usually not match up one-to-one with source code lines. If you get
confused while trying to debug optimized code, recompile the specific files of interest with -O0.
An easy way to do this is by passing an option to make: gmake PROFILE=-O0 file.o.

2. Build

To start the build, type:

gmake

(Remember to use GNU make.) The build will take a few minutes depending on your hardware. The
last line displayed should be:

All of PostgreSQL is successfully made. Ready to install.

If you want to build everything that can be built, including the documentation (HTML and man
pages), and the additional modules (contrib), type instead:

gmake world

The last line displayed should be:

PostgreSQL, contrib and HTML documentation successfully made. Ready to install.

3. Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at this
point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in the way
the developers expected it to. Type:

gmake check

(This won’t work as root; do it as an unprivileged user.) Chapter 30 contains detailed information
about interpreting the test results. You can repeat this test at any later time by issuing the same
command.

4. Installing the Files

Note: If you are upgrading an existing system be sure to read Section 17.6 which has instructions
about upgrading a cluster.

To install PostgreSQL enter:

gmake install

408

Chapter 15. Installation from Source Code

This will install files into the directories that were specified in step 1. Make sure that you have ap-
propriate permissions to write into that area. Normally you need to do this step as root. Alternatively,
you can create the target directories in advance and arrange for appropriate permissions to be granted.

To install the documentation (HTML and man pages), enter:

gmake install-docs

If you built the world above, type instead:

gmake install-world

This also installs the documentation.

You can use gmake install-strip instead of gmake install to strip the executable files and
libraries as they are installed. This will save some space. If you built with debugging support, stripping
will effectively remove the debugging support, so it should only be done if debugging is no longer
needed. install-strip tries to do a reasonable job saving space, but it does not have perfect
knowledge of how to strip every unneeded byte from an executable file, so if you want to save all the
disk space you possibly can, you will have to do manual work.

The standard installation provides all the header files needed for client application development as
well as for server-side program development, such as custom functions or data types written in C.
(Prior to PostgreSQL 8.0, a separate gmake install-all-headers command was needed for the
latter, but this step has been folded into the standard install.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

gmake -C src/bin install

gmake -C src/include install

gmake -C src/interfaces install

gmake -C doc install

src/bin has a few binaries for server-only use, but they are small.

Uninstallation: To undo the installation use the command gmake uninstall. However, this will not
remove any created directories.

Cleaning: After the installation you can free disk space by removing the built files from the source tree
with the command gmake clean. This will preserve the files made by the configure program, so
that you can rebuild everything with gmake later on. To reset the source tree to the state in which it was
distributed, use gmake distclean. If you are going to build for several platforms within the same source
tree you must do this and re-configure for each platform. (Alternatively, use a separate build tree for each
platform, so that the source tree remains unmodified.)

If you perform a build and then discover that your configure options were wrong, or if you change
anything that configure investigates (for example, software upgrades), then it’s a good idea to do gmake
distclean before reconfiguring and rebuilding. Without this, your changes in configuration choices
might not propagate everywhere they need to.

409

Chapter 15. Installation from Source Code

15.5. Post-Installation Setup

15.5.1. Shared Libraries
On some systems with shared libraries you need to tell the system how to find the newly installed shared
libraries. The systems on which this is not necessary include FreeBSD, HP-UX, IRIX, Linux, NetBSD,
OpenBSD, Tru64 UNIX (formerly Digital UNIX), and Solaris.

The method to set the shared library search path varies between platforms, but the most widely-used
method is to set the environment variable LD_LIBRARY_PATH like so: In Bourne shells (sh, ksh, bash,
zsh):

LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

or in csh or tcsh:

setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Replace /usr/local/pgsql/lib with whatever you set --libdir to in step 1. You should
put these commands into a shell start-up file such as /etc/profile or ~/.bash_profile.
Some good information about the caveats associated with this method can be found at
http://xahlee.org/UnixResource_dir/_/ldpath.html.

On some systems it might be preferable to set the environment variable LD_RUN_PATH before building.

On Cygwin, put the library directory in the PATH or move the .dll files into the bin directory.

If in doubt, refer to the manual pages of your system (perhaps ld.so or rld). If you later get a message
like:

psql: error in loading shared libraries
libpq.so.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.

If you are on Linux and you have root access, you can run:

/sbin/ldconfig /usr/local/pgsql/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries faster.
Refer to the manual page of ldconfig for more information. On FreeBSD, NetBSD, and OpenBSD the
command is:

/sbin/ldconfig -m /usr/local/pgsql/lib

instead. Other systems are not known to have an equivalent command.

15.5.2. Environment Variables
If you installed into /usr/local/pgsql or some other location that is not searched for programs by
default, you should add /usr/local/pgsql/bin (or whatever you set --bindir to in step 1) into your

410

Chapter 15. Installation from Source Code

PATH. Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more conve-
nient.

To do this, add the following to your shell start-up file, such as ~/.bash_profile (or /etc/profile,
if you want it to affect all users):

PATH=/usr/local/pgsql/bin:$PATH
export PATH

If you are using csh or tcsh, then use this command:

set path = (/usr/local/pgsql/bin $path)

To enable your system to find the man documentation, you need to add lines like the following to a shell
start-up file unless you installed into a location that is searched by default:

MANPATH=/usr/local/pgsql/man:$MANPATH
export MANPATH

The environment variables PGHOST and PGPORT specify to client applications the host and port of the
database server, overriding the compiled-in defaults. If you are going to run client applications remotely
then it is convenient if every user that plans to use the database sets PGHOST. This is not required, however;
the settings can be communicated via command line options to most client programs.

15.6. Supported Platforms
A platform (that is, a CPU architecture and operating system combination) is considered supported by
the PostgreSQL development community if the code contains provisions to work on that platform and it
has recently been verified to build and pass its regression tests on that platform. Currently, most testing of
platform compatibility is done automatically by test machines in the PostgreSQL Build Farm2. If you are
interested in using PostgreSQL on a platform that is not represented in the build farm, but on which the
code works or can be made to work, you are strongly encouraged to set up a build farm member machine
so that continued compatibility can be assured.

In general, PostgreSQL can be expected to work on these CPU architectures: x86, x86_64, IA64, Pow-
erPC, PowerPC 64, S/390, S/390x, Sparc, Sparc 64, Alpha, ARM, MIPS, MIPSEL, M68K, and PA-
RISC. Code support exists for M32R, NS32K, and VAX, but these architectures are not known to have
been tested recently. It is often possible to build on an unsupported CPU type by configuring with
--disable-spinlocks, but performance will be poor.

PostgreSQL can be expected to work on these operating systems: Linux (all recent distributions), Win-
dows (Win2000 SP4 and later), FreeBSD, OpenBSD, NetBSD, Mac OS X, AIX, HP/UX, IRIX, Solaris,
Tru64 Unix, and UnixWare. Other Unix-like systems may also work but are not currently being tested. In
most cases, all CPU architectures supported by a given operating system will work. Look in the Section

2. http://buildfarm.postgresql.org/

411

Chapter 15. Installation from Source Code

15.7 below to see if there is information specific to your operating system, particularly if using an older
system.

If you have installation problems on a platform that is known to be supported according to recent build
farm results, please report it to <pgsql-bugs@postgresql.org>. If you are interested in porting Post-
greSQL to a new platform, <pgsql-hackers@postgresql.org> is the appropriate place to discuss
that.

15.7. Platform-specific Notes
This section documents additional platform-specific issues regarding the installation and setup of Post-
greSQL. Be sure to read the installation instructions, and in particular Section 15.2 as well. Also, check
Chapter 30 regarding the interpretation of regression test results.

Platforms that are not covered here have no known platform-specific installation issues.

15.7.1. AIX
PostgreSQL works on AIX, but getting it installed properly can be challenging. AIX versions from 4.3.3
to 6.1 are considered supported. You can use GCC or the native IBM compiler xlc. In general, using
recent versions of AIX and PostgreSQL helps. Check the build farm for up to date information about
which versions of AIX are known to work.

The minimum recommended fix levels for supported AIX versions are:

AIX 4.3.3

Maintenance Level 11 + post ML11 bundle

AIX 5.1

Maintenance Level 9 + post ML9 bundle

AIX 5.2

Technology Level 10 Service Pack 3

AIX 5.3

Technology Level 7

AIX 6.1

Base Level

To check your current fix level, use oslevel -r in AIX 4.3.3 to AIX 5.2 ML 7, or oslevel -s in later
versions.

Use the following configure flags in addition to your own if you have installed Readline or libz in
/usr/local: --with-includes=/usr/local/include --with-libraries=/usr/local/lib.

15.7.1.1. GCC Issues

On AIX 5.3, there have been some problems getting PostgreSQL to compile and run using GCC.

412

Chapter 15. Installation from Source Code

You will want to use a version of GCC subsequent to 3.3.2, particularly if you use a prepackaged version.
We had good success with 4.0.1. Problems with earlier versions seem to have more to do with the way
IBM packaged GCC than with actual issues with GCC, so that if you compile GCC yourself, you might
well have success with an earlier version of GCC.

15.7.1.2. Unix-Domain Sockets Broken

AIX 5.3 has a problem where sockaddr_storage is not defined to be large enough. In version 5.3,
IBM increased the size of sockaddr_un, the address structure for Unix-domain sockets, but did not
correspondingly increase the size of sockaddr_storage. The result of this is that attempts to use Unix-
domain sockets with PostgreSQL lead to libpq overflowing the data structure. TCP/IP connections work
OK, but not Unix-domain sockets, which prevents the regression tests from working.

The problem was reported to IBM, and is recorded as bug report PMR29657. If you upgrade to main-
tenance level 5300-03 or later, that will include this fix. A quick workaround is to alter _SS_MAXSIZE
to 1025 in /usr/include/sys/socket.h. In either case, recompile PostgreSQL once you have the
corrected header file.

15.7.1.3. Internet Address Issues

PostgreSQL relies on the system’s getaddrinfo function to parse IP addresses in listen_addresses,
pg_hba.conf, etc. Older versions of AIX have assorted bugs in this function. If you have problems
related to these settings, updating to the appropriate AIX fix level shown above should take care of it.

One user reports:

When implementing PostgreSQL version 8.1 on AIX 5.3, we periodically ran into problems where the
statistics collector would “mysteriously” not come up successfully. This appears to be the result of un-
expected behavior in the IPv6 implementation. It looks like PostgreSQL and IPv6 do not play very well
together on AIX 5.3.

Any of the following actions “fix” the problem.

• Delete the IPv6 address for localhost:

(as root)
ifconfig lo0 inet6 ::1/0 delete

• Remove IPv6 from net services. The file /etc/netsvc.conf on AIX is roughly equivalent to
/etc/nsswitch.conf on Solaris/Linux. The default, on AIX, is thus:

hosts=local,bind

Replace this with:

hosts=local4,bind4

to deactivate searching for IPv6 addresses.

413

Chapter 15. Installation from Source Code

Warning
This is really a workaround for problems relating to immaturity of IPv6 support,
which improved visibly during the course of AIX 5.3 releases. It has worked with
AIX version 5.3, but does not represent an elegant solution to the problem. It has
been reported that this workaround is not only unnecessary, but causes problems
on AIX 6.1, where IPv6 support has become more mature.

15.7.1.4. Memory Management

AIX can be somewhat peculiar with regards to the way it does memory management. You can have a server
with many multiples of gigabytes of RAM free, but still get out of memory or address space errors when
running applications. One example is createlang failing with unusual errors. For example, running as
the owner of the PostgreSQL installation:

-bash-3.00$ createlang plperl template1
createlang: language installation failed: ERROR: could not load library "/opt/dbs/pgsql748/lib/plperl.so": A memory address is not in the address space for the process.

Running as a non-owner in the group possessing the PostgreSQL installation:

-bash-3.00$ createlang plperl template1
createlang: language installation failed: ERROR: could not load library "/opt/dbs/pgsql748/lib/plperl.so": Bad address

Another example is out of memory errors in the PostgreSQL server logs, with every memory allocation
near or greater than 256 MB failing.

The overall cause of all these problems is the default bittedness and memory model used by the server
process. By default, all binaries built on AIX are 32-bit. This does not depend upon hardware type or
kernel in use. These 32-bit processes are limited to 4 GB of memory laid out in 256 MB segments using
one of a few models. The default allows for less than 256 MB in the heap as it shares a single segment
with the stack.

In the case of the createlang example, above, check your umask and the permissions of the binaries
in your PostgreSQL installation. The binaries involved in that example were 32-bit and installed as mode
750 instead of 755. Due to the permissions being set in this fashion, only the owner or a member of the
possessing group can load the library. Since it isn’t world-readable, the loader places the object into the
process’ heap instead of the shared library segments where it would otherwise be placed.

The “ideal” solution for this is to use a 64-bit build of PostgreSQL, but that is not always practical, because
systems with 32-bit processors can build, but not run, 64-bit binaries.

If a 32-bit binary is desired, set LDR_CNTRL to MAXDATA=0xn0000000, where 1 <= n <= 8, before start-
ing the PostgreSQL server, and try different values and postgresql.conf settings to find a configuration
that works satisfactorily. This use of LDR_CNTRL tells AIX that you want the server to have MAXDATA bytes
set aside for the heap, allocated in 256 MB segments. When you find a workable configuration, ldedit
can be used to modify the binaries so that they default to using the desired heap size. PostgreSQL can also
be rebuilt, passing configure LDFLAGS="-Wl,-bmaxdata:0xn0000000" to achieve the same effect.

For a 64-bit build, set OBJECT_MODE to 64 and pass CC="gcc -maix64" and
LDFLAGS="-Wl,-bbigtoc" to configure. (Options for xlc might differ.) If you omit the export of

414

Chapter 15. Installation from Source Code

OBJECT_MODE, your build may fail with linker errors. When OBJECT_MODE is set, it tells AIX’s build
utilities such as ar, as, and ld what type of objects to default to handling.

By default, overcommit of paging space can happen. While we have not seen this occur, AIX will kill
processes when it runs out of memory and the overcommit is accessed. The closest to this that we have
seen is fork failing because the system decided that there was not enough memory for another process.
Like many other parts of AIX, the paging space allocation method and out-of-memory kill is configurable
on a system- or process-wide basis if this becomes a problem.

References and Resources

“Large Program Support1”, AIX Documentation: General Programming Concepts: Writing and Debug-
ging Programs.

“Program Address Space Overview2”, AIX Documentation: General Programming Concepts: Writing and
Debugging Programs.

“Performance Overview of the Virtual Memory Manager (VMM)3”, AIX Documentation: Performance
Management Guide.

“Page Space Allocation4”, AIX Documentation: Performance Management Guide.

“Paging-space thresholds tuning5”, AIX Documentation: Performance Management Guide.

Developing and Porting C and C++ Applications on AIX6, IBM Redbook.

15.7.2. Cygwin
PostgreSQL can be built using Cygwin, a Linux-like environment for Windows, but that method is in-
ferior to the native Windows build (see Chapter 16) and running a server under Cygwin is no longer
recommended.

When building from source, proceed according to the normal installation procedure (i.e., ./configure;
make; etc.), noting the following-Cygwin specific differences:

• Set your path to use the Cygwin bin directory before the Windows utilities. This will help prevent
problems with compilation.

• The GNU make command is called make, not gmake.

• The adduser command is not supported; use the appropriate user management application on Win-
dows NT, 2000, or XP. Otherwise, skip this step.

• The su command is not supported; use ssh to simulate su on Windows NT, 2000, or XP. Otherwise,
skip this step.

1. http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/lrg_prg_support.htm
2. http://publib.boulder.ibm.com/infocenter/pseries/topic/com.ibm.aix.doc/aixprggd/genprogc/address_space.htm
3. http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/resmgmt2.htm
4. http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf7.htm
5. http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.doc/aixbman/prftungd/memperf6.htm
6. http://www.redbooks.ibm.com/abstracts/sg245674.html?Open

415

Chapter 15. Installation from Source Code

• OpenSSL is not supported.

• Start cygserver for shared memory support. To do this, enter the command /usr/sbin/cygserver
&. This program needs to be running anytime you start the PostgreSQL server or initialize a database
cluster (initdb). The default cygserver configuration may need to be changed (e.g., increase
SEMMNS) to prevent PostgreSQL from failing due to a lack of system resources.

• Building might fail on some systems where a locale other than C is in use. To fix this, set the locale
to C by doing export LANG=C.utf8 before building, and then setting it back to the previous setting,
after you have installed PostgreSQL.

• The parallel regression tests (make check) can generate spurious regression test failures due to over-
flowing the listen() backlog queue which causes connection refused errors or hangs. You can limit
the number of connections using the make variable MAX_CONNECTIONS thus:

make MAX_CONNECTIONS=5 check

(On some systems you can have up to about 10 simultaneous connections).

It is possible to install cygserver and the PostgreSQL server as Windows NT services. For information
on how to do this, please refer to the README document included with the PostgreSQL binary package on
Cygwin. It is installed in the directory /usr/share/doc/Cygwin.

15.7.3. HP-UX
PostgreSQL 7.3+ should work on Series 700/800 PA-RISC machines running HP-UX 10.X or 11.X, given
appropriate system patch levels and build tools. At least one developer routinely tests on HP-UX 10.20,
and we have reports of successful installations on HP-UX 11.00 and 11.11.

Aside from the PostgreSQL source distribution, you will need GNU make (HP’s make will not do), and
either GCC or HP’s full ANSI C compiler. If you intend to build from Git sources rather than a distribution
tarball, you will also need Flex (GNU lex) and Bison (GNU yacc). We also recommend making sure you
are fairly up-to-date on HP patches. At a minimum, if you are building 64 bit binaries on HP-UX 11.11
you may need PHSS_30966 (11.11) or a successor patch otherwise initdb may hang:

PHSS_30966 s700_800 ld(1) and linker tools cumulative patch

On general principles you should be current on libc and ld/dld patches, as well as compiler
patches if you are using HP’s C compiler. See HP’s support sites such as http://itrc.hp.com and
ftp://us-ffs.external.hp.com/ for free copies of their latest patches.

If you are building on a PA-RISC 2.0 machine and want to have 64-bit binaries using GCC, you
must use GCC 64-bit version. GCC binaries for HP-UX PA-RISC and Itanium are available from
http://www.hp.com/go/gcc. Don’t forget to get and install binutils at the same time.

If you are building on a PA-RISC 2.0 machine and want the compiled binaries to run on PA-RISC 1.1
machines you will need to specify +DAportable in CFLAGS.

If you are building on a HP-UX Itanium machine, you will need the latest HP ANSI C compiler with its
dependent patch or successor patches:

PHSS_30848 s700_800 HP C Compiler (A.05.57)
PHSS_30849 s700_800 u2comp/be/plugin library Patch

416

Chapter 15. Installation from Source Code

If you have both HP’s C compiler and GCC’s, then you might want to explicitly select the compiler to use
when you run configure:

./configure CC=cc

for HP’s C compiler, or

./configure CC=gcc

for GCC. If you omit this setting, then configure will pick gcc if it has a choice.

The default install target location is /usr/local/pgsql, which you might want to change to something
under /opt. If so, use the --prefix switch to configure.

In the regression tests, there might be some low-order-digit differences in the geometry tests, which vary
depending on which compiler and math library versions you use. Any other error is cause for suspicion.

15.7.4. IRIX
PostgreSQL has been reported to run successfully on MIPS r8000, r10000 (both ip25 and ip27) and
r12000(ip35) processors, running IRIX 6.5.5m, 6.5.12, 6.5.13, and 6.5.26 with MIPSPro compilers ver-
sion 7.30, 7.3.1.2m, 7.3, and 7.4.4m.

You will need the MIPSPro full ANSI C compiler. There are problems trying to build with GCC. It is
a known GCC bug (not fixed as of version 3.0) related to using functions that return certain kinds of
structures. This bug affects functions like inet_ntoa, inet_lnaof, inet_netof, inet_makeaddr,
and semctl. It is supposed to be fixed by forcing code to link those functions with libgcc, but this has not
been tested yet.

It is known that version 7.4.1m of the MIPSPro compiler generates incorrect code. The symptom is “in-
valid primary checkpoint record” when trying to start the database.) Version 7.4.4m is OK; the status of
intermediate versions is uncertain.

There may be a compilation problem like the following:

cc-1020 cc: ERROR File = pqcomm.c, Line = 427
The identifier "TCP_NODELAY" is undefined.

if (setsockopt(port->sock, IPPROTO_TCP, TCP_NODELAY,

Some versions include TCP definitions in sys/xti.h, so it is necessary to
add #include <sys/xti.h> in src/backend/libpq/pqcomm.c and in
src/interfaces/libpq/fe-connect.c. If you encounter this, please let us know so we can develop
a proper fix.

In the regression tests, there might be some low-order-digit differences in the geometry tests, depending
on which FPU are you using. Any other error is cause for suspicion.

417

Chapter 15. Installation from Source Code

15.7.5. MinGW/Native Windows
PostgreSQL for Windows can be built using MinGW, a Unix-like build environment for Microsoft oper-
ating systems, or using Microsoft’s Visual C++ compiler suite. The MinGW build variant uses the normal
build system described in this chapter; the Visual C++ build works completely differently and is described
in Chapter 16. It is a fully native build and uses no additional software like MinGW. A ready-made installer
is available on the main PostgreSQL web site.

The native Windows port requires a 32 or 64-bit version of Windows 2000 or later. Earlier operating
systems do not have sufficient infrastructure (but Cygwin may be used on those). MinGW, the Unix-like
build tools, and MSYS, a collection of Unix tools required to run shell scripts like configure, can be
downloaded from http://www.mingw.org/. Neither is required to run the resulting binaries; they are needed
only for creating the binaries.

To build 64 bit binaries using MinGW, install the 64 bit tool set from http://mingw-w64.sourceforge.net/,
put its bin directory in the PATH, and run configure with the --host=x86_64-w64-mingw option.

After you have everything installed, it is suggested that you run psql under CMD.EXE, as the MSYS console
has buffering issues.

15.7.5.1. Collecting Crash Dumps on Windows

If PostgreSQL on Windows crashes, it has the ability to generate minidumps that can be used to track
down the cause for the crash, similar to core dumps on Unix. These dumps can be read using the Win-
dows Debugger Tools or using Visual Studio. To enable the generation of dumps on Windows, create a
subdirectory named crashdumps inside the cluster data directory. The dumps will then be written into
this directory with a unique name based on the identifier of the crashing process and the current time of
the crash.

15.7.6. SCO OpenServer and SCO UnixWare
PostgreSQL can be built on SCO UnixWare 7 and SCO OpenServer 5. On OpenServer, you can use either
the OpenServer Development Kit or the Universal Development Kit. However, some tweaking may be
needed, as described below.

15.7.6.1. Skunkware

You should locate your copy of the SCO Skunkware CD. The Skunkware CD is included with UnixWare
7 and current versions of OpenServer 5. Skunkware includes ready-to-install versions of many popular
programs that are available on the Internet. For example, gzip, gunzip, GNU Make, Flex, and Bison are
all included. For UnixWare 7.1, this CD is now labeled "Open License Software Supplement". If you do
not have this CD, the software on it is available from http://www.sco.com/skunkware/.

Skunkware has different versions for UnixWare and OpenServer. Make sure you install the correct version
for your operating system, except as noted below.

On UnixWare 7.1.3 and beyond, the GCC compiler is included on the UDK CD as is GNU Make.

418

Chapter 15. Installation from Source Code

15.7.6.2. GNU Make

You need to use the GNU Make program, which is on the Skunkware CD. By default, it installs as
/usr/local/bin/make. To avoid confusion with the SCO make program, you may want to rename
GNU make to gmake.

As of UnixWare 7.1.3 and above, the GNU Make program is the OSTK portion of the UDK CD, and is in
/usr/gnu/bin/gmake.

15.7.6.3. Readline

The Readline library is on the Skunkware CD. But it is not included on the UnixWare 7.1 Skunkware
CD. If you have the UnixWare 7.0.0 or 7.0.1 Skunkware CDs, you can install it from there. Otherwise, try
http://www.sco.com/skunkware/.

By default, Readline installs into /usr/local/lib and /usr/local/include. However, the Post-
greSQL configure program will not find it there without help. If you installed Readline, then use the
following options to configure:

./configure --with-libraries=/usr/local/lib --with-includes=/usr/local/include

15.7.6.4. Using the UDK on OpenServer

If you are using the new Universal Development Kit (UDK) compiler on OpenServer, you need to specify
the locations of the UDK libraries:

./configure --with-libraries=/udk/usr/lib --with-includes=/udk/usr/include

Putting these together with the Readline options from above:

./configure --with-libraries="/udk/usr/lib /usr/local/lib" --with-includes="/udk/usr/include /usr/local/include"

15.7.6.5. Reading the PostgreSQL Man Pages

By default, the PostgreSQL man pages are installed into /usr/local/pgsql/man. By default,
UnixWare does not look there for man pages. To be able to read them you need to modify the MANPATH
variable in /etc/default/man, for example:

MANPATH=/usr/lib/scohelp/%L/man:/usr/dt/man:/usr/man:/usr/share/man:scohelp:/usr/local/man:/usr/local/pgsql/man

On OpenServer, some extra research needs to be invested to make the man pages usable, because the man
system is a bit different from other platforms. Currently, PostgreSQL will not install them at all.

419

Chapter 15. Installation from Source Code

15.7.6.6. C99 Issues with the 7.1.1b Feature Supplement

For compilers earlier than the one released with OpenUNIX 8.0.0 (UnixWare 7.1.2), including the 7.1.1b
Feature Supplement, you may need to specify -Xb in CFLAGS or the CC environment variable. The indi-
cation of this is an error in compiling tuplesort.c referencing inline functions. Apparently there was a
change in the 7.1.2(8.0.0) compiler and beyond.

15.7.6.7. Threading on UnixWare

For threading, youmust use -Kpthread on all libpq-using programs. libpq uses pthread_* calls, which
are only available with the -Kpthread/-Kthread flag.

15.7.7. Solaris
PostgreSQL is well-supported on Solaris. The more up to date your operating system, the fewer issues
you will experience; details below.

15.7.7.1. Required Tools

You can build with either GCC or Sun’s compiler suite. For better code optimization, Sun’s compiler is
strongly recommended on the SPARC architecture. We have heard reports of problems when using GCC
2.95.1; GCC 2.95.3 or later is recommended. If you are using Sun’s compiler, be careful not to select
/usr/ucb/cc; use /opt/SUNWspro/bin/cc.

You can download Sun Studio from http://developers.sun.com/sunstudio/downloads/. Many of GNU
tools are integrated into Solaris 10, or they are present on the Solaris companion CD. If you like
packages for older version of Solaris, you can find these tools at http://www.sunfreeware.com or
http://www.blastwave.org. If you prefer sources, look at http://www.gnu.org/order/ftp.html.

15.7.7.2. Problems with OpenSSL

When you build PostgreSQL with OpenSSL support you might get compilation errors in the following
files:

• src/backend/libpq/crypt.c

• src/backend/libpq/password.c

• src/interfaces/libpq/fe-auth.c

• src/interfaces/libpq/fe-connect.c

This is because of a namespace conflict between the standard /usr/include/crypt.h header and the
header files provided by OpenSSL.

Upgrading your OpenSSL installation to version 0.9.6a fixes this problem. Solaris 9 and above has a newer
version of OpenSSL.

420

Chapter 15. Installation from Source Code

15.7.7.3. configure Complains About a Failed Test Program

If configure complains about a failed test program, this is probably a case of the run-time linker being
unable to find some library, probably libz, libreadline or some other non-standard library such as libssl.
To point it to the right location, set the LDFLAGS environment variable on the configure command line,
e.g.,

configure ... LDFLAGS="-R /usr/sfw/lib:/opt/sfw/lib:/usr/local/lib"

See the ld man page for more information.

15.7.7.4. 64-bit Build Sometimes Crashes

On Solaris 7 and older, the 64-bit version of libc has a buggy vsnprintf routine, which leads to erratic
core dumps in PostgreSQL. The simplest known workaround is to force PostgreSQL to use its own version
of vsnprintf rather than the library copy. To do this, after you run configure edit a file produced by
configure: In src/Makefile.global, change the line

LIBOBJS =

to read

LIBOBJS = snprintf.o

(There might be other files already listed in this variable. Order does not matter.) Then build as usual.

15.7.7.5. Compiling for Optimal Performance

On the SPARC architecture, Sun Studio is strongly recommended for compilation. Try using the -xO5

optimization flag to generate significantly faster binaries. Do not use any flags that modify behavior of
floating-point operations and errno processing (e.g., -fast). These flags could raise some nonstandard
PostgreSQL behavior for example in the date/time computing.

If you do not have a reason to use 64-bit binaries on SPARC, prefer the 32-bit version. The 64-bit oper-
ations are slower and 64-bit binaries are slower than the 32-bit variants. And on other hand, 32-bit code
on the AMD64 CPU family is not native, and that is why 32-bit code is significant slower on this CPU
family.

Some tricks for tuning PostgreSQL and Solaris for performance can be found at
http://www.sun.com/servers/coolthreads/tnb/applications_postgresql.jsp. This article is primary focused
on T2000 platform, but many of the recommendations are also useful on other hardware with Solaris.

15.7.7.6. Using DTrace for Tracing PostgreSQL

Yes, using DTrace is possible. See Section 27.4 for further information. You can also find more informa-
tion in this article: http://blogs.sun.com/robertlor/entry/user_level_dtrace_probes_in.

If you see the linking of the postgres executable abort with an error message like:

Undefined first referenced

421

Chapter 15. Installation from Source Code

symbol in file
AbortTransaction utils/probes.o
CommitTransaction utils/probes.o
ld: fatal: Symbol referencing errors. No output written to postgres
collect2: ld returned 1 exit status
gmake: *** [postgres] Error 1

your DTrace installation is too old to handle probes in static functions. You need Solaris 10u4 or newer.

422

Chapter 16. Installation from Source Code on
Windows

It is recommended that most users download the binary distribution for Windows, available as a graph-
ical installer package from the PostgreSQL website. Building from source is only intended for people
developing PostgreSQL or extensions.

There are several different ways of building PostgreSQL on Windows. The simplest way to build with
Microsoft tools is to install Visual Studio Express 2012 for Windows Desktop and use the included com-
piler. It is also possible to build with the full Microsoft Visual C++ 2005, 2008 or 2010. In some cases
that requires the installation of the Windows SDK in addition to the compiler.

It is also possible to build PostgreSQL using the GNU compiler tools provided by MinGW, or using
Cygwin for older versions of Windows.

Finally, the client access library (libpq) can be built using Visual C++ 7.1 or Borland C++ for compatibility
with statically linked applications built using these tools.

Building using MinGW or Cygwin uses the normal build system, see Chapter 15 and the specific notes in
Section 15.7.5 and Section 15.7.2. To produce native 64 bit binaries in these environments, use the tools
from MinGW-w64. These tools can also be used to cross-compile for 32 bit and 64 bit Windows targets on
other hosts, such as Linux and Darwin. Cygwin is not recommended for running a production server, and
it should only be used for running on older versions of Windows where the native build does not work,
such as Windows 98. The official binaries are built using Visual Studio.

Native builds of psql don’t support command line editing. The Cygwin build does support command line
editing, so it should be used where psql is needed for interactive use on Windows.

16.1. Building with Visual C++ or the Microsoft Windows
SDK

PostgreSQL can be built using the Visual C++ compiler suite from Microsoft. These compilers can be
either from Visual Studio, Visual Studio Express or some versions of the Microsoft Windows SDK. If you
do not already have a Visual Studio environment set up, the easiest ways are to use the compilers in the
Windows SDK 7.1 or those from Visual Studio Express 2012 for Windows Desktop, which are both free
downloads from Microsoft.

PostgreSQL is known to support compilation using the compilers shipped with Visual Studio 2005 to
Visual Studio 2012 (including Express editions), as well as standalone Windows SDK releases 6.0 to 7.1.
64-bit PostgreSQL builds are only supported with Microsoft Windows SDK version 6.0a to 7.1 or Visual
Studio 2008 and above.

The tools for building using Visual C++, are in the src/tools/msvc directory. When building, make
sure there are no tools from MinGW or Cygwin present in your system PATH. Also, make sure you have
all the required Visual C++ tools available in the PATH. In Visual Studio, start the Visual Studio Command
Prompt. If you wish to build a 64-bit version, you must use the 64-bit version of the command, and vice
versa. In the Microsoft Windows SDK, start the CMD shell listed under the SDK on the Start Menu. In

423

Chapter 16. Installation from Source Code on Windows

recent SDK versions you can change the targeted CPU architecture by using the setenv command. All
commands should be run from the src\tools\msvc directory.

Before you build, you may need to edit the file config.pl to reflect any configuration options you want
to change, or the paths to any third party libraries to use. The complete configuration is determined by
first reading and parsing the file config_default.pl, and then apply any changes from config.pl.
For example, to specify the location of your Python installation, put the following in config.pl:

$config->{python} = ’c:\python26’;

You only need to specify those parameters that are different from what’s in config_default.pl.

If you need to set any other environment variables, create a file called buildenv.pl and put the required
commands there. For example, to add the path for bison when it’s not in the PATH, create a file containing:

$ENV{PATH}=$ENV{PATH} . ’;c:\some\where\bison\bin’;

16.1.1. Requirements
The following additional products are required to build PostgreSQL. Use the config.pl file to specify
which directories the libraries are available in.

Microsoft Windows SDK

If your build environment doesn’t ship with a supported version of the Microsoft Windows SDK it is
recommended that you upgrade to the latest version (currently version 7.1), available for download
from http://www.microsoft.com/downloads/.

You must always include the Windows Headers and Libraries part of the SDK. If you install a Win-
dows SDK including the Visual C++ Compilers, you don’t need Visual Studio to build. Note that as
of Version 8.0a the Windows SDK no longer ships with a complete command-line build environment.

ActiveState Perl

ActiveState Perl is required to run the build generation scripts. MinGW or Cygwin Perl will not work.
It must also be present in the PATH. Binaries can be downloaded from http://www.activestate.com
(Note: version 5.8 or later is required, the free Standard Distribution is sufficient).

The following additional products are not required to get started, but are required to build the complete
package. Use the config.pl file to specify which directories the libraries are available in.

ActiveState TCL

Required for building PL/TCL (Note: version 8.4 is required, the free Standard Distribution is suffi-
cient).

Bison and Flex

Bison and Flex are required to build from Git, but not required when building from a release file.
Note that only Bison 1.875 or versions 2.2 and later will work. Also, Flex version 2.5.31 or later is
required. Bison can be downloaded from http://gnuwin32.sourceforge.net. Flex can be downloaded

424

Chapter 16. Installation from Source Code on Windows

from http://www.postgresql.org/ftp/misc/winflex/. If you are using msysGit for accessing the Post-
greSQL Git repository you probably already have recent versions of bison and flex in your Git binary
directory.

Note: The Bison distribution from GnuWin32 appears to have a bug that causes Bison to mal-
function when installed in a directory with spaces in the name, such as the default location
on English installations C:\Program Files\GnuWin32. Consider installing into C:\GnuWin32 in-
stead.

Diff

Diff is required to run the regression tests, and can be downloaded from
http://gnuwin32.sourceforge.net.

Gettext

Gettext is required to build with NLS support, and can be downloaded from
http://gnuwin32.sourceforge.net. Note that binaries, dependencies and developer files are all needed.

MIT Kerberos

Required for Kerberos authentication support. MIT Kerberos can be downloaded from
http://web.mit.edu/Kerberos/dist/index.html.

libxml2 and libxslt

Required for XML support. Binaries can be downloaded from http://zlatkovic.com/pub/libxml or
source from http://xmlsoft.org. Note that libxml2 requires iconv, which is available from the same
download location.

openssl

Required for SSL support. Binaries can be downloaded from
http://www.slproweb.com/products/Win32OpenSSL.html or source from
http://www.openssl.org.

ossp-uuid

Required for UUID-OSSP support (contrib only). Source can be downloaded from
http://www.ossp.org/pkg/lib/uuid/.

Python

Required for building PL/Python. Binaries can be downloaded from http://www.python.org.

zlib

Required for compression support in pg_dump and pg_restore. Binaries can be downloaded from
http://www.zlib.net.

16.1.2. Special Considerations for 64-bit Windows
PostgreSQL will only build for the x64 architecture on 64-bit Windows, there is no support for Itanium
processors.

425

Chapter 16. Installation from Source Code on Windows

Mixing 32- and 64-bit versions in the same build tree is not supported. The build system will automatically
detect if it’s running in a 32- or 64-bit environment, and build PostgreSQL accordingly. For this reason, it
is important to start the correct command prompt before building.

To use a server-side third party library such as python or openssl, this library must also be 64-bit. There
is no support for loading a 32-bit library in a 64-bit server. Several of the third party libraries that Post-
greSQL supports may only be available in 32-bit versions, in which case they cannot be used with 64-bit
PostgreSQL.

16.1.3. Building
To build all of PostgreSQL in release configuration (the default), run the command:

build

To build all of PostgreSQL in debug configuration, run the command:

build DEBUG

To build just a single project, for example psql, run the commands:

build psql

build DEBUG psql

To change the default build configuration to debug, put the following in the buildenv.pl file:

$ENV{CONFIG}="Debug";

It is also possible to build from inside the Visual Studio GUI. In this case, you need to run:

perl mkvcbuild.pl

from the command prompt, and then open the generated pgsql.sln (in the root directory of the source
tree) in Visual Studio.

16.1.4. Cleaning and Installing
Most of the time, the automatic dependency tracking in Visual Studio will handle changed files. But
if there have been large changes, you may need to clean the installation. To do this, simply run the
clean.bat command, which will automatically clean out all generated files. You can also run it with
the dist parameter, in which case it will behave like make distclean and remove the flex/bison output
files as well.

By default, all files are written into a subdirectory of the debug or release directories. To install these
files using the standard layout, and also generate the files required to initialize and use the database, run
the command:

install c:\destination\directory

426

Chapter 16. Installation from Source Code on Windows

16.1.5. Running the Regression Tests
To run the regression tests, make sure you have completed the build of all required parts first. Also, make
sure that the DLLs required to load all parts of the system (such as the Perl and Python DLLs for the
procedural languages) are present in the system path. If they are not, set it through the buildenv.pl file.
To run the tests, run one of the following commands from the src\tools\msvc directory:

vcregress check

vcregress installcheck

vcregress plcheck

vcregress contribcheck

To change the schedule used (default is parallel), append it to the command line like:

vcregress check serial

For more information about the regression tests, see Chapter 30.

16.1.6. Building the Documentation
Building the PostgreSQL documentation in HTML format requires several tools and files. Create a root
directory for all these files, and store them in the subdirectories in the list below.

OpenJade 1.3.1-2

Download from http://sourceforge.net/projects/openjade/files/openjade/1.3.1/openjade-1_3_1-2-
bin.zip/download and uncompress in the subdirectory openjade-1.3.1.

DocBook DTD 4.2

Download from http://www.oasis-open.org/docbook/sgml/4.2/docbook-4.2.zip and uncompress in
the subdirectory docbook.

DocBook DSSSL 1.79

Download from http://sourceforge.net/projects/docbook/files/docbook-
dsssl/1.79/docbook-dsssl-1.79.zip/download and uncompress in the subdirectory
docbook-dsssl-1.79.

ISO character entities

Download from http://www.oasis-open.org/cover/ISOEnts.zip and uncompress in the subdirectory
docbook.

Edit the buildenv.pl file, and add a variable for the location of the root directory, for example:

$ENV{DOCROOT}=’c:\docbook’;

To build the documentation, run the command builddoc.bat. Note that this will actually run the build
twice, in order to generate the indexes. The generated HTML files will be in doc\src\sgml.

427

Chapter 16. Installation from Source Code on Windows

16.2. Building libpq with Visual C++ or Borland C++
Using Visual C++ 7.1-9.0 or Borland C++ to build libpq is only recommended if you need a version with
different debug/release flags, or if you need a static library to link into an application. For normal use the
MinGW or Visual Studio or Windows SDK method is recommended.

To build the libpq client library using Visual Studio 7.1 or later, change into the src directory and type
the command:

nmake /f win32.mak

To build a 64-bit version of the libpq client library using Visual Studio 8.0 or later, change into the src
directory and type in the command:

nmake /f win32.mak CPU=AMD64

See the win32.mak file for further details about supported variables.

To build the libpq client library using Borland C++, change into the src directory and type the command:

make -N -DCFG=Release /f bcc32.mak

16.2.1. Generated Files
The following files will be built:

interfaces\libpq\Release\libpq.dll

The dynamically linkable frontend library

interfaces\libpq\Release\libpqdll.lib

Import library to link your programs to libpq.dll

interfaces\libpq\Release\libpq.lib

Static version of the frontend library

Normally you do not need to install any of the client files. You should place the libpq.dll file in
the same directory as your applications executable file. Do not install libpq.dll into your Windows,
System or System32 directory unless absolutely necessary. If this file is installed using a setup program,
then it should be installed with version checking using the VERSIONINFO resource included in the file, to
ensure that a newer version of the library is not overwritten.

If you are planning to do development using libpq on this machine, you will have to add the src\include
and src\interfaces\libpq subdirectories of the source tree to the include path in your compiler’s
settings.

To use the library, you must add the libpqdll.lib file to your project. (In Visual C++, just right-click
on the project and choose to add it.)

428

Chapter 17. Server Setup and Operation
This chapter discusses how to set up and run the database server and its interactions with the operating
system.

17.1. The PostgreSQL User Account
As with any server daemon that is accessible to the outside world, it is advisable to run PostgreSQL under
a separate user account. This user account should only own the data that is managed by the server, and
should not be shared with other daemons. (For example, using the user nobody is a bad idea.) It is not
advisable to install executables owned by this user because compromised systems could then modify their
own binaries.

To add a Unix user account to your system, look for a command useradd or adduser. The user name
postgres is often used, and is assumed throughout this book, but you can use another name if you like.

17.2. Creating a Database Cluster
Before you can do anything, you must initialize a database storage area on disk. We call this a database
cluster. (SQL uses the term catalog cluster.) A database cluster is a collection of databases that is man-
aged by a single instance of a running database server. After initialization, a database cluster will contain
a database named postgres, which is meant as a default database for use by utilities, users and third
party applications. The database server itself does not require the postgres database to exist, but many
external utility programs assume it exists. Another database created within each cluster during initializa-
tion is called template1. As the name suggests, this will be used as a template for subsequently created
databases; it should not be used for actual work. (See Chapter 21 for information about creating new
databases within a cluster.)

In file system terms, a database cluster will be a single directory under which all data will be stored. We
call this the data directory or data area. It is completely up to you where you choose to store your data.
There is no default, although locations such as /usr/local/pgsql/data or /var/lib/pgsql/data
are popular. To initialize a database cluster, use the command initdb, which is installed with PostgreSQL.
The desired file system location of your database cluster is indicated by the -D option, for example:

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip: As an alternative to the -D option, you can set the environment variable PGDATA.

Alternatively, you can run initdb via the pg_ctl program like so:

$ pg_ctl -D /usr/local/pgsql/data initdb

429

Chapter 17. Server Setup and Operation

This may be more intuitive if you are using pg_ctl for starting and stopping the server (see Section 17.3),
so that pg_ctl would be the sole command you use for managing the database server instance.

initdb will attempt to create the directory you specify if it does not already exist. It is likely that it will
not have the permission to do so (if you followed our advice and created an unprivileged account). In that
case you should create the directory yourself (as root) and change the owner to be the PostgreSQL user.
Here is how this might be done:

root# mkdir /usr/local/pgsql/data

root# chown postgres /usr/local/pgsql/data

root# su postgres

postgres$ initdb -D /usr/local/pgsql/data

initdb will refuse to run if the data directory looks like it has already been initialized.

Because the data directory contains all the data stored in the database, it is essential that it be secured from
unauthorized access. initdb therefore revokes access permissions from everyone but the PostgreSQL
user.

However, while the directory contents are secure, the default client authentication setup allows any lo-
cal user to connect to the database and even become the database superuser. If you do not trust other
local users, we recommend you use one of initdb’s -W, --pwprompt or --pwfile options to assign
a password to the database superuser. Also, specify -A md5 or -A password so that the default trust
authentication mode is not used; or modify the generated pg_hba.conf file after running initdb, but be-
fore you start the server for the first time. (Other reasonable approaches include using peer authentication
or file system permissions to restrict connections. See Chapter 19 for more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a different
locale for the database; more information about that can be found in Section 22.1. The default sort order
used within the particular database cluster is set by initdb, and while you can create new databases using
different sort order, the order used in the template databases that initdb creates cannot be changed without
dropping and recreating them. There is also a performance impact for using locales other than C or POSIX.
Therefore, it is important to make this choice correctly the first time.

initdb also sets the default character set encoding for the database cluster. Normally this should be
chosen to match the locale setting. For details see Section 22.3.

17.2.1. Network File Systems
Many installations create database clusters on network file systems. Sometimes this is done
directly via NFS, or by using a Network Attached Storage (NAS) device that uses NFS internally.
PostgreSQL does nothing special for NFS file systems, meaning it assumes NFS behaves
exactly like locally-connected drives (DAS, Direct Attached Storage). If client and server
NFS implementations have non-standard semantics, this can cause reliability problems (see
http://www.time-travellers.org/shane/papers/NFS_considered_harmful.html). Specifically, delayed
(asynchronous) writes to the NFS server can cause reliability problems; if possible, mount NFS file
systems synchronously (without caching) to avoid this. Also, soft-mounting NFS is not recommended.
(Storage Area Networks (SAN) use a low-level communication protocol rather than NFS.)

430

Chapter 17. Server Setup and Operation

17.3. Starting the Database Server
Before anyone can access the database, you must start the database server. The database server program
is called postgres. The postgres program must know where to find the data it is supposed to use. This
is done with the -D option. Thus, the simplest way to start the server is:

$ postgres -D /usr/local/pgsql/data

which will leave the server running in the foreground. This must be done while logged into the PostgreSQL
user account. Without -D, the server will try to use the data directory named by the environment variable
PGDATA. If that variable is not provided either, it will fail.

Normally it is better to start postgres in the background. For this, use the usual Unix shell syntax:

$ postgres -D /usr/local/pgsql/data >logfile 2>&1 &

It is important to store the server’s stdout and stderr output somewhere, as shown above. It will help for
auditing purposes and to diagnose problems. (See Section 23.3 for a more thorough discussion of log file
handling.)

The postgres program also takes a number of other command-line options. For more information, see
the postgres reference page and Chapter 18 below.

This shell syntax can get tedious quickly. Therefore the wrapper program pg_ctl is provided to simplify
some tasks. For example:

pg_ctl start -l logfile

will start the server in the background and put the output into the named log file. The -D option has the
same meaning here as for postgres. pg_ctl is also capable of stopping the server.

Normally, you will want to start the database server when the computer boots. Autostart
scripts are operating-system-specific. There are a few distributed with PostgreSQL in the
contrib/start-scripts directory. Installing one will require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have a
file /etc/rc.local or /etc/rc.d/rc.local. Others use init.d or rc.d directories. Whatever you
do, the server must be run by the PostgreSQL user account and not by root or any other user. Therefore
you probably should form your commands using su postgres -c ’...’. For example:

su postgres -c ’pg_ctl start -D /usr/local/pgsql/data -l serverlog’

Here are a few more operating-system-specific suggestions. (In each case be sure to use the proper instal-
lation directory and user name where we show generic values.)

• For FreeBSD, look at the file contrib/start-scripts/freebsd in the PostgreSQL source distri-
bution.

• On OpenBSD, add the following lines to the file /etc/rc.local:

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsql/bin/postgres]; then
su -l postgres -c ’/usr/local/pgsql/bin/pg_ctl start -s -l /var/postgresql/log -D /usr/local/pgsql/data’
echo -n ’ postgresql’

431

Chapter 17. Server Setup and Operation

fi

• On Linux systems either add

/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data

to /etc/rc.d/rc.local or /etc/rc.local or look at the file contrib/start-scripts/linux
in the PostgreSQL source distribution.

• On NetBSD, use either the FreeBSD or Linux start scripts, depending on preference.

• On Solaris, create a file called /etc/init.d/postgresql that contains the following line:

su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data"

Then, create a symbolic link to it in /etc/rc3.d as S99postgresql.

While the server is running, its PID is stored in the file postmaster.pid in the data directory. This is
used to prevent multiple server instances from running in the same data directory and can also be used for
shutting down the server.

17.3.1. Server Start-up Failures
There are several common reasons the server might fail to start. Check the server’s log file, or start it by
hand (without redirecting standard output or standard error) and see what error messages appear. Below
we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 socket: Address already in use
HINT: Is another postmaster already running on port 5432? If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

This usually means just what it suggests: you tried to start another server on the same port where one is
already running. However, if the kernel error message is not Address already in use or some variant
of that, there might be a different problem. For example, trying to start a server on a reserved port number
might draw something like:

$ postgres -p 666

LOG: could not bind IPv4 socket: Permission denied
HINT: Is another postmaster already running on port 666? If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

A message like:

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600).

probably means your kernel’s limit on the size of shared memory is smaller than the work area PostgreSQL
is trying to create (4011376640 bytes in this example). Or it could mean that you do not have System-
V-style shared memory support configured into your kernel at all. As a temporary workaround, you can
try starting the server with a smaller-than-normal number of buffers (shared_buffers). You will eventually
want to reconfigure your kernel to increase the allowed shared memory size. You might also see this

432

Chapter 17. Server Setup and Operation

message when trying to start multiple servers on the same machine, if their total space requested exceeds
the kernel limit.

An error like:

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

does not mean you’ve run out of disk space. It means your kernel’s limit on the number of System
V semaphores is smaller than the number PostgreSQL wants to create. As above, you might be able
to work around the problem by starting the server with a reduced number of allowed connections
(max_connections), but you’ll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not supported
in your kernel at all. In that case your only option is to reconfigure the kernel to enable these features.

Details about configuring System V IPC facilities are given in Section 17.4.1.

17.3.2. Client Connection Problems
Although the error conditions possible on the client side are quite varied and application-dependent, a few
of them might be directly related to how the server was started. Conditions other than those shown below
should be documented with the respective client application.

psql: could not connect to server: Connection refused
Is the server running on host "server.joe.com" and accepting
TCP/IP connections on port 5432?

This is the generic “I couldn’t find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

Alternatively, you’ll get this when attempting Unix-domain socket communication to a local server:

psql: could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there is in fact
no server running there, the kernel error message will typically be either Connection refused or No
such file or directory, as illustrated. (It is important to realize that Connection refused in this
context does not mean that the server got your connection request and rejected it. That case will produce
a different message, as shown in Section 19.4.) Other error messages such as Connection timed out

might indicate more fundamental problems, like lack of network connectivity.

433

Chapter 17. Server Setup and Operation

17.4. Managing Kernel Resources
A large PostgreSQL installation can quickly exhaust various operating system resource limits. (On some
systems, the factory defaults are so low that you don’t even need a really “large” installation.) If you have
encountered this kind of problem, keep reading.

17.4.1. Shared Memory and Semaphores
Shared memory and semaphores are collectively referred to as “System V IPC” (together with message
queues, which are not relevant for PostgreSQL). Almost all modern operating systems provide these fea-
tures, but many of them don’t have them turned on or sufficiently sized by default, especially as available
RAM and the demands of database applications grow. (On Windows, PostgreSQL provides its own re-
placement implementation of these facilities, so most of this section can be disregarded.)

The complete lack of these facilities is usually manifested by an Illegal system call error upon server start.
In that case there is no alternative but to reconfigure your kernel. PostgreSQL won’t work without them.
This situation is rare, however, among modern operating systems.

When PostgreSQL exceeds one of the various hard IPC limits, the server will refuse to start and should
leave an instructive error message describing the problem and what to do about it. (See also Section
17.3.1.) The relevant kernel parameters are named consistently across different systems; Table 17-1 gives
an overview. The methods to set them, however, vary. Suggestions for some platforms are given below.

Table 17-1. System V IPC Parameters

Name Description Reasonable values
SHMMAX Maximum size of shared

memory segment (bytes)
at least several megabytes (see
text)

SHMMIN Minimum size of shared memory
segment (bytes)

1

SHMALL Total amount of shared memory
available (bytes or pages)

if bytes, same as SHMMAX; if
pages,
ceil(SHMMAX/PAGE_SIZE)

SHMSEG Maximum number of shared
memory segments per process

only 1 segment is needed, but the
default is much higher

SHMMNI Maximum number of shared
memory segments system-wide

like SHMSEG plus room for other
applications

SEMMNI Maximum number of semaphore
identifiers (i.e., sets)

at least
ceil((max_connections +

autovacuum_max_workers +

4) / 16)

SEMMNS Maximum number of
semaphores system-wide

ceil((max_connections +

autovacuum_max_workers +

4) / 16) * 17 plus room for
other applications

SEMMSL Maximum number of
semaphores per set

at least 17

434

Chapter 17. Server Setup and Operation

Name Description Reasonable values
SEMMAP Number of entries in semaphore

map
see text

SEMVMX Maximum value of semaphore at least 1000 (The default is often
32767; do not change unless
necessary)

The most important shared memory parameter is SHMMAX, the maximum size, in bytes, of a shared memory
segment. If you get an error message from shmget like “Invalid argument”, it is likely that this limit has
been exceeded. The size of the required shared memory segment varies depending on several PostgreSQL
configuration parameters, as shown in Table 17-2. (Any error message you might get will include the exact
size of the failed allocation request.) You can, as a temporary solution, lower some of those settings to
avoid the failure. While it is possible to get PostgreSQL to run with SHMMAX as small as 2 MB, you need
considerably more for acceptable performance. Desirable settings are in the hundreds of megabytes to a
few gigabytes.

Some systems also have a limit on the total amount of shared memory in the system (SHMALL). Make sure
this is large enough for PostgreSQL plus any other applications that are using shared memory segments.
Note that SHMALL is measured in pages rather than bytes on many systems.

Less likely to cause problems is the minimum size for shared memory segments (SHMMIN), which should
be at most approximately 500 kB for PostgreSQL (it is usually just 1). The maximum number of segments
system-wide (SHMMNI) or per-process (SHMSEG) are unlikely to cause a problem unless your system has
them set to zero.

PostgreSQL uses one semaphore per allowed connection (max_connections) and allowed autovacuum
worker process (autovacuum_max_workers), in sets of 16. Each such set will also contain a 17th
semaphore which contains a “magic number”, to detect collision with semaphore sets used by other
applications. The maximum number of semaphores in the system is set by SEMMNS, which consequently
must be at least as high as max_connections plus autovacuum_max_workers, plus one extra for
each 16 allowed connections plus workers (see the formula in Table 17-1). The parameter SEMMNI

determines the limit on the number of semaphore sets that can exist on the system at one time. Hence this
parameter must be at least ceil((max_connections + autovacuum_max_workers + 4) / 16).
Lowering the number of allowed connections is a temporary workaround for failures, which are usually
confusingly worded “No space left on device”, from the function semget.

In some cases it might also be necessary to increase SEMMAP to be at least on the order of SEMMNS. This
parameter defines the size of the semaphore resource map, in which each contiguous block of available
semaphores needs an entry. When a semaphore set is freed it is either added to an existing entry that
is adjacent to the freed block or it is registered under a new map entry. If the map is full, the freed
semaphores get lost (until reboot). Fragmentation of the semaphore space could over time lead to fewer
available semaphores than there should be.

The SEMMSL parameter, which determines how many semaphores can be in a set, must be at least 17 for
PostgreSQL.

Various other settings related to “semaphore undo”, such as SEMMNU and SEMUME, do not affect Post-
greSQL.

AIX

At least as of version 5.1, it should not be necessary to do any special configuration for such param-

435

Chapter 17. Server Setup and Operation

eters as SHMMAX, as it appears this is configured to allow all memory to be used as shared memory.
That is the sort of configuration commonly used for other databases such as DB/2.

It might, however, be necessary to modify the global ulimit information in
/etc/security/limits, as the default hard limits for file sizes (fsize) and numbers of files
(nofiles) might be too low.

FreeBSD

The default settings are only suitable for small installations (for example, default SHMMAX is 32 MB).
Changes can be made via the sysctl or loader interfaces. The following parameters can be set
using sysctl:

$ sysctl -w kern.ipc.shmall=32768

$ sysctl -w kern.ipc.shmmax=134217728

$ sysctl -w kern.ipc.semmap=256

To have these settings persist over reboots, modify /etc/sysctl.conf.

The remaining semaphore settings are read-only as far as sysctl is concerned, but can be changed
before boot using the loader prompt:

(loader) set kern.ipc.semmni=256

(loader) set kern.ipc.semmns=512

(loader) set kern.ipc.semmnu=256

Similarly these can be saved between reboots in /boot/loader.conf.

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

If running in FreeBSD jails by enabling sysctl’s security.jail.sysvipc_allowed, postmasters
running in different jails should be run by different operating system users. This improves security
because it prevents non-root users from interfering with shared memory or semaphores in different
jails, and it allows the PostgreSQL IPC cleanup code to function properly. (In FreeBSD 6.0 and later
the IPC cleanup code does not properly detect processes in other jails, preventing the running of
postmasters on the same port in different jails.)

FreeBSD versions before 4.0 work like OpenBSD (see below).

NetBSD

In NetBSD 5.0 and later, IPC parameters can be adjusted using sysctl, for example:

$ sysctl -w kern.ipc.shmmax=16777216

To have these settings persist over reboots, modify /etc/sysctl.conf.

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

NetBSD versions before 5.0 work like OpenBSD (see below), except that parameters should be set
with the keyword options not option.

OpenBSD

The options SYSVSHM and SYSVSEM need to be enabled when the kernel is compiled. (They are by
default.) The maximum size of shared memory is determined by the option SHMMAXPGS (in pages).

436

Chapter 17. Server Setup and Operation

The following shows an example of how to set the various parameters:

option SYSVSHM
option SHMMAXPGS=4096
option SHMSEG=256

option SYSVSEM
option SEMMNI=256
option SEMMNS=512
option SEMMNU=256
option SEMMAP=256

You might also want to configure your kernel to lock shared memory into RAM and prevent
it from being paged out to swap. This can be accomplished using the sysctl setting
kern.ipc.shm_use_phys.

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default for
SEMMNS is 128, which might be too low for larger database sites.

IPC parameters can be set in the System Administration Manager (SAM) under Kernel
Configuration−→Configurable Parameters. Choose Create A New Kernel when you’re done.

Linux

The default maximum segment size is 32 MB, which is only adequate for very small PostgreSQL
installations. The default maximum total size is 2097152 pages. A page is almost always 4096 bytes
except in unusual kernel configurations with “huge pages” (use getconf PAGE_SIZE to verify).
That makes a default limit of 8 GB, which is often enough, but not always.

The shared memory size settings can be changed via the sysctl interface. For example, to allow 16
GB:

$ sysctl -w kernel.shmmax=17179869184

$ sysctl -w kernel.shmall=4194304

In addition these settings can be preserved between reboots in the file /etc/sysctl.conf. Doing
that is highly recommended.

Ancient distributions might not have the sysctl program, but equivalent changes can be made by
manipulating the /proc file system:

$ echo 17179869184 >/proc/sys/kernel/shmmax

$ echo 4194304 >/proc/sys/kernel/shmall

The remaining defaults are quite generously sized, and usually do not require changes.

Mac OS X

The recommended method for configuring shared memory in OS X is to create a file named
/etc/sysctl.conf, containing variable assignments such as:

kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024

Note that in some OS X versions, all five shared-memory parameters must be set in
/etc/sysctl.conf, else the values will be ignored.

437

Chapter 17. Server Setup and Operation

Beware that recent releases of OS X ignore attempts to set SHMMAX to a value that isn’t an exact
multiple of 4096.

SHMALL is measured in 4 kB pages on this platform.

In older OS X versions, you will need to reboot to have changes in the shared memory parameters
take effect. As of 10.5 it is possible to change all but SHMMNI on the fly, using sysctl. But it’s still
best to set up your preferred values via /etc/sysctl.conf, so that the values will be kept across
reboots.

The file /etc/sysctl.conf is only honored in OS X 10.3.9 and later. If you are running a previous
10.3.x release, you must edit the file /etc/rc and change the values in the following commands:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

Note that /etc/rc is usually overwritten by OS X system updates, so you should expect to have to
redo these edits after each update.

In OS X 10.2 and earlier, instead edit these commands in the file
/System/Library/StartupItems/SystemTuning/SystemTuning.

SCO OpenServer

In the default configuration, only 512 kB of shared memory per segment is allowed. To increase the
setting, first change to the directory /etc/conf/cf.d. To display the current value of SHMMAX, run:

./configure -y SHMMAX

To set a new value for SHMMAX, run:

./configure SHMMAX=value

where value is the new value you want to use (in bytes). After setting SHMMAX, rebuild the kernel:

./link_unix

and reboot.

Solaris 2.6 to 2.9 (Solaris 6 to Solaris 9)

The default maximum size of a shared memory segment is too low for PostgreSQL. The relevant
settings can be changed in /etc/system, for example:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=256
set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semmsl=32

You need to reboot for the changes to take effect. See also
http://sunsite.uakom.sk/sunworldonline/swol-09-1997/swol-09-insidesolaris.html
for information on shared memory under older versions of Solaris.

438

Chapter 17. Server Setup and Operation

Solaris 2.10 (Solaris 10)
OpenSolaris

In Solaris 10 and OpenSolaris, the default shared memory and semaphore settings are good enough
for most PostgreSQL applications. Solaris now defaults to a SHMMAX of one-quarter of system RAM.
If you need to increase this in order to set shared memory settings slightly higher, you should use a
project setting associated with the postgres user. For example, run the following as root:

projadd -c "PostgreSQL DB User" -K "project.max-shm-memory=(privileged,8GB,deny)" -U postgres -G postgres user.postgres

This command adds the user.postgres project and raises the shared memory maximum for the
postgres user to 8GB, and takes effect the next time that user logs in, or when you restart Post-
greSQL (not reload). The above assumes that PostgreSQL is run by the postgres user in the
postgres group. No server reboot is required.

Other recommended kernel setting changes for database servers which will have a large number of
connections are:

project.max-shm-ids=(priv,32768,deny)
project.max-sem-ids=(priv,4096,deny)
project.max-msg-ids=(priv,4096,deny)

Additionally, if you are running PostgreSQL inside a zone, you may need to raise the zone resource
usage limits as well. See "Chapter2: Projects and Tasks" in the Solaris 10 System Administrator’s
Guide for more information on projects and prctl.

UnixWare

On UnixWare 7, the maximum size for shared memory segments is only 512 kB in the default con-
figuration. To display the current value of SHMMAX, run:

/etc/conf/bin/idtune -g SHMMAX

which displays the current, default, minimum, and maximum values. To set a new value for SHMMAX,
run:

/etc/conf/bin/idtune SHMMAX value

where value is the new value you want to use (in bytes). After setting SHMMAX, rebuild the kernel:

/etc/conf/bin/idbuild -B

and reboot.

Table 17-2. PostgreSQL Shared Memory Usage

Usage Approximate shared memory bytes
required (as of 8.3)

Connections (1800 + 270 * max_locks_per_transaction) *
max_connections

Autovacuum workers (1800 + 270 * max_locks_per_transaction) *
autovacuum_max_workers

Prepared transactions (770 + 270 * max_locks_per_transaction) *
max_prepared_transactions

Shared disk buffers (block_size + 208) * shared_buffers

WAL buffers (wal_block_size + 8) * wal_buffers

Fixed space requirements 770 kB

439

Chapter 17. Server Setup and Operation

17.4.2. Resource Limits
Unix-like operating systems enforce various kinds of resource limits that might interfere with the op-
eration of your PostgreSQL server. Of particular importance are limits on the number of processes per
user, the number of open files per process, and the amount of memory available to each process. Each
of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be changed
by the user up to the hard limit. The hard limit can only be changed by the root user. The system call
setrlimit is responsible for setting these parameters. The shell’s built-in command ulimit (Bourne
shells) or limit (csh) is used to control the resource limits from the command line. On BSD-derived sys-
tems the file /etc/login.conf controls the various resource limits set during login. See the operating
system documentation for details. The relevant parameters are maxproc, openfiles, and datasize.
For example:

default:\
...

:datasize-cur=256M:\
:maxproc-cur=256:\
:openfiles-cur=256:\

...

(-cur is the soft limit. Append -max to set the hard limit.)

Kernels can also have system-wide limits on some resources.

• On Linux /proc/sys/fs/file-max determines the maximum number of open files that the kernel
will support. It can be changed by writing a different number into the file or by adding an assignment in
/etc/sysctl.conf. The maximum limit of files per process is fixed at the time the kernel is compiled;
see /usr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many pro-
cesses as allowed connections, in addition to what you need for the rest of your system. This is usually
not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users to
coexist on a machine without using an inappropriate fraction of the system resources. If you run many
servers on a machine this is perhaps what you want, but on dedicated servers you might want to raise this
limit.

On the other side of the coin, some systems allow individual processes to open large numbers of files; if
more than a few processes do so then the system-wide limit can easily be exceeded. If you find this happen-
ing, and you do not want to alter the system-wide limit, you can set PostgreSQL’s max_files_per_process
configuration parameter to limit the consumption of open files.

17.4.3. Linux Memory Overcommit
In Linux 2.4 and later, the default virtual memory behavior is not optimal for PostgreSQL. Because of
the way that the kernel implements memory overcommit, the kernel might terminate the PostgreSQL
postmaster (the master server process) if the memory demands of either PostgreSQL or another process
cause the system to run out of virtual memory.

440

Chapter 17. Server Setup and Operation

If this happens, you will see a kernel message that looks like this (consult your system documentation and
configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postgres).

This indicates that the postgres process has been terminated due to memory pressure. Although existing
database connections will continue to function normally, no new connections will be accepted. To recover,
PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory. If memory is tight, increasing the swap space of the
operating system can help avoid the problem, because the out-of-memory (OOM) killer is invoked only
when physical memory and swap space are exhausted.

If PostgreSQL itself is the cause of the system running out of memory, you can avoid the problem by
changing your configuration. In some cases, it may help to lower memory-related configuration param-
eters, particularly shared_buffers and work_mem. In other cases, the problem may be caused by al-
lowing too many connections to the database server itself. In many cases, it may be better to reduce
max_connections and instead make use of external connection-pooling software.

On Linux 2.6 and later, it is possible to modify the kernel’s behavior so that it will not “overcommit”
memory. Although this setting will not prevent the OOM killer1 from being invoked altogether, it will
lower the chances significantly and will therefore lead to more robust system behavior. This is done by
selecting strict overcommit mode via sysctl:

sysctl -w vm.overcommit_memory=2

or placing an equivalent entry in /etc/sysctl.conf. You might also wish to modify
the related setting vm.overcommit_ratio. For details see the kernel documentation file
Documentation/vm/overcommit-accounting.

Another approach, which can be used with or without altering vm.overcommit_memory, is to set the
process-specific oom_score_adj value for the postmaster process to -1000, thereby guaranteeing it will
not be targeted by the OOM killer. The simplest way to do this is to execute

echo -1000 > /proc/self/oom_score_adj

in the postmaster’s startup script just before invoking the postmaster. Note that this action must be done
as root, or it will have no effect; so a root-owned startup script is the easiest place to do it. If you do this,
you may also wish to build PostgreSQL with -DLINUX_OOM_SCORE_ADJ=0 added to CPPFLAGS. That
will cause postmaster child processes to run with the normal oom_score_adj value of zero, so that the
OOM killer can still target them at need.

Older Linux kernels do not offer /proc/self/oom_score_adj, but may have a previous version of the
same functionality called /proc/self/oom_adj. This works the same except the disable value is -17
not -1000. The corresponding build flag for PostgreSQL is -DLINUX_OOM_ADJ=0.

Note: Some vendors’ Linux 2.4 kernels are reported to have early versions of the 2.6 overcommit
sysctl parameter. However, setting vm.overcommit_memory to 2 on a 2.4 kernel that does not have
the relevant code will make things worse, not better. It is recommended that you inspect the actual ker-
nel source code (see the function vm_enough_memory in the file mm/mmap.c) to verify what is supported

1. http://lwn.net/Articles/104179/

441

Chapter 17. Server Setup and Operation

in your kernel before you try this in a 2.4 installation. The presence of the overcommit-accounting

documentation file should not be taken as evidence that the feature is there. If in any doubt, consult a
kernel expert or your kernel vendor.

17.5. Shutting Down the Server
There are several ways to shut down the database server. You control the type of shutdown by sending
different signals to the master postgres process.

SIGTERM

This is the Smart Shutdown mode. After receiving SIGTERM, the server disallows new connections,
but lets existing sessions end their work normally. It shuts down only after all of the sessions ter-
minate. If the server is in online backup mode, it additionally waits until online backup mode is no
longer active. While backup mode is active, new connections will still be allowed, but only to supe-
rusers (this exception allows a superuser to connect to terminate online backup mode). If the server is
in recovery when a smart shutdown is requested, recovery and streaming replication will be stopped
only after all regular sessions have terminated.

SIGINT

This is the Fast Shutdown mode. The server disallows new connections and sends all existing server
processes SIGTERM, which will cause them to abort their current transactions and exit promptly. It
then waits for all server processes to exit and finally shuts down. If the server is in online backup
mode, backup mode will be terminated, rendering the backup useless.

SIGQUIT

This is the Immediate Shutdown mode. The master postgres process will send a SIGQUIT to all
child processes and exit immediately, without properly shutting itself down. The child processes
likewise exit immediately upon receiving SIGQUIT. This will lead to recovery (by replaying the
WAL log) upon next start-up. This is recommended only in emergencies.

The pg_ctl program provides a convenient interface for sending these signals to shut down the server.
Alternatively, you can send the signal directly using kill on non-Windows systems. The PID of the
postgres process can be found using the ps program, or from the file postmaster.pid in the data
directory. For example, to do a fast shutdown:

$ kill -INT ‘head -1 /usr/local/pgsql/data/postmaster.pid‘

Important: It is best not to use SIGKILL to shut down the server. Doing so will prevent the server
from releasing shared memory and semaphores, which might then have to be done manually before
a new server can be started. Furthermore, SIGKILL kills the postgres process without letting it relay
the signal to its subprocesses, so it will be necessary to kill the individual subprocesses by hand as
well.

442

Chapter 17. Server Setup and Operation

To terminate an individual session while allowing other sessions to continue, use
pg_terminate_backend() (see Table 9-58) or send a SIGTERM signal to the child process associated
with the session.

17.6. Upgrading a PostgreSQL Cluster
This section discusses how to upgrade your database data from one PostgreSQL release to a newer one.

PostgreSQL major versions are represented by the first two digit groups of the version number, e.g., 8.4.
PostgreSQL minor versions are represented by the third group of version digits, e.g., 8.4.2 is the second
minor release of 8.4. Minor releases never change the internal storage format and are always compatible
with earlier and later minor releases of the same major version number, e.g., 8.4.2 is compatible with 8.4,
8.4.1 and 8.4.6. To update between compatible versions, you simply replace the executables while the
server is down and restart the server. The data directory remains unchanged — minor upgrades are that
simple.

For major releases of PostgreSQL, the internal data storage format is subject to change, thus complicating
upgrades. The traditional method for moving data to a new major version is to dump and reload the
database. Other methods are available, as discussed below.

New major versions also typically introduce some user-visible incompatibilities, so application program-
ming changes might be required. All user-visible changes are listed in the release notes (Appendix E); pay
particular attention to the section labeled "Migration". If you are upgrading across several major versions,
be sure to read the release notes for each intervening version.

Cautious users will want to test their client applications on the new version before switching over fully;
therefore, it’s often a good idea to set up concurrent installations of old and new versions. When testing a
PostgreSQL major upgrade, consider the following categories of possible changes:

Administration

The capabilities available for administrators to monitor and control the server often change and im-
prove in each major release.

SQL

Typically this includes new SQL command capabilities and not changes in behavior, unless specifi-
cally mentioned in the release notes.

Library API

Typically libraries like libpq only add new functionality, again unless mentioned in the release notes.

System Catalogs

System catalog changes usually only affect database management tools.

Server C-language API

This involves changes in the backend function API, which is written in the C programming language.
Such changes affect code that references backend functions deep inside the server.

443

Chapter 17. Server Setup and Operation

17.6.1. Upgrading Data via pg_dump
To dump data from one major version of PostgreSQL and reload it in another, you must use pg_dump; file
system level backup methods will not work. (There are checks in place that prevent you from using a data
directory with an incompatible version of PostgreSQL, so no great harm can be done by trying to start the
wrong server version on a data directory.)

It is recommended that you use the pg_dump and pg_dumpall programs from the newer version of Post-
greSQL, to take advantage of enhancements that might have been made in these programs. Current re-
leases of the dump programs can read data from any server version back to 7.0.

These instructions assume that your existing installation is under the /usr/local/pgsql directory, and
that the data area is in /usr/local/pgsql/data. Substitute your paths appropriately.

1. If making a backup, make sure that your database is not being updated. This does not affect the
integrity of the backup, but the changed data would of course not be included. If necessary, edit the
permissions in the file /usr/local/pgsql/data/pg_hba.conf (or equivalent) to disallow access
from everyone except you. See Chapter 19 for additional information on access control.

To back up your database installation, type:

pg_dumpall > outputfile

If you need to preserve OIDs (such as when using them as foreign keys), then use the -o option when
running pg_dumpall.

To make the backup, you can use the pg_dumpall command from the version you are currently run-
ning. For best results, however, try to use the pg_dumpall command from PostgreSQL 9.2.7, since
this version contains bug fixes and improvements over older versions. While this advice might seem
idiosyncratic since you haven’t installed the new version yet, it is advisable to follow it if you plan to
install the new version in parallel with the old version. In that case you can complete the installation
normally and transfer the data later. This will also decrease the downtime.

2. Shut down the old server:

pg_ctl stop

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that this works:

/etc/rc.d/init.d/postgresql stop

See Chapter 17 for details about starting and stopping the server.

3. If restoring from backup, rename or delete the old installation directory. It is a good idea to rename
the directory, rather than delete it, in case you have trouble and need to revert to it. Keep in mind the
directory might consume significant disk space. To rename the directory, use a command like this:

mv /usr/local/pgsql /usr/local/pgsql.old

(Be sure to move the directory as a single unit so relative paths remain unchanged.)

4. Install the new version of PostgreSQL as outlined in Section 15.4.

5. Create a new database cluster if needed. Remember that you must execute these commands while
logged in to the special database user account (which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

6. Restore your previous pg_hba.conf and any postgresql.conf modifications.

7. Start the database server, again using the special database user account:

444

Chapter 17. Server Setup and Operation

/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

8. Finally, restore your data from backup with:

/usr/local/pgsql/bin/psql -d postgres -f outputfile

using the new psql.

The least downtime can be achieved by installing the new server in a different directory and running both
the old and the new servers in parallel, on different ports. Then you can use something like:

pg_dumpall -p 5432 | psql -d postgres -p 5433

to transfer your data.

17.6.2. Non-Dump Upgrade Methods
The pg_upgrade module allows an installation to be migrated in-place from one major PostgreSQL version
to the next. Upgrades can be performed in minutes.

It is also possible to use certain replication methods, such as Slony, to create a standby server with the
updated version of PostgreSQL. This is possible because Slony supports replication between different
major versions of PostgreSQL. The standby can be on the same computer or a different computer. Once it
has synced up with the master server (running the older version of PostgreSQL), you can switch masters
and make the standby the master and shut down the older database instance. Such a switch-over results in
only several seconds of downtime for an upgrade.

17.7. Preventing Server Spoofing
While the server is running, it is not possible for a malicious user to take the place of the normal database
server. However, when the server is down, it is possible for a local user to spoof the normal server by
starting their own server. The spoof server could read passwords and queries sent by clients, but could
not return any data because the PGDATA directory would still be secure because of directory permissions.
Spoofing is possible because any user can start a database server; a client cannot identify an invalid server
unless it is specially configured.

The simplest way to prevent spoofing for local connections is to use a Unix domain socket directory
(unix_socket_directories) that has write permission only for a trusted local user. This prevents a malicious
user from creating their own socket file in that directory. If you are concerned that some applications might
still reference /tmp for the socket file and hence be vulnerable to spoofing, during operating system startup
create a symbolic link /tmp/.s.PGSQL.5432 that points to the relocated socket file. You also might need
to modify your /tmp cleanup script to prevent removal of the symbolic link.

To prevent spoofing on TCP connections, the best solution is to use SSL certificates and make sure that
clients check the server’s certificate. To do that, the server must be configured to accept only hostssl

connections (Section 19.1) and have SSL key and certificate files (Section 17.9). The TCP client must con-
nect using sslmode=verify-ca or verify-full and have the appropriate root certificate file installed
(Section 31.1).

445

Chapter 17. Server Setup and Operation

17.8. Encryption Options
PostgreSQL offers encryption at several levels, and provides flexibility in protecting data from disclosure
due to database server theft, unscrupulous administrators, and insecure networks. Encryption might also
be required to secure sensitive data such as medical records or financial transactions.

Password Storage Encryption

By default, database user passwords are stored as MD5 hashes, so the administrator cannot determine
the actual password assigned to the user. If MD5 encryption is used for client authentication, the un-
encrypted password is never even temporarily present on the server because the client MD5-encrypts
it before being sent across the network.

Encryption For Specific Columns

The pgcrypto module allows certain fields to be stored encrypted. This is useful if only some of the
data is sensitive. The client supplies the decryption key and the data is decrypted on the server and
then sent to the client.

The decrypted data and the decryption key are present on the server for a brief time while it is being
decrypted and communicated between the client and server. This presents a brief moment where the
data and keys can be intercepted by someone with complete access to the database server, such as
the system administrator.

Data Partition Encryption

On Linux, encryption can be layered on top of a file system using a “loopback device”. This allows
an entire file system partition to be encrypted on disk, and decrypted by the operating system. On
FreeBSD, the equivalent facility is called GEOM Based Disk Encryption (gbde), and many other
operating systems support this functionality, including Windows.

This mechanism prevents unencrypted data from being read from the drives if the drives or the entire
computer is stolen. This does not protect against attacks while the file system is mounted, because
when mounted, the operating system provides an unencrypted view of the data. However, to mount
the file system, you need some way for the encryption key to be passed to the operating system, and
sometimes the key is stored somewhere on the host that mounts the disk.

Encrypting Passwords Across A Network

The MD5 authentication method double-encrypts the password on the client before sending it to the
server. It first MD5-encrypts it based on the user name, and then encrypts it based on a random salt
sent by the server when the database connection was made. It is this double-encrypted value that is
sent over the network to the server. Double-encryption not only prevents the password from being
discovered, it also prevents another connection from using the same encrypted password to connect
to the database server at a later time.

Encrypting Data Across A Network

SSL connections encrypt all data sent across the network: the password, the queries, and the data
returned. The pg_hba.conf file allows administrators to specify which hosts can use non-encrypted
connections (host) and which require SSL-encrypted connections (hostssl). Also, clients can
specify that they connect to servers only via SSL. Stunnel or SSH can also be used to encrypt trans-
missions.

446

Chapter 17. Server Setup and Operation

SSL Host Authentication

It is possible for both the client and server to provide SSL certificates to each other. It takes some
extra configuration on each side, but this provides stronger verification of identity than the mere use
of passwords. It prevents a computer from pretending to be the server just long enough to read the
password sent by the client. It also helps prevent “man in the middle” attacks where a computer
between the client and server pretends to be the server and reads and passes all data between the
client and server.

Client-Side Encryption

If the system administrator for the server’s machine cannot be trusted, it is necessary for the client to
encrypt the data; this way, unencrypted data never appears on the database server. Data is encrypted
on the client before being sent to the server, and database results have to be decrypted on the client
before being used.

17.9. Secure TCP/IP Connections with SSL
PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. This requires that OpenSSL is installed on both client and server systems and that
support in PostgreSQL is enabled at build time (see Chapter 15).

With SSL support compiled in, the PostgreSQL server can be started with SSL enabled by setting the
parameter ssl to on in postgresql.conf. The server will listen for both normal and SSL connections
on the same TCP port, and will negotiate with any connecting client on whether to use SSL. By default,
this is at the client’s option; see Section 19.1 about how to set up the server to require use of SSL for some
or all connections.

PostgreSQL reads the system-wide OpenSSL configuration file. By default, this file is named
openssl.cnf and is located in the directory reported by openssl version -d. This default can be
overridden by setting environment variable OPENSSL_CONF to the name of the desired configuration file.

OpenSSL supports a wide range of ciphers and authentication algorithms, of varying strength. While a list
of ciphers can be specified in the OpenSSL configuration file, you can specify ciphers specifically for use
by the database server by modifying ssl_ciphers in postgresql.conf.

Note: It is possible to have authentication without encryption overhead by using NULL-SHA or
NULL-MD5 ciphers. However, a man-in-the-middle could read and pass communications between
client and server. Also, encryption overhead is minimal compared to the overhead of authentication.
For these reasons NULL ciphers are not recommended.

To start in SSL mode, files containing the server certificate and private key must exist. By default, these
files are expected to be named server.crt and server.key, respectively, in the server’s data direc-
tory, but other names and locations can be specified using the configuration parameters ssl_cert_file and
ssl_key_file. On Unix systems, the permissions on server.key must disallow any access to world or
group; achieve this by the command chmod 0600 server.key. If the private key is protected with a
passphrase, the server will prompt for the passphrase and will not start until it has been entered.

In some cases, the server certificate might be signed by an “intermediate” certificate authority, rather
than one that is directly trusted by clients. To use such a certificate, append the certificate of the signing

447

Chapter 17. Server Setup and Operation

authority to the server.crt file, then its parent authority’s certificate, and so on up to a “root” authority
that is trusted by the clients. The root certificate should be included in every case where server.crt

contains more than one certificate.

17.9.1. Using Client Certificates
To require the client to supply a trusted certificate, place certificates of the certificate authorities
(CAs) you trust in the file root.crt in the data directory, set the parameter ssl_ca_file in
postgresql.conf to root.crt, and set the clientcert parameter to 1 on the appropriate
hostssl line(s) in pg_hba.conf. A certificate will then be requested from the client during SSL
connection startup. (See Section 31.18 for a description of how to set up certificates on the client.)
The server will verify that the client’s certificate is signed by one of the trusted certificate authorities.
Certificate Revocation List (CRL) entries are also checked if the parameter ssl_crl_file is set. (See
http://h71000.www7.hp.com/DOC/83final/BA554_90007/ch04s02.html for diagrams showing SSL
certificate usage.)

The clientcert option in pg_hba.conf is available for all authentication methods, but only for rows
specified as hostssl. When clientcert is not specified or is set to 0, the server will still verify pre-
sented client certificates against its CA list, if one is configured, — but it will not insist that a client
certificate be presented.

Note that root.crt lists the top-level CAs that are considered trusted for signing client certificates. In
principle it need not list the CA that signed the server’s certificate, though in most cases that CA would
also be trusted for client certificates.

If you are setting up client certificates, you may wish to use the cert authentication method, so that the
certificates control user authentication as well as providing connection security. See Section 19.3.10 for
details.

17.9.2. SSL Server File Usage
Table 17-3 summarizes the files that are relevant to the SSL setup on the server. (The shown file names
are default or typical names. The locally configured names could be different.)

Table 17-3. SSL Server File Usage

File Contents Effect
ssl_cert_file
($PGDATA/server.crt)

server certificate sent to client to indicate server’s
identity

ssl_key_file
($PGDATA/server.key)

server private key proves server certificate was sent
by the owner; does not indicate
certificate owner is trustworthy

ssl_ca_file
($PGDATA/root.crt)

trusted certificate authorities checks that client certificate is
signed by a trusted certificate
authority

ssl_crl_file
($PGDATA/root.crl)

certificates revoked by certificate
authorities

client certificate must not be on
this list

448

Chapter 17. Server Setup and Operation

The files server.key, server.crt, root.crt, and root.crl (or their configured alternative names)
are only examined during server start; so you must restart the server for changes in them to take effect.

17.9.3. Creating a Self-signed Certificate
To create a quick self-signed certificate for the server, use the following OpenSSL command:

openssl req -new -text -out server.req

Fill out the information that openssl asks for. Make sure you enter the local host name as “Common
Name”; the challenge password can be left blank. The program will generate a key that is passphrase
protected; it will not accept a passphrase that is less than four characters long. To remove the passphrase
(as you must if you want automatic start-up of the server), run the commands:

openssl rsa -in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase to unlock the existing key. Now do:

openssl req -x509 -in server.req -text -key server.key -out server.crt

to turn the certificate into a self-signed certificate and to copy the key and certificate to where the server
will look for them. Finally do:

chmod og-rwx server.key

because the server will reject the file if its permissions are more liberal than this. For more details on how
to create your server private key and certificate, refer to the OpenSSL documentation.

A self-signed certificate can be used for testing, but a certificate signed by a certificate authority (CA)
(either one of the global CAs or a local one) should be used in production so that clients can verify the
server’s identity. If all the clients are local to the organization, using a local CA is recommended.

17.10. Secure TCP/IP Connections with SSH Tunnels
It is possible to use SSH to encrypt the network connection between clients and a PostgreSQL server.
Done properly, this provides an adequately secure network connection, even for non-SSL-capable clients.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL server and
that you can log in using ssh as some user. Then you can establish a secure tunnel with a command like
this from the client machine:

ssh -L 63333:localhost:5432 joe@foo.com

The first number in the -L argument, 63333, is the port number of your end of the tunnel; it can be any
unused port. (IANA reserves ports 49152 through 65535 for private use.) The second number, 5432, is
the remote end of the tunnel: the port number your server is using. The name or IP address between the
port numbers is the host with the database server you are going to connect to, as seen from the host you

449

Chapter 17. Server Setup and Operation

are logging in to, which is foo.com in this example. In order to connect to the database server using this
tunnel, you connect to port 63333 on the local machine:

psql -h localhost -p 63333 postgres

To the database server it will then look as though you are really user joe on host foo.com connecting to
localhost in that context, and it will use whatever authentication procedure was configured for connec-
tions from this user and host. Note that the server will not think the connection is SSL-encrypted, since
in fact it is not encrypted between the SSH server and the PostgreSQL server. This should not pose any
extra security risk as long as they are on the same machine.

In order for the tunnel setup to succeed you must be allowed to connect via ssh as joe@foo.com, just as
if you had attempted to use ssh to create a terminal session.

You could also have set up the port forwarding as

ssh -L 63333:foo.com:5432 joe@foo.com

but then the database server will see the connection as coming in on its foo.com interface, which is not
opened by the default setting listen_addresses = ’localhost’. This is usually not what you want.

If you have to “hop” to the database server via some login host, one possible setup could look like this:

ssh -L 63333:db.foo.com:5432 joe@shell.foo.com

Note that this way the connection from shell.foo.com to db.foo.com will not be encrypted by the
SSH tunnel. SSH offers quite a few configuration possibilities when the network is restricted in various
ways. Please refer to the SSH documentation for details.

Tip: Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

17.11. Registering Event Log on Windows
To register a Windows event log library with the operating system, issue this command:

regsvr32 pgsql_library_directory/pgevent.dll

This creates registry entries used by the event viewer, under the default event source named PostgreSQL.

To specify a different event source name (see event_source), use the /n and /i options:

regsvr32 /n /i:event_source_name pgsql_library_directory/pgevent.dll

To unregister the event log library from the operating system, issue this command:

regsvr32 /u [/i:event_source_name] pgsql_library_directory/pgevent.dll

450

Chapter 17. Server Setup and Operation

Note: To enable event logging in the database server, modify log_destination to include eventlog in
postgresql.conf.

451

Chapter 18. Server Configuration
There are many configuration parameters that affect the behavior of the database system. In the first
section of this chapter, we describe how to set configuration parameters. The subsequent sections discuss
each parameter in detail.

18.1. Setting Parameters

18.1.1. Parameter Names and Values
All parameter names are case-insensitive. Every parameter takes a value of one of five types: Boolean,
integer, floating point, string or enum. Boolean values can be written as on, off, true, false, yes, no,
1, 0 (all case-insensitive) or any unambiguous prefix of these.

Some settings specify a memory or time value. Each of these has an implicit unit, which is either kilo-
bytes, blocks (typically eight kilobytes), milliseconds, seconds, or minutes. Default units can be found by
referencing pg_settings.unit. For convenience, a different unit can also be specified explicitly. Valid
memory units are kB (kilobytes), MB (megabytes), and GB (gigabytes); valid time units are ms (millisec-
onds), s (seconds), min (minutes), h (hours), and d (days). Note that the multiplier for memory units is
1024, not 1000.

Parameters of type “enum” are specified in the same way as string parameters, but are restricted to a
limited set of values. The allowed values can be found from pg_settings.enumvals. Enum parameter
values are case-insensitive.

18.1.2. Setting Parameters via the Configuration File
One way to set these parameters is to edit the file postgresql.conf, which is normally kept in the data
directory. (A default copy is installed there when the database cluster directory is initialized.) An example
of what this file might look like is:

This is a comment
log_connections = yes
log_destination = ’syslog’
search_path = ’"$user", public’
shared_buffers = 128MB

One parameter is specified per line. The equal sign between name and value is optional. Whitespace is
insignificant and blank lines are ignored. Hash marks (#) designate the remainder of the line as a comment.
Parameter values that are not simple identifiers or numbers must be single-quoted. To embed a single quote
in a parameter value, write either two quotes (preferred) or backslash-quote.

In addition to parameter settings, the postgresql.conf file can contain include directives, which specify
another file to read and process as if it were inserted into the configuration file at this point. This feature
allows a configuration file to be divided into physically separate parts. Include directives simply look like:

include ’filename’

452

Chapter 18. Server Configuration

If the file name is not an absolute path, it is taken as relative to the directory containing the referencing
configuration file. Inclusions can be nested.

There is also an include_if_exists directive, which acts the same as the include directive, except
for the behavior when the referenced file does not exist or cannot be read. A regular include will consider
this an error condition, but include_if_exists merely logs a message and continues processing the
referencing configuration file.

The configuration file is reread whenever the main server process receives a SIGHUP signal (which is
most easily sent by means of pg_ctl reload). The main server process also propagates this signal to
all currently running server processes so that existing sessions also get the new value. Alternatively, you
can send the signal to a single server process directly. Some parameters can only be set at server start;
any changes to their entries in the configuration file will be ignored until the server is restarted. Invalid
parameter settings in the configuration file are likewise ignored (but logged) during SIGHUP processing.

18.1.3. Other Ways to Set Parameters
A second way to set these configuration parameters is to give them as a command-line option to the
postgres command, such as:

postgres -c log_connections=yes -c log_destination=’syslog’

Command-line options override any conflicting settings in postgresql.conf. Note that this means you
won’t be able to change the value on-the-fly by editing postgresql.conf, so while the command-line
method might be convenient, it can cost you flexibility later.

Occasionally it is useful to give a command line option to one particular session only. The environment
variable PGOPTIONS can be used for this purpose on the client side:

env PGOPTIONS=’-c geqo=off’ psql

(This works for any libpq-based client application, not just psql.) Note that this won’t work for parameters
that are fixed when the server is started or that must be specified in postgresql.conf.

Furthermore, it is possible to assign a set of parameter settings to a user or a database. Whenever a session
is started, the default settings for the user and database involved are loaded. The commands ALTER ROLE
and ALTER DATABASE, respectively, are used to configure these settings. Per-database settings override
anything received from the postgres command-line or the configuration file, and in turn are overridden
by per-user settings; both are overridden by per-session settings.

Some parameters can be changed in individual SQL sessions with the SET command, for example:

SET ENABLE_SEQSCAN TO OFF;

If SET is allowed, it overrides all other sources of values for the parameter. Some parameters cannot be
changed via SET: for example, if they control behavior that cannot be changed without restarting the entire
PostgreSQL server. Also, some parameters require superuser permission to change via SET or ALTER.

18.1.4. Examining Parameter Settings
The SHOW command allows inspection of the current values of all parameters.

453

Chapter 18. Server Configuration

The virtual table pg_settings also allows displaying and updating session run-time parameters; see
Section 45.64 for details and a description of the different variable types and when they can be changed.
pg_settings is equivalent to SHOW and SET, but can be more convenient to use because it can be joined
with other tables, or selected from using any desired selection condition. It also contains more information
about each parameter than is available from SHOW.

18.2. File Locations
In addition to the postgresql.conf file already mentioned, PostgreSQL uses two other manually-edited
configuration files, which control client authentication (their use is discussed in Chapter 19). By default,
all three configuration files are stored in the database cluster’s data directory. The parameters described
in this section allow the configuration files to be placed elsewhere. (Doing so can ease administration. In
particular it is often easier to ensure that the configuration files are properly backed-up when they are kept
separate.)

data_directory (string)

Specifies the directory to use for data storage. This parameter can only be set at server start.

config_file (string)

Specifies the main server configuration file (customarily called postgresql.conf). This parameter
can only be set on the postgres command line.

hba_file (string)

Specifies the configuration file for host-based authentication (customarily called pg_hba.conf).
This parameter can only be set at server start.

ident_file (string)

Specifies the configuration file for Section 19.2 user name mapping (customarily called
pg_ident.conf). This parameter can only be set at server start.

external_pid_file (string)

Specifies the name of an additional process-ID (PID) file that the server should create for use by
server administration programs. This parameter can only be set at server start.

In a default installation, none of the above parameters are set explicitly. Instead, the data directory is
specified by the -D command-line option or the PGDATA environment variable, and the configuration files
are all found within the data directory.

If you wish to keep the configuration files elsewhere than the data directory, the postgres -D command-
line option or PGDATA environment variable must point to the directory containing the configuration files,
and the data_directory parameter must be set in postgresql.conf (or on the command line) to show
where the data directory is actually located. Notice that data_directory overrides -D and PGDATA for
the location of the data directory, but not for the location of the configuration files.

If you wish, you can specify the configuration file names and locations individually using the parameters
config_file, hba_file and/or ident_file. config_file can only be specified on the postgres
command line, but the others can be set within the main configuration file. If all three parameters plus
data_directory are explicitly set, then it is not necessary to specify -D or PGDATA.

454

Chapter 18. Server Configuration

When setting any of these parameters, a relative path will be interpreted with respect to the directory in
which postgres is started.

18.3. Connections and Authentication

18.3.1. Connection Settings

listen_addresses (string)

Specifies the TCP/IP address(es) on which the server is to listen for connections from client applica-
tions. The value takes the form of a comma-separated list of host names and/or numeric IP addresses.
The special entry * corresponds to all available IP interfaces. The entry 0.0.0.0 allows listening for
all IPv4 addresses and :: allows listening for all IPv6 addresses. If the list is empty, the server does
not listen on any IP interface at all, in which case only Unix-domain sockets can be used to connect
to it. The default value is localhost, which allows only local TCP/IP “loopback” connections to be
made. While client authentication (Chapter 19) allows fine-grained control over who can access the
server, listen_addresses controls which interfaces accept connection attempts, which can help
prevent repeated malicious connection requests on insecure network interfaces. This parameter can
only be set at server start.

port (integer)

The TCP port the server listens on; 5432 by default. Note that the same port number is used for all
IP addresses the server listens on. This parameter can only be set at server start.

max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default is
typically 100 connections, but might be less if your kernel settings will not support it (as determined
during initdb). This parameter can only be set at server start.

Increasing this parameter might cause PostgreSQL to request more System V shared memory or
semaphores than your operating system’s default configuration allows. See Section 17.4.1 for infor-
mation on how to adjust those parameters, if necessary.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

superuser_reserved_connections (integer)

Determines the number of connection “slots” that are reserved for connections by PostgreSQL
superusers. At most max_connections connections can ever be active simultaneously.
Whenever the number of active concurrent connections is at least max_connections minus
superuser_reserved_connections, new connections will be accepted only for superusers, and
no new replication connections will be accepted.

The default value is three connections. The value must be less than the value of max_connections.
This parameter can only be set at server start.

455

Chapter 18. Server Configuration

unix_socket_directories (string)

Specifies the directory of the Unix-domain socket(s) on which the server is to listen for connections
from client applications. Multiple sockets can be created by listing multiple directories separated by
commas. Whitespace between entries is ignored; surround a directory name with double quotes if
you need to include whitespace or commas in the name. An empty value specifies not listening on
any Unix-domain sockets, in which case only TCP/IP sockets can be used to connect to the server.
The default value is normally /tmp, but that can be changed at build time. This parameter can only
be set at server start.

In addition to the socket file itself, which is named .s.PGSQL.nnnn where nnnn is the server’s
port number, an ordinary file named .s.PGSQL.nnnn.lock will be created in each of the
unix_socket_directories directories. Neither file should ever be removed manually.

This parameter is irrelevant on Windows, which does not have Unix-domain sockets.

unix_socket_group (string)

Sets the owning group of the Unix-domain socket(s). (The owning user of the sockets is always the
user that starts the server.) In combination with the parameter unix_socket_permissions this
can be used as an additional access control mechanism for Unix-domain connections. By default this
is the empty string, which uses the default group of the server user. This parameter can only be set at
server start.

This parameter is irrelevant on Windows, which does not have Unix-domain sockets.

unix_socket_permissions (integer)

Sets the access permissions of the Unix-domain socket(s). Unix-domain sockets use the usual Unix
file system permission set. The parameter value is expected to be a numeric mode specified in the
format accepted by the chmod and umask system calls. (To use the customary octal format the
number must start with a 0 (zero).)

The default permissions are 0777, meaning anyone can connect. Reasonable alternatives are 0770

(only user and group, see also unix_socket_group) and 0700 (only user). (Note that for a Unix-
domain socket, only write permission matters, so there is no point in setting or revoking read or
execute permissions.)

This access control mechanism is independent of the one described in Chapter 19.

This parameter can only be set at server start.

This parameter is irrelevant on Windows, which does not have Unix-domain sockets.

bonjour (boolean)

Enables advertising the server’s existence via Bonjour. The default is off. This parameter can only
be set at server start.

bonjour_name (string)

Specifies the Bonjour service name. The computer name is used if this parameter is set to the empty
string ” (which is the default). This parameter is ignored if the server was not compiled with Bonjour
support. This parameter can only be set at server start.

tcp_keepalives_idle (integer)

Specifies the number of seconds before sending a keepalive packet on an otherwise idle connection.
A value of 0 uses the system default. This parameter is supported only on systems that support the

456

Chapter 18. Server Configuration

TCP_KEEPIDLE or TCP_KEEPALIVE symbols, and on Windows; on other systems, it must be zero.
In sessions connected via a Unix-domain socket, this parameter is ignored and always reads as zero.

Note: On Windows, a value of 0 will set this parameter to 2 hours, since Windows does not
provide a way to read the system default value.

tcp_keepalives_interval (integer)

Specifies the number of seconds between sending keepalives on an otherwise idle connection. A
value of 0 uses the system default. This parameter is supported only on systems that support the
TCP_KEEPINTVL symbol, and on Windows; on other systems, it must be zero. In sessions connected
via a Unix-domain socket, this parameter is ignored and always reads as zero.

Note: On Windows, a value of 0 will set this parameter to 1 second, since Windows does not
provide a way to read the system default value.

tcp_keepalives_count (integer)

Specifies the number of keepalive packets to send on an otherwise idle connection. A value of 0
uses the system default. This parameter is supported only on systems that support the TCP_KEEPCNT
symbol; on other systems, it must be zero. In sessions connected via a Unix-domain socket, this
parameter is ignored and always reads as zero.

Note: This parameter is not supported on Windows, and must be zero.

18.3.2. Security and Authentication

authentication_timeout (integer)

Maximum time to complete client authentication, in seconds. If a would-be client has not completed
the authentication protocol in this much time, the server closes the connection. This prevents hung
clients from occupying a connection indefinitely. The default is one minute (1m). This parameter can
only be set in the postgresql.conf file or on the server command line.

ssl (boolean)

Enables SSL connections. Please read Section 17.9 before using this. The default is off. This param-
eter can only be set at server start. SSL communication is only possible with TCP/IP connections.

ssl_ca_file (string)

Specifies the name of the file containing the SSL server certificate authority (CA). The default is
empty, meaning no CA file is loaded, and client certificate verification is not performed. (In previous
releases of PostgreSQL, the name of this file was hard-coded as root.crt.) Relative paths are
relative to the data directory. This parameter can only be set at server start.

457

Chapter 18. Server Configuration

ssl_cert_file (string)

Specifies the name of the file containing the SSL server certificate. The default is server.crt.
Relative paths are relative to the data directory. This parameter can only be set at server start.

ssl_crl_file (string)

Specifies the name of the file containing the SSL server certificate revocation list (CRL). The default
is empty, meaning no CRL file is loaded. (In previous releases of PostgreSQL, the name of this file
was hard-coded as root.crl.) Relative paths are relative to the data directory. This parameter can
only be set at server start.

ssl_key_file (string)

Specifies the name of the file containing the SSL server private key. The default is server.key.
Relative paths are relative to the data directory. This parameter can only be set at server start.

ssl_renegotiation_limit (integer)

Specifies how much data can flow over an SSL-encrypted connection before renegotiation of the
session keys will take place. Renegotiation decreases an attacker’s chances of doing cryptanalysis
when large amounts of traffic can be examined, but it also carries a large performance penalty. The
sum of sent and received traffic is used to check the limit. If this parameter is set to 0, renegotiation
is disabled. The default is 512MB.

Note: SSL libraries from before November 2009 are insecure when using SSL renegotiation,
due to a vulnerability in the SSL protocol. As a stop-gap fix for this vulnerability, some vendors
shipped SSL libraries incapable of doing renegotiation. If any such libraries are in use on the
client or server, SSL renegotiation should be disabled.

ssl_ciphers (string)

Specifies a list of SSL ciphers that are allowed to be used on secure connections. See the openssl
manual page for a list of supported ciphers.

password_encryption (boolean)

When a password is specified in CREATE USER or ALTER ROLE without writing either
ENCRYPTED or UNENCRYPTED, this parameter determines whether the password is to be encrypted.
The default is on (encrypt the password).

krb_server_keyfile (string)

Sets the location of the Kerberos server key file. See Section 19.3.5 or Section 19.3.3 for details. This
parameter can only be set in the postgresql.conf file or on the server command line.

krb_srvname (string)

Sets the Kerberos service name. See Section 19.3.5 for details. This parameter can only be set in the
postgresql.conf file or on the server command line.

krb_caseins_users (boolean)

Sets whether Kerberos and GSSAPI user names should be treated case-insensitively. The default is
off (case sensitive). This parameter can only be set in the postgresql.conf file or on the server
command line.

458

Chapter 18. Server Configuration

db_user_namespace (boolean)

This parameter enables per-database user names. It is off by default. This parameter can only be set
in the postgresql.conf file or on the server command line.

If this is on, you should create users as username@dbname. When username is passed by a con-
necting client, @ and the database name are appended to the user name and that database-specific user
name is looked up by the server. Note that when you create users with names containing @ within the
SQL environment, you will need to quote the user name.

With this parameter enabled, you can still create ordinary global users. Simply append @ when speci-
fying the user name in the client, e.g. joe@. The @ will be stripped off before the user name is looked
up by the server.

db_user_namespace causes the client’s and server’s user name representation to differ. Authenti-
cation checks are always done with the server’s user name so authentication methods must be con-
figured for the server’s user name, not the client’s. Because md5 uses the user name as salt on both
the client and server, md5 cannot be used with db_user_namespace.

Note: This feature is intended as a temporary measure until a complete solution is found. At that
time, this option will be removed.

18.4. Resource Consumption

18.4.1. Memory

shared_buffers (integer)

Sets the amount of memory the database server uses for shared memory buffers. The default is typi-
cally 32 megabytes (32MB), but might be less if your kernel settings will not support it (as determined
during initdb). This setting must be at least 128 kilobytes. (Non-default values of BLCKSZ change the
minimum.) However, settings significantly higher than the minimum are usually needed for good
performance. This parameter can only be set at server start.

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting value for
shared_buffers is 25% of the memory in your system. There are some workloads where even
large settings for shared_buffers are effective, but because PostgreSQL also relies on the operat-
ing system cache, it is unlikely that an allocation of more than 40% of RAM to shared_buffers

will work better than a smaller amount. Larger settings for shared_buffers usually require a cor-
responding increase in checkpoint_segments, in order to spread out the process of writing large
quantities of new or changed data over a longer period of time.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate, so as to leave
adequate space for the operating system. Also, on Windows, large values for shared_buffers
aren’t as effective. You may find better results keeping the setting relatively low and using the op-

459

Chapter 18. Server Configuration

erating system cache more instead. The useful range for shared_buffers on Windows systems is
generally from 64MB to 512MB.

Increasing this parameter might cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 17.4.1 for information on how to
adjust those parameters, if necessary.

temp_buffers (integer)

Sets the maximum number of temporary buffers used by each database session. These are session-
local buffers used only for access to temporary tables. The default is eight megabytes (8MB). The
setting can be changed within individual sessions, but only before the first use of temporary tables
within the session; subsequent attempts to change the value will have no effect on that session.

A session will allocate temporary buffers as needed up to the limit given by temp_buffers. The
cost of setting a large value in sessions that do not actually need many temporary buffers is only a
buffer descriptor, or about 64 bytes, per increment in temp_buffers. However if a buffer is actually
used an additional 8192 bytes will be consumed for it (or in general, BLCKSZ bytes).

max_prepared_transactions (integer)

Sets the maximum number of transactions that can be in the “prepared” state simultaneously (see
PREPARE TRANSACTION). Setting this parameter to zero (which is the default) disables the
prepared-transaction feature. This parameter can only be set at server start.

If you are not planning to use prepared transactions, this parameter should be set to zero to prevent
accidental creation of prepared transactions. If you are using prepared transactions, you will proba-
bly want max_prepared_transactions to be at least as large as max_connections, so that every
session can have a prepared transaction pending.

Increasing this parameter might cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 17.4.1 for information on how to
adjust those parameters, if necessary.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

work_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before writing
to temporary disk files. The value defaults to one megabyte (1MB). Note that for a complex query,
several sort or hash operations might be running in parallel; each operation will be allowed to use as
much memory as this value specifies before it starts to write data into temporary files. Also, several
running sessions could be doing such operations concurrently. Therefore, the total memory used
could be many times the value of work_mem; it is necessary to keep this fact in mind when choosing
the value. Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are used
in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.

maintenance_work_mem (integer)

Specifies the maximum amount of memory to be used by maintenance operations, such as VACUUM,
CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. It defaults to 16 megabytes (16MB). Since
only one of these operations can be executed at a time by a database session, and an installation
normally doesn’t have many of them running concurrently, it’s safe to set this value significantly
larger than work_mem. Larger settings might improve performance for vacuuming and for restoring
database dumps.

460

Chapter 18. Server Configuration

Note that when autovacuum runs, up to autovacuum_max_workers times this memory may be allo-
cated, so be careful not to set the default value too high.

max_stack_depth (integer)

Specifies the maximum safe depth of the server’s execution stack. The ideal setting for this parameter
is the actual stack size limit enforced by the kernel (as set by ulimit -s or local equivalent),
less a safety margin of a megabyte or so. The safety margin is needed because the stack depth is
not checked in every routine in the server, but only in key potentially-recursive routines such as
expression evaluation. The default setting is two megabytes (2MB), which is conservatively small and
unlikely to risk crashes. However, it might be too small to allow execution of complex functions.
Only superusers can change this setting.

Setting max_stack_depth higher than the actual kernel limit will mean that a runaway recursive
function can crash an individual backend process. On platforms where PostgreSQL can determine
the kernel limit, the server will not allow this variable to be set to an unsafe value. However, not all
platforms provide the information, so caution is recommended in selecting a value.

18.4.2. Disk

temp_file_limit (integer)

Specifies the maximum amount of disk space that a session can use for temporary files, such as sort
and hash temporary files, or the storage file for a held cursor. A transaction attempting to exceed this
limit will be cancelled. The value is specified in kilobytes, and -1 (the default) means no limit. Only
superusers can change this setting.

This setting constrains the total space used at any instant by all temporary files used by a given
PostgreSQL session. It should be noted that disk space used for explicit temporary tables, as opposed
to temporary files used behind-the-scenes in query execution, does not count against this limit.

18.4.3. Kernel Resource Usage

max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The
default is one thousand files. If the kernel is enforcing a safe per-process limit, you don’t need to
worry about this setting. But on some platforms (notably, most BSD systems), the kernel will allow
individual processes to open many more files than the system can actually support if many processes
all try to open that many files. If you find yourself seeing “Too many open files” failures, try reducing
this setting. This parameter can only be set at server start.

shared_preload_libraries (string)

This variable specifies one or more shared libraries to be preloaded at server start. For example,
’$libdir/mylib’ would cause mylib.so (or on some platforms, mylib.sl) to be preloaded
from the installation’s standard library directory. All library names are converted to lower case unless
double-quoted. If more than one library is to be loaded, separate their names with commas. This
parameter can only be set at server start.

461

Chapter 18. Server Configuration

PostgreSQL procedural language libraries can be preloaded in this way, typically by using the syntax
’$libdir/plXXX’ where XXX is pgsql, perl, tcl, or python.

By preloading a shared library, the library startup time is avoided when the library is first used. How-
ever, the time to start each new server process might increase slightly, even if that process never uses
the library. So this parameter is recommended only for libraries that will be used in most sessions.

Note: On Windows hosts, preloading a library at server start will not reduce the time required to
start each new server process; each server process will re-load all preload libraries. However,
shared_preload_libraries is still useful on Windows hosts because some shared libraries
may need to perform certain operations that only take place at postmaster start (for example, a
shared library may need to reserve lightweight locks or shared memory and you can’t do that
after the postmaster has started).

If a specified library is not found, the server will fail to start.

Every PostgreSQL-supported library has a “magic block” that is checked to guarantee compatibility.
For this reason, non-PostgreSQL libraries cannot be loaded in this way.

18.4.4. Cost-based Vacuum Delay
During the execution of VACUUM and ANALYZE commands, the system maintains an internal counter
that keeps track of the estimated cost of the various I/O operations that are performed. When the accumu-
lated cost reaches a limit (specified by vacuum_cost_limit), the process performing the operation will
sleep for a short period of time, as specified by vacuum_cost_delay. Then it will reset the counter and
continue execution.

The intent of this feature is to allow administrators to reduce the I/O impact of these commands on con-
current database activity. There are many situations where it is not important that maintenance commands
like VACUUM and ANALYZE finish quickly; however, it is usually very important that these commands do
not significantly interfere with the ability of the system to perform other database operations. Cost-based
vacuum delay provides a way for administrators to achieve this.

This feature is disabled by default for manually issued VACUUM commands. To enable it, set the
vacuum_cost_delay variable to a nonzero value.

vacuum_cost_delay (integer)

The length of time, in milliseconds, that the process will sleep when the cost limit has been exceeded.
The default value is zero, which disables the cost-based vacuum delay feature. Positive values enable
cost-based vacuuming. Note that on many systems, the effective resolution of sleep delays is 10
milliseconds; setting vacuum_cost_delay to a value that is not a multiple of 10 might have the
same results as setting it to the next higher multiple of 10.

When using cost-based vacuuming, appropriate values for vacuum_cost_delay are usually quite
small, perhaps 10 or 20 milliseconds. Adjusting vacuum’s resource consumption is best done by
changing the other vacuum cost parameters.

462

Chapter 18. Server Configuration

vacuum_cost_page_hit (integer)

The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost to
lock the buffer pool, lookup the shared hash table and scan the content of the page. The default value
is one.

vacuum_cost_page_miss (integer)

The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort to
lock the buffer pool, lookup the shared hash table, read the desired block in from the disk and scan
its content. The default value is 10.

vacuum_cost_page_dirty (integer)

The estimated cost charged when vacuum modifies a block that was previously clean. It represents
the extra I/O required to flush the dirty block out to disk again. The default value is 20.

vacuum_cost_limit (integer)

The accumulated cost that will cause the vacuuming process to sleep. The default value is 200.

Note: There are certain operations that hold critical locks and should therefore complete as quickly as
possible. Cost-based vacuum delays do not occur during such operations. Therefore it is possible that
the cost accumulates far higher than the specified limit. To avoid uselessly long delays in such cases,
the actual delay is calculated as vacuum_cost_delay * accumulated_balance / vacuum_cost_limit
with a maximum of vacuum_cost_delay * 4.

18.4.5. Background Writer
There is a separate server process called the background writer, whose function is to issue writes of
“dirty” (new or modified) shared buffers. It writes shared buffers so server processes handling user queries
seldom or never need to wait for a write to occur. However, the background writer does cause a net overall
increase in I/O load, because while a repeatedly-dirtied page might otherwise be written only once per
checkpoint interval, the background writer might write it several times as it is dirtied in the same interval.
The parameters discussed in this subsection can be used to tune the behavior for local needs.

bgwriter_delay (integer)

Specifies the delay between activity rounds for the background writer. In each round the writer is-
sues writes for some number of dirty buffers (controllable by the following parameters). It then sleeps
for bgwriter_delay milliseconds, and repeats. When there are no dirty buffers in the buffer pool,
though, it goes into a longer sleep regardless of bgwriter_delay. The default value is 200 millisec-
onds (200ms). Note that on many systems, the effective resolution of sleep delays is 10 milliseconds;
setting bgwriter_delay to a value that is not a multiple of 10 might have the same results as setting
it to the next higher multiple of 10. This parameter can only be set in the postgresql.conf file or
on the server command line.

bgwriter_lru_maxpages (integer)

In each round, no more than this many buffers will be written by the background writer. Setting
this to zero disables background writing. (Note that checkpoints, which are managed by a separate,

463

Chapter 18. Server Configuration

dedicated auxiliary process, are unaffected.) The default value is 100 buffers. This parameter can
only be set in the postgresql.conf file or on the server command line.

bgwriter_lru_multiplier (floating point)

The number of dirty buffers written in each round is based on the number of new buffers that have
been needed by server processes during recent rounds. The average recent need is multiplied by
bgwriter_lru_multiplier to arrive at an estimate of the number of buffers that will be needed
during the next round. Dirty buffers are written until there are that many clean, reusable buffers
available. (However, no more than bgwriter_lru_maxpages buffers will be written per round.)
Thus, a setting of 1.0 represents a “just in time” policy of writing exactly the number of buffers
predicted to be needed. Larger values provide some cushion against spikes in demand, while smaller
values intentionally leave writes to be done by server processes. The default is 2.0. This parameter
can only be set in the postgresql.conf file or on the server command line.

Smaller values of bgwriter_lru_maxpages and bgwriter_lru_multiplier reduce the extra I/O
load caused by the background writer, but make it more likely that server processes will have to issue
writes for themselves, delaying interactive queries.

18.4.6. Asynchronous Behavior

effective_io_concurrency (integer)

Sets the number of concurrent disk I/O operations that PostgreSQL expects can be executed simulta-
neously. Raising this value will increase the number of I/O operations that any individual PostgreSQL
session attempts to initiate in parallel. The allowed range is 1 to 1000, or zero to disable issuance of
asynchronous I/O requests. Currently, this setting only affects bitmap heap scans.

A good starting point for this setting is the number of separate drives comprising a RAID 0 stripe
or RAID 1 mirror being used for the database. (For RAID 5 the parity drive should not be counted.)
However, if the database is often busy with multiple queries issued in concurrent sessions, lower
values may be sufficient to keep the disk array busy. A value higher than needed to keep the disks
busy will only result in extra CPU overhead.

For more exotic systems, such as memory-based storage or a RAID array that is limited by bus
bandwidth, the correct value might be the number of I/O paths available. Some experimentation may
be needed to find the best value.

Asynchronous I/O depends on an effective posix_fadvise function, which some operating systems
lack. If the function is not present then setting this parameter to anything but zero will result in an
error. On some operating systems (e.g., Solaris), the function is present but does not actually do
anything.

18.5. Write Ahead Log
See also Section 29.4 for details on WAL and checkpoint tuning.

464

Chapter 18. Server Configuration

18.5.1. Settings

wal_level (enum)

wal_level determines how much information is written to the WAL. The default value is minimal,
which writes only the information needed to recover from a crash or immediate shutdown. archive
adds logging required for WAL archiving, and hot_standby further adds information required to
run read-only queries on a standby server. This parameter can only be set at server start.

In minimal level, WAL-logging of some bulk operations can be safely skipped, which can make
those operations much faster (see Section 14.4.7). Operations in which this optimization can be
applied include:

CREATE TABLE AS

CREATE INDEX

CLUSTER

COPY into tables that were created or truncated in the same transaction

But minimal WAL does not contain enough information to reconstruct the data from a base backup
and the WAL logs, so either archive or hot_standby level must be used to enable WAL archiving
(archive_mode) and streaming replication.

In hot_standby level, the same information is logged as with archive, plus information needed
to reconstruct the status of running transactions from the WAL. To enable read-only queries on a
standby server, wal_level must be set to hot_standby on the primary, and hot_standby must be
enabled in the standby. It is thought that there is little measurable difference in performance between
using hot_standby and archive levels, so feedback is welcome if any production impacts are
noticeable.

fsync (boolean)

If this parameter is on, the PostgreSQL server will try to make sure that updates are physically written
to disk, by issuing fsync() system calls or various equivalent methods (see wal_sync_method).
This ensures that the database cluster can recover to a consistent state after an operating system or
hardware crash.

While turning off fsync is often a performance benefit, this can result in unrecoverable data corrup-
tion in the event of a power failure or system crash. Thus it is only advisable to turn off fsync if you
can easily recreate your entire database from external data.

Examples of safe circumstances for turning off fsync include the initial loading of a new database
cluster from a backup file, using a database cluster for processing a batch of data after which the
database will be thrown away and recreated, or for a read-only database clone which gets recreated
frequently and is not used for failover. High quality hardware alone is not a sufficient justification for
turning off fsync.

In many situations, turning off synchronous_commit for noncritical transactions can provide much of
the potential performance benefit of turning off fsync, without the attendant risks of data corruption.

fsync can only be set in the postgresql.conf file or on the server command line. If you turn this
parameter off, also consider turning off full_page_writes.

synchronous_commit (enum)

Specifies whether transaction commit will wait for WAL records to be written to disk before the
command returns a “success” indication to the client. Valid values are on, remote_write, local,

465

Chapter 18. Server Configuration

and off. The default, and safe, setting is on. When off, there can be a delay between when success
is reported to the client and when the transaction is really guaranteed to be safe against a server crash.
(The maximum delay is three times wal_writer_delay.) Unlike fsync, setting this parameter to off

does not create any risk of database inconsistency: an operating system or database crash might result
in some recent allegedly-committed transactions being lost, but the database state will be just the
same as if those transactions had been aborted cleanly. So, turning synchronous_commit off can
be a useful alternative when performance is more important than exact certainty about the durability
of a transaction. For more discussion see Section 29.3.

If synchronous_standby_names is set, this parameter also controls whether or not transaction com-
mits will wait for the transaction’s WAL records to be replicated to the standby server. When set to
on, commits will wait until a reply from the current synchronous standby indicates it has received
the commit record of the transaction and flushed it to disk. This ensures the transaction will not
be lost unless both primary and standby suffer corruption of their database storage. When set to
remote_write, commits will wait until a reply from the current synchronous standby indicates it
has received the commit record of the transaction and written it out to the standby’s operating sys-
tem, but the data has not necessarily reached stable storage on the standby. This setting is sufficient
to ensure data preservation even if the standby instance of PostgreSQL were to crash, but not if the
standby suffers an operating-system-level crash.

When synchronous replication is in use, it will normally be sensible either to wait for both local
flush to disk and replication of WAL records, or to allow the transaction to commit asynchronously.
However, the setting local is available for transactions that wish to wait for local flush to disk,
but not synchronous replication. If synchronous_standby_names is not set, the settings on,
remote_write and local all provide the same synchronization level: transaction commits only
wait for local flush to disk.

This parameter can be changed at any time; the behavior for any one transaction is determined
by the setting in effect when it commits. It is therefore possible, and useful, to have some trans-
actions commit synchronously and others asynchronously. For example, to make a single multi-
statement transaction commit asynchronously when the default is the opposite, issue SET LOCAL

synchronous_commit TO OFF within the transaction.

wal_sync_method (enum)

Method used for forcing WAL updates out to disk. If fsync is off then this setting is irrelevant, since
WAL file updates will not be forced out at all. Possible values are:

• open_datasync (write WAL files with open() option O_DSYNC)

• fdatasync (call fdatasync() at each commit)

• fsync (call fsync() at each commit)

• fsync_writethrough (call fsync() at each commit, forcing write-through of any disk write
cache)

• open_sync (write WAL files with open() option O_SYNC)

The open_* options also use O_DIRECT if available. Not all of these choices are available on all
platforms. The default is the first method in the above list that is supported by the platform, except
that fdatasync is the default on Linux. The default is not necessarily ideal; it might be necessary
to change this setting or other aspects of your system configuration in order to create a crash-safe
configuration or achieve optimal performance. These aspects are discussed in Section 29.1. This
parameter can only be set in the postgresql.conf file or on the server command line.

466

Chapter 18. Server Configuration

full_page_writes (boolean)

When this parameter is on, the PostgreSQL server writes the entire content of each disk page to WAL
during the first modification of that page after a checkpoint. This is needed because a page write that
is in process during an operating system crash might be only partially completed, leading to an on-
disk page that contains a mix of old and new data. The row-level change data normally stored in
WAL will not be enough to completely restore such a page during post-crash recovery. Storing the
full page image guarantees that the page can be correctly restored, but at the price of increasing the
amount of data that must be written to WAL. (Because WAL replay always starts from a checkpoint,
it is sufficient to do this during the first change of each page after a checkpoint. Therefore, one way
to reduce the cost of full-page writes is to increase the checkpoint interval parameters.)

Turning this parameter off speeds normal operation, but might lead to either unrecoverable data
corruption, or silent data corruption, after a system failure. The risks are similar to turning off fsync,
though smaller, and it should be turned off only based on the same circumstances recommended for
that parameter.

Turning off this parameter does not affect use of WAL archiving for point-in-time recovery (PITR)
(see Section 24.3).

This parameter can only be set in the postgresql.conf file or on the server command line. The
default is on.

wal_buffers (integer)

The amount of shared memory used for WAL data that has not yet been written to disk. The default
setting of -1 selects a size equal to 1/32nd (about 3%) of shared_buffers, but not less than 64kB

nor more than the size of one WAL segment, typically 16MB. This value can be set manually if the
automatic choice is too large or too small, but any positive value less than 32kB will be treated as
32kB. This parameter can only be set at server start.

The contents of the WAL buffers are written out to disk at every transaction commit, so extremely
large values are unlikely to provide a significant benefit. However, setting this value to at least a few
megabytes can improve write performance on a busy server where many clients are committing at
once. The auto-tuning selected by the default setting of -1 should give reasonable results in most
cases.

Increasing this parameter might cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 17.4.1 for information on how to
adjust those parameters, if necessary.

wal_writer_delay (integer)

Specifies the delay between activity rounds for the WAL writer. In each round the writer will flush
WAL to disk. It then sleeps for wal_writer_delay milliseconds, and repeats. The default value
is 200 milliseconds (200ms). Note that on many systems, the effective resolution of sleep delays is
10 milliseconds; setting wal_writer_delay to a value that is not a multiple of 10 might have the
same results as setting it to the next higher multiple of 10. This parameter can only be set in the
postgresql.conf file or on the server command line.

commit_delay (integer)

When the commit data for a transaction is flushed to disk, any additional commits ready at that time
are also flushed out. commit_delay adds a time delay, set in microseconds, before a transaction
attempts to flush the WAL buffer out to disk. A nonzero delay can allow more transactions to be

467

Chapter 18. Server Configuration

committed with only one flush operation, if system load is high enough that additional transactions
become ready to commit within the given interval. But the delay is just wasted if no other transactions
become ready to commit. Therefore, the delay is only performed if at least commit_siblings
other transactions are active at the instant that a server process has written its commit record. The
default commit_delay is zero (no delay). Since all pending commit data will be written at every
flush regardless of this setting, it is rare that adding delay by increasing this parameter will actually
improve performance.

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performing the commit_delay
delay. A larger value makes it more probable that at least one other transaction will become ready to
commit during the delay interval. The default is five transactions.

18.5.2. Checkpoints

checkpoint_segments (integer)

Maximum number of log file segments between automatic WAL checkpoints (each segment is nor-
mally 16 megabytes). The default is three segments. Increasing this parameter can increase the
amount of time needed for crash recovery. This parameter can only be set in the postgresql.conf
file or on the server command line.

checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints, in seconds. The default is five minutes (5min).
Increasing this parameter can increase the amount of time needed for crash recovery. This parameter
can only be set in the postgresql.conf file or on the server command line.

checkpoint_completion_target (floating point)

Specifies the target of checkpoint completion, as a fraction of total time between checkpoints. The
default is 0.5. This parameter can only be set in the postgresql.conf file or on the server command
line.

checkpoint_warning (integer)

Write a message to the server log if checkpoints caused by the filling of checkpoint segment files
happen closer together than this many seconds (which suggests that checkpoint_segments ought
to be raised). The default is 30 seconds (30s). Zero disables the warning. This parameter can only
be set in the postgresql.conf file or on the server command line.

18.5.3. Archiving

archive_mode (boolean)

When archive_mode is enabled, completed WAL segments are sent to archive storage by
setting archive_command. archive_mode and archive_command are separate variables so that
archive_command can be changed without leaving archiving mode. This parameter can only be
set at server start. archive_mode cannot be enabled when wal_level is set to minimal.

468

Chapter 18. Server Configuration

archive_command (string)

The shell command to execute to archive a completed WAL file segment. Any %p in the string is
replaced by the path name of the file to archive, and any %f is replaced by only the file name. (The
path name is relative to the working directory of the server, i.e., the cluster’s data directory.) Use %%
to embed an actual % character in the command. It is important for the command to return a zero exit
status only if it succeeds. For more information see Section 24.3.1.

This parameter can only be set in the postgresql.conf file or on the server command line. It is
ignored unless archive_mode was enabled at server start. If archive_command is an empty string
(the default) while archive_mode is enabled, WAL archiving is temporarily disabled, but the server
continues to accumulate WAL segment files in the expectation that a command will soon be provided.
Setting archive_command to a command that does nothing but return true, e.g. /bin/true (REM on
Windows), effectively disables archiving, but also breaks the chain of WAL files needed for archive
recovery, so it should only be used in unusual circumstances.

archive_timeout (integer)

The archive_command is only invoked for completed WAL segments. Hence, if your server generates
little WAL traffic (or has slack periods where it does so), there could be a long delay between the
completion of a transaction and its safe recording in archive storage. To limit how old unarchived
data can be, you can set archive_timeout to force the server to switch to a new WAL segment
file periodically. When this parameter is greater than zero, the server will switch to a new segment
file whenever this many seconds have elapsed since the last segment file switch, and there has been
any database activity, including a single checkpoint. (Increasing checkpoint_timeout will reduce
unnecessary checkpoints on an idle system.) Note that archived files that are closed early due to
a forced switch are still the same length as completely full files. Therefore, it is unwise to use a
very short archive_timeout — it will bloat your archive storage. archive_timeout settings of
a minute or so are usually reasonable. You should consider using streaming replication, instead of
archiving, if you want data to be copied off the master server more quickly than that. This parameter
can only be set in the postgresql.conf file or on the server command line.

18.6. Replication
These settings control the behavior of the built-in streaming replication feature (see Section 25.2.5).
Servers will be either a Master or a Standby server. Masters can send data, while Standby(s) are always
receivers of replicated data. When cascading replication (see Section 25.2.6) is used, Standby server(s)
can also be senders, as well as receivers. Parameters are mainly for Sending and Standby servers, though
some parameters have meaning only on the Master server. Settings may vary across the cluster without
problems if that is required.

18.6.1. Sending Server(s)
These parameters can be set on any server that is to send replication data to one or more standby servers.
The master is always a sending server, so these parameters must always be set on the master. The role and
meaning of these parameters does not change after a standby becomes the master.

469

Chapter 18. Server Configuration

max_wal_senders (integer)

Specifies the maximum number of concurrent connections from standby servers or streaming base
backup clients (i.e., the maximum number of simultaneously running WAL sender processes). The
default is zero, meaning replication is disabled. WAL sender processes count towards the total num-
ber of connections, so the parameter cannot be set higher than max_connections. This parameter can
only be set at server start. wal_level must be set to archive or hot_standby to allow connec-
tions from standby servers.

wal_keep_segments (integer)

Specifies the minimum number of past log file segments kept in the pg_xlog directory, in case a
standby server needs to fetch them for streaming replication. Each segment is normally 16 megabytes.
If a standby server connected to the sending server falls behind by more than wal_keep_segments

segments, the sending server might remove a WAL segment still needed by the standby, in which
case the replication connection will be terminated. Downstream connections will also eventually fail
as a result. (However, the standby server can recover by fetching the segment from archive, if WAL
archiving is in use.)

This sets only the minimum number of segments retained in pg_xlog; the system might need to
retain more segments for WAL archival or to recover from a checkpoint. If wal_keep_segments is
zero (the default), the system doesn’t keep any extra segments for standby purposes, so the number
of old WAL segments available to standby servers is a function of the location of the previous check-
point and status of WAL archiving. This parameter can only be set in the postgresql.conf file or
on the server command line.

replication_timeout (integer)

Terminate replication connections that are inactive longer than the specified number of milliseconds.
This is useful for the sending server to detect a standby crash or network outage. A value of zero
disables the timeout mechanism. This parameter can only be set in the postgresql.conf file or on
the server command line. The default value is 60 seconds.

To prevent connections from being terminated prematurely, wal_receiver_status_interval must be
enabled on the standby, and its value must be less than the value of replication_timeout.

18.6.2. Master Server
These parameters can be set on the master/primary server that is to send replication data to one or more
standby servers. Note that in addition to these parameters, wal_level must be set appropriately on the
master server, and optionally WAL archiving can be enabled as well (see Section 18.5.3). The values of
these parameters on standby servers are irrelevant, although you may wish to set them there in preparation
for the possibility of a standby becoming the master.

synchronous_standby_names (string)

Specifies a comma-separated list of standby names that can support synchronous replication, as de-
scribed in Section 25.2.7. At any one time there will be at most one active synchronous standby;
transactions waiting for commit will be allowed to proceed after this standby server confirms re-
ceipt of their data. The synchronous standby will be the first standby named in this list that is both
currently connected and streaming data in real-time (as shown by a state of streaming in the
pg_stat_replication view). Other standby servers appearing later in this list represent potential

470

Chapter 18. Server Configuration

synchronous standbys. If the current synchronous standby disconnects for whatever reason, it will
be replaced immediately with the next-highest-priority standby. Specifying more than one standby
name can allow very high availability.

The name of a standby server for this purpose is the application_name setting of the standby,
as set in the primary_conninfo of the standby’s walreceiver. There is no mechanism to
enforce uniqueness. In case of duplicates one of the matching standbys will be chosen to be the
synchronous standby, though exactly which one is indeterminate. The special entry * matches any
application_name, including the default application name of walreceiver.

If no synchronous standby names are specified here, then synchronous replication is not enabled and
transaction commits will not wait for replication. This is the default configuration. Even when syn-
chronous replication is enabled, individual transactions can be configured not to wait for replication
by setting the synchronous_commit parameter to local or off.

This parameter can only be set in the postgresql.conf file or on the server command line.

vacuum_defer_cleanup_age (integer)

Specifies the number of transactions by which VACUUM and HOT updates will defer cleanup of dead
row versions. The default is zero transactions, meaning that dead row versions can be removed as
soon as possible, that is, as soon as they are no longer visible to any open transaction. You may
wish to set this to a non-zero value on a primary server that is supporting hot standby servers, as
described in Section 25.5. This allows more time for queries on the standby to complete without
incurring conflicts due to early cleanup of rows. However, since the value is measured in terms of
number of write transactions occurring on the primary server, it is difficult to predict just how much
additional grace time will be made available to standby queries. This parameter can only be set in the
postgresql.conf file or on the server command line.

You should also consider setting hot_standby_feedback on standby server(s) as an alternative to
using this parameter.

18.6.3. Standby Servers
These settings control the behavior of a standby server that is to receive replication data. Their values on
the master server are irrelevant.

hot_standby (boolean)

Specifies whether or not you can connect and run queries during recovery, as described in Section
25.5. The default value is off. This parameter can only be set at server start. It only has effect during
archive recovery or in standby mode.

max_standby_archive_delay (integer)

When Hot Standby is active, this parameter determines how long the standby server should wait be-
fore canceling standby queries that conflict with about-to-be-applied WAL entries, as described in
Section 25.5.2. max_standby_archive_delay applies when WAL data is being read from WAL
archive (and is therefore not current). The default is 30 seconds. Units are milliseconds if not spec-
ified. A value of -1 allows the standby to wait forever for conflicting queries to complete. This
parameter can only be set in the postgresql.conf file or on the server command line.

471

Chapter 18. Server Configuration

Note that max_standby_archive_delay is not the same as the maximum length of time a query
can run before cancellation; rather it is the maximum total time allowed to apply any one WAL
segment’s data. Thus, if one query has resulted in significant delay earlier in the WAL segment,
subsequent conflicting queries will have much less grace time.

max_standby_streaming_delay (integer)

When Hot Standby is active, this parameter determines how long the standby server should wait
before canceling standby queries that conflict with about-to-be-applied WAL entries, as described
in Section 25.5.2. max_standby_streaming_delay applies when WAL data is being received via
streaming replication. The default is 30 seconds. Units are milliseconds if not specified. A value of
-1 allows the standby to wait forever for conflicting queries to complete. This parameter can only be
set in the postgresql.conf file or on the server command line.

Note that max_standby_streaming_delay is not the same as the maximum length of time a
query can run before cancellation; rather it is the maximum total time allowed to apply WAL data
once it has been received from the primary server. Thus, if one query has resulted in significant delay,
subsequent conflicting queries will have much less grace time until the standby server has caught up
again.

wal_receiver_status_interval (integer)

Specifies the minimum frequency for the WAL receiver process on the standby to send informa-
tion about replication progress to the primary or upstream standby, where it can be seen using the
pg_stat_replication view. The standby will report the last transaction log position it has writ-
ten, the last position it has flushed to disk, and the last position it has applied. This parameter’s value
is the maximum interval, in seconds, between reports. Updates are sent each time the write or flush
positions change, or at least as often as specified by this parameter. Thus, the apply position may lag
slightly behind the true position. Setting this parameter to zero disables status updates completely.
This parameter can only be set in the postgresql.conf file or on the server command line. The
default value is 10 seconds.

When replication_timeout is enabled on a sending server, wal_receiver_status_intervalmust
be enabled, and its value must be less than the value of replication_timeout.

hot_standby_feedback (boolean)

Specifies whether or not a hot standby will send feedback to the primary or upstream standby about
queries currently executing on the standby. This parameter can be used to eliminate query cancels
caused by cleanup records, but can cause database bloat on the primary for some workloads. Feed-
back messages will not be sent more frequently than once per wal_receiver_status_interval.
The default value is off. This parameter can only be set in the postgresql.conf file or on the
server command line.

If cascaded replication is in use the feedback is passed upstream until it eventually reaches the pri-
mary. Standbys make no other use of feedback they receive other than to pass upstream.

472

Chapter 18. Server Configuration

18.7. Query Planning

18.7.1. Planner Method Configuration
These configuration parameters provide a crude method of influencing the query plans chosen by the
query optimizer. If the default plan chosen by the optimizer for a particular query is not optimal, a tem-
porary solution is to use one of these configuration parameters to force the optimizer to choose a dif-
ferent plan. Better ways to improve the quality of the plans chosen by the optimizer include adjusting
the planer cost constants (see Section 18.7.2), running ANALYZE manually, increasing the value of the
default_statistics_target configuration parameter, and increasing the amount of statistics collected for spe-
cific columns using ALTER TABLE SET STATISTICS.

enable_bitmapscan (boolean)

Enables or disables the query planner’s use of bitmap-scan plan types. The default is on.

enable_hashagg (boolean)

Enables or disables the query planner’s use of hashed aggregation plan types. The default is on.

enable_hashjoin (boolean)

Enables or disables the query planner’s use of hash-join plan types. The default is on.

enable_indexscan (boolean)

Enables or disables the query planner’s use of index-scan plan types. The default is on.

enable_indexonlyscan (boolean)

Enables or disables the query planner’s use of index-only-scan plan types. The default is on.

enable_material (boolean)

Enables or disables the query planner’s use of materialization. It is impossible to suppress materi-
alization entirely, but turning this variable off prevents the planner from inserting materialize nodes
except in cases where it is required for correctness. The default is on.

enable_mergejoin (boolean)

Enables or disables the query planner’s use of merge-join plan types. The default is on.

enable_nestloop (boolean)

Enables or disables the query planner’s use of nested-loop join plans. It is impossible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

enable_seqscan (boolean)

Enables or disables the query planner’s use of sequential scan plan types. It is impossible to suppress
sequential scans entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on.

enable_sort (boolean)

Enables or disables the query planner’s use of explicit sort steps. It is impossible to suppress explicit
sorts entirely, but turning this variable off discourages the planner from using one if there are other
methods available. The default is on.

473

Chapter 18. Server Configuration

enable_tidscan (boolean)

Enables or disables the query planner’s use of TID scan plan types. The default is on.

18.7.2. Planner Cost Constants
The cost variables described in this section are measured on an arbitrary scale. Only their relative val-
ues matter, hence scaling them all up or down by the same factor will result in no change in the plan-
ner’s choices. By default, these cost variables are based on the cost of sequential page fetches; that is,
seq_page_cost is conventionally set to 1.0 and the other cost variables are set with reference to that.
But you can use a different scale if you prefer, such as actual execution times in milliseconds on a partic-
ular machine.

Note: Unfortunately, there is no well-defined method for determining ideal values for the cost variables.
They are best treated as averages over the entire mix of queries that a particular installation will
receive. This means that changing them on the basis of just a few experiments is very risky.

seq_page_cost (floating point)

Sets the planner’s estimate of the cost of a disk page fetch that is part of a series of sequential fetches.
The default is 1.0. This value can be overridden for tables and indexes in a particular tablespace by
setting the tablespace parameter of the same name (see ALTER TABLESPACE).

random_page_cost (floating point)

Sets the planner’s estimate of the cost of a non-sequentially-fetched disk page. The default is 4.0.
This value can be overridden for tables and indexes in a particular tablespace by setting the tablespace
parameter of the same name (see ALTER TABLESPACE).

Reducing this value relative to seq_page_costwill cause the system to prefer index scans; raising it
will make index scans look relatively more expensive. You can raise or lower both values together to
change the importance of disk I/O costs relative to CPU costs, which are described by the following
parameters.

Random access to mechanical disk storage is normally much more expensive than four-times se-
quential access. However, a lower default is used (4.0) because the majority of random accesses to
disk, such as indexed reads, are assumed to be in cache. The default value can be thought of as mod-
eling random access as 40 times slower than sequential, while expecting 90% of random reads to be
cached.

If you believe a 90% cache rate is an incorrect assumption for your workload, you can increase
random_page_cost to better reflect the true cost of random storage reads. Correspondingly, if your
data is likely to be completely in cache, such as when the database is smaller than the total server
memory, decreasing random_page_cost can be appropriate. Storage that has a low random read cost
relative to sequential, e.g. solid-state drives, might also be better modeled with a lower value for
random_page_cost.

Tip: Although the system will let you set random_page_cost to less than seq_page_cost, it is not
physically sensible to do so. However, setting them equal makes sense if the database is entirely

474

Chapter 18. Server Configuration

cached in RAM, since in that case there is no penalty for touching pages out of sequence. Also,
in a heavily-cached database you should lower both values relative to the CPU parameters, since
the cost of fetching a page already in RAM is much smaller than it would normally be.

cpu_tuple_cost (floating point)

Sets the planner’s estimate of the cost of processing each row during a query. The default is 0.01.

cpu_index_tuple_cost (floating point)

Sets the planner’s estimate of the cost of processing each index entry during an index scan. The
default is 0.005.

cpu_operator_cost (floating point)

Sets the planner’s estimate of the cost of processing each operator or function executed during a
query. The default is 0.0025.

effective_cache_size (integer)

Sets the planner’s assumption about the effective size of the disk cache that is available to a single
query. This is factored into estimates of the cost of using an index; a higher value makes it more
likely index scans will be used, a lower value makes it more likely sequential scans will be used.
When setting this parameter you should consider both PostgreSQL’s shared buffers and the portion
of the kernel’s disk cache that will be used for PostgreSQL data files. Also, take into account the
expected number of concurrent queries on different tables, since they will have to share the available
space. This parameter has no effect on the size of shared memory allocated by PostgreSQL, nor does
it reserve kernel disk cache; it is used only for estimation purposes. The system also does not assume
data remains in the disk cache between queries. The default is 128 megabytes (128MB).

18.7.3. Genetic Query Optimizer
The genetic query optimizer (GEQO) is an algorithm that does query planning using heuristic searching.
This reduces planning time for complex queries (those joining many relations), at the cost of producing
plans that are sometimes inferior to those found by the normal exhaustive-search algorithm. For more
information see Chapter 51.

geqo (boolean)

Enables or disables genetic query optimization. This is on by default. It is usually best not to turn it
off in production; the geqo_threshold variable provides more granular control of GEQO.

geqo_threshold (integer)

Use genetic query optimization to plan queries with at least this many FROM items involved. (Note
that a FULL OUTER JOIN construct counts as only one FROM item.) The default is 12. For simpler
queries it is usually best to use the regular, exhaustive-search planner, but for queries with many
tables the exhaustive search takes too long, often longer than the penalty of executing a suboptimal
plan. Thus, a threshold on the size of the query is a convenient way to manage use of GEQO.

475

Chapter 18. Server Configuration

geqo_effort (integer)

Controls the trade-off between planning time and query plan quality in GEQO. This variable must be
an integer in the range from 1 to 10. The default value is five. Larger values increase the time spent
doing query planning, but also increase the likelihood that an efficient query plan will be chosen.

geqo_effort doesn’t actually do anything directly; it is only used to compute the default values for
the other variables that influence GEQO behavior (described below). If you prefer, you can set the
other parameters by hand instead.

geqo_pool_size (integer)

Controls the pool size used by GEQO, that is the number of individuals in the genetic population.
It must be at least two, and useful values are typically 100 to 1000. If it is set to zero (the default
setting) then a suitable value is chosen based on geqo_effort and the number of tables in the query.

geqo_generations (integer)

Controls the number of generations used by GEQO, that is the number of iterations of the algorithm.
It must be at least one, and useful values are in the same range as the pool size. If it is set to zero (the
default setting) then a suitable value is chosen based on geqo_pool_size.

geqo_selection_bias (floating point)

Controls the selection bias used by GEQO. The selection bias is the selective pressure within the
population. Values can be from 1.50 to 2.00; the latter is the default.

geqo_seed (floating point)

Controls the initial value of the random number generator used by GEQO to select random paths
through the join order search space. The value can range from zero (the default) to one. Varying
the value changes the set of join paths explored, and may result in a better or worse best path being
found.

18.7.4. Other Planner Options

default_statistics_target (integer)

Sets the default statistics target for table columns without a column-specific target set via ALTER

TABLE SET STATISTICS. Larger values increase the time needed to do ANALYZE, but might im-
prove the quality of the planner’s estimates. The default is 100. For more information on the use of
statistics by the PostgreSQL query planner, refer to Section 14.2.

constraint_exclusion (enum)

Controls the query planner’s use of table constraints to optimize queries. The allowed values of
constraint_exclusion are on (examine constraints for all tables), off (never examine con-
straints), and partition (examine constraints only for inheritance child tables and UNION ALL

subqueries). partition is the default setting. It is often used with inheritance and partitioned tables
to improve performance.

When this parameter allows it for a particular table, the planner compares query conditions with
the table’s CHECK constraints, and omits scanning tables for which the conditions contradict the
constraints. For example:

CREATE TABLE parent(key integer, ...);

476

Chapter 18. Server Configuration

CREATE TABLE child1000(check (key between 1000 and 1999)) INHERITS(parent);
CREATE TABLE child2000(check (key between 2000 and 2999)) INHERITS(parent);
...
SELECT * FROM parent WHERE key = 2400;

With constraint exclusion enabled, this SELECT will not scan child1000 at all, improving perfor-
mance.

Currently, constraint exclusion is enabled by default only for cases that are often used to implement
table partitioning. Turning it on for all tables imposes extra planning overhead that is quite noticeable
on simple queries, and most often will yield no benefit for simple queries. If you have no partitioned
tables you might prefer to turn it off entirely.

Refer to Section 5.9.4 for more information on using constraint exclusion and partitioning.

cursor_tuple_fraction (floating point)

Sets the planner’s estimate of the fraction of a cursor’s rows that will be retrieved. The default is 0.1.
Smaller values of this setting bias the planner towards using “fast start” plans for cursors, which will
retrieve the first few rows quickly while perhaps taking a long time to fetch all rows. Larger values
put more emphasis on the total estimated time. At the maximum setting of 1.0, cursors are planned
exactly like regular queries, considering only the total estimated time and not how soon the first rows
might be delivered.

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resulting FROM list would have no more
than this many items. Smaller values reduce planning time but might yield inferior query plans. The
default is eight. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in
non-optimal plans. See Section 18.7.3.

join_collapse_limit (integer)

The planner will rewrite explicit JOIN constructs (except FULL JOINs) into lists of FROM items
whenever a list of no more than this many items would result. Smaller values reduce planning time
but might yield inferior query plans.

By default, this variable is set the same as from_collapse_limit, which is appropriate for most
uses. Setting it to 1 prevents any reordering of explicit JOINs. Thus, the explicit join order specified
in the query will be the actual order in which the relations are joined. Because the query planner does
not always choose the optimal join order, advanced users can elect to temporarily set this variable to
1, and then specify the join order they desire explicitly. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in
non-optimal plans. See Section 18.7.3.

477

Chapter 18. Server Configuration

18.8. Error Reporting and Logging

18.8.1. Where To Log

log_destination (string)

PostgreSQL supports several methods for logging server messages, including stderr, csvlog and sys-
log. On Windows, eventlog is also supported. Set this parameter to a list of desired log destinations
separated by commas. The default is to log to stderr only. This parameter can only be set in the
postgresql.conf file or on the server command line.

If csvlog is included in log_destination, log entries are output in “comma separated value”
(CSV) format, which is convenient for loading logs into programs. See Section 18.8.4 for details.
logging_collector must be enabled to generate CSV-format log output.

Note: On most Unix systems, you will need to alter the configuration of your system’s syslog
daemon in order to make use of the syslog option for log_destination. PostgreSQL can log to
syslog facilities LOCAL0 through LOCAL7 (see syslog_facility), but the default syslog configuration
on most platforms will discard all such messages. You will need to add something like:

local0.* /var/log/postgresql

to the syslog daemon’s configuration file to make it work.

On Windows, when you use the eventlog option for log_destination, you should register an
event source and its library with the operating system so that the Windows Event Viewer can
display event log messages cleanly. See Section 17.11 for details.

logging_collector (boolean)

This parameter enables the logging collector, which is a background process that captures log mes-
sages sent to stderr and redirects them into log files. This approach is often more useful than log-
ging to syslog, since some types of messages might not appear in syslog output. (One common
example is dynamic-linker failure messages; another is error messages produced by scripts such as
archive_command.) This parameter can only be set at server start.

Note: It is possible to log to stderr without using the logging collector; the log messages will
just go to wherever the server’s stderr is directed. However, that method is only suitable for low
log volumes, since it provides no convenient way to rotate log files. Also, on some platforms not
using the logging collector can result in lost or garbled log output, because multiple processes
writing concurrently to the same log file can overwrite each other’s output.

Note: The logging collector is designed to never lose messages. This means that in case of
extremely high load, server processes could be blocked while trying to send additional log mes-
sages when the collector has fallen behind. In contrast, syslog prefers to drop messages if it
cannot write them, which means it may fail to log some messages in such cases but it will not
block the rest of the system.

478

Chapter 18. Server Configuration

log_directory (string)

When logging_collector is enabled, this parameter determines the directory in which log files
will be created. It can be specified as an absolute path, or relative to the cluster data directory. This
parameter can only be set in the postgresql.conf file or on the server command line.

log_filename (string)

When logging_collector is enabled, this parameter sets the file names of the created log files.
The value is treated as a strftime pattern, so %-escapes can be used to specify time-varying file names.
(Note that if there are any time-zone-dependent %-escapes, the computation is done in the zone spec-
ified by log_timezone.) The supported %-escapes are similar to those listed in the Open Group’s
strftime 1 specification. Note that the system’s strftime is not used directly, so platform-specific (non-
standard) extensions do not work.

If you specify a file name without escapes, you should plan to use a log rotation utility to avoid
eventually filling the entire disk. In releases prior to 8.4, if no % escapes were present, PostgreSQL
would append the epoch of the new log file’s creation time, but this is no longer the case.

If CSV-format output is enabled in log_destination, .csv will be appended to the timestamped
log file name to create the file name for CSV-format output. (If log_filename ends in .log,
the suffix is replaced instead.) In the case of the example above, the CSV file name will be
server_log.1093827753.csv.

This parameter can only be set in the postgresql.conf file or on the server command line.

log_file_mode (integer)

On Unix systems this parameter sets the permissions for log files when logging_collector is
enabled. (On Microsoft Windows this parameter is ignored.) The parameter value is expected to be
a numeric mode specified in the format accepted by the chmod and umask system calls. (To use the
customary octal format the number must start with a 0 (zero).)

The default permissions are 0600, meaning only the server owner can read or write the log files.
The other commonly useful setting is 0640, allowing members of the owner’s group to read the
files. Note however that to make use of such a setting, you’ll need to alter log_directory to store
the files somewhere outside the cluster data directory. In any case, it’s unwise to make the log files
world-readable, since they might contain sensitive data.

This parameter can only be set in the postgresql.conf file or on the server command line.

log_rotation_age (integer)

When logging_collector is enabled, this parameter determines the maximum lifetime of an indi-
vidual log file. After this many minutes have elapsed, a new log file will be created. Set to zero to dis-
able time-based creation of new log files. This parameter can only be set in the postgresql.conf
file or on the server command line.

log_rotation_size (integer)

When logging_collector is enabled, this parameter determines the maximum size of an indi-
vidual log file. After this many kilobytes have been emitted into a log file, a new log file will be
created. Set to zero to disable size-based creation of new log files. This parameter can only be set in
the postgresql.conf file or on the server command line.

1. http://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html

479

Chapter 18. Server Configuration

log_truncate_on_rotation (boolean)

When logging_collector is enabled, this parameter will cause PostgreSQL to truncate (over-
write), rather than append to, any existing log file of the same name. However, truncation will occur
only when a new file is being opened due to time-based rotation, not during server startup or size-
based rotation. When off, pre-existing files will be appended to in all cases. For example, using this
setting in combination with a log_filename like postgresql-%H.log would result in generating
twenty-four hourly log files and then cyclically overwriting them. This parameter can only be set in
the postgresql.conf file or on the server command line.

Example: To keep 7 days of logs, one log file per day named server_log.Mon, server_log.Tue,
etc, and automatically overwrite last week’s log with this week’s log, set log_filename to
server_log.%a, log_truncate_on_rotation to on, and log_rotation_age to 1440.

Example: To keep 24 hours of logs, one log file per hour, but also rotate sooner if the log file size
exceeds 1GB, set log_filename to server_log.%H%M, log_truncate_on_rotation

to on, log_rotation_age to 60, and log_rotation_size to 1000000. Including %M in
log_filename allows any size-driven rotations that might occur to select a file name different
from the hour’s initial file name.

syslog_facility (enum)

When logging to syslog is enabled, this parameter determines the syslog “facility” to be used. You can
choose from LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7; the default
is LOCAL0. See also the documentation of your system’s syslog daemon. This parameter can only be
set in the postgresql.conf file or on the server command line.

syslog_ident (string)

When logging to syslog is enabled, this parameter determines the program name used to identify
PostgreSQL messages in syslog logs. The default is postgres. This parameter can only be set in
the postgresql.conf file or on the server command line.

event_source (string)

When logging to event log is enabled, this parameter determines the program name used to identify
PostgreSQL messages in the log. The default is PostgreSQL. This parameter can only be set in the
postgresql.conf file or on the server command line.

18.8.2. When To Log

client_min_messages (enum)

Controls which message levels are sent to the client. Valid values are DEBUG5, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, LOG, NOTICE, WARNING, ERROR, FATAL, and PANIC. Each level includes all the
levels that follow it. The later the level, the fewer messages are sent. The default is NOTICE. Note
that LOG has a different rank here than in log_min_messages.

log_min_messages (enum)

Controls which message levels are written to the server log. Valid values are DEBUG5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC. Each level
includes all the levels that follow it. The later the level, the fewer messages are sent to the log. The

480

Chapter 18. Server Configuration

default is WARNING. Note that LOG has a different rank here than in client_min_messages. Only
superusers can change this setting.

log_min_error_statement (enum)

Controls which SQL statements that cause an error condition are recorded in the server log. The
current SQL statement is included in the log entry for any message of the specified severity or higher.
Valid values are DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR,
LOG, FATAL, and PANIC. The default is ERROR, which means statements causing errors, log messages,
fatal errors, or panics will be logged. To effectively turn off logging of failing statements, set this
parameter to PANIC. Only superusers can change this setting.

log_min_duration_statement (integer)

Causes the duration of each completed statement to be logged if the statement ran for at least the
specified number of milliseconds. Setting this to zero prints all statement durations. Minus-one (the
default) disables logging statement durations. For example, if you set it to 250ms then all SQL
statements that run 250ms or longer will be logged. Enabling this parameter can be helpful in tracking
down unoptimized queries in your applications. Only superusers can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note: When using this option together with log_statement, the text of statements that are logged
because of log_statement will not be repeated in the duration log message. If you are not using
syslog, it is recommended that you log the PID or session ID using log_line_prefix so that you
can link the statement message to the later duration message using the process ID or session
ID.

Table 18-1 explains the message severity levels used by PostgreSQL. If logging output is sent to syslog or
Windows’ eventlog, the severity levels are translated as shown in the table.

Table 18-1. Message Severity Levels

Severity Usage syslog eventlog
DEBUG1..DEBUG5 Provides successively-

more-detailed
information for use by
developers.

DEBUG INFORMATION

INFO Provides information
implicitly requested by
the user, e.g., output
from VACUUM

VERBOSE.

INFO INFORMATION

481

Chapter 18. Server Configuration

Severity Usage syslog eventlog
NOTICE Provides information

that might be helpful to
users, e.g., notice of
truncation of long
identifiers.

NOTICE INFORMATION

WARNING Provides warnings of
likely problems, e.g.,
COMMIT outside a
transaction block.

NOTICE WARNING

ERROR Reports an error that
caused the current
command to abort.

WARNING ERROR

LOG Reports information of
interest to
administrators, e.g.,
checkpoint activity.

INFO INFORMATION

FATAL Reports an error that
caused the current
session to abort.

ERR ERROR

PANIC Reports an error that
caused all database
sessions to abort.

CRIT ERROR

18.8.3. What To Log

application_name (string)

The application_name can be any string of less than NAMEDATALEN characters (64 characters in
a standard build). It is typically set by an application upon connection to the server. The name will be
displayed in the pg_stat_activity view and included in CSV log entries. It can also be included
in regular log entries via the log_line_prefix parameter. Only printable ASCII characters may be used
in the application_name value. Other characters will be replaced with question marks (?).

debug_print_parse (boolean)
debug_print_rewritten (boolean)
debug_print_plan (boolean)

These parameters enable various debugging output to be emitted. When set, they print the resulting
parse tree, the query rewriter output, or the execution plan for each executed query. These messages
are emitted at LOG message level, so by default they will appear in the server log but will not be
sent to the client. You can change that by adjusting client_min_messages and/or log_min_messages.
These parameters are off by default.

debug_pretty_print (boolean)

When set, debug_pretty_print indents the messages produced by debug_print_parse,

482

Chapter 18. Server Configuration

debug_print_rewritten, or debug_print_plan. This results in more readable but much
longer output than the “compact” format used when it is off. It is on by default.

log_checkpoints (boolean)

Causes checkpoints and restartpoints to be logged in the server log. Some statistics are included in
the log messages, including the number of buffers written and the time spent writing them. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is off.

log_connections (boolean)

Causes each attempted connection to the server to be logged, as well as successful completion of
client authentication. This parameter cannot be changed after session start. The default is off.

Note: Some client programs, like psql, attempt to connect twice while determining if a password
is required, so duplicate “connection received” messages do not necessarily indicate a problem.

log_disconnections (boolean)

This outputs a line in the server log similar to log_connections but at session termination, and
includes the duration of the session. This is off by default. This parameter cannot be changed after
session start.

log_duration (boolean)

Causes the duration of every completed statement to be logged. The default is off. Only superusers
can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note: The difference between setting this option and setting log_min_duration_statement to zero
is that exceeding log_min_duration_statement forces the text of the query to be logged, but
this option doesn’t. Thus, if log_duration is on and log_min_duration_statement has a pos-
itive value, all durations are logged but the query text is included only for statements exceeding
the threshold. This behavior can be useful for gathering statistics in high-load installations.

log_error_verbosity (enum)

Controls the amount of detail written in the server log for each message that is logged. Valid values
are TERSE, DEFAULT, and VERBOSE, each adding more fields to displayed messages. TERSE excludes
the logging of DETAIL, HINT, QUERY, and CONTEXT error information. VERBOSE output includes the
SQLSTATE error code (see also Appendix A) and the source code file name, function name, and line
number that generated the error. Only superusers can change this setting.

log_hostname (boolean)

By default, connection log messages only show the IP address of the connecting host. Turning this
parameter on causes logging of the host name as well. Note that depending on your host name
resolution setup this might impose a non-negligible performance penalty. This parameter can only be
set in the postgresql.conf file or on the server command line.

483

Chapter 18. Server Configuration

log_line_prefix (string)

This is a printf-style string that is output at the beginning of each log line. % characters begin “es-
cape sequences” that are replaced with status information as outlined below. Unrecognized escapes
are ignored. Other characters are copied straight to the log line. Some escapes are only recognized
by session processes, and are ignored by background processes such as the main server process. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is an empty string.

Escape Effect Session only
%a Application name yes

%u User name yes

%d Database name yes

%r Remote host name or IP
address, and remote port

yes

%h Remote host name or IP
address

yes

%p Process ID no

%t Time stamp without
milliseconds

no

%m Time stamp with milliseconds no

%i Command tag: type of
session’s current command

yes

%e SQLSTATE error code no

%c Session ID: see below no

%l Number of the log line for each
session or process, starting at 1

no

%s Process start time stamp no

%v Virtual transaction ID
(backendID/localXID)

no

%x Transaction ID (0 if none is
assigned)

no

%q Produces no output, but tells
non-session processes to stop at
this point in the string; ignored
by session processes

no

%% Literal % no

The %c escape prints a quasi-unique session identifier, consisting of two 4-byte hexadecimal numbers
(without leading zeros) separated by a dot. The numbers are the process start time and the process
ID, so %c can also be used as a space saving way of printing those items. For example, to generate
the session identifier from pg_stat_activity, use this query:

SELECT to_hex(EXTRACT(EPOCH FROM backend_start)::integer) || ’.’ ||
to_hex(pid)

FROM pg_stat_activity;

484

Chapter 18. Server Configuration

Tip: If you set a nonempty value for log_line_prefix, you should usually make its last character
be a space, to provide visual separation from the rest of the log line. A punctuation character can
be used too.

Tip: Syslog produces its own time stamp and process ID information, so you probably do not
want to include those escapes if you are logging to syslog.

log_lock_waits (boolean)

Controls whether a log message is produced when a session waits longer than deadlock_timeout to
acquire a lock. This is useful in determining if lock waits are causing poor performance. The default
is off.

log_statement (enum)

Controls which SQL statements are logged. Valid values are none (off), ddl, mod, and all (all
statements). ddl logs all data definition statements, such as CREATE, ALTER, and DROP statements.
mod logs all ddl statements, plus data-modifying statements such as INSERT, UPDATE, DELETE,
TRUNCATE, and COPY FROM. PREPARE, EXECUTE, and EXPLAIN ANALYZE statements are also
logged if their contained command is of an appropriate type. For clients using extended query
protocol, logging occurs when an Execute message is received, and values of the Bind parameters
are included (with any embedded single-quote marks doubled).

The default is none. Only superusers can change this setting.

Note: Statements that contain simple syntax errors are not logged even by the log_statement

= all setting, because the log message is emitted only after basic parsing has been done to
determine the statement type. In the case of extended query protocol, this setting likewise does
not log statements that fail before the Execute phase (i.e., during parse analysis or planning).
Set log_min_error_statement to ERROR (or lower) to log such statements.

log_temp_files (integer)

Controls logging of temporary file names and sizes. Temporary files can be created for sorts, hashes,
and temporary query results. A log entry is made for each temporary file when it is deleted. A value
of zero logs all temporary file information, while positive values log only files whose size is greater
than or equal to the specified number of kilobytes. The default setting is -1, which disables such
logging. Only superusers can change this setting.

log_timezone (string)

Sets the time zone used for timestamps written in the server log. Unlike TimeZone, this value is
cluster-wide, so that all sessions will report timestamps consistently. The built-in default is GMT, but
that is typically overridden in postgresql.conf; initdb will install a setting there corresponding
to its system environment. See Section 8.5.3 for more information. This parameter can only be set in
the postgresql.conf file or on the server command line.

485

Chapter 18. Server Configuration

18.8.4. Using CSV-Format Log Output
Including csvlog in the log_destination list provides a convenient way to import log files into a
database table. This option emits log lines in comma-separated-values (CSV) format, with these columns:
time stamp with milliseconds, user name, database name, process ID, client host:port number, session
ID, per-session line number, command tag, session start time, virtual transaction ID, regular transaction
ID, error severity, SQLSTATE code, error message, error message detail, hint, internal query that led to
the error (if any), character count of the error position therein, error context, user query that led to the
error (if any and enabled by log_min_error_statement), character count of the error position therein,
location of the error in the PostgreSQL source code (if log_error_verbosity is set to verbose), and
application name. Here is a sample table definition for storing CSV-format log output:

CREATE TABLE postgres_log
(
log_time timestamp(3) with time zone,
user_name text,
database_name text,
process_id integer,
connection_from text,
session_id text,
session_line_num bigint,
command_tag text,
session_start_time timestamp with time zone,
virtual_transaction_id text,
transaction_id bigint,
error_severity text,
sql_state_code text,
message text,
detail text,
hint text,
internal_query text,
internal_query_pos integer,
context text,
query text,
query_pos integer,
location text,
application_name text,
PRIMARY KEY (session_id, session_line_num)

);

To import a log file into this table, use the COPY FROM command:

COPY postgres_log FROM ’/full/path/to/logfile.csv’ WITH csv;

There are a few things you need to do to simplify importing CSV log files:

1. Set log_filename and log_rotation_age to provide a consistent, predictable naming scheme
for your log files. This lets you predict what the file name will be and know when an individual log
file is complete and therefore ready to be imported.

486

Chapter 18. Server Configuration

2. Set log_rotation_size to 0 to disable size-based log rotation, as it makes the log file name diffi-
cult to predict.

3. Set log_truncate_on_rotation to on so that old log data isn’t mixed with the new in the same
file.

4. The table definition above includes a primary key specification. This is useful to protect against
accidentally importing the same information twice. The COPY command commits all of the data it
imports at one time, so any error will cause the entire import to fail. If you import a partial log file
and later import the file again when it is complete, the primary key violation will cause the import
to fail. Wait until the log is complete and closed before importing. This procedure will also protect
against accidentally importing a partial line that hasn’t been completely written, which would also
cause COPY to fail.

18.9. Run-time Statistics

18.9.1. Query and Index Statistics Collector
These parameters control server-wide statistics collection features. When statistics collection is enabled,
the data that is produced can be accessed via the pg_stat and pg_statio family of system views. Refer
to Chapter 27 for more information.

track_activities (boolean)

Enables the collection of information on the currently executing command of each session, along
with the time when that command began execution. This parameter is on by default. Note that even
when enabled, this information is not visible to all users, only to superusers and the user owning the
session being reported on, so it should not represent a security risk. Only superusers can change this
setting.

track_activity_query_size (integer)

Specifies the number of bytes reserved to track the currently executing command for each active
session, for the pg_stat_activity.query field. The default value is 1024. This parameter can
only be set at server start.

track_counts (boolean)

Enables collection of statistics on database activity. This parameter is on by default, because the
autovacuum daemon needs the collected information. Only superusers can change this setting.

track_io_timing (boolean)

Enables timing of database I/O calls. This parameter is off by default, because it will repeatedly query
the operating system for the current time, which may cause significant overhead on some platforms.
You can use the pg_test_timing tool to measure the overhead of timing on your system. I/O timing
information is displayed in pg_stat_database, in the output of EXPLAIN when the BUFFERS option
is used, and by pg_stat_statements. Only superusers can change this setting.

487

Chapter 18. Server Configuration

track_functions (enum)

Enables tracking of function call counts and time used. Specify pl to track only procedural-language
functions, all to also track SQL and C language functions. The default is none, which disables
function statistics tracking. Only superusers can change this setting.

Note: SQL-language functions that are simple enough to be “inlined” into the calling query will
not be tracked, regardless of this setting.

update_process_title (boolean)

Enables updating of the process title every time a new SQL command is received by the server. The
process title is typically viewed by the ps command, or in Windows by using the Process Explorer.
Only superusers can change this setting.

stats_temp_directory (string)

Sets the directory to store temporary statistics data in. This can be a path relative to the data directory
or an absolute path. The default is pg_stat_tmp. Pointing this at a RAM-based file system will
decrease physical I/O requirements and can lead to improved performance. This parameter can only
be set in the postgresql.conf file or on the server command line.

18.9.2. Statistics Monitoring

log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)
log_executor_stats (boolean)

For each query, output performance statistics of the respective module to the server log. This
is a crude profiling instrument, similar to the Unix getrusage() operating system facility.
log_statement_stats reports total statement statistics, while the others report per-module
statistics. log_statement_stats cannot be enabled together with any of the per-module options.
All of these options are disabled by default. Only superusers can change these settings.

18.10. Automatic Vacuuming
These settings control the behavior of the autovacuum feature. Refer to Section 23.1.6 for more informa-
tion.

autovacuum (boolean)

Controls whether the server should run the autovacuum launcher daemon. This is on by default;
however, track_counts must also be enabled for autovacuum to work. This parameter can only be set
in the postgresql.conf file or on the server command line.

488

Chapter 18. Server Configuration

Note that even when this parameter is disabled, the system will launch autovacuum processes if
necessary to prevent transaction ID wraparound. See Section 23.1.5 for more information.

log_autovacuum_min_duration (integer)

Causes each action executed by autovacuum to be logged if it ran for at least the specified number
of milliseconds. Setting this to zero logs all autovacuum actions. Minus-one (the default) disables
logging autovacuum actions. For example, if you set this to 250ms then all automatic vacuums and
analyzes that run 250ms or longer will be logged. In addition, when this parameter is set to any value
other than -1, a message will be logged if an autovacuum action is skipped due to the existence of a
conflicting lock. Enabling this parameter can be helpful in tracking autovacuum activity. This setting
can only be set in the postgresql.conf file or on the server command line.

autovacuum_max_workers (integer)

Specifies the maximum number of autovacuum processes (other than the autovacuum launcher)
which may be running at any one time. The default is three. This parameter can only be set at server
start.

autovacuum_naptime (integer)

Specifies the minimum delay between autovacuum runs on any given database. In each round the
daemon examines the database and issues VACUUM and ANALYZE commands as needed for tables in
that database. The delay is measured in seconds, and the default is one minute (1min). This parameter
can only be set in the postgresql.conf file or on the server command line.

autovacuum_vacuum_threshold (integer)

Specifies the minimum number of updated or deleted tuples needed to trigger a VACUUM in any one
table. The default is 50 tuples. This parameter can only be set in the postgresql.conf file or on
the server command line. This setting can be overridden for individual tables by changing storage
parameters.

autovacuum_analyze_threshold (integer)

Specifies the minimum number of inserted, updated or deleted tuples needed to trigger an ANALYZE

in any one table. The default is 50 tuples. This parameter can only be set in the postgresql.conf
file or on the server command line. This setting can be overridden for individual tables by changing
storage parameters.

autovacuum_vacuum_scale_factor (floating point)

Specifies a fraction of the table size to add to autovacuum_vacuum_threshold when deciding
whether to trigger a VACUUM. The default is 0.2 (20% of table size). This parameter can only be set
in the postgresql.conf file or on the server command line. This setting can be overridden for
individual tables by changing storage parameters.

autovacuum_analyze_scale_factor (floating point)

Specifies a fraction of the table size to add to autovacuum_analyze_threshold when deciding
whether to trigger an ANALYZE. The default is 0.1 (10% of table size). This parameter can only be
set in the postgresql.conf file or on the server command line. This setting can be overridden for
individual tables by changing storage parameters.

autovacuum_freeze_max_age (integer)

Specifies the maximum age (in transactions) that a table’s pg_class.relfrozenxid field can attain
before a VACUUM operation is forced to prevent transaction ID wraparound within the table. Note

489

Chapter 18. Server Configuration

that the system will launch autovacuum processes to prevent wraparound even when autovacuum is
otherwise disabled.

Vacuum also allows removal of old files from the pg_clog subdirectory, which is why the default
is a relatively low 200 million transactions. This parameter can only be set at server start, but the
setting can be reduced for individual tables by changing storage parameters. For more information
see Section 23.1.5.

autovacuum_vacuum_cost_delay (integer)

Specifies the cost delay value that will be used in automatic VACUUM operations. If -1 is specified, the
regular vacuum_cost_delay value will be used. The default value is 20 milliseconds. This parameter
can only be set in the postgresql.conf file or on the server command line. This setting can be
overridden for individual tables by changing storage parameters.

autovacuum_vacuum_cost_limit (integer)

Specifies the cost limit value that will be used in automatic VACUUM operations. If -1 is specified
(which is the default), the regular vacuum_cost_limit value will be used. Note that the value is dis-
tributed proportionally among the running autovacuum workers, if there is more than one, so that the
sum of the limits of each worker never exceeds the limit on this variable. This parameter can only be
set in the postgresql.conf file or on the server command line. This setting can be overridden for
individual tables by changing storage parameters.

18.11. Client Connection Defaults

18.11.1. Statement Behavior

search_path (string)

This variable specifies the order in which schemas are searched when an object (table, data type,
function, etc.) is referenced by a simple name with no schema specified. When there are objects of
identical names in different schemas, the one found first in the search path is used. An object that
is not in any of the schemas in the search path can only be referenced by specifying its containing
schema with a qualified (dotted) name.

The value for search_path must be a comma-separated list of schema names. Any name that is not
an existing schema, or is a schema for which the user does not have USAGE permission, is silently
ignored.

If one of the list items is the special name $user, then the schema having the name returned by
SESSION_USER is substituted, if there is such a schema and the user has USAGE permission for it. (If
not, $user is ignored.)

The system catalog schema, pg_catalog, is always searched, whether it is mentioned in the path
or not. If it is mentioned in the path then it will be searched in the specified order. If pg_catalog is
not in the path then it will be searched before searching any of the path items.

Likewise, the current session’s temporary-table schema, pg_temp_nnn, is always searched if it ex-
ists. It can be explicitly listed in the path by using the alias pg_temp. If it is not listed in the path then
it is searched first (even before pg_catalog). However, the temporary schema is only searched for

490

Chapter 18. Server Configuration

relation (table, view, sequence, etc) and data type names. It is never searched for function or operator
names.

When objects are created without specifying a particular target schema, they will be placed in the
first valid schema named in search_path. An error is reported if the search path is empty.

The default value for this parameter is "$user", public. This setting supports shared use of
a database (where no users have private schemas, and all share use of public), private per-user
schemas, and combinations of these. Other effects can be obtained by altering the default search path
setting, either globally or per-user.

The current effective value of the search path can be examined via the SQL function
current_schemas (see Section 9.25). This is not quite the same as examining the value of
search_path, since current_schemas shows how the items appearing in search_path were
resolved.

For more information on schema handling, see Section 5.7.

default_tablespace (string)

This variable specifies the default tablespace in which to create objects (tables and indexes) when a
CREATE command does not explicitly specify a tablespace.

The value is either the name of a tablespace, or an empty string to specify using the default tablespace
of the current database. If the value does not match the name of any existing tablespace, PostgreSQL
will automatically use the default tablespace of the current database. If a nondefault tablespace is
specified, the user must have CREATE privilege for it, or creation attempts will fail.

This variable is not used for temporary tables; for them, temp_tablespaces is consulted instead.

This variable is also not used when creating databases. By default, a new database inherits its ta-
blespace setting from the template database it is copied from.

For more information on tablespaces, see Section 21.6.

temp_tablespaces (string)

This variable specifies tablespaces in which to create temporary objects (temp tables and indexes on
temp tables) when a CREATE command does not explicitly specify a tablespace. Temporary files for
purposes such as sorting large data sets are also created in these tablespaces.

The value is a list of names of tablespaces. When there is more than one name in the list, PostgreSQL
chooses a random member of the list each time a temporary object is to be created; except that within
a transaction, successively created temporary objects are placed in successive tablespaces from the
list. If the selected element of the list is an empty string, PostgreSQL will automatically use the
default tablespace of the current database instead.

When temp_tablespaces is set interactively, specifying a nonexistent tablespace is an error, as is
specifying a tablespace for which the user does not have CREATE privilege. However, when using a
previously set value, nonexistent tablespaces are ignored, as are tablespaces for which the user lacks
CREATE privilege. In particular, this rule applies when using a value set in postgresql.conf.

The default value is an empty string, which results in all temporary objects being created in the
default tablespace of the current database.

See also default_tablespace.

491

Chapter 18. Server Configuration

check_function_bodies (boolean)

This parameter is normally on. When set to off, it disables validation of the function body string
during CREATE FUNCTION. Disabling validation avoids side effects of the validation process and
avoids false positives due to problems such as forward references. Set this parameter to off before
loading functions on behalf of other users; pg_dump does so automatically.

default_transaction_isolation (enum)

Each SQL transaction has an isolation level, which can be either “read uncommitted”, “read commit-
ted”, “repeatable read”, or “serializable”. This parameter controls the default isolation level of each
new transaction. The default is “read committed”.

Consult Chapter 13 and SET TRANSACTION for more information.

default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the default
read-only status of each new transaction. The default is off (read/write).

Consult SET TRANSACTION for more information.

default_transaction_deferrable (boolean)

When running at the serializable isolation level, a deferrable read-only SQL transaction may
be delayed before it is allowed to proceed. However, once it begins executing it does not incur any
of the overhead required to ensure serializability; so serialization code will have no reason to force
it to abort because of concurrent updates, making this option suitable for long-running read-only
transactions.

This parameter controls the default deferrable status of each new transaction. It currently has no
effect on read-write transactions or those operating at isolation levels lower than serializable.
The default is off.

Consult SET TRANSACTION for more information.

session_replication_role (enum)

Controls firing of replication-related triggers and rules for the current session. Setting this variable
requires superuser privilege and results in discarding any previously cached query plans. Possible
values are origin (the default), replica and local. See ALTER TABLE for more information.

statement_timeout (integer)

Abort any statement that takes over the specified number of milliseconds, starting from the time the
command arrives at the server from the client. If log_min_error_statement is set to ERROR or
lower, the statement that timed out will also be logged. A value of zero (the default) turns this off.

Setting statement_timeout in postgresql.conf is not recommended because it affects all ses-
sions.

vacuum_freeze_table_age (integer)

VACUUM performs a whole-table scan if the table’s pg_class.relfrozenxid field has reached the
age specified by this setting. The default is 150 million transactions. Although users can set this
value anywhere from zero to one billion, VACUUM will silently limit the effective value to 95% of
autovacuum_freeze_max_age, so that a periodical manual VACUUM has a chance to run before an
anti-wraparound autovacuum is launched for the table. For more information see Section 23.1.5.

492

Chapter 18. Server Configuration

vacuum_freeze_min_age (integer)

Specifies the cutoff age (in transactions) that VACUUM should use to decide whether to replace trans-
action IDs with FrozenXID while scanning a table. The default is 50 million transactions. Although
users can set this value anywhere from zero to one billion, VACUUM will silently limit the effective
value to half the value of autovacuum_freeze_max_age, so that there is not an unreasonably short
time between forced autovacuums. For more information see Section 23.1.5.

bytea_output (enum)

Sets the output format for values of type bytea. Valid values are hex (the default) and escape

(the traditional PostgreSQL format). See Section 8.4 for more information. The bytea type always
accepts both formats on input, regardless of this setting.

xmlbinary (enum)

Sets how binary values are to be encoded in XML. This applies for example when bytea values
are converted to XML by the functions xmlelement or xmlforest. Possible values are base64

and hex, which are both defined in the XML Schema standard. The default is base64. For further
information about XML-related functions, see Section 9.14.

The actual choice here is mostly a matter of taste, constrained only by possible restrictions in client
applications. Both methods support all possible values, although the hex encoding will be somewhat
larger than the base64 encoding.

xmloption (enum)

Sets whether DOCUMENT or CONTENT is implicit when converting between XML and character string
values. See Section 8.13 for a description of this. Valid values are DOCUMENT and CONTENT. The
default is CONTENT.

According to the SQL standard, the command to set this option is

SET XML OPTION { DOCUMENT | CONTENT };

This syntax is also available in PostgreSQL.

18.11.2. Locale and Formatting

DateStyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous
date input values. For historical reasons, this variable contains two independent components: the
output format specification (ISO, Postgres, SQL, or German) and the input/output specification for
year/month/day ordering (DMY, MDY, or YMD). These can be set separately or together. The keywords
Euro and European are synonyms for DMY; the keywords US, NonEuro, and NonEuropean are
synonyms for MDY. See Section 8.5 for more information. The built-in default is ISO, MDY, but
initdb will initialize the configuration file with a setting that corresponds to the behavior of the chosen
lc_time locale.

IntervalStyle (enum)

Sets the display format for interval values. The value sql_standard will produce output match-
ing SQL standard interval literals. The value postgres (which is the default) will produce out-
put matching PostgreSQL releases prior to 8.4 when the DateStyle parameter was set to ISO. The

493

Chapter 18. Server Configuration

value postgres_verbose will produce output matching PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output. The value iso_8601 will produce output
matching the time interval “format with designators” defined in section 4.4.3.2 of ISO 8601.

The IntervalStyle parameter also affects the interpretation of ambiguous interval input. See Sec-
tion 8.5.4 for more information.

TimeZone (string)

Sets the time zone for displaying and interpreting time stamps. The built-in default is GMT, but that
is typically overridden in postgresql.conf; initdb will install a setting there corresponding to its
system environment. See Section 8.5.3 for more information.

timezone_abbreviations (string)

Sets the collection of time zone abbreviations that will be accepted by the server for datetime input.
The default is ’Default’, which is a collection that works in most of the world; there are also
’Australia’ and ’India’, and other collections can be defined for a particular installation. See
Appendix B for more information.

extra_float_digits (integer)

This parameter adjusts the number of digits displayed for floating-point values, including float4,
float8, and geometric data types. The parameter value is added to the standard number of dig-
its (FLT_DIG or DBL_DIG as appropriate). The value can be set as high as 3, to include partially-
significant digits; this is especially useful for dumping float data that needs to be restored exactly. Or
it can be set negative to suppress unwanted digits. See also Section 8.1.3.

client_encoding (string)

Sets the client-side encoding (character set). The default is to use the database encoding. The char-
acter sets supported by the PostgreSQL server are described in Section 22.3.1.

lc_messages (string)

Sets the language in which messages are displayed. Acceptable values are system-dependent; see
Section 22.1 for more information. If this variable is set to the empty string (which is the default)
then the value is inherited from the execution environment of the server in a system-dependent way.

On some systems, this locale category does not exist. Setting this variable will still work, but there
will be no effect. Also, there is a chance that no translated messages for the desired language exist.
In that case you will continue to see the English messages.

Only superusers can change this setting, because it affects the messages sent to the server log as well
as to the client, and an improper value might obscure the readability of the server logs.

lc_monetary (string)

Sets the locale to use for formatting monetary amounts, for example with the to_char family of
functions. Acceptable values are system-dependent; see Section 22.1 for more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

lc_numeric (string)

Sets the locale to use for formatting numbers, for example with the to_char family of functions.
Acceptable values are system-dependent; see Section 22.1 for more information. If this variable is set

494

Chapter 18. Server Configuration

to the empty string (which is the default) then the value is inherited from the execution environment
of the server in a system-dependent way.

lc_time (string)

Sets the locale to use for formatting dates and times, for example with the to_char family of func-
tions. Acceptable values are system-dependent; see Section 22.1 for more information. If this vari-
able is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

default_text_search_config (string)

Selects the text search configuration that is used by those variants of the text search functions that do
not have an explicit argument specifying the configuration. See Chapter 12 for further information.
The built-in default is pg_catalog.simple, but initdb will initialize the configuration file with a
setting that corresponds to the chosen lc_ctype locale, if a configuration matching that locale can
be identified.

18.11.3. Other Defaults

dynamic_library_path (string)

If a dynamically loadable module needs to be opened and the file name specified in the CREATE

FUNCTION or LOAD command does not have a directory component (i.e., the name does not contain
a slash), the system will search this path for the required file.

The value for dynamic_library_path must be a list of absolute directory paths separated by
colons (or semi-colons on Windows). If a list element starts with the special string $libdir, the
compiled-in PostgreSQL package library directory is substituted for $libdir; this is where the
modules provided by the standard PostgreSQL distribution are installed. (Use pg_config

--pkglibdir to find out the name of this directory.) For example:

dynamic_library_path = ’/usr/local/lib/postgresql:/home/my_project/lib:$libdir’

or, in a Windows environment:

dynamic_library_path = ’C:\tools\postgresql;H:\my_project\lib;$libdir’

The default value for this parameter is ’$libdir’. If the value is set to an empty string, the automatic
path search is turned off.

This parameter can be changed at run time by superusers, but a setting done that way will only persist
until the end of the client connection, so this method should be reserved for development purposes.
The recommended way to set this parameter is in the postgresql.conf configuration file.

gin_fuzzy_search_limit (integer)

Soft upper limit of the size of the set returned by GIN index scans. For more information see Section
55.4.

local_preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at connection start. If
more than one library is to be loaded, separate their names with commas. All library names are
converted to lower case unless double-quoted. This parameter cannot be changed after the start of a
particular session.

495

Chapter 18. Server Configuration

Because this is not a superuser-only option, the libraries that can be loaded are restricted to those
appearing in the plugins subdirectory of the installation’s standard library directory. (It is the
database administrator’s responsibility to ensure that only “safe” libraries are installed there.)
Entries in local_preload_libraries can specify this directory explicitly, for example
$libdir/plugins/mylib, or just specify the library name — mylib would have the same effect
as $libdir/plugins/mylib.

Unlike shared_preload_libraries, there is no performance advantage to loading a library at session
start rather than when it is first used. Rather, the intent of this feature is to allow debugging or
performance-measurement libraries to be loaded into specific sessions without an explicit LOAD com-
mand being given. For example, debugging could be enabled for all sessions under a given user name
by setting this parameter with ALTER ROLE SET.

If a specified library is not found, the connection attempt will fail.

Every PostgreSQL-supported library has a “magic block” that is checked to guarantee compatibility.
For this reason, non-PostgreSQL libraries cannot be loaded in this way.

18.12. Lock Management

deadlock_timeout (integer)

This is the amount of time, in milliseconds, to wait on a lock before checking to see if there is a
deadlock condition. The check for deadlock is relatively expensive, so the server doesn’t run it every
time it waits for a lock. We optimistically assume that deadlocks are not common in production
applications and just wait on the lock for a while before checking for a deadlock. Increasing this
value reduces the amount of time wasted in needless deadlock checks, but slows down reporting of
real deadlock errors. The default is one second (1s), which is probably about the smallest value you
would want in practice. On a heavily loaded server you might want to raise it. Ideally the setting
should exceed your typical transaction time, so as to improve the odds that a lock will be released
before the waiter decides to check for deadlock. Only superusers can change this setting.

When log_lock_waits is set, this parameter also determines the length of time to wait before a log
message is issued about the lock wait. If you are trying to investigate locking delays you might want
to set a shorter than normal deadlock_timeout.

max_locks_per_transaction (integer)

The shared lock table tracks locks on max_locks_per_transaction * (max_connections +
max_prepared_transactions) objects (e.g., tables); hence, no more than this many distinct objects
can be locked at any one time. This parameter controls the average number of object locks allocated
for each transaction; individual transactions can lock more objects as long as the locks of all
transactions fit in the lock table. This is not the number of rows that can be locked; that value is
unlimited. The default, 64, has historically proven sufficient, but you might need to raise this value
if you have clients that touch many different tables in a single transaction. This parameter can only
be set at server start.

Increasing this parameter might cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 17.4.1 for information on how to
adjust those parameters, if necessary.

496

Chapter 18. Server Configuration

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

max_pred_locks_per_transaction (integer)

The shared predicate lock table tracks locks on max_pred_locks_per_transaction *
(max_connections + max_prepared_transactions) objects (e.g., tables); hence, no more than this
many distinct objects can be locked at any one time. This parameter controls the average number of
object locks allocated for each transaction; individual transactions can lock more objects as long as
the locks of all transactions fit in the lock table. This is not the number of rows that can be locked;
that value is unlimited. The default, 64, has generally been sufficient in testing, but you might
need to raise this value if you have clients that touch many different tables in a single serializable
transaction. This parameter can only be set at server start.

Increasing this parameter might cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. See Section 17.4.1 for information on how to
adjust those parameters, if necessary.

18.13. Version and Platform Compatibility

18.13.1. Previous PostgreSQL Versions

array_nulls (boolean)

This controls whether the array input parser recognizes unquoted NULL as specifying a null array
element. By default, this is on, allowing array values containing null values to be entered. However,
PostgreSQL versions before 8.2 did not support null values in arrays, and therefore would treat NULL
as specifying a normal array element with the string value “NULL”. For backward compatibility with
applications that require the old behavior, this variable can be turned off.

Note that it is possible to create array values containing null values even when this variable is off.

backslash_quote (enum)

This controls whether a quote mark can be represented by \’ in a string literal. The preferred, SQL-
standard way to represent a quote mark is by doubling it (”) but PostgreSQL has historically also
accepted \’. However, use of \’ creates security risks because in some client character set encod-
ings, there are multibyte characters in which the last byte is numerically equivalent to ASCII \. If
client-side code does escaping incorrectly then a SQL-injection attack is possible. This risk can be
prevented by making the server reject queries in which a quote mark appears to be escaped by a
backslash. The allowed values of backslash_quote are on (allow \’ always), off (reject always),
and safe_encoding (allow only if client encoding does not allow ASCII \ within a multibyte
character). safe_encoding is the default setting.

Note that in a standard-conforming string literal, \ just means \ anyway. This parameter only affects
the handling of non-standard-conforming literals, including escape string syntax (E’...’).

default_with_oids (boolean)

This controls whether CREATE TABLE and CREATE TABLE AS include an OID column in newly-
created tables, if neither WITH OIDS nor WITHOUT OIDS is specified. It also determines whether

497

Chapter 18. Server Configuration

OIDs will be included in tables created by SELECT INTO. The parameter is off by default; in Post-
greSQL 8.0 and earlier, it was on by default.

The use of OIDs in user tables is considered deprecated, so most installations should leave this
variable disabled. Applications that require OIDs for a particular table should specify WITH OIDS

when creating the table. This variable can be enabled for compatibility with old applications that do
not follow this behavior.

escape_string_warning (boolean)

When on, a warning is issued if a backslash (\) appears in an ordinary string literal (’...’ syntax)
and standard_conforming_strings is off. The default is on.

Applications that wish to use backslash as escape should be modified to use escape string syntax
(E’...’), because the default behavior of ordinary strings is now to treat backslash as an ordi-
nary character, per SQL standard. This variable can be enabled to help locate code that needs to be
changed.

lo_compat_privileges (boolean)

In PostgreSQL releases prior to 9.0, large objects did not have access privileges and were, in effect,
readable and writable by all users. Setting this variable to on disables the new privilege checks, for
compatibility with prior releases. The default is off.

Setting this variable does not disable all security checks related to large objects — only those
for which the default behavior has changed in PostgreSQL 9.0. For example, lo_import() and
lo_export() need superuser privileges independent of this setting.

quote_all_identifiers (boolean)

When the database generates SQL, force all identifiers to be quoted, even if they are not (cur-
rently) keywords. This will affect the output of EXPLAIN as well as the results of functions like
pg_get_viewdef. See also the --quote-all-identifiers option of pg_dump and pg_dumpall.

sql_inheritance (boolean)

This setting controls whether undecorated table references are considered to include inheritance child
tables. The default is on, which means child tables are included (thus, a * suffix is assumed by de-
fault). If turned off, child tables are not included (thus, an ONLY prefix is assumed). The SQL stan-
dard requires child tables to be included, so the off setting is not spec-compliant, but it is provided
for compatibility with PostgreSQL releases prior to 7.1. See Section 5.8 for more information.

Turning sql_inheritance off is deprecated, because that behavior has been found to be error-
prone as well as contrary to SQL standard. Discussions of inheritance behavior elsewhere in this
manual generally assume that it is on.

standard_conforming_strings (boolean)

This controls whether ordinary string literals (’...’) treat backslashes literally, as specified in the
SQL standard. Beginning in PostgreSQL 9.1, the default is on (prior releases defaulted to off). Ap-
plications can check this parameter to determine how string literals will be processed. The presence
of this parameter can also be taken as an indication that the escape string syntax (E’...’) is sup-
ported. Escape string syntax (Section 4.1.2.2) should be used if an application desires backslashes to
be treated as escape characters.

498

Chapter 18. Server Configuration

synchronize_seqscans (boolean)

This allows sequential scans of large tables to synchronize with each other, so that concurrent scans
read the same block at about the same time and hence share the I/O workload. When this is enabled,
a scan might start in the middle of the table and then “wrap around” the end to cover all rows, so as to
synchronize with the activity of scans already in progress. This can result in unpredictable changes
in the row ordering returned by queries that have no ORDER BY clause. Setting this parameter to off
ensures the pre-8.3 behavior in which a sequential scan always starts from the beginning of the table.
The default is on.

18.13.2. Platform and Client Compatibility

transform_null_equals (boolean)

When on, expressions of the form expr = NULL (or NULL = expr) are treated as expr IS NULL,
that is, they return true if expr evaluates to the null value, and false otherwise. The correct SQL-spec-
compliant behavior of expr = NULL is to always return null (unknown). Therefore this parameter
defaults to off.

However, filtered forms in Microsoft Access generate queries that appear to use expr = NULL to
test for null values, so if you use that interface to access the database you might want to turn this
option on. Since expressions of the form expr = NULL always return the null value (using the SQL
standard interpretation), they are not very useful and do not appear often in normal applications so
this option does little harm in practice. But new users are frequently confused about the semantics of
expressions involving null values, so this option is off by default.

Note that this option only affects the exact form = NULL, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such as IN). Thus, this option is not a general fix for bad programming.

Refer to Section 9.2 for related information.

18.14. Error Handling

exit_on_error (boolean)

If true, any error will terminate the current session. By default, this is set to false, so that only FATAL
errors will terminate the session.

restart_after_crash (boolean)

When set to true, which is the default, PostgreSQL will automatically reinitialize after a backend
crash. Leaving this value set to true is normally the best way to maximize the availability of the
database. However, in some circumstances, such as when PostgreSQL is being invoked by cluster-
ware, it may be useful to disable the restart so that the clusterware can gain control and take any
actions it deems appropriate.

499

Chapter 18. Server Configuration

18.15. Preset Options
The following “parameters” are read-only, and are determined when PostgreSQL is compiled or when it
is installed. As such, they have been excluded from the sample postgresql.conf file. These options
report various aspects of PostgreSQL behavior that might be of interest to certain applications, particularly
administrative front-ends.

block_size (integer)

Reports the size of a disk block. It is determined by the value of BLCKSZ when building the
server. The default value is 8192 bytes. The meaning of some configuration variables (such as
shared_buffers) is influenced by block_size. See Section 18.4 for information.

integer_datetimes (boolean)

Reports whether PostgreSQL was built with support for 64-bit-integer dates and times. This can be
disabled by configuring with --disable-integer-datetimes when building PostgreSQL. The
default value is on.

lc_collate (string)

Reports the locale in which sorting of textual data is done. See Section 22.1 for more information.
This value is determined when a database is created.

lc_ctype (string)

Reports the locale that determines character classifications. See Section 22.1 for more information.
This value is determined when a database is created. Ordinarily this will be the same as lc_collate,
but for special applications it might be set differently.

max_function_args (integer)

Reports the maximum number of function arguments. It is determined by the value of
FUNC_MAX_ARGS when building the server. The default value is 100 arguments.

max_identifier_length (integer)

Reports the maximum identifier length. It is determined as one less than the value of NAMEDATALEN
when building the server. The default value of NAMEDATALEN is 64; therefore the default
max_identifier_length is 63 bytes, which can be less than 63 characters when using multibyte
encodings.

max_index_keys (integer)

Reports the maximum number of index keys. It is determined by the value of INDEX_MAX_KEYS
when building the server. The default value is 32 keys.

segment_size (integer)

Reports the number of blocks (pages) that can be stored within a file segment. It is determined by
the value of RELSEG_SIZE when building the server. The maximum size of a segment file in bytes
is equal to segment_size multiplied by block_size; by default this is 1GB.

server_encoding (string)

Reports the database encoding (character set). It is determined when the database is created. Ordi-
narily, clients need only be concerned with the value of client_encoding.

500

Chapter 18. Server Configuration

server_version (string)

Reports the version number of the server. It is determined by the value of PG_VERSIONwhen building
the server.

server_version_num (integer)

Reports the version number of the server as an integer. It is determined by the value of
PG_VERSION_NUM when building the server.

wal_block_size (integer)

Reports the size of a WAL disk block. It is determined by the value of XLOG_BLCKSZ when building
the server. The default value is 8192 bytes.

wal_segment_size (integer)

Reports the number of blocks (pages) in a WAL segment file. The total size of a WAL segment file
in bytes is equal to wal_segment_size multiplied by wal_block_size; by default this is 16MB.
See Section 29.4 for more information.

18.16. Customized Options
This feature was designed to allow parameters not normally known to PostgreSQL to be added by add-on
modules (such as procedural languages). This allows extension modules to be configured in the standard
ways.

Custom options have two-part names: an extension name, then a dot, then the parameter name proper,
much like qualified names in SQL. An example is plpgsql.variable_conflict.

Because custom options may need to be set in processes that have not loaded the relevant extension
module, PostgreSQL will accept a setting for any two-part parameter name. Such variables are treated
as placeholders and have no function until the module that defines them is loaded. When an extension
module is loaded, it will add its variable definitions, convert any placeholder values according to those
definitions, and issue warnings for any unrecognized placeholders that begin with its extension name.

18.17. Developer Options
The following parameters are intended for work on the PostgreSQL source code, and in some cases to
assist with recovery of severely damaged databases. There should be no reason to use them on a production
database. As such, they have been excluded from the sample postgresql.conf file. Note that many of
these parameters require special source compilation flags to work at all.

allow_system_table_mods (boolean)

Allows modification of the structure of system tables. This is used by initdb. This parameter can
only be set at server start.

debug_assertions (boolean)

Turns on various assertion checks. This is a debugging aid. If you are experiencing strange problems
or crashes you might want to turn this on, as it might expose programming mistakes. To use this

501

Chapter 18. Server Configuration

parameter, the macro USE_ASSERT_CHECKING must be defined when PostgreSQL is built (accom-
plished by the configure option --enable-cassert). Note that debug_assertions defaults to
on if PostgreSQL has been built with assertions enabled.

ignore_system_indexes (boolean)

Ignore system indexes when reading system tables (but still update the indexes when modifying the
tables). This is useful when recovering from damaged system indexes. This parameter cannot be
changed after session start.

post_auth_delay (integer)

If nonzero, a delay of this many seconds occurs when a new server process is started, after it conducts
the authentication procedure. This is intended to give developers an opportunity to attach to the server
process with a debugger. This parameter cannot be changed after session start.

pre_auth_delay (integer)

If nonzero, a delay of this many seconds occurs just after a new server process is forked, before it
conducts the authentication procedure. This is intended to give developers an opportunity to attach
to the server process with a debugger to trace down misbehavior in authentication. This parameter
can only be set in the postgresql.conf file or on the server command line.

trace_notify (boolean)

Generates a great amount of debugging output for the LISTEN and NOTIFY commands.
client_min_messages or log_min_messages must be DEBUG1 or lower to send this output to the
client or server logs, respectively.

trace_recovery_messages (enum)

Enables logging of recovery-related debugging output that otherwise would not be logged. This pa-
rameter allows the user to override the normal setting of log_min_messages, but only for specific
messages. This is intended for use in debugging Hot Standby. Valid values are DEBUG5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, and LOG. The default, LOG, does not affect logging decisions at all. The
other values cause recovery-related debug messages of that priority or higher to be logged as though
they had LOG priority; for common settings of log_min_messages this results in unconditionally
sending them to the server log. This parameter can only be set in the postgresql.conf file or on
the server command line.

trace_sort (boolean)

If on, emit information about resource usage during sort operations. This parameter is only available
if the TRACE_SORT macro was defined when PostgreSQL was compiled. (However, TRACE_SORT is
currently defined by default.)

trace_locks (boolean)

If on, emit information about lock usage. Information dumped includes the type of lock operation,
the type of lock and the unique identifier of the object being locked or unlocked. Also included are
bit masks for the lock types already granted on this object as well as for the lock types awaited on this
object. For each lock type a count of the number of granted locks and waiting locks is also dumped
as well as the totals. An example of the log file output is shown here:

LOG: LockAcquire: new: lock(0xb7acd844) id(24688,24696,0,0,0,1)
grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
wait(0) type(AccessShareLock)

502

Chapter 18. Server Configuration

LOG: GrantLock: lock(0xb7acd844) id(24688,24696,0,0,0,1)
grantMask(2) req(1,0,0,0,0,0,0)=1 grant(1,0,0,0,0,0,0)=1
wait(0) type(AccessShareLock)

LOG: UnGrantLock: updated: lock(0xb7acd844) id(24688,24696,0,0,0,1)
grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
wait(0) type(AccessShareLock)

LOG: CleanUpLock: deleting: lock(0xb7acd844) id(24688,24696,0,0,0,1)
grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
wait(0) type(INVALID)

Details of the structure being dumped may be found in src/include/storage/lock.h.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_lwlocks (boolean)

If on, emit information about lightweight lock usage. Lightweight locks are intended primarily to
provide mutual exclusion of access to shared-memory data structures.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_userlocks (boolean)

If on, emit information about user lock usage. Output is the same as for trace_locks, only for
advisory locks.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_lock_oidmin (integer)

If set, do not trace locks for tables below this OID. (use to avoid output on system tables)

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

trace_lock_table (integer)

Unconditionally trace locks on this table (OID).

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

debug_deadlocks (boolean)

If set, dumps information about all current locks when a deadlock timeout occurs.

This parameter is only available if the LOCK_DEBUG macro was defined when PostgreSQL was com-
piled.

log_btree_build_stats (boolean)

If set, logs system resource usage statistics (memory and CPU) on various B-tree operations.

This parameter is only available if the BTREE_BUILD_STATS macro was defined when PostgreSQL
was compiled.

503

Chapter 18. Server Configuration

wal_debug (boolean)

If on, emit WAL-related debugging output. This parameter is only available if the WAL_DEBUG macro
was defined when PostgreSQL was compiled.

zero_damaged_pages (boolean)

Detection of a damaged page header normally causes PostgreSQL to report an error, aborting the cur-
rent transaction. Setting zero_damaged_pages to on causes the system to instead report a warning,
zero out the damaged page in memory, and continue processing. This behavior will destroy data,
namely all the rows on the damaged page. However, it does allow you to get past the error and re-
trieve rows from any undamaged pages that might be present in the table. It is useful for recovering
data if corruption has occurred due to a hardware or software error. You should generally not set this
on until you have given up hope of recovering data from the damaged pages of a table. Zeroed-out
pages are not forced to disk so it is recommended to recreate the table or the index before turning
this parameter off again. The default setting is off, and it can only be changed by a superuser.

18.18. Short Options
For convenience there are also single letter command-line option switches available for some parameters.
They are described in Table 18-2. Some of these options exist for historical reasons, and their presence as
a single-letter option does not necessarily indicate an endorsement to use the option heavily.

Table 18-2. Short Option Key

Short Option Equivalent
-A x debug_assertions = x

-B x shared_buffers = x

-d x log_min_messages = DEBUGx

-e datestyle = euro

-fb, -fh, -fi, -fm, -fn, -fo, -fs, -ft enable_bitmapscan = off,
enable_hashjoin = off,
enable_indexscan = off,
enable_mergejoin = off,
enable_nestloop = off,
enable_indexonlyscan = off,
enable_seqscan = off, enable_tidscan =

off

-F fsync = off

-h x listen_addresses = x

-i listen_addresses = ’*’

-k x unix_socket_directories = x

-l ssl = on

-N x max_connections = x

-O allow_system_table_mods = on

504

Chapter 18. Server Configuration

Short Option Equivalent
-p x port = x

-P ignore_system_indexes = on

-s log_statement_stats = on

-S x work_mem = x

-tpa, -tpl, -te log_parser_stats = on,
log_planner_stats = on,
log_executor_stats = on

-W x post_auth_delay = x

505

Chapter 19. Client Authentication
When a client application connects to the database server, it specifies which PostgreSQL database user
name it wants to connect as, much the same way one logs into a Unix computer as a particular user. Within
the SQL environment the active database user name determines access privileges to database objects —
see Chapter 20 for more information. Therefore, it is essential to restrict which database users can connect.

Note: As explained in Chapter 20, PostgreSQL actually does privilege management in terms of “roles”.
In this chapter, we consistently use database user to mean “role with the LOGIN privilege”.

Authentication is the process by which the database server establishes the identity of the client, and by ex-
tension determines whether the client application (or the user who runs the client application) is permitted
to connect with the database user name that was requested.

PostgreSQL offers a number of different client authentication methods. The method used to authenticate
a particular client connection can be selected on the basis of (client) host address, database, and user.

PostgreSQL database user names are logically separate from user names of the operating system in which
the server runs. If all the users of a particular server also have accounts on the server’s machine, it makes
sense to assign database user names that match their operating system user names. However, a server that
accepts remote connections might have many database users who have no local operating system account,
and in such cases there need be no connection between database user names and OS user names.

19.1. The pg_hba.conf File
Client authentication is controlled by a configuration file, which traditionally is named pg_hba.conf and
is stored in the database cluster’s data directory. (HBA stands for host-based authentication.) A default
pg_hba.conf file is installed when the data directory is initialized by initdb. It is possible to place the
authentication configuration file elsewhere, however; see the hba_file configuration parameter.

The general format of the pg_hba.conf file is a set of records, one per line. Blank lines are ignored, as
is any text after the # comment character. Records cannot be continued across lines. A record is made
up of a number of fields which are separated by spaces and/or tabs. Fields can contain white space if
the field value is quoted. Quoting one of the keywords in a database, user, or address field (e.g., all or
replication) makes the word lose its special character, and just match a database, user, or host with
that name.

Each record specifies a connection type, a client IP address range (if relevant for the connection type),
a database name, a user name, and the authentication method to be used for connections matching these
parameters. The first record with a matching connection type, client address, requested database, and user
name is used to perform authentication. There is no “fall-through” or “backup”: if one record is chosen
and the authentication fails, subsequent records are not considered. If no record matches, access is denied.

A record can have one of the seven formats

local database user auth-method [auth-options]
host database user address auth-method [auth-options]
hostssl database user address auth-method [auth-options]

506

Chapter 19. Client Authentication

hostnossl database user address auth-method [auth-options]
host database user IP-address IP-mask auth-method [auth-options]
hostssl database user IP-address IP-mask auth-method [auth-options]
hostnossl database user IP-address IP-mask auth-method [auth-options]

The meaning of the fields is as follows:

local

This record matches connection attempts using Unix-domain sockets. Without a record of this type,
Unix-domain socket connections are disallowed.

host

This record matches connection attempts made using TCP/IP. host records match either SSL or
non-SSL connection attempts.

Note: Remote TCP/IP connections will not be possible unless the server is started with an ap-
propriate value for the listen_addresses configuration parameter, since the default behavior is to
listen for TCP/IP connections only on the local loopback address localhost.

hostssl

This record matches connection attempts made using TCP/IP, but only when the connection is made
with SSL encryption.

To make use of this option the server must be built with SSL support. Furthermore, SSL must be
enabled at server start time by setting the ssl configuration parameter (see Section 17.9 for more
information).

hostnossl

This record type has the opposite behavior of hostssl; it only matches connection attempts made
over TCP/IP that do not use SSL.

database

Specifies which database name(s) this record matches. The value all specifies that it matches all
databases. The value sameuser specifies that the record matches if the requested database has the
same name as the requested user. The value samerole specifies that the requested user must be a
member of the role with the same name as the requested database. (samegroup is an obsolete but
still accepted spelling of samerole.) Superusers are not considered to be members of a role for the
purposes of samerole unless they are explicitly members of the role, directly or indirectly, and not
just by virtue of being a superuser. The value replication specifies that the record matches if a
replication connection is requested (note that replication connections do not specify any particular
database). Otherwise, this is the name of a specific PostgreSQL database. Multiple database names
can be supplied by separating them with commas. A separate file containing database names can be
specified by preceding the file name with @.

user

Specifies which database user name(s) this record matches. The value all specifies that it matches
all users. Otherwise, this is either the name of a specific database user, or a group name preceded by

507

Chapter 19. Client Authentication

+. (Recall that there is no real distinction between users and groups in PostgreSQL; a + mark really
means “match any of the roles that are directly or indirectly members of this role”, while a name
without a + mark matches only that specific role.) For this purpose, a superuser is only considered to
be a member of a role if they are explicitly a member of the role, directly or indirectly, and not just by
virtue of being a superuser. Multiple user names can be supplied by separating them with commas.
A separate file containing user names can be specified by preceding the file name with @.

address

Specifies the client machine addresses that this record matches. This field can contain either a host
name, an IP address range, or one of the special key words mentioned below.

An IP address is specified in standard dotted decimal notation with a CIDR mask length. The mask
length indicates the number of high-order bits of the client IP address that must match. Bits to the
right of this should be zero in the given IP address. There must not be any white space between the
IP address, the /, and the CIDR mask length.

Typical examples of an IP address range specified this way are 172.20.143.89/32 for a single
host, or 172.20.143.0/24 for a small network, or 10.6.0.0/16 for a larger one. 0.0.0.0/0
represents all IPv4 addresses, and ::/0 represents all IPv6 addresses. To specify a single host, use a
CIDR mask of 32 for IPv4 or 128 for IPv6. In a network address, do not omit trailing zeroes.

An IP address given in IPv4 format will match IPv6 connections that have the corresponding address,
for example 127.0.0.1 will match the IPv6 address ::ffff:127.0.0.1. An entry given in IPv6
format will match only IPv6 connections, even if the represented address is in the IPv4-in-IPv6 range.
Note that entries in IPv6 format will be rejected if the system’s C library does not have support for
IPv6 addresses.

You can also write all to match any IP address, samehost to match any of the server’s own IP
addresses, or samenet to match any address in any subnet that the server is directly connected to.

If a host name is specified (anything that is not an IP address or a special key word is processed as a
potential host name), that name is compared with the result of a reverse name resolution of the client’s
IP address (e.g., reverse DNS lookup, if DNS is used). Host name comparisons are case insensitive. If
there is a match, then a forward name resolution (e.g., forward DNS lookup) is performed on the host
name to check whether any of the addresses it resolves to are equal to the client’s IP address. If both
directions match, then the entry is considered to match. (The host name that is used in pg_hba.conf
should be the one that address-to-name resolution of the client’s IP address returns, otherwise the
line won’t be matched. Some host name databases allow associating an IP address with multiple host
names, but the operating system will only return one host name when asked to resolve an IP address.)

A host name specification that starts with a dot (.) matches a suffix of the actual host name. So
.example.com would match foo.example.com (but not just example.com).

When host names are specified in pg_hba.conf, you should make sure that name resolution is
reasonably fast. It can be of advantage to set up a local name resolution cache such as nscd. Also,
you may wish to enable the configuration parameter log_hostname to see the client’s host name
instead of the IP address in the log.

508

Chapter 19. Client Authentication

Occasionally, users have wondered why host names are handled in this seemingly
complicated way with two name resolutions and requiring reverse lookup of IP
addresses, which is sometimes not set up or points to some undesirable host name.
It is primarily for efficiency: A connection attempt requires two resolver lookups
of the current client’s address. If there is resolver problem with that address, it be-
comes only that client’s problem. A hypothetical alternative implementation which
only does forward lookups would have to resolve every host name mentioned in
pg_hba.conf at every connection attempt. That would already be slow by itself.
And if there is a resolver problem with one of the host names, it becomes every-
one’s problem.

Also, a reverse lookup is necessary to implement the suffix matching feature, be-
cause the actual client host name needs to be known in order to match it against
the pattern.

Note that this behavior is consistent with other popular implementations of host
name-based access control, such as the Apache HTTP Server and TCP Wrappers.

This field only applies to host, hostssl, and hostnossl records.

IP-address

IP-mask

These fields can be used as an alternative to the CIDR-address notation. Instead of specifying the
mask length, the actual mask is specified in a separate column. For example, 255.0.0.0 represents
an IPv4 CIDR mask length of 8, and 255.255.255.255 represents a CIDR mask length of 32.

These fields only apply to host, hostssl, and hostnossl records.

auth-method

Specifies the authentication method to use when a connection matches this record. The possible
choices are summarized here; details are in Section 19.3.

trust

Allow the connection unconditionally. This method allows anyone that can connect to the Post-
greSQL database server to login as any PostgreSQL user they wish, without the need for a
password or any other authentication. See Section 19.3.1 for details.

reject

Reject the connection unconditionally. This is useful for “filtering out” certain hosts from a
group, for example a reject line could block a specific host from connecting, while a later line
allows the remaining hosts in a specific network to connect.

md5

Require the client to supply an MD5-encrypted password for authentication. See Section 19.3.2
for details.

password

Require the client to supply an unencrypted password for authentication. Since the password is
sent in clear text over the network, this should not be used on untrusted networks. See Section
19.3.2 for details.

509

Chapter 19. Client Authentication

gss

Use GSSAPI to authenticate the user. This is only available for TCP/IP connections. See Section
19.3.3 for details.

sspi

Use SSPI to authenticate the user. This is only available on Windows. See Section 19.3.4 for
details.

krb5

Use Kerberos V5 to authenticate the user. This is only available for TCP/IP connections. See
Section 19.3.5 for details.

ident

Obtain the operating system user name of the client by contacting the ident server on the client
and check if it matches the requested database user name. Ident authentication can only be used
on TCP/IP connections. When specified for local connections, peer authentication will be used
instead. See Section 19.3.6 for details.

peer

Obtain the client’s operating system user name from the operating system and check if it
matches the requested database user name. This is only available for local connections. See
Section 19.3.7 for details.

ldap

Authenticate using an LDAP server. See Section 19.3.8 for details.

radius

Authenticate using a RADIUS server. See Section 19.3.9 for details.

cert

Authenticate using SSL client certificates. See Section 19.3.10 for details.

pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the oper-
ating system. See Section 19.3.11 for details.

auth-options

After the auth-method field, there can be field(s) of the form name=value that specify options
for the authentication method. Details about which options are available for which authentication
methods appear below.

Files included by @ constructs are read as lists of names, which can be separated by either whitespace or
commas. Comments are introduced by #, just as in pg_hba.conf, and nested @ constructs are allowed.
Unless the file name following @ is an absolute path, it is taken to be relative to the directory containing
the referencing file.

Since the pg_hba.conf records are examined sequentially for each connection attempt, the order of the
records is significant. Typically, earlier records will have tight connection match parameters and weaker

510

Chapter 19. Client Authentication

authentication methods, while later records will have looser match parameters and stronger authentication
methods. For example, one might wish to use trust authentication for local TCP/IP connections but
require a password for remote TCP/IP connections. In this case a record specifying trust authentication
for connections from 127.0.0.1 would appear before a record specifying password authentication for a
wider range of allowed client IP addresses.

The pg_hba.conf file is read on start-up and when the main server process receives a SIGHUP signal.
If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl reload or
kill -HUP) to make it re-read the file.

Tip: To connect to a particular database, a user must not only pass the pg_hba.conf checks, but
must have the CONNECT privilege for the database. If you wish to restrict which users can connect to
which databases, it’s usually easier to control this by granting/revoking CONNECT privilege than to put
the rules in pg_hba.conf entries.

Some examples of pg_hba.conf entries are shown in Example 19-1. See the next section for details on
the different authentication methods.

Example 19-1. Example pg_hba.conf Entries

Allow any user on the local system to connect to any database with
any database user name using Unix-domain sockets (the default for local
connections).
#
TYPE DATABASE USER ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

The same as the previous line, but using a separate netmask column
#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

The same over IPv6.
#
TYPE DATABASE USER ADDRESS METHOD
host all all ::1/128 trust

The same using a host name (would typically cover both IPv4 and IPv6).
#
TYPE DATABASE USER ADDRESS METHOD
host all all localhost trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "postgres" as the same user name that ident reports for
the connection (typically the operating system user name).
#

511

Chapter 19. Client Authentication

TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.93.0/24 ident

Allow any user from host 192.168.12.10 to connect to database
"postgres" if the user’s password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 md5

Allow any user from hosts in the example.com domain to connect to
any database if the user’s password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host all all .example.com md5

In the absence of preceding "host" lines, these two lines will
reject all connections from 192.168.54.1 (since that entry will be
matched first), but allow Kerberos 5 connections from anywhere else
on the Internet. The zero mask causes no bits of the host IP
address to be considered, so it matches any host.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.54.1/32 reject
host all all 0.0.0.0/0 krb5

Allow users from 192.168.x.x hosts to connect to any database, if
they pass the ident check. If, for example, ident says the user is
"bryanh" and he requests to connect as PostgreSQL user "guest1", the
connection is allowed if there is an entry in pg_ident.conf for map
"omicron" that says "bryanh" is allowed to connect as "guest1".
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.0.0/16 ident map=omicron

If these are the only three lines for local connections, they will
allow local users to connect only to their own databases (databases
with the same name as their database user name) except for administrators
and members of role "support", who can connect to all databases. The file
$PGDATA/admins contains a list of names of administrators. Passwords
are required in all cases.
#
TYPE DATABASE USER ADDRESS METHOD
local sameuser all md5
local all @admins md5
local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names:
local db1,db2,@demodbs all md5

512

Chapter 19. Client Authentication

19.2. User Name Maps
When using an external authentication system like Ident or GSSAPI, the name of the operating system
user that initiated the connection might not be the same as the database user he needs to connect as. In
this case, a user name map can be applied to map the operating system user name to a database user.
To use user name mapping, specify map=map-name in the options field in pg_hba.conf. This option
is supported for all authentication methods that receive external user names. Since different mappings
might be needed for different connections, the name of the map to be used is specified in the map-name
parameter in pg_hba.conf to indicate which map to use for each individual connection.

User name maps are defined in the ident map file, which by default is named pg_ident.conf and is
stored in the cluster’s data directory. (It is possible to place the map file elsewhere, however; see the
ident_file configuration parameter.) The ident map file contains lines of the general form:

map-name system-username database-username

Comments and whitespace are handled in the same way as in pg_hba.conf. The map-name is an ar-
bitrary name that will be used to refer to this mapping in pg_hba.conf. The other two fields specify
an operating system user name and a matching database user name. The same map-name can be used
repeatedly to specify multiple user-mappings within a single map.

There is no restriction regarding how many database users a given operating system user can correspond
to, nor vice versa. Thus, entries in a map should be thought of as meaning “this operating system user is
allowed to connect as this database user”, rather than implying that they are equivalent. The connection
will be allowed if there is any map entry that pairs the user name obtained from the external authentication
system with the database user name that the user has requested to connect as.

If the system-username field starts with a slash (/), the remainder of the field is treated as a regular
expression. (See Section 9.7.3.1 for details of PostgreSQL’s regular expression syntax.) The regular ex-
pression can include a single capture, or parenthesized subexpression, which can then be referenced in the
database-username field as \1 (backslash-one). This allows the mapping of multiple user names in a
single line, which is particularly useful for simple syntax substitutions. For example, these entries

mymap /^(.*)@mydomain\.com$ \1
mymap /^(.*)@otherdomain\.com$ guest

will remove the domain part for users with system user names that end with @mydomain.com, and allow
any user whose system name ends with @otherdomain.com to log in as guest.

Tip: Keep in mind that by default, a regular expression can match just part of a string. It’s usually wise
to use ^ and $, as shown in the above example, to force the match to be to the entire system user
name.

The pg_ident.conf file is read on start-up and when the main server process receives a SIGHUP signal.
If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl reload or
kill -HUP) to make it re-read the file.

A pg_ident.conf file that could be used in conjunction with the pg_hba.conf file in Example 19-1 is
shown in Example 19-2. In this example, anyone logged in to a machine on the 192.168 network that does
not have the operating system user name bryanh, ann, or robert would not be granted access. Unix user
robert would only be allowed access when he tries to connect as PostgreSQL user bob, not as robert

513

Chapter 19. Client Authentication

or anyone else. ann would only be allowed to connect as ann. User bryanh would be allowed to connect
as either bryanh or as guest1.

Example 19-2. An Example pg_ident.conf File

MAPNAME SYSTEM-USERNAME PG-USERNAME

omicron bryanh bryanh
omicron ann ann
bob has user name robert on these machines
omicron robert bob
bryanh can also connect as guest1
omicron bryanh guest1

19.3. Authentication Methods
The following subsections describe the authentication methods in more detail.

19.3.1. Trust Authentication
When trust authentication is specified, PostgreSQL assumes that anyone who can connect to the server is
authorized to access the database with whatever database user name they specify (even superuser names).
Of course, restrictions made in the database and user columns still apply. This method should only be
used when there is adequate operating-system-level protection on connections to the server.

trust authentication is appropriate and very convenient for local connections on a single-user
workstation. It is usually not appropriate by itself on a multiuser machine. However, you might be able
to use trust even on a multiuser machine, if you restrict access to the server’s Unix-domain socket
file using file-system permissions. To do this, set the unix_socket_permissions (and possibly
unix_socket_group) configuration parameters as described in Section 18.3. Or you could set the
unix_socket_directories configuration parameter to place the socket file in a suitably restricted
directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are
not restricted by file-system permissions. Therefore, if you want to use file-system permissions for local
security, remove the host ... 127.0.0.1 ... line from pg_hba.conf, or change it to a non-trust
authentication method.

trust authentication is only suitable for TCP/IP connections if you trust every user on every machine that
is allowed to connect to the server by the pg_hba.conf lines that specify trust. It is seldom reasonable
to use trust for any TCP/IP connections other than those from localhost (127.0.0.1).

19.3.2. Password Authentication
The password-based authentication methods are md5 and password. These methods operate similarly
except for the way that the password is sent across the connection, namely MD5-hashed and clear-text
respectively.

514

Chapter 19. Client Authentication

If you are at all concerned about password “sniffing” attacks then md5 is preferred. Plain password should
always be avoided if possible. However, md5 cannot be used with the db_user_namespace feature. If the
connection is protected by SSL encryption then password can be used safely (though SSL certificate
authentication might be a better choice if one is depending on using SSL).

PostgreSQL database passwords are separate from operating system user passwords. The password for
each database user is stored in the pg_authid system catalog. Passwords can be managed with the SQL
commands CREATE USER and ALTER ROLE, e.g., CREATE USER foo WITH PASSWORD ’secret’.
If no password has been set up for a user, the stored password is null and password authentication will
always fail for that user.

19.3.3. GSSAPI Authentication
GSSAPI is an industry-standard protocol for secure authentication defined in RFC 2743. PostgreSQL
supports GSSAPI with Kerberos authentication according to RFC 1964. GSSAPI provides automatic
authentication (single sign-on) for systems that support it. The authentication itself is secure, but the
data sent over the database connection will be sent unencrypted unless SSL is used.

When GSSAPI uses Kerberos, it uses a standard principal in the format servicename/hostname@realm.
For information about the parts of the principal, and how to set up the required keys, see Section 19.3.5.

GSSAPI support has to be enabled when PostgreSQL is built; see Chapter 15 for more information.

The following configuration options are supported for GSSAPI:

include_realm

If set to 1, the realm name from the authenticated user principal is included in the system user name
that’s passed through user name mapping (Section 19.2). This is useful for handling users from
multiple realms.

map

Allows for mapping between system and database user names. See Section 19.2 for
details. For a Kerberos principal username/hostbased@EXAMPLE.COM, the user
name used for mapping is username/hostbased if include_realm is disabled, and
username/hostbased@EXAMPLE.COM if include_realm is enabled.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that realm
will be accepted. If it is not set, users of any realm can connect, subject to whatever user name
mapping is done.

19.3.4. SSPI Authentication
SSPI is a Windows technology for secure authentication with single sign-on. PostgreSQL will use SSPI
in negotiate mode, which will use Kerberos when possible and automatically fall back to NTLM in
other cases. SSPI authentication only works when both server and client are running Windows, or, on
non-Windows platforms, when GSSAPI is available.

515

Chapter 19. Client Authentication

When using Kerberos authentication, SSPI works the same way GSSAPI does; see Section 19.3.3 for
details.

The following configuration options are supported for SSPI:

include_realm

If set to 1, the realm name from the authenticated user principal is included in the system user name
that’s passed through user name mapping (Section 19.2). This is useful for handling users from
multiple realms.

map

Allows for mapping between system and database user names. See Section 19.2 for details.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that realm
will be accepted. If it is not set, users of any realm can connect, subject to whatever user name
mapping is done.

19.3.5. Kerberos Authentication

Note: Native Kerberos authentication has been deprecated and should be used only for backward
compatibility. New and upgraded installations are encouraged to use the industry-standard GSSAPI
authentication method (see Section 19.3.3) instead.

Kerberos is an industry-standard secure authentication system suitable for distributed computing over
a public network. A description of the Kerberos system is beyond the scope of this document; in full
generality it can be quite complex (yet powerful). The Kerberos FAQ1 or MIT Kerberos page2 can be
good starting points for exploration. Several sources for Kerberos distributions exist. Kerberos provides
secure authentication but does not encrypt queries or data passed over the network; for that use SSL.

PostgreSQL supports Kerberos version 5. Kerberos support has to be enabled when PostgreSQL is built;
see Chapter 15 for more information.

PostgreSQL operates like a normal Kerberos service. The name of the service principal is
servicename/hostname@realm.

servicename can be set on the server side using the krb_srvname configuration parameter, and
on the client side using the krbsrvname connection parameter. (See also Section 31.1.) The
installation default can be changed from the default postgres at build time using ./configure

--with-krb-srvnam=whatever. In most environments, this parameter never needs to be changed.
However, it is necessary when supporting multiple PostgreSQL installations on the same host. Some
Kerberos implementations might also require a different service name, such as Microsoft Active
Directory which requires the service name to be in upper case (POSTGRES).

1. http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html
2. http://web.mit.edu/kerberos/www/

516

Chapter 19. Client Authentication

hostname is the fully qualified host name of the server machine. The service principal’s realm is the
preferred realm of the server machine.

Client principals must have their PostgreSQL database user name as their first component, for example
pgusername@realm. Alternatively, you can use a user name mapping to map from the first component
of the principal name to the database user name. By default, the realm of the client is not checked by Post-
greSQL. If you have cross-realm authentication enabled and need to verify the realm, use the krb_realm
parameter, or enable include_realm and use user name mapping to check the realm.

Make sure that your server keytab file is readable (and preferably only readable) by the PostgreSQL
server account. (See also Section 17.1.) The location of the key file is specified by the krb_server_keyfile
configuration parameter. The default is /usr/local/pgsql/etc/krb5.keytab (or whatever directory
was specified as sysconfdir at build time).

The keytab file is generated by the Kerberos software; see the Kerberos documentation for details. The
following example is for MIT-compatible Kerberos 5 implementations:

kadmin% ank -randkey postgres/server.my.domain.org

kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

When connecting to the database make sure you have a ticket for a principal matching the requested
database user name. For example, for database user name fred, principal fred@EXAMPLE.COM would be
able to connect. To also allow principal fred/users.example.com@EXAMPLE.COM, use a user name
map, as described in Section 19.2.

If you use mod_auth_kerb3 and mod_perl on your Apache web server, you can use AuthType

KerberosV5SaveCredentials with a mod_perl script. This gives secure database access over the
web, with no additional passwords required.

The following configuration options are supported for Kerberos:

map

Allows for mapping between system and database user names. See Section 19.2 for details.

include_realm

If set to 1, the realm name from the authenticated user principal is included in the system user name
that’s passed through user name mapping (Section 19.2). This is useful for handling users from
multiple realms.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that realm
will be accepted. If it is not set, users of any realm can connect, subject to whatever user name
mapping is done.

krb_server_hostname

Sets the host name part of the service principal. This, combined with krb_srvname, is used to
generate the complete service principal, that is krb_srvname/krb_server_hostname@REALM.
If not set, the default is the server host name.

3. http://modauthkerb.sf.net

517

Chapter 19. Client Authentication

19.3.6. Ident Authentication
The ident authentication method works by obtaining the client’s operating system user name from an ident
server and using it as the allowed database user name (with an optional user name mapping). This is only
supported on TCP/IP connections.

Note: When ident is specified for a local (non-TCP/IP) connection, peer authentication (see Section
19.3.7) will be used instead.

The following configuration options are supported for ident:

map

Allows for mapping between system and database user names. See Section 19.2 for details.

The “Identification Protocol” is described in RFC 1413. Virtually every Unix-like operating system ships
with an ident server that listens on TCP port 113 by default. The basic functionality of an ident server is
to answer questions like “What user initiated the connection that goes out of your port X and connects
to my port Y?”. Since PostgreSQL knows both X and Y when a physical connection is established, it
can interrogate the ident server on the host of the connecting client and can theoretically determine the
operating system user for any given connection.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine is
untrusted or compromised, an attacker could run just about any program on port 113 and return any user
name he chooses. This authentication method is therefore only appropriate for closed networks where
each client machine is under tight control and where the database and system administrators operate in
close contact. In other words, you must trust the machine running the ident server. Heed the warning:

The Identification Protocol is not intended as an authorization or access control protocol.
—RFC 1413

Some ident servers have a nonstandard option that causes the returned user name to be encrypted, using
a key that only the originating machine’s administrator knows. This option must not be used when using
the ident server with PostgreSQL, since PostgreSQL does not have any way to decrypt the returned string
to determine the actual user name.

19.3.7. Peer Authentication
The peer authentication method works by obtaining the client’s operating system user name from the
kernel and using it as the allowed database user name (with optional user name mapping). This method is
only supported on local connections.

The following configuration options are supported for peer:

map

Allows for mapping between system and database user names. See Section 19.2 for details.

518

Chapter 19. Client Authentication

Peer authentication is only available on operating systems providing the getpeereid() function, the
SO_PEERCRED socket parameter, or similar mechanisms. Currently that includes Linux, most flavors of
BSD including Mac OS X, and Solaris.

19.3.8. LDAP Authentication
This authentication method operates similarly to password except that it uses LDAP as the password
verification method. LDAP is used only to validate the user name/password pairs. Therefore the user must
already exist in the database before LDAP can be used for authentication.

LDAP authentication can operate in two modes. In the first mode, the server will bind to the distinguished
name constructed as prefix username suffix. Typically, the prefix parameter is used to specify
cn=, or DOMAIN\ in an Active Directory environment. suffix is used to specify the remaining part of
the DN in a non-Active Directory environment.

In the second mode, the server first binds to the LDAP directory with a fixed user name and password,
specified with ldapbinddn and ldapbindpasswd, and performs a search for the user trying to log in to
the database. If no user and password is configured, an anonymous bind will be attempted to the directory.
The search will be performed over the subtree at ldapbasedn, and will try to do an exact match of the
attribute specified in ldapsearchattribute. If no attribute is specified, the uid attribute will be used.
Once the user has been found in this search, the server disconnects and re-binds to the directory as this
user, using the password specified by the client, to verify that the login is correct. This method allows
for significantly more flexibility in where the user objects are located in the directory, but will cause two
separate connections to the LDAP server to be made.

The following configuration options are supported for LDAP:

ldapserver

Names or IP addresses of LDAP servers to connect to. Multiple servers may be specified, separated
by spaces.

ldapport

Port number on LDAP server to connect to. If no port is specified, the LDAP library’s default port
setting will be used.

ldaptls

Set to 1 to make the connection between PostgreSQL and the LDAP server use TLS encryption.
Note that this only encrypts the traffic to the LDAP server — the connection to the client will still be
unencrypted unless SSL is used.

ldapprefix

String to prepend to the user name when forming the DN to bind as, when doing simple bind authen-
tication.

ldapsuffix

String to append to the user name when forming the DN to bind as, when doing simple bind authen-
tication.

ldapbasedn

Root DN to begin the search for the user in, when doing search+bind authentication.

519

Chapter 19. Client Authentication

ldapbinddn

DN of user to bind to the directory with to perform the search when doing search+bind authentication.

ldapbindpasswd

Password for user to bind to the directory with to perform the search when doing search+bind au-
thentication.

ldapsearchattribute

Attribute to match against the user name in the search when doing search+bind authentication.

Note: Since LDAP often uses commas and spaces to separate the different parts of a DN, it is often
necessary to use double-quoted parameter values when configuring LDAP options, for example:

ldapserver=ldap.example.net ldapprefix="cn=" ldapsuffix=", dc=example, dc=net"

19.3.9. RADIUS Authentication
This authentication method operates similarly to password except that it uses RADIUS as the password
verification method. RADIUS is used only to validate the user name/password pairs. Therefore the user
must already exist in the database before RADIUS can be used for authentication.

When using RADIUS authentication, an Access Request message will be sent to the configured RA-
DIUS server. This request will be of type Authenticate Only, and include parameters for user name,
password (encrypted) and NAS Identifier. The request will be encrypted using a secret shared with
the server. The RADIUS server will respond to this server with either Access Accept or Access

Reject. There is no support for RADIUS accounting.

The following configuration options are supported for RADIUS:

radiusserver

The name or IP address of the RADIUS server to connect to. This parameter is required.

radiussecret

The shared secret used when talking securely to the RADIUS server. This must have exactly the same
value on the PostgreSQL and RADIUS servers. It is recommended that this be a string of at least 16
characters. This parameter is required.

Note: The encryption vector used will only be cryptographically strong if PostgreSQL is built
with support for OpenSSL. In other cases, the transmission to the RADIUS server should only
be considered obfuscated, not secured, and external security measures should be applied if
necessary.

520

Chapter 19. Client Authentication

radiusport

The port number on the RADIUS server to connect to. If no port is specified, the default port 1812
will be used.

radiusidentifier

The string used as NAS Identifier in the RADIUS requests. This parameter can be used as a
second parameter identifying for example which database user the user is attempting to authenticate
as, which can be used for policy matching on the RADIUS server. If no identifier is specified, the
default postgresql will be used.

19.3.10. Certificate Authentication
This authentication method uses SSL client certificates to perform authentication. It is therefore only
available for SSL connections. When using this authentication method, the server will require that the
client provide a valid certificate. No password prompt will be sent to the client. The cn (Common Name)
attribute of the certificate will be compared to the requested database user name, and if they match the
login will be allowed. User name mapping can be used to allow cn to be different from the database user
name.

The following configuration options are supported for SSL certificate authentication:

map

Allows for mapping between system and database user names. See Section 19.2 for details.

19.3.11. PAM Authentication
This authentication method operates similarly to password except that it uses PAM (Pluggable Authenti-
cation Modules) as the authentication mechanism. The default PAM service name is postgresql. PAM
is used only to validate user name/password pairs. Therefore the user must already exist in the database
before PAM can be used for authentication. For more information about PAM, please read the Linux-PAM
Page4 and the Solaris PAM Page5.

The following configuration options are supported for PAM:

pamservice

PAM service name.

Note: If PAM is set up to read /etc/shadow, authentication will fail because the PostgreSQL server
is started by a non-root user. However, this is not an issue when PAM is configured to use LDAP or
other authentication methods.

4. http://www.kernel.org/pub/linux/libs/pam/
5. http://www.sun.com/software/solaris/pam/

521

Chapter 19. Client Authentication

19.4. Authentication Problems
Authentication failures and related problems generally manifest themselves through error messages like
the following:

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym", database "testdb"

This is what you are most likely to get if you succeed in contacting the server, but it does not want to talk
to you. As the message suggests, the server refused the connection request because it found no matching
entry in its pg_hba.conf configuration file.

FATAL: password authentication failed for user "andym"

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not until you
pass the authorization method specified in the pg_hba.conf file. Check the password you are providing,
or check your Kerberos or ident software if the complaint mentions one of those authentication types.

FATAL: user "andym" does not exist

The indicated database user name was not found.

FATAL: database "testdb" does not exist

The database you are trying to connect to does not exist. Note that if you do not specify a database name,
it defaults to the database user name, which might or might not be the right thing.

Tip: The server log might contain more information about an authentication failure than is reported to
the client. If you are confused about the reason for a failure, check the server log.

522

Chapter 20. Database Roles
PostgreSQL manages database access permissions using the concept of roles. A role can be thought of as
either a database user, or a group of database users, depending on how the role is set up. Roles can own
database objects (for example, tables) and can assign privileges on those objects to other roles to control
who has access to which objects. Furthermore, it is possible to grant membership in a role to another role,
thus allowing the member role to use privileges assigned to another role.

The concept of roles subsumes the concepts of “users” and “groups”. In PostgreSQL versions before 8.1,
users and groups were distinct kinds of entities, but now there are only roles. Any role can act as a user, a
group, or both.

This chapter describes how to create and manage roles. More information about the effects of role privi-
leges on various database objects can be found in Section 5.6.

20.1. Database Roles
Database roles are conceptually completely separate from operating system users. In practice it might
be convenient to maintain a correspondence, but this is not required. Database roles are global across a
database cluster installation (and not per individual database). To create a role use the CREATE ROLE
SQL command:

CREATE ROLE name;

name follows the rules for SQL identifiers: either unadorned without special characters, or double-quoted.
(In practice, you will usually want to add additional options, such as LOGIN, to the command. More details
appear below.) To remove an existing role, use the analogous DROP ROLE command:

DROP ROLE name;

For convenience, the programs createuser and dropuser are provided as wrappers around these SQL com-
mands that can be called from the shell command line:

createuser name

dropuser name

To determine the set of existing roles, examine the pg_roles system catalog, for example

SELECT rolname FROM pg_roles;

The psql program’s \du meta-command is also useful for listing the existing roles.

In order to bootstrap the database system, a freshly initialized system always contains one predefined role.
This role is always a “superuser”, and by default (unless altered when running initdb) it will have the
same name as the operating system user that initialized the database cluster. Customarily, this role will be
named postgres. In order to create more roles you first have to connect as this initial role.

523

Chapter 20. Database Roles

Every connection to the database server is made using the name of some particular role, and this role
determines the initial access privileges for commands issued in that connection. The role name to use for
a particular database connection is indicated by the client that is initiating the connection request in an
application-specific fashion. For example, the psql program uses the -U command line option to indicate
the role to connect as. Many applications assume the name of the current operating system user by default
(including createuser and psql). Therefore it is often convenient to maintain a naming correspondence
between roles and operating system users.

The set of database roles a given client connection can connect as is determined by the client authentication
setup, as explained in Chapter 19. (Thus, a client is not limited to connect as the role matching its operating
system user, just as a person’s login name need not match her real name.) Since the role identity determines
the set of privileges available to a connected client, it is important to carefully configure privileges when
setting up a multiuser environment.

20.2. Role Attributes
A database role can have a number of attributes that define its privileges and interact with the client
authentication system.

login privilege

Only roles that have the LOGIN attribute can be used as the initial role name for a database connection.
A role with the LOGIN attribute can be considered the same as a “database user”. To create a role
with login privilege, use either:

CREATE ROLE name LOGIN;
CREATE USER name;

(CREATE USER is equivalent to CREATE ROLE except that CREATE USER assumes LOGIN by default,
while CREATE ROLE does not.)

superuser status

A database superuser bypasses all permission checks, except the right to log in. This is a dangerous
privilege and should not be used carelessly; it is best to do most of your work as a role that is not a
superuser. To create a new database superuser, use CREATE ROLE name SUPERUSER. You must do
this as a role that is already a superuser.

database creation

A role must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEDB.

role creation

A role must be explicitly given permission to create more roles (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEROLE. A role
with CREATEROLE privilege can alter and drop other roles, too, as well as grant or revoke membership
in them. However, to create, alter, drop, or change membership of a superuser role, superuser status
is required; CREATEROLE is insufficient for that.

524

Chapter 20. Database Roles

initiating replication

A role must explicitly be given permission to initiate streaming replication (except for superusers,
since those bypass all permission checks). A role used for streaming replication must always have
LOGIN permission as well. To create such a role, use CREATE ROLE name REPLICATION LOGIN.

password

A password is only significant if the client authentication method requires the user to supply a pass-
word when connecting to the database. The password and md5 authentication methods make use of
passwords. Database passwords are separate from operating system passwords. Specify a password
upon role creation with CREATE ROLE name PASSWORD ’string’.

A role’s attributes can be modified after creation with ALTER ROLE. See the reference pages for the
CREATE ROLE and ALTER ROLE commands for details.

Tip: It is good practice to create a role that has the CREATEDB and CREATEROLE privileges, but is not a
superuser, and then use this role for all routine management of databases and roles. This approach
avoids the dangers of operating as a superuser for tasks that do not really require it.

A role can also have role-specific defaults for many of the run-time configuration settings described in
Chapter 18. For example, if for some reason you want to disable index scans (hint: not a good idea)
anytime you connect, you can use:

ALTER ROLE myname SET enable_indexscan TO off;

This will save the setting (but not set it immediately). In subsequent connections by this role it will appear
as though SET enable_indexscan TO off had been executed just before the session started. You can
still alter this setting during the session; it will only be the default. To remove a role-specific default
setting, use ALTER ROLE rolename RESET varname. Note that role-specific defaults attached to roles
without LOGIN privilege are fairly useless, since they will never be invoked.

20.3. Role Membership
It is frequently convenient to group users together to ease management of privileges: that way, privileges
can be granted to, or revoked from, a group as a whole. In PostgreSQL this is done by creating a role that
represents the group, and then granting membership in the group role to individual user roles.

To set up a group role, first create the role:

CREATE ROLE name;

Typically a role being used as a group would not have the LOGIN attribute, though you can set it if you
wish.

Once the group role exists, you can add and remove members using the GRANT and REVOKE com-
mands:

GRANT group_role TO role1, ... ;
REVOKE group_role FROM role1, ... ;

525

Chapter 20. Database Roles

You can grant membership to other group roles, too (since there isn’t really any distinction between group
roles and non-group roles). The database will not let you set up circular membership loops. Also, it is not
permitted to grant membership in a role to PUBLIC.

The members of a group role can use the privileges of the role in two ways. First, every member of a group
can explicitly do SET ROLE to temporarily “become” the group role. In this state, the database session
has access to the privileges of the group role rather than the original login role, and any database objects
created are considered owned by the group role not the login role. Second, member roles that have the
INHERIT attribute automatically have use of the privileges of roles of which they are members, including
any privileges inherited by those roles. As an example, suppose we have done:

CREATE ROLE joe LOGIN INHERIT;
CREATE ROLE admin NOINHERIT;
CREATE ROLE wheel NOINHERIT;
GRANT admin TO joe;
GRANT wheel TO admin;

Immediately after connecting as role joe, a database session will have use of privileges granted directly
to joe plus any privileges granted to admin, because joe “inherits” admin’s privileges. However, privi-
leges granted to wheel are not available, because even though joe is indirectly a member of wheel, the
membership is via admin which has the NOINHERIT attribute. After:

SET ROLE admin;

the session would have use of only those privileges granted to admin, and not those granted to joe. After:

SET ROLE wheel;

the session would have use of only those privileges granted to wheel, and not those granted to either joe
or admin. The original privilege state can be restored with any of:

SET ROLE joe;
SET ROLE NONE;
RESET ROLE;

Note: The SET ROLE command always allows selecting any role that the original login role is directly
or indirectly a member of. Thus, in the above example, it is not necessary to become admin before
becoming wheel.

Note: In the SQL standard, there is a clear distinction between users and roles, and users do not
automatically inherit privileges while roles do. This behavior can be obtained in PostgreSQL by giving
roles being used as SQL roles the INHERIT attribute, while giving roles being used as SQL users
the NOINHERIT attribute. However, PostgreSQL defaults to giving all roles the INHERIT attribute, for
backward compatibility with pre-8.1 releases in which users always had use of permissions granted
to groups they were members of.

526

Chapter 20. Database Roles

The role attributes LOGIN, SUPERUSER, CREATEDB, and CREATEROLE can be thought of as special privi-
leges, but they are never inherited as ordinary privileges on database objects are. You must actually SET

ROLE to a specific role having one of these attributes in order to make use of the attribute. Continuing the
above example, we might choose to grant CREATEDB and CREATEROLE to the admin role. Then a session
connecting as role joe would not have these privileges immediately, only after doing SET ROLE admin.

To destroy a group role, use DROP ROLE:

DROP ROLE name;

Any memberships in the group role are automatically revoked (but the member roles are not otherwise
affected). Note however that any objects owned by the group role must first be dropped or reassigned to
other owners; and any permissions granted to the group role must be revoked.

20.4. Function and Trigger Security
Functions and triggers allow users to insert code into the backend server that other users might execute
unintentionally. Hence, both mechanisms permit users to “Trojan horse” others with relative ease. The
only real protection is tight control over who can define functions.

Functions run inside the backend server process with the operating system permissions of the database
server daemon. If the programming language used for the function allows unchecked memory accesses, it
is possible to change the server’s internal data structures. Hence, among many other things, such functions
can circumvent any system access controls. Function languages that allow such access are considered
“untrusted”, and PostgreSQL allows only superusers to create functions written in those languages.

527

Chapter 21. Managing Databases
Every instance of a running PostgreSQL server manages one or more databases. Databases are therefore
the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter describes the
properties of databases, and how to create, manage, and destroy them.

21.1. Overview
A database is a named collection of SQL objects (“database objects”). Generally, every database object
(tables, functions, etc.) belongs to one and only one database. (However there are a few system catalogs,
for example pg_database, that belong to a whole cluster and are accessible from each database within
the cluster.) More accurately, a database is a collection of schemas and the schemas contain the tables,
functions, etc. So the full hierarchy is: server, database, schema, table (or some other kind of object, such
as a function).

When connecting to the database server, a client must specify in its connection request the name of the
database it wants to connect to. It is not possible to access more than one database per connection. How-
ever, an application is not restricted in the number of connections it opens to the same or other databases.
Databases are physically separated and access control is managed at the connection level. If one Post-
greSQL server instance is to house projects or users that should be separate and for the most part unaware
of each other, it is therefore recommended to put them into separate databases. If the projects or users
are interrelated and should be able to use each other’s resources, they should be put in the same database
but possibly into separate schemas. Schemas are a purely logical structure and who can access what is
managed by the privilege system. More information about managing schemas is in Section 5.7.

Databases are created with the CREATE DATABASE command (see Section 21.2) and destroyed with the
DROP DATABASE command (see Section 21.5). To determine the set of existing databases, examine the
pg_database system catalog, for example

SELECT datname FROM pg_database;

The psql program’s \l meta-command and -l command-line option are also useful for listing the existing
databases.

Note: The SQL standard calls databases “catalogs”, but there is no difference in practice.

21.2. Creating a Database
In order to create a database, the PostgreSQL server must be up and running (see Section 17.3).

Databases are created with the SQL command CREATE DATABASE:

CREATE DATABASE name;

528

Chapter 21. Managing Databases

where name follows the usual rules for SQL identifiers. The current role automatically becomes the owner
of the new database. It is the privilege of the owner of a database to remove it later (which also removes
all the objects in it, even if they have a different owner).

The creation of databases is a restricted operation. See Section 20.2 for how to grant permission.

Since you need to be connected to the database server in order to execute the CREATE DATABASE com-
mand, the question remains how the first database at any given site can be created. The first database is
always created by the initdb command when the data storage area is initialized. (See Section 17.2.) This
database is called postgres. So to create the first “ordinary” database you can connect to postgres.

A second database, template1, is also created during database cluster initialization. Whenever a new
database is created within the cluster, template1 is essentially cloned. This means that any changes you
make in template1 are propagated to all subsequently created databases. Because of this, avoid creating
objects in template1 unless you want them propagated to every newly created database. More details
appear in Section 21.3.

As a convenience, there is a program you can execute from the shell to create new databases, createdb.

createdb dbname

createdb does no magic. It connects to the postgres database and issues the CREATE DATABASE

command, exactly as described above. The createdb reference page contains the invocation details. Note
that createdb without any arguments will create a database with the current user name.

Note: Chapter 19 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else, and have him become the owner of the new
database, so he can configure and manage it himself. To achieve that, use one of the following commands:

CREATE DATABASE dbname OWNER rolename;

from the SQL environment, or:

createdb -O rolename dbname

from the shell. Only the superuser is allowed to create a database for someone else (that is, for a role you
are not a member of).

21.3. Template Databases
CREATE DATABASE actually works by copying an existing database. By default, it copies the standard
system database named template1. Thus that database is the “template” from which new databases
are made. If you add objects to template1, these objects will be copied into subsequently created user
databases. This behavior allows site-local modifications to the standard set of objects in databases. For
example, if you install the procedural language PL/Perl in template1, it will automatically be available
in user databases without any extra action being taken when those databases are created.

There is a second standard system database named template0. This database contains the same data
as the initial contents of template1, that is, only the standard objects predefined by your version of

529

Chapter 21. Managing Databases

PostgreSQL. template0 should never be changed after the database cluster has been initialized. By
instructing CREATE DATABASE to copy template0 instead of template1, you can create a “virgin”
user database that contains none of the site-local additions in template1. This is particularly handy
when restoring a pg_dump dump: the dump script should be restored in a virgin database to ensure that
one recreates the correct contents of the dumped database, without conflicting with objects that might
have been added to template1 later on.

Another common reason for copying template0 instead of template1 is that new encoding and locale
settings can be specified when copying template0, whereas a copy of template1 must use the same
settings it does. This is because template1 might contain encoding-specific or locale-specific data, while
template0 is known not to.

To create a database by copying template0, use:

CREATE DATABASE dbname TEMPLATE template0;

from the SQL environment, or:

createdb -T template0 dbname

from the shell.

It is possible to create additional template databases, and indeed one can copy any database in a cluster by
specifying its name as the template for CREATE DATABASE. It is important to understand, however, that
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that
no other sessions can be connected to the source database while it is being copied. CREATE DATABASE

will fail if any other connection exists when it starts; during the copy operation, new connections to the
source database are prevented.

Two useful flags exist in pg_database for each database: the columns datistemplate and
datallowconn. datistemplate can be set to indicate that a database is intended as a template for
CREATE DATABASE. If this flag is set, the database can be cloned by any user with CREATEDB privileges;
if it is not set, only superusers and the owner of the database can clone it. If datallowconn is false,
then no new connections to that database will be allowed (but existing sessions are not terminated
simply by setting the flag false). The template0 database is normally marked datallowconn =

false to prevent its modification. Both template0 and template1 should always be marked with
datistemplate = true.

Note: template1 and template0 do not have any special status beyond the fact that the name
template1 is the default source database name for CREATE DATABASE. For example, one could drop
template1 and recreate it from template0 without any ill effects. This course of action might be ad-
visable if one has carelessly added a bunch of junk in template1. (To delete template1, it must have
pg_database.datistemplate = false.)

The postgres database is also created when a database cluster is initialized. This database is meant
as a default database for users and applications to connect to. It is simply a copy of template1 and
can be dropped and recreated if necessary.

530

Chapter 21. Managing Databases

21.4. Database Configuration
Recall from Chapter 18 that the PostgreSQL server provides a large number of run-time configuration
variables. You can set database-specific default values for many of these settings.

For example, if for some reason you want to disable the GEQO optimizer for a given database, you’d
ordinarily have to either disable it for all databases or make sure that every connecting client is careful to
issue SET geqo TO off. To make this setting the default within a particular database, you can execute
the command:

ALTER DATABASE mydb SET geqo TO off;

This will save the setting (but not set it immediately). In subsequent connections to this database it will
appear as though SET geqo TO off; had been executed just before the session started. Note that users
can still alter this setting during their sessions; it will only be the default. To undo any such setting, use
ALTER DATABASE dbname RESET varname.

21.5. Destroying a Database
Databases are destroyed with the command DROP DATABASE:

DROP DATABASE name;

Only the owner of the database, or a superuser, can drop a database. Dropping a database removes all
objects that were contained within the database. The destruction of a database cannot be undone.

You cannot execute the DROP DATABASE command while connected to the victim database. You can,
however, be connected to any other database, including the template1 database. template1 would be
the only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases, dropdb:

dropdb dbname

(Unlike createdb, it is not the default action to drop the database with the current user name.)

21.6. Tablespaces
Tablespaces in PostgreSQL allow database administrators to define locations in the file system where the
files representing database objects can be stored. Once created, a tablespace can be referred to by name
when creating database objects.

By using tablespaces, an administrator can control the disk layout of a PostgreSQL installation. This is
useful in at least two ways. First, if the partition or volume on which the cluster was initialized runs out
of space and cannot be extended, a tablespace can be created on a different partition and used until the
system can be reconfigured.

Second, tablespaces allow an administrator to use knowledge of the usage pattern of database objects to
optimize performance. For example, an index which is very heavily used can be placed on a very fast,
highly available disk, such as an expensive solid state device. At the same time a table storing archived

531

Chapter 21. Managing Databases

data which is rarely used or not performance critical could be stored on a less expensive, slower disk
system.

To define a tablespace, use the CREATE TABLESPACE command, for example::

CREATE TABLESPACE fastspace LOCATION ’/mnt/sda1/postgresql/data’;

The location must be an existing, empty directory that is owned by the PostgreSQL operating system user.
All objects subsequently created within the tablespace will be stored in files underneath this directory.

Note: There is usually not much point in making more than one tablespace per logical file system,
since you cannot control the location of individual files within a logical file system. However, Post-
greSQL does not enforce any such limitation, and indeed it is not directly aware of the file system
boundaries on your system. It just stores files in the directories you tell it to use.

Creation of the tablespace itself must be done as a database superuser, but after that you can allow ordinary
database users to use it. To do that, grant them the CREATE privilege on it.

Tables, indexes, and entire databases can be assigned to particular tablespaces. To do so, a user with the
CREATE privilege on a given tablespace must pass the tablespace name as a parameter to the relevant
command. For example, the following creates a table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

Alternatively, use the default_tablespace parameter:

SET default_tablespace = space1;
CREATE TABLE foo(i int);

When default_tablespace is set to anything but an empty string, it supplies an implicit TABLESPACE
clause for CREATE TABLE and CREATE INDEX commands that do not have an explicit one.

There is also a temp_tablespaces parameter, which determines the placement of temporary tables and
indexes, as well as temporary files that are used for purposes such as sorting large data sets. This can be
a list of tablespace names, rather than only one, so that the load associated with temporary objects can be
spread over multiple tablespaces. A random member of the list is picked each time a temporary object is
to be created.

The tablespace associated with a database is used to store the system catalogs of that database. Further-
more, it is the default tablespace used for tables, indexes, and temporary files created within the database,
if no TABLESPACE clause is given and no other selection is specified by default_tablespace or
temp_tablespaces (as appropriate). If a database is created without specifying a tablespace for it, it
uses the same tablespace as the template database it is copied from.

Two tablespaces are automatically created when the database cluster is initialized. The pg_global ta-
blespace is used for shared system catalogs. The pg_default tablespace is the default tablespace of the
template1 and template0 databases (and, therefore, will be the default tablespace for other databases
as well, unless overridden by a TABLESPACE clause in CREATE DATABASE).

532

Chapter 21. Managing Databases

Once created, a tablespace can be used from any database, provided the requesting user has sufficient
privilege. This means that a tablespace cannot be dropped until all objects in all databases using the
tablespace have been removed.

To remove an empty tablespace, use the DROP TABLESPACE command.

To determine the set of existing tablespaces, examine the pg_tablespace system catalog, for example

SELECT spcname FROM pg_tablespace;

The psql program’s \db meta-command is also useful for listing the existing tablespaces.

PostgreSQL makes use of symbolic links to simplify the implementation of tablespaces. This means that
tablespaces can be used only on systems that support symbolic links.

The directory $PGDATA/pg_tblspc contains symbolic links that point to each of the non-built-in ta-
blespaces defined in the cluster. Although not recommended, it is possible to adjust the tablespace layout
by hand by redefining these links. Under no circumstances perform this operation while the server is run-
ning. Note that in PostgreSQL 9.1 and earlier you will also need to update the pg_tablespace catalog
with the new locations. (If you do not, pg_dump will continue to output the old tablespace locations.)

533

Chapter 22. Localization
This chapter describes the available localization features from the point of view of the administrator.
PostgreSQL supports two localization facilities:

• Using the locale features of the operating system to provide locale-specific collation order, number
formatting, translated messages, and other aspects. This is covered in Section 22.1 and Section 22.2.

• Providing a number of different character sets to support storing text in all kinds of languages, and
providing character set translation between client and server. This is covered in Section 22.3.

22.1. Locale Support
Locale support refers to an application respecting cultural preferences regarding alphabets, sorting, num-
ber formatting, etc. PostgreSQL uses the standard ISO C and POSIX locale facilities provided by the
server operating system. For additional information refer to the documentation of your system.

22.1.1. Overview
Locale support is automatically initialized when a database cluster is created using initdb. initdb will
initialize the database cluster with the locale setting of its execution environment by default, so if your
system is already set to use the locale that you want in your database cluster then there is nothing else you
need to do. If you want to use a different locale (or you are not sure which locale your system is set to),
you can instruct initdb exactly which locale to use by specifying the --locale option. For example:

initdb --locale=sv_SE

This example for Unix systems sets the locale to Swedish (sv) as spoken in Sweden (SE). Other possibil-
ities might include en_US (U.S. English) and fr_CA (French Canadian). If more than one character set
can be used for a locale then the specifications can take the form language_territory.codeset. For
example, fr_BE.UTF-8 represents the French language (fr) as spoken in Belgium (BE), with a UTF-8
character set encoding.

What locales are available on your system under what names depends on what was provided by the
operating system vendor and what was installed. On most Unix systems, the command locale -a will
provide a list of available locales. Windows uses more verbose locale names, such as German_Germany
or Swedish_Sweden.1252, but the principles are the same.

Occasionally it is useful to mix rules from several locales, e.g., use English collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only certain aspects of the
localization rules:

LC_COLLATE String sort order

534

Chapter 22. Localization

LC_CTYPE Character classification (What is a letter? Its
upper-case equivalent?)

LC_MESSAGES Language of messages

LC_MONETARY Formatting of currency amounts

LC_NUMERIC Formatting of numbers

LC_TIME Formatting of dates and times

The category names translate into names of initdb options to override the locale choice for a specific
category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
use initdb --locale=fr_CA --lc-monetary=en_US.

If you want the system to behave as if it had no locale support, use the special locale name C, or equiva-
lently POSIX.

Some locale categories must have their values fixed when the database is created. You can use different
settings for different databases, but once a database is created, you cannot change them for that database
anymore. LC_COLLATE and LC_CTYPE are these categories. They affect the sort order of indexes, so they
must be kept fixed, or indexes on text columns would become corrupt. (But you can alleviate this restric-
tion using collations, as discussed in Section 22.2.) The default values for these categories are determined
when initdb is run, and those values are used when new databases are created, unless specified otherwise
in the CREATE DATABASE command.

The other locale categories can be changed whenever desired by setting the server configuration param-
eters that have the same name as the locale categories (see Section 18.11.2 for details). The values that
are chosen by initdb are actually only written into the configuration file postgresql.conf to serve as
defaults when the server is started. If you remove these assignments from postgresql.conf then the
server will inherit the settings from its execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the server,
not by the environment of any client. Therefore, be careful to configure the correct locale settings before
starting the server. A consequence of this is that if client and server are set up in different locales, messages
might appear in different languages depending on where they originated.

Note: When we speak of inheriting the locale from the execution environment, this means the following
on most operating systems: For a given locale category, say the collation, the following environment
variables are consulted in this order until one is found to be set: LC_ALL, LC_COLLATE (or the variable
corresponding to the respective category), LANG. If none of these environment variables are set then
the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGE which overrides
all other locale settings for the purpose of setting the language of messages. If in doubt, please refer
to the documentation of your operating system, in particular the documentation about gettext.

To enable messages to be translated to the user’s preferred language, NLS must have been selected at
build time (configure --enable-nls). All other locale support is built in automatically.

535

Chapter 22. Localization

22.1.2. Behavior
The locale settings influence the following SQL features:

• Sort order in queries using ORDER BY or the standard comparison operators on textual data

• The upper, lower, and initcap functions

• Pattern matching operators (LIKE, SIMILAR TO, and POSIX-style regular expressions); locales affect
both case insensitive matching and the classification of characters by character-class regular expressions

• The to_char family of functions

• The ability to use indexes with LIKE clauses

The drawback of using locales other than C or POSIX in PostgreSQL is its performance impact. It slows
character handling and prevents ordinary indexes from being used by LIKE. For this reason use locales
only if you actually need them.

As a workaround to allow PostgreSQL to use indexes with LIKE clauses under a non-C locale, several
custom operator classes exist. These allow the creation of an index that performs a strict character-by-
character comparison, ignoring locale comparison rules. Refer to Section 11.9 for more information. An-
other approach is to create indexes using the C collation, as discussed in Section 22.2.

22.1.3. Problems
If locale support doesn’t work according to the explanation above, check that the locale support in your
operating system is correctly configured. To check what locales are installed on your system, you can use
the command locale -a if your operating system provides it.

Check that PostgreSQL is actually using the locale that you think it is. The LC_COLLATE and LC_CTYPE

settings are determined when a database is created, and cannot be changed except by creating a new
database. Other locale settings including LC_MESSAGES and LC_MONETARY are initially determined by
the environment the server is started in, but can be changed on-the-fly. You can check the active locale
settings using the SHOW command.

The directory src/test/locale in the source distribution contains a test suite for PostgreSQL’s locale
support.

Client applications that handle server-side errors by parsing the text of the error message will obviously
have problems when the server’s messages are in a different language. Authors of such applications are
advised to make use of the error code scheme instead.

Maintaining catalogs of message translations requires the on-going efforts of many volunteers that want
to see PostgreSQL speak their preferred language well. If messages in your language are currently not
available or not fully translated, your assistance would be appreciated. If you want to help, refer to Chapter
48 or write to the developers’ mailing list.

536

Chapter 22. Localization

22.2. Collation Support
The collation feature allows specifying the sort order and character classification behavior of data per-
column, or even per-operation. This alleviates the restriction that the LC_COLLATE and LC_CTYPE settings
of a database cannot be changed after its creation.

22.2.1. Concepts
Conceptually, every expression of a collatable data type has a collation. (The built-in collatable data types
are text, varchar, and char. User-defined base types can also be marked collatable, and of course a
domain over a collatable data type is collatable.) If the expression is a column reference, the collation of
the expression is the defined collation of the column. If the expression is a constant, the collation is the
default collation of the data type of the constant. The collation of a more complex expression is derived
from the collations of its inputs, as described below.

The collation of an expression can be the “default” collation, which means the locale settings defined for
the database. It is also possible for an expression’s collation to be indeterminate. In such cases, ordering
operations and other operations that need to know the collation will fail.

When the database system has to perform an ordering or a character classification, it uses the collation of
the input expression. This happens, for example, with ORDER BY clauses and function or operator calls
such as <. The collation to apply for an ORDER BY clause is simply the collation of the sort key. The
collation to apply for a function or operator call is derived from the arguments, as described below. In
addition to comparison operators, collations are taken into account by functions that convert between
lower and upper case letters, such as lower, upper, and initcap; by pattern matching operators; and
by to_char and related functions.

For a function or operator call, the collation that is derived by examining the argument collations is used
at run time for performing the specified operation. If the result of the function or operator call is of a
collatable data type, the collation is also used at parse time as the defined collation of the function or
operator expression, in case there is a surrounding expression that requires knowledge of its collation.

The collation derivation of an expression can be implicit or explicit. This distinction affects how collations
are combined when multiple different collations appear in an expression. An explicit collation derivation
occurs when a COLLATE clause is used; all other collation derivations are implicit. When multiple colla-
tions need to be combined, for example in a function call, the following rules are used:

1. If any input expression has an explicit collation derivation, then all explicitly derived collations among
the input expressions must be the same, otherwise an error is raised. If any explicitly derived collation
is present, that is the result of the collation combination.

2. Otherwise, all input expressions must have the same implicit collation derivation or the default colla-
tion. If any non-default collation is present, that is the result of the collation combination. Otherwise,
the result is the default collation.

3. If there are conflicting non-default implicit collations among the input expressions, then the combi-
nation is deemed to have indeterminate collation. This is not an error condition unless the particular
function being invoked requires knowledge of the collation it should apply. If it does, an error will be
raised at run-time.

For example, consider this table definition:

537

Chapter 22. Localization

CREATE TABLE test1 (
a text COLLATE "de_DE",
b text COLLATE "es_ES",
...

);

Then in

SELECT a < ’foo’ FROM test1;

the < comparison is performed according to de_DE rules, because the expression combines an implicitly
derived collation with the default collation. But in

SELECT a < (’foo’ COLLATE "fr_FR") FROM test1;

the comparison is performed using fr_FR rules, because the explicit collation derivation overrides the
implicit one. Furthermore, given

SELECT a < b FROM test1;

the parser cannot determine which collation to apply, since the a and b columns have conflicting implicit
collations. Since the < operator does need to know which collation to use, this will result in an error. The
error can be resolved by attaching an explicit collation specifier to either input expression, thus:

SELECT a < b COLLATE "de_DE" FROM test1;

or equivalently

SELECT a COLLATE "de_DE" < b FROM test1;

On the other hand, the structurally similar case

SELECT a || b FROM test1;

does not result in an error, because the || operator does not care about collations: its result is the same
regardless of the collation.

The collation assigned to a function or operator’s combined input expressions is also considered to apply
to the function or operator’s result, if the function or operator delivers a result of a collatable data type.
So, in

SELECT * FROM test1 ORDER BY a || ’foo’;

the ordering will be done according to de_DE rules. But this query:

SELECT * FROM test1 ORDER BY a || b;

results in an error, because even though the || operator doesn’t need to know a collation, the ORDER BY

clause does. As before, the conflict can be resolved with an explicit collation specifier:

SELECT * FROM test1 ORDER BY a || b COLLATE "fr_FR";

538

Chapter 22. Localization

22.2.2. Managing Collations
A collation is an SQL schema object that maps an SQL name to operating system locales. In particular,
it maps to a combination of LC_COLLATE and LC_CTYPE. (As the name would suggest, the main purpose
of a collation is to set LC_COLLATE, which controls the sort order. But it is rarely necessary in practice
to have an LC_CTYPE setting that is different from LC_COLLATE, so it is more convenient to collect these
under one concept than to create another infrastructure for setting LC_CTYPE per expression.) Also, a
collation is tied to a character set encoding (see Section 22.3). The same collation name may exist for
different encodings.

On all platforms, the collations named default, C, and POSIX are available. Additional collations may
be available depending on operating system support. The default collation selects the LC_COLLATE and
LC_CTYPE values specified at database creation time. The C and POSIX collations both specify “traditional
C” behavior, in which only the ASCII letters “A” through “Z” are treated as letters, and sorting is done
strictly by character code byte values.

If the operating system provides support for using multiple locales within a single program (newlocale
and related functions), then when a database cluster is initialized, initdb populates the system catalog
pg_collation with collations based on all the locales it finds on the operating system at the time. For
example, the operating system might provide a locale named de_DE.utf8. initdb would then create
a collation named de_DE.utf8 for encoding UTF8 that has both LC_COLLATE and LC_CTYPE set to
de_DE.utf8. It will also create a collation with the .utf8 tag stripped off the name. So you could also
use the collation under the name de_DE, which is less cumbersome to write and makes the name less
encoding-dependent. Note that, nevertheless, the initial set of collation names is platform-dependent.

In case a collation is needed that has different values for LC_COLLATE and LC_CTYPE, a new collation may
be created using the CREATE COLLATION command. That command can also be used to create a new
collation from an existing collation, which can be useful to be able to use operating-system-independent
collation names in applications.

Within any particular database, only collations that use that database’s encoding are of interest. Other
entries in pg_collation are ignored. Thus, a stripped collation name such as de_DE can be considered
unique within a given database even though it would not be unique globally. Use of the stripped collation
names is recommended, since it will make one less thing you need to change if you decide to change
to another database encoding. Note however that the default, C, and POSIX collations can be used
regardless of the database encoding.

PostgreSQL considers distinct collation objects to be incompatible even when they have identical proper-
ties. Thus for example,

SELECT a COLLATE "C" < b COLLATE "POSIX" FROM test1;

will draw an error even though the C and POSIX collations have identical behaviors. Mixing stripped and
non-stripped collation names is therefore not recommended.

22.3. Character Set Support
The character set support in PostgreSQL allows you to store text in a variety of character sets (also called
encodings), including single-byte character sets such as the ISO 8859 series and multiple-byte character

539

Chapter 22. Localization

sets such as EUC (Extended Unix Code), UTF-8, and Mule internal code. All supported character sets can
be used transparently by clients, but a few are not supported for use within the server (that is, as a server-
side encoding). The default character set is selected while initializing your PostgreSQL database cluster
using initdb. It can be overridden when you create a database, so you can have multiple databases each
with a different character set.

An important restriction, however, is that each database’s character set must be compatible with the
database’s LC_CTYPE (character classification) and LC_COLLATE (string sort order) locale settings. For C
or POSIX locale, any character set is allowed, but for other locales there is only one character set that will
work correctly. (On Windows, however, UTF-8 encoding can be used with any locale.)

22.3.1. Supported Character Sets
Table 22-1 shows the character sets available for use in PostgreSQL.

Table 22-1. PostgreSQL Character Sets

Name Description Language Server? Bytes/Char Aliases
BIG5 Big Five Traditional

Chinese
No 1-2 WIN950,

Windows950

EUC_CN Extended
UNIX
Code-CN

Simplified
Chinese

Yes 1-3

EUC_JP Extended
UNIX Code-JP

Japanese Yes 1-3

EUC_JIS_2004 Extended
UNIX Code-JP,
JIS X 0213

Japanese Yes 1-3

EUC_KR Extended
UNIX
Code-KR

Korean Yes 1-3

EUC_TW Extended
UNIX
Code-TW

Traditional
Chinese,
Taiwanese

Yes 1-3

GB18030 National
Standard

Chinese No 1-2

GBK Extended
National
Standard

Simplified
Chinese

No 1-2 WIN936,
Windows936

ISO_8859_5 ISO 8859-5,
ECMA 113

Latin/Cyrillic Yes 1

ISO_8859_6 ISO 8859-6,
ECMA 114

Latin/Arabic Yes 1

ISO_8859_7 ISO 8859-7,
ECMA 118

Latin/Greek Yes 1

540

Chapter 22. Localization

Name Description Language Server? Bytes/Char Aliases
ISO_8859_8 ISO 8859-8,

ECMA 121
Latin/Hebrew Yes 1

JOHAB JOHAB Korean
(Hangul)

No 1-3

KOI8R KOI8-R Cyrillic
(Russian)

Yes 1 KOI8

KOI8U KOI8-U Cyrillic
(Ukrainian)

Yes 1

LATIN1 ISO 8859-1,
ECMA 94

Western
European

Yes 1 ISO88591

LATIN2 ISO 8859-2,
ECMA 94

Central
European

Yes 1 ISO88592

LATIN3 ISO 8859-3,
ECMA 94

South
European

Yes 1 ISO88593

LATIN4 ISO 8859-4,
ECMA 94

North
European

Yes 1 ISO88594

LATIN5 ISO 8859-9,
ECMA 128

Turkish Yes 1 ISO88599

LATIN6 ISO 8859-10,
ECMA 144

Nordic Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with
Euro and
accents

Yes 1 ISO885915

LATIN10 ISO 8859-16,
ASRO SR
14111

Romanian Yes 1 ISO885916

MULE_INTERNALMule internal
code

Multilingual
Emacs

Yes 1-4

SJIS Shift JIS Japanese No 1-2 Mskanji,
ShiftJIS,
WIN932,
Windows932

SHIFT_JIS_2004Shift JIS, JIS X
0213

Japanese No 1-2

SQL_ASCII unspecified
(see text)

any Yes 1

UHC Unified Hangul
Code

Korean No 1-2 WIN949,
Windows949

UTF8 Unicode, 8-bit all Yes 1-4 Unicode

541

Chapter 22. Localization

Name Description Language Server? Bytes/Char Aliases
WIN866 Windows

CP866
Cyrillic Yes 1 ALT

WIN874 Windows
CP874

Thai Yes 1

WIN1250 Windows
CP1250

Central
European

Yes 1

WIN1251 Windows
CP1251

Cyrillic Yes 1 WIN

WIN1252 Windows
CP1252

Western
European

Yes 1

WIN1253 Windows
CP1253

Greek Yes 1

WIN1254 Windows
CP1254

Turkish Yes 1

WIN1255 Windows
CP1255

Hebrew Yes 1

WIN1256 Windows
CP1256

Arabic Yes 1

WIN1257 Windows
CP1257

Baltic Yes 1

WIN1258 Windows
CP1258

Vietnamese Yes 1 ABC, TCVN,
TCVN5712,
VSCII

Not all client APIs support all the listed character sets. For example, the PostgreSQL JDBC driver does
not support MULE_INTERNAL, LATIN6, LATIN8, and LATIN10.

The SQL_ASCII setting behaves considerably differently from the other settings. When the server char-
acter set is SQL_ASCII, the server interprets byte values 0-127 according to the ASCII standard, while
byte values 128-255 are taken as uninterpreted characters. No encoding conversion will be done when the
setting is SQL_ASCII. Thus, this setting is not so much a declaration that a specific encoding is in use, as a
declaration of ignorance about the encoding. In most cases, if you are working with any non-ASCII data,
it is unwise to use the SQL_ASCII setting because PostgreSQL will be unable to help you by converting
or validating non-ASCII characters.

22.3.2. Setting the Character Set
initdb defines the default character set (encoding) for a PostgreSQL cluster. For example,

initdb -E EUC_JP

sets the default character set to EUC_JP (Extended Unix Code for Japanese). You can use --encoding

instead of -E if you prefer longer option strings. If no -E or --encoding option is given, initdb attempts
to determine the appropriate encoding to use based on the specified or default locale.

542

Chapter 22. Localization

You can specify a non-default encoding at database creation time, provided that the encoding is compatible
with the selected locale:

createdb -E EUC_KR -T template0 --lc-collate=ko_KR.euckr --lc-ctype=ko_KR.euckr korean

This will create a database named korean that uses the character set EUC_KR, and locale ko_KR. Another
way to accomplish this is to use this SQL command:

CREATE DATABASE korean WITH ENCODING ’EUC_KR’ LC_COLLATE=’ko_KR.euckr’ LC_CTYPE=’ko_KR.euckr’ TEMPLATE=template0;

Notice that the above commands specify copying the template0 database. When copying any other
database, the encoding and locale settings cannot be changed from those of the source database, because
that might result in corrupt data. For more information see Section 21.3.

The encoding for a database is stored in the system catalog pg_database. You can see it by using the
psql -l option or the \l command.

$ psql -l

List of databases
Name | Owner | Encoding | Collation | Ctype | Access Privileges

-----------+----------+-----------+-------------+-------------+-------------------------------------
clocaledb | hlinnaka | SQL_ASCII | C | C |
englishdb | hlinnaka | UTF8 | en_GB.UTF8 | en_GB.UTF8 |
japanese | hlinnaka | UTF8 | ja_JP.UTF8 | ja_JP.UTF8 |
korean | hlinnaka | EUC_KR | ko_KR.euckr | ko_KR.euckr |
postgres | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 |
template0 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/hlinnaka,hlinnaka=CTc/hlinnaka}
template1 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/hlinnaka,hlinnaka=CTc/hlinnaka}
(7 rows)

Important: On most modern operating systems, PostgreSQL can determine which character set is
implied by the LC_CTYPE setting, and it will enforce that only the matching database encoding is used.
On older systems it is your responsibility to ensure that you use the encoding expected by the locale
you have selected. A mistake in this area is likely to lead to strange behavior of locale-dependent
operations such as sorting.

PostgreSQL will allow superusers to create databases with SQL_ASCII encoding even when LC_CTYPE

is not C or POSIX. As noted above, SQL_ASCII does not enforce that the data stored in the database
has any particular encoding, and so this choice poses risks of locale-dependent misbehavior. Using
this combination of settings is deprecated and may someday be forbidden altogether.

22.3.3. Automatic Character Set Conversion Between Server
and Client
PostgreSQL supports automatic character set conversion between server and client for certain character set
combinations. The conversion information is stored in the pg_conversion system catalog. PostgreSQL

543

Chapter 22. Localization

comes with some predefined conversions, as shown in Table 22-2. You can create a new conversion using
the SQL command CREATE CONVERSION.

Table 22-2. Client/Server Character Set Conversions

Server Character Set Available Client Character Sets
BIG5 not supported as a server encoding

EUC_CN EUC_CN, MULE_INTERNAL, UTF8

EUC_JP EUC_JP, MULE_INTERNAL, SJIS, UTF8

EUC_KR EUC_KR, MULE_INTERNAL, UTF8

EUC_TW EUC_TW, BIG5, MULE_INTERNAL, UTF8

GB18030 not supported as a server encoding

GBK not supported as a server encoding

ISO_8859_5 ISO_8859_5, KOI8R, MULE_INTERNAL, UTF8,
WIN866, WIN1251

ISO_8859_6 ISO_8859_6, UTF8

ISO_8859_7 ISO_8859_7, UTF8

ISO_8859_8 ISO_8859_8, UTF8

JOHAB JOHAB, UTF8

KOI8R KOI8R, ISO_8859_5, MULE_INTERNAL, UTF8,
WIN866, WIN1251

KOI8U KOI8U, UTF8

LATIN1 LATIN1, MULE_INTERNAL, UTF8

LATIN2 LATIN2, MULE_INTERNAL, UTF8, WIN1250

LATIN3 LATIN3, MULE_INTERNAL, UTF8

LATIN4 LATIN4, MULE_INTERNAL, UTF8

LATIN5 LATIN5, UTF8

LATIN6 LATIN6, UTF8

LATIN7 LATIN7, UTF8

LATIN8 LATIN8, UTF8

LATIN9 LATIN9, UTF8

LATIN10 LATIN10, UTF8

MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN, EUC_JP,
EUC_KR, EUC_TW, ISO_8859_5, KOI8R, LATIN1
to LATIN4, SJIS, WIN866, WIN1250, WIN1251

SJIS not supported as a server encoding

SQL_ASCII any (no conversion will be performed)

UHC not supported as a server encoding

UTF8 all supported encodings

WIN866 WIN866, ISO_8859_5, KOI8R, MULE_INTERNAL,
UTF8, WIN1251

544

Chapter 22. Localization

Server Character Set Available Client Character Sets
WIN874 WIN874, UTF8

WIN1250 WIN1250, LATIN2, MULE_INTERNAL, UTF8

WIN1251 WIN1251, ISO_8859_5, KOI8R,
MULE_INTERNAL, UTF8, WIN866

WIN1252 WIN1252, UTF8

WIN1253 WIN1253, UTF8

WIN1254 WIN1254, UTF8

WIN1255 WIN1255, UTF8

WIN1256 WIN1256, UTF8

WIN1257 WIN1257, UTF8

WIN1258 WIN1258, UTF8

To enable automatic character set conversion, you have to tell PostgreSQL the character set (encoding)
you would like to use in the client. There are several ways to accomplish this:

• Using the \encoding command in psql. \encoding allows you to change client encoding on the fly.
For example, to change the encoding to SJIS, type:

\encoding SJIS

• libpq (Section 31.10) has functions to control the client encoding.

• Using SET client_encoding TO. Setting the client encoding can be done with this SQL command:

SET CLIENT_ENCODING TO ’value’;

Also you can use the standard SQL syntax SET NAMES for this purpose:

SET NAMES ’value’;

To query the current client encoding:

SHOW client_encoding;

To return to the default encoding:

RESET client_encoding;

• Using PGCLIENTENCODING. If the environment variable PGCLIENTENCODING is defined in the client’s
environment, that client encoding is automatically selected when a connection to the server is made.
(This can subsequently be overridden using any of the other methods mentioned above.)

• Using the configuration variable client_encoding. If the client_encoding variable is set, that client
encoding is automatically selected when a connection to the server is made. (This can subsequently be
overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you chose EUC_JP for the server
and LATIN1 for the client, and some Japanese characters are returned that do not have a representation in
LATIN1 — an error is reported.

545

Chapter 22. Localization

If the client character set is defined as SQL_ASCII, encoding conversion is disabled, regardless of the
server’s character set. Just as for the server, use of SQL_ASCII is unwise unless you are working with
all-ASCII data.

22.3.4. Further Reading
These are good sources to start learning about various kinds of encoding systems.

CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing

Contains detailed explanations of EUC_JP, EUC_CN, EUC_KR, EUC_TW.

http://www.unicode.org/

The web site of the Unicode Consortium.

RFC 3629

UTF-8 (8-bit UCS/Unicode Transformation Format) is defined here.

546

Chapter 23. Routine Database Maintenance
Tasks

PostgreSQL, like any database software, requires that certain tasks be performed regularly to achieve op-
timum performance. The tasks discussed here are required, but they are repetitive in nature and can easily
be automated using standard tools such as cron scripts or Windows’ Task Scheduler. It is the database
administrator’s responsibility to set up appropriate scripts, and to check that they execute successfully.

One obvious maintenance task is the creation of backup copies of the data on a regular schedule. Without a
recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly dropping a
critical table, etc.). The backup and recovery mechanisms available in PostgreSQL are discussed at length
in Chapter 24.

The other main category of maintenance task is periodic “vacuuming” of the database. This activity is
discussed in Section 23.1. Closely related to this is updating the statistics that will be used by the query
planner, as discussed in Section 23.1.3.

Another task that might need periodic attention is log file management. This is discussed in Section 23.3.

check_postgres1 is available for monitoring database health and reporting unusual conditions.
check_postgres integrates with Nagios and MRTG, but can be run standalone too.

PostgreSQL is low-maintenance compared to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a pleasant and productive experience with
the system.

23.1. Routine Vacuuming
PostgreSQL databases require periodic maintenance known as vacuuming. For many installations, it is
sufficient to let vacuuming be performed by the autovacuum daemon, which is described in Section 23.1.6.
You might need to adjust the autovacuuming parameters described there to obtain best results for your
situation. Some database administrators will want to supplement or replace the daemon’s activities with
manually-managed VACUUM commands, which typically are executed according to a schedule by cron or
Task Scheduler scripts. To set up manually-managed vacuuming properly, it is essential to understand the
issues discussed in the next few subsections. Administrators who rely on autovacuuming may still wish to
skim this material to help them understand and adjust autovacuuming.

23.1.1. Vacuuming Basics
PostgreSQL’s VACUUM command has to process each table on a regular basis for several reasons:

1. To recover or reuse disk space occupied by updated or deleted rows.

2. To update data statistics used by the PostgreSQL query planner.

3. To update the visibility map, which speeds up index-only scans.

1. http://bucardo.org/wiki/Check_postgres

547

Chapter 23. Routine Database Maintenance Tasks

4. To protect against loss of very old data due to transaction ID wraparound.

Each of these reasons dictates performing VACUUM operations of varying frequency and scope, as ex-
plained in the following subsections.

There are two variants of VACUUM: standard VACUUM and VACUUM FULL. VACUUM FULL can reclaim more
disk space but runs much more slowly. Also, the standard form of VACUUM can run in parallel with pro-
duction database operations. (Commands such as SELECT, INSERT, UPDATE, and DELETE will continue
to function normally, though you will not be able to modify the definition of a table with commands such
as ALTER TABLE while it is being vacuumed.) VACUUM FULL requires exclusive lock on the table it is
working on, and therefore cannot be done in parallel with other use of the table. Generally, therefore,
administrators should strive to use standard VACUUM and avoid VACUUM FULL.

VACUUM creates a substantial amount of I/O traffic, which can cause poor performance for other active
sessions. There are configuration parameters that can be adjusted to reduce the performance impact of
background vacuuming — see Section 18.4.4.

23.1.2. Recovering Disk Space
In PostgreSQL, an UPDATE or DELETE of a row does not immediately remove the old version of the
row. This approach is necessary to gain the benefits of multiversion concurrency control (MVCC, see
Chapter 13): the row version must not be deleted while it is still potentially visible to other transactions.
But eventually, an outdated or deleted row version is no longer of interest to any transaction. The space
it occupies must then be reclaimed for reuse by new rows, to avoid unbounded growth of disk space
requirements. This is done by running VACUUM.

The standard form of VACUUM removes dead row versions in tables and indexes and marks the space
available for future reuse. However, it will not return the space to the operating system, except in the
special case where one or more pages at the end of a table become entirely free and an exclusive table
lock can be easily obtained. In contrast, VACUUM FULL actively compacts tables by writing a complete
new version of the table file with no dead space. This minimizes the size of the table, but can take a long
time. It also requires extra disk space for the new copy of the table, until the operation completes.

The usual goal of routine vacuuming is to do standard VACUUMs often enough to avoid needing VACUUM

FULL. The autovacuum daemon attempts to work this way, and in fact will never issue VACUUM FULL. In
this approach, the idea is not to keep tables at their minimum size, but to maintain steady-state usage of
disk space: each table occupies space equivalent to its minimum size plus however much space gets used
up between vacuumings. Although VACUUM FULL can be used to shrink a table back to its minimum size
and return the disk space to the operating system, there is not much point in this if the table will just grow
again in the future. Thus, moderately-frequent standard VACUUM runs are a better approach than infrequent
VACUUM FULL runs for maintaining heavily-updated tables.

Some administrators prefer to schedule vacuuming themselves, for example doing all the work at night
when load is low. The difficulty with doing vacuuming according to a fixed schedule is that if a table has an
unexpected spike in update activity, it may get bloated to the point that VACUUM FULL is really necessary
to reclaim space. Using the autovacuum daemon alleviates this problem, since the daemon schedules
vacuuming dynamically in response to update activity. It is unwise to disable the daemon completely
unless you have an extremely predictable workload. One possible compromise is to set the daemon’s
parameters so that it will only react to unusually heavy update activity, thus keeping things from getting
out of hand, while scheduled VACUUMs are expected to do the bulk of the work when the load is typical.

548

Chapter 23. Routine Database Maintenance Tasks

For those not using autovacuum, a typical approach is to schedule a database-wide VACUUM once a day
during a low-usage period, supplemented by more frequent vacuuming of heavily-updated tables as nec-
essary. (Some installations with extremely high update rates vacuum their busiest tables as often as once
every few minutes.) If you have multiple databases in a cluster, don’t forget to VACUUM each one; the
program vacuumdb might be helpful.

Tip: Plain VACUUM may not be satisfactory when a table contains large numbers of dead row versions
as a result of massive update or delete activity. If you have such a table and you need to reclaim the
excess disk space it occupies, you will need to use VACUUM FULL, or alternatively CLUSTER or one of
the table-rewriting variants of ALTER TABLE. These commands rewrite an entire new copy of the table
and build new indexes for it. All these options require exclusive lock. Note that they also temporarily
use extra disk space approximately equal to the size of the table, since the old copies of the table and
indexes can’t be released until the new ones are complete.

Tip: If you have a table whose entire contents are deleted on a periodic basis, consider doing it with
TRUNCATE rather than using DELETE followed by VACUUM. TRUNCATE removes the entire content of the
table immediately, without requiring a subsequent VACUUM or VACUUM FULL to reclaim the now-unused
disk space. The disadvantage is that strict MVCC semantics are violated.

23.1.3. Updating Planner Statistics
The PostgreSQL query planner relies on statistical information about the contents of tables in order to
generate good plans for queries. These statistics are gathered by the ANALYZE command, which can be
invoked by itself or as an optional step in VACUUM. It is important to have reasonably accurate statistics,
otherwise poor choices of plans might degrade database performance.

The autovacuum daemon, if enabled, will automatically issue ANALYZE commands whenever the content
of a table has changed sufficiently. However, administrators might prefer to rely on manually-scheduled
ANALYZE operations, particularly if it is known that update activity on a table will not affect the statistics
of “interesting” columns. The daemon schedules ANALYZE strictly as a function of the number of rows
inserted or updated; it has no knowledge of whether that will lead to meaningful statistical changes.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-updated
tables than for seldom-updated ones. But even for a heavily-updated table, there might be no need for
statistics updates if the statistical distribution of the data is not changing much. A simple rule of thumb
is to think about how much the minimum and maximum values of the columns in the table change.
For example, a timestamp column that contains the time of row update will have a constantly-increasing
maximum value as rows are added and updated; such a column will probably need more frequent statistics
updates than, say, a column containing URLs for pages accessed on a website. The URL column might
receive changes just as often, but the statistical distribution of its values probably changes relatively slowly.

It is possible to run ANALYZE on specific tables and even just specific columns of a table, so the flexibility
exists to update some statistics more frequently than others if your application requires it. In practice,
however, it is usually best to just analyze the entire database, because it is a fast operation. ANALYZE uses
a statistically random sampling of the rows of a table rather than reading every single row.

549

Chapter 23. Routine Database Maintenance Tasks

Tip: Although per-column tweaking of ANALYZE frequency might not be very productive, you might find
it worthwhile to do per-column adjustment of the level of detail of the statistics collected by ANALYZE.
Columns that are heavily used in WHERE clauses and have highly irregular data distributions might re-
quire a finer-grain data histogram than other columns. See ALTER TABLE SET STATISTICS, or change
the database-wide default using the default_statistics_target configuration parameter.

Also, by default there is limited information available about the selectivity of functions. However, if
you create an expression index that uses a function call, useful statistics will be gathered about the
function, which can greatly improve query plans that use the expression index.

Tip: The autovacuum daemon does not issue ANALYZE commands for foreign tables, since it has no
means of determining how often that might be useful. If your queries require statistics on foreign tables
for proper planning, it’s a good idea to run manually-managed ANALYZE commands on those tables
on a suitable schedule.

23.1.4. Updating The Visibility Map
Vacuum maintains a visibility map for each table to keep track of which pages contain only tuples that are
known to be visible to all active transactions (and all future transactions, until the page is again modified).
This has two purposes. First, vacuum itself can skip such pages on the next run, since there is nothing to
clean up.

Second, it allows PostgreSQL to answer some queries using only the index, without reference to the
underlying table. Since PostgreSQL indexes don’t contain tuple visibility information, a normal index
scan fetches the heap tuple for each matching index entry, to check whether it should be seen by the
current transaction. An index-only scan, on the other hand, checks the visibility map first. If it’s known
that all tuples on the page are visible, the heap fetch can be skipped. This is most noticeable on large data
sets where the visibility map can prevent disk accesses. The visibility map is vastly smaller than the heap,
so it can easily be cached even when the heap is very large.

23.1.5. Preventing Transaction ID Wraparound Failures
PostgreSQL’s MVCC transaction semantics depend on being able to compare transaction ID (XID) num-
bers: a row version with an insertion XID greater than the current transaction’s XID is “in the future” and
should not be visible to the current transaction. But since transaction IDs have limited size (32 bits) a clus-
ter that runs for a long time (more than 4 billion transactions) would suffer transaction ID wraparound:
the XID counter wraps around to zero, and all of a sudden transactions that were in the past appear to be
in the future — which means their output become invisible. In short, catastrophic data loss. (Actually the
data is still there, but that’s cold comfort if you cannot get at it.) To avoid this, it is necessary to vacuum
every table in every database at least once every two billion transactions.

The reason that periodic vacuuming solves the problem is that PostgreSQL reserves a special XID as
FrozenXID. This XID does not follow the normal XID comparison rules and is always considered older
than every normal XID. Normal XIDs are compared using modulo-232 arithmetic. This means that for
every normal XID, there are two billion XIDs that are “older” and two billion that are “newer”; another

550

Chapter 23. Routine Database Maintenance Tasks

way to say it is that the normal XID space is circular with no endpoint. Therefore, once a row version
has been created with a particular normal XID, the row version will appear to be “in the past” for the
next two billion transactions, no matter which normal XID we are talking about. If the row version still
exists after more than two billion transactions, it will suddenly appear to be in the future. To prevent this,
old row versions must be reassigned the XID FrozenXID sometime before they reach the two-billion-
transactions-old mark. Once they are assigned this special XID, they will appear to be “in the past” to all
normal transactions regardless of wraparound issues, and so such row versions will be valid until deleted,
no matter how long that is. This reassignment of old XIDs is handled by VACUUM.

vacuum_freeze_min_age controls how old an XID value has to be before it’s replaced with FrozenXID.
Larger values of this setting preserve transactional information longer, while smaller values increase the
number of transactions that can elapse before the table must be vacuumed again.

VACUUM normally skips pages that don’t have any dead row versions, but those pages might still have row
versions with old XID values. To ensure all old XIDs have been replaced by FrozenXID, a scan of
the whole table is needed. vacuum_freeze_table_age controls when VACUUM does that: a whole table
sweep is forced if the table hasn’t been fully scanned for vacuum_freeze_table_age minus
vacuum_freeze_min_age transactions. Setting it to 0 forces VACUUM to always scan all pages,
effectively ignoring the visibility map.

The maximum time that a table can go unvacuumed is two billion transactions minus the
vacuum_freeze_min_age value at the time VACUUM last scanned the whole table. If it were to go
unvacuumed for longer than that, data loss could result. To ensure that this does not happen, autovacuum
is invoked on any table that might contain XIDs older than the age specified by the configuration
parameter autovacuum_freeze_max_age. (This will happen even if autovacuum is disabled.)

This implies that if a table is not otherwise vacuumed, autovacuum will be invoked on it approximately
once every autovacuum_freeze_max_age minus vacuum_freeze_min_age transactions. For tables
that are regularly vacuumed for space reclamation purposes, this is of little importance. However, for
static tables (including tables that receive inserts, but no updates or deletes), there is no need to vacuum
for space reclamation, so it can be useful to try to maximize the interval between forced autovacuums on
very large static tables. Obviously one can do this either by increasing autovacuum_freeze_max_age

or decreasing vacuum_freeze_min_age.

The effective maximum for vacuum_freeze_table_age is 0.95 * autovacuum_freeze_max_age;
a setting higher than that will be capped to the maximum. A value higher than
autovacuum_freeze_max_age wouldn’t make sense because an anti-wraparound autovacuum would
be triggered at that point anyway, and the 0.95 multiplier leaves some breathing room to run a manual
VACUUM before that happens. As a rule of thumb, vacuum_freeze_table_age should be set to a value
somewhat below autovacuum_freeze_max_age, leaving enough gap so that a regularly scheduled
VACUUM or an autovacuum triggered by normal delete and update activity is run in that window. Setting it
too close could lead to anti-wraparound autovacuums, even though the table was recently vacuumed to
reclaim space, whereas lower values lead to more frequent whole-table scans.

The sole disadvantage of increasing autovacuum_freeze_max_age (and
vacuum_freeze_table_age along with it) is that the pg_clog subdirectory of the database
cluster will take more space, because it must store the commit status of all transactions back to the
autovacuum_freeze_max_age horizon. The commit status uses two bits per transaction, so if
autovacuum_freeze_max_age is set to its maximum allowed value of two billion, pg_clog can be
expected to grow to about half a gigabyte. If this is trivial compared to your total database size, setting
autovacuum_freeze_max_age to its maximum allowed value is recommended. Otherwise, set it

551

Chapter 23. Routine Database Maintenance Tasks

depending on what you are willing to allow for pg_clog storage. (The default, 200 million transactions,
translates to about 50MB of pg_clog storage.)

One disadvantage of decreasing vacuum_freeze_min_age is that it might cause VACUUM to do useless
work: changing a table row’s XID to FrozenXID is a waste of time if the row is modified soon thereafter
(causing it to acquire a new XID). So the setting should be large enough that rows are not frozen until
they are unlikely to change any more. Another disadvantage of decreasing this setting is that details about
exactly which transaction inserted or modified a row will be lost sooner. This information sometimes
comes in handy, particularly when trying to analyze what went wrong after a database failure. For these
two reasons, decreasing this setting is not recommended except for completely static tables.

To track the age of the oldest XIDs in a database, VACUUM stores XID statistics in the system tables
pg_class and pg_database. In particular, the relfrozenxid column of a table’s pg_class row
contains the freeze cutoff XID that was used by the last whole-table VACUUM for that table. All normal
XIDs older than this cutoff XID are guaranteed to have been replaced by FrozenXID within the table.
Similarly, the datfrozenxid column of a database’s pg_database row is a lower bound on the normal
XIDs appearing in that database — it is just the minimum of the per-table relfrozenxid values within
the database. A convenient way to examine this information is to execute queries such as:

SELECT c.oid::regclass as table_name,
greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age

FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind = ’r’;

SELECT datname, age(datfrozenxid) FROM pg_database;

The age column measures the number of transactions from the cutoff XID to the current transaction’s
XID.

VACUUM normally only scans pages that have been modified since the last vacuum, but relfrozenxid
can only be advanced when the whole table is scanned. The whole table is scanned when
relfrozenxid is more than vacuum_freeze_table_age transactions old, when VACUUM’s FREEZE
option is used, or when all pages happen to require vacuuming to remove dead row versions. When
VACUUM scans the whole table, after it’s finished age(relfrozenxid) should be a little more
than the vacuum_freeze_min_age setting that was used (more by the number of transactions
started since the VACUUM started). If no whole-table-scanning VACUUM is issued on the table until
autovacuum_freeze_max_age is reached, an autovacuum will soon be forced for the table.

If for some reason autovacuum fails to clear old XIDs from a table, the system will begin to emit warning
messages like this when the database’s oldest XIDs reach ten million transactions from the wraparound
point:

WARNING: database "mydb" must be vacuumed within 177009986 transactions
HINT: To avoid a database shutdown, execute a database-wide VACUUM in "mydb".

(A manual VACUUM should fix the problem, as suggested by the hint; but note that the VACUUM must be
performed by a superuser, else it will fail to process system catalogs and thus not be able to advance the
database’s datfrozenxid.) If these warnings are ignored, the system will shut down and refuse to start
any new transactions once there are fewer than 1 million transactions left until wraparound:

ERROR: database is not accepting commands to avoid wraparound data loss in database "mydb"

552

Chapter 23. Routine Database Maintenance Tasks

HINT: Stop the postmaster and use a standalone backend to VACUUM in "mydb".

The 1-million-transaction safety margin exists to let the administrator recover without data loss, by man-
ually executing the required VACUUM commands. However, since the system will not execute commands
once it has gone into the safety shutdown mode, the only way to do this is to stop the server and use a
single-user backend to execute VACUUM. The shutdown mode is not enforced by a single-user backend.
See the postgres reference page for details about using a single-user backend.

23.1.6. The Autovacuum Daemon
PostgreSQL has an optional but highly recommended feature called autovacuum, whose purpose is to
automate the execution of VACUUM and ANALYZE commands. When enabled, autovacuum checks for
tables that have had a large number of inserted, updated or deleted tuples. These checks use the statistics
collection facility; therefore, autovacuum cannot be used unless track_counts is set to true. In the default
configuration, autovacuuming is enabled and the related configuration parameters are appropriately set.

The “autovacuum daemon” actually consists of multiple processes. There is a persistent daemon pro-
cess, called the autovacuum launcher, which is in charge of starting autovacuum worker processes for all
databases. The launcher will distribute the work across time, attempting to start one worker within each
database every autovacuum_naptime seconds. (Therefore, if the installation has N databases, a new worker
will be launched every autovacuum_naptime/N seconds.) A maximum of autovacuum_max_workers
worker processes are allowed to run at the same time. If there are more than autovacuum_max_workers
databases to be processed, the next database will be processed as soon as the first worker finishes. Each
worker process will check each table within its database and execute VACUUM and/or ANALYZE as needed.

If several large tables all become eligible for vacuuming in a short amount of time, all autovacuum workers
might become occupied with vacuuming those tables for a long period. This would result in other tables
and databases not being vacuumed until a worker became available. There is no limit on how many
workers might be in a single database, but workers do try to avoid repeating work that has already been
done by other workers. Note that the number of running workers does not count towards max_connections
or superuser_reserved_connections limits.

Tables whose relfrozenxid value is more than autovacuum_freeze_max_age transactions old are al-
ways vacuumed (this also applies to those tables whose freeze max age has been modified via storage
parameters; see below). Otherwise, if the number of tuples obsoleted since the last VACUUM exceeds the
“vacuum threshold”, the table is vacuumed. The vacuum threshold is defined as:

vacuum threshold = vacuum base threshold + vacuum scale factor * number of tuples

where the vacuum base threshold is autovacuum_vacuum_threshold, the vacuum scale factor is autovac-
uum_vacuum_scale_factor, and the number of tuples is pg_class.reltuples. The number of obsolete
tuples is obtained from the statistics collector; it is a semi-accurate count updated by each UPDATE and
DELETE operation. (It is only semi-accurate because some information might be lost under heavy load.)
If the relfrozenxid value of the table is more than vacuum_freeze_table_age transactions old, the
whole table is scanned to freeze old tuples and advance relfrozenxid, otherwise only pages that have
been modified since the last vacuum are scanned.

For analyze, a similar condition is used: the threshold, defined as:

analyze threshold = analyze base threshold + analyze scale factor * number of tuples

553

Chapter 23. Routine Database Maintenance Tasks

is compared to the total number of tuples inserted, updated, or deleted since the last ANALYZE.

Temporary tables cannot be accessed by autovacuum. Therefore, appropriate vacuum and analyze opera-
tions should be performed via session SQL commands.

The default thresholds and scale factors are taken from postgresql.conf, but it is possible to override
them on a table-by-table basis; see Storage Parameters for more information. If a setting has been changed
via storage parameters, that value is used; otherwise the global settings are used. See Section 18.10 for
more details on the global settings.

Besides the base threshold values and scale factors, there are six more autovacuum parameters that
can be set for each table via storage parameters. The first parameter, autovacuum_enabled,
can be set to false to instruct the autovacuum daemon to skip that particular table entirely.
In this case autovacuum will only touch the table if it must do so to prevent transaction
ID wraparound. Another two parameters, autovacuum_vacuum_cost_delay and
autovacuum_vacuum_cost_limit, are used to set table-specific values for the cost-based vacuum
delay feature (see Section 18.4.4). autovacuum_freeze_min_age, autovacuum_freeze_max_age
and autovacuum_freeze_table_age are used to set values for vacuum_freeze_min_age,
autovacuum_freeze_max_age and vacuum_freeze_table_age respectively.

When multiple workers are running, the cost limit is “balanced” among all the running workers, so that
the total impact on the system is the same, regardless of the number of workers actually running.

23.2. Routine Reindexing
In some situations it is worthwhile to rebuild indexes periodically with the REINDEX command.

B-tree index pages that have become completely empty are reclaimed for re-use. However, there is still a
possibility of inefficient use of space: if all but a few index keys on a page have been deleted, the page
remains allocated. Therefore, a usage pattern in which most, but not all, keys in each range are eventually
deleted will see poor use of space. For such usage patterns, periodic reindexing is recommended.

The potential for bloat in non-B-tree indexes has not been well researched. It is a good idea to periodically
monitor the index’s physical size when using any non-B-tree index type.

Also, for B-tree indexes, a freshly-constructed index is slightly faster to access than one that has been
updated many times because logically adjacent pages are usually also physically adjacent in a newly
built index. (This consideration does not apply to non-B-tree indexes.) It might be worthwhile to reindex
periodically just to improve access speed.

23.3. Log File Maintenance
It is a good idea to save the database server’s log output somewhere, rather than just discarding it via
/dev/null. The log output is invaluable when diagnosing problems. However, the log output tends to
be voluminous (especially at higher debug levels) so you won’t want to save it indefinitely. You need to
rotate the log files so that new log files are started and old ones removed after a reasonable period of time.

554

Chapter 23. Routine Database Maintenance Tasks

If you simply direct the stderr of postgres into a file, you will have log output, but the only way to
truncate the log file is to stop and restart the server. This might be acceptable if you are using PostgreSQL
in a development environment, but few production servers would find this behavior acceptable.

A better approach is to send the server’s stderr output to some type of log rotation program. There is a built-
in log rotation facility, which you can use by setting the configuration parameter logging_collector
to true in postgresql.conf. The control parameters for this program are described in Section 18.8.1.
You can also use this approach to capture the log data in machine readable CSV (comma-separated values)
format.

Alternatively, you might prefer to use an external log rotation program if you have one that you are already
using with other server software. For example, the rotatelogs tool included in the Apache distribution can
be used with PostgreSQL. To do this, just pipe the server’s stderr output to the desired program. If you
start the server with pg_ctl, then stderr is already redirected to stdout, so you just need a pipe command,
for example:

pg_ctl start | rotatelogs /var/log/pgsql_log 86400

Another production-grade approach to managing log output is to send it to syslog and let syslog deal with
file rotation. To do this, set the configuration parameter log_destination to syslog (to log to syslog
only) in postgresql.conf. Then you can send a SIGHUP signal to the syslog daemon whenever you
want to force it to start writing a new log file. If you want to automate log rotation, the logrotate program
can be configured to work with log files from syslog.

On many systems, however, syslog is not very reliable, particularly with large log messages; it might
truncate or drop messages just when you need them the most. Also, on Linux, syslog will flush each
message to disk, yielding poor performance. (You can use a “-” at the start of the file name in the syslog
configuration file to disable syncing.)

Note that all the solutions described above take care of starting new log files at configurable intervals, but
they do not handle deletion of old, no-longer-useful log files. You will probably want to set up a batch job
to periodically delete old log files. Another possibility is to configure the rotation program so that old log
files are overwritten cyclically.

pgFouine2 is an external project that does sophisticated log file analysis. check_postgres3 provides Nagios
alerts when important messages appear in the log files, as well as detection of many other extraordinary
conditions.

2. http://pgfouine.projects.postgresql.org/
3. http://bucardo.org/wiki/Check_postgres

555

Chapter 24. Backup and Restore
As with everything that contains valuable data, PostgreSQL databases should be backed up regularly.
While the procedure is essentially simple, it is important to have a clear understanding of the underlying
techniques and assumptions.

There are three fundamentally different approaches to backing up PostgreSQL data:

• SQL dump

• File system level backup

• Continuous archiving

Each has its own strengths and weaknesses; each is discussed in turn in the following sections.

24.1. SQL Dump
The idea behind this dump method is to generate a text file with SQL commands that, when fed back
to the server, will recreate the database in the same state as it was at the time of the dump. PostgreSQL
provides the utility program pg_dump for this purpose. The basic usage of this command is:

pg_dump dbname > outfile

As you see, pg_dump writes its result to the standard output. We will see below how this can be useful.

pg_dump is a regular PostgreSQL client application (albeit a particularly clever one). This means that you
can perform this backup procedure from any remote host that has access to the database. But remember
that pg_dump does not operate with special permissions. In particular, it must have read access to all
tables that you want to back up, so in practice you almost always have to run it as a database superuser.

To specify which database server pg_dump should contact, use the command line options -h host and -p
port. The default host is the local host or whatever your PGHOST environment variable specifies. Similarly,
the default port is indicated by the PGPORT environment variable or, failing that, by the compiled-in
default. (Conveniently, the server will normally have the same compiled-in default.)

Like any other PostgreSQL client application, pg_dump will by default connect with the database user
name that is equal to the current operating system user name. To override this, either specify the -U option
or set the environment variable PGUSER. Remember that pg_dump connections are subject to the normal
client authentication mechanisms (which are described in Chapter 19).

An important advantage of pg_dump over the other backup methods described later is that pg_dump’s
output can generally be re-loaded into newer versions of PostgreSQL, whereas file-level backups and
continuous archiving are both extremely server-version-specific. pg_dump is also the only method that
will work when transferring a database to a different machine architecture, such as going from a 32-bit to
a 64-bit server.

Dumps created by pg_dump are internally consistent, meaning, the dump represents a snapshot of the
database at the time pg_dump began running. pg_dump does not block other operations on the database
while it is working. (Exceptions are those operations that need to operate with an exclusive lock, such as
most forms of ALTER TABLE.)

556

Chapter 24. Backup and Restore

Important: If your database schema relies on OIDs (for instance, as foreign keys) you must instruct
pg_dump to dump the OIDs as well. To do this, use the -o command-line option.

24.1.1. Restoring the Dump
The text files created by pg_dump are intended to be read in by the psql program. The general command
form to restore a dump is

psql dbname < infile

where infile is the file output by the pg_dump command. The database dbname will not be cre-
ated by this command, so you must create it yourself from template0 before executing psql (e.g.,
with createdb -T template0 dbname). psql supports options similar to pg_dump for specifying the
database server to connect to and the user name to use. See the psql reference page for more information.

Before restoring an SQL dump, all the users who own objects or were granted permissions on objects in
the dumped database must already exist. If they do not, the restore will fail to recreate the objects with the
original ownership and/or permissions. (Sometimes this is what you want, but usually it is not.)

By default, the psql script will continue to execute after an SQL error is encountered. You might wish to
run psql with the ON_ERROR_STOP variable set to alter that behavior and have psql exit with an exit status
of 3 if an SQL error occurs:

psql --set ON_ERROR_STOP=on dbname < infile

Either way, you will only have a partially restored database. Alternatively, you can specify that the whole
dump should be restored as a single transaction, so the restore is either fully completed or fully rolled
back. This mode can be specified by passing the -1 or --single-transaction command-line options
to psql. When using this mode, be aware that even a minor error can rollback a restore that has already
run for many hours. However, that might still be preferable to manually cleaning up a complex database
after a partially restored dump.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another, for example:

pg_dump -h host1 dbname | psql -h host2 dbname

Important: The dumps produced by pg_dump are relative to template0. This means that any
languages, procedures, etc. added via template1 will also be dumped by pg_dump. As a result,
when restoring, if you are using a customized template1, you must create the empty database from
template0, as in the example above.

After restoring a backup, it is wise to run ANALYZE on each database so the query optimizer has useful
statistics; see Section 23.1.3 and Section 23.1.6 for more information. For more advice on how to load
large amounts of data into PostgreSQL efficiently, refer to Section 14.4.

557

Chapter 24. Backup and Restore

24.1.2. Using pg_dumpall
pg_dump dumps only a single database at a time, and it does not dump information about roles or ta-
blespaces (because those are cluster-wide rather than per-database). To support convenient dumping of
the entire contents of a database cluster, the pg_dumpall program is provided. pg_dumpall backs up each
database in a given cluster, and also preserves cluster-wide data such as role and tablespace definitions.
The basic usage of this command is:

pg_dumpall > outfile

The resulting dump can be restored with psql:

psql -f infile postgres

(Actually, you can specify any existing database name to start from, but if you are loading into an empty
cluster then postgres should usually be used.) It is always necessary to have database superuser access
when restoring a pg_dumpall dump, as that is required to restore the role and tablespace information.
If you use tablespaces, make sure that the tablespace paths in the dump are appropriate for the new
installation.

pg_dumpall works by emitting commands to re-create roles, tablespaces, and empty databases, then in-
voking pg_dump for each database. This means that while each database will be internally consistent, the
snapshots of different databases might not be exactly in-sync.

24.1.3. Handling Large Databases
Some operating systems have maximum file size limits that cause problems when creating large pg_dump
output files. Fortunately, pg_dump can write to the standard output, so you can use standard Unix tools to
work around this potential problem. There are several possible methods:

Use compressed dumps. You can use your favorite compression program, for example gzip:

pg_dump dbname | gzip > filename.gz

Reload with:

gunzip -c filename.gz | psql dbname

or:

cat filename.gz | gunzip | psql dbname

Use split. The split command allows you to split the output into smaller files that are acceptable in
size to the underlying file system. For example, to make chunks of 1 megabyte:

pg_dump dbname | split -b 1m - filename

Reload with:

cat filename* | psql dbname

558

Chapter 24. Backup and Restore

Use pg_dump’s custom dump format. If PostgreSQL was built on a system with the zlib compression
library installed, the custom dump format will compress data as it writes it to the output file. This will
produce dump file sizes similar to using gzip, but it has the added advantage that tables can be restored
selectively. The following command dumps a database using the custom dump format:

pg_dump -Fc dbname > filename

A custom-format dump is not a script for psql, but instead must be restored with pg_restore, for example:

pg_restore -d dbname filename

See the pg_dump and pg_restore reference pages for details.

For very large databases, you might need to combine split with one of the other two approaches.

24.2. File System Level Backup
An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in the
database; Section 17.2 explains where these files are located. You can use whatever method you prefer for
doing file system backups; for example:

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

1. The database server must be shut down in order to get a usable backup. Half-way measures such
as disallowing all connections will not work (in part because tar and similar tools do not take an
atomic snapshot of the state of the file system, but also because of internal buffering within the
server). Information about stopping the server can be found in Section 17.5. Needless to say, you also
need to shut down the server before restoring the data.

2. If you have dug into the details of the file system layout of the database, you might be tempted to
try to back up or restore only certain individual tables or databases from their respective files or
directories. This will not work because the information contained in these files is not usable without
the commit log files, pg_clog/*, which contain the commit status of all transactions. A table file
is only usable with this information. Of course it is also impossible to restore only a table and the
associated pg_clog data because that would render all other tables in the database cluster useless.
So file system backups only work for complete backup and restoration of an entire database cluster.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory, if
the file system supports that functionality (and you are willing to trust that it is implemented correctly).
The typical procedure is to make a “frozen snapshot” of the volume containing the database, then copy
the whole data directory (not just parts, see above) from the snapshot to a backup device, then release the
frozen snapshot. This will work even while the database server is running. However, a backup created in
this way saves the database files in a state as if the database server was not properly shut down; therefore,

559

Chapter 24. Backup and Restore

when you start the database server on the backed-up data, it will think the previous server instance crashed
and will replay the WAL log. This is not a problem; just be aware of it (and be sure to include the WAL
files in your backup). You can perform a CHECKPOINT before taking the snapshot to reduce recovery time.

If your database is spread across multiple file systems, there might not be any way to obtain exactly-
simultaneous frozen snapshots of all the volumes. For example, if your data files and WAL log are on
different disks, or if tablespaces are on different file systems, it might not be possible to use snapshot
backup because the snapshots must be simultaneous. Read your file system documentation very carefully
before trusting the consistent-snapshot technique in such situations.

If simultaneous snapshots are not possible, one option is to shut down the database server long enough
to establish all the frozen snapshots. Another option is to perform a continuous archiving base backup
(Section 24.3.2) because such backups are immune to file system changes during the backup. This requires
enabling continuous archiving just during the backup process; restore is done using continuous archive
recovery (Section 24.3.4).

Another option is to use rsync to perform a file system backup. This is done by first running rsync while
the database server is running, then shutting down the database server just long enough to do a second
rsync. The second rsync will be much quicker than the first, because it has relatively little data to transfer,
and the end result will be consistent because the server was down. This method allows a file system backup
to be performed with minimal downtime.

Note that a file system backup will typically be larger than an SQL dump. (pg_dump does not need to
dump the contents of indexes for example, just the commands to recreate them.) However, taking a file
system backup might be faster.

24.3. Continuous Archiving and Point-in-Time Recovery
(PITR)

At all times, PostgreSQL maintains a write ahead log (WAL) in the pg_xlog/ subdirectory of the cluster’s
data directory. The log records every change made to the database’s data files. This log exists primarily for
crash-safety purposes: if the system crashes, the database can be restored to consistency by “replaying”
the log entries made since the last checkpoint. However, the existence of the log makes it possible to use
a third strategy for backing up databases: we can combine a file-system-level backup with backup of the
WAL files. If recovery is needed, we restore the file system backup and then replay from the backed-up
WAL files to bring the system to a current state. This approach is more complex to administer than either
of the previous approaches, but it has some significant benefits:

• We do not need a perfectly consistent file system backup as the starting point. Any internal inconsis-
tency in the backup will be corrected by log replay (this is not significantly different from what happens
during crash recovery). So we do not need a file system snapshot capability, just tar or a similar archiv-
ing tool.

• Since we can combine an indefinitely long sequence of WAL files for replay, continuous backup can be
achieved simply by continuing to archive the WAL files. This is particularly valuable for large databases,
where it might not be convenient to take a full backup frequently.

560

Chapter 24. Backup and Restore

• It is not necessary to replay the WAL entries all the way to the end. We could stop the replay at any
point and have a consistent snapshot of the database as it was at that time. Thus, this technique supports
point-in-time recovery: it is possible to restore the database to its state at any time since your base
backup was taken.

• If we continuously feed the series of WAL files to another machine that has been loaded with the same
base backup file, we have a warm standby system: at any point we can bring up the second machine
and it will have a nearly-current copy of the database.

Note: pg_dump and pg_dumpall do not produce file-system-level backups and cannot be used as part
of a continuous-archiving solution. Such dumps are logical and do not contain enough information to
be used by WAL replay.

As with the plain file-system-backup technique, this method can only support restoration of an entire
database cluster, not a subset. Also, it requires a lot of archival storage: the base backup might be bulky,
and a busy system will generate many megabytes of WAL traffic that have to be archived. Still, it is the
preferred backup technique in many situations where high reliability is needed.

To recover successfully using continuous archiving (also called “online backup” by many database ven-
dors), you need a continuous sequence of archived WAL files that extends back at least as far as the start
time of your backup. So to get started, you should set up and test your procedure for archiving WAL files
before you take your first base backup. Accordingly, we first discuss the mechanics of archiving WAL
files.

24.3.1. Setting Up WAL Archiving
In an abstract sense, a running PostgreSQL system produces an indefinitely long sequence of WAL
records. The system physically divides this sequence into WAL segment files, which are normally 16MB
apiece (although the segment size can be altered when building PostgreSQL). The segment files are given
numeric names that reflect their position in the abstract WAL sequence. When not using WAL archiving,
the system normally creates just a few segment files and then “recycles” them by renaming no-longer-
needed segment files to higher segment numbers. It’s assumed that segment files whose contents precede
the checkpoint-before-last are no longer of interest and can be recycled.

When archiving WAL data, we need to capture the contents of each segment file once it is filled, and save
that data somewhere before the segment file is recycled for reuse. Depending on the application and the
available hardware, there could be many different ways of “saving the data somewhere”: we could copy
the segment files to an NFS-mounted directory on another machine, write them onto a tape drive (ensuring
that you have a way of identifying the original name of each file), or batch them together and burn them
onto CDs, or something else entirely. To provide the database administrator with flexibility, PostgreSQL
tries not to make any assumptions about how the archiving will be done. Instead, PostgreSQL lets the
administrator specify a shell command to be executed to copy a completed segment file to wherever it
needs to go. The command could be as simple as a cp, or it could invoke a complex shell script — it’s all
up to you.

To enable WAL archiving, set the wal_level configuration parameter to archive (or hot_standby),
archive_mode to on, and specify the shell command to use in the archive_command configuration parame-

561

Chapter 24. Backup and Restore

ter. In practice these settings will always be placed in the postgresql.conf file. In archive_command,
%p is replaced by the path name of the file to archive, while %f is replaced by only the file name. (The
path name is relative to the current working directory, i.e., the cluster’s data directory.) Use %% if you need
to embed an actual % character in the command. The simplest useful command is something like:

archive_command = ’test ! -f /mnt/server/archivedir/%f && cp %p /mnt/server/archivedir/%f’ # Unix
archive_command = ’copy "%p" "C:\\server\\archivedir\\%f"’ # Windows

which will copy archivable WAL segments to the directory /mnt/server/archivedir. (This is an
example, not a recommendation, and might not work on all platforms.) After the %p and %f parameters
have been replaced, the actual command executed might look like this:

test ! -f /mnt/server/archivedir/00000001000000A900000065 && cp pg_xlog/00000001000000A900000065 /mnt/server/archivedir/00000001000000A900000065

A similar command will be generated for each new file to be archived.

The archive command will be executed under the ownership of the same user that the PostgreSQL server is
running as. Since the series of WAL files being archived contains effectively everything in your database,
you will want to be sure that the archived data is protected from prying eyes; for example, archive into a
directory that does not have group or world read access.

It is important that the archive command return zero exit status if and only if it succeeds. Upon getting
a zero result, PostgreSQL will assume that the file has been successfully archived, and will remove or
recycle it. However, a nonzero status tells PostgreSQL that the file was not archived; it will try again
periodically until it succeeds.

The archive command should generally be designed to refuse to overwrite any pre-existing archive file.
This is an important safety feature to preserve the integrity of your archive in case of administrator error
(such as sending the output of two different servers to the same archive directory).

It is advisable to test your proposed archive command to ensure that it indeed does not overwrite an
existing file, and that it returns nonzero status in this case. The example command above for Unix ensures
this by including a separate test step. On some Unix platforms, cp has switches such as -i that can be
used to do the same thing less verbosely, but you should not rely on these without verifying that the right
exit status is returned. (In particular, GNU cp will return status zero when -i is used and the target file
already exists, which is not the desired behavior.)

While designing your archiving setup, consider what will happen if the archive command fails repeatedly
because some aspect requires operator intervention or the archive runs out of space. For example, this
could occur if you write to tape without an autochanger; when the tape fills, nothing further can be archived
until the tape is swapped. You should ensure that any error condition or request to a human operator is
reported appropriately so that the situation can be resolved reasonably quickly. The pg_xlog/ directory
will continue to fill with WAL segment files until the situation is resolved. (If the file system containing
pg_xlog/ fills up, PostgreSQL will do a PANIC shutdown. No committed transactions will be lost, but
the database will remain offline until you free some space.)

The speed of the archiving command is unimportant as long as it can keep up with the average rate at
which your server generates WAL data. Normal operation continues even if the archiving process falls a
little behind. If archiving falls significantly behind, this will increase the amount of data that would be
lost in the event of a disaster. It will also mean that the pg_xlog/ directory will contain large numbers
of not-yet-archived segment files, which could eventually exceed available disk space. You are advised to
monitor the archiving process to ensure that it is working as you intend.

562

Chapter 24. Backup and Restore

In writing your archive command, you should assume that the file names to be archived can be up to 64
characters long and can contain any combination of ASCII letters, digits, and dots. It is not necessary to
preserve the original relative path (%p) but it is necessary to preserve the file name (%f).

Note that although WAL archiving will allow you to restore any modifications made to the data in your
PostgreSQL database, it will not restore changes made to configuration files (that is, postgresql.conf,
pg_hba.conf and pg_ident.conf), since those are edited manually rather than through SQL opera-
tions. You might wish to keep the configuration files in a location that will be backed up by your regular
file system backup procedures. See Section 18.2 for how to relocate the configuration files.

The archive command is only invoked on completed WAL segments. Hence, if your server generates
only little WAL traffic (or has slack periods where it does so), there could be a long delay between the
completion of a transaction and its safe recording in archive storage. To put a limit on how old unarchived
data can be, you can set archive_timeout to force the server to switch to a new WAL segment file at least
that often. Note that archived files that are archived early due to a forced switch are still the same length
as completely full files. It is therefore unwise to set a very short archive_timeout — it will bloat your
archive storage. archive_timeout settings of a minute or so are usually reasonable.

Also, you can force a segment switch manually with pg_switch_xlog if you want to ensure that a just-
finished transaction is archived as soon as possible. Other utility functions related to WAL management
are listed in Table 9-59.

When wal_level is minimal some SQL commands are optimized to avoid WAL logging, as described
in Section 14.4.7. If archiving or streaming replication were turned on during execution of one of these
statements, WAL would not contain enough information for archive recovery. (Crash recovery is unaf-
fected.) For this reason, wal_level can only be changed at server start. However, archive_command
can be changed with a configuration file reload. If you wish to temporarily stop archiving, one way to
do it is to set archive_command to the empty string (”). This will cause WAL files to accumulate in
pg_xlog/ until a working archive_command is re-established.

24.3.2. Making a Base Backup
The easiest way to perform a base backup is to use the pg_basebackup tool. It can create a base backup
either as regular files or as a tar archive. If more flexibility than pg_basebackup can provide is required,
you can also make a base backup using the low level API (see Section 24.3.3).

It is not necessary to be concerned about the amount of time it takes to make a base backup. However, if
you normally run the server with full_page_writes disabled, you might notice a drop in performance
while the backup runs since full_page_writes is effectively forced on during backup mode.

To make use of the backup, you will need to keep all the WAL segment files generated during
and after the file system backup. To aid you in doing this, the base backup process creates a
backup history file that is immediately stored into the WAL archive area. This file is named after
the first WAL segment file that you need for the file system backup. For example, if the starting
WAL file is 0000000100001234000055CD the backup history file will be named something like
0000000100001234000055CD.007C9330.backup. (The second part of the file name stands for an
exact position within the WAL file, and can ordinarily be ignored.) Once you have safely archived the file
system backup and the WAL segment files used during the backup (as specified in the backup history
file), all archived WAL segments with names numerically less are no longer needed to recover the file

563

Chapter 24. Backup and Restore

system backup and can be deleted. However, you should consider keeping several backup sets to be
absolutely certain that you can recover your data.

The backup history file is just a small text file. It contains the label string you gave to pg_basebackup, as
well as the starting and ending times and WAL segments of the backup. If you used the label to identify
the associated dump file, then the archived history file is enough to tell you which dump file to restore.

Since you have to keep around all the archived WAL files back to your last base backup, the interval
between base backups should usually be chosen based on how much storage you want to expend on
archived WAL files. You should also consider how long you are prepared to spend recovering, if recovery
should be necessary — the system will have to replay all those WAL segments, and that could take awhile
if it has been a long time since the last base backup.

24.3.3. Making a Base Backup Using the Low Level API
The procedure for making a base backup using the low level APIs contains a few more steps than the
pg_basebackup method, but is relatively simple. It is very important that these steps are executed in
sequence, and that the success of a step is verified before proceeding to the next step.

1. Ensure that WAL archiving is enabled and working.

2. Connect to the database as a superuser and issue the command:

SELECT pg_start_backup(’label’);

where label is any string you want to use to uniquely identify this backup operation. (One good
practice is to use the full path where you intend to put the backup dump file.) pg_start_backup
creates a backup label file, called backup_label, in the cluster directory with information about
your backup, including the start time and label string.

It does not matter which database within the cluster you connect to to issue this command. You can
ignore the result returned by the function; but if it reports an error, deal with that before proceeding.

By default, pg_start_backup can take a long time to finish. This is because it performs
a checkpoint, and the I/O required for the checkpoint will be spread out over a significant
period of time, by default half your inter-checkpoint interval (see the configuration parameter
checkpoint_completion_target). This is usually what you want, because it minimizes the impact on
query processing. If you want to start the backup as soon as possible, use:

SELECT pg_start_backup(’label’, true);

This forces the checkpoint to be done as quickly as possible.

3. Perform the backup, using any convenient file-system-backup tool such as tar or cpio (not pg_dump
or pg_dumpall). It is neither necessary nor desirable to stop normal operation of the database while
you do this.

4. Again connect to the database as a superuser, and issue the command:

SELECT pg_stop_backup();

This terminates the backup mode and performs an automatic switch to the next WAL segment. The
reason for the switch is to arrange for the last WAL segment file written during the backup interval to
be ready to archive.

564

Chapter 24. Backup and Restore

5. Once the WAL segment files active during the backup are archived, you are done. The file iden-
tified by pg_stop_backup’s result is the last segment that is required to form a complete set of
backup files. If archive_mode is enabled, pg_stop_backup does not return until the last segment
has been archived. Archiving of these files happens automatically since you have already config-
ured archive_command. In most cases this happens quickly, but you are advised to monitor your
archive system to ensure there are no delays. If the archive process has fallen behind because of
failures of the archive command, it will keep retrying until the archive succeeds and the backup is
complete. If you wish to place a time limit on the execution of pg_stop_backup, set an appropriate
statement_timeout value.

Some file system backup tools emit warnings or errors if the files they are trying to copy change while
the copy proceeds. When taking a base backup of an active database, this situation is normal and not an
error. However, you need to ensure that you can distinguish complaints of this sort from real errors. For
example, some versions of rsync return a separate exit code for “vanished source files”, and you can write
a driver script to accept this exit code as a non-error case. Also, some versions of GNU tar return an error
code indistinguishable from a fatal error if a file was truncated while tar was copying it. Fortunately, GNU
tar versions 1.16 and later exit with 1 if a file was changed during the backup, and 2 for other errors.
With GNU tar version 1.23 and later, you can use the warning options --warning=no-file-changed
--warning=no-file-removed to hide the related warning messages.

Be certain that your backup dump includes all of the files under the database cluster directory (e.g.,
/usr/local/pgsql/data). If you are using tablespaces that do not reside underneath this directory,
be careful to include them as well (and be sure that your backup dump archives symbolic links as links,
otherwise the restore will corrupt your tablespaces).

You can, however, omit from the backup dump the files within the cluster’s pg_xlog/ subdirectory. This
slight adjustment is worthwhile because it reduces the risk of mistakes when restoring. This is easy to
arrange if pg_xlog/ is a symbolic link pointing to someplace outside the cluster directory, which is a
common setup anyway for performance reasons. You might also want to exclude postmaster.pid and
postmaster.opts, which record information about the running postmaster, not about the postmaster
which will eventually use this backup. (These files can confuse pg_ctl.)

It’s also worth noting that the pg_start_backup function makes a file named backup_label in
the database cluster directory, which is removed by pg_stop_backup. This file will of course be
archived as a part of your backup dump file. The backup label file includes the label string you gave to
pg_start_backup, as well as the time at which pg_start_backup was run, and the name of the
starting WAL file. In case of confusion it is therefore possible to look inside a backup dump file and
determine exactly which backup session the dump file came from.

It is also possible to make a backup dump while the server is stopped. In this case, you obviously cannot
use pg_start_backup or pg_stop_backup, and you will therefore be left to your own devices to keep
track of which backup dump is which and how far back the associated WAL files go. It is generally better
to follow the continuous archiving procedure above.

565

Chapter 24. Backup and Restore

24.3.4. Recovering Using a Continuous Archive Backup
Okay, the worst has happened and you need to recover from your backup. Here is the procedure:

1. Stop the server, if it’s running.

2. If you have the space to do so, copy the whole cluster data directory and any tablespaces to a tempo-
rary location in case you need them later. Note that this precaution will require that you have enough
free space on your system to hold two copies of your existing database. If you do not have enough
space, you should at least save the contents of the cluster’s pg_xlog subdirectory, as it might contain
logs which were not archived before the system went down.

3. Remove all existing files and subdirectories under the cluster data directory and under the root direc-
tories of any tablespaces you are using.

4. Restore the database files from your file system backup. Be sure that they are restored with the right
ownership (the database system user, not root!) and with the right permissions. If you are using
tablespaces, you should verify that the symbolic links in pg_tblspc/ were correctly restored.

5. Remove any files present in pg_xlog/; these came from the file system backup and are therefore
probably obsolete rather than current. If you didn’t archive pg_xlog/ at all, then recreate it with
proper permissions, being careful to ensure that you re-establish it as a symbolic link if you had it set
up that way before.

6. If you have unarchived WAL segment files that you saved in step 2, copy them into pg_xlog/. (It is
best to copy them, not move them, so you still have the unmodified files if a problem occurs and you
have to start over.)

7. Create a recovery command file recovery.conf in the cluster data directory (see Chapter 26). You
might also want to temporarily modify pg_hba.conf to prevent ordinary users from connecting until
you are sure the recovery was successful.

8. Start the server. The server will go into recovery mode and proceed to read through the archived WAL
files it needs. Should the recovery be terminated because of an external error, the server can simply
be restarted and it will continue recovery. Upon completion of the recovery process, the server will
rename recovery.conf to recovery.done (to prevent accidentally re-entering recovery mode
later) and then commence normal database operations.

9. Inspect the contents of the database to ensure you have recovered to the desired state. If not, return to
step 1. If all is well, allow your users to connect by restoring pg_hba.conf to normal.

The key part of all this is to set up a recovery configuration file that describes how you want to re-
cover and how far the recovery should run. You can use recovery.conf.sample (normally located in
the installation’s share/ directory) as a prototype. The one thing that you absolutely must specify in
recovery.conf is the restore_command, which tells PostgreSQL how to retrieve archived WAL file
segments. Like the archive_command, this is a shell command string. It can contain %f, which is re-
placed by the name of the desired log file, and %p, which is replaced by the path name to copy the log file
to. (The path name is relative to the current working directory, i.e., the cluster’s data directory.) Write %%
if you need to embed an actual % character in the command. The simplest useful command is something
like:

restore_command = ’cp /mnt/server/archivedir/%f %p’

566

Chapter 24. Backup and Restore

which will copy previously archived WAL segments from the directory /mnt/server/archivedir.
Of course, you can use something much more complicated, perhaps even a shell script that requests the
operator to mount an appropriate tape.

It is important that the command return nonzero exit status on failure. The command will be called re-
questing files that are not present in the archive; it must return nonzero when so asked. This is not an error
condition. Not all of the requested files will be WAL segment files; you should also expect requests for
files with a suffix of .backup or .history. Also be aware that the base name of the %p path will be
different from %f; do not expect them to be interchangeable.

WAL segments that cannot be found in the archive will be sought in pg_xlog/; this allows use of recent
un-archived segments. However, segments that are available from the archive will be used in preference
to files in pg_xlog/.

Normally, recovery will proceed through all available WAL segments, thereby restoring the database to
the current point in time (or as close as possible given the available WAL segments). Therefore, a normal
recovery will end with a “file not found” message, the exact text of the error message depending upon
your choice of restore_command. You may also see an error message at the start of recovery for a
file named something like 00000001.history. This is also normal and does not indicate a problem in
simple recovery situations; see Section 24.3.5 for discussion.

If you want to recover to some previous point in time (say, right before the junior DBA dropped your
main transaction table), just specify the required stopping point in recovery.conf. You can specify the
stop point, known as the “recovery target”, either by date/time, named restore point or by completion of
a specific transaction ID. As of this writing only the date/time and named restore point options are very
usable, since there are no tools to help you identify with any accuracy which transaction ID to use.

Note: The stop point must be after the ending time of the base backup, i.e., the end time of
pg_stop_backup. You cannot use a base backup to recover to a time when that backup was in
progress. (To recover to such a time, you must go back to your previous base backup and roll forward
from there.)

If recovery finds corrupted WAL data, recovery will halt at that point and the server will not start. In such
a case the recovery process could be re-run from the beginning, specifying a “recovery target” before
the point of corruption so that recovery can complete normally. If recovery fails for an external reason,
such as a system crash or if the WAL archive has become inaccessible, then the recovery can simply be
restarted and it will restart almost from where it failed. Recovery restart works much like checkpointing
in normal operation: the server periodically forces all its state to disk, and then updates the pg_control
file to indicate that the already-processed WAL data need not be scanned again.

24.3.5. Timelines
The ability to restore the database to a previous point in time creates some complexities that are akin
to science-fiction stories about time travel and parallel universes. For example, in the original history of
the database, suppose you dropped a critical table at 5:15PM on Tuesday evening, but didn’t realize your
mistake until Wednesday noon. Unfazed, you get out your backup, restore to the point-in-time 5:14PM
Tuesday evening, and are up and running. In this history of the database universe, you never dropped the
table. But suppose you later realize this wasn’t such a great idea, and would like to return to sometime

567

Chapter 24. Backup and Restore

Wednesday morning in the original history. You won’t be able to if, while your database was up-and-
running, it overwrote some of the WAL segment files that led up to the time you now wish you could get
back to. Thus, to avoid this, you need to distinguish the series of WAL records generated after you’ve
done a point-in-time recovery from those that were generated in the original database history.

To deal with this problem, PostgreSQL has a notion of timelines. Whenever an archive recovery com-
pletes, a new timeline is created to identify the series of WAL records generated after that recovery. The
timeline ID number is part of WAL segment file names so a new timeline does not overwrite the WAL data
generated by previous timelines. It is in fact possible to archive many different timelines. While that might
seem like a useless feature, it’s often a lifesaver. Consider the situation where you aren’t quite sure what
point-in-time to recover to, and so have to do several point-in-time recoveries by trial and error until you
find the best place to branch off from the old history. Without timelines this process would soon generate
an unmanageable mess. With timelines, you can recover to any prior state, including states in timeline
branches that you abandoned earlier.

Every time a new timeline is created, PostgreSQL creates a “timeline history” file that shows which
timeline it branched off from and when. These history files are necessary to allow the system to pick the
right WAL segment files when recovering from an archive that contains multiple timelines. Therefore,
they are archived into the WAL archive area just like WAL segment files. The history files are just small
text files, so it’s cheap and appropriate to keep them around indefinitely (unlike the segment files which
are large). You can, if you like, add comments to a history file to record your own notes about how and
why this particular timeline was created. Such comments will be especially valuable when you have a
thicket of different timelines as a result of experimentation.

The default behavior of recovery is to recover along the same timeline that was current when the base
backup was taken. If you wish to recover into some child timeline (that is, you want to return to some
state that was itself generated after a recovery attempt), you need to specify the target timeline ID in
recovery.conf. You cannot recover into timelines that branched off earlier than the base backup.

24.3.6. Tips and Examples
Some tips for configuring continuous archiving are given here.

24.3.6.1. Standalone Hot Backups

It is possible to use PostgreSQL’s backup facilities to produce standalone hot backups. These are backups
that cannot be used for point-in-time recovery, yet are typically much faster to backup and restore than
pg_dump dumps. (They are also much larger than pg_dump dumps, so in some cases the speed advantage
might be negated.)

As with base backups, the easiest way to produce a standalone hot backup is to use the pg_basebackup
tool. If you include the -X parameter when calling it, all the transaction log required to use the backup
will be included in the backup automatically, and no special action is required to restore the backup.

If more flexibility in copying the backup files is needed, a lower level process can be used for standalone
hot backups as well. To prepare for low level standalone hot backups, set wal_level to archive (or
hot_standby), archive_mode to on, and set up an archive_command that performs archiving only
when a switch file exists. For example:

archive_command = ’test ! -f /var/lib/pgsql/backup_in_progress || (test ! -f /var/lib/pgsql/archive/%f && cp %p /var/lib/pgsql/archive/%f)’

568

Chapter 24. Backup and Restore

This command will perform archiving when /var/lib/pgsql/backup_in_progress exists, and oth-
erwise silently return zero exit status (allowing PostgreSQL to recycle the unwanted WAL file).

With this preparation, a backup can be taken using a script like the following:

touch /var/lib/pgsql/backup_in_progress
psql -c "select pg_start_backup(’hot_backup’);"
tar -cf /var/lib/pgsql/backup.tar /var/lib/pgsql/data/
psql -c "select pg_stop_backup();"
rm /var/lib/pgsql/backup_in_progress
tar -rf /var/lib/pgsql/backup.tar /var/lib/pgsql/archive/

The switch file /var/lib/pgsql/backup_in_progress is created first, enabling archiving of com-
pleted WAL files to occur. After the backup the switch file is removed. Archived WAL files are then added
to the backup so that both base backup and all required WAL files are part of the same tar file. Please
remember to add error handling to your backup scripts.

24.3.6.2. Compressed Archive Logs

If archive storage size is a concern, you can use gzip to compress the archive files:

archive_command = ’gzip < %p > /var/lib/pgsql/archive/%f’

You will then need to use gunzip during recovery:

restore_command = ’gunzip < /mnt/server/archivedir/%f > %p’

24.3.6.3. archive_command Scripts

Many people choose to use scripts to define their archive_command, so that their postgresql.conf
entry looks very simple:

archive_command = ’local_backup_script.sh "%p" "%f"’

Using a separate script file is advisable any time you want to use more than a single command in the
archiving process. This allows all complexity to be managed within the script, which can be written in a
popular scripting language such as bash or perl.

Examples of requirements that might be solved within a script include:

• Copying data to secure off-site data storage

• Batching WAL files so that they are transferred every three hours, rather than one at a time

• Interfacing with other backup and recovery software

• Interfacing with monitoring software to report errors

569

Chapter 24. Backup and Restore

Tip: When using an archive_command script, it’s desirable to enable logging_collector. Any mes-
sages written to stderr from the script will then appear in the database server log, allowing complex
configurations to be diagnosed easily if they fail.

24.3.7. Caveats
At this writing, there are several limitations of the continuous archiving technique. These will probably
be fixed in future releases:

• Operations on hash indexes are not presently WAL-logged, so replay will not update these indexes. This
will mean that any new inserts will be ignored by the index, updated rows will apparently disappear and
deleted rows will still retain pointers. In other words, if you modify a table with a hash index on it then
you will get incorrect query results on a standby server. When recovery completes it is recommended
that you manually REINDEX each such index after completing a recovery operation.

• If a CREATE DATABASE command is executed while a base backup is being taken, and then the
template database that the CREATE DATABASE copied is modified while the base backup is still in
progress, it is possible that recovery will cause those modifications to be propagated into the created
database as well. This is of course undesirable. To avoid this risk, it is best not to modify any template
databases while taking a base backup.

• CREATE TABLESPACE commands are WAL-logged with the literal absolute path, and will therefore
be replayed as tablespace creations with the same absolute path. This might be undesirable if the log
is being replayed on a different machine. It can be dangerous even if the log is being replayed on the
same machine, but into a new data directory: the replay will still overwrite the contents of the original
tablespace. To avoid potential gotchas of this sort, the best practice is to take a new base backup after
creating or dropping tablespaces.

It should also be noted that the default WAL format is fairly bulky since it includes many disk page snap-
shots. These page snapshots are designed to support crash recovery, since we might need to fix partially-
written disk pages. Depending on your system hardware and software, the risk of partial writes might be
small enough to ignore, in which case you can significantly reduce the total volume of archived logs by
turning off page snapshots using the full_page_writes parameter. (Read the notes and warnings in Chapter
29 before you do so.) Turning off page snapshots does not prevent use of the logs for PITR operations.
An area for future development is to compress archived WAL data by removing unnecessary page copies
even when full_page_writes is on. In the meantime, administrators might wish to reduce the number
of page snapshots included in WAL by increasing the checkpoint interval parameters as much as feasible.

570

Chapter 25. High Availability, Load Balancing,
and Replication

Database servers can work together to allow a second server to take over quickly if the primary server
fails (high availability), or to allow several computers to serve the same data (load balancing). Ideally,
database servers could work together seamlessly. Web servers serving static web pages can be combined
quite easily by merely load-balancing web requests to multiple machines. In fact, read-only database
servers can be combined relatively easily too. Unfortunately, most database servers have a read/write mix
of requests, and read/write servers are much harder to combine. This is because though read-only data
needs to be placed on each server only once, a write to any server has to be propagated to all servers so
that future read requests to those servers return consistent results.

This synchronization problem is the fundamental difficulty for servers working together. Because there
is no single solution that eliminates the impact of the sync problem for all use cases, there are multiple
solutions. Each solution addresses this problem in a different way, and minimizes its impact for a specific
workload.

Some solutions deal with synchronization by allowing only one server to modify the data. Servers that
can modify data are called read/write, master or primary servers. Servers that track changes in the master
are called standby or slave servers. A standby server that cannot be connected to until it is promoted to a
master server is called a warm standby server, and one that can accept connections and serves read-only
queries is called a hot standby server.

Some solutions are synchronous, meaning that a data-modifying transaction is not considered committed
until all servers have committed the transaction. This guarantees that a failover will not lose any data and
that all load-balanced servers will return consistent results no matter which server is queried. In contrast,
asynchronous solutions allow some delay between the time of a commit and its propagation to the other
servers, opening the possibility that some transactions might be lost in the switch to a backup server, and
that load balanced servers might return slightly stale results. Asynchronous communication is used when
synchronous would be too slow.

Solutions can also be categorized by their granularity. Some solutions can deal only with an entire database
server, while others allow control at the per-table or per-database level.

Performance must be considered in any choice. There is usually a trade-off between functionality and
performance. For example, a fully synchronous solution over a slow network might cut performance by
more than half, while an asynchronous one might have a minimal performance impact.

The remainder of this section outlines various failover, replication, and load balancing solutions. A
glossary1 is also available.

25.1. Comparison of Different Solutions

Shared Disk Failover

Shared disk failover avoids synchronization overhead by having only one copy of the database. It uses
a single disk array that is shared by multiple servers. If the main database server fails, the standby

1. http://www.postgres-r.org/documentation/terms

571

Chapter 25. High Availability, Load Balancing, and Replication

server is able to mount and start the database as though it were recovering from a database crash.
This allows rapid failover with no data loss.

Shared hardware functionality is common in network storage devices. Using a network file system
is also possible, though care must be taken that the file system has full POSIX behavior (see Section
17.2.1). One significant limitation of this method is that if the shared disk array fails or becomes
corrupt, the primary and standby servers are both nonfunctional. Another issue is that the standby
server should never access the shared storage while the primary server is running.

File System (Block-Device) Replication

A modified version of shared hardware functionality is file system replication, where all changes to
a file system are mirrored to a file system residing on another computer. The only restriction is that
the mirroring must be done in a way that ensures the standby server has a consistent copy of the file
system — specifically, writes to the standby must be done in the same order as those on the master.
DRBD is a popular file system replication solution for Linux.

Transaction Log Shipping

Warm and hot standby servers can be kept current by reading a stream of write-ahead log (WAL)
records. If the main server fails, the standby contains almost all of the data of the main server, and
can be quickly made the new master database server. This can be synchronous or asynchronous and
can only be done for the entire database server.

A standby server can be implemented using file-based log shipping (Section 25.2) or streaming repli-
cation (see Section 25.2.5), or a combination of both. For information on hot standby, see Section
25.5.

Trigger-Based Master-Standby Replication

A master-standby replication setup sends all data modification queries to the master server. The
master server asynchronously sends data changes to the standby server. The standby can answer
read-only queries while the master server is running. The standby server is ideal for data warehouse
queries.

Slony-I is an example of this type of replication, with per-table granularity, and support for multiple
standby servers. Because it updates the standby server asynchronously (in batches), there is possible
data loss during fail over.

Statement-Based Replication Middleware

With statement-based replication middleware, a program intercepts every SQL query and sends it
to one or all servers. Each server operates independently. Read-write queries must be sent to all
servers, so that every server receives any changes. But read-only queries can be sent to just one
server, allowing the read workload to be distributed among them.

If queries are simply broadcast unmodified, functions like random(), CURRENT_TIMESTAMP, and
sequences can have different values on different servers. This is because each server operates inde-
pendently, and because SQL queries are broadcast (and not actual modified rows). If this is unaccept-
able, either the middleware or the application must query such values from a single server and then
use those values in write queries. Another option is to use this replication option with a traditional
master-standby setup, i.e. data modification queries are sent only to the master and are propagated to
the standby servers via master-standby replication, not by the replication middleware. Care must also
be taken that all transactions either commit or abort on all servers, perhaps using two-phase commit

572

Chapter 25. High Availability, Load Balancing, and Replication

(PREPARE TRANSACTION and COMMIT PREPARED. Pgpool-II and Continuent Tungsten are
examples of this type of replication.

Asynchronous Multimaster Replication

For servers that are not regularly connected, like laptops or remote servers, keeping data consistent
among servers is a challenge. Using asynchronous multimaster replication, each server works inde-
pendently, and periodically communicates with the other servers to identify conflicting transactions.
The conflicts can be resolved by users or conflict resolution rules. Bucardo is an example of this type
of replication.

Synchronous Multimaster Replication

In synchronous multimaster replication, each server can accept write requests, and modified data is
transmitted from the original server to every other server before each transaction commits. Heavy
write activity can cause excessive locking, leading to poor performance. In fact, write performance is
often worse than that of a single server. Read requests can be sent to any server. Some implementa-
tions use shared disk to reduce the communication overhead. Synchronous multimaster replication is
best for mostly read workloads, though its big advantage is that any server can accept write requests
— there is no need to partition workloads between master and standby servers, and because the data
changes are sent from one server to another, there is no problem with non-deterministic functions
like random().

PostgreSQL does not offer this type of replication, though PostgreSQL two-phase commit (PRE-
PARE TRANSACTION and COMMIT PREPARED) can be used to implement this in application
code or middleware.

Commercial Solutions

Because PostgreSQL is open source and easily extended, a number of companies have taken Post-
greSQL and created commercial closed-source solutions with unique failover, replication, and load
balancing capabilities.

Table 25-1 summarizes the capabilities of the various solutions listed above.

Table 25-1. High Availability, Load Balancing, and Replication Feature Matrix

Feature Shared
Disk
Failover

File
System
Replica-
tion

Transaction
Log
Shipping

Trigger-
Based
Master-
Standby
Replica-
tion

Statement-
Based
Replica-
tion
Middle-
ware

Asynchronous
Multi-
master
Replica-
tion

Synchronous
Multi-
master
Replica-
tion

Most
Common
Implemen-
tation

NAS DRBD Streaming
Repl.

Slony pgpool-II Bucardo

Communication
Method

shared disk disk blocks WAL table rows SQL table rows table rows
and row
locks

573

Chapter 25. High Availability, Load Balancing, and Replication

Feature Shared
Disk
Failover

File
System
Replica-
tion

Transaction
Log
Shipping

Trigger-
Based
Master-
Standby
Replica-
tion

Statement-
Based
Replica-
tion
Middle-
ware

Asynchronous
Multi-
master
Replica-
tion

Synchronous
Multi-
master
Replica-
tion

No special
hardware
required

• • • • • •

Allows
multiple
master
servers

• • •

No master
server
overhead

• • •

No waiting
for
multiple
servers

• with sync
off

• •

Master
failure will
never lose
data

• • with sync
on

• •

Standby
accept
read-only
queries

with hot • • • •

Per-table
granularity

• • •

No conflict
resolution
necessary

• • • • •

There are a few solutions that do not fit into the above categories:

Data Partitioning

Data partitioning splits tables into data sets. Each set can be modified by only one server. For ex-
ample, data can be partitioned by offices, e.g., London and Paris, with a server in each office. If
queries combining London and Paris data are necessary, an application can query both servers, or
master/standby replication can be used to keep a read-only copy of the other office’s data on each
server.

Multiple-Server Parallel Query Execution

Many of the above solutions allow multiple servers to handle multiple queries, but none allow a

574

Chapter 25. High Availability, Load Balancing, and Replication

single query to use multiple servers to complete faster. This solution allows multiple servers to work
concurrently on a single query. It is usually accomplished by splitting the data among servers and
having each server execute its part of the query and return results to a central server where they are
combined and returned to the user. Pgpool-II has this capability. Also, this can be implemented using
the PL/Proxy tool set.

25.2. Log-Shipping Standby Servers
Continuous archiving can be used to create a high availability (HA) cluster configuration with one or more
standby servers ready to take over operations if the primary server fails. This capability is widely referred
to as warm standby or log shipping.

The primary and standby server work together to provide this capability, though the servers are only
loosely coupled. The primary server operates in continuous archiving mode, while each standby server
operates in continuous recovery mode, reading the WAL files from the primary. No changes to the database
tables are required to enable this capability, so it offers low administration overhead compared to some
other replication solutions. This configuration also has relatively low performance impact on the primary
server.

Directly moving WAL records from one database server to another is typically described as log shipping.
PostgreSQL implements file-based log shipping by transferring WAL records one file (WAL segment) at a
time. WAL files (16MB) can be shipped easily and cheaply over any distance, whether it be to an adjacent
system, another system at the same site, or another system on the far side of the globe. The bandwidth
required for this technique varies according to the transaction rate of the primary server. Record-based
log shipping is more granular and streams WAL changes incrementally over a network connection (see
Section 25.2.5).

It should be noted that log shipping is asynchronous, i.e., the WAL records are shipped after transaction
commit. As a result, there is a window for data loss should the primary server suffer a catastrophic failure;
transactions not yet shipped will be lost. The size of the data loss window in file-based log shipping
can be limited by use of the archive_timeout parameter, which can be set as low as a few seconds.
However such a low setting will substantially increase the bandwidth required for file shipping. Streaming
replication (see Section 25.2.5) allows a much smaller window of data loss.

Recovery performance is sufficiently good that the standby will typically be only moments away from full
availability once it has been activated. As a result, this is called a warm standby configuration which offers
high availability. Restoring a server from an archived base backup and rollforward will take considerably
longer, so that technique only offers a solution for disaster recovery, not high availability. A standby server
can also be used for read-only queries, in which case it is called a Hot Standby server. See Section 25.5
for more information.

25.2.1. Planning
It is usually wise to create the primary and standby servers so that they are as similar as possible, at
least from the perspective of the database server. In particular, the path names associated with tablespaces
will be passed across unmodified, so both primary and standby servers must have the same mount paths
for tablespaces if that feature is used. Keep in mind that if CREATE TABLESPACE is executed on the
primary, any new mount point needed for it must be created on the primary and all standby servers before

575

Chapter 25. High Availability, Load Balancing, and Replication

the command is executed. Hardware need not be exactly the same, but experience shows that maintaining
two identical systems is easier than maintaining two dissimilar ones over the lifetime of the application
and system. In any case the hardware architecture must be the same — shipping from, say, a 32-bit to a
64-bit system will not work.

In general, log shipping between servers running different major PostgreSQL release levels is not possible.
It is the policy of the PostgreSQL Global Development Group not to make changes to disk formats during
minor release upgrades, so it is likely that running different minor release levels on primary and standby
servers will work successfully. However, no formal support for that is offered and you are advised to keep
primary and standby servers at the same release level as much as possible. When updating to a new minor
release, the safest policy is to update the standby servers first — a new minor release is more likely to be
able to read WAL files from a previous minor release than vice versa.

25.2.2. Standby Server Operation
In standby mode, the server continuously applies WAL received from the master server. The standby
server can read WAL from a WAL archive (see restore_command) or directly from the master over a TCP
connection (streaming replication). The standby server will also attempt to restore any WAL found in
the standby cluster’s pg_xlog directory. That typically happens after a server restart, when the standby
replays again WAL that was streamed from the master before the restart, but you can also manually copy
files to pg_xlog at any time to have them replayed.

At startup, the standby begins by restoring all WAL available in the archive location, calling
restore_command. Once it reaches the end of WAL available there and restore_command fails, it
tries to restore any WAL available in the pg_xlog directory. If that fails, and streaming replication has
been configured, the standby tries to connect to the primary server and start streaming WAL from the last
valid record found in archive or pg_xlog. If that fails or streaming replication is not configured, or if the
connection is later disconnected, the standby goes back to step 1 and tries to restore the file from the
archive again. This loop of retries from the archive, pg_xlog, and via streaming replication goes on until
the server is stopped or failover is triggered by a trigger file.

Standby mode is exited and the server switches to normal operation when pg_ctl promote is run or a
trigger file is found (trigger_file). Before failover, any WAL immediately available in the archive or
in pg_xlog will be restored, but no attempt is made to connect to the master.

25.2.3. Preparing the Master for Standby Servers
Set up continuous archiving on the primary to an archive directory accessible from the standby, as de-
scribed in Section 24.3. The archive location should be accessible from the standby even when the master
is down, i.e. it should reside on the standby server itself or another trusted server, not on the master server.

If you want to use streaming replication, set up authentication on the primary server to allow replication
connections from the standby server(s); that is, create a role and provide a suitable entry or entries in
pg_hba.conf with the database field set to replication. Also ensure max_wal_senders is set to a
sufficiently large value in the configuration file of the primary server.

Take a base backup as described in Section 24.3.2 to bootstrap the standby server.

576

Chapter 25. High Availability, Load Balancing, and Replication

25.2.4. Setting Up a Standby Server
To set up the standby server, restore the base backup taken from primary server (see Section 24.3.4).
Create a recovery command file recovery.conf in the standby’s cluster data directory, and turn on
standby_mode. Set restore_command to a simple command to copy files from the WAL archive. If you
plan to have multiple standby servers for high availability purposes, set recovery_target_timeline to
latest, to make the standby server follow the timeline change that occurs at failover to another standby.

Note: Do not use pg_standby or similar tools with the built-in standby mode described here.
restore_command should return immediately if the file does not exist; the server will retry the
command again if necessary. See Section 25.4 for using tools like pg_standby.

If you want to use streaming replication, fill in primary_conninfo with a libpq connection string,
including the host name (or IP address) and any additional details needed to connect to the primary
server. If the primary needs a password for authentication, the password needs to be specified in
primary_conninfo as well.

If you’re setting up the standby server for high availability purposes, set up WAL archiving, connections
and authentication like the primary server, because the standby server will work as a primary server after
failover.

If you’re using a WAL archive, its size can be minimized using the archive_cleanup_command parameter
to remove files that are no longer required by the standby server. The pg_archivecleanup utility is designed
specifically to be used with archive_cleanup_command in typical single-standby configurations, see
pg_archivecleanup. Note however, that if you’re using the archive for backup purposes, you need to retain
files needed to recover from at least the latest base backup, even if they’re no longer needed by the standby.

A simple example of a recovery.conf is:

standby_mode = ’on’
primary_conninfo = ’host=192.168.1.50 port=5432 user=foo password=foopass’
restore_command = ’cp /path/to/archive/%f %p’
archive_cleanup_command = ’pg_archivecleanup /path/to/archive %r’

You can have any number of standby servers, but if you use streaming replication, make sure you set
max_wal_senders high enough in the primary to allow them to be connected simultaneously.

25.2.5. Streaming Replication
Streaming replication allows a standby server to stay more up-to-date than is possible with file-based log
shipping. The standby connects to the primary, which streams WAL records to the standby as they’re
generated, without waiting for the WAL file to be filled.

Streaming replication is asynchronous by default (see Section 25.2.7), in which case there is a small delay
between committing a transaction in the primary and the changes becoming visible in the standby. This
delay is however much smaller than with file-based log shipping, typically under one second assuming
the standby is powerful enough to keep up with the load. With streaming replication, archive_timeout
is not required to reduce the data loss window.

577

Chapter 25. High Availability, Load Balancing, and Replication

If you use streaming replication without file-based continuous archiving, you have to set
wal_keep_segments in the master to a value high enough to ensure that old WAL segments are not
recycled too early, while the standby might still need them to catch up. If the standby falls behind too
much, it needs to be reinitialized from a new base backup. If you set up a WAL archive that’s accessible
from the standby, wal_keep_segments is not required as the standby can always use the archive to
catch up.

To use streaming replication, set up a file-based log-shipping standby server as described in Section
25.2. The step that turns a file-based log-shipping standby into streaming replication standby is set-
ting primary_conninfo setting in the recovery.conf file to point to the primary server. Set lis-
ten_addresses and authentication options (see pg_hba.conf) on the primary so that the standby server
can connect to the replication pseudo-database on the primary server (see Section 25.2.5.1).

On systems that support the keepalive socket option, setting tcp_keepalives_idle, tcp_keepalives_interval
and tcp_keepalives_count helps the primary promptly notice a broken connection.

Set the maximum number of concurrent connections from the standby servers (see max_wal_senders for
details).

When the standby is started and primary_conninfo is set correctly, the standby will connect to the
primary after replaying all WAL files available in the archive. If the connection is established successfully,
you will see a walreceiver process in the standby, and a corresponding walsender process in the primary.

25.2.5.1. Authentication

It is very important that the access privileges for replication be set up so that only trusted users can
read the WAL stream, because it is easy to extract privileged information from it. Standby servers must
authenticate to the primary as a superuser or an account that has the REPLICATION privilege. It is rec-
ommended to create a dedicated user account with REPLICATION and LOGIN privileges for replication.
While REPLICATION privilege gives very high permissions, it does not allow the user to modify any data
on the primary system, which the SUPERUSER privilege does.

Client authentication for replication is controlled by a pg_hba.conf record specifying replication in
the database field. For example, if the standby is running on host IP 192.168.1.100 and the account
name for replication is foo, the administrator can add the following line to the pg_hba.conf file on the
primary:

Allow the user "foo" from host 192.168.1.100 to connect to the primary
as a replication standby if the user’s password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host replication foo 192.168.1.100/32 md5

The host name and port number of the primary, connection user name, and password are specified in
the recovery.conf file. The password can also be set in the ~/.pgpass file on the standby (specify
replication in the database field). For example, if the primary is running on host IP 192.168.1.50,
port 5432, the account name for replication is foo, and the password is foopass, the administrator can
add the following line to the recovery.conf file on the standby:

The standby connects to the primary that is running on host 192.168.1.50
and port 5432 as the user "foo" whose password is "foopass".

578

Chapter 25. High Availability, Load Balancing, and Replication

primary_conninfo = ’host=192.168.1.50 port=5432 user=foo password=foopass’

25.2.5.2. Monitoring

An important health indicator of streaming replication is the amount of WAL records generated in the
primary, but not yet applied in the standby. You can calculate this lag by comparing the current WAL
write location on the primary with the last WAL location received by the standby. They can be retrieved
using pg_current_xlog_location on the primary and the pg_last_xlog_receive_location on
the standby, respectively (see Table 9-59 and Table 9-60 for details). The last WAL receive location in
the standby is also displayed in the process status of the WAL receiver process, displayed using the ps

command (see Section 27.1 for details).

You can retrieve a list of WAL sender processes via the pg_stat_replication view. Large
differences between pg_current_xlog_location and sent_location field might indicate
that the master server is under heavy load, while differences between sent_location and
pg_last_xlog_receive_location on the standby might indicate network delay, or that the standby
is under heavy load.

25.2.6. Cascading Replication
The cascading replication feature allows a standby server to accept replication connections and stream
WAL records to other standbys, acting as a relay. This can be used to reduce the number of direct connec-
tions to the master and also to minimize inter-site bandwidth overheads.

A standby acting as both a receiver and a sender is known as a cascading standby. Standbys that are more
directly connected to the master are known as upstream servers, while those standby servers further away
are downstream servers. Cascading replication does not place limits on the number or arrangement of
downstream servers, though each standby connects to only one upstream server which eventually links to
a single master/primary server.

A cascading standby sends not only WAL records received from the master but also those restored from
the archive. So even if the replication connection in some upstream connection is terminated, streaming
replication continues downstream for as long as new WAL records are available.

Cascading replication is currently asynchronous. Synchronous replication (see Section 25.2.7) settings
have no effect on cascading replication at present.

Hot Standby feedback propagates upstream, whatever the cascaded arrangement.

Promoting a cascading standby terminates the immediate downstream replication connections which it
serves. This is because the timeline becomes different between standbys, and they can no longer continue
replication. The affected standby(s) may reconnect to reestablish streaming replication.

To use cascading replication, set up the cascading standby so that it can accept replication connections
(that is, set max_wal_senders and hot_standby, and configure host-based authentication). You will also
need to set primary_conninfo in the downstream standby to point to the cascading standby.

579

Chapter 25. High Availability, Load Balancing, and Replication

25.2.7. Synchronous Replication
PostgreSQL streaming replication is asynchronous by default. If the primary server crashes then some
transactions that were committed may not have been replicated to the standby server, causing data loss.
The amount of data loss is proportional to the replication delay at the time of failover.

Synchronous replication offers the ability to confirm that all changes made by a transaction have been
transferred to one synchronous standby server. This extends the standard level of durability offered by a
transaction commit. This level of protection is referred to as 2-safe replication in computer science theory.

When requesting synchronous replication, each commit of a write transaction will wait until confirmation
is received that the commit has been written to the transaction log on disk of both the primary and standby
server. The only possibility that data can be lost is if both the primary and the standby suffer crashes at
the same time. This can provide a much higher level of durability, though only if the sysadmin is cautious
about the placement and management of the two servers. Waiting for confirmation increases the user’s
confidence that the changes will not be lost in the event of server crashes but it also necessarily increases
the response time for the requesting transaction. The minimum wait time is the roundtrip time between
primary to standby.

Read only transactions and transaction rollbacks need not wait for replies from standby servers. Subtrans-
action commits do not wait for responses from standby servers, only top-level commits. Long running
actions such as data loading or index building do not wait until the very final commit message. All two-
phase commit actions require commit waits, including both prepare and commit.

25.2.7.1. Basic Configuration

Once streaming replication has been configured, configuring synchronous replication requires only
one additional configuration step: synchronous_standby_names must be set to a non-empty value.
synchronous_commit must also be set to on, but since this is the default value, typically no change is
required. (See Section 18.5.1 and Section 18.6.2.) This configuration will cause each commit to wait for
confirmation that the standby has written the commit record to durable storage. synchronous_commit
can be set by individual users, so it can be configured in the configuration file, for particular users
or databases, or dynamically by applications, in order to control the durability guarantee on a
per-transaction basis.

After a commit record has been written to disk on the primary, the WAL record is then sent to the
standby. The standby sends reply messages each time a new batch of WAL data is written to disk, un-
less wal_receiver_status_interval is set to zero on the standby. If the standby is the first matching
standby, as specified in synchronous_standby_names on the primary, the reply messages from that
standby will be used to wake users waiting for confirmation that the commit record has been received.
These parameters allow the administrator to specify which standby servers should be synchronous stand-
bys. Note that the configuration of synchronous replication is mainly on the master. Named standbys must
be directly connected to the master; the master knows nothing about downstream standby servers using
cascaded replication.

Setting synchronous_commit to remote_write will cause each commit to wait for confirmation that
the standby has received the commit record and written it out to its own operating system, but not for
the data to be flushed to disk on the standby. This setting provides a weaker guarantee of durability
than on does: the standby could lose the data in the event of an operating system crash, though not a
PostgreSQL crash. However, it’s a useful setting in practice because it can decrease the response time for

580

Chapter 25. High Availability, Load Balancing, and Replication

the transaction. Data loss could only occur if both the primary and the standby crash and the database of
the primary gets corrupted at the same time.

Users will stop waiting if a fast shutdown is requested. However, as when using asynchronous replication,
the server will not fully shutdown until all outstanding WAL records are transferred to the currently
connected standby servers.

25.2.7.2. Planning for Performance

Synchronous replication usually requires carefully planned and placed standby servers to ensure appli-
cations perform acceptably. Waiting doesn’t utilize system resources, but transaction locks continue to
be held until the transfer is confirmed. As a result, incautious use of synchronous replication will reduce
performance for database applications because of increased response times and higher contention.

PostgreSQL allows the application developer to specify the durability level required via replication. This
can be specified for the system overall, though it can also be specified for specific users or connections,
or even individual transactions.

For example, an application workload might consist of: 10% of changes are important customer details,
while 90% of changes are less important data that the business can more easily survive if it is lost, such as
chat messages between users.

With synchronous replication options specified at the application level (on the primary) we can offer
synchronous replication for the most important changes, without slowing down the bulk of the total work-
load. Application level options are an important and practical tool for allowing the benefits of synchronous
replication for high performance applications.

You should consider that the network bandwidth must be higher than the rate of generation of WAL data.

25.2.7.3. Planning for High Availability

Commits made when synchronous_commit is set to on or remote_write will wait until the syn-
chronous standby responds. The response may never occur if the last, or only, standby should crash.

The best solution for avoiding data loss is to ensure you don’t lose your last remaining synchronous
standby. This can be achieved by naming multiple potential synchronous standbys using
synchronous_standby_names. The first named standby will be used as the synchronous standby.
Standbys listed after this will take over the role of synchronous standby if the first one should fail.

When a standby first attaches to the primary, it will not yet be properly synchronized. This is described
as catchup mode. Once the lag between standby and primary reaches zero for the first time we move to
real-time streaming state. The catch-up duration may be long immediately after the standby has been
created. If the standby is shut down, then the catch-up period will increase according to the length of time
the standby has been down. The standby is only able to become a synchronous standby once it has reached
streaming state.

If primary restarts while commits are waiting for acknowledgement, those waiting transactions will be
marked fully committed once the primary database recovers. There is no way to be certain that all standbys
have received all outstanding WAL data at time of the crash of the primary. Some transactions may not
show as committed on the standby, even though they show as committed on the primary. The guarantee

581

Chapter 25. High Availability, Load Balancing, and Replication

we offer is that the application will not receive explicit acknowledgement of the successful commit of a
transaction until the WAL data is known to be safely received by the standby.

If you really do lose your last standby server then you should disable synchronous_standby_names

and reload the configuration file on the primary server.

If the primary is isolated from remaining standby servers you should fail over to the best candidate of
those other remaining standby servers.

If you need to re-create a standby server while transactions are waiting, make sure that the commands
pg_start_backup() and pg_stop_backup() are run in a session with synchronous_commit = off, other-
wise those requests will wait forever for the standby to appear.

25.3. Failover
If the primary server fails then the standby server should begin failover procedures.

If the standby server fails then no failover need take place. If the standby server can be restarted, even some
time later, then the recovery process can also be restarted immediately, taking advantage of restartable
recovery. If the standby server cannot be restarted, then a full new standby server instance should be
created.

If the primary server fails and the standby server becomes the new primary, and then the old primary
restarts, you must have a mechanism for informing the old primary that it is no longer the primary. This
is sometimes known as STONITH (Shoot The Other Node In The Head), which is necessary to avoid
situations where both systems think they are the primary, which will lead to confusion and ultimately data
loss.

Many failover systems use just two systems, the primary and the standby, connected by some kind of heart-
beat mechanism to continually verify the connectivity between the two and the viability of the primary.
It is also possible to use a third system (called a witness server) to prevent some cases of inappropriate
failover, but the additional complexity might not be worthwhile unless it is set up with sufficient care and
rigorous testing.

PostgreSQL does not provide the system software required to identify a failure on the primary and notify
the standby database server. Many such tools exist and are well integrated with the operating system
facilities required for successful failover, such as IP address migration.

Once failover to the standby occurs, there is only a single server in operation. This is known as a degen-
erate state. The former standby is now the primary, but the former primary is down and might stay down.
To return to normal operation, a standby server must be recreated, either on the former primary system
when it comes up, or on a third, possibly new, system. Once complete, the primary and standby can be
considered to have switched roles. Some people choose to use a third server to provide backup for the new
primary until the new standby server is recreated, though clearly this complicates the system configuration
and operational processes.

So, switching from primary to standby server can be fast but requires some time to re-prepare the failover
cluster. Regular switching from primary to standby is useful, since it allows regular downtime on each
system for maintenance. This also serves as a test of the failover mechanism to ensure that it will really
work when you need it. Written administration procedures are advised.

582

Chapter 25. High Availability, Load Balancing, and Replication

To trigger failover of a log-shipping standby server, run pg_ctl promote or create a trigger file with the
file name and path specified by the trigger_file setting in recovery.conf. If you’re planning to use
pg_ctl promote to fail over, trigger_file is not required. If you’re setting up the reporting servers
that are only used to offload read-only queries from the primary, not for high availability purposes, you
don’t need to promote it.

25.4. Alternative Method for Log Shipping
An alternative to the built-in standby mode described in the previous sections is to use a
restore_command that polls the archive location. This was the only option available in versions 8.4 and
below. In this setup, set standby_mode off, because you are implementing the polling required for
standby operation yourself. See the pg_standby module for a reference implementation of this.

Note that in this mode, the server will apply WAL one file at a time, so if you use the standby server for
queries (see Hot Standby), there is a delay between an action in the master and when the action becomes
visible in the standby, corresponding the time it takes to fill up the WAL file. archive_timeout can be
used to make that delay shorter. Also note that you can’t combine streaming replication with this method.

The operations that occur on both primary and standby servers are normal continuous archiving and
recovery tasks. The only point of contact between the two database servers is the archive of WAL files
that both share: primary writing to the archive, standby reading from the archive. Care must be taken to
ensure that WAL archives from separate primary servers do not become mixed together or confused. The
archive need not be large if it is only required for standby operation.

The magic that makes the two loosely coupled servers work together is simply a restore_command used
on the standby that, when asked for the next WAL file, waits for it to become available from the primary.
The restore_command is specified in the recovery.conf file on the standby server. Normal recovery
processing would request a file from the WAL archive, reporting failure if the file was unavailable. For
standby processing it is normal for the next WAL file to be unavailable, so the standby must wait for it
to appear. For files ending in .backup or .history there is no need to wait, and a non-zero return code
must be returned. A waiting restore_command can be written as a custom script that loops after polling
for the existence of the next WAL file. There must also be some way to trigger failover, which should
interrupt the restore_command, break the loop and return a file-not-found error to the standby server.
This ends recovery and the standby will then come up as a normal server.

Pseudocode for a suitable restore_command is:

triggered = false;
while (!NextWALFileReady() && !triggered)
{

sleep(100000L); /* wait for ~0.1 sec */
if (CheckForExternalTrigger())

triggered = true;
}
if (!triggered)

CopyWALFileForRecovery();

583

Chapter 25. High Availability, Load Balancing, and Replication

A working example of a waiting restore_command is provided in the pg_standby module. It should be
used as a reference on how to correctly implement the logic described above. It can also be extended as
needed to support specific configurations and environments.

The method for triggering failover is an important part of planning and design. One potential option is
the restore_command command. It is executed once for each WAL file, but the process running the
restore_command is created and dies for each file, so there is no daemon or server process, and sig-
nals or a signal handler cannot be used. Therefore, the restore_command is not suitable to trigger
failover. It is possible to use a simple timeout facility, especially if used in conjunction with a known
archive_timeout setting on the primary. However, this is somewhat error prone since a network prob-
lem or busy primary server might be sufficient to initiate failover. A notification mechanism such as the
explicit creation of a trigger file is ideal, if this can be arranged.

25.4.1. Implementation
The short procedure for configuring a standby server using this alternative method is as follows. For full
details of each step, refer to previous sections as noted.

1. Set up primary and standby systems as nearly identical as possible, including two identical copies of
PostgreSQL at the same release level.

2. Set up continuous archiving from the primary to a WAL archive directory on the standby server. En-
sure that archive_mode, archive_command and archive_timeout are set appropriately on the primary
(see Section 24.3.1).

3. Make a base backup of the primary server (see Section 24.3.2), and load this data onto the standby.

4. Begin recovery on the standby server from the local WAL archive, using a recovery.conf that
specifies a restore_command that waits as described previously (see Section 24.3.4).

Recovery treats the WAL archive as read-only, so once a WAL file has been copied to the standby system
it can be copied to tape at the same time as it is being read by the standby database server. Thus, running
a standby server for high availability can be performed at the same time as files are stored for longer term
disaster recovery purposes.

For testing purposes, it is possible to run both primary and standby servers on the same system. This does
not provide any worthwhile improvement in server robustness, nor would it be described as HA.

25.4.2. Record-based Log Shipping
It is also possible to implement record-based log shipping using this alternative method, though this re-
quires custom development, and changes will still only become visible to hot standby queries after a full
WAL file has been shipped.

An external program can call the pg_xlogfile_name_offset() function (see Section 9.26) to find out
the file name and the exact byte offset within it of the current end of WAL. It can then access the WAL file
directly and copy the data from the last known end of WAL through the current end over to the standby
servers. With this approach, the window for data loss is the polling cycle time of the copying program,

584

Chapter 25. High Availability, Load Balancing, and Replication

which can be very small, and there is no wasted bandwidth from forcing partially-used segment files to be
archived. Note that the standby servers’ restore_command scripts can only deal with whole WAL files,
so the incrementally copied data is not ordinarily made available to the standby servers. It is of use only
when the primary dies — then the last partial WAL file is fed to the standby before allowing it to come up.
The correct implementation of this process requires cooperation of the restore_command script with
the data copying program.

Starting with PostgreSQL version 9.0, you can use streaming replication (see Section 25.2.5) to achieve
the same benefits with less effort.

25.5. Hot Standby
Hot Standby is the term used to describe the ability to connect to the server and run read-only queries
while the server is in archive recovery or standby mode. This is useful both for replication purposes and
for restoring a backup to a desired state with great precision. The term Hot Standby also refers to the
ability of the server to move from recovery through to normal operation while users continue running
queries and/or keep their connections open.

Running queries in hot standby mode is similar to normal query operation, though there are several usage
and administrative differences explained below.

25.5.1. User’s Overview
When the hot_standby parameter is set to true on a standby server, it will begin accepting connections
once the recovery has brought the system to a consistent state. All such connections are strictly read-only;
not even temporary tables may be written.

The data on the standby takes some time to arrive from the primary server so there will be a measurable
delay between primary and standby. Running the same query nearly simultaneously on both primary and
standby might therefore return differing results. We say that data on the standby is eventually consistent
with the primary. Once the commit record for a transaction is replayed on the standby, the changes made
by that transaction will be visible to any new snapshots taken on the standby. Snapshots may be taken at
the start of each query or at the start of each transaction, depending on the current transaction isolation
level. For more details, see Section 13.2.

Transactions started during hot standby may issue the following commands:

• Query access - SELECT, COPY TO

• Cursor commands - DECLARE, FETCH, CLOSE

• Parameters - SHOW, SET, RESET

• Transaction management commands

• BEGIN, END, ABORT, START TRANSACTION

• SAVEPOINT, RELEASE, ROLLBACK TO SAVEPOINT

• EXCEPTION blocks and other internal subtransactions

585

Chapter 25. High Availability, Load Balancing, and Replication

• LOCK TABLE, though only when explicitly in one of these modes: ACCESS SHARE, ROW SHARE or ROW
EXCLUSIVE.

• Plans and resources - PREPARE, EXECUTE, DEALLOCATE, DISCARD

• Plugins and extensions - LOAD

Transactions started during hot standby will never be assigned a transaction ID and cannot write to the
system write-ahead log. Therefore, the following actions will produce error messages:

• Data Manipulation Language (DML) - INSERT, UPDATE, DELETE, COPY FROM, TRUNCATE. Note that
there are no allowed actions that result in a trigger being executed during recovery. This restriction
applies even to temporary tables, because table rows cannot be read or written without assigning a
transaction ID, which is currently not possible in a Hot Standby environment.

• Data Definition Language (DDL) - CREATE, DROP, ALTER, COMMENT. This restriction applies even to
temporary tables, because carrying out these operations would require updating the system catalog
tables.

• SELECT ... FOR SHARE | UPDATE, because row locks cannot be taken without updating the under-
lying data files.

• Rules on SELECT statements that generate DML commands.

• LOCK that explicitly requests a mode higher than ROW EXCLUSIVE MODE.

• LOCK in short default form, since it requests ACCESS EXCLUSIVE MODE.

• Transaction management commands that explicitly set non-read-only state:

• BEGIN READ WRITE, START TRANSACTION READ WRITE

• SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS TRANSACTION READ

WRITE

• SET transaction_read_only = off

• Two-phase commit commands - PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK

PREPARED because even read-only transactions need to write WAL in the prepare phase (the first
phase of two phase commit).

• Sequence updates - nextval(), setval()

• LISTEN, UNLISTEN, NOTIFY

In normal operation, “read-only” transactions are allowed to update sequences and to use LISTEN,
UNLISTEN, and NOTIFY, so Hot Standby sessions operate under slightly tighter restrictions than ordinary
read-only sessions. It is possible that some of these restrictions might be loosened in a future release.

During hot standby, the parameter transaction_read_only is always true and may not be changed.
But as long as no attempt is made to modify the database, connections during hot standby will act much
like any other database connection. If failover or switchover occurs, the database will switch to normal
processing mode. Sessions will remain connected while the server changes mode. Once hot standby fin-
ishes, it will be possible to initiate read-write transactions (even from a session begun during hot standby).

586

Chapter 25. High Availability, Load Balancing, and Replication

Users will be able to tell whether their session is read-only by issuing SHOW transaction_read_only.
In addition, a set of functions (Table 9-60) allow users to access information about the standby server.
These allow you to write programs that are aware of the current state of the database. These can be used
to monitor the progress of recovery, or to allow you to write complex programs that restore the database
to particular states.

25.5.2. Handling Query Conflicts
The primary and standby servers are in many ways loosely connected. Actions on the primary will have
an effect on the standby. As a result, there is potential for negative interactions or conflicts between them.
The easiest conflict to understand is performance: if a huge data load is taking place on the primary then
this will generate a similar stream of WAL records on the standby, so standby queries may contend for
system resources, such as I/O.

There are also additional types of conflict that can occur with Hot Standby. These conflicts are hard
conflicts in the sense that queries might need to be canceled and, in some cases, sessions disconnected to
resolve them. The user is provided with several ways to handle these conflicts. Conflict cases include:

• Access Exclusive locks taken on the primary server, including both explicit LOCK commands and vari-
ous DDL actions, conflict with table accesses in standby queries.

• Dropping a tablespace on the primary conflicts with standby queries using that tablespace for temporary
work files.

• Dropping a database on the primary conflicts with sessions connected to that database on the standby.

• Application of a vacuum cleanup record from WAL conflicts with standby transactions whose snapshots
can still “see” any of the rows to be removed.

• Application of a vacuum cleanup record from WAL conflicts with queries accessing the target page on
the standby, whether or not the data to be removed is visible.

On the primary server, these cases simply result in waiting; and the user might choose to cancel either
of the conflicting actions. However, on the standby there is no choice: the WAL-logged action already
occurred on the primary so the standby must not fail to apply it. Furthermore, allowing WAL application
to wait indefinitely may be very undesirable, because the standby’s state will become increasingly far
behind the primary’s. Therefore, a mechanism is provided to forcibly cancel standby queries that conflict
with to-be-applied WAL records.

An example of the problem situation is an administrator on the primary server running DROP TABLE on
a table that is currently being queried on the standby server. Clearly the standby query cannot continue
if the DROP TABLE is applied on the standby. If this situation occurred on the primary, the DROP TABLE

would wait until the other query had finished. But when DROP TABLE is run on the primary, the primary
doesn’t have information about what queries are running on the standby, so it will not wait for any such
standby queries. The WAL change records come through to the standby while the standby query is still
running, causing a conflict. The standby server must either delay application of the WAL records (and
everything after them, too) or else cancel the conflicting query so that the DROP TABLE can be applied.

When a conflicting query is short, it’s typically desirable to allow it to complete by delaying WAL ap-
plication for a little bit; but a long delay in WAL application is usually not desirable. So the cancel

587

Chapter 25. High Availability, Load Balancing, and Replication

mechanism has parameters, max_standby_archive_delay and max_standby_streaming_delay, that define
the maximum allowed delay in WAL application. Conflicting queries will be canceled once it has taken
longer than the relevant delay setting to apply any newly-received WAL data. There are two parameters so
that different delay values can be specified for the case of reading WAL data from an archive (i.e., initial
recovery from a base backup or “catching up” a standby server that has fallen far behind) versus reading
WAL data via streaming replication.

In a standby server that exists primarily for high availability, it’s best to set the delay parameters relatively
short, so that the server cannot fall far behind the primary due to delays caused by standby queries.
However, if the standby server is meant for executing long-running queries, then a high or even infinite
delay value may be preferable. Keep in mind however that a long-running query could cause other sessions
on the standby server to not see recent changes on the primary, if it delays application of WAL records.

Once the delay specified by max_standby_archive_delay or max_standby_streaming_delay has
been exceeded, conflicting queries will be canceled. This usually results just in a cancellation error, al-
though in the case of replaying a DROP DATABASE the entire conflicting session will be terminated. Also,
if the conflict is over a lock held by an idle transaction, the conflicting session is terminated (this behavior
might change in the future).

Canceled queries may be retried immediately (after beginning a new transaction, of course). Since query
cancellation depends on the nature of the WAL records being replayed, a query that was canceled may
well succeed if it is executed again.

Keep in mind that the delay parameters are compared to the elapsed time since the WAL data was received
by the standby server. Thus, the grace period allowed to any one query on the standby is never more than
the delay parameter, and could be considerably less if the standby has already fallen behind as a result of
waiting for previous queries to complete, or as a result of being unable to keep up with a heavy update
load.

The most common reason for conflict between standby queries and WAL replay is “early cleanup”. Nor-
mally, PostgreSQL allows cleanup of old row versions when there are no transactions that need to see
them to ensure correct visibility of data according to MVCC rules. However, this rule can only be applied
for transactions executing on the master. So it is possible that cleanup on the master will remove row
versions that are still visible to a transaction on the standby.

Experienced users should note that both row version cleanup and row version freezing will potentially
conflict with standby queries. Running a manual VACUUM FREEZE is likely to cause conflicts even on
tables with no updated or deleted rows.

Users should be clear that tables that are regularly and heavily updated on the primary server will quickly
cause cancellation of longer running queries on the standby. In such cases the setting of a finite value
for max_standby_archive_delay or max_standby_streaming_delay can be considered similar
to setting statement_timeout.

Remedial possibilities exist if the number of standby-query cancellations is found to be unacceptable. The
first option is to set the parameter hot_standby_feedback, which prevents VACUUM from removing
recently-dead rows and so cleanup conflicts do not occur. If you do this, you should note that this will delay
cleanup of dead rows on the primary, which may result in undesirable table bloat. However, the cleanup
situation will be no worse than if the standby queries were running directly on the primary server, and you
are still getting the benefit of off-loading execution onto the standby. max_standby_archive_delay
must be kept large in this case, because delayed WAL files might already contain entries that conflict with
the desired standby queries.

588

Chapter 25. High Availability, Load Balancing, and Replication

Another option is to increase vacuum_defer_cleanup_age on the primary server, so that dead
rows will not be cleaned up as quickly as they normally would be. This will allow more time
for queries to execute before they are canceled on the standby, without having to set a high
max_standby_streaming_delay. However it is difficult to guarantee any specific execution-time
window with this approach, since vacuum_defer_cleanup_age is measured in transactions executed
on the primary server.

The number of query cancels and the reason for them can be viewed using the
pg_stat_database_conflicts system view on the standby server. The pg_stat_database system
view also contains summary information.

25.5.3. Administrator’s Overview
If hot_standby is turned on in postgresql.conf and there is a recovery.conf file present, the
server will run in Hot Standby mode. However, it may take some time for Hot Standby connections to
be allowed, because the server will not accept connections until it has completed sufficient recovery to
provide a consistent state against which queries can run. During this period, clients that attempt to connect
will be refused with an error message. To confirm the server has come up, either loop trying to connect
from the application, or look for these messages in the server logs:

LOG: entering standby mode

... then some time later ...

LOG: consistent recovery state reached
LOG: database system is ready to accept read only connections

Consistency information is recorded once per checkpoint on the primary. It is not possible to enable hot
standby when reading WAL written during a period when wal_level was not set to hot_standby on
the primary. Reaching a consistent state can also be delayed in the presence of both of these conditions:

• A write transaction has more than 64 subtransactions

• Very long-lived write transactions

If you are running file-based log shipping ("warm standby"), you might need to wait until the next WAL
file arrives, which could be as long as the archive_timeout setting on the primary.

The setting of some parameters on the standby will need reconfiguration if they have been changed on the
primary. For these parameters, the value on the standby must be equal to or greater than the value on the
primary. If these parameters are not set high enough then the standby will refuse to start. Higher values
can then be supplied and the server restarted to begin recovery again. These parameters are:

• max_connections

• max_prepared_transactions

• max_locks_per_transaction

589

Chapter 25. High Availability, Load Balancing, and Replication

It is important that the administrator select appropriate settings for max_standby_archive_delay and
max_standby_streaming_delay. The best choices vary depending on business priorities. For example
if the server is primarily tasked as a High Availability server, then you will want low delay settings,
perhaps even zero, though that is a very aggressive setting. If the standby server is tasked as an additional
server for decision support queries then it might be acceptable to set the maximum delay values to many
hours, or even -1 which means wait forever for queries to complete.

Transaction status "hint bits" written on the primary are not WAL-logged, so data on the standby will
likely re-write the hints again on the standby. Thus, the standby server will still perform disk writes even
though all users are read-only; no changes occur to the data values themselves. Users will still write large
sort temporary files and re-generate relcache info files, so no part of the database is truly read-only during
hot standby mode. Note also that writes to remote databases using dblink module, and other operations
outside the database using PL functions will still be possible, even though the transaction is read-only
locally.

The following types of administration commands are not accepted during recovery mode:

• Data Definition Language (DDL) - e.g. CREATE INDEX

• Privilege and Ownership - GRANT, REVOKE, REASSIGN

• Maintenance commands - ANALYZE, VACUUM, CLUSTER, REINDEX

Again, note that some of these commands are actually allowed during "read only" mode transactions on
the primary.

As a result, you cannot create additional indexes that exist solely on the standby, nor statistics that exist
solely on the standby. If these administration commands are needed, they should be executed on the
primary, and eventually those changes will propagate to the standby.

pg_cancel_backend() and pg_terminate_backend() will work on user backends, but not the
Startup process, which performs recovery. pg_stat_activity does not show an entry for the
Startup process, nor do recovering transactions show as active. As a result, pg_prepared_xacts
is always empty during recovery. If you wish to resolve in-doubt prepared transactions, view
pg_prepared_xacts on the primary and issue commands to resolve transactions there.

pg_locks will show locks held by backends, as normal. pg_locks also shows a virtual transaction man-
aged by the Startup process that owns all AccessExclusiveLocks held by transactions being replayed
by recovery. Note that the Startup process does not acquire locks to make database changes, and thus
locks other than AccessExclusiveLocks do not show in pg_locks for the Startup process; they are
just presumed to exist.

The Nagios plugin check_pgsql will work, because the simple information it checks for exists. The
check_postgres monitoring script will also work, though some reported values could give different or
confusing results. For example, last vacuum time will not be maintained, since no vacuum occurs on the
standby. Vacuums running on the primary do still send their changes to the standby.

WAL file control commands will not work during recovery, e.g. pg_start_backup, pg_switch_xlog
etc.

Dynamically loadable modules work, including pg_stat_statements.

Advisory locks work normally in recovery, including deadlock detection. Note that advisory locks are
never WAL logged, so it is impossible for an advisory lock on either the primary or the standby to conflict

590

Chapter 25. High Availability, Load Balancing, and Replication

with WAL replay. Nor is it possible to acquire an advisory lock on the primary and have it initiate a similar
advisory lock on the standby. Advisory locks relate only to the server on which they are acquired.

Trigger-based replication systems such as Slony, Londiste and Bucardo won’t run on the standby at all,
though they will run happily on the primary server as long as the changes are not sent to standby servers
to be applied. WAL replay is not trigger-based so you cannot relay from the standby to any system that
requires additional database writes or relies on the use of triggers.

New OIDs cannot be assigned, though some UUID generators may still work as long as they do not rely
on writing new status to the database.

Currently, temporary table creation is not allowed during read only transactions, so in some cases existing
scripts will not run correctly. This restriction might be relaxed in a later release. This is both a SQL
Standard compliance issue and a technical issue.

DROP TABLESPACE can only succeed if the tablespace is empty. Some standby users may be actively us-
ing the tablespace via their temp_tablespaces parameter. If there are temporary files in the tablespace,
all active queries are canceled to ensure that temporary files are removed, so the tablespace can be removed
and WAL replay can continue.

Running DROP DATABASE or ALTER DATABASE ... SET TABLESPACE on the primary will generate
a WAL entry that will cause all users connected to that database on the standby to be forcibly discon-
nected. This action occurs immediately, whatever the setting of max_standby_streaming_delay. Note
that ALTER DATABASE ... RENAME does not disconnect users, which in most cases will go unnoticed,
though might in some cases cause a program confusion if it depends in some way upon database name.

In normal (non-recovery) mode, if you issue DROP USER or DROP ROLE for a role with login capability
while that user is still connected then nothing happens to the connected user - they remain connected. The
user cannot reconnect however. This behavior applies in recovery also, so a DROP USER on the primary
does not disconnect that user on the standby.

The statistics collector is active during recovery. All scans, reads, blocks, index usage, etc., will be
recorded normally on the standby. Replayed actions will not duplicate their effects on primary, so re-
playing an insert will not increment the Inserts column of pg_stat_user_tables. The stats file is deleted at
the start of recovery, so stats from primary and standby will differ; this is considered a feature, not a bug.

Autovacuum is not active during recovery. It will start normally at the end of recovery.

The background writer is active during recovery and will perform restartpoints (similar to checkpoints on
the primary) and normal block cleaning activities. This can include updates of the hint bit information
stored on the standby server. The CHECKPOINT command is accepted during recovery, though it performs
a restartpoint rather than a new checkpoint.

25.5.4. Hot Standby Parameter Reference
Various parameters have been mentioned above in Section 25.5.2 and Section 25.5.3.

On the primary, parameters wal_level and vacuum_defer_cleanup_age can be used.
max_standby_archive_delay and max_standby_streaming_delay have no effect if set on the primary.

On the standby, parameters hot_standby, max_standby_archive_delay and max_standby_streaming_delay
can be used. vacuum_defer_cleanup_age has no effect as long as the server remains in standby mode,
though it will become relevant if the standby becomes primary.

591

Chapter 25. High Availability, Load Balancing, and Replication

25.5.5. Caveats
There are several limitations of Hot Standby. These can and probably will be fixed in future releases:

• Operations on hash indexes are not presently WAL-logged, so replay will not update these indexes.

• Full knowledge of running transactions is required before snapshots can be taken. Transactions that use
large numbers of subtransactions (currently greater than 64) will delay the start of read only connec-
tions until the completion of the longest running write transaction. If this situation occurs, explanatory
messages will be sent to the server log.

• Valid starting points for standby queries are generated at each checkpoint on the master. If the standby
is shut down while the master is in a shutdown state, it might not be possible to re-enter Hot Standby
until the primary is started up, so that it generates further starting points in the WAL logs. This situation
isn’t a problem in the most common situations where it might happen. Generally, if the primary is
shut down and not available anymore, that’s likely due to a serious failure that requires the standby
being converted to operate as the new primary anyway. And in situations where the primary is being
intentionally taken down, coordinating to make sure the standby becomes the new primary smoothly is
also standard procedure.

• At the end of recovery, AccessExclusiveLocks held by prepared transactions will require twice
the normal number of lock table entries. If you plan on running either a large number of concur-
rent prepared transactions that normally take AccessExclusiveLocks, or you plan on having one
large transaction that takes many AccessExclusiveLocks, you are advised to select a larger value of
max_locks_per_transaction, perhaps as much as twice the value of the parameter on the primary
server. You need not consider this at all if your setting of max_prepared_transactions is 0.

• The Serializable transaction isolation level is not yet available in hot standby. (See Section 13.2.3 and
Section 13.4.1 for details.) An attempt to set a transaction to the serializable isolation level in hot
standby mode will generate an error.

592

Chapter 26. Recovery Configuration
This chapter describes the settings available in the recovery.conf file. They apply only for the duration
of the recovery. They must be reset for any subsequent recovery you wish to perform. They cannot be
changed once recovery has begun.

Settings in recovery.conf are specified in the format name = ’value’. One parameter is specified per
line. Hash marks (#) designate the rest of the line as a comment. To embed a single quote in a parameter
value, write two quotes (”).

A sample file, share/recovery.conf.sample, is provided in the installation’s share/ directory.

26.1. Archive Recovery Settings

restore_command (string)

The shell command to execute to retrieve an archived segment of the WAL file series. This param-
eter is required for archive recovery, but optional for streaming replication. Any %f in the string is
replaced by the name of the file to retrieve from the archive, and any %p is replaced by the copy des-
tination path name on the server. (The path name is relative to the current working directory, i.e., the
cluster’s data directory.) Any %r is replaced by the name of the file containing the last valid restart
point. That is the earliest file that must be kept to allow a restore to be restartable, so this informa-
tion can be used to truncate the archive to just the minimum required to support restarting from the
current restore. %r is typically only used by warm-standby configurations (see Section 25.2). Write
%% to embed an actual % character.

It is important for the command to return a zero exit status only if it succeeds. The command will
be asked for file names that are not present in the archive; it must return nonzero when so asked.
Examples:

restore_command = ’cp /mnt/server/archivedir/%f "%p"’
restore_command = ’copy "C:\\server\\archivedir\\%f" "%p"’ # Windows

archive_cleanup_command (string)

This optional parameter specifies a shell command that will be executed at every restartpoint. The
purpose of archive_cleanup_command is to provide a mechanism for cleaning up old archived
WAL files that are no longer needed by the standby server. Any %r is replaced by the name of the
file containing the last valid restart point. That is the earliest file that must be kept to allow a restore
to be restartable, and so all files earlier than %r may be safely removed. This information can be
used to truncate the archive to just the minimum required to support restart from the current restore.
The pg_archivecleanup module is often used in archive_cleanup_command for single-standby
configurations, for example:

archive_cleanup_command = ’pg_archivecleanup /mnt/server/archivedir %r’

Note however that if multiple standby servers are restoring from the same archive directory, you will
need to ensure that you do not delete WAL files until they are no longer needed by any of the servers.
archive_cleanup_commandwould typically be used in a warm-standby configuration (see Section
25.2). Write %% to embed an actual % character in the command.

If the command returns a non-zero exit status then a WARNING log message will be written.

593

Chapter 26. Recovery Configuration

recovery_end_command (string)

This parameter specifies a shell command that will be executed once only at the end of recovery. This
parameter is optional. The purpose of the recovery_end_command is to provide a mechanism for
cleanup following replication or recovery. Any %r is replaced by the name of the file containing the
last valid restart point, like in archive_cleanup_command.

If the command returns a non-zero exit status then a WARNING log message will be written and the
database will proceed to start up anyway. An exception is that if the command was terminated by a
signal, the database will not proceed with startup.

26.2. Recovery Target Settings

recovery_target_name (string)

This parameter specifies the named restore point, created with pg_create_restore_point() to
which recovery will proceed. At most one of recovery_target_name, recovery_target_time or
recovery_target_xid can be specified. The default is to recover to the end of the WAL log.

recovery_target_time (timestamp)

This parameter specifies the time stamp up to which recovery will proceed. At most one of
recovery_target_time, recovery_target_name or recovery_target_xid can be specified. The
default is to recover to the end of the WAL log. The precise stopping point is also influenced by
recovery_target_inclusive.

recovery_target_xid (string)

This parameter specifies the transaction ID up to which recovery will proceed. Keep in mind that
while transaction IDs are assigned sequentially at transaction start, transactions can complete in
a different numeric order. The transactions that will be recovered are those that committed be-
fore (and optionally including) the specified one. At most one of recovery_target_xid, recov-
ery_target_name or recovery_target_time can be specified. The default is to recover to the end of the
WAL log. The precise stopping point is also influenced by recovery_target_inclusive.

recovery_target_inclusive (boolean)

Specifies whether we stop just after the specified recovery target (true), or just before the recov-
ery target (false). Applies to both recovery_target_time and recovery_target_xid, whichever one is
specified for this recovery. This indicates whether transactions having exactly the target commit time
or ID, respectively, will be included in the recovery. Default is true.

recovery_target_timeline (string)

Specifies recovering into a particular timeline. The default is to recover along the same timeline
that was current when the base backup was taken. Setting this to latest recovers to the latest
timeline found in the archive, which is useful in a standby server. Other than that you only need to
set this parameter in complex re-recovery situations, where you need to return to a state that itself
was reached after a point-in-time recovery. See Section 24.3.5 for discussion.

pause_at_recovery_target (boolean)

Specifies whether recovery should pause when the recovery target is reached. The default is true.
This is intended to allow queries to be executed against the database to check if this recovery

594

Chapter 26. Recovery Configuration

target is the most desirable point for recovery. The paused state can be resumed by using
pg_xlog_replay_resume() (See Table 9-61), which then causes recovery to end. If this recovery
target is not the desired stopping point, then shutdown the server, change the recovery target settings
to a later target and restart to continue recovery.

This setting has no effect if hot_standby is not enabled, or if no recovery target is set.

26.3. Standby Server Settings

standby_mode (boolean)

Specifies whether to start the PostgreSQL server as a standby. If this parameter is on, the server
will not stop recovery when the end of archived WAL is reached, but will keep trying to continue
recovery by fetching new WAL segments using restore_command and/or by connecting to the
primary server as specified by the primary_conninfo setting.

primary_conninfo (string)

Specifies a connection string to be used for the standby server to connect with the primary. This
string is in the format accepted by the libpq PQconnectdb function, described in Section 31.1. If
any option is unspecified in this string, then the corresponding environment variable (see Section
31.14) is checked. If the environment variable is not set either, then defaults are used.

The connection string should specify the host name (or address) of the primary server, as well as
the port number if it is not the same as the standby server’s default. Also specify a user name
corresponding to a suitably-privileged role on the primary (see Section 25.2.5.1). A password
needs to be provided too, if the primary demands password authentication. It can be provided
in the primary_conninfo string, or in a separate ~/.pgpass file on the standby server (use
replication as the database name). Do not specify a database name in the primary_conninfo
string.

This setting has no effect if standby_mode is off.

trigger_file (string)

Specifies a trigger file whose presence ends recovery in the standby. Even if this value is not set, you
can still promote the standby using pg_ctl promote. This setting has no effect if standby_mode
is off.

595

Chapter 27. Monitoring Database Activity
A database administrator frequently wonders, “What is the system doing right now?” This chapter dis-
cusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this chap-
ter is devoted to describing PostgreSQL’s statistics collector, but one should not neglect regular Unix
monitoring programs such as ps, top, iostat, and vmstat. Also, once one has identified a poorly-
performing query, further investigation might be needed using PostgreSQL’s EXPLAIN command. Sec-
tion 14.1 discusses EXPLAIN and other methods for understanding the behavior of an individual query.

27.1. Standard Unix Tools
On most Unix platforms, PostgreSQL modifies its command title as reported by ps, so that individual
server processes can readily be identified. A sample display is

$ ps auxww | grep ^postgres
postgres 15551 0.0 0.1 57536 7132 pts/0 S 18:02 0:00 postgres -i
postgres 15554 0.0 0.0 57536 1184 ? Ss 18:02 0:00 postgres: writer process
postgres 15555 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres: checkpointer process
postgres 15556 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres: wal writer process
postgres 15557 0.0 0.0 58504 2244 ? Ss 18:02 0:00 postgres: autovacuum launcher process
postgres 15558 0.0 0.0 17512 1068 ? Ss 18:02 0:00 postgres: stats collector process
postgres 15582 0.0 0.0 58772 3080 ? Ss 18:04 0:00 postgres: joe runbug 127.0.0.1 idle
postgres 15606 0.0 0.0 58772 3052 ? Ss 18:07 0:00 postgres: tgl regression [local] SELECT waiting
postgres 15610 0.0 0.0 58772 3056 ? Ss 18:07 0:00 postgres: tgl regression [local] idle in transaction

(The appropriate invocation of ps varies across different platforms, as do the details of what is shown.
This example is from a recent Linux system.) The first process listed here is the master server process. The
command arguments shown for it are the same ones used when it was launched. The next five processes
are background worker processes automatically launched by the master process. (The “stats collector”
process will not be present if you have set the system not to start the statistics collector; likewise the
“autovacuum launcher” process can be disabled.) Each of the remaining processes is a server process
handling one client connection. Each such process sets its command line display in the form

postgres: user database host activity

The user, database, and (client) host items remain the same for the life of the client connection, but
the activity indicator changes. The activity can be idle (i.e., waiting for a client command), idle in

transaction (waiting for client inside a BEGIN block), or a command type name such as SELECT. Also,
waiting is appended if the server process is presently waiting on a lock held by another session. In the
above example we can infer that process 15606 is waiting for process 15610 to complete its transaction and
thereby release some lock. (Process 15610 must be the blocker, because there is no other active session.
In more complicated cases it would be necessary to look into the pg_locks system view to determine
who is blocking whom.)

If you have turned off update_process_title then the activity indicator is not updated; the process title is
set only once when a new process is launched. On some platforms this saves a measurable amount of
per-command overhead; on others it’s insignificant.

596

Chapter 27. Monitoring Database Activity

Tip: Solaris requires special handling. You must use /usr/ucb/ps, rather than /bin/ps. You also
must use two w flags, not just one. In addition, your original invocation of the postgres command
must have a shorter ps status display than that provided by each server process. If you fail to do all
three things, the ps output for each server process will be the original postgres command line.

27.2. The Statistics Collector
PostgreSQL’s statistics collector is a subsystem that supports collection and reporting of information
about server activity. Presently, the collector can count accesses to tables and indexes in both disk-block
and individual-row terms. It also tracks the total number of rows in each table, and information about
vacuum and analyze actions for each table. It can also count calls to user-defined functions and the total
time spent in each one.

PostgreSQL also supports reporting of the exact command currently being executed by other server pro-
cesses. This facility is independent of the collector process.

27.2.1. Statistics Collection Configuration
Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set in
postgresql.conf. (See Chapter 18 for details about setting configuration parameters.)

The parameter track_activities enables monitoring of the current command being executed by any server
process.

The parameter track_counts controls whether statistics are collected about table and index accesses.

The parameter track_functions enables tracking of usage of user-defined functions.

The parameter track_io_timing enables monitoring of block read and write times.

Normally these parameters are set in postgresql.conf so that they apply to all server processes, but it is
possible to turn them on or off in individual sessions using the SET command. (To prevent ordinary users
from hiding their activity from the administrator, only superusers are allowed to change these parameters
with SET.)

The statistics collector transmits the collected information to other PostgreSQL processes through
temporary files. These files are stored in the directory named by the stats_temp_directory parameter,
pg_stat_tmp by default. For better performance, stats_temp_directory can be pointed at a
RAM-based file system, decreasing physical I/O requirements. When the server shuts down, a permanent
copy of the statistics data is stored in the global subdirectory, so that statistics can be retained across
server restarts.

27.2.2. Viewing Collected Statistics
Several predefined views, listed in Table 27-1, are available to show the results of statistics collection.
Alternatively, one can build custom views using the underlying statistics functions, as discussed in Section

597

Chapter 27. Monitoring Database Activity

27.2.3.

When using the statistics to monitor current activity, it is important to realize that the information does
not update instantaneously. Each individual server process transmits new statistical counts to the collector
just before going idle; so a query or transaction still in progress does not affect the displayed totals. Also,
the collector itself emits a new report at most once per PGSTAT_STAT_INTERVAL milliseconds (500
ms unless altered while building the server). So the displayed information lags behind actual activity.
However, current-query information collected by track_activities is always up-to-date.

Another important point is that when a server process is asked to display any of these statistics, it first
fetches the most recent report emitted by the collector process and then continues to use this snapshot
for all statistical views and functions until the end of its current transaction. So the statistics will show
static information as long as you continue the current transaction. Similarly, information about the current
queries of all sessions is collected when any such information is first requested within a transaction, and
the same information will be displayed throughout the transaction. This is a feature, not a bug, because it
allows you to perform several queries on the statistics and correlate the results without worrying that the
numbers are changing underneath you. But if you want to see new results with each query, be sure to do
the queries outside any transaction block. Alternatively, you can invoke pg_stat_clear_snapshot(),
which will discard the current transaction’s statistics snapshot (if any). The next use of statistical informa-
tion will cause a new snapshot to be fetched.

A transaction can also see its own statistics (as yet untransmitted to the collector) in the views
pg_stat_xact_all_tables, pg_stat_xact_sys_tables, pg_stat_xact_user_tables, and
pg_stat_xact_user_functions. These numbers do not act as stated above; instead they update
continuously throughout the transaction.

Table 27-1. Standard Statistics Views

View Name Description
pg_stat_activity One row per server process, showing information

related to the current activity of that process, such
as state and current query. See pg_stat_activity for
details.

pg_stat_bgwriter One row only, showing statistics about the
background writer process’s activity. See
pg_stat_bgwriter for details.

pg_stat_database One row per database, showing database-wide
statistics. See pg_stat_database for details.

pg_stat_all_tables One row for each table in the current database,
showing statistics about accesses to that specific
table. See pg_stat_all_tables for details.

pg_stat_sys_tables Same as pg_stat_all_tables, except that only
system tables are shown.

pg_stat_user_tables Same as pg_stat_all_tables, except that only
user tables are shown.

598

Chapter 27. Monitoring Database Activity

View Name Description
pg_stat_xact_all_tables Similar to pg_stat_all_tables, but counts

actions taken so far within the current transaction
(which are not yet included in
pg_stat_all_tables and related views). The
columns for numbers of live and dead rows and
vacuum and analyze actions are not present in this
view.

pg_stat_xact_sys_tables Same as pg_stat_xact_all_tables, except
that only system tables are shown.

pg_stat_xact_user_tables Same as pg_stat_xact_all_tables, except
that only user tables are shown.

pg_stat_all_indexes One row for each index in the current database,
showing statistics about accesses to that specific
index. See pg_stat_all_indexes for details.

pg_stat_sys_indexes Same as pg_stat_all_indexes, except that
only indexes on system tables are shown.

pg_stat_user_indexes Same as pg_stat_all_indexes, except that
only indexes on user tables are shown.

pg_statio_all_tables One row for each table in the current database,
showing statistics about I/O on that specific table.
See pg_statio_all_tables for details.

pg_statio_sys_tables Same as pg_statio_all_tables, except that
only system tables are shown.

pg_statio_user_tables Same as pg_statio_all_tables, except that
only user tables are shown.

pg_statio_all_indexes One row for each index in the current database,
showing statistics about I/O on that specific index.
See pg_statio_all_indexes for details.

pg_statio_sys_indexes Same as pg_statio_all_indexes, except that
only indexes on system tables are shown.

pg_statio_user_indexes Same as pg_statio_all_indexes, except that
only indexes on user tables are shown.

pg_statio_all_sequences One row for each sequence in the current
database, showing statistics about I/O on that
specific sequence. See pg_statio_all_sequences for
details.

pg_statio_sys_sequences Same as pg_statio_all_sequences, except
that only system sequences are shown. (Presently,
no system sequences are defined, so this view is
always empty.)

pg_statio_user_sequences Same as pg_statio_all_sequences, except
that only user sequences are shown.

599

Chapter 27. Monitoring Database Activity

View Name Description
pg_stat_user_functions One row for each tracked function, showing

statistics about executions of that function. See
pg_stat_user_functions for details.

pg_stat_xact_user_functions Similar to pg_stat_user_functions, but
counts only calls during the current transaction
(which are not yet included in
pg_stat_user_functions).

pg_stat_replication One row per WAL sender process, showing
statistics about replication to that sender’s
connected standby server. See pg_stat_replication
for details.

pg_stat_database_conflicts One row per database, showing database-wide
statistics about query cancels due to conflict with
recovery on standby servers. See
pg_stat_database_conflicts for details.

The per-index statistics are particularly useful to determine which indexes are being used and how effec-
tive they are.

The pg_statio_ views are primarily useful to determine the effectiveness of the buffer cache. When the
number of actual disk reads is much smaller than the number of buffer hits, then the cache is satisfying
most read requests without invoking a kernel call. However, these statistics do not give the entire story:
due to the way in which PostgreSQL handles disk I/O, data that is not in the PostgreSQL buffer cache
might still reside in the kernel’s I/O cache, and might therefore still be fetched without requiring a physical
read. Users interested in obtaining more detailed information on PostgreSQL I/O behavior are advised to
use the PostgreSQL statistics collector in combination with operating system utilities that allow insight
into the kernel’s handling of I/O.

Table 27-2. pg_stat_activity View

Column Type Description
datid oid OID of the database this backend

is connected to

datname name Name of the database this
backend is connected to

pid integer Process ID of this backend

usesysid oid OID of the user logged into this
backend

usename name Name of the user logged into this
backend

application_name text Name of the application that is
connected to this backend

600

Chapter 27. Monitoring Database Activity

Column Type Description
client_addr inet IP address of the client

connected to this backend. If this
field is null, it indicates either
that the client is connected via a
Unix socket on the server
machine or that this is an internal
process such as autovacuum.

client_hostname text Host name of the connected
client, as reported by a reverse
DNS lookup of client_addr.
This field will only be non-null
for IP connections, and only
when log_hostname is enabled.

client_port integer TCP port number that the client
is using for communication with
this backend, or -1 if a Unix
socket is used

backend_start timestamp with time zone Time when this process was
started, i.e., when the client
connected to the server

xact_start timestamp with time zone Time when this process’ current
transaction was started, or null if
no transaction is active. If the
current query is the first of its
transaction, this column is equal
to the query_start column.

query_start timestamp with time zone Time when the currently active
query was started, or if state is
not active, when the last query
was started

state_change timestamp with time zone Time when the state was last
changed

waiting boolean True if this backend is currently
waiting on a lock

601

Chapter 27. Monitoring Database Activity

Column Type Description
state text Current overall state of this

backend. Possible values are:
• active: The backend is
executing a query.

• idle: The backend is
waiting for a new client
command.

• idle in transaction:
The backend is in a
transaction, but is not
currently executing a query.

• idle in transaction

(aborted): This state is
similar to idle in

transaction, except one of
the statements in the
transaction caused an error.

• fastpath function

call: The backend is
executing a fast-path
function.

• disabled: This state is
reported if track_activities is
disabled in this backend.

query text Text of this backend’s most
recent query. If state is active
this field shows the currently
executing query. In all other
states, it shows the last query that
was executed.

The pg_stat_activity view will have one row per server process, showing information related to the
current activity of that process.

Note: The waiting and state columns are independent. If a backend is in the active state, it may
or may not be waiting. If the state is active and waiting is true, it means that a query is being
executed, but is being blocked by a lock somewhere in the system.

Table 27-3. pg_stat_bgwriter View

602

Chapter 27. Monitoring Database Activity

Column Type Description
checkpoints_timed bigint Number of scheduled

checkpoints that have been
performed

checkpoints_req bigint Number of requested
checkpoints that have been
performed

checkpoint_write_time double precision Total amount of time that has
been spent in the portion of
checkpoint processing where
files are written to disk, in
milliseconds

checkpoint_sync_time double precision Total amount of time that has
been spent in the portion of
checkpoint processing where
files are synchronized to disk, in
milliseconds

buffers_checkpoint bigint Number of buffers written during
checkpoints

buffers_clean bigint Number of buffers written by the
background writer

maxwritten_clean bigint Number of times the background
writer stopped a cleaning scan
because it had written too many
buffers

buffers_backend bigint Number of buffers written
directly by a backend

buffers_backend_fsync bigint Number of times a backend had
to execute its own fsync call
(normally the background writer
handles those even when the
backend does its own write)

buffers_alloc bigint Number of buffers allocated

stats_reset timestamp with time zone Time at which these statistics
were last reset

The pg_stat_bgwriter view will always have a single row, containing global data for the cluster.

Table 27-4. pg_stat_database View

Column Type Description
datid oid OID of a database

datname name Name of this database

603

Chapter 27. Monitoring Database Activity

Column Type Description
numbackends integer Number of backends currently

connected to this database. This
is the only column in this view
that returns a value reflecting
current state; all other columns
return the accumulated values
since the last reset.

xact_commit bigint Number of transactions in this
database that have been
committed

xact_rollback bigint Number of transactions in this
database that have been rolled
back

blks_read bigint Number of disk blocks read in
this database

blks_hit bigint Number of times disk blocks
were found already in the buffer
cache, so that a read was not
necessary (this only includes hits
in the PostgreSQL buffer cache,
not the operating system’s file
system cache)

tup_returned bigint Number of rows returned by
queries in this database

tup_fetched bigint Number of rows fetched by
queries in this database

tup_inserted bigint Number of rows inserted by
queries in this database

tup_updated bigint Number of rows updated by
queries in this database

tup_deleted bigint Number of rows deleted by
queries in this database

conflicts bigint Number of queries canceled due
to conflicts with recovery in this
database. (Conflicts occur only
on standby servers; see
pg_stat_database_conflicts for
details.)

604

Chapter 27. Monitoring Database Activity

Column Type Description
temp_files bigint Number of temporary files

created by queries in this
database. All temporary files are
counted, regardless of why the
temporary file was created (e.g.,
sorting or hashing), and
regardless of the log_temp_files
setting.

temp_bytes bigint Total amount of data written to
temporary files by queries in this
database. All temporary files are
counted, regardless of why the
temporary file was created, and
regardless of the log_temp_files
setting.

deadlocks bigint Number of deadlocks detected in
this database

blk_read_time double precision Time spent reading data file
blocks by backends in this
database, in milliseconds

blk_write_time double precision Time spent writing data file
blocks by backends in this
database, in milliseconds

stats_reset timestamp with time zone Time at which these statistics
were last reset

The pg_stat_database view will contain one row for each database in the cluster, showing database-
wide statistics.

Table 27-5. pg_stat_all_tables View

Column Type Description
relid oid OID of a table

schemaname name Name of the schema that this
table is in

relname name Name of this table

seq_scan bigint Number of sequential scans
initiated on this table

seq_tup_read bigint Number of live rows fetched by
sequential scans

idx_scan bigint Number of index scans initiated
on this table

idx_tup_fetch bigint Number of live rows fetched by
index scans

605

Chapter 27. Monitoring Database Activity

Column Type Description
n_tup_ins bigint Number of rows inserted

n_tup_upd bigint Number of rows updated

n_tup_del bigint Number of rows deleted

n_tup_hot_upd bigint Number of rows HOT updated
(i.e., with no separate index
update required)

n_live_tup bigint Estimated number of live rows

n_dead_tup bigint Estimated number of dead rows

last_vacuum timestamp with time zone Last time at which this table was
manually vacuumed (not
counting VACUUM FULL)

last_autovacuum timestamp with time zone Last time at which this table was
vacuumed by the autovacuum
daemon

last_analyze timestamp with time zone Last time at which this table was
manually analyzed

last_autoanalyze timestamp with time zone Last time at which this table was
analyzed by the autovacuum
daemon

vacuum_count bigint Number of times this table has
been manually vacuumed (not
counting VACUUM FULL)

autovacuum_count bigint Number of times this table has
been vacuumed by the
autovacuum daemon

analyze_count bigint Number of times this table has
been manually analyzed

autoanalyze_count bigint Number of times this table has
been analyzed by the
autovacuum daemon

The pg_stat_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about accesses to that specific table. The pg_stat_user_tables and
pg_stat_sys_tables views contain the same information, but filtered to only show user and system
tables respectively.

Table 27-6. pg_stat_all_indexes View

Column Type Description
relid oid OID of the table for this index

indexrelid oid OID of this index

schemaname name Name of the schema this index is
in

606

Chapter 27. Monitoring Database Activity

Column Type Description
relname name Name of the table for this index

indexrelname name Name of this index

idx_scan bigint Number of index scans initiated
on this index

idx_tup_read bigint Number of index entries returned
by scans on this index

idx_tup_fetch bigint Number of live table rows
fetched by simple index scans
using this index

The pg_stat_all_indexes view will contain one row for each index in the current database,
showing statistics about accesses to that specific index. The pg_stat_user_indexes and
pg_stat_sys_indexes views contain the same information, but filtered to only show user and system
indexes respectively.

Indexes can be used via either simple index scans or “bitmap” index scans. In a bitmap scan the
output of several indexes can be combined via AND or OR rules, so it is difficult to associate
individual heap row fetches with specific indexes when a bitmap scan is used. Therefore, a bitmap
scan increments the pg_stat_all_indexes.idx_tup_read count(s) for the index(es) it uses, and it
increments the pg_stat_all_tables.idx_tup_fetch count for the table, but it does not affect
pg_stat_all_indexes.idx_tup_fetch.

Note: The idx_tup_read and idx_tup_fetch counts can be different even without any use of bitmap
scans, because idx_tup_read counts index entries retrieved from the index while idx_tup_fetch

counts live rows fetched from the table. The latter will be less if any dead or not-yet-committed rows
are fetched using the index, or if any heap fetches are avoided by means of an index-only scan.

Table 27-7. pg_statio_all_tables View

Column Type Description
relid oid OID of a table

schemaname name Name of the schema that this
table is in

relname name Name of this table

heap_blks_read bigint Number of disk blocks read from
this table

heap_blks_hit bigint Number of buffer hits in this
table

idx_blks_read bigint Number of disk blocks read from
all indexes on this table

idx_blks_hit bigint Number of buffer hits in all
indexes on this table

607

Chapter 27. Monitoring Database Activity

Column Type Description
toast_blks_read bigint Number of disk blocks read from

this table’s TOAST table (if any)

toast_blks_hit bigint Number of buffer hits in this
table’s TOAST table (if any)

tidx_blks_read bigint Number of disk blocks read from
this table’s TOAST table index
(if any)

tidx_blks_hit bigint Number of buffer hits in this
table’s TOAST table index (if
any)

The pg_statio_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about I/O on that specific table. The pg_statio_user_tables and
pg_statio_sys_tables views contain the same information, but filtered to only show user and system
tables respectively.

Table 27-8. pg_statio_all_indexes View

Column Type Description
relid oid OID of the table for this index

indexrelid oid OID of this index

schemaname name Name of the schema this index is
in

relname name Name of the table for this index

indexrelname name Name of this index

idx_blks_read bigint Number of disk blocks read from
this index

idx_blks_hit bigint Number of buffer hits in this
index

The pg_statio_all_indexes view will contain one row for each index in the current database,
showing statistics about I/O on that specific index. The pg_statio_user_indexes and
pg_statio_sys_indexes views contain the same information, but filtered to only show user and
system indexes respectively.

Table 27-9. pg_statio_all_sequences View

Column Type Description
relid oid OID of a sequence

schemaname name Name of the schema this
sequence is in

relname name Name of this sequence

blks_read bigint Number of disk blocks read from
this sequence

608

Chapter 27. Monitoring Database Activity

Column Type Description
blks_hit bigint Number of buffer hits in this

sequence

The pg_statio_all_sequences view will contain one row for each sequence in the current database,
showing statistics about I/O on that specific sequence.

Table 27-10. pg_stat_user_functions View

Column Type Description
funcid oid OID of a function

schemaname name Name of the schema this
function is in

funcname name Name of this function

calls bigint Number of times this function
has been called

total_time double precision Total time spent in this function
and all other functions called by
it, in milliseconds

self_time double precision Total time spent in this function
itself, not including other
functions called by it, in
milliseconds

The pg_stat_user_functions view will contain one row for each tracked function, showing statistics
about executions of that function. The track_functions parameter controls exactly which functions are
tracked.

Table 27-11. pg_stat_replication View

Column Type Description
pid integer Process ID of a WAL sender

process

usesysid oid OID of the user logged into this
WAL sender process

usename name Name of the user logged into this
WAL sender process

application_name text Name of the application that is
connected to this WAL sender

client_addr inet IP address of the client
connected to this WAL sender. If
this field is null, it indicates that
the client is connected via a Unix
socket on the server machine.

609

Chapter 27. Monitoring Database Activity

Column Type Description
client_hostname text Host name of the connected

client, as reported by a reverse
DNS lookup of client_addr.
This field will only be non-null
for IP connections, and only
when log_hostname is enabled.

client_port integer TCP port number that the client
is using for communication with
this WAL sender, or -1 if a Unix
socket is used

backend_start timestamp with time zone Time when this process was
started, i.e., when the client
connected to this WAL sender

state text Current WAL sender state

sent_location text Last transaction log position sent
on this connection

write_location text Last transaction log position
written to disk by this standby
server

flush_location text Last transaction log position
flushed to disk by this standby
server

replay_location text Last transaction log position
replayed into the database on this
standby server

sync_priority integer Priority of this standby server for
being chosen as the synchronous
standby

sync_state text Synchronous state of this
standby server

The pg_stat_replication view will contain one row per WAL sender process, showing statistics
about replication to that sender’s connected standby server. Only directly connected standbys are listed;
no information is available about downstream standby servers.

Table 27-12. pg_stat_database_conflicts View

Column Type Description
datid oid OID of a database

datname name Name of this database

confl_tablespace bigint Number of queries in this
database that have been canceled
due to dropped tablespaces

610

Chapter 27. Monitoring Database Activity

Column Type Description
confl_lock bigint Number of queries in this

database that have been canceled
due to lock timeouts

confl_snapshot bigint Number of queries in this
database that have been canceled
due to old snapshots

confl_bufferpin bigint Number of queries in this
database that have been canceled
due to pinned buffers

confl_deadlock bigint Number of queries in this
database that have been canceled
due to deadlocks

The pg_stat_database_conflicts view will contain one row per database, showing database-wide
statistics about query cancels occurring due to conflicts with recovery on standby servers. This view will
only contain information on standby servers, since conflicts do not occur on master servers.

27.2.3. Statistics Functions
Other ways of looking at the statistics can be set up by writing queries that use the same underly-
ing statistics access functions used by the standard views shown above. For details such as the func-
tions’ names, consult the definitions of the standard views. (For example, in psql you could issue \d+

pg_stat_activity.) The access functions for per-database statistics take a database OID as an argu-
ment to identify which database to report on. The per-table and per-index functions take a table or index
OID. The functions for per-function statistics take a function OID. Note that only tables, indexes, and
functions in the current database can be seen with these functions.

Additional functions related to statistics collection are listed in Table 27-13.

Table 27-13. Additional Statistics Functions

Function Return Type Description
pg_backend_pid() integer Process ID of the server process

handling the current session

pg_stat_get_activity(integer)setof record Returns a record of information
about the backend with the
specified PID, or one record for
each active backend in the
system if NULL is specified. The
fields returned are a subset of
those in the
pg_stat_activity view.

pg_stat_clear_snapshot() void Discard the current statistics
snapshot

611

Chapter 27. Monitoring Database Activity

Function Return Type Description
pg_stat_reset() void Reset all statistics counters for

the current database to zero
(requires superuser privileges)

pg_stat_reset_shared(text) void Reset some cluster-wide
statistics counters to zero,
depending on the argument
(requires superuser privileges).
Calling
pg_stat_reset_shared(’bgwriter’)

will zero all the counters shown
in the pg_stat_bgwriter
view.

pg_stat_reset_single_table_counters(oid)void Reset statistics for a single table
or index in the current database
to zero (requires superuser
privileges)

pg_stat_reset_single_function_counters(oid)void Reset statistics for a single
function in the current database
to zero (requires superuser
privileges)

pg_stat_get_activity, the underlying function of the pg_stat_activity view, returns a set of
records containing all the available information about each backend process. Sometimes it may be
more convenient to obtain just a subset of this information. In such cases, an older set of per-backend
statistics access functions can be used; these are shown in Table 27-14. These access functions use a
backend ID number, which ranges from one to the number of currently active backends. The function
pg_stat_get_backend_idset provides a convenient way to generate one row for each active backend
for invoking these functions. For example, to show the PIDs and current queries of all backends:

SELECT pg_stat_get_backend_pid(s.backendid) AS pid,
pg_stat_get_backend_activity(s.backendid) AS query

FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;

Table 27-14. Per-Backend Statistics Functions

Function Return Type Description
pg_stat_get_backend_idset() setof integer Set of currently active backend

ID numbers (from 1 to the
number of active backends)

pg_stat_get_backend_activity(integer)text Text of this backend’s most
recent query

pg_stat_get_backend_activity_start(integer)timestamp with time zone Time when the most recent query
was started

612

Chapter 27. Monitoring Database Activity

Function Return Type Description
pg_stat_get_backend_client_addr(integer)inet IP address of the client

connected to this backend

pg_stat_get_backend_client_port(integer)integer TCP port number that the client
is using for communication

pg_stat_get_backend_dbid(integer)oid OID of the database this backend
is connected to

pg_stat_get_backend_pid(integer)integer Process ID of this backend

pg_stat_get_backend_start(integer)timestamp with time zone Time when this process was
started

pg_stat_get_backend_userid(integer)oid OID of the user logged into this
backend

pg_stat_get_backend_waiting(integer)boolean True if this backend is currently
waiting on a lock

pg_stat_get_backend_xact_start(integer)timestamp with time zone Time when the current
transaction was started

27.3. Viewing Locks
Another useful tool for monitoring database activity is the pg_locks system table. It allows the database
administrator to view information about the outstanding locks in the lock manager. For example, this
capability can be used to:

• View all the locks currently outstanding, all the locks on relations in a particular database, all the locks
on a particular relation, or all the locks held by a particular PostgreSQL session.

• Determine the relation in the current database with the most ungranted locks (which might be a source
of contention among database clients).

• Determine the effect of lock contention on overall database performance, as well as the extent to which
contention varies with overall database traffic.

Details of the pg_locks view appear in Section 45.58. For more information on locking and managing
concurrency with PostgreSQL, refer to Chapter 13.

27.4. Dynamic Tracing
PostgreSQL provides facilities to support dynamic tracing of the database server. This allows an external
utility to be called at specific points in the code and thereby trace execution.

A number of probes or trace points are already inserted into the source code. These probes are intended
to be used by database developers and administrators. By default the probes are not compiled into Post-

613

Chapter 27. Monitoring Database Activity

greSQL; the user needs to explicitly tell the configure script to make the probes available.

Currently, only the DTrace1 utility is supported, which is available on OpenSolaris, Solaris 10, and Mac
OS X Leopard. It is expected that DTrace will be available in the future on FreeBSD and possibly
other operating systems. The SystemTap2 project for Linux also provides a DTrace equivalent. Support-
ing other dynamic tracing utilities is theoretically possible by changing the definitions for the macros in
src/include/utils/probes.h.

27.4.1. Compiling for Dynamic Tracing
By default, probes are not available, so you will need to explicitly tell the configure script to make the
probes available in PostgreSQL. To include DTrace support specify --enable-dtrace to configure. See
Section 15.4 for further information.

27.4.2. Built-in Probes
A number of standard probes are provided in the source code, as shown in Table 27-15; Table 27-16 shows
the types used in the probes. More probes can certainly be added to enhance PostgreSQL’s observability.

Table 27-15. Built-in DTrace Probes

Name Parameters Description
transaction-start (LocalTransactionId) Probe that fires at the start of a

new transaction. arg0 is the
transaction ID.

transaction-commit (LocalTransactionId) Probe that fires when a
transaction completes
successfully. arg0 is the
transaction ID.

transaction-abort (LocalTransactionId) Probe that fires when a
transaction completes
unsuccessfully. arg0 is the
transaction ID.

query-start (const char *) Probe that fires when the
processing of a query is started.
arg0 is the query string.

query-done (const char *) Probe that fires when the
processing of a query is
complete. arg0 is the query
string.

query-parse-start (const char *) Probe that fires when the parsing
of a query is started. arg0 is the
query string.

1. http://opensolaris.org/os/community/dtrace/
2. http://sourceware.org/systemtap/

614

Chapter 27. Monitoring Database Activity

Name Parameters Description
query-parse-done (const char *) Probe that fires when the parsing

of a query is complete. arg0 is
the query string.

query-rewrite-start (const char *) Probe that fires when the
rewriting of a query is started.
arg0 is the query string.

query-rewrite-done (const char *) Probe that fires when the
rewriting of a query is complete.
arg0 is the query string.

query-plan-start () Probe that fires when the
planning of a query is started.

query-plan-done () Probe that fires when the
planning of a query is complete.

query-execute-start () Probe that fires when the
execution of a query is started.

query-execute-done () Probe that fires when the
execution of a query is complete.

statement-status (const char *) Probe that fires anytime the
server process updates its
pg_stat_activity.status.
arg0 is the new status string.

checkpoint-start (int) Probe that fires when a
checkpoint is started. arg0 holds
the bitwise flags used to
distinguish different checkpoint
types, such as shutdown,
immediate or force.

checkpoint-done (int, int, int, int, int) Probe that fires when a
checkpoint is complete. (The
probes listed next fire in
sequence during checkpoint
processing.) arg0 is the number
of buffers written. arg1 is the
total number of buffers. arg2,
arg3 and arg4 contain the number
of xlog file(s) added, removed
and recycled respectively.

clog-checkpoint-start (bool) Probe that fires when the CLOG
portion of a checkpoint is started.
arg0 is true for normal
checkpoint, false for shutdown
checkpoint.

615

Chapter 27. Monitoring Database Activity

Name Parameters Description
clog-checkpoint-done (bool) Probe that fires when the CLOG

portion of a checkpoint is
complete. arg0 has the same
meaning as for
clog-checkpoint-start.

subtrans-checkpoint-start (bool) Probe that fires when the
SUBTRANS portion of a
checkpoint is started. arg0 is true
for normal checkpoint, false for
shutdown checkpoint.

subtrans-checkpoint-done (bool) Probe that fires when the
SUBTRANS portion of a
checkpoint is complete. arg0 has
the same meaning as for
subtrans-checkpoint-start.

multixact-checkpoint-start (bool) Probe that fires when the
MultiXact portion of a
checkpoint is started. arg0 is true
for normal checkpoint, false for
shutdown checkpoint.

multixact-checkpoint-done (bool) Probe that fires when the
MultiXact portion of a
checkpoint is complete. arg0 has
the same meaning as for
multixact-checkpoint-start.

buffer-checkpoint-start (int) Probe that fires when the
buffer-writing portion of a
checkpoint is started. arg0 holds
the bitwise flags used to
distinguish different checkpoint
types, such as shutdown,
immediate or force.

buffer-sync-start (int, int) Probe that fires when we begin to
write dirty buffers during
checkpoint (after identifying
which buffers must be written).
arg0 is the total number of
buffers. arg1 is the number that
are currently dirty and need to be
written.

buffer-sync-written (int) Probe that fires after each buffer
is written during checkpoint.
arg0 is the ID number of the
buffer.

616

Chapter 27. Monitoring Database Activity

Name Parameters Description
buffer-sync-done (int, int, int) Probe that fires when all dirty

buffers have been written. arg0 is
the total number of buffers. arg1
is the number of buffers actually
written by the checkpoint
process. arg2 is the number that
were expected to be written (arg1
of buffer-sync-start); any
difference reflects other
processes flushing buffers during
the checkpoint.

buffer-checkpoint-sync-start () Probe that fires after dirty buffers
have been written to the kernel,
and before starting to issue fsync
requests.

buffer-checkpoint-done () Probe that fires when syncing of
buffers to disk is complete.

twophase-checkpoint-start () Probe that fires when the
two-phase portion of a
checkpoint is started.

twophase-checkpoint-done () Probe that fires when the
two-phase portion of a
checkpoint is complete.

buffer-read-start (ForkNumber, BlockNumber,
Oid, Oid, Oid, int, bool)

Probe that fires when a buffer
read is started. arg0 and arg1
contain the fork and block
numbers of the page (but arg1
will be -1 if this is a relation
extension request). arg2, arg3,
and arg4 contain the tablespace,
database, and relation OIDs
identifying the relation. arg5 is
the ID of the backend which
created the temporary relation for
a local buffer, or
InvalidBackendId (-1) for a
shared buffer. arg6 is true for a
relation extension request, false
for normal read.

617

Chapter 27. Monitoring Database Activity

Name Parameters Description
buffer-read-done (ForkNumber, BlockNumber,

Oid, Oid, Oid, int, bool, bool)
Probe that fires when a buffer
read is complete. arg0 and arg1
contain the fork and block
numbers of the page (if this is a
relation extension request, arg1
now contains the block number
of the newly added block). arg2,
arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.
arg5 is the ID of the backend
which created the temporary
relation for a local buffer, or
InvalidBackendId (-1) for a
shared buffer. arg6 is true for a
relation extension request, false
for normal read. arg7 is true if
the buffer was found in the pool,
false if not.

buffer-flush-start (ForkNumber, BlockNumber,
Oid, Oid, Oid)

Probe that fires before issuing
any write request for a shared
buffer. arg0 and arg1 contain the
fork and block numbers of the
page. arg2, arg3, and arg4
contain the tablespace, database,
and relation OIDs identifying the
relation.

buffer-flush-done (ForkNumber, BlockNumber,
Oid, Oid, Oid)

Probe that fires when a write
request is complete. (Note that
this just reflects the time to pass
the data to the kernel; it’s
typically not actually been
written to disk yet.) The
arguments are the same as for
buffer-flush-start.

618

Chapter 27. Monitoring Database Activity

Name Parameters Description
buffer-write-dirty-start (ForkNumber, BlockNumber,

Oid, Oid, Oid)
Probe that fires when a server
process begins to write a dirty
buffer. (If this happens often, it
implies that shared_buffers is too
small or the bgwriter control
parameters need adjustment.)
arg0 and arg1 contain the fork
and block numbers of the page.
arg2, arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.

buffer-write-dirty-done (ForkNumber, BlockNumber,
Oid, Oid, Oid)

Probe that fires when a
dirty-buffer write is complete.
The arguments are the same as
for buffer-write-dirty-start.

wal-buffer-write-dirty-start () Probe that fires when a server
process begins to write a dirty
WAL buffer because no more
WAL buffer space is available.
(If this happens often, it implies
that wal_buffers is too small.)

wal-buffer-write-dirty-done () Probe that fires when a dirty
WAL buffer write is complete.

xlog-insert (unsigned char, unsigned char) Probe that fires when a WAL
record is inserted. arg0 is the
resource manager (rmid) for the
record. arg1 contains the info
flags.

xlog-switch () Probe that fires when a WAL
segment switch is requested.

smgr-md-read-start (ForkNumber, BlockNumber,
Oid, Oid, Oid, int)

Probe that fires when beginning
to read a block from a relation.
arg0 and arg1 contain the fork
and block numbers of the page.
arg2, arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.
arg5 is the ID of the backend
which created the temporary
relation for a local buffer, or
InvalidBackendId (-1) for a
shared buffer.

619

Chapter 27. Monitoring Database Activity

Name Parameters Description
smgr-md-read-done (ForkNumber, BlockNumber,

Oid, Oid, Oid, int, int, int)
Probe that fires when a block
read is complete. arg0 and arg1
contain the fork and block
numbers of the page. arg2, arg3,
and arg4 contain the tablespace,
database, and relation OIDs
identifying the relation. arg5 is
the ID of the backend which
created the temporary relation for
a local buffer, or
InvalidBackendId (-1) for a
shared buffer. arg6 is the number
of bytes actually read, while arg7
is the number requested (if these
are different it indicates trouble).

smgr-md-write-start (ForkNumber, BlockNumber,
Oid, Oid, Oid, int)

Probe that fires when beginning
to write a block to a relation.
arg0 and arg1 contain the fork
and block numbers of the page.
arg2, arg3, and arg4 contain the
tablespace, database, and relation
OIDs identifying the relation.
arg5 is the ID of the backend
which created the temporary
relation for a local buffer, or
InvalidBackendId (-1) for a
shared buffer.

smgr-md-write-done (ForkNumber, BlockNumber,
Oid, Oid, Oid, int, int, int)

Probe that fires when a block
write is complete. arg0 and arg1
contain the fork and block
numbers of the page. arg2, arg3,
and arg4 contain the tablespace,
database, and relation OIDs
identifying the relation. arg5 is
the ID of the backend which
created the temporary relation for
a local buffer, or
InvalidBackendId (-1) for a
shared buffer. arg6 is the number
of bytes actually written, while
arg7 is the number requested (if
these are different it indicates
trouble).

620

Chapter 27. Monitoring Database Activity

Name Parameters Description
sort-start (int, bool, int, int, bool) Probe that fires when a sort

operation is started. arg0
indicates heap, index or datum
sort. arg1 is true for unique-value
enforcement. arg2 is the number
of key columns. arg3 is the
number of kilobytes of work
memory allowed. arg4 is true if
random access to the sort result
is required.

sort-done (bool, long) Probe that fires when a sort is
complete. arg0 is true for
external sort, false for internal
sort. arg1 is the number of disk
blocks used for an external sort,
or kilobytes of memory used for
an internal sort.

lwlock-acquire (LWLockId, LWLockMode) Probe that fires when an LWLock
has been acquired. arg0 is the
LWLock’s ID. arg1 is the
requested lock mode, either
exclusive or shared.

lwlock-release (LWLockId) Probe that fires when an LWLock
has been released (but note that
any released waiters have not yet
been awakened). arg0 is the
LWLock’s ID.

lwlock-wait-start (LWLockId, LWLockMode) Probe that fires when an LWLock
was not immediately available
and a server process has begun to
wait for the lock to become
available. arg0 is the LWLock’s
ID. arg1 is the requested lock
mode, either exclusive or shared.

lwlock-wait-done (LWLockId, LWLockMode) Probe that fires when a server
process has been released from
its wait for an LWLock (it does
not actually have the lock yet).
arg0 is the LWLock’s ID. arg1 is
the requested lock mode, either
exclusive or shared.

621

Chapter 27. Monitoring Database Activity

Name Parameters Description
lwlock-condacquire (LWLockId, LWLockMode) Probe that fires when an LWLock

was successfully acquired when
the caller specified no waiting.
arg0 is the LWLock’s ID. arg1 is
the requested lock mode, either
exclusive or shared.

lwlock-condacquire-fail (LWLockId, LWLockMode) Probe that fires when an LWLock
was not successfully acquired
when the caller specified no
waiting. arg0 is the LWLock’s
ID. arg1 is the requested lock
mode, either exclusive or shared.

lock-wait-start (unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, LOCKMODE)

Probe that fires when a request
for a heavyweight lock (lmgr
lock) has begun to wait because
the lock is not available. arg0
through arg3 are the tag fields
identifying the object being
locked. arg4 indicates the type of
object being locked. arg5
indicates the lock type being
requested.

lock-wait-done (unsigned int, unsigned int,
unsigned int, unsigned int,
unsigned int, LOCKMODE)

Probe that fires when a request
for a heavyweight lock (lmgr
lock) has finished waiting (i.e.,
has acquired the lock). The
arguments are the same as for
lock-wait-start.

deadlock-found () Probe that fires when a deadlock
is found by the deadlock
detector.

Table 27-16. Defined Types Used in Probe Parameters

Type Definition
LocalTransactionId unsigned int

LWLockId int

LWLockMode int

LOCKMODE int

BlockNumber unsigned int

Oid unsigned int

ForkNumber int

bool char

622

Chapter 27. Monitoring Database Activity

27.4.3. Using Probes
The example below shows a DTrace script for analyzing transaction counts in the system, as an alternative
to snapshotting pg_stat_database before and after a performance test:

#!/usr/sbin/dtrace -qs

postgresql$1:::transaction-start
{

@start["Start"] = count();
self->ts = timestamp;

}

postgresql$1:::transaction-abort
{

@abort["Abort"] = count();
}

postgresql$1:::transaction-commit
/self->ts/
{

@commit["Commit"] = count();
@time["Total time (ns)"] = sum(timestamp - self->ts);
self->ts=0;

}

When executed, the example D script gives output such as:

./txn_count.d ‘pgrep -n postgres‘ or ./txn_count.d <PID>
^C

Start 71
Commit 70
Total time (ns) 2312105013

Note: SystemTap uses a different notation for trace scripts than DTrace does, even though the un-
derlying trace points are compatible. One point worth noting is that at this writing, SystemTap scripts
must reference probe names using double underscores in place of hyphens. This is expected to be
fixed in future SystemTap releases.

You should remember that DTrace scripts need to be carefully written and debugged, otherwise the trace
information collected might be meaningless. In most cases where problems are found it is the instrumenta-
tion that is at fault, not the underlying system. When discussing information found using dynamic tracing,
be sure to enclose the script used to allow that too to be checked and discussed.

More example scripts can be found in the PgFoundry dtrace project3.

3. http://pgfoundry.org/projects/dtrace/

623

Chapter 27. Monitoring Database Activity

27.4.4. Defining New Probes
New probes can be defined within the code wherever the developer desires, though this will require a
recompilation. Below are the steps for inserting new probes:

1. Decide on probe names and data to be made available through the probes

2. Add the probe definitions to src/backend/utils/probes.d

3. Include pg_trace.h if it is not already present in the module(s) containing the probe points, and
insert TRACE_POSTGRESQL probe macros at the desired locations in the source code

4. Recompile and verify that the new probes are available

Example: Here is an example of how you would add a probe to trace all new transactions by transaction
ID.

1. Decide that the probe will be named transaction-start and requires a parameter of type Local-
TransactionId

2. Add the probe definition to src/backend/utils/probes.d:

probe transaction__start(LocalTransactionId);

Note the use of the double underline in the probe name. In a DTrace script using the probe, the double
underline needs to be replaced with a hyphen, so transaction-start is the name to document for
users.

3. At compile time, transaction__start is converted to a macro called
TRACE_POSTGRESQL_TRANSACTION_START (notice the underscores are single here), which is
available by including pg_trace.h. Add the macro call to the appropriate location in the source
code. In this case, it looks like the following:

TRACE_POSTGRESQL_TRANSACTION_START(vxid.localTransactionId);

4. After recompiling and running the new binary, check that your newly added probe is available by
executing the following DTrace command. You should see similar output:

dtrace -ln transaction-start
ID PROVIDER MODULE FUNCTION NAME

18705 postgresql49878 postgres StartTransactionCommand transaction-start
18755 postgresql49877 postgres StartTransactionCommand transaction-start
18805 postgresql49876 postgres StartTransactionCommand transaction-start
18855 postgresql49875 postgres StartTransactionCommand transaction-start
18986 postgresql49873 postgres StartTransactionCommand transaction-start

There are a few things to be careful about when adding trace macros to the C code:

• You should take care that the data types specified for a probe’s parameters match the data types of the
variables used in the macro. Otherwise, you will get compilation errors.

• On most platforms, if PostgreSQL is built with --enable-dtrace, the arguments to a trace macro
will be evaluated whenever control passes through the macro, even if no tracing is being done. This is
usually not worth worrying about if you are just reporting the values of a few local variables. But beware

624

Chapter 27. Monitoring Database Activity

of putting expensive function calls into the arguments. If you need to do that, consider protecting the
macro with a check to see if the trace is actually enabled:

if (TRACE_POSTGRESQL_TRANSACTION_START_ENABLED())
TRACE_POSTGRESQL_TRANSACTION_START(some_function(...));

Each trace macro has a corresponding ENABLED macro.

625

Chapter 28. Monitoring Disk Usage
This chapter discusses how to monitor the disk usage of a PostgreSQL database system.

28.1. Determining Disk Usage
Each table has a primary heap disk file where most of the data is stored. If the table has any columns
with potentially-wide values, there also might be a TOAST file associated with the table, which is used to
store values too wide to fit comfortably in the main table (see Section 56.2). There will be one index on
the TOAST table, if present. There also might be indexes associated with the base table. Each table and
index is stored in a separate disk file — possibly more than one file, if the file would exceed one gigabyte.
Naming conventions for these files are described in Section 56.1.

You can monitor disk space in three ways: using the SQL functions listed in Table 9-63, using the
oid2name module, or using manual inspection of the system catalogs. The SQL functions are the easi-
est to use and are generally recommended. The remainder of this section shows how to do it by inspection
of the system catalogs.

Using psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage of
any table:

SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname = ’customer’;

pg_relation_filepath | relpages
----------------------+----------
base/16384/16806 | 60

(1 row)

Each page is typically 8 kilobytes. (Remember, relpages is only updated by VACUUM, ANALYZE, and a
few DDL commands such as CREATE INDEX.) The file path name is of interest if you want to examine
the table’s disk file directly.

To show the space used by TOAST tables, use a query like the following:

SELECT relname, relpages
FROM pg_class,

(SELECT reltoastrelid
FROM pg_class
WHERE relname = ’customer’) AS ss

WHERE oid = ss.reltoastrelid OR
oid = (SELECT reltoastidxid

FROM pg_class
WHERE oid = ss.reltoastrelid)

ORDER BY relname;

relname | relpages
----------------------+----------
pg_toast_16806 | 0
pg_toast_16806_index | 1

626

Chapter 28. Monitoring Disk Usage

You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = ’customer’ AND

c.oid = i.indrelid AND
c2.oid = i.indexrelid

ORDER BY c2.relname;

relname | relpages
----------------------+----------
customer_id_indexdex | 26

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages
FROM pg_class
ORDER BY relpages DESC;

relname | relpages
----------------------+----------
bigtable | 3290
customer | 3144

28.2. Disk Full Failure
The most important disk monitoring task of a database administrator is to make sure the disk doesn’t
become full. A filled data disk will not result in data corruption, but it might prevent useful activity from
occurring. If the disk holding the WAL files grows full, database server panic and consequent shutdown
might occur.

If you cannot free up additional space on the disk by deleting other things, you can move some of the
database files to other file systems by making use of tablespaces. See Section 21.6 for more information
about that.

Tip: Some file systems perform badly when they are almost full, so do not wait until the disk is
completely full to take action.

If your system supports per-user disk quotas, then the database will naturally be subject to whatever quota
is placed on the user the server runs as. Exceeding the quota will have the same bad effects as running out
of disk space entirely.

627

Chapter 29. Reliability and the Write-Ahead Log
This chapter explains how the Write-Ahead Log is used to obtain efficient, reliable operation.

29.1. Reliability
Reliability is an important property of any serious database system, and PostgreSQL does everything
possible to guarantee reliable operation. One aspect of reliable operation is that all data recorded by a
committed transaction should be stored in a nonvolatile area that is safe from power loss, operating system
failure, and hardware failure (except failure of the nonvolatile area itself, of course). Successfully writing
the data to the computer’s permanent storage (disk drive or equivalent) ordinarily meets this requirement.
In fact, even if a computer is fatally damaged, if the disk drives survive they can be moved to another
computer with similar hardware and all committed transactions will remain intact.

While forcing data to the disk platters periodically might seem like a simple operation, it is not. Because
disk drives are dramatically slower than main memory and CPUs, several layers of caching exist between
the computer’s main memory and the disk platters. First, there is the operating system’s buffer cache,
which caches frequently requested disk blocks and combines disk writes. Fortunately, all operating sys-
tems give applications a way to force writes from the buffer cache to disk, and PostgreSQL uses those
features. (See the wal_sync_method parameter to adjust how this is done.)

Next, there might be a cache in the disk drive controller; this is particularly common on RAID controller
cards. Some of these caches are write-through, meaning writes are sent to the drive as soon as they arrive.
Others are write-back, meaning data is sent to the drive at some later time. Such caches can be a reliability
hazard because the memory in the disk controller cache is volatile, and will lose its contents in a power
failure. Better controller cards have battery-backup units (BBUs), meaning the card has a battery that
maintains power to the cache in case of system power loss. After power is restored the data will be written
to the disk drives.

And finally, most disk drives have caches. Some are write-through while some are write-back, and the
same concerns about data loss exist for write-back drive caches as for disk controller caches. Consumer-
grade IDE and SATA drives are particularly likely to have write-back caches that will not survive a power
failure. Many solid-state drives (SSD) also have volatile write-back caches.

These caches can typically be disabled; however, the method for doing this varies by operating system
and drive type:

• On Linux, IDE drives can be queried using hdparm -I; write caching is enabled if there is a * next
to Write cache. hdparm -W 0 can be used to turn off write caching. SCSI drives can be queried
using sdparm1. Use sdparm --get=WCE to check whether the write cache is enabled and sdparm

--clear=WCE to disable it.

• On FreeBSD, IDE drives can be queried using atacontrol and write caching turned off using
hw.ata.wc=0 in /boot/loader.conf; SCSI drives can be queried using camcontrol identify,
and the write cache both queried and changed using sdparm when available.

1. http://sg.danny.cz/sg/sdparm.html

628

Chapter 29. Reliability and the Write-Ahead Log

• On Solaris, the disk write cache is controlled by format -e2. (The Solaris ZFS file system is safe with
disk write-cache enabled because it issues its own disk cache flush commands.)

• On Windows, if wal_sync_method is open_datasync (the default),
write caching can be disabled by unchecking My Computer\Open\disk

drive\Properties\Hardware\Properties\Policies\Enable write caching on the

disk. Alternatively, set wal_sync_method to fsync or fsync_writethrough, which prevent
write caching.

• On Mac OS X, write caching can be prevented by setting wal_sync_method to
fsync_writethrough.

Recent SATA drives (those following ATAPI-6 or later) offer a drive cache flush command (FLUSH CACHE

EXT), while SCSI drives have long supported a similar command SYNCHRONIZE CACHE. These com-
mands are not directly accessible to PostgreSQL, but some file systems (e.g., ZFS, ext4) can use them to
flush data to the platters on write-back-enabled drives. Unfortunately, such file systems behave subopti-
mally when combined with battery-backup unit (BBU) disk controllers. In such setups, the synchronize
command forces all data from the controller cache to the disks, eliminating much of the benefit of the
BBU. You can run the pg_test_fsync module to see if you are affected. If you are affected, the perfor-
mance benefits of the BBU can be regained by turning off write barriers in the file system or reconfiguring
the disk controller, if that is an option. If write barriers are turned off, make sure the battery remains func-
tional; a faulty battery can potentially lead to data loss. Hopefully file system and disk controller designers
will eventually address this suboptimal behavior.

When the operating system sends a write request to the storage hardware, there is little it can do to make
sure the data has arrived at a truly non-volatile storage area. Rather, it is the administrator’s responsibility
to make certain that all storage components ensure data integrity. Avoid disk controllers that have non-
battery-backed write caches. At the drive level, disable write-back caching if the drive cannot guarantee
the data will be written before shutdown. If you use SSDs, be aware that many of these do not honor cache
flush commands by default. You can test for reliable I/O subsystem behavior using diskchecker.pl3.

Another risk of data loss is posed by the disk platter write operations themselves. Disk platters are divided
into sectors, commonly 512 bytes each. Every physical read or write operation processes a whole sector.
When a write request arrives at the drive, it might be for some multiple of 512 bytes (PostgreSQL typically
writes 8192 bytes, or 16 sectors, at a time), and the process of writing could fail due to power loss at any
time, meaning some of the 512-byte sectors were written while others were not. To guard against such
failures, PostgreSQL periodically writes full page images to permanent WAL storage before modifying
the actual page on disk. By doing this, during crash recovery PostgreSQL can restore partially-written
pages from WAL. If you have file-system software that prevents partial page writes (e.g., ZFS), you can
turn off this page imaging by turning off the full_page_writes parameter. Battery-Backed Unit (BBU) disk
controllers do not prevent partial page writes unless they guarantee that data is written to the BBU as full
(8kB) pages.

29.2. Write-Ahead Logging (WAL)
Write-Ahead Logging (WAL) is a standard method for ensuring data integrity. A detailed description can
be found in most (if not all) books about transaction processing. Briefly, WAL’s central concept is that

2. http://www.sun.com/bigadmin/content/submitted/format_utility.jsp
3. http://brad.livejournal.com/2116715.html

629

Chapter 29. Reliability and the Write-Ahead Log

changes to data files (where tables and indexes reside) must be written only after those changes have been
logged, that is, after log records describing the changes have been flushed to permanent storage. If we
follow this procedure, we do not need to flush data pages to disk on every transaction commit, because we
know that in the event of a crash we will be able to recover the database using the log: any changes that
have not been applied to the data pages can be redone from the log records. (This is roll-forward recovery,
also known as REDO.)

Tip: Because WAL restores database file contents after a crash, journaled file systems are not nec-
essary for reliable storage of the data files or WAL files. In fact, journaling overhead can reduce
performance, especially if journaling causes file system data to be flushed to disk. Fortunately, data
flushing during journaling can often be disabled with a file system mount option, e.g. data=writeback
on a Linux ext3 file system. Journaled file systems do improve boot speed after a crash.

Using WAL results in a significantly reduced number of disk writes, because only the log file needs to
be flushed to disk to guarantee that a transaction is committed, rather than every data file changed by the
transaction. The log file is written sequentially, and so the cost of syncing the log is much less than the
cost of flushing the data pages. This is especially true for servers handling many small transactions touch-
ing different parts of the data store. Furthermore, when the server is processing many small concurrent
transactions, one fsync of the log file may suffice to commit many transactions.

WAL also makes it possible to support on-line backup and point-in-time recovery, as described in Section
24.3. By archiving the WAL data we can support reverting to any time instant covered by the available
WAL data: we simply install a prior physical backup of the database, and replay the WAL log just as far
as the desired time. What’s more, the physical backup doesn’t have to be an instantaneous snapshot of the
database state — if it is made over some period of time, then replaying the WAL log for that period will
fix any internal inconsistencies.

29.3. Asynchronous Commit
Asynchronous commit is an option that allows transactions to complete more quickly, at the cost that
the most recent transactions may be lost if the database should crash. In many applications this is an
acceptable trade-off.

As described in the previous section, transaction commit is normally synchronous: the server waits for the
transaction’s WAL records to be flushed to permanent storage before returning a success indication to the
client. The client is therefore guaranteed that a transaction reported to be committed will be preserved,
even in the event of a server crash immediately after. However, for short transactions this delay is a major
component of the total transaction time. Selecting asynchronous commit mode means that the server
returns success as soon as the transaction is logically completed, before the WAL records it generated have
actually made their way to disk. This can provide a significant boost in throughput for small transactions.

Asynchronous commit introduces the risk of data loss. There is a short time window between the report
of transaction completion to the client and the time that the transaction is truly committed (that is, it is
guaranteed not to be lost if the server crashes). Thus asynchronous commit should not be used if the
client will take external actions relying on the assumption that the transaction will be remembered. As
an example, a bank would certainly not use asynchronous commit for a transaction recording an ATM’s

630

Chapter 29. Reliability and the Write-Ahead Log

dispensing of cash. But in many scenarios, such as event logging, there is no need for a strong guarantee
of this kind.

The risk that is taken by using asynchronous commit is of data loss, not data corruption. If the database
should crash, it will recover by replaying WAL up to the last record that was flushed. The database will
therefore be restored to a self-consistent state, but any transactions that were not yet flushed to disk
will not be reflected in that state. The net effect is therefore loss of the last few transactions. Because
the transactions are replayed in commit order, no inconsistency can be introduced — for example, if
transaction B made changes relying on the effects of a previous transaction A, it is not possible for A’s
effects to be lost while B’s effects are preserved.

The user can select the commit mode of each transaction, so that it is possible to have both synchronous
and asynchronous commit transactions running concurrently. This allows flexible trade-offs between per-
formance and certainty of transaction durability. The commit mode is controlled by the user-settable
parameter synchronous_commit, which can be changed in any of the ways that a configuration parameter
can be set. The mode used for any one transaction depends on the value of synchronous_commit when
transaction commit begins.

Certain utility commands, for instance DROP TABLE, are forced to commit synchronously regardless of
the setting of synchronous_commit. This is to ensure consistency between the server’s file system
and the logical state of the database. The commands supporting two-phase commit, such as PREPARE

TRANSACTION, are also always synchronous.

If the database crashes during the risk window between an asynchronous commit and the writing of the
transaction’s WAL records, then changes made during that transaction will be lost. The duration of the
risk window is limited because a background process (the “WAL writer”) flushes unwritten WAL records
to disk every wal_writer_delay milliseconds. The actual maximum duration of the risk window is three
times wal_writer_delay because the WAL writer is designed to favor writing whole pages at a time
during busy periods.

Caution
An immediate-mode shutdown is equivalent to a server crash, and will therefore
cause loss of any unflushed asynchronous commits.

Asynchronous commit provides behavior different from setting fsync = off. fsync is a server-wide setting
that will alter the behavior of all transactions. It disables all logic within PostgreSQL that attempts to
synchronize writes to different portions of the database, and therefore a system crash (that is, a hardware or
operating system crash, not a failure of PostgreSQL itself) could result in arbitrarily bad corruption of the
database state. In many scenarios, asynchronous commit provides most of the performance improvement
that could be obtained by turning off fsync, but without the risk of data corruption.

commit_delay also sounds very similar to asynchronous commit, but it is actually a synchronous commit
method (in fact, commit_delay is ignored during an asynchronous commit). commit_delay causes a
delay just before a synchronous commit attempts to flush WAL to disk, in the hope that a single flush
executed by one such transaction can also serve other transactions committing at about the same time.
Setting commit_delay can only help when there are many concurrently committing transactions, and it
is difficult to tune it to a value that actually helps rather than hurts throughput.

631

Chapter 29. Reliability and the Write-Ahead Log

29.4. WAL Configuration
There are several WAL-related configuration parameters that affect database performance. This section
explains their use. Consult Chapter 18 for general information about setting server configuration parame-
ters.

Checkpoints are points in the sequence of transactions at which it is guaranteed that the heap and index
data files have been updated with all information written before the checkpoint. At checkpoint time, all
dirty data pages are flushed to disk and a special checkpoint record is written to the log file. (The changes
were previously flushed to the WAL files.) In the event of a crash, the crash recovery procedure looks at
the latest checkpoint record to determine the point in the log (known as the redo record) from which it
should start the REDO operation. Any changes made to data files before that point are guaranteed to be
already on disk. Hence, after a checkpoint, log segments preceding the one containing the redo record are
no longer needed and can be recycled or removed. (When WAL archiving is being done, the log segments
must be archived before being recycled or removed.)

The checkpoint requirement of flushing all dirty data pages to disk can cause a significant I/O load. For
this reason, checkpoint activity is throttled so I/O begins at checkpoint start and completes before the next
checkpoint starts; this minimizes performance degradation during checkpoints.

The server’s checkpointer process automatically performs a checkpoint every so often. A checkpoint is
created every checkpoint_segments log segments, or every checkpoint_timeout seconds, whichever comes
first. The default settings are 3 segments and 300 seconds (5 minutes), respectively. In cases where no
WAL has been written since the previous checkpoint, new checkpoints will be skipped even if check-
point_timeout has passed. If WAL archiving is being used and you want to put a lower limit on how
often files are archived in order to bound potential data loss, you should adjust archive_timeout parameter
rather than the checkpoint parameters. It is also possible to force a checkpoint by using the SQL command
CHECKPOINT.

Reducing checkpoint_segments and/or checkpoint_timeout causes checkpoints to occur more
often. This allows faster after-crash recovery (since less work will need to be redone). However, one must
balance this against the increased cost of flushing dirty data pages more often. If full_page_writes is set (as
is the default), there is another factor to consider. To ensure data page consistency, the first modification
of a data page after each checkpoint results in logging the entire page content. In that case, a smaller
checkpoint interval increases the volume of output to the WAL log, partially negating the goal of using a
smaller interval, and in any case causing more disk I/O.

Checkpoints are fairly expensive, first because they require writing out all currently dirty buffers, and
second because they result in extra subsequent WAL traffic as discussed above. It is therefore wise to set
the checkpointing parameters high enough that checkpoints don’t happen too often. As a simple sanity
check on your checkpointing parameters, you can set the checkpoint_warning parameter. If checkpoints
happen closer together than checkpoint_warning seconds, a message will be output to the server log
recommending increasing checkpoint_segments. Occasional appearance of such a message is not
cause for alarm, but if it appears often then the checkpoint control parameters should be increased. Bulk
operations such as large COPY transfers might cause a number of such warnings to appear if you have not
set checkpoint_segments high enough.

To avoid flooding the I/O system with a burst of page writes, writing dirty buffers during a checkpoint
is spread over a period of time. That period is controlled by checkpoint_completion_target, which is
given as a fraction of the checkpoint interval. The I/O rate is adjusted so that the checkpoint finishes
when the given fraction of checkpoint_segments WAL segments have been consumed since check-
point start, or the given fraction of checkpoint_timeout seconds have elapsed, whichever is sooner.

632

Chapter 29. Reliability and the Write-Ahead Log

With the default value of 0.5, PostgreSQL can be expected to complete each checkpoint in about half
the time before the next checkpoint starts. On a system that’s very close to maximum I/O throughput
during normal operation, you might want to increase checkpoint_completion_target to reduce
the I/O load from checkpoints. The disadvantage of this is that prolonging checkpoints affects recov-
ery time, because more WAL segments will need to be kept around for possible use in recovery. Although
checkpoint_completion_target can be set as high as 1.0, it is best to keep it less than that (perhaps
0.9 at most) since checkpoints include some other activities besides writing dirty buffers. A setting of 1.0
is quite likely to result in checkpoints not being completed on time, which would result in performance
loss due to unexpected variation in the number of WAL segments needed.

There will always be at least one WAL segment file, and will normally not be more than (2 +
checkpoint_completion_target) * checkpoint_segments + 1 or checkpoint_segments +
wal_keep_segments + 1 files. Each segment file is normally 16 MB (though this size can be altered
when building the server). You can use this to estimate space requirements for WAL. Ordinarily, when
old log segment files are no longer needed, they are recycled (renamed to become the next segments
in the numbered sequence). If, due to a short-term peak of log output rate, there are more than 3 *
checkpoint_segments + 1 segment files, the unneeded segment files will be deleted instead of
recycled until the system gets back under this limit.

In archive recovery or standby mode, the server periodically performs restartpoints which are similar
to checkpoints in normal operation: the server forces all its state to disk, updates the pg_control file
to indicate that the already-processed WAL data need not be scanned again, and then recycles any old
log segment files in pg_xlog directory. A restartpoint is triggered if at least one checkpoint record
has been replayed and checkpoint_timeout seconds have passed since last restartpoint. In standby
mode, a restartpoint is also triggered if checkpoint_segments log segments have been replayed since
last restartpoint and at least one checkpoint record has been replayed. Restartpoints can’t be performed
more frequently than checkpoints in the master because restartpoints can only be performed at checkpoint
records.

There are two commonly used internal WAL functions: LogInsert and LogFlush. LogInsert is used
to place a new record into the WAL buffers in shared memory. If there is no space for the new record,
LogInsert will have to write (move to kernel cache) a few filled WAL buffers. This is undesirable
because LogInsert is used on every database low level modification (for example, row insertion) at a
time when an exclusive lock is held on affected data pages, so the operation needs to be as fast as possible.
What is worse, writing WAL buffers might also force the creation of a new log segment, which takes even
more time. Normally, WAL buffers should be written and flushed by a LogFlush request, which is made,
for the most part, at transaction commit time to ensure that transaction records are flushed to permanent
storage. On systems with high log output, LogFlush requests might not occur often enough to prevent
LogInsert from having to do writes. On such systems one should increase the number of WAL buffers by
modifying the configuration parameter wal_buffers. When full_page_writes is set and the system is very
busy, setting this value higher will help smooth response times during the period immediately following
each checkpoint.

The commit_delay parameter defines for how many microseconds the server process will sleep after writ-
ing a commit record to the log with LogInsert but before performing a LogFlush. This delay allows
other server processes to add their commit records to the log so as to have all of them flushed with a single
log sync. No sleep will occur if fsync is not enabled, or if fewer than commit_siblings other sessions are
currently in active transactions; this avoids sleeping when it’s unlikely that any other session will commit
soon. Note that on most platforms, the resolution of a sleep request is ten milliseconds, so that any nonzero
commit_delay setting between 1 and 10000 microseconds would have the same effect. Good values for

633

Chapter 29. Reliability and the Write-Ahead Log

these parameters are not yet clear; experimentation is encouraged.

The wal_sync_method parameter determines how PostgreSQL will ask the kernel to force WAL
updates out to disk. All the options should be the same in terms of reliability, with the exception of
fsync_writethrough, which can sometimes force a flush of the disk cache even when other options do
not do so. However, it’s quite platform-specific which one will be the fastest; you can test option speeds
using the pg_test_fsync module. Note that this parameter is irrelevant if fsync has been turned off.

Enabling the wal_debug configuration parameter (provided that PostgreSQL has been compiled with sup-
port for it) will result in each LogInsert and LogFlush WAL call being logged to the server log. This
option might be replaced by a more general mechanism in the future.

29.5. WAL Internals
WAL is automatically enabled; no action is required from the administrator except ensuring that the disk-
space requirements for the WAL logs are met, and that any necessary tuning is done (see Section 29.4).

WAL logs are stored in the directory pg_xlog under the data directory, as a set of segment files, normally
each 16 MB in size (but the size can be changed by altering the --with-wal-segsize configure option
when building the server). Each segment is divided into pages, normally 8 kB each (this size can be
changed via the --with-wal-blocksize configure option). The log record headers are described in
access/xlog.h; the record content is dependent on the type of event that is being logged. Segment files
are given ever-increasing numbers as names, starting at 000000010000000000000000. The numbers do
not wrap, but it will take a very, very long time to exhaust the available stock of numbers.

It is advantageous if the log is located on a different disk from the main database files. This can be
achieved by moving the pg_xlog directory to another location (while the server is shut down, of course)
and creating a symbolic link from the original location in the main data directory to the new location.

The aim of WAL is to ensure that the log is written before database records are altered, but this can
be subverted by disk drives that falsely report a successful write to the kernel, when in fact they have
only cached the data and not yet stored it on the disk. A power failure in such a situation might lead to
irrecoverable data corruption. Administrators should try to ensure that disks holding PostgreSQL’s WAL
log files do not make such false reports. (See Section 29.1.)

After a checkpoint has been made and the log flushed, the checkpoint’s position is saved in the file
pg_control. Therefore, at the start of recovery, the server first reads pg_control and then the check-
point record; then it performs the REDO operation by scanning forward from the log position indicated
in the checkpoint record. Because the entire content of data pages is saved in the log on the first page
modification after a checkpoint (assuming full_page_writes is not disabled), all pages changed since the
checkpoint will be restored to a consistent state.

To deal with the case where pg_control is corrupt, we should support the possibility of scanning existing
log segments in reverse order — newest to oldest — in order to find the latest checkpoint. This has not
been implemented yet. pg_control is small enough (less than one disk page) that it is not subject to
partial-write problems, and as of this writing there have been no reports of database failures due solely to
the inability to read pg_control itself. So while it is theoretically a weak spot, pg_control does not
seem to be a problem in practice.

634

Chapter 30. Regression Tests
The regression tests are a comprehensive set of tests for the SQL implementation in PostgreSQL. They
test standard SQL operations as well as the extended capabilities of PostgreSQL.

30.1. Running the Tests
The regression tests can be run against an already installed and running server, or using a temporary in-
stallation within the build tree. Furthermore, there is a “parallel” and a “sequential” mode for running
the tests. The sequential method runs each test script alone, while the parallel method starts up multi-
ple server processes to run groups of tests in parallel. Parallel testing adds confidence that interprocess
communication and locking are working correctly.

30.1.1. Running the Tests Against a Temporary Installation
To run the parallel regression tests after building but before installation, type:

gmake check

in the top-level directory. (Or you can change to src/test/regress and run the command there.) At
the end you should see something like:

=======================

All 115 tests passed.

=======================

or otherwise a note about which tests failed. See Section 30.2 below before assuming that a “failure”
represents a serious problem.

Warning
This test method starts a temporary server, which is configured to accept any con-
nection originating on the local machine. Any local user can gain database supe-
ruser privileges when connecting to this server, and could in principle exploit all
privileges of the operating-system user running the tests. Therefore, it is not rec-
ommended that you use gmake check on machines shared with untrusted users.
Instead, run the tests after completing the installation, as described in the next sec-
tion.

On Unix-like machines, this danger can be avoided if the temporary server’s socket
file is made inaccessible to other users, for example by running the tests in a pro-
tected chroot. On Windows, the temporary server opens a locally-accessible TCP
socket, so filesystem protections cannot help.

Because this test method runs a temporary server, it will not work if you did the build as the root user,
since the server will not start as root. Recommended procedure is not to do the build as root, or else to
perform testing after completing the installation.

635

Chapter 30. Regression Tests

If you have configured PostgreSQL to install into a location where an older PostgreSQL installation
already exists, and you perform gmake check before installing the new version, you might find that the
tests fail because the new programs try to use the already-installed shared libraries. (Typical symptoms are
complaints about undefined symbols.) If you wish to run the tests before overwriting the old installation,
you’ll need to build with configure --disable-rpath. It is not recommended that you use this option
for the final installation, however.

The parallel regression test starts quite a few processes under your user ID. Presently, the maximum
concurrency is twenty parallel test scripts, which means forty processes: there’s a server process and a
psql process for each test script. So if your system enforces a per-user limit on the number of processes,
make sure this limit is at least fifty or so, else you might get random-seeming failures in the parallel test.
If you are not in a position to raise the limit, you can cut down the degree of parallelism by setting the
MAX_CONNECTIONS parameter. For example:

gmake MAX_CONNECTIONS=10 check

runs no more than ten tests concurrently.

30.1.2. Running the Tests Against an Existing Installation
To run the tests after installation (see Chapter 15), initialize a data area and start the server as explained in
Chapter 17, then type:

gmake installcheck

or for a parallel test:

gmake installcheck-parallel

The tests will expect to contact the server at the local host and the default port number, unless directed
otherwise by PGHOST and PGPORT environment variables. The tests will be run in a database named
regression; any existing database by this name will be dropped. The tests will also transiently create
some cluster-wide objects, such as user identities named regressuserN .

30.1.3. Additional Test Suites
The gmake check and gmake installcheck commands run only the “core” regression tests, which
test built-in functionality of the PostgreSQL server. The source distribution also contains additional test
suites, most of them having to do with add-on functionality such as optional procedural languages.

To run all test suites applicable to the modules that have been selected to be built, including the core tests,
type one of these commands at the top of the build tree:

gmake check-world
gmake installcheck-world

These commands run the tests using temporary servers or an already-installed server, respectively, just as
previously explained for gmake check and gmake installcheck. Other considerations are the same
as previously explained for each method. Note that gmake check-world builds a separate temporary

636

Chapter 30. Regression Tests

installation tree for each tested module, so it requires a great deal more time and disk space than gmake

installcheck-world.

Alternatively, you can run individual test suites by typing gmake check or gmake installcheck in
the appropriate subdirectory of the build tree. Keep in mind that gmake installcheck assumes you’ve
installed the relevant module(s), not only the core server.

The additional tests that can be invoked this way include:

• Regression tests for optional procedural languages (other than PL/pgSQL, which is tested by the core
tests). These are located under src/pl.

• Regression tests for contrib modules, located under contrib. Not all contrib modules have tests.

• Regression tests for the ECPG interface library, located in src/interfaces/ecpg/test.

• Tests stressing behavior of concurrent sessions, located in src/test/isolation.

When using installcheck mode, these tests will destroy any existing databases named
pl_regression, contrib_regression, isolationtest, regress1, or connectdb, as well as
regression.

30.1.4. Locale and Encoding
By default, tests using a temporary installation use the locale defined in the current environment and the
corresponding database encoding as determined by initdb. It can be useful to test different locales by
setting the appropriate environment variables, for example:

gmake check LANG=C
gmake check LC_COLLATE=en_US.utf8 LC_CTYPE=fr_CA.utf8

For implementation reasons, setting LC_ALL does not work for this purpose; all the other locale-related
environment variables do work.

When testing against an existing installation, the locale is determined by the existing database cluster and
cannot be set separately for the test run.

You can also choose the database encoding explicitly by setting the variable ENCODING, for example:

gmake check LANG=C ENCODING=EUC_JP

Setting the database encoding this way typically only makes sense if the locale is C; otherwise the encod-
ing is chosen automatically from the locale, and specifying an encoding that does not match the locale
will result in an error.

The database encoding can be set for tests against either a temporary or an existing installation, though in
the latter case it must be compatible with the installation’s locale.

637

Chapter 30. Regression Tests

30.1.5. Extra Tests
The core regression test suite contains a few test files that are not run by default, because they might be
platform-dependent or take a very long time to run. You can run these or other extra test files by setting
the variable EXTRA_TESTS. For example, to run the numeric_big test:

gmake check EXTRA_TESTS=numeric_big

To run the collation tests:

gmake check EXTRA_TESTS=collate.linux.utf8 LANG=en_US.utf8

The collate.linux.utf8 test works only on Linux/glibc platforms, and only when run in a database
that uses UTF-8 encoding.

30.1.6. Testing Hot Standby
The source distribution also contains regression tests for the static behavior of Hot Standby. These tests
require a running primary server and a running standby server that is accepting new WAL changes from
the primary (using either file-based log shipping or streaming replication). Those servers are not automat-
ically created for you, nor is replication setup documented here. Please check the various sections of the
documentation devoted to the required commands and related issues.

To run the Hot Standby tests, first create a database called regression on the primary:

psql -h primary -c "CREATE DATABASE regression"

Next, run the preparatory script src/test/regress/sql/hs_primary_setup.sql on the primary in
the regression database, for example:

psql -h primary -f src/test/regress/sql/hs_primary_setup.sql regression

Allow these changes to propagate to the standby.

Now arrange for the default database connection to be to the standby server under test (for example,
by setting the PGHOST and PGPORT environment variables). Finally, run gmake standbycheck in the
regression directory:

cd src/test/regress
gmake standbycheck

Some extreme behaviors can also be generated on the primary using the script
src/test/regress/sql/hs_primary_extremes.sql to allow the behavior of the standby to be
tested.

638

Chapter 30. Regression Tests

30.2. Test Evaluation
Some properly installed and fully functional PostgreSQL installations can “fail” some of these regression
tests due to platform-specific artifacts such as varying floating-point representation and message wording.
The tests are currently evaluated using a simple diff comparison against the outputs generated on a
reference system, so the results are sensitive to small system differences. When a test is reported as
“failed”, always examine the differences between expected and actual results; you might find that the
differences are not significant. Nonetheless, we still strive to maintain accurate reference files across all
supported platforms, so it can be expected that all tests pass.

The actual outputs of the regression tests are in files in the src/test/regress/results directory.
The test script uses diff to compare each output file against the reference outputs stored in the
src/test/regress/expected directory. Any differences are saved for your inspection in
src/test/regress/regression.diffs. (When running a test suite other than the core tests, these
files of course appear in the relevant subdirectory, not src/test/regress.)

If for some reason a particular platform generates a “failure” for a given test, but inspection of the output
convinces you that the result is valid, you can add a new comparison file to silence the failure report in
future test runs. See Section 30.3 for details.

30.2.1. Error Message Differences
Some of the regression tests involve intentional invalid input values. Error messages can come from either
the PostgreSQL code or from the host platform system routines. In the latter case, the messages can vary
between platforms, but should reflect similar information. These differences in messages will result in a
“failed” regression test that can be validated by inspection.

30.2.2. Locale Differences
If you run the tests against a server that was initialized with a collation-order locale other than C, then
there might be differences due to sort order and subsequent failures. The regression test suite is set up to
handle this problem by providing alternate result files that together are known to handle a large number
of locales.

To run the tests in a different locale when using the temporary-installation method, pass the appropriate
locale-related environment variables on the gmake command line, for example:

gmake check LANG=de_DE.utf8

(The regression test driver unsets LC_ALL, so it does not work to choose the locale using that variable.) To
use no locale, either unset all locale-related environment variables (or set them to C) or use the following
special invocation:

gmake check NO_LOCALE=1

When running the tests against an existing installation, the locale setup is determined by the existing
installation. To change it, initialize the database cluster with a different locale by passing the appropriate
options to initdb.

639

Chapter 30. Regression Tests

In general, it is advisable to try to run the regression tests in the locale setup that is wanted for production
use, as this will exercise the locale- and encoding-related code portions that will actually be used in
production. Depending on the operating system environment, you might get failures, but then you will at
least know what locale-specific behaviors to expect when running real applications.

30.2.3. Date and Time Differences
Most of the date and time results are dependent on the time zone environment. The reference files are
generated for time zone PST8PDT (Berkeley, California), and there will be apparent failures if the tests are
not run with that time zone setting. The regression test driver sets environment variable PGTZ to PST8PDT,
which normally ensures proper results.

30.2.4. Floating-Point Differences
Some of the tests involve computing 64-bit floating-point numbers (double precision) from table
columns. Differences in results involving mathematical functions of double precision columns have
been observed. The float8 and geometry tests are particularly prone to small differences across plat-
forms, or even with different compiler optimization settings. Human eyeball comparison is needed to
determine the real significance of these differences which are usually 10 places to the right of the decimal
point.

Some systems display minus zero as -0, while others just show 0.

Some systems signal errors from pow() and exp() differently from the mechanism expected by the
current PostgreSQL code.

30.2.5. Row Ordering Differences
You might see differences in which the same rows are output in a different order than what appears in
the expected file. In most cases this is not, strictly speaking, a bug. Most of the regression test scripts are
not so pedantic as to use an ORDER BY for every single SELECT, and so their result row orderings are
not well-defined according to the SQL specification. In practice, since we are looking at the same queries
being executed on the same data by the same software, we usually get the same result ordering on all
platforms, so the lack of ORDER BY is not a problem. Some queries do exhibit cross-platform ordering
differences, however. When testing against an already-installed server, ordering differences can also be
caused by non-C locale settings or non-default parameter settings, such as custom values of work_mem or
the planner cost parameters.

Therefore, if you see an ordering difference, it’s not something to worry about, unless the query does have
an ORDER BY that your result is violating. However, please report it anyway, so that we can add an ORDER
BY to that particular query to eliminate the bogus “failure” in future releases.

You might wonder why we don’t order all the regression test queries explicitly to get rid of this issue once
and for all. The reason is that that would make the regression tests less useful, not more, since they’d tend
to exercise query plan types that produce ordered results to the exclusion of those that don’t.

640

Chapter 30. Regression Tests

30.2.6. Insufficient Stack Depth
If the errors test results in a server crash at the select infinite_recurse() command, it means
that the platform’s limit on process stack size is smaller than the max_stack_depth parameter indicates.
This can be fixed by running the server under a higher stack size limit (4MB is recommended with the
default value of max_stack_depth). If you are unable to do that, an alternative is to reduce the value of
max_stack_depth.

On platforms supporting getrlimit(), the server should automatically choose a safe value of
max_stack_depth; so unless you’ve manually overridden this setting, a failure of this kind is a
reportable bug.

30.2.7. The “random” Test
The random test script is intended to produce random results. In very rare cases, this causes that regression
test to fail. Typing:

diff results/random.out expected/random.out

should produce only one or a few lines of differences. You need not worry unless the random test fails
repeatedly.

30.2.8. Configuration Parameters
When running the tests against an existing installation, some non-default parameter settings could cause
the tests to fail. For example, changing parameters such as enable_seqscan or enable_indexscan
could cause plan changes that would affect the results of tests that use EXPLAIN.

30.3. Variant Comparison Files
Since some of the tests inherently produce environment-dependent results, we have provided ways to
specify alternate “expected” result files. Each regression test can have several comparison files showing
possible results on different platforms. There are two independent mechanisms for determining which
comparison file is used for each test.

The first mechanism allows comparison files to be selected for specific platforms. There is a mapping
file, src/test/regress/resultmap, that defines which comparison file to use for each platform. To
eliminate bogus test “failures” for a particular platform, you first choose or make a variant result file, and
then add a line to the resultmap file.

Each line in the mapping file is of the form

testname:output:platformpattern=comparisonfilename

The test name is just the name of the particular regression test module. The output value indicates which
output file to check. For the standard regression tests, this is always out. The value corresponds to the
file extension of the output file. The platform pattern is a pattern in the style of the Unix tool expr (that

641

Chapter 30. Regression Tests

is, a regular expression with an implicit ^ anchor at the start). It is matched against the platform name as
printed by config.guess. The comparison file name is the base name of the substitute result comparison
file.

For example: some systems interpret very small floating-point values as zero, rather than reporting an
underflow error. This causes a few differences in the float8 regression test. Therefore, we provide a
variant comparison file, float8-small-is-zero.out, which includes the results to be expected on
these systems. To silence the bogus “failure” message on OpenBSD platforms, resultmap includes:

float8:out:i.86-.*-openbsd=float8-small-is-zero.out

which will trigger on any machine where the output of config.guess matches i.86-.*-openbsd.
Other lines in resultmap select the variant comparison file for other platforms where it’s appropriate.

The second selection mechanism for variant comparison files is much more automatic: it simply uses the
“best match” among several supplied comparison files. The regression test driver script considers both the
standard comparison file for a test, testname.out, and variant files named testname_digit.out (where
the digit is any single digit 0-9). If any such file is an exact match, the test is considered to pass; other-
wise, the one that generates the shortest diff is used to create the failure report. (If resultmap includes
an entry for the particular test, then the base testname is the substitute name given in resultmap.)

For example, for the char test, the comparison file char.out contains results that are expected in the
C and POSIX locales, while the file char_1.out contains results sorted as they appear in many other
locales.

The best-match mechanism was devised to cope with locale-dependent results, but it can be used in any
situation where the test results cannot be predicted easily from the platform name alone. A limitation of
this mechanism is that the test driver cannot tell which variant is actually “correct” for the current envi-
ronment; it will just pick the variant that seems to work best. Therefore it is safest to use this mechanism
only for variant results that you are willing to consider equally valid in all contexts.

30.4. Test Coverage Examination
The PostgreSQL source code can be compiled with coverage testing instrumentation, so that it becomes
possible to examine which parts of the code are covered by the regression tests or any other test suite that
is run with the code. This is currently supported when compiling with GCC and requires the gcov and
lcov programs.

A typical workflow would look like this:

./configure --enable-coverage ... OTHER OPTIONS ...
gmake
gmake check # or other test suite
gmake coverage-html

Then point your HTML browser to coverage/index.html. The gmake commands also work in subdi-
rectories.

To reset the execution counts between test runs, run:

gmake coverage-clean

642

Chapter 30. Regression Tests

643

IV. Client Interfaces
This part describes the client programming interfaces distributed with PostgreSQL. Each of these chapters
can be read independently. Note that there are many other programming interfaces for client programs
that are distributed separately and contain their own documentation (Appendix H lists some of the more
popular ones). Readers of this part should be familiar with using SQL commands to manipulate and query
the database (see Part II) and of course with the programming language that the interface uses.

Chapter 31. libpq - C Library
libpq is the C application programmer’s interface to PostgreSQL. libpq is a set of library functions that
allow client programs to pass queries to the PostgreSQL backend server and to receive the results of these
queries.

libpq is also the underlying engine for several other PostgreSQL application interfaces, including those
written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq’s behavior will be important to you
if you use one of those packages. In particular, Section 31.14, Section 31.15 and Section 31.18 describe
behavior that is visible to the user of any application that uses libpq.

Some short programs are included at the end of this chapter (Section 31.21) to show how to write pro-
grams that use libpq. There are also several complete examples of libpq applications in the directory
src/test/examples in the source code distribution.

Client programs that use libpq must include the header file libpq-fe.h and must link with the libpq
library.

31.1. Database Connection Control Functions
The following functions deal with making a connection to a PostgreSQL backend server. An application
program can have several backend connections open at one time. (One reason to do that is to access
more than one database.) Each connection is represented by a PGconn object, which is obtained from the
function PQconnectdb, PQconnectdbParams, or PQsetdbLogin. Note that these functions will always
return a non-null object pointer, unless perhaps there is too little memory even to allocate the PGconn
object. The PQstatus function should be called to check the return value for a successful connection
before queries are sent via the connection object.

Warning
On Unix, forking a process with open libpq connections can lead to unpredictable
results because the parent and child processes share the same sockets and oper-
ating system resources. For this reason, such usage is not recommended, though
doing an exec from the child process to load a new executable is safe.

Note: On Windows, there is a way to improve performance if a single database connection is re-
peatedly started and shutdown. Internally, libpq calls WSAStartup() and WSACleanup() for connec-
tion startup and shutdown, respectively. WSAStartup() increments an internal Windows library ref-
erence count which is decremented by WSACleanup(). When the reference count is just one, calling
WSACleanup() frees all resources and all DLLs are unloaded. This is an expensive operation. To
avoid this, an application can manually call WSAStartup() so resources will not be freed when the
last database connection is closed.

PQconnectdbParams

Makes a new connection to the database server.

PGconn *PQconnectdbParams(const char * const *keywords,

646

Chapter 31. libpq - C Library

const char * const *values,
int expand_dbname);

This function opens a new database connection using the parameters taken from two NULL-terminated
arrays. The first, keywords, is defined as an array of strings, each one being a key word. The second,
values, gives the value for each key word. Unlike PQsetdbLogin below, the parameter set can be
extended without changing the function signature, so use of this function (or its nonblocking analogs
PQconnectStartParams and PQconnectPoll) is preferred for new application programming.

The currently recognized parameter key words are listed in Section 31.1.2.

When expand_dbname is non-zero, the dbname key word value is allowed to be recognized as a
connection string. More details on the possible formats appear in Section 31.1.1.

The passed arrays can be empty to use all default parameters, or can contain one or more parameter
settings. They should be matched in length. Processing will stop with the last non-NULL element of
the keywords array.

If any parameter is unspecified, then the corresponding environment variable (see Section 31.14) is
checked. If the environment variable is not set either, then the indicated built-in defaults are used.

In general key words are processed from the beginning of these arrays in index order. The effect
of this is that when key words are repeated, the last processed value is retained. Therefore, through
careful placement of the dbname key word, it is possible to determine what may be overridden by a
conninfo string, and what may not.

PQconnectdb

Makes a new connection to the database server.

PGconn *PQconnectdb(const char *conninfo);

This function opens a new database connection using the parameters taken from the string conninfo.

The passed string can be empty to use all default parameters, or it can contain one or more parameter
settings separated by whitespace, or it can contain a URI. See Section 31.1.1 for details.

PQsetdbLogin

Makes a new connection to the database server.

PGconn *PQsetdbLogin(const char *pghost,
const char *pgport,
const char *pgoptions,
const char *pgtty,
const char *dbName,
const char *login,
const char *pwd);

This is the predecessor of PQconnectdb with a fixed set of parameters. It has the same functionality
except that the missing parameters will always take on default values. Write NULL or an empty string
for any one of the fixed parameters that is to be defaulted.

If the dbName contains an = sign or has a valid connection URI prefix, it is taken as a conninfo string
in exactly the same way as if it had been passed to PQconnectdb, and the remaining parameters are
then applied as specified for PQconnectdbParams.

647

Chapter 31. libpq - C Library

PQsetdb

Makes a new connection to the database server.

PGconn *PQsetdb(char *pghost,
char *pgport,
char *pgoptions,
char *pgtty,
char *dbName);

This is a macro that calls PQsetdbLogin with null pointers for the login and pwd parameters. It is
provided for backward compatibility with very old programs.

PQconnectStartParams

PQconnectStart

PQconnectPoll

Make a connection to the database server in a nonblocking manner.

PGconn *PQconnectStartParams(const char * const *keywords,
const char * const *values,
int expand_dbname);

PGconn *PQconnectStart(const char *conninfo);

PostgresPollingStatusType PQconnectPoll(PGconn *conn);

These three functions are used to open a connection to a database server such that your application’s
thread of execution is not blocked on remote I/O whilst doing so. The point of this approach is
that the waits for I/O to complete can occur in the application’s main loop, rather than down inside
PQconnectdbParams or PQconnectdb, and so the application can manage this operation in parallel
with other activities.

With PQconnectStartParams, the database connection is made using the parameters taken from
the keywords and values arrays, and controlled by expand_dbname, as described above for
PQconnectdbParams.

With PQconnectStart, the database connection is made using the parameters taken from the string
conninfo as described above for PQconnectdb.

Neither PQconnectStartParams nor PQconnectStart nor PQconnectPoll will block, so long
as a number of restrictions are met:

• The hostaddr and host parameters are used appropriately to ensure that name and reverse name
queries are not made. See the documentation of these parameters in Section 31.1.2 for details.

• If you call PQtrace, ensure that the stream object into which you trace will not block.

• You ensure that the socket is in the appropriate state before calling PQconnectPoll, as described
below.

Note: use of PQconnectStartParams is analogous to PQconnectStart shown below.

To begin a nonblocking connection request, call conn =

PQconnectStart("connection_info_string"). If conn is null, then libpq
has been unable to allocate a new PGconn structure. Otherwise, a valid PGconn pointer is returned
(though not yet representing a valid connection to the database). On return from PQconnectStart,

648

Chapter 31. libpq - C Library

call status = PQstatus(conn). If status equals CONNECTION_BAD, PQconnectStart has
failed.

If PQconnectStart succeeds, the next stage is to poll libpq so that it can proceed with
the connection sequence. Use PQsocket(conn) to obtain the descriptor of the socket
underlying the database connection. Loop thus: If PQconnectPoll(conn) last returned
PGRES_POLLING_READING, wait until the socket is ready to read (as indicated by select(),
poll(), or similar system function). Then call PQconnectPoll(conn) again. Conversely, if
PQconnectPoll(conn) last returned PGRES_POLLING_WRITING, wait until the socket is ready to
write, then call PQconnectPoll(conn) again. If you have yet to call PQconnectPoll, i.e.,
just after the call to PQconnectStart, behave as if it last returned PGRES_POLLING_WRITING.
Continue this loop until PQconnectPoll(conn) returns PGRES_POLLING_FAILED, indicating the
connection procedure has failed, or PGRES_POLLING_OK, indicating the connection has been
successfully made.

At any time during connection, the status of the connection can be checked by calling PQstatus.
If this call returns CONNECTION_BAD, then the connection procedure has failed; if the call returns
CONNECTION_OK, then the connection is ready. Both of these states are equally detectable from the
return value of PQconnectPoll, described above. Other states might also occur during (and only
during) an asynchronous connection procedure. These indicate the current stage of the connection
procedure and might be useful to provide feedback to the user for example. These statuses are:

CONNECTION_STARTED

Waiting for connection to be made.

CONNECTION_MADE

Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.

CONNECTION_AUTH_OK

Received authentication; waiting for backend start-up to finish.

CONNECTION_SSL_STARTUP

Negotiating SSL encryption.

CONNECTION_SETENV

Negotiating environment-driven parameter settings.

Note that, although these constants will remain (in order to maintain compatibility), an application
should never rely upon these occurring in a particular order, or at all, or on the status always being
one of these documented values. An application might do something like this:

switch(PQstatus(conn))
{

case CONNECTION_STARTED:
feedback = "Connecting...";
break;

case CONNECTION_MADE:
feedback = "Connected to server...";

649

Chapter 31. libpq - C Library

break;
.
.
.

default:
feedback = "Connecting...";

}

The connect_timeout connection parameter is ignored when using PQconnectPoll; it is the
application’s responsibility to decide whether an excessive amount of time has elapsed. Otherwise,
PQconnectStart followed by a PQconnectPoll loop is equivalent to PQconnectdb.

Note that if PQconnectStart returns a non-null pointer, you must call PQfinish when you are
finished with it, in order to dispose of the structure and any associated memory blocks. This must be
done even if the connection attempt fails or is abandoned.

PQconndefaults

Returns the default connection options.

PQconninfoOption *PQconndefaults(void);

typedef struct
{

char *keyword; /* The keyword of the option */
char *envvar; /* Fallback environment variable name */
char *compiled; /* Fallback compiled in default value */
char *val; /* Option’s current value, or NULL */
char *label; /* Label for field in connect dialog */
char *dispchar; /* Indicates how to display this field

in a connect dialog. Values are:
"" Display entered value as is
"*" Password field - hide value
"D" Debug option - don’t show by default */

int dispsize; /* Field size in characters for dialog */
} PQconninfoOption;

Returns a connection options array. This can be used to determine all possible PQconnectdb op-
tions and their current default values. The return value points to an array of PQconninfoOption
structures, which ends with an entry having a null keyword pointer. The null pointer is returned
if memory could not be allocated. Note that the current default values (val fields) will depend on
environment variables and other context. Callers must treat the connection options data as read-only.

After processing the options array, free it by passing it to PQconninfoFree. If this is not done, a
small amount of memory is leaked for each call to PQconndefaults.

PQconninfoParse

Returns parsed connection options from the provided connection string.

PQconninfoOption *PQconninfoParse(const char *conninfo, char **errmsg);

Parses a connection string and returns the resulting options as an array; or returns NULL if there
is a problem with the connection string. This function can be used to extract the PQconnectdb

options in the provided connection string. The return value points to an array of PQconninfoOption
structures, which ends with an entry having a null keyword pointer.

650

Chapter 31. libpq - C Library

All legal options will be present in the result array, but the PQconninfoOption for any option not
present in the connection string will have val set to NULL; default values are not inserted.

If errmsg is not NULL, then *errmsg is set to NULL on success, else to a malloc’d error string
explaining the problem. (It is also possible for *errmsg to be set to NULL and the function to return
NULL; this indicates an out-of-memory condition.)

After processing the options array, free it by passing it to PQconninfoFree. If this is not done, some
memory is leaked for each call to PQconninfoParse. Conversely, if an error occurs and errmsg is
not NULL, be sure to free the error string using PQfreemem.

PQfinish

Closes the connection to the server. Also frees memory used by the PGconn object.

void PQfinish(PGconn *conn);

Note that even if the server connection attempt fails (as indicated by PQstatus), the application
should call PQfinish to free the memory used by the PGconn object. The PGconn pointer must not
be used again after PQfinish has been called.

PQreset

Resets the communication channel to the server.

void PQreset(PGconn *conn);

This function will close the connection to the server and attempt to reestablish a new connection
to the same server, using all the same parameters previously used. This might be useful for error
recovery if a working connection is lost.

PQresetStart

PQresetPoll

Reset the communication channel to the server, in a nonblocking manner.

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

These functions will close the connection to the server and attempt to reestablish a new connec-
tion to the same server, using all the same parameters previously used. This can be useful for error
recovery if a working connection is lost. They differ from PQreset (above) in that they act in a non-
blocking manner. These functions suffer from the same restrictions as PQconnectStartParams,
PQconnectStart and PQconnectPoll.

To initiate a connection reset, call PQresetStart. If it returns 0, the reset has failed. If it returns 1,
poll the reset using PQresetPoll in exactly the same way as you would create the connection using
PQconnectPoll.

PQpingParams

PQpingParams reports the status of the server. It accepts connection parameters identical to those of
PQconnectdbParams, described above. It is not, however, necessary to supply correct user name,
password, or database name values to obtain the server status.

PGPing PQpingParams(const char * const *keywords,
const char * const *values,
int expand_dbname);

The function returns one of the following values:

651

Chapter 31. libpq - C Library

PQPING_OK

The server is running and appears to be accepting connections.

PQPING_REJECT

The server is running but is in a state that disallows connections (startup, shutdown, or crash
recovery).

PQPING_NO_RESPONSE

The server could not be contacted. This might indicate that the server is not running, or that there
is something wrong with the given connection parameters (for example, wrong port number),
or that there is a network connectivity problem (for example, a firewall blocking the connection
request).

PQPING_NO_ATTEMPT

No attempt was made to contact the server, because the supplied parameters were obviously
incorrect or there was some client-side problem (for example, out of memory).

PQping

PQping reports the status of the server. It accepts connection parameters identical to those of
PQconnectdb, described above. It is not, however, necessary to supply correct user name,
password, or database name values to obtain the server status.

PGPing PQping(const char *conninfo);

The return values are the same as for PQpingParams.

31.1.1. Connection Strings
Several libpq functions parse a user-specified string to obtain connection parameters. There are two ac-
cepted formats for these strings: plain keyword = value strings and RFC 39861 URIs.

31.1.1.1. Keyword/Value Connection Strings

In the first format, each parameter setting is in the form keyword = value. Spaces around the equal
sign are optional. To write an empty value, or a value containing spaces, surround it with single quotes,
e.g., keyword = ’a value’. Single quotes and backslashes within the value must be escaped with a
backslash, i.e., \’ and \\.

Example:

host=localhost port=5432 dbname=mydb connect_timeout=10

The recognized parameter key words are listed in Section 31.1.2.

1. http://www.ietf.org/rfc/rfc3986.txt

652

Chapter 31. libpq - C Library

31.1.1.2. Connection URIs

The general form for a connection URI is:

postgresql://[user[:password]@][netloc][:port][/dbname][?param1=value1&...]

The URI scheme designator can be either postgresql:// or postgres://. Each of the URI parts is
optional. The following examples illustrate valid URI syntax uses:

postgresql://
postgresql://localhost
postgresql://localhost:5433
postgresql://localhost/mydb
postgresql://user@localhost
postgresql://user:secret@localhost
postgresql://other@localhost/otherdb?connect_timeout=10&application_name=myapp

Components of the hierarchical part of the URI can also be given as parameters. For example:

postgresql:///mydb?host=localhost&port=5433

Percent-encoding may be used to include symbols with special meaning in any of the URI parts.

Any connection parameters not corresponding to key words listed in Section 31.1.2 are ignored and a
warning message about them is sent to stderr.

For improved compatibility with JDBC connection URIs, instances of parameter ssl=true are translated
into sslmode=require.

The host part may be either host name or an IP address. To specify an IPv6 host address, enclose it in
square brackets:

postgresql://[2001:db8::1234]/database

The host component is interpreted as described for the parameter host. In particular, a Unix-domain socket
connection is chosen if the host part is either empty or starts with a slash, otherwise a TCP/IP connection
is initiated. Note, however, that the slash is a reserved character in the hierarchical part of the URI. So,
to specify a non-standard Unix-domain socket directory, either omit the host specification in the URI and
specify the host as a parameter, or percent-encode the path in the host component of the URI:

postgresql:///dbname?host=/var/lib/postgresql
postgresql://%2Fvar%2Flib%2Fpostgresql/dbname

653

Chapter 31. libpq - C Library

31.1.2. Parameter Key Words
The currently recognized parameter key words are:

host

Name of host to connect to. If this begins with a slash, it specifies Unix-domain communication
rather than TCP/IP communication; the value is the name of the directory in which the socket file
is stored. The default behavior when host is not specified is to connect to a Unix-domain socket in
/tmp (or whatever socket directory was specified when PostgreSQL was built). On machines without
Unix-domain sockets, the default is to connect to localhost.

hostaddr

Numeric IP address of host to connect to. This should be in the standard IPv4 address format, e.g.,
172.28.40.9. If your machine supports IPv6, you can also use those addresses. TCP/IP communi-
cation is always used when a nonempty string is specified for this parameter.

Using hostaddr instead of host allows the application to avoid a host name look-up, which might
be important in applications with time constraints. However, a host name is required for Kerberos,
GSSAPI, or SSPI authentication methods, as well as for verify-full SSL certificate verification.
The following rules are used:

• If host is specified without hostaddr, a host name lookup occurs.

• If hostaddr is specified without host, the value for hostaddr gives the server network address.
The connection attempt will fail if the authentication method requires a host name.

• If both host and hostaddr are specified, the value for hostaddr gives the server network ad-
dress. The value for host is ignored unless the authentication method requires it, in which case it
will be used as the host name.

Note that authentication is likely to fail if host is not the name of the server at network address
hostaddr. Also, note that host rather than hostaddr is used to identify the connection in
~/.pgpass (see Section 31.15).

Without either a host name or host address, libpq will connect using a local Unix-domain socket; or
on machines without Unix-domain sockets, it will attempt to connect to localhost.

port

Port number to connect to at the server host, or socket file name extension for Unix-domain connec-
tions.

dbname

The database name. Defaults to be the same as the user name. In certain contexts, the value is checked
for extended formats; see Section 31.1.1 for more details on those.

user

PostgreSQL user name to connect as. Defaults to be the same as the operating system name of the
user running the application.

password

Password to be used if the server demands password authentication.

654

Chapter 31. libpq - C Library

connect_timeout

Maximum wait for connection, in seconds (write as a decimal integer string). Zero or not specified
means wait indefinitely. It is not recommended to use a timeout of less than 2 seconds.

client_encoding

This sets the client_encoding configuration parameter for this connection. In addition to the
values accepted by the corresponding server option, you can use auto to determine the right encoding
from the current locale in the client (LC_CTYPE environment variable on Unix systems).

options

Adds command-line options to send to the server at run-time. For example, setting this to -c

geqo=off sets the session’s value of the geqo parameter to off. For a detailed discussion of the
available options, consult Chapter 18.

application_name

Specifies a value for the application_name configuration parameter.

fallback_application_name

Specifies a fallback value for the application_name configuration parameter. This value will be used
if no value has been given for application_name via a connection parameter or the PGAPPNAME
environment variable. Specifying a fallback name is useful in generic utility programs that wish to
set a default application name but allow it to be overridden by the user.

keepalives

Controls whether client-side TCP keepalives are used. The default value is 1, meaning on, but you can
change this to 0, meaning off, if keepalives are not wanted. This parameter is ignored for connections
made via a Unix-domain socket.

keepalives_idle

Controls the number of seconds of inactivity after which TCP should send a keepalive message to
the server. A value of zero uses the system default. This parameter is ignored for connections made
via a Unix-domain socket, or if keepalives are disabled. It is only supported on systems where the
TCP_KEEPIDLE or TCP_KEEPALIVE socket option is available, and on Windows; on other systems,
it has no effect.

keepalives_interval

Controls the number of seconds after which a TCP keepalive message that is not acknowledged by
the server should be retransmitted. A value of zero uses the system default. This parameter is ignored
for connections made via a Unix-domain socket, or if keepalives are disabled. It is only supported on
systems where the TCP_KEEPINTVL socket option is available, and on Windows; on other systems,
it has no effect.

keepalives_count

Controls the number of TCP keepalives that can be lost before the client’s connection to the server is
considered dead. A value of zero uses the system default. This parameter is ignored for connections
made via a Unix-domain socket, or if keepalives are disabled. It is only supported on systems where
the TCP_KEEPCNT socket option is available; on other systems, it has no effect.

655

Chapter 31. libpq - C Library

tty

Ignored (formerly, this specified where to send server debug output).

sslmode

This option determines whether or with what priority a secure SSL TCP/IP connection will be nego-
tiated with the server. There are six modes:

disable

only try a non-SSL connection

allow

first try a non-SSL connection; if that fails, try an SSL connection

prefer (default)

first try an SSL connection; if that fails, try a non-SSL connection

require

only try an SSL connection. If a root CA file is present, verify the certificate in the same way as
if verify-ca was specified

verify-ca

only try an SSL connection, and verify that the server certificate is issued by a trusted certificate
authority (CA)

verify-full

only try an SSL connection, verify that the server certificate is issued by a trusted CA and that
the server host name matches that in the certificate

See Section 31.18 for a detailed description of how these options work.

sslmode is ignored for Unix domain socket communication. If PostgreSQL is compiled without SSL
support, using options require, verify-ca, or verify-full will cause an error, while options
allow and prefer will be accepted but libpq will not actually attempt an SSL connection.

requiressl

This option is deprecated in favor of the sslmode setting.

If set to 1, an SSL connection to the server is required (this is equivalent to sslmode require). libpq
will then refuse to connect if the server does not accept an SSL connection. If set to 0 (default), libpq
will negotiate the connection type with the server (equivalent to sslmode prefer). This option is
only available if PostgreSQL is compiled with SSL support.

sslcompression

If set to 1 (default), data sent over SSL connections will be compressed (this requires OpenSSL
version 0.9.8 or later). If set to 0, compression will be disabled (this requires OpenSSL 1.0.0 or
later). This parameter is ignored if a connection without SSL is made, or if the version of OpenSSL
used does not support it.

Compression uses CPU time, but can improve throughput if the network is the bottleneck. Disabling
compression can improve response time and throughput if CPU performance is the limiting factor.

656

Chapter 31. libpq - C Library

sslcert

This parameter specifies the file name of the client SSL certificate, replacing the default
~/.postgresql/postgresql.crt. This parameter is ignored if an SSL connection is not made.

sslkey

This parameter specifies the location for the secret key used for the client certificate. It can either
specify a file name that will be used instead of the default ~/.postgresql/postgresql.key, or
it can specify a key obtained from an external “engine” (engines are OpenSSL loadable modules). An
external engine specification should consist of a colon-separated engine name and an engine-specific
key identifier. This parameter is ignored if an SSL connection is not made.

sslrootcert

This parameter specifies the name of a file containing SSL certificate authority (CA) certificate(s).
If the file exists, the server’s certificate will be verified to be signed by one of these authorities. The
default is ~/.postgresql/root.crt.

sslcrl

This parameter specifies the file name of the SSL certificate revocation list (CRL). Certificates listed
in this file, if it exists, will be rejected while attempting to authenticate the server’s certificate. The
default is ~/.postgresql/root.crl.

requirepeer

This parameter specifies the operating-system user name of the server, for example
requirepeer=postgres. When making a Unix-domain socket connection, if this parameter is
set, the client checks at the beginning of the connection that the server process is running under the
specified user name; if it is not, the connection is aborted with an error. This parameter can be
used to provide server authentication similar to that available with SSL certificates on TCP/IP
connections. (Note that if the Unix-domain socket is in /tmp or another publicly writable location,
any user could start a server listening there. Use this parameter to ensure that you are connected to
a server run by a trusted user.) This option is only supported on platforms for which the peer

authentication method is implemented; see Section 19.3.7.

krbsrvname

Kerberos service name to use when authenticating with Kerberos 5 or GSSAPI. This must match the
service name specified in the server configuration for Kerberos authentication to succeed. (See also
Section 19.3.5 and Section 19.3.3.)

gsslib

GSS library to use for GSSAPI authentication. Only used on Windows. Set to gssapi to force libpq
to use the GSSAPI library for authentication instead of the default SSPI.

service

Service name to use for additional parameters. It specifies a service name in pg_service.conf that
holds additional connection parameters. This allows applications to specify only a service name so
connection parameters can be centrally maintained. See Section 31.16.

657

Chapter 31. libpq - C Library

31.2. Connection Status Functions
These functions can be used to interrogate the status of an existing database connection object.

Tip: libpq application programmers should be careful to maintain the PGconn abstraction. Use the
accessor functions described below to get at the contents of PGconn. Reference to internal PGconn
fields using libpq-int.h is not recommended because they are subject to change in the future.

The following functions return parameter values established at connection. These values are fixed for the
life of the PGconn object.

PQdb

Returns the database name of the connection.

char *PQdb(const PGconn *conn);

PQuser

Returns the user name of the connection.

char *PQuser(const PGconn *conn);

PQpass

Returns the password of the connection.

char *PQpass(const PGconn *conn);

PQhost

Returns the server host name of the connection.

char *PQhost(const PGconn *conn);

PQport

Returns the port of the connection.

char *PQport(const PGconn *conn);

PQtty

Returns the debug TTY of the connection. (This is obsolete, since the server no longer pays attention
to the TTY setting, but the function remains for backward compatibility.)

char *PQtty(const PGconn *conn);

PQoptions

Returns the command-line options passed in the connection request.

char *PQoptions(const PGconn *conn);

The following functions return status data that can change as operations are executed on the PGconn

object.

658

Chapter 31. libpq - C Library

PQstatus

Returns the status of the connection.

ConnStatusType PQstatus(const PGconn *conn);

The status can be one of a number of values. However, only two of these are seen outside of an
asynchronous connection procedure: CONNECTION_OK and CONNECTION_BAD. A good connection
to the database has the status CONNECTION_OK. A failed connection attempt is signaled by status
CONNECTION_BAD. Ordinarily, an OK status will remain so until PQfinish, but a communications
failure might result in the status changing to CONNECTION_BAD prematurely. In that case the appli-
cation could try to recover by calling PQreset.

See the entry for PQconnectStartParams, PQconnectStart and PQconnectPoll with regards
to other status codes that might be returned.

PQtransactionStatus

Returns the current in-transaction status of the server.

PGTransactionStatusType PQtransactionStatus(const PGconn *conn);

The status can be PQTRANS_IDLE (currently idle), PQTRANS_ACTIVE (a command is in progress),
PQTRANS_INTRANS (idle, in a valid transaction block), or PQTRANS_INERROR (idle, in a failed trans-
action block). PQTRANS_UNKNOWN is reported if the connection is bad. PQTRANS_ACTIVE is reported
only when a query has been sent to the server and not yet completed.

Caution
PQtransactionStatus will give incorrect results when using a
PostgreSQL 7.3 server that has the parameter autocommit set to off.
The server-side autocommit feature has been deprecated and does not
exist in later server versions.

PQparameterStatus

Looks up a current parameter setting of the server.

const char *PQparameterStatus(const PGconn *conn, const char *paramName);

Certain parameter values are reported by the server automatically at connection startup or whenever
their values change. PQparameterStatus can be used to interrogate these settings. It returns the
current value of a parameter if known, or NULL if the parameter is not known.

Parameters reported as of the current release include server_version, server_encoding,
client_encoding, application_name, is_superuser, session_authorization,
DateStyle, IntervalStyle, TimeZone, integer_datetimes, and
standard_conforming_strings. (server_encoding, TimeZone, and integer_datetimes

were not reported by releases before 8.0; standard_conforming_strings was not reported by
releases before 8.1; IntervalStyle was not reported by releases before 8.4; application_name
was not reported by releases before 9.0.) Note that server_version, server_encoding and
integer_datetimes cannot change after startup.

Pre-3.0-protocol servers do not report parameter settings, but libpq includes logic to obtain val-
ues for server_version and client_encoding anyway. Applications are encouraged to use
PQparameterStatus rather than ad hoc code to determine these values. (Beware however that
on a pre-3.0 connection, changing client_encoding via SET after connection startup will not be

659

Chapter 31. libpq - C Library

reflected by PQparameterStatus.) For server_version, see also PQserverVersion, which
returns the information in a numeric form that is much easier to compare against.

If no value for standard_conforming_strings is reported, applications can assume it is off,
that is, backslashes are treated as escapes in string literals. Also, the presence of this parameter can
be taken as an indication that the escape string syntax (E’...’) is accepted.

Although the returned pointer is declared const, it in fact points to mutable storage associated with
the PGconn structure. It is unwise to assume the pointer will remain valid across queries.

PQprotocolVersion

Interrogates the frontend/backend protocol being used.

int PQprotocolVersion(const PGconn *conn);

Applications might wish to use this function to determine whether certain features are supported.
Currently, the possible values are 2 (2.0 protocol), 3 (3.0 protocol), or zero (connection bad). The
protocol version will not change after connection startup is complete, but it could theoretically change
during a connection reset. The 3.0 protocol will normally be used when communicating with Post-
greSQL 7.4 or later servers; pre-7.4 servers support only protocol 2.0. (Protocol 1.0 is obsolete and
not supported by libpq.)

PQserverVersion

Returns an integer representing the backend version.

int PQserverVersion(const PGconn *conn);

Applications might use this function to determine the version of the database server they are con-
nected to. The number is formed by converting the major, minor, and revision numbers into two-
decimal-digit numbers and appending them together. For example, version 8.1.5 will be returned as
80105, and version 8.2 will be returned as 80200 (leading zeroes are not shown). Zero is returned if
the connection is bad.

PQerrorMessage

Returns the error message most recently generated by an operation on the connection.

char *PQerrorMessage(const PGconn *conn);

Nearly all libpq functions will set a message for PQerrorMessage if they fail. Note that by libpq
convention, a nonempty PQerrorMessage result can consist of multiple lines, and will include a
trailing newline. The caller should not free the result directly. It will be freed when the associated
PGconn handle is passed to PQfinish. The result string should not be expected to remain the same
across operations on the PGconn structure.

PQsocket

Obtains the file descriptor number of the connection socket to the server. A valid descriptor will be
greater than or equal to 0; a result of -1 indicates that no server connection is currently open. (This
will not change during normal operation, but could change during connection setup or reset.)

int PQsocket(const PGconn *conn);

PQbackendPID

Returns the process ID (PID) of the backend process handling this connection.

int PQbackendPID(const PGconn *conn);

660

Chapter 31. libpq - C Library

The backend PID is useful for debugging purposes and for comparison to NOTIFY messages (which
include the PID of the notifying backend process). Note that the PID belongs to a process executing
on the database server host, not the local host!

PQconnectionNeedsPassword

Returns true (1) if the connection authentication method required a password, but none was available.
Returns false (0) if not.

int PQconnectionNeedsPassword(const PGconn *conn);

This function can be applied after a failed connection attempt to decide whether to prompt the user
for a password.

PQconnectionUsedPassword

Returns true (1) if the connection authentication method used a password. Returns false (0) if not.

int PQconnectionUsedPassword(const PGconn *conn);

This function can be applied after either a failed or successful connection attempt to detect whether
the server demanded a password.

PQgetssl

Returns the SSL structure used in the connection, or null if SSL is not in use.

SSL *PQgetssl(const PGconn *conn);

This structure can be used to verify encryption levels, check server certificates, and more. Refer to
the OpenSSL documentation for information about this structure.

You must define USE_SSL in order to get the correct prototype for this function. Doing so will also
automatically include ssl.h from OpenSSL.

31.3. Command Execution Functions
Once a connection to a database server has been successfully established, the functions described here are
used to perform SQL queries and commands.

31.3.1. Main Functions

PQexec

Submits a command to the server and waits for the result.

PGresult *PQexec(PGconn *conn, const char *command);

Returns a PGresult pointer or possibly a null pointer. A non-null pointer will generally be re-
turned except in out-of-memory conditions or serious errors such as inability to send the command
to the server. The PQresultStatus function should be called to check the return value for any er-
rors (including the value of a null pointer, in which case it will return PGRES_FATAL_ERROR). Use
PQerrorMessage to get more information about such errors.

661

Chapter 31. libpq - C Library

The command string can include multiple SQL commands (separated by semicolons). Multiple queries
sent in a single PQexec call are processed in a single transaction, unless there are explicit BEGIN/COMMIT
commands included in the query string to divide it into multiple transactions. Note however that the re-
turned PGresult structure describes only the result of the last command executed from the string. Should
one of the commands fail, processing of the string stops with it and the returned PGresult describes the
error condition.

PQexecParams

Submits a command to the server and waits for the result, with the ability to pass parameters sepa-
rately from the SQL command text.

PGresult *PQexecParams(PGconn *conn,
const char *command,
int nParams,
const Oid *paramTypes,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

PQexecParams is like PQexec, but offers additional functionality: parameter values can be specified
separately from the command string proper, and query results can be requested in either text or binary
format. PQexecParams is supported only in protocol 3.0 and later connections; it will fail when
using protocol 2.0.

The function arguments are:

conn

The connection object to send the command through.

command

The SQL command string to be executed. If parameters are used, they are referred to in the
command string as $1, $2, etc.

nParams

The number of parameters supplied; it is the length of the arrays paramTypes[],
paramValues[], paramLengths[], and paramFormats[]. (The array pointers can be
NULL when nParams is zero.)

paramTypes[]

Specifies, by OID, the data types to be assigned to the parameter symbols. If paramTypes is
NULL, or any particular element in the array is zero, the server infers a data type for the parameter
symbol in the same way it would do for an untyped literal string.

paramValues[]

Specifies the actual values of the parameters. A null pointer in this array means the correspond-
ing parameter is null; otherwise the pointer points to a zero-terminated text string (for text
format) or binary data in the format expected by the server (for binary format).

662

Chapter 31. libpq - C Library

paramLengths[]

Specifies the actual data lengths of binary-format parameters. It is ignored for null parameters
and text-format parameters. The array pointer can be null when there are no binary parameters.

paramFormats[]

Specifies whether parameters are text (put a zero in the array entry for the corresponding pa-
rameter) or binary (put a one in the array entry for the corresponding parameter). If the array
pointer is null then all parameters are presumed to be text strings.

Values passed in binary format require knowledge of the internal representation
expected by the backend. For example, integers must be passed in network byte
order. Passing numeric values requires knowledge of the server storage format, as
implemented in src/backend/utils/adt/numeric.c::numeric_send() and
src/backend/utils/adt/numeric.c::numeric_recv().

resultFormat

Specify zero to obtain results in text format, or one to obtain results in binary format. (There is
not currently a provision to obtain different result columns in different formats, although that is
possible in the underlying protocol.)

The primary advantage of PQexecParams over PQexec is that parameter values can be separated from
the command string, thus avoiding the need for tedious and error-prone quoting and escaping.

Unlike PQexec, PQexecParams allows at most one SQL command in the given string. (There can be
semicolons in it, but not more than one nonempty command.) This is a limitation of the underlying proto-
col, but has some usefulness as an extra defense against SQL-injection attacks.

Tip: Specifying parameter types via OIDs is tedious, particularly if you prefer not to hard-wire particular
OID values into your program. However, you can avoid doing so even in cases where the server by
itself cannot determine the type of the parameter, or chooses a different type than you want. In the
SQL command text, attach an explicit cast to the parameter symbol to show what data type you will
send. For example:

SELECT * FROM mytable WHERE x = $1::bigint;

This forces parameter $1 to be treated as bigint, whereas by default it would be assigned the same
type as x. Forcing the parameter type decision, either this way or by specifying a numeric type OID,
is strongly recommended when sending parameter values in binary format, because binary format
has less redundancy than text format and so there is less chance that the server will detect a type
mismatch mistake for you.

PQprepare

Submits a request to create a prepared statement with the given parameters, and waits for completion.

PGresult *PQprepare(PGconn *conn,
const char *stmtName,

663

Chapter 31. libpq - C Library

const char *query,
int nParams,
const Oid *paramTypes);

PQprepare creates a prepared statement for later execution with PQexecPrepared. This feature
allows commands that will be used repeatedly to be parsed and planned just once, rather than each
time they are executed. PQprepare is supported only in protocol 3.0 and later connections; it will
fail when using protocol 2.0.

The function creates a prepared statement named stmtName from the query string, which must
contain a single SQL command. stmtName can be "" to create an unnamed statement, in which case
any pre-existing unnamed statement is automatically replaced; otherwise it is an error if the statement
name is already defined in the current session. If any parameters are used, they are referred to in the
query as $1, $2, etc. nParams is the number of parameters for which types are pre-specified in
the array paramTypes[]. (The array pointer can be NULL when nParams is zero.) paramTypes[]
specifies, by OID, the data types to be assigned to the parameter symbols. If paramTypes is NULL,
or any particular element in the array is zero, the server assigns a data type to the parameter symbol
in the same way it would do for an untyped literal string. Also, the query can use parameter symbols
with numbers higher than nParams; data types will be inferred for these symbols as well. (See
PQdescribePrepared for a means to find out what data types were inferred.)

As with PQexec, the result is normally a PGresult object whose contents indicate server-side suc-
cess or failure. A null result indicates out-of-memory or inability to send the command at all. Use
PQerrorMessage to get more information about such errors.

Prepared statements for use with PQexecPrepared can also be created by executing SQL PREPARE
statements. Also, although there is no libpq function for deleting a prepared statement, the SQL DEAL-
LOCATE statement can be used for that purpose.

PQexecPrepared

Sends a request to execute a prepared statement with given parameters, and waits for the result.

PGresult *PQexecPrepared(PGconn *conn,
const char *stmtName,
int nParams,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

PQexecPrepared is like PQexecParams, but the command to be executed is specified by nam-
ing a previously-prepared statement, instead of giving a query string. This feature allows commands
that will be used repeatedly to be parsed and planned just once, rather than each time they are exe-
cuted. The statement must have been prepared previously in the current session. PQexecPrepared
is supported only in protocol 3.0 and later connections; it will fail when using protocol 2.0.

The parameters are identical to PQexecParams, except that the name of a prepared statement is
given instead of a query string, and the paramTypes[] parameter is not present (it is not needed
since the prepared statement’s parameter types were determined when it was created).

664

Chapter 31. libpq - C Library

PQdescribePrepared

Submits a request to obtain information about the specified prepared statement, and waits for com-
pletion.

PGresult *PQdescribePrepared(PGconn *conn, const char *stmtName);

PQdescribePrepared allows an application to obtain information about a previously prepared
statement. PQdescribePrepared is supported only in protocol 3.0 and later connections; it will
fail when using protocol 2.0.

stmtName can be "" or NULL to reference the unnamed statement, otherwise it must be the name
of an existing prepared statement. On success, a PGresult with status PGRES_COMMAND_OK is re-
turned. The functions PQnparams and PQparamtype can be applied to this PGresult to obtain in-
formation about the parameters of the prepared statement, and the functions PQnfields, PQfname,
PQftype, etc provide information about the result columns (if any) of the statement.

PQdescribePortal

Submits a request to obtain information about the specified portal, and waits for completion.

PGresult *PQdescribePortal(PGconn *conn, const char *portalName);

PQdescribePortal allows an application to obtain information about a previously created portal.
(libpq does not provide any direct access to portals, but you can use this function to inspect the
properties of a cursor created with a DECLARE CURSOR SQL command.) PQdescribePortal is
supported only in protocol 3.0 and later connections; it will fail when using protocol 2.0.

portalName can be "" or NULL to reference the unnamed portal, otherwise it must be the name of an
existing portal. On success, a PGresult with status PGRES_COMMAND_OK is returned. The functions
PQnfields, PQfname, PQftype, etc can be applied to the PGresult to obtain information about
the result columns (if any) of the portal.

The PGresult structure encapsulates the result returned by the server. libpq application programmers
should be careful to maintain the PGresult abstraction. Use the accessor functions below to get at the
contents of PGresult. Avoid directly referencing the fields of the PGresult structure because they are
subject to change in the future.

PQresultStatus

Returns the result status of the command.

ExecStatusType PQresultStatus(const PGresult *res);

PQresultStatus can return one of the following values:

PGRES_EMPTY_QUERY

The string sent to the server was empty.

PGRES_COMMAND_OK

Successful completion of a command returning no data.

PGRES_TUPLES_OK

Successful completion of a command returning data (such as a SELECT or SHOW).

665

Chapter 31. libpq - C Library

PGRES_COPY_OUT

Copy Out (from server) data transfer started.

PGRES_COPY_IN

Copy In (to server) data transfer started.

PGRES_BAD_RESPONSE

The server’s response was not understood.

PGRES_NONFATAL_ERROR

A nonfatal error (a notice or warning) occurred.

PGRES_FATAL_ERROR

A fatal error occurred.

PGRES_COPY_BOTH

Copy In/Out (to and from server) data transfer started. This feature is currently used only for
streaming replication, so this status should not occur in ordinary applications.

PGRES_SINGLE_TUPLE

The PGresult contains a single result tuple from the current command. This status occurs only
when single-row mode has been selected for the query (see Section 31.5).

If the result status is PGRES_TUPLES_OK or PGRES_SINGLE_TUPLE, then the functions described
below can be used to retrieve the rows returned by the query. Note that a SELECT command that
happens to retrieve zero rows still shows PGRES_TUPLES_OK. PGRES_COMMAND_OK is for commands
that can never return rows (INSERT, UPDATE, etc.). A response of PGRES_EMPTY_QUERY might
indicate a bug in the client software.

A result of status PGRES_NONFATAL_ERROR will never be returned directly by PQexec or other
query execution functions; results of this kind are instead passed to the notice processor (see Section
31.12).

PQresStatus

Converts the enumerated type returned by PQresultStatus into a string constant describing the
status code. The caller should not free the result.

char *PQresStatus(ExecStatusType status);

PQresultErrorMessage

Returns the error message associated with the command, or an empty string if there was no error.

char *PQresultErrorMessage(const PGresult *res);

If there was an error, the returned string will include a trailing newline. The caller should not free the
result directly. It will be freed when the associated PGresult handle is passed to PQclear.

Immediately following a PQexec or PQgetResult call, PQerrorMessage (on the connection) will
return the same string as PQresultErrorMessage (on the result). However, a PGresult will re-
tain its error message until destroyed, whereas the connection’s error message will change when
subsequent operations are done. Use PQresultErrorMessage when you want to know the status
associated with a particular PGresult; use PQerrorMessage when you want to know the status
from the latest operation on the connection.

666

Chapter 31. libpq - C Library

PQresultErrorField

Returns an individual field of an error report.

char *PQresultErrorField(const PGresult *res, int fieldcode);

fieldcode is an error field identifier; see the symbols listed below. NULL is returned if the
PGresult is not an error or warning result, or does not include the specified field. Field values will
normally not include a trailing newline. The caller should not free the result directly. It will be freed
when the associated PGresult handle is passed to PQclear.

The following field codes are available:

PG_DIAG_SEVERITY

The severity; the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING,
NOTICE, DEBUG, INFO, or LOG (in a notice message), or a localized translation of one of these.
Always present.

PG_DIAG_SQLSTATE

The SQLSTATE code for the error. The SQLSTATE code identifies the type of error that has
occurred; it can be used by front-end applications to perform specific operations (such as error
handling) in response to a particular database error. For a list of the possible SQLSTATE codes,
see Appendix A. This field is not localizable, and is always present.

PG_DIAG_MESSAGE_PRIMARY

The primary human-readable error message (typically one line). Always present.

PG_DIAG_MESSAGE_DETAIL

Detail: an optional secondary error message carrying more detail about the problem. Might run
to multiple lines.

PG_DIAG_MESSAGE_HINT

Hint: an optional suggestion what to do about the problem. This is intended to differ from detail
in that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple
lines.

PG_DIAG_STATEMENT_POSITION

A string containing a decimal integer indicating an error cursor position as an index into the
original statement string. The first character has index 1, and positions are measured in charac-
ters not bytes.

PG_DIAG_INTERNAL_POSITION

This is defined the same as the PG_DIAG_STATEMENT_POSITION field, but it is used when the
cursor position refers to an internally generated command rather than the one submitted by the
client. The PG_DIAG_INTERNAL_QUERY field will always appear when this field appears.

PG_DIAG_INTERNAL_QUERY

The text of a failed internally-generated command. This could be, for example, a SQL query
issued by a PL/pgSQL function.

667

Chapter 31. libpq - C Library

PG_DIAG_CONTEXT

An indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is
one entry per line, most recent first.

PG_DIAG_SOURCE_FILE

The file name of the source-code location where the error was reported.

PG_DIAG_SOURCE_LINE

The line number of the source-code location where the error was reported.

PG_DIAG_SOURCE_FUNCTION

The name of the source-code function reporting the error.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be treated
as paragraph breaks, not line breaks.

Errors generated internally by libpq will have severity and primary message, but typically no other
fields. Errors returned by a pre-3.0-protocol server will include severity and primary message, and
sometimes a detail message, but no other fields.

Note that error fields are only available from PGresult objects, not PGconn objects; there is no
PQerrorField function.

PQclear

Frees the storage associated with a PGresult. Every command result should be freed via PQclear
when it is no longer needed.

void PQclear(PGresult *res);

You can keep a PGresult object around for as long as you need it; it does not go away when you
issue a new command, nor even if you close the connection. To get rid of it, you must call PQclear.
Failure to do this will result in memory leaks in your application.

31.3.2. Retrieving Query Result Information
These functions are used to extract information from a PGresult object that represents a successful query
result (that is, one that has status PGRES_TUPLES_OK or PGRES_SINGLE_TUPLE). They can also be used
to extract information from a successful Describe operation: a Describe’s result has all the same column
information that actual execution of the query would provide, but it has zero rows. For objects with other
status values, these functions will act as though the result has zero rows and zero columns.

PQntuples

Returns the number of rows (tuples) in the query result. Because it returns an integer result, large
result sets might overflow the return value on 32-bit operating systems.

int PQntuples(const PGresult *res);

668

Chapter 31. libpq - C Library

PQnfields

Returns the number of columns (fields) in each row of the query result.

int PQnfields(const PGresult *res);

PQfname

Returns the column name associated with the given column number. Column numbers start at 0. The
caller should not free the result directly. It will be freed when the associated PGresult handle is
passed to PQclear.

char *PQfname(const PGresult *res,
int column_number);

NULL is returned if the column number is out of range.

PQfnumber

Returns the column number associated with the given column name.

int PQfnumber(const PGresult *res,
const char *column_name);

-1 is returned if the given name does not match any column.

The given name is treated like an identifier in an SQL command, that is, it is downcased unless
double-quoted. For example, given a query result generated from the SQL command:

SELECT 1 AS FOO, 2 AS "BAR";

we would have the results:

PQfname(res, 0) foo
PQfname(res, 1) BAR
PQfnumber(res, "FOO") 0
PQfnumber(res, "foo") 0
PQfnumber(res, "BAR") -1
PQfnumber(res, "\"BAR\"") 1

PQftable

Returns the OID of the table from which the given column was fetched. Column numbers start at 0.

Oid PQftable(const PGresult *res,
int column_number);

InvalidOid is returned if the column number is out of range, or if the specified column is not a
simple reference to a table column, or when using pre-3.0 protocol. You can query the system table
pg_class to determine exactly which table is referenced.

The type Oid and the constant InvalidOid will be defined when you include the libpq header file.
They will both be some integer type.

PQftablecol

Returns the column number (within its table) of the column making up the specified query result
column. Query-result column numbers start at 0, but table columns have nonzero numbers.

int PQftablecol(const PGresult *res,
int column_number);

Zero is returned if the column number is out of range, or if the specified column is not a simple
reference to a table column, or when using pre-3.0 protocol.

669

Chapter 31. libpq - C Library

PQfformat

Returns the format code indicating the format of the given column. Column numbers start at 0.

int PQfformat(const PGresult *res,
int column_number);

Format code zero indicates textual data representation, while format code one indicates binary rep-
resentation. (Other codes are reserved for future definition.)

PQftype

Returns the data type associated with the given column number. The integer returned is the internal
OID number of the type. Column numbers start at 0.

Oid PQftype(const PGresult *res,
int column_number);

You can query the system table pg_type to obtain the names and properties of the various data types.
The OIDs of the built-in data types are defined in the file src/include/catalog/pg_type.h in
the source tree.

PQfmod

Returns the type modifier of the column associated with the given column number. Column numbers
start at 0.

int PQfmod(const PGresult *res,
int column_number);

The interpretation of modifier values is type-specific; they typically indicate precision or size limits.
The value -1 is used to indicate “no information available”. Most data types do not use modifiers, in
which case the value is always -1.

PQfsize

Returns the size in bytes of the column associated with the given column number. Column numbers
start at 0.

int PQfsize(const PGresult *res,
int column_number);

PQfsize returns the space allocated for this column in a database row, in other words the size of the
server’s internal representation of the data type. (Accordingly, it is not really very useful to clients.)
A negative value indicates the data type is variable-length.

PQbinaryTuples

Returns 1 if the PGresult contains binary data and 0 if it contains text data.

int PQbinaryTuples(const PGresult *res);

This function is deprecated (except for its use in connection with COPY), because it is possible for
a single PGresult to contain text data in some columns and binary data in others. PQfformat is
preferred. PQbinaryTuples returns 1 only if all columns of the result are binary (format 1).

PQgetvalue

Returns a single field value of one row of a PGresult. Row and column numbers start at 0. The
caller should not free the result directly. It will be freed when the associated PGresult handle is

670

Chapter 31. libpq - C Library

passed to PQclear.

char *PQgetvalue(const PGresult *res,
int row_number,
int column_number);

For data in text format, the value returned by PQgetvalue is a null-terminated character string
representation of the field value. For data in binary format, the value is in the binary representation
determined by the data type’s typsend and typreceive functions. (The value is actually followed
by a zero byte in this case too, but that is not ordinarily useful, since the value is likely to contain
embedded nulls.)

An empty string is returned if the field value is null. See PQgetisnull to distinguish null values
from empty-string values.

The pointer returned by PQgetvalue points to storage that is part of the PGresult structure. One
should not modify the data it points to, and one must explicitly copy the data into other storage if it
is to be used past the lifetime of the PGresult structure itself.

PQgetisnull

Tests a field for a null value. Row and column numbers start at 0.

int PQgetisnull(const PGresult *res,
int row_number,
int column_number);

This function returns 1 if the field is null and 0 if it contains a non-null value. (Note that PQgetvalue
will return an empty string, not a null pointer, for a null field.)

PQgetlength

Returns the actual length of a field value in bytes. Row and column numbers start at 0.

int PQgetlength(const PGresult *res,
int row_number,
int column_number);

This is the actual data length for the particular data value, that is, the size of the object pointed to by
PQgetvalue. For text data format this is the same as strlen(). For binary format this is essential
information. Note that one should not rely on PQfsize to obtain the actual data length.

PQnparams

Returns the number of parameters of a prepared statement.

int PQnparams(const PGresult *res);

This function is only useful when inspecting the result of PQdescribePrepared. For other types
of queries it will return zero.

PQparamtype

Returns the data type of the indicated statement parameter. Parameter numbers start at 0.

Oid PQparamtype(const PGresult *res, int param_number);

This function is only useful when inspecting the result of PQdescribePrepared. For other types
of queries it will return zero.

671

Chapter 31. libpq - C Library

PQprint

Prints out all the rows and, optionally, the column names to the specified output stream.

void PQprint(FILE *fout, /* output stream */
const PGresult *res,
const PQprintOpt *po);

typedef struct
{

pqbool header; /* print output field headings and row count */
pqbool align; /* fill align the fields */
pqbool standard; /* old brain dead format */
pqbool html3; /* output HTML tables */
pqbool expanded; /* expand tables */
pqbool pager; /* use pager for output if needed */
char *fieldSep; /* field separator */
char *tableOpt; /* attributes for HTML table element */
char *caption; /* HTML table caption */
char **fieldName; /* null-terminated array of replacement field names */

} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case. Note
that it assumes all the data is in text format.

31.3.3. Retrieving Other Result Information
These functions are used to extract other information from PGresult objects.

PQcmdStatus

Returns the command status tag from the SQL command that generated the PGresult.

char *PQcmdStatus(PGresult *res);

Commonly this is just the name of the command, but it might include additional data such as the
number of rows processed. The caller should not free the result directly. It will be freed when the
associated PGresult handle is passed to PQclear.

PQcmdTuples

Returns the number of rows affected by the SQL command.

char *PQcmdTuples(PGresult *res);

This function returns a string containing the number of rows affected by the SQL statement that
generated the PGresult. This function can only be used following the execution of a SELECT,
CREATE TABLE AS, INSERT, UPDATE, DELETE, MOVE, FETCH, or COPY statement, or an EXECUTE

of a prepared query that contains an INSERT, UPDATE, or DELETE statement. If the command that
generated the PGresult was anything else, PQcmdTuples returns an empty string. The caller should
not free the return value directly. It will be freed when the associated PGresult handle is passed to
PQclear.

672

Chapter 31. libpq - C Library

PQoidValue

Returns the OID of the inserted row, if the SQL command was an INSERT that inserted exactly
one row into a table that has OIDs, or a EXECUTE of a prepared query containing a suitable INSERT
statement. Otherwise, this function returns InvalidOid. This function will also return InvalidOid
if the table affected by the INSERT statement does not contain OIDs.

Oid PQoidValue(const PGresult *res);

PQoidStatus

This function is deprecated in favor of PQoidValue and is not thread-safe. It returns a string with
the OID of the inserted row, while PQoidValue returns the OID value.

char *PQoidStatus(const PGresult *res);

31.3.4. Escaping Strings for Inclusion in SQL Commands

PQescapeLiteral

char *PQescapeLiteral(PGconn *conn, const char *str, size_t length);

PQescapeLiteral escapes a string for use within an SQL command. This is useful when in-
serting data values as literal constants in SQL commands. Certain characters (such as quotes and
backslashes) must be escaped to prevent them from being interpreted specially by the SQL parser.
PQescapeLiteral performs this operation.

PQescapeLiteral returns an escaped version of the str parameter in memory allocated with
malloc(). This memory should be freed using PQfreemem() when the result is no longer needed.
A terminating zero byte is not required, and should not be counted in length. (If a terminating zero
byte is found before length bytes are processed, PQescapeLiteral stops at the zero; the behavior
is thus rather like strncpy.) The return string has all special characters replaced so that they can
be properly processed by the PostgreSQL string literal parser. A terminating zero byte is also added.
The single quotes that must surround PostgreSQL string literals are included in the result string.

On error, PQescapeLiteral returns NULL and a suitable message is stored in the conn object.

Tip: It is especially important to do proper escaping when handling strings that were received
from an untrustworthy source. Otherwise there is a security risk: you are vulnerable to “SQL
injection” attacks wherein unwanted SQL commands are fed to your database.

Note that it is not necessary nor correct to do escaping when a data value is passed as a separate
parameter in PQexecParams or its sibling routines.

PQescapeIdentifier

char *PQescapeIdentifier(PGconn *conn, const char *str, size_t length);

PQescapeIdentifier escapes a string for use as an SQL identifier, such as a table, column, or
function name. This is useful when a user-supplied identifier might contain special characters that
would otherwise not be interpreted as part of the identifier by the SQL parser, or when the identifier
might contain upper case characters whose case should be preserved.

673

Chapter 31. libpq - C Library

PQescapeIdentifier returns a version of the str parameter escaped as an SQL identifier in mem-
ory allocated with malloc(). This memory must be freed using PQfreemem() when the result is
no longer needed. A terminating zero byte is not required, and should not be counted in length. (If
a terminating zero byte is found before length bytes are processed, PQescapeIdentifier stops
at the zero; the behavior is thus rather like strncpy.) The return string has all special characters
replaced so that it will be properly processed as an SQL identifier. A terminating zero byte is also
added. The return string will also be surrounded by double quotes.

On error, PQescapeIdentifier returns NULL and a suitable message is stored in the conn object.

Tip: As with string literals, to prevent SQL injection attacks, SQL identifiers must be escaped
when they are received from an untrustworthy source.

PQescapeStringConn

size_t PQescapeStringConn(PGconn *conn,
char *to, const char *from, size_t length,
int *error);

PQescapeStringConn escapes string literals, much like PQescapeLiteral. Unlike
PQescapeLiteral, the caller is responsible for providing an appropriately sized buffer.
Furthermore, PQescapeStringConn does not generate the single quotes that must surround
PostgreSQL string literals; they should be provided in the SQL command that the result is inserted
into. The parameter from points to the first character of the string that is to be escaped, and the
length parameter gives the number of bytes in this string. A terminating zero byte is not required,
and should not be counted in length. (If a terminating zero byte is found before length bytes are
processed, PQescapeStringConn stops at the zero; the behavior is thus rather like strncpy.) to
shall point to a buffer that is able to hold at least one more byte than twice the value of length,
otherwise the behavior is undefined. Behavior is likewise undefined if the to and from strings
overlap.

If the error parameter is not NULL, then *error is set to zero on success, nonzero on error. Presently
the only possible error conditions involve invalid multibyte encoding in the source string. The output
string is still generated on error, but it can be expected that the server will reject it as malformed. On
error, a suitable message is stored in the conn object, whether or not error is NULL.

PQescapeStringConn returns the number of bytes written to to, not including the terminating zero
byte.

PQescapeString

PQescapeString is an older, deprecated version of PQescapeStringConn.

size_t PQescapeString (char *to, const char *from, size_t length);

The only difference from PQescapeStringConn is that PQescapeString does not take PGconn

or error parameters. Because of this, it cannot adjust its behavior depending on the connection
properties (such as character encoding) and therefore it might give the wrong results. Also, it has no
way to report error conditions.

PQescapeString can be used safely in client programs that work with only one PostgreSQL con-
nection at a time (in this case it can find out what it needs to know “behind the scenes”). In other
contexts it is a security hazard and should be avoided in favor of PQescapeStringConn.

674

Chapter 31. libpq - C Library

PQescapeByteaConn

Escapes binary data for use within an SQL command with the type bytea. As with
PQescapeStringConn, this is only used when inserting data directly into an SQL command string.

unsigned char *PQescapeByteaConn(PGconn *conn,
const unsigned char *from,
size_t from_length,
size_t *to_length);

Certain byte values must be escaped when used as part of a bytea literal in an SQL statement.
PQescapeByteaConn escapes bytes using either hex encoding or backslash escaping. See Section
8.4 for more information.

The from parameter points to the first byte of the string that is to be escaped, and the from_length
parameter gives the number of bytes in this binary string. (A terminating zero byte is neither neces-
sary nor counted.) The to_length parameter points to a variable that will hold the resultant escaped
string length. This result string length includes the terminating zero byte of the result.

PQescapeByteaConn returns an escaped version of the from parameter binary string in memory
allocated with malloc(). This memory should be freed using PQfreemem() when the result is
no longer needed. The return string has all special characters replaced so that they can be properly
processed by the PostgreSQL string literal parser, and the bytea input function. A terminating zero
byte is also added. The single quotes that must surround PostgreSQL string literals are not part of the
result string.

On error, a null pointer is returned, and a suitable error message is stored in the conn object. Cur-
rently, the only possible error is insufficient memory for the result string.

PQescapeBytea

PQescapeBytea is an older, deprecated version of PQescapeByteaConn.

unsigned char *PQescapeBytea(const unsigned char *from,
size_t from_length,
size_t *to_length);

The only difference from PQescapeByteaConn is that PQescapeBytea does not take a PGconn

parameter. Because of this, PQescapeBytea can only be used safely in client programs that use a
single PostgreSQL connection at a time (in this case it can find out what it needs to know “behind the
scenes”). It might give the wrong results if used in programs that use multiple database connections
(use PQescapeByteaConn in such cases).

PQunescapeBytea

Converts a string representation of binary data into binary data — the reverse of PQescapeBytea.
This is needed when retrieving bytea data in text format, but not when retrieving it in binary format.

unsigned char *PQunescapeBytea(const unsigned char *from, size_t *to_length);

The from parameter points to a string such as might be returned by PQgetvalue when applied to a
bytea column. PQunescapeBytea converts this string representation into its binary representation.
It returns a pointer to a buffer allocated with malloc(), or NULL on error, and puts the size of the
buffer in to_length. The result must be freed using PQfreemem when it is no longer needed.

This conversion is not exactly the inverse of PQescapeBytea, because the string is not expected to
be “escaped” when received from PQgetvalue. In particular this means there is no need for string
quoting considerations, and so no need for a PGconn parameter.

675

Chapter 31. libpq - C Library

31.4. Asynchronous Command Processing
The PQexec function is adequate for submitting commands in normal, synchronous applications. It has a
few deficiencies, however, that can be of importance to some users:

• PQexec waits for the command to be completed. The application might have other work to do (such as
maintaining a user interface), in which case it won’t want to block waiting for the response.

• Since the execution of the client application is suspended while it waits for the result, it is hard for the
application to decide that it would like to try to cancel the ongoing command. (It can be done from a
signal handler, but not otherwise.)

• PQexec can return only one PGresult structure. If the submitted command string contains multiple
SQL commands, all but the last PGresult are discarded by PQexec.

• PQexec always collects the command’s entire result, buffering it in a single PGresult. While this
simplifies error-handling logic for the application, it can be impractical for results containing many
rows.

Applications that do not like these limitations can instead use the underlying functions that PQexec is
built from: PQsendQuery and PQgetResult. There are also PQsendQueryParams, PQsendPrepare,
PQsendQueryPrepared, PQsendDescribePrepared, and PQsendDescribePortal, which
can be used with PQgetResult to duplicate the functionality of PQexecParams, PQprepare,
PQexecPrepared, PQdescribePrepared, and PQdescribePortal respectively.

PQsendQuery

Submits a command to the server without waiting for the result(s). 1 is returned if the command was
successfully dispatched and 0 if not (in which case, use PQerrorMessage to get more information
about the failure).

int PQsendQuery(PGconn *conn, const char *command);

After successfully calling PQsendQuery, call PQgetResult one or more times to obtain the results.
PQsendQuery cannot be called again (on the same connection) until PQgetResult has returned a
null pointer, indicating that the command is done.

PQsendQueryParams

Submits a command and separate parameters to the server without waiting for the result(s).

int PQsendQueryParams(PGconn *conn,
const char *command,
int nParams,
const Oid *paramTypes,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

This is equivalent to PQsendQuery except that query parameters can be specified separately from
the query string. The function’s parameters are handled identically to PQexecParams. Like
PQexecParams, it will not work on 2.0-protocol connections, and it allows only one command in
the query string.

676

Chapter 31. libpq - C Library

PQsendPrepare

Sends a request to create a prepared statement with the given parameters, without waiting for com-
pletion.

int PQsendPrepare(PGconn *conn,
const char *stmtName,
const char *query,
int nParams,
const Oid *paramTypes);

This is an asynchronous version of PQprepare: it returns 1 if it was able to dispatch the request,
and 0 if not. After a successful call, call PQgetResult to determine whether the server successfully
created the prepared statement. The function’s parameters are handled identically to PQprepare.
Like PQprepare, it will not work on 2.0-protocol connections.

PQsendQueryPrepared

Sends a request to execute a prepared statement with given parameters, without waiting for the re-
sult(s).

int PQsendQueryPrepared(PGconn *conn,
const char *stmtName,
int nParams,
const char * const *paramValues,
const int *paramLengths,
const int *paramFormats,
int resultFormat);

This is similar to PQsendQueryParams, but the command to be executed is specified by naming a
previously-prepared statement, instead of giving a query string. The function’s parameters are han-
dled identically to PQexecPrepared. Like PQexecPrepared, it will not work on 2.0-protocol con-
nections.

PQsendDescribePrepared

Submits a request to obtain information about the specified prepared statement, without waiting for
completion.

int PQsendDescribePrepared(PGconn *conn, const char *stmtName);

This is an asynchronous version of PQdescribePrepared: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function’s
parameters are handled identically to PQdescribePrepared. Like PQdescribePrepared, it will
not work on 2.0-protocol connections.

PQsendDescribePortal

Submits a request to obtain information about the specified portal, without waiting for completion.

int PQsendDescribePortal(PGconn *conn, const char *portalName);

This is an asynchronous version of PQdescribePortal: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function’s
parameters are handled identically to PQdescribePortal. Like PQdescribePortal, it will not
work on 2.0-protocol connections.

677

Chapter 31. libpq - C Library

PQgetResult

Waits for the next result from a prior PQsendQuery, PQsendQueryParams, PQsendPrepare,
PQsendQueryPrepared, PQsendDescribePrepared, or PQsendDescribePortal call, and re-
turns it. A null pointer is returned when the command is complete and there will be no more results.

PGresult *PQgetResult(PGconn *conn);

PQgetResult must be called repeatedly until it returns a null pointer, indicating that the command
is done. (If called when no command is active, PQgetResult will just return a null pointer at once.)
Each non-null result from PQgetResult should be processed using the same PGresult accessor
functions previously described. Don’t forget to free each result object with PQclear when done with
it. Note that PQgetResult will block only if a command is active and the necessary response data
has not yet been read by PQconsumeInput.

Note: Even when PQresultStatus indicates a fatal error, PQgetResult should be called until it
returns a null pointer, to allow libpq to process the error information completely.

Using PQsendQuery and PQgetResult solves one of PQexec’s problems: If a command string contains
multiple SQL commands, the results of those commands can be obtained individually. (This allows a
simple form of overlapped processing, by the way: the client can be handling the results of one command
while the server is still working on later queries in the same command string.)

Another frequently-desired feature that can be obtained with PQsendQuery and PQgetResult is retriev-
ing large query results a row at a time. This is discussed in Section 31.5.

By itself, calling PQgetResult will still cause the client to block until the server completes the next SQL
command. This can be avoided by proper use of two more functions:

PQconsumeInput

If input is available from the server, consume it.

int PQconsumeInput(PGconn *conn);

PQconsumeInput normally returns 1 indicating “no error”, but returns 0 if there was some kind
of trouble (in which case PQerrorMessage can be consulted). Note that the result does not say
whether any input data was actually collected. After calling PQconsumeInput, the application can
check PQisBusy and/or PQnotifies to see if their state has changed.

PQconsumeInput can be called even if the application is not prepared to deal with a result or no-
tification just yet. The function will read available data and save it in a buffer, thereby causing a
select() read-ready indication to go away. The application can thus use PQconsumeInput to
clear the select() condition immediately, and then examine the results at leisure.

PQisBusy

Returns 1 if a command is busy, that is, PQgetResult would block waiting for input. A 0 return
indicates that PQgetResult can be called with assurance of not blocking.

int PQisBusy(PGconn *conn);

678

Chapter 31. libpq - C Library

PQisBusy will not itself attempt to read data from the server; therefore PQconsumeInput must be
invoked first, or the busy state will never end.

A typical application using these functions will have a main loop that uses select() or poll() to wait
for all the conditions that it must respond to. One of the conditions will be input available from the server,
which in terms of select() means readable data on the file descriptor identified by PQsocket. When
the main loop detects input ready, it should call PQconsumeInput to read the input. It can then call
PQisBusy, followed by PQgetResult if PQisBusy returns false (0). It can also call PQnotifies to
detect NOTIFY messages (see Section 31.8).

A client that uses PQsendQuery/PQgetResult can also attempt to cancel a command that is still being
processed by the server; see Section 31.6. But regardless of the return value of PQcancel, the application
must continue with the normal result-reading sequence using PQgetResult. A successful cancellation
will simply cause the command to terminate sooner than it would have otherwise.

By using the functions described above, it is possible to avoid blocking while waiting for input from the
database server. However, it is still possible that the application will block waiting to send output to the
server. This is relatively uncommon but can happen if very long SQL commands or data values are sent.
(It is much more probable if the application sends data via COPY IN, however.) To prevent this possibility
and achieve completely nonblocking database operation, the following additional functions can be used.

PQsetnonblocking

Sets the nonblocking status of the connection.

int PQsetnonblocking(PGconn *conn, int arg);

Sets the state of the connection to nonblocking if arg is 1, or blocking if arg is 0. Returns 0 if OK,
-1 if error.

In the nonblocking state, calls to PQsendQuery, PQputline, PQputnbytes, and PQendcopy will
not block but instead return an error if they need to be called again.

Note that PQexec does not honor nonblocking mode; if it is called, it will act in blocking fashion
anyway.

PQisnonblocking

Returns the blocking status of the database connection.

int PQisnonblocking(const PGconn *conn);

Returns 1 if the connection is set to nonblocking mode and 0 if blocking.

PQflush

Attempts to flush any queued output data to the server. Returns 0 if successful (or if the send queue
is empty), -1 if it failed for some reason, or 1 if it was unable to send all the data in the send queue
yet (this case can only occur if the connection is nonblocking).

int PQflush(PGconn *conn);

After sending any command or data on a nonblocking connection, call PQflush. If it returns 1, wait for
the socket to be write-ready and call it again; repeat until it returns 0. Once PQflush returns 0, wait for
the socket to be read-ready and then read the response as described above.

679

Chapter 31. libpq - C Library

31.5. Retrieving Query Results Row-By-Row
Ordinarily, libpq collects a SQL command’s entire result and returns it to the application as a single
PGresult. This can be unworkable for commands that return a large number of rows. For such cases,
applications can use PQsendQuery and PQgetResult in single-row mode. In this mode, the result row(s)
are returned to the application one at a time, as they are received from the server.

To enter single-row mode, call PQsetSingleRowMode immediately after a successful call of
PQsendQuery (or a sibling function). This mode selection is effective only for the currently executing
query. Then call PQgetResult repeatedly, until it returns null, as documented in Section 31.4. If the
query returns any rows, they are returned as individual PGresult objects, which look like normal query
results except for having status code PGRES_SINGLE_TUPLE instead of PGRES_TUPLES_OK. After the
last row, or immediately if the query returns zero rows, a zero-row object with status PGRES_TUPLES_OK
is returned; this is the signal that no more rows will arrive. (But note that it is still necessary to continue
calling PQgetResult until it returns null.) All of these PGresult objects will contain the same row
description data (column names, types, etc) that an ordinary PGresult object for the query would have.
Each object should be freed with PQclear as usual.

PQsetSingleRowMode

Select single-row mode for the currently-executing query.

int PQsetSingleRowMode(PGconn *conn);

This function can only be called immediately after PQsendQuery or one of its sibling functions,
before any other operation on the connection such as PQconsumeInput or PQgetResult. If called
at the correct time, the function activates single-row mode for the current query and returns 1. Oth-
erwise the mode stays unchanged and the function returns 0. In any case, the mode reverts to normal
after completion of the current query.

Caution
While processing a query, the server may return some rows and then encounter
an error, causing the query to be aborted. Ordinarily, libpq discards any such
rows and reports only the error. But in single-row mode, those rows will have
already been returned to the application. Hence, the application will see some
PGRES_SINGLE_TUPLE PGresult objects followed by a PGRES_FATAL_ERROR object.
For proper transactional behavior, the application must be designed to discard or
undo whatever has been done with the previously-processed rows, if the query
ultimately fails.

31.6. Canceling Queries in Progress
A client application can request cancellation of a command that is still being processed by the server,

680

Chapter 31. libpq - C Library

using the functions described in this section.

PQgetCancel

Creates a data structure containing the information needed to cancel a command issued through a
particular database connection.

PGcancel *PQgetCancel(PGconn *conn);

PQgetCancel creates a PGcancel object given a PGconn connection object. It will return NULL

if the given conn is NULL or an invalid connection. The PGcancel object is an opaque structure
that is not meant to be accessed directly by the application; it can only be passed to PQcancel or
PQfreeCancel.

PQfreeCancel

Frees a data structure created by PQgetCancel.

void PQfreeCancel(PGcancel *cancel);

PQfreeCancel frees a data object previously created by PQgetCancel.

PQcancel

Requests that the server abandon processing of the current command.

int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize);

The return value is 1 if the cancel request was successfully dispatched and 0 if not. If not, errbuf
is filled with an explanatory error message. errbuf must be a char array of size errbufsize (the
recommended size is 256 bytes).

Successful dispatch is no guarantee that the request will have any effect, however. If the cancellation
is effective, the current command will terminate early and return an error result. If the cancellation
fails (say, because the server was already done processing the command), then there will be no visible
result at all.

PQcancel can safely be invoked from a signal handler, if the errbuf is a local variable in the
signal handler. The PGcancel object is read-only as far as PQcancel is concerned, so it can also be
invoked from a thread that is separate from the one manipulating the PGconn object.

PQrequestCancel

PQrequestCancel is a deprecated variant of PQcancel.

int PQrequestCancel(PGconn *conn);

Requests that the server abandon processing of the current command. It operates directly on the
PGconn object, and in case of failure stores the error message in the PGconn object (whence it can
be retrieved by PQerrorMessage). Although the functionality is the same, this approach creates
hazards for multiple-thread programs and signal handlers, since it is possible that overwriting the
PGconn’s error message will mess up the operation currently in progress on the connection.

681

Chapter 31. libpq - C Library

31.7. The Fast-Path Interface
PostgreSQL provides a fast-path interface to send simple function calls to the server.

Tip: This interface is somewhat obsolete, as one can achieve similar performance and greater func-
tionality by setting up a prepared statement to define the function call. Then, executing the statement
with binary transmission of parameters and results substitutes for a fast-path function call.

The function PQfn requests execution of a server function via the fast-path interface:

PGresult *PQfn(PGconn *conn,
int fnid,
int *result_buf,
int *result_len,
int result_is_int,
const PQArgBlock *args,
int nargs);

typedef struct
{

int len;
int isint;
union
{

int *ptr;
int integer;

} u;
} PQArgBlock;

The fnid argument is the OID of the function to be executed. args and nargs define the parameters
to be passed to the function; they must match the declared function argument list. When the isint field
of a parameter structure is true, the u.integer value is sent to the server as an integer of the indicated
length (this must be 1, 2, or 4 bytes); proper byte-swapping occurs. When isint is false, the indicated
number of bytes at *u.ptr are sent with no processing; the data must be in the format expected by the
server for binary transmission of the function’s argument data type. result_buf is the buffer in which to
place the return value. The caller must have allocated sufficient space to store the return value. (There is
no check!) The actual result length will be returned in the integer pointed to by result_len. If a 1, 2, or
4-byte integer result is expected, set result_is_int to 1, otherwise set it to 0. Setting result_is_int
to 1 causes libpq to byte-swap the value if necessary, so that it is delivered as a proper int value for the
client machine. When result_is_int is 0, the binary-format byte string sent by the server is returned
unmodified.

PQfn always returns a valid PGresult pointer. The result status should be checked before the result is
used. The caller is responsible for freeing the PGresult with PQclear when it is no longer needed.

Note that it is not possible to handle null arguments, null results, nor set-valued results when using this
interface.

682

Chapter 31. libpq - C Library

31.8. Asynchronous Notification
PostgreSQL offers asynchronous notification via the LISTEN and NOTIFY commands. A client session
registers its interest in a particular notification channel with the LISTEN command (and can stop listen-
ing with the UNLISTEN command). All sessions listening on a particular channel will be notified asyn-
chronously when a NOTIFY command with that channel name is executed by any session. A “payload”
string can be passed to communicate additional data to the listeners.

libpq applications submit LISTEN, UNLISTEN, and NOTIFY commands as ordinary SQL commands. The
arrival of NOTIFY messages can subsequently be detected by calling PQnotifies.

The function PQnotifies returns the next notification from a list of unhandled notification messages
received from the server. It returns a null pointer if there are no pending notifications. Once a notification
is returned from PQnotifies, it is considered handled and will be removed from the list of notifications.

PGnotify *PQnotifies(PGconn *conn);

typedef struct pgNotify
{

char *relname; /* notification channel name */
int be_pid; /* process ID of notifying server process */
char *extra; /* notification payload string */

} PGnotify;

After processing a PGnotify object returned by PQnotifies, be sure to free it with PQfreemem. It is
sufficient to free the PGnotify pointer; the relname and extra fields do not represent separate alloca-
tions. (The names of these fields are historical; in particular, channel names need not have anything to do
with relation names.)

Example 31-2 gives a sample program that illustrates the use of asynchronous notification.

PQnotifies does not actually read data from the server; it just returns messages previously absorbed
by another libpq function. In prior releases of libpq, the only way to ensure timely receipt of NOTIFY
messages was to constantly submit commands, even empty ones, and then check PQnotifies after each
PQexec. While this still works, it is deprecated as a waste of processing power.

A better way to check for NOTIFY messages when you have no useful commands to execute is to call
PQconsumeInput, then check PQnotifies. You can use select() to wait for data to arrive from
the server, thereby using no CPU power unless there is something to do. (See PQsocket to obtain the
file descriptor number to use with select().) Note that this will work OK whether you submit com-
mands with PQsendQuery/PQgetResult or simply use PQexec. You should, however, remember to
check PQnotifies after each PQgetResult or PQexec, to see if any notifications came in during the
processing of the command.

31.9. Functions Associated with the COPY Command
The COPY command in PostgreSQL has options to read from or write to the network connection used by
libpq. The functions described in this section allow applications to take advantage of this capability by
supplying or consuming copied data.

683

Chapter 31. libpq - C Library

The overall process is that the application first issues the SQL COPY command via PQexec or one of
the equivalent functions. The response to this (if there is no error in the command) will be a PGresult

object bearing a status code of PGRES_COPY_OUT or PGRES_COPY_IN (depending on the specified copy
direction). The application should then use the functions of this section to receive or transmit data rows.
When the data transfer is complete, another PGresult object is returned to indicate success or failure of
the transfer. Its status will be PGRES_COMMAND_OK for success or PGRES_FATAL_ERROR if some problem
was encountered. At this point further SQL commands can be issued via PQexec. (It is not possible to
execute other SQL commands using the same connection while the COPY operation is in progress.)

If a COPY command is issued via PQexec in a string that could contain additional commands, the appli-
cation must continue fetching results via PQgetResult after completing the COPY sequence. Only when
PQgetResult returns NULL is it certain that the PQexec command string is done and it is safe to issue
more commands.

The functions of this section should be executed only after obtaining a result status of PGRES_COPY_OUT
or PGRES_COPY_IN from PQexec or PQgetResult.

A PGresult object bearing one of these status values carries some additional data about the COPY opera-
tion that is starting. This additional data is available using functions that are also used in connection with
query results:

PQnfields

Returns the number of columns (fields) to be copied.

PQbinaryTuples

0 indicates the overall copy format is textual (rows separated by newlines, columns separated by sep-
arator characters, etc). 1 indicates the overall copy format is binary. See COPY for more information.

PQfformat

Returns the format code (0 for text, 1 for binary) associated with each column of the copy operation.
The per-column format codes will always be zero when the overall copy format is textual, but the
binary format can support both text and binary columns. (However, as of the current implementation
of COPY, only binary columns appear in a binary copy; so the per-column formats always match the
overall format at present.)

Note: These additional data values are only available when using protocol 3.0. When using protocol
2.0, all these functions will return 0.

31.9.1. Functions for Sending COPY Data
These functions are used to send data during COPY FROM STDIN. They will fail if called when the con-
nection is not in COPY_IN state.

PQputCopyData

Sends data to the server during COPY_IN state.

int PQputCopyData(PGconn *conn,

684

Chapter 31. libpq - C Library

const char *buffer,
int nbytes);

Transmits the COPY data in the specified buffer, of length nbytes, to the server. The result is 1 if
the data was sent, zero if it was not sent because the attempt would block (this case is only possible
if the connection is in nonblocking mode), or -1 if an error occurred. (Use PQerrorMessage to
retrieve details if the return value is -1. If the value is zero, wait for write-ready and try again.)

The application can divide the COPY data stream into buffer loads of any convenient size. Buffer-load
boundaries have no semantic significance when sending. The contents of the data stream must match
the data format expected by the COPY command; see COPY for details.

PQputCopyEnd

Sends end-of-data indication to the server during COPY_IN state.

int PQputCopyEnd(PGconn *conn,
const char *errormsg);

Ends the COPY_IN operation successfully if errormsg is NULL. If errormsg is not NULL then the
COPY is forced to fail, with the string pointed to by errormsg used as the error message. (One should
not assume that this exact error message will come back from the server, however, as the server might
have already failed the COPY for its own reasons. Also note that the option to force failure does not
work when using pre-3.0-protocol connections.)

The result is 1 if the termination data was sent, zero if it was not sent because the attempt would block
(this case is only possible if the connection is in nonblocking mode), or -1 if an error occurred. (Use
PQerrorMessage to retrieve details if the return value is -1. If the value is zero, wait for write-ready
and try again.)

After successfully calling PQputCopyEnd, call PQgetResult to obtain the final result status of the
COPY command. One can wait for this result to be available in the usual way. Then return to normal
operation.

31.9.2. Functions for Receiving COPY Data
These functions are used to receive data during COPY TO STDOUT. They will fail if called when the
connection is not in COPY_OUT state.

PQgetCopyData

Receives data from the server during COPY_OUT state.

int PQgetCopyData(PGconn *conn,
char **buffer,
int async);

Attempts to obtain another row of data from the server during a COPY. Data is always returned one
data row at a time; if only a partial row is available, it is not returned. Successful return of a data row
involves allocating a chunk of memory to hold the data. The buffer parameter must be non-NULL.
*buffer is set to point to the allocated memory, or to NULL in cases where no buffer is returned. A
non-NULL result buffer should be freed using PQfreemem when no longer needed.

When a row is successfully returned, the return value is the number of data bytes in the row (this will
always be greater than zero). The returned string is always null-terminated, though this is probably

685

Chapter 31. libpq - C Library

only useful for textual COPY. A result of zero indicates that the COPY is still in progress, but no row
is yet available (this is only possible when async is true). A result of -1 indicates that the COPY is
done. A result of -2 indicates that an error occurred (consult PQerrorMessage for the reason).

When async is true (not zero), PQgetCopyData will not block waiting for input; it will return zero
if the COPY is still in progress but no complete row is available. (In this case wait for read-ready and
then call PQconsumeInput before calling PQgetCopyData again.) When async is false (zero),
PQgetCopyData will block until data is available or the operation completes.

After PQgetCopyData returns -1, call PQgetResult to obtain the final result status of the COPY

command. One can wait for this result to be available in the usual way. Then return to normal opera-
tion.

31.9.3. Obsolete Functions for COPY
These functions represent older methods of handling COPY. Although they still work, they are deprecated
due to poor error handling, inconvenient methods of detecting end-of-data, and lack of support for binary
or nonblocking transfers.

PQgetline

Reads a newline-terminated line of characters (transmitted by the server) into a buffer string of size
length.

int PQgetline(PGconn *conn,
char *buffer,
int length);

This function copies up to length-1 characters into the buffer and converts the terminating newline
into a zero byte. PQgetline returns EOF at the end of input, 0 if the entire line has been read, and 1
if the buffer is full but the terminating newline has not yet been read.

Note that the application must check to see if a new line consists of the two characters \., which in-
dicates that the server has finished sending the results of the COPY command. If the application might
receive lines that are more than length-1 characters long, care is needed to be sure it recognizes
the \. line correctly (and does not, for example, mistake the end of a long data line for a terminator
line).

PQgetlineAsync

Reads a row of COPY data (transmitted by the server) into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
char *buffer,
int bufsize);

This function is similar to PQgetline, but it can be used by applications that must read COPY

data asynchronously, that is, without blocking. Having issued the COPY command and gotten a
PGRES_COPY_OUT response, the application should call PQconsumeInput and PQgetlineAsync

until the end-of-data signal is detected.

Unlike PQgetline, this function takes responsibility for detecting end-of-data.

On each call, PQgetlineAsync will return data if a complete data row is available in libpq’s input
buffer. Otherwise, no data is returned until the rest of the row arrives. The function returns -1 if the

686

Chapter 31. libpq - C Library

end-of-copy-data marker has been recognized, or 0 if no data is available, or a positive number giving
the number of bytes of data returned. If -1 is returned, the caller must next call PQendcopy, and then
return to normal processing.

The data returned will not extend beyond a data-row boundary. If possible a whole row will be
returned at one time. But if the buffer offered by the caller is too small to hold a row sent by the
server, then a partial data row will be returned. With textual data this can be detected by testing
whether the last returned byte is \n or not. (In a binary COPY, actual parsing of the COPY data format
will be needed to make the equivalent determination.) The returned string is not null-terminated. (If
you want to add a terminating null, be sure to pass a bufsize one smaller than the room actually
available.)

PQputline

Sends a null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.

int PQputline(PGconn *conn,
const char *string);

The COPY data stream sent by a series of calls to PQputline has the same format as that returned
by PQgetlineAsync, except that applications are not obliged to send exactly one data row per
PQputline call; it is okay to send a partial line or multiple lines per call.

Note: Before PostgreSQL protocol 3.0, it was necessary for the application to explicitly send
the two characters \. as a final line to indicate to the server that it had finished sending COPY

data. While this still works, it is deprecated and the special meaning of \. can be expected to be
removed in a future release. It is sufficient to call PQendcopy after having sent the actual data.

PQputnbytes

Sends a non-null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.

int PQputnbytes(PGconn *conn,
const char *buffer,
int nbytes);

This is exactly like PQputline, except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly. Use this procedure when sending binary data.

PQendcopy

Synchronizes with the server.

int PQendcopy(PGconn *conn);

This function waits until the server has finished the copying. It should either be issued when the last
string has been sent to the server using PQputline or when the last string has been received from
the server using PGgetline. It must be issued or the server will get “out of sync” with the client.
Upon return from this function, the server is ready to receive the next SQL command. The return
value is 0 on successful completion, nonzero otherwise. (Use PQerrorMessage to retrieve details if
the return value is nonzero.)

When using PQgetResult, the application should respond to a PGRES_COPY_OUT result by
executing PQgetline repeatedly, followed by PQendcopy after the terminator line is seen. It
should then return to the PQgetResult loop until PQgetResult returns a null pointer. Similarly a
PGRES_COPY_IN result is processed by a series of PQputline calls followed by PQendcopy, then

687

Chapter 31. libpq - C Library

return to the PQgetResult loop. This arrangement will ensure that a COPY command embedded in
a series of SQL commands will be executed correctly.

Older applications are likely to submit a COPY via PQexec and assume that the transaction is done af-
ter PQendcopy. This will work correctly only if the COPY is the only SQL command in the command
string.

31.10. Control Functions
These functions control miscellaneous details of libpq’s behavior.

PQclientEncoding

Returns the client encoding.

int PQclientEncoding(const PGconn *conn);

Note that it returns the encoding ID, not a symbolic string such as EUC_JP. To convert an encoding
ID to an encoding name, you can use:

char *pg_encoding_to_char(int encoding_id);

PQsetClientEncoding

Sets the client encoding.

int PQsetClientEncoding(PGconn *conn, const char *encoding);

conn is a connection to the server, and encoding is the encoding you want to use. If the function
successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this connection
can be determined by using PQclientEncoding.

PQsetErrorVerbosity

Determines the verbosity of messages returned by PQerrorMessage and
PQresultErrorMessage.

typedef enum
{

PQERRORS_TERSE,
PQERRORS_DEFAULT,
PQERRORS_VERBOSE

} PGVerbosity;

PGVerbosity PQsetErrorVerbosity(PGconn *conn, PGVerbosity verbosity);

PQsetErrorVerbosity sets the verbosity mode, returning the connection’s previous setting. In
TERSE mode, returned messages include severity, primary text, and position only; this will normally
fit on a single line. The default mode produces messages that include the above plus any detail, hint,
or context fields (these might span multiple lines). The VERBOSE mode includes all available fields.
Changing the verbosity does not affect the messages available from already-existing PGresult ob-
jects, only subsequently-created ones.

PQtrace

Enables tracing of the client/server communication to a debugging file stream.

void PQtrace(PGconn *conn, FILE *stream);

688

Chapter 31. libpq - C Library

Note: On Windows, if the libpq library and an application are compiled with different flags, this
function call will crash the application because the internal representation of the FILE pointers dif-
fer. Specifically, multithreaded/single-threaded, release/debug, and static/dynamic flags should
be the same for the library and all applications using that library.

PQuntrace

Disables tracing started by PQtrace.

void PQuntrace(PGconn *conn);

31.11. Miscellaneous Functions
As always, there are some functions that just don’t fit anywhere.

PQfreemem

Frees memory allocated by libpq.

void PQfreemem(void *ptr);

Frees memory allocated by libpq, particularly PQescapeByteaConn, PQescapeBytea,
PQunescapeBytea, and PQnotifies. It is particularly important that this function, rather than
free(), be used on Microsoft Windows. This is because allocating memory in a DLL and releasing
it in the application works only if multithreaded/single-threaded, release/debug, and static/dynamic
flags are the same for the DLL and the application. On non-Microsoft Windows platforms, this
function is the same as the standard library function free().

PQconninfoFree

Frees the data structures allocated by PQconndefaults or PQconninfoParse.

void PQconninfoFree(PQconninfoOption *connOptions);

A simple PQfreemem will not do for this, since the array contains references to subsidiary strings.

PQencryptPassword

Prepares the encrypted form of a PostgreSQL password.

char * PQencryptPassword(const char *passwd, const char *user);

This function is intended to be used by client applications that wish to send commands like ALTER
USER joe PASSWORD ’pwd’. It is good practice not to send the original cleartext password in such
a command, because it might be exposed in command logs, activity displays, and so on. Instead,
use this function to convert the password to encrypted form before it is sent. The arguments are the
cleartext password, and the SQL name of the user it is for. The return value is a string allocated by
malloc, or NULL if out of memory. The caller can assume the string doesn’t contain any special
characters that would require escaping. Use PQfreemem to free the result when done with it.

PQmakeEmptyPGresult

Constructs an empty PGresult object with the given status.

PGresult *PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

689

Chapter 31. libpq - C Library

This is libpq’s internal function to allocate and initialize an empty PGresult object. This func-
tion returns NULL if memory could not be allocated. It is exported because some applications find
it useful to generate result objects (particularly objects with error status) themselves. If conn is
not null and status indicates an error, the current error message of the specified connection is
copied into the PGresult. Also, if conn is not null, any event procedures registered in the con-
nection are copied into the PGresult. (They do not get PGEVT_RESULTCREATE calls, but see
PQfireResultCreateEvents.) Note that PQclear should eventually be called on the object, just
as with a PGresult returned by libpq itself.

PQfireResultCreateEvents

Fires a PGEVT_RESULTCREATE event (see Section 31.13) for each event procedure registered in the
PGresult object. Returns non-zero for success, zero if any event procedure fails.

int PQfireResultCreateEvents(PGconn *conn, PGresult *res);

The conn argument is passed through to event procedures but not used directly. It can be NULL if the
event procedures won’t use it.

Event procedures that have already received a PGEVT_RESULTCREATE or PGEVT_RESULTCOPY

event for this object are not fired again.

The main reason that this function is separate from PQmakeEmptyPGResult is that it is often ap-
propriate to create a PGresult and fill it with data before invoking the event procedures.

PQcopyResult

Makes a copy of a PGresult object. The copy is not linked to the source result in any way and
PQclear must be called when the copy is no longer needed. If the function fails, NULL is returned.

PGresult *PQcopyResult(const PGresult *src, int flags);

This is not intended to make an exact copy. The returned result is always put into
PGRES_TUPLES_OK status, and does not copy any error message in the source. (It does copy the
command status string, however.) The flags argument determines what else is copied. It is a
bitwise OR of several flags. PG_COPYRES_ATTRS specifies copying the source result’s attributes
(column definitions). PG_COPYRES_TUPLES specifies copying the source result’s tuples. (This
implies copying the attributes, too.) PG_COPYRES_NOTICEHOOKS specifies copying the source
result’s notify hooks. PG_COPYRES_EVENTS specifies copying the source result’s events. (But any
instance data associated with the source is not copied.)

PQsetResultAttrs

Sets the attributes of a PGresult object.

int PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc *attDescs);

The provided attDescs are copied into the result. If the attDescs pointer is NULL or
numAttributes is less than one, the request is ignored and the function succeeds. If res already
contains attributes, the function will fail. If the function fails, the return value is zero. If the function
succeeds, the return value is non-zero.

PQsetvalue

Sets a tuple field value of a PGresult object.

int PQsetvalue(PGresult *res, int tup_num, int field_num, char *value, int len);

690

Chapter 31. libpq - C Library

The function will automatically grow the result’s internal tuples array as needed. However, the
tup_num argument must be less than or equal to PQntuples, meaning this function can only grow
the tuples array one tuple at a time. But any field of any existing tuple can be modified in any order.
If a value at field_num already exists, it will be overwritten. If len is -1 or value is NULL, the
field value will be set to an SQL null value. The value is copied into the result’s private storage,
thus is no longer needed after the function returns. If the function fails, the return value is zero. If the
function succeeds, the return value is non-zero.

PQresultAlloc

Allocate subsidiary storage for a PGresult object.

void *PQresultAlloc(PGresult *res, size_t nBytes);

Any memory allocated with this function will be freed when res is cleared. If the function fails, the
return value is NULL. The result is guaranteed to be adequately aligned for any type of data, just as
for malloc.

PQlibVersion

Return the version of libpq that is being used.

int PQlibVersion(void);

The result of this function can be used to determine, at run time, if specific functionality is available
in the currently loaded version of libpq. The function can be used, for example, to determine which
connection options are available for PQconnectdb or if the hex bytea output added in PostgreSQL
9.0 is supported.

The number is formed by converting the major, minor, and revision numbers into two-decimal-digit
numbers and appending them together. For example, version 9.1 will be returned as 90100, and
version 9.1.2 will be returned as 90102 (leading zeroes are not shown).

Note: This function appeared in PostgreSQL version 9.1, so it cannot be used to detect required
functionality in earlier versions, since linking to it will create a link dependency on version 9.1.

31.12. Notice Processing
Notice and warning messages generated by the server are not returned by the query execution functions,
since they do not imply failure of the query. Instead they are passed to a notice handling function, and
execution continues normally after the handler returns. The default notice handling function prints the
message on stderr, but the application can override this behavior by supplying its own handling function.

For historical reasons, there are two levels of notice handling, called the notice receiver and notice pro-
cessor. The default behavior is for the notice receiver to format the notice and pass a string to the notice
processor for printing. However, an application that chooses to provide its own notice receiver will typi-
cally ignore the notice processor layer and just do all the work in the notice receiver.

The function PQsetNoticeReceiver sets or examines the current notice receiver for a connection
object. Similarly, PQsetNoticeProcessor sets or examines the current notice processor.

691

Chapter 31. libpq - C Library

typedef void (*PQnoticeReceiver) (void *arg, const PGresult *res);

PQnoticeReceiver
PQsetNoticeReceiver(PGconn *conn,

PQnoticeReceiver proc,
void *arg);

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,

PQnoticeProcessor proc,
void *arg);

Each of these functions returns the previous notice receiver or processor function pointer, and sets the new
value. If you supply a null function pointer, no action is taken, but the current pointer is returned.

When a notice or warning message is received from the server, or generated internally by libpq, the
notice receiver function is called. It is passed the message in the form of a PGRES_NONFATAL_ERROR

PGresult. (This allows the receiver to extract individual fields using PQresultErrorField, or the
complete preformatted message using PQresultErrorMessage.) The same void pointer passed to
PQsetNoticeReceiver is also passed. (This pointer can be used to access application-specific state if
needed.)

The default notice receiver simply extracts the message (using PQresultErrorMessage) and passes it
to the notice processor.

The notice processor is responsible for handling a notice or warning message given in text form. It is
passed the string text of the message (including a trailing newline), plus a void pointer that is the same
one passed to PQsetNoticeProcessor. (This pointer can be used to access application-specific state if
needed.)

The default notice processor is simply:

static void
defaultNoticeProcessor(void *arg, const char *message)
{

fprintf(stderr, "%s", message);
}

Once you have set a notice receiver or processor, you should expect that that function could be called as
long as either the PGconn object or PGresult objects made from it exist. At creation of a PGresult,
the PGconn’s current notice handling pointers are copied into the PGresult for possible use by functions
like PQgetvalue.

31.13. Event System
libpq’s event system is designed to notify registered event handlers about interesting libpq events, such
as the creation or destruction of PGconn and PGresult objects. A principal use case is that this allows

692

Chapter 31. libpq - C Library

applications to associate their own data with a PGconn or PGresult and ensure that that data is freed at
an appropriate time.

Each registered event handler is associated with two pieces of data, known to libpq only as opaque
void * pointers. There is a passthrough pointer that is provided by the application when the event
handler is registered with a PGconn. The passthrough pointer never changes for the life of the PGconn

and all PGresults generated from it; so if used, it must point to long-lived data. In addition there
is an instance data pointer, which starts out NULL in every PGconn and PGresult. This pointer can
be manipulated using the PQinstanceData, PQsetInstanceData, PQresultInstanceData and
PQsetResultInstanceData functions. Note that unlike the passthrough pointer, instance data of a
PGconn is not automatically inherited by PGresults created from it. libpq does not know what
passthrough and instance data pointers point to (if anything) and will never attempt to free them — that
is the responsibility of the event handler.

31.13.1. Event Types
The enum PGEventId names the types of events handled by the event system. All its values have names
beginning with PGEVT. For each event type, there is a corresponding event info structure that carries the
parameters passed to the event handlers. The event types are:

PGEVT_REGISTER

The register event occurs when PQregisterEventProc is called. It is the ideal time to initialize
any instanceData an event procedure may need. Only one register event will be fired per event
handler per connection. If the event procedure fails, the registration is aborted.

typedef struct
{

PGconn *conn;
} PGEventRegister;

When a PGEVT_REGISTER event is received, the evtInfo pointer should be cast to a
PGEventRegister *. This structure contains a PGconn that should be in the CONNECTION_OK

status; guaranteed if one calls PQregisterEventProc right after obtaining a good PGconn. When
returning a failure code, all cleanup must be performed as no PGEVT_CONNDESTROY event will be
sent.

PGEVT_CONNRESET

The connection reset event is fired on completion of PQreset or PQresetPoll. In both cases,
the event is only fired if the reset was successful. If the event procedure fails, the entire connec-
tion reset will fail; the PGconn is put into CONNECTION_BAD status and PQresetPoll will return
PGRES_POLLING_FAILED.

typedef struct
{

PGconn *conn;
} PGEventConnReset;

When a PGEVT_CONNRESET event is received, the evtInfo pointer should be cast to a
PGEventConnReset *. Although the contained PGconn was just reset, all event data remains
unchanged. This event should be used to reset/reload/requery any associated instanceData.
Note that even if the event procedure fails to process PGEVT_CONNRESET, it will still receive a
PGEVT_CONNDESTROY event when the connection is closed.

693

Chapter 31. libpq - C Library

PGEVT_CONNDESTROY

The connection destroy event is fired in response to PQfinish. It is the event procedure’s respon-
sibility to properly clean up its event data as libpq has no ability to manage this memory. Failure to
clean up will lead to memory leaks.

typedef struct
{

PGconn *conn;
} PGEventConnDestroy;

When a PGEVT_CONNDESTROY event is received, the evtInfo pointer should be cast to a
PGEventConnDestroy *. This event is fired prior to PQfinish performing any other cleanup.
The return value of the event procedure is ignored since there is no way of indicating a failure from
PQfinish. Also, an event procedure failure should not abort the process of cleaning up unwanted
memory.

PGEVT_RESULTCREATE

The result creation event is fired in response to any query execution function that generates a result,
including PQgetResult. This event will only be fired after the result has been created successfully.

typedef struct
{

PGconn *conn;
PGresult *result;

} PGEventResultCreate;

When a PGEVT_RESULTCREATE event is received, the evtInfo pointer should be cast to a
PGEventResultCreate *. The conn is the connection used to generate the result. This is the
ideal place to initialize any instanceData that needs to be associated with the result. If the event
procedure fails, the result will be cleared and the failure will be propagated. The event procedure
must not try to PQclear the result object for itself. When returning a failure code, all cleanup must
be performed as no PGEVT_RESULTDESTROY event will be sent.

PGEVT_RESULTCOPY

The result copy event is fired in response to PQcopyResult. This event will only be fired after the
copy is complete. Only event procedures that have successfully handled the PGEVT_RESULTCREATE
or PGEVT_RESULTCOPY event for the source result will receive PGEVT_RESULTCOPY events.

typedef struct
{

const PGresult *src;
PGresult *dest;

} PGEventResultCopy;

When a PGEVT_RESULTCOPY event is received, the evtInfo pointer should be cast to a
PGEventResultCopy *. The src result is what was copied while the dest result is the
copy destination. This event can be used to provide a deep copy of instanceData, since
PQcopyResult cannot do that. If the event procedure fails, the entire copy operation will fail and
the dest result will be cleared. When returning a failure code, all cleanup must be performed as no
PGEVT_RESULTDESTROY event will be sent for the destination result.

694

Chapter 31. libpq - C Library

PGEVT_RESULTDESTROY

The result destroy event is fired in response to a PQclear. It is the event procedure’s responsibility
to properly clean up its event data as libpq has no ability to manage this memory. Failure to clean up
will lead to memory leaks.

typedef struct
{

PGresult *result;
} PGEventResultDestroy;

When a PGEVT_RESULTDESTROY event is received, the evtInfo pointer should be cast to a
PGEventResultDestroy *. This event is fired prior to PQclear performing any other cleanup.
The return value of the event procedure is ignored since there is no way of indicating a failure from
PQclear. Also, an event procedure failure should not abort the process of cleaning up unwanted
memory.

31.13.2. Event Callback Procedure

PGEventProc

PGEventProc is a typedef for a pointer to an event procedure, that is, the user callback function that
receives events from libpq. The signature of an event procedure must be

int eventproc(PGEventId evtId, void *evtInfo, void *passThrough)

The evtId parameter indicates which PGEVT event occurred. The evtInfo pointer must be cast to
the appropriate structure type to obtain further information about the event. The passThrough pa-
rameter is the pointer provided to PQregisterEventProc when the event procedure was registered.
The function should return a non-zero value if it succeeds and zero if it fails.

A particular event procedure can be registered only once in any PGconn. This is because the address
of the procedure is used as a lookup key to identify the associated instance data.

Caution
On Windows, functions can have two different addresses: one visible
from outside a DLL and another visible from inside the DLL. One should
be careful that only one of these addresses is used with libpq’s event-
procedure functions, else confusion will result. The simplest rule for writ-
ing code that will work is to ensure that event procedures are declared
static. If the procedure’s address must be available outside its own
source file, expose a separate function to return the address.

31.13.3. Event Support Functions

PQregisterEventProc

Registers an event callback procedure with libpq.

int PQregisterEventProc(PGconn *conn, PGEventProc proc,

695

Chapter 31. libpq - C Library

const char *name, void *passThrough);

An event procedure must be registered once on each PGconn you want to receive events about.
There is no limit, other than memory, on the number of event procedures that can be registered with
a connection. The function returns a non-zero value if it succeeds and zero if it fails.

The proc argument will be called when a libpq event is fired. Its memory address is also used to
lookup instanceData. The name argument is used to refer to the event procedure in error messages.
This value cannot be NULL or a zero-length string. The name string is copied into the PGconn, so
what is passed need not be long-lived. The passThrough pointer is passed to the proc whenever an
event occurs. This argument can be NULL.

PQsetInstanceData

Sets the connection conn’s instanceData for procedure proc to data. This returns non-zero for
success and zero for failure. (Failure is only possible if proc has not been properly registered in
conn.)

int PQsetInstanceData(PGconn *conn, PGEventProc proc, void *data);

PQinstanceData

Returns the connection conn’s instanceData associated with procedure proc, or NULL if there is
none.

void *PQinstanceData(const PGconn *conn, PGEventProc proc);

PQresultSetInstanceData

Sets the result’s instanceData for proc to data. This returns non-zero for success and zero for
failure. (Failure is only possible if proc has not been properly registered in the result.)

int PQresultSetInstanceData(PGresult *res, PGEventProc proc, void *data);

PQresultInstanceData

Returns the result’s instanceData associated with proc, or NULL if there is none.

void *PQresultInstanceData(const PGresult *res, PGEventProc proc);

31.13.4. Event Example
Here is a skeleton example of managing private data associated with libpq connections and results.

/* required header for libpq events (note: includes libpq-fe.h) */
#include <libpq-events.h>

/* The instanceData */
typedef struct
{

int n;
char *str;

} mydata;

/* PGEventProc */
static int myEventProc(PGEventId evtId, void *evtInfo, void *passThrough);

696

Chapter 31. libpq - C Library

int
main(void)
{

mydata *data;
PGresult *res;
PGconn *conn = PQconnectdb("dbname = postgres");

if (PQstatus(conn) != CONNECTION_OK)
{

fprintf(stderr, "Connection to database failed: %s",
PQerrorMessage(conn));

PQfinish(conn);
return 1;

}

/* called once on any connection that should receive events.

* Sends a PGEVT_REGISTER to myEventProc.

*/
if (!PQregisterEventProc(conn, myEventProc, "mydata_proc", NULL))
{

fprintf(stderr, "Cannot register PGEventProc\n");
PQfinish(conn);
return 1;

}

/* conn instanceData is available */
data = PQinstanceData(conn, myEventProc);

/* Sends a PGEVT_RESULTCREATE to myEventProc */
res = PQexec(conn, "SELECT 1 + 1");

/* result instanceData is available */
data = PQresultInstanceData(res, myEventProc);

/* If PG_COPYRES_EVENTS is used, sends a PGEVT_RESULTCOPY to myEventProc */
res_copy = PQcopyResult(res, PG_COPYRES_TUPLES | PG_COPYRES_EVENTS);

/* result instanceData is available if PG_COPYRES_EVENTS was

* used during the PQcopyResult call.

*/
data = PQresultInstanceData(res_copy, myEventProc);

/* Both clears send a PGEVT_RESULTDESTROY to myEventProc */
PQclear(res);
PQclear(res_copy);

/* Sends a PGEVT_CONNDESTROY to myEventProc */
PQfinish(conn);

return 0;
}

static int

697

Chapter 31. libpq - C Library

myEventProc(PGEventId evtId, void *evtInfo, void *passThrough)
{

switch (evtId)
{

case PGEVT_REGISTER:
{

PGEventRegister *e = (PGEventRegister *)evtInfo;
mydata *data = get_mydata(e->conn);

/* associate app specific data with connection */
PQsetInstanceData(e->conn, myEventProc, data);
break;

}

case PGEVT_CONNRESET:
{

PGEventConnReset *e = (PGEventConnReset *)evtInfo;
mydata *data = PQinstanceData(e->conn, myEventProc);

if (data)
memset(data, 0, sizeof(mydata));

break;
}

case PGEVT_CONNDESTROY:
{

PGEventConnDestroy *e = (PGEventConnDestroy *)evtInfo;
mydata *data = PQinstanceData(e->conn, myEventProc);

/* free instance data because the conn is being destroyed */
if (data)
free_mydata(data);

break;
}

case PGEVT_RESULTCREATE:
{

PGEventResultCreate *e = (PGEventResultCreate *)evtInfo;
mydata *conn_data = PQinstanceData(e->conn, myEventProc);
mydata *res_data = dup_mydata(conn_data);

/* associate app specific data with result (copy it from conn) */
PQsetResultInstanceData(e->result, myEventProc, res_data);
break;

}

case PGEVT_RESULTCOPY:
{

PGEventResultCopy *e = (PGEventResultCopy *)evtInfo;
mydata *src_data = PQresultInstanceData(e->src, myEventProc);
mydata *dest_data = dup_mydata(src_data);

/* associate app specific data with result (copy it from a result) */

698

Chapter 31. libpq - C Library

PQsetResultInstanceData(e->dest, myEventProc, dest_data);
break;

}

case PGEVT_RESULTDESTROY:
{

PGEventResultDestroy *e = (PGEventResultDestroy *)evtInfo;
mydata *data = PQresultInstanceData(e->result, myEventProc);

/* free instance data because the result is being destroyed */
if (data)
free_mydata(data);

break;
}

/* unknown event ID, just return TRUE. */
default:

break;
}

return TRUE; /* event processing succeeded */
}

31.14. Environment Variables
The following environment variables can be used to select default connection parameter values, which
will be used by PQconnectdb, PQsetdbLogin and PQsetdb if no value is directly specified by the
calling code. These are useful to avoid hard-coding database connection information into simple client
applications, for example.

• PGHOST behaves the same as the host connection parameter.

• PGHOSTADDR behaves the same as the hostaddr connection parameter. This can be set instead of or in
addition to PGHOST to avoid DNS lookup overhead.

• PGPORT behaves the same as the port connection parameter.

• PGDATABASE behaves the same as the dbname connection parameter.

• PGUSER behaves the same as the user connection parameter.

• PGPASSWORD behaves the same as the password connection parameter. Use of this environment variable
is not recommended for security reasons, as some operating systems allow non-root users to see process
environment variables via ps; instead consider using the ~/.pgpass file (see Section 31.15).

• PGPASSFILE specifies the name of the password file to use for lookups. If not set, it defaults to
~/.pgpass (see Section 31.15).

• PGSERVICE behaves the same as the service connection parameter.

699

Chapter 31. libpq - C Library

• PGSERVICEFILE specifies the name of the per-user connection service file. If not set, it defaults to
~/.pg_service.conf (see Section 31.16).

• PGREALM sets the Kerberos realm to use with PostgreSQL, if it is different from the local realm.
If PGREALM is set, libpq applications will attempt authentication with servers for this realm and use
separate ticket files to avoid conflicts with local ticket files. This environment variable is only used if
Kerberos authentication is selected by the server.

• PGOPTIONS behaves the same as the options connection parameter.

• PGAPPNAME behaves the same as the application_name connection parameter.

• PGSSLMODE behaves the same as the sslmode connection parameter.

• PGREQUIRESSL behaves the same as the requiressl connection parameter.

• PGSSLCOMPRESSION behaves the same as the sslcompression connection parameter.

• PGSSLCERT behaves the same as the sslcert connection parameter.

• PGSSLKEY behaves the same as the sslkey connection parameter.

• PGSSLROOTCERT behaves the same as the sslrootcert connection parameter.

• PGSSLCRL behaves the same as the sslcrl connection parameter.

• PGREQUIREPEER behaves the same as the requirepeer connection parameter.

• PGKRBSRVNAME behaves the same as the krbsrvname connection parameter.

• PGGSSLIB behaves the same as the gsslib connection parameter.

• PGCONNECT_TIMEOUT behaves the same as the connect_timeout connection parameter.

• PGCLIENTENCODING behaves the same as the client_encoding connection parameter.

The following environment variables can be used to specify default behavior for each PostgreSQL session.
(See also the ALTER ROLE and ALTER DATABASE commands for ways to set default behavior on a
per-user or per-database basis.)

• PGDATESTYLE sets the default style of date/time representation. (Equivalent to SET datestyle TO

....)

• PGTZ sets the default time zone. (Equivalent to SET timezone TO)

• PGGEQO sets the default mode for the genetic query optimizer. (Equivalent to SET geqo TO)

Refer to the SQL command SET for information on correct values for these environment variables.

The following environment variables determine internal behavior of libpq; they override compiled-in de-
faults.

• PGSYSCONFDIR sets the directory containing the pg_service.conf file and in a future version pos-
sibly other system-wide configuration files.

• PGLOCALEDIR sets the directory containing the locale files for message internationalization.

700

Chapter 31. libpq - C Library

31.15. The Password File
The file .pgpass in a user’s home directory or the file referenced by PGPASSFILE can contain passwords
to be used if the connection requires a password (and no password has been specified otherwise). On Mi-
crosoft Windows the file is named %APPDATA%\postgresql\pgpass.conf (where %APPDATA% refers
to the Application Data subdirectory in the user’s profile).

This file should contain lines of the following format:

hostname:port:database:username:password

(You can add a reminder comment to the file by copying the line above and preceding it with #.) Each of
the first four fields can be a literal value, or *, which matches anything. The password field from the first
line that matches the current connection parameters will be used. (Therefore, put more-specific entries
first when you are using wildcards.) If an entry needs to contain : or \, escape this character with \. A
host name of localhost matches both TCP (host name localhost) and Unix domain socket (pghost
empty or the default socket directory) connections coming from the local machine. In a standby server,
a database name of replication matches streaming replication connections made to the master server.
The database field is of limited usefulness because users have the same password for all databases in
the same cluster.

On Unix systems, the permissions on .pgpass must disallow any access to world or group; achieve this
by the command chmod 0600 ~/.pgpass. If the permissions are less strict than this, the file will be
ignored. On Microsoft Windows, it is assumed that the file is stored in a directory that is secure, so no
special permissions check is made.

31.16. The Connection Service File
The connection service file allows libpq connection parameters to be associated with a single service
name. That service name can then be specified by a libpq connection, and the associated settings will
be used. This allows connection parameters to be modified without requiring a recompile of the libpq
application. The service name can also be specified using the PGSERVICE environment variable.

The connection service file can be a per-user service file at ~/.pg_service.conf or the
location specified by the environment variable PGSERVICEFILE, or it can be a system-wide file at
etc/pg_service.conf or in the directory specified by the environment variable PGSYSCONFDIR. If
service definitions with the same name exist in the user and the system file, the user file takes precedence.

The file uses an “INI file” format where the section name is the service name and the parameters are
connection parameters; see Section 31.1 for a list. For example:

comment
[mydb]
host=somehost
port=5433
user=admin

An example file is provided at share/pg_service.conf.sample.

701

Chapter 31. libpq - C Library

31.17. LDAP Lookup of Connection Parameters
If libpq has been compiled with LDAP support (option --with-ldap for configure) it is possible to
retrieve connection options like host or dbname via LDAP from a central server. The advantage is that if
the connection parameters for a database change, the connection information doesn’t have to be updated
on all client machines.

LDAP connection parameter lookup uses the connection service file pg_service.conf (see Section
31.16). A line in a pg_service.conf stanza that starts with ldap:// will be recognized as an LDAP
URL and an LDAP query will be performed. The result must be a list of keyword = value pairs which
will be used to set connection options. The URL must conform to RFC 1959 and be of the form

ldap://[hostname[:port]]/search_base?attribute?search_scope?filter

where hostname defaults to localhost and port defaults to 389.

Processing of pg_service.conf is terminated after a successful LDAP lookup, but is continued if the
LDAP server cannot be contacted. This is to provide a fallback with further LDAP URL lines that point to
different LDAP servers, classical keyword = value pairs, or default connection options. If you would
rather get an error message in this case, add a syntactically incorrect line after the LDAP URL.

A sample LDAP entry that has been created with the LDIF file

version:1
dn:cn=mydatabase,dc=mycompany,dc=com
changetype:add
objectclass:top
objectclass:groupOfUniqueNames
cn:mydatabase
uniqueMember:host=dbserver.mycompany.com
uniqueMember:port=5439
uniqueMember:dbname=mydb
uniqueMember:user=mydb_user
uniqueMember:sslmode=require

might be queried with the following LDAP URL:

ldap://ldap.mycompany.com/dc=mycompany,dc=com?uniqueMember?one?(cn=mydatabase)

You can also mix regular service file entries with LDAP lookups. A complete example for a stanza in
pg_service.conf would be:

only host and port are stored in LDAP, specify dbname and user explicitly
[customerdb]
dbname=customer
user=appuser
ldap://ldap.acme.com/cn=dbserver,cn=hosts?pgconnectinfo?base?(objectclass=*)

702

Chapter 31. libpq - C Library

31.18. SSL Support
PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. See Section 17.9 for details about the server-side SSL functionality.

libpq reads the system-wide OpenSSL configuration file. By default, this file is named openssl.cnf and
is located in the directory reported by openssl version -d. This default can be overridden by setting
environment variable OPENSSL_CONF to the name of the desired configuration file.

31.18.1. Client Verification of Server Certificates
By default, PostgreSQL will not perform any verification of the server certificate. This means that it is
possible to spoof the server identity (for example by modifying a DNS record or by taking over the server
IP address) without the client knowing. In order to prevent spoofing, SSL certificate verification must be
used.

If the parameter sslmode is set to verify-ca, libpq will verify that the server is trustworthy by checking
the certificate chain up to a trusted certificate authority (CA). If sslmode is set to verify-full, libpq
will also verify that the server host name matches its certificate. The SSL connection will fail if the server
certificate cannot be verified. verify-full is recommended in most security-sensitive environments.

In verify-full mode, the cn (Common Name) attribute of the certificate is matched against the host
name. If the cn attribute starts with an asterisk (*), it will be treated as a wildcard, and will match all
characters except a dot (.). This means the certificate will not match subdomains. If the connection is
made using an IP address instead of a host name, the IP address will be matched (without doing any DNS
lookups).

To allow server certificate verification, the certificate(s) of one or more trusted CAs must be placed in the
file ~/.postgresql/root.crt in the user’s home directory. (On Microsoft Windows the file is named
%APPDATA%\postgresql\root.crt.)

Certificate Revocation List (CRL) entries are also checked if the file ~/.postgresql/root.crl exists
(%APPDATA%\postgresql\root.crl on Microsoft Windows).

The location of the root certificate file and the CRL can be changed by setting the connection parameters
sslrootcert and sslcrl or the environment variables PGSSLROOTCERT and PGSSLCRL.

Note: For backwards compatibility with earlier versions of PostgreSQL, if a root CA file exists, the
behavior of sslmode=require will be the same as that of verify-ca, meaning the sever certificate is
validated against the CA. Relying on this behavior is discouraged, and applications that need certifi-
cate validation should always use verify-ca or verify-full.

31.18.2. Client Certificates
If the server requests a trusted client certificate, libpq will send the certificate stored in file
~/.postgresql/postgresql.crt in the user’s home directory. The certificate must be signed
by one of the certificate authorities (CA) trusted by the server. A matching private key file
~/.postgresql/postgresql.key must also be present. The private key file must not allow any access

703

Chapter 31. libpq - C Library

to world or group; achieve this by the command chmod 0600 ~/.postgresql/postgresql.key.
On Microsoft Windows these files are named %APPDATA%\postgresql\postgresql.crt and
%APPDATA%\postgresql\postgresql.key, and there is no special permissions check since the
directory is presumed secure. The location of the certificate and key files can be overridden by the
connection parameters sslcert and sslkey or the environment variables PGSSLCERT and PGSSLKEY.

In some cases, the client certificate might be signed by an “intermediate” certificate authority, rather
than one that is directly trusted by the server. To use such a certificate, append the certificate of the
signing authority to the postgresql.crt file, then its parent authority’s certificate, and so on up to a
“root” authority that is trusted by the server. The root certificate should be included in every case where
postgresql.crt contains more than one certificate.

Note that root.crt lists the top-level CAs that are considered trusted for signing server certificates. In
principle it need not list the CA that signed the client’s certificate, though in most cases that CA would
also be trusted for server certificates.

31.18.3. Protection Provided in Different Modes
The different values for the sslmode parameter provide different levels of protection. SSL can provide
protection against three types of attacks:

Eavesdropping

If a third party can examine the network traffic between the client and the server, it can read both
connection information (including the user name and password) and the data that is passed. SSL uses
encryption to prevent this.

Man in the middle (MITM)

If a third party can modify the data while passing between the client and server, it can pretend to
be the server and therefore see and modify data even if it is encrypted. The third party can then
forward the connection information and data to the original server, making it impossible to detect
this attack. Common vectors to do this include DNS poisoning and address hijacking, whereby the
client is directed to a different server than intended. There are also several other attack methods that
can accomplish this. SSL uses certificate verification to prevent this, by authenticating the server to
the client.

Impersonation

If a third party can pretend to be an authorized client, it can simply access data it should not have
access to. Typically this can happen through insecure password management. SSL uses client certifi-
cates to prevent this, by making sure that only holders of valid certificates can access the server.

For a connection to be known secure, SSL usage must be configured on both the client and the server
before the connection is made. If it is only configured on the server, the client may end up sending sen-
sitive information (e.g. passwords) before it knows that the server requires high security. In libpq, secure
connections can be ensured by setting the sslmode parameter to verify-full or verify-ca, and pro-
viding the system with a root certificate to verify against. This is analogous to using an https URL for
encrypted web browsing.

704

Chapter 31. libpq - C Library

Once the server has been authenticated, the client can pass sensitive data. This means that up until this
point, the client does not need to know if certificates will be used for authentication, making it safe to
specify that only in the server configuration.

All SSL options carry overhead in the form of encryption and key-exchange, so there is a tradeoff that
has to be made between performance and security. Table 31-1 illustrates the risks the different sslmode
values protect against, and what statement they make about security and overhead.

Table 31-1. SSL Mode Descriptions

sslmode Eavesdropping
protection

MITM protection Statement

disable No No I don’t care about
security, and I don’t
want to pay the
overhead of encryption.

allow Maybe No I don’t care about
security, but I will pay
the overhead of
encryption if the server
insists on it.

prefer Maybe No I don’t care about
encryption, but I wish to
pay the overhead of
encryption if the server
supports it.

require Yes No I want my data to be
encrypted, and I accept
the overhead. I trust that
the network will make
sure I always connect to
the server I want.

verify-ca Yes Depends on CA-policy I want my data
encrypted, and I accept
the overhead. I want to
be sure that I connect to
a server that I trust.

verify-full Yes Yes I want my data
encrypted, and I accept
the overhead. I want to
be sure that I connect to
a server I trust, and that
it’s the one I specify.

The difference between verify-ca and verify-full depends on the policy of the root CA. If a public
CA is used, verify-ca allows connections to a server that somebody else may have registered with
the CA. In this case, verify-full should always be used. If a local CA is used, or even a self-signed

705

Chapter 31. libpq - C Library

certificate, using verify-ca often provides enough protection.

The default value for sslmode is prefer. As is shown in the table, this makes no sense from a security
point of view, and it only promises performance overhead if possible. It is only provided as the default for
backward compatibility, and is not recommended in secure deployments.

31.18.4. SSL Client File Usage
Table 31-2 summarizes the files that are relevant to the SSL setup on the client.

Table 31-2. Libpq/Client SSL File Usage

File Contents Effect
~/.postgresql/postgresql.crtclient certificate requested by server

~/.postgresql/postgresql.keyclient private key proves client certificate sent by
owner; does not indicate
certificate owner is trustworthy

~/.postgresql/root.crt trusted certificate authorities checks that server certificate is
signed by a trusted certificate
authority

~/.postgresql/root.crl certificates revoked by certificate
authorities

server certificate must not be on
this list

31.18.5. SSL Library Initialization
If your application initializes libssl and/or libcrypto libraries and libpq is built with SSL
support, you should call PQinitOpenSSL to tell libpq that the libssl and/or libcrypto libraries
have been initialized by your application, so that libpq will not also initialize those libraries. See
http://h71000.www7.hp.com/doc/83final/BA554_90007/ch04.html for details on the SSL API.

PQinitOpenSSL

Allows applications to select which security libraries to initialize.

void PQinitOpenSSL(int do_ssl, int do_crypto);

When do_ssl is non-zero, libpq will initialize the OpenSSL library before first opening a database
connection. When do_crypto is non-zero, the libcrypto library will be initialized. By default (if
PQinitOpenSSL is not called), both libraries are initialized. When SSL support is not compiled in,
this function is present but does nothing.

If your application uses and initializes either OpenSSL or its underlying libcrypto library, you
must call this function with zeroes for the appropriate parameter(s) before first opening a database
connection. Also be sure that you have done that initialization before opening a database connection.

706

Chapter 31. libpq - C Library

PQinitSSL

Allows applications to select which security libraries to initialize.

void PQinitSSL(int do_ssl);

This function is equivalent to PQinitOpenSSL(do_ssl, do_ssl). It is sufficient for applications
that initialize both or neither of OpenSSL and libcrypto.

PQinitSSL has been present since PostgreSQL 8.0, while PQinitOpenSSL was added in Post-
greSQL 8.4, so PQinitSSL might be preferable for applications that need to work with older ver-
sions of libpq.

31.19. Behavior in Threaded Programs
libpq is reentrant and thread-safe by default. You might need to use special compiler command-line
options when you compile your application code. Refer to your system’s documentation for
information about how to build thread-enabled applications, or look in src/Makefile.global for
PTHREAD_CFLAGS and PTHREAD_LIBS. This function allows the querying of libpq’s thread-safe status:

PQisthreadsafe

Returns the thread safety status of the libpq library.

int PQisthreadsafe();

Returns 1 if the libpq is thread-safe and 0 if it is not.

One thread restriction is that no two threads attempt to manipulate the same PGconn object at the same
time. In particular, you cannot issue concurrent commands from different threads through the same con-
nection object. (If you need to run concurrent commands, use multiple connections.)

PGresult objects are normally read-only after creation, and so can be passed around freely between
threads. However, if you use any of the PGresult-modifying functions described in Section 31.11 or
Section 31.13, it’s up to you to avoid concurrent operations on the same PGresult, too.

The deprecated functions PQrequestCancel and PQoidStatus are not thread-safe and should not be
used in multithread programs. PQrequestCancel can be replaced by PQcancel. PQoidStatus can be
replaced by PQoidValue.

If you are using Kerberos inside your application (in addition to inside libpq), you will need to
do locking around Kerberos calls because Kerberos functions are not thread-safe. See function
PQregisterThreadLock in the libpq source code for a way to do cooperative locking between libpq
and your application.

If you experience problems with threaded applications, run the program in src/tools/thread to see if
your platform has thread-unsafe functions. This program is run by configure, but for binary distributions
your library might not match the library used to build the binaries.

707

Chapter 31. libpq - C Library

31.20. Building libpq Programs
To build (i.e., compile and link) a program using libpq you need to do all of the following things:

• Include the libpq-fe.h header file:

#include <libpq-fe.h>

If you failed to do that then you will normally get error messages from your compiler similar to:

foo.c: In function ‘main’:
foo.c:34: ‘PGconn’ undeclared (first use in this function)
foo.c:35: ‘PGresult’ undeclared (first use in this function)
foo.c:54: ‘CONNECTION_BAD’ undeclared (first use in this function)
foo.c:68: ‘PGRES_COMMAND_OK’ undeclared (first use in this function)
foo.c:95: ‘PGRES_TUPLES_OK’ undeclared (first use in this function)

• Point your compiler to the directory where the PostgreSQL header files were installed, by supplying
the -Idirectory option to your compiler. (In some cases the compiler will look into the directory in
question by default, so you can omit this option.) For instance, your compile command line could look
like:

cc -c -I/usr/local/pgsql/include testprog.c

If you are using makefiles then add the option to the CPPFLAGS variable:

CPPFLAGS += -I/usr/local/pgsql/include

If there is any chance that your program might be compiled by other users then you should not hardcode
the directory location like that. Instead, you can run the utility pg_config to find out where the header
files are on the local system:

$ pg_config --includedir
/usr/local/include

Failure to specify the correct option to the compiler will result in an error message such as:

testlibpq.c:8:22: libpq-fe.h: No such file or directory

• When linking the final program, specify the option -lpq so that the libpq library gets pulled in, as
well as the option -Ldirectory to point the compiler to the directory where the libpq library resides.
(Again, the compiler will search some directories by default.) For maximum portability, put the -L

option before the -lpq option. For example:

cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq

You can find out the library directory using pg_config as well:

$ pg_config --libdir
/usr/local/pgsql/lib

Error messages that point to problems in this area could look like the following:

testlibpq.o: In function ‘main’:
testlibpq.o(.text+0x60): undefined reference to ‘PQsetdbLogin’
testlibpq.o(.text+0x71): undefined reference to ‘PQstatus’
testlibpq.o(.text+0xa4): undefined reference to ‘PQerrorMessage’

This means you forgot -lpq.

/usr/bin/ld: cannot find -lpq

708

Chapter 31. libpq - C Library

This means you forgot the -L option or did not specify the right directory.

31.21. Example Programs
These examples and others can be found in the directory src/test/examples in the source code distri-
bution.

Example 31-1. libpq Example Program 1

/*
* testlibpq.c

*
* Test the C version of libpq, the PostgreSQL frontend library.

*/
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>

static void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

int
main(int argc, char **argv)
{

const char *conninfo;
PGconn *conn;
PGresult *res;
int nFields;
int i,

j;

/*
* If the user supplies a parameter on the command line, use it as the

* conninfo string; otherwise default to setting dbname=postgres and using

* environment variables or defaults for all other connection parameters.

*/
if (argc > 1)

conninfo = argv[1];
else

conninfo = "dbname = postgres";

/* Make a connection to the database */
conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */

709

Chapter 31. libpq - C Library

if (PQstatus(conn) != CONNECTION_OK)
{

fprintf(stderr, "Connection to database failed: %s",
PQerrorMessage(conn));

exit_nicely(conn);
}

/*
* Our test case here involves using a cursor, for which we must be inside

* a transaction block. We could do the whole thing with a single

* PQexec() of "select * from pg_database", but that’s too trivial to make

* a good example.

*/

/* Start a transaction block */
res = PQexec(conn, "BEGIN");
if (PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

/*
* Should PQclear PGresult whenever it is no longer needed to avoid memory

* leaks

*/
PQclear(res);

/*
* Fetch rows from pg_database, the system catalog of databases

*/
res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
if (PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}
PQclear(res);

res = PQexec(conn, "FETCH ALL in myportal");
if (PQresultStatus(res) != PGRES_TUPLES_OK)
{

fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

/* first, print out the attribute names */
nFields = PQnfields(res);
for (i = 0; i < nFields; i++)

printf("%-15s", PQfname(res, i));

710

Chapter 31. libpq - C Library

printf("\n\n");

/* next, print out the rows */
for (i = 0; i < PQntuples(res); i++)
{

for (j = 0; j < nFields; j++)
printf("%-15s", PQgetvalue(res, i, j));

printf("\n");
}

PQclear(res);

/* close the portal ... we don’t bother to check for errors ... */
res = PQexec(conn, "CLOSE myportal");
PQclear(res);

/* end the transaction */
res = PQexec(conn, "END");
PQclear(res);

/* close the connection to the database and cleanup */
PQfinish(conn);

return 0;
}

Example 31-2. libpq Example Program 2

/*
* testlibpq2.c

* Test of the asynchronous notification interface

*
* Start this program, then from psql in another window do

* NOTIFY TBL2;

* Repeat four times to get this program to exit.

*
* Or, if you want to get fancy, try this:

* populate a database with the following commands

* (provided in src/test/examples/testlibpq2.sql):

*
* CREATE TABLE TBL1 (i int4);

*
* CREATE TABLE TBL2 (i int4);

*
* CREATE RULE r1 AS ON INSERT TO TBL1 DO

* (INSERT INTO TBL2 VALUES (new.i); NOTIFY TBL2);

*
* and do this four times:

*
* INSERT INTO TBL1 VALUES (10);

*/
#include <stdio.h>

711

Chapter 31. libpq - C Library

#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <libpq-fe.h>

static void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

int
main(int argc, char **argv)
{

const char *conninfo;
PGconn *conn;
PGresult *res;
PGnotify *notify;
int nnotifies;

/*
* If the user supplies a parameter on the command line, use it as the

* conninfo string; otherwise default to setting dbname=postgres and using

* environment variables or defaults for all other connection parameters.

*/
if (argc > 1)

conninfo = argv[1];
else

conninfo = "dbname = postgres";

/* Make a connection to the database */
conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */
if (PQstatus(conn) != CONNECTION_OK)
{

fprintf(stderr, "Connection to database failed: %s",
PQerrorMessage(conn));

exit_nicely(conn);
}

/*
* Issue LISTEN command to enable notifications from the rule’s NOTIFY.

*/
res = PQexec(conn, "LISTEN TBL2");
if (PQresultStatus(res) != PGRES_COMMAND_OK)
{

fprintf(stderr, "LISTEN command failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

712

Chapter 31. libpq - C Library

/*
* should PQclear PGresult whenever it is no longer needed to avoid memory

* leaks

*/
PQclear(res);

/* Quit after four notifies are received. */
nnotifies = 0;
while (nnotifies < 4)
{

/*
* Sleep until something happens on the connection. We use select(2)

* to wait for input, but you could also use poll() or similar

* facilities.

*/
int sock;
fd_set input_mask;

sock = PQsocket(conn);

if (sock < 0)
break; /* shouldn’t happen */

FD_ZERO(&input_mask);
FD_SET(sock, &input_mask);

if (select(sock + 1, &input_mask, NULL, NULL, NULL) < 0)
{

fprintf(stderr, "select() failed: %s\n", strerror(errno));
exit_nicely(conn);

}

/* Now check for input */
PQconsumeInput(conn);
while ((notify = PQnotifies(conn)) != NULL)
{

fprintf(stderr,
"ASYNC NOTIFY of ’%s’ received from backend PID %d\n",
notify->relname, notify->be_pid);

PQfreemem(notify);
nnotifies++;

}
}

fprintf(stderr, "Done.\n");

/* close the connection to the database and cleanup */
PQfinish(conn);

return 0;
}

713

Chapter 31. libpq - C Library

Example 31-3. libpq Example Program 3

/*
* testlibpq3.c

* Test out-of-line parameters and binary I/O.

*
* Before running this, populate a database with the following commands

* (provided in src/test/examples/testlibpq3.sql):

*
* CREATE TABLE test1 (i int4, t text, b bytea);

*
* INSERT INTO test1 values (1, ’joe”s place’, ’\\000\\001\\002\\003\\004’);

* INSERT INTO test1 values (2, ’ho there’, ’\\004\\003\\002\\001\\000’);

*
* The expected output is:

*
* tuple 0: got

* i = (4 bytes) 1

* t = (11 bytes) ’joe’s place’

* b = (5 bytes) \000\001\002\003\004

*
* tuple 0: got

* i = (4 bytes) 2

* t = (8 bytes) ’ho there’

* b = (5 bytes) \004\003\002\001\000

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <libpq-fe.h>

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

static void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

}

/*
* This function prints a query result that is a binary-format fetch from

* a table defined as in the comment above. We split it out because the

* main() function uses it twice.

*/
static void
show_binary_results(PGresult *res)
{

int i,

714

Chapter 31. libpq - C Library

j;
int i_fnum,

t_fnum,
b_fnum;

/* Use PQfnumber to avoid assumptions about field order in result */
i_fnum = PQfnumber(res, "i");
t_fnum = PQfnumber(res, "t");
b_fnum = PQfnumber(res, "b");

for (i = 0; i < PQntuples(res); i++)
{

char *iptr;
char *tptr;
char *bptr;
int blen;
int ival;

/* Get the field values (we ignore possibility they are null!) */
iptr = PQgetvalue(res, i, i_fnum);
tptr = PQgetvalue(res, i, t_fnum);
bptr = PQgetvalue(res, i, b_fnum);

/*
* The binary representation of INT4 is in network byte order, which

* we’d better coerce to the local byte order.

*/
ival = ntohl(*((uint32_t *) iptr));

/*
* The binary representation of TEXT is, well, text, and since libpq

* was nice enough to append a zero byte to it, it’ll work just fine

* as a C string.

*
* The binary representation of BYTEA is a bunch of bytes, which could

* include embedded nulls so we have to pay attention to field length.

*/
blen = PQgetlength(res, i, b_fnum);

printf("tuple %d: got\n", i);
printf(" i = (%d bytes) %d\n",

PQgetlength(res, i, i_fnum), ival);
printf(" t = (%d bytes) ’%s’\n",

PQgetlength(res, i, t_fnum), tptr);
printf(" b = (%d bytes) ", blen);
for (j = 0; j < blen; j++)

printf("\\%03o", bptr[j]);
printf("\n\n");

}
}

int
main(int argc, char **argv)

715

Chapter 31. libpq - C Library

{
const char *conninfo;
PGconn *conn;
PGresult *res;
const char *paramValues[1];
int paramLengths[1];
int paramFormats[1];
uint32_t binaryIntVal;

/*
* If the user supplies a parameter on the command line, use it as the

* conninfo string; otherwise default to setting dbname=postgres and using

* environment variables or defaults for all other connection parameters.

*/
if (argc > 1)

conninfo = argv[1];
else

conninfo = "dbname = postgres";

/* Make a connection to the database */
conn = PQconnectdb(conninfo);

/* Check to see that the backend connection was successfully made */
if (PQstatus(conn) != CONNECTION_OK)
{

fprintf(stderr, "Connection to database failed: %s",
PQerrorMessage(conn));

exit_nicely(conn);
}

/*
* The point of this program is to illustrate use of PQexecParams() with

* out-of-line parameters, as well as binary transmission of data.

*
* This first example transmits the parameters as text, but receives the

* results in binary format. By using out-of-line parameters we can

* avoid a lot of tedious mucking about with quoting and escaping, even

* though the data is text. Notice how we don’t have to do anything

* special with the quote mark in the parameter value.

*/

/* Here is our out-of-line parameter value */
paramValues[0] = "joe’s place";

res = PQexecParams(conn,
"SELECT * FROM test1 WHERE t = $1",
1, /* one param */
NULL, /* let the backend deduce param type */
paramValues,
NULL, /* don’t need param lengths since text */
NULL, /* default to all text params */
1); /* ask for binary results */

716

Chapter 31. libpq - C Library

if (PQresultStatus(res) != PGRES_TUPLES_OK)
{

fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

show_binary_results(res);

PQclear(res);

/*
* In this second example we transmit an integer parameter in binary

* form, and again retrieve the results in binary form.

*
* Although we tell PQexecParams we are letting the backend deduce

* parameter type, we really force the decision by casting the parameter

* symbol in the query text. This is a good safety measure when sending

* binary parameters.

*/

/* Convert integer value "2" to network byte order */
binaryIntVal = htonl((uint32_t) 2);

/* Set up parameter arrays for PQexecParams */
paramValues[0] = (char *) &binaryIntVal;
paramLengths[0] = sizeof(binaryIntVal);
paramFormats[0] = 1; /* binary */

res = PQexecParams(conn,
"SELECT * FROM test1 WHERE i = $1::int4",
1, /* one param */
NULL, /* let the backend deduce param type */
paramValues,
paramLengths,
paramFormats,
1); /* ask for binary results */

if (PQresultStatus(res) != PGRES_TUPLES_OK)
{

fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
PQclear(res);
exit_nicely(conn);

}

show_binary_results(res);

PQclear(res);

/* close the connection to the database and cleanup */
PQfinish(conn);

return 0;

717

Chapter 31. libpq - C Library

}

718

Chapter 32. Large Objects
PostgreSQL has a large object facility, which provides stream-style access to user data that is stored in a
special large-object structure. Streaming access is useful when working with data values that are too large
to manipulate conveniently as a whole.

This chapter describes the implementation and the programming and query language interfaces to Post-
greSQL large object data. We use the libpq C library for the examples in this chapter, but most program-
ming interfaces native to PostgreSQL support equivalent functionality. Other interfaces might use the
large object interface internally to provide generic support for large values. This is not described here.

32.1. Introduction
All large objects are placed in a single system table called pg_largeobject. PostgreSQL also supports
a storage system called “TOAST” that automatically stores values larger than a single database page into
a secondary storage area per table. This makes the large object facility partially obsolete. One remaining
advantage of the large object facility is that it allows values up to 2 GB in size, whereas TOASTed fields
can be at most 1 GB. Also, large objects can be randomly modified using a read/write API that is more
efficient than performing such operations using TOAST.

32.2. Implementation Features
The large object implementation breaks large objects up into “chunks” and stores the chunks in rows in
the database. A B-tree index guarantees fast searches for the correct chunk number when doing random
access reads and writes.

As of PostgreSQL 9.0, large objects have an owner and a set of access permissions, which can be managed
using GRANT and REVOKE. For compatibility with prior releases, see lo_compat_privileges. SELECT
privileges are required to read a large object, and UPDATE privileges are required to write to or truncate it.
Only the large object owner (or the database superuser) can unlink, comment on, or change the owner of
a large object.

32.3. Client Interfaces
This section describes the facilities that PostgreSQL client interface libraries provide for accessing large
objects. All large object manipulation using these functions must take place within an SQL transaction
block. The PostgreSQL large object interface is modeled after the Unix file-system interface, with ana-
logues of open, read, write, lseek, etc.

Client applications which use the large object interface in libpq should include the header file
libpq/libpq-fs.h and link with the libpq library.

719

Chapter 32. Large Objects

32.3.1. Creating a Large Object
The function

Oid lo_creat(PGconn *conn, int mode);

creates a new large object. The return value is the OID that was assigned to the new large object, or
InvalidOid (zero) on failure. mode is unused and ignored as of PostgreSQL 8.1; however, for back-
ward compatibility with earlier releases it is best to set it to INV_READ, INV_WRITE, or INV_READ |

INV_WRITE. (These symbolic constants are defined in the header file libpq/libpq-fs.h.)

An example:

inv_oid = lo_creat(conn, INV_READ|INV_WRITE);

The function

Oid lo_create(PGconn *conn, Oid lobjId);

also creates a new large object. The OID to be assigned can be specified by lobjId; if so, failure occurs
if that OID is already in use for some large object. If lobjId is InvalidOid (zero) then lo_create

assigns an unused OID (this is the same behavior as lo_creat). The return value is the OID that was
assigned to the new large object, or InvalidOid (zero) on failure.

lo_create is new as of PostgreSQL 8.1; if this function is run against an older server version, it will fail
and return InvalidOid.

An example:

inv_oid = lo_create(conn, desired_oid);

32.3.2. Importing a Large Object
To import an operating system file as a large object, call

Oid lo_import(PGconn *conn, const char *filename);

filename specifies the operating system name of the file to be imported as a large object. The return
value is the OID that was assigned to the new large object, or InvalidOid (zero) on failure. Note that
the file is read by the client interface library, not by the server; so it must exist in the client file system and
be readable by the client application.

The function

Oid lo_import_with_oid(PGconn *conn, const char *filename, Oid lobjId);

also imports a new large object. The OID to be assigned can be specified by lobjId; if so, failure
occurs if that OID is already in use for some large object. If lobjId is InvalidOid (zero) then
lo_import_with_oid assigns an unused OID (this is the same behavior as lo_import). The return
value is the OID that was assigned to the new large object, or InvalidOid (zero) on failure.

720

Chapter 32. Large Objects

lo_import_with_oid is new as of PostgreSQL 8.4 and uses lo_create internally which is new in 8.1;
if this function is run against 8.0 or before, it will fail and return InvalidOid.

32.3.3. Exporting a Large Object
To export a large object into an operating system file, call

int lo_export(PGconn *conn, Oid lobjId, const char *filename);

The lobjId argument specifies the OID of the large object to export and the filename argument spec-
ifies the operating system name of the file. Note that the file is written by the client interface library, not
by the server. Returns 1 on success, -1 on failure.

32.3.4. Opening an Existing Large Object
To open an existing large object for reading or writing, call

int lo_open(PGconn *conn, Oid lobjId, int mode);

The lobjId argument specifies the OID of the large object to open. The mode bits control whether
the object is opened for reading (INV_READ), writing (INV_WRITE), or both. (These symbolic constants
are defined in the header file libpq/libpq-fs.h.) A large object cannot be opened before it is created.
lo_open returns a (non-negative) large object descriptor for later use in lo_read, lo_write, lo_lseek,
lo_tell, and lo_close. The descriptor is only valid for the duration of the current transaction. On
failure, -1 is returned.

The server currently does not distinguish between modes INV_WRITE and INV_READ | INV_WRITE: you
are allowed to read from the descriptor in either case. However there is a significant difference between
these modes and INV_READ alone: with INV_READ you cannot write on the descriptor, and the data read
from it will reflect the contents of the large object at the time of the transaction snapshot that was active
when lo_open was executed, regardless of later writes by this or other transactions. Reading from a
descriptor opened with INV_WRITE returns data that reflects all writes of other committed transactions
as well as writes of the current transaction. This is similar to the behavior of REPEATABLE READ versus
READ COMMITTED transaction modes for ordinary SQL SELECT commands.

An example:

inv_fd = lo_open(conn, inv_oid, INV_READ|INV_WRITE);

32.3.5. Writing Data to a Large Object
The function

int lo_write(PGconn *conn, int fd, const char *buf, size_t len);

721

Chapter 32. Large Objects

writes len bytes from buf to large object descriptor fd. The fd argument must have been returned by a
previous lo_open. The number of bytes actually written is returned. In the event of an error, the return
value is negative.

32.3.6. Reading Data from a Large Object
The function

int lo_read(PGconn *conn, int fd, char *buf, size_t len);

reads len bytes from large object descriptor fd into buf. The fd argument must have been returned by
a previous lo_open. The number of bytes actually read is returned. In the event of an error, the return
value is negative.

32.3.7. Seeking in a Large Object
To change the current read or write location associated with a large object descriptor, call

int lo_lseek(PGconn *conn, int fd, int offset, int whence);

This function moves the current location pointer for the large object descriptor identified by fd to the
new location specified by offset. The valid values for whence are SEEK_SET (seek from object start),
SEEK_CUR (seek from current position), and SEEK_END (seek from object end). The return value is the
new location pointer, or -1 on error.

32.3.8. Obtaining the Seek Position of a Large Object
To obtain the current read or write location of a large object descriptor, call

int lo_tell(PGconn *conn, int fd);

If there is an error, the return value is negative.

32.3.9. Truncating a Large Object
To truncate a large object to a given length, call

int lo_truncate(PGcon *conn, int fd, size_t len);

truncates the large object descriptor fd to length len. The fd argument must have been returned by a
previous lo_open. If len is greater than the current large object length, the large object is extended with
null bytes (’\0’).

The file offset is not changed.

On success lo_truncate returns zero. On error, the return value is negative.

722

Chapter 32. Large Objects

lo_truncate is new as of PostgreSQL 8.3; if this function is run against an older server version, it will
fail and return a negative value.

32.3.10. Closing a Large Object Descriptor
A large object descriptor can be closed by calling

int lo_close(PGconn *conn, int fd);

where fd is a large object descriptor returned by lo_open. On success, lo_close returns zero. On error,
the return value is negative.

Any large object descriptors that remain open at the end of a transaction will be closed automatically.

32.3.11. Removing a Large Object
To remove a large object from the database, call

int lo_unlink(PGconn *conn, Oid lobjId);

The lobjId argument specifies the OID of the large object to remove. Returns 1 if successful, -1 on
failure.

32.4. Server-side Functions
There are server-side functions callable from SQL that correspond to each of the client-side functions
described above; indeed, for the most part the client-side functions are simply interfaces to the equiva-
lent server-side functions. The ones that are actually useful to call via SQL commands are lo_creat,
lo_create, lo_unlink, lo_import, and lo_export. Here are examples of their use:

CREATE TABLE image (
name text,
raster oid

);

SELECT lo_creat(-1); -- returns OID of new, empty large object

SELECT lo_create(43213); -- attempts to create large object with OID 43213

SELECT lo_unlink(173454); -- deletes large object with OID 173454

INSERT INTO image (name, raster)
VALUES (’beautiful image’, lo_import(’/etc/motd’));

INSERT INTO image (name, raster) -- same as above, but specify OID to use
VALUES (’beautiful image’, lo_import(’/etc/motd’, 68583));

723

Chapter 32. Large Objects

SELECT lo_export(image.raster, ’/tmp/motd’) FROM image
WHERE name = ’beautiful image’;

The server-side lo_import and lo_export functions behave considerably differently from their client-
side analogs. These two functions read and write files in the server’s file system, using the permissions
of the database’s owning user. Therefore, their use is restricted to superusers. In contrast, the client-side
import and export functions read and write files in the client’s file system, using the permissions of the
client program. The client-side functions do not require superuser privilege.

The functionality of lo_read and lo_write is also available via server-side calls, but the names of the
server-side functions differ from the client side interfaces in that they do not contain underscores. You
must call these functions as loread and lowrite.

32.5. Example Program
Example 32-1 is a sample program which shows how the large object interface in libpq can be used. Parts
of the program are commented out but are left in the source for the reader’s benefit. This program can also
be found in src/test/examples/testlo.c in the source distribution.

Example 32-1. Large Objects with libpq Example Program

/*--

*
* testlo.c--

* test using large objects with libpq

*
* Copyright (c) 1994, Regents of the University of California

*
*--

*/
#include <stdio.h>
#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
* importFile

* import file "in_filename" into database as large object "lobjOid"

*
*/

Oid
importFile(PGconn *conn, char *filename)
{

Oid lobjId;
int lobj_fd;
char buf[BUFSIZE];
int nbytes,

tmp;

724

Chapter 32. Large Objects

int fd;

/*
* open the file to be read in

*/
fd = open(filename, O_RDONLY, 0666);
if (fd < 0)
{ /* error */

fprintf(stderr, "cannot open unix file %s\n", filename);
}

/*
* create the large object

*/
lobjId = lo_creat(conn, INV_READ | INV_WRITE);
if (lobjId == 0)

fprintf(stderr, "cannot create large object\n");

lobj_fd = lo_open(conn, lobjId, INV_WRITE);

/*
* read in from the Unix file and write to the inversion file

*/
while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
{

tmp = lo_write(conn, lobj_fd, buf, nbytes);
if (tmp < nbytes)

fprintf(stderr, "error while reading large object\n");
}

(void) close(fd);
(void) lo_close(conn, lobj_fd);

return lobjId;
}

void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char *buf;
int nbytes;
int nread;

lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "cannot open large object %d\n",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);

725

Chapter 32. Large Objects

nread = 0;
while (len - nread > 0)
{

nbytes = lo_read(conn, lobj_fd, buf, len - nread);
buf[nbytes] = ’ ’;
fprintf(stderr, ">>> %s", buf);
nread += nbytes;

}
free(buf);
fprintf(stderr, "\n");
lo_close(conn, lobj_fd);

}

void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{

int lobj_fd;
char *buf;
int nbytes;
int nwritten;
int i;

lobj_fd = lo_open(conn, lobjId, INV_WRITE);
if (lobj_fd < 0)
{

fprintf(stderr, "cannot open large object %d\n",
lobjId);

}

lo_lseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);

for (i = 0; i < len; i++)
buf[i] = ’X’;

buf[i] = ’ ’;

nwritten = 0;
while (len - nwritten > 0)
{

nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
nwritten += nbytes;

}
free(buf);
fprintf(stderr, "\n");
lo_close(conn, lobj_fd);

}

/*
* exportFile

* export large object "lobjOid" to file "out_filename"

*
*/

726

Chapter 32. Large Objects

void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{

int lobj_fd;
char buf[BUFSIZE];
int nbytes,

tmp;
int fd;

/*
* open the large object

*/
lobj_fd = lo_open(conn, lobjId, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "cannot open large object %d\n",
lobjId);

}

/*
* open the file to be written to

*/
fd = open(filename, O_CREAT | O_WRONLY, 0666);
if (fd < 0)
{ /* error */

fprintf(stderr, "cannot open unix file %s\n",
filename);

}

/*
* read in from the inversion file and write to the Unix file

*/
while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
{

tmp = write(fd, buf, nbytes);
if (tmp < nbytes)
{

fprintf(stderr, "error while writing %s\n",
filename);

}
}

(void) lo_close(conn, lobj_fd);
(void) close(fd);

return;
}

void
exit_nicely(PGconn *conn)
{

PQfinish(conn);
exit(1);

727

Chapter 32. Large Objects

}

int
main(int argc, char **argv)
{

char *in_filename,

*out_filename;
char *database;
Oid lobjOid;
PGconn *conn;
PGresult *res;

if (argc != 4)
{

fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
argv[0]);

exit(1);
}

database = argv[1];
in_filename = argv[2];
out_filename = argv[3];

/*
* set up the connection

*/
conn = PQsetdb(NULL, NULL, NULL, NULL, database);

/* check to see that the backend connection was successfully made */
if (PQstatus(conn) == CONNECTION_BAD)
{

fprintf(stderr, "Connection to database ’%s’ failed.\n", database);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

res = PQexec(conn, "begin");
PQclear(res);

printf("importing file %s\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */

lobjOid = lo_import(conn, in_filename);
/*

printf("as large object %d.\n", lobjOid);

printf("picking out bytes 1000-2000 of the large object\n");
pickout(conn, lobjOid, 1000, 1000);

printf("overwriting bytes 1000-2000 of the large object with X’s\n");
overwrite(conn, lobjOid, 1000, 1000);

*/

printf("exporting large object to file %s\n", out_filename);

728

Chapter 32. Large Objects

/* exportFile(conn, lobjOid, out_filename); */
lo_export(conn, lobjOid, out_filename);

res = PQexec(conn, "end");
PQclear(res);
PQfinish(conn);
exit(0);

}

729

Chapter 33. ECPG - Embedded SQL in C
This chapter describes the embedded SQL package for PostgreSQL. It was written by Linus Tolke
(<linus@epact.se>) and Michael Meskes (<meskes@postgresql.org>). Originally it was written
to work with C. It also works with C++, but it does not recognize all C++ constructs yet.

This documentation is quite incomplete. But since this interface is standardized, additional information
can be found in many resources about SQL.

33.1. The Concept
An embedded SQL program consists of code written in an ordinary programming language, in this case C,
mixed with SQL commands in specially marked sections. To build the program, the source code (*.pgc)
is first passed through the embedded SQL preprocessor, which converts it to an ordinary C program
(*.c), and afterwards it can be processed by a C compiler. (For details about the compiling and linking
see Section 33.10). Converted ECPG applications call functions in the libpq library through the embedded
SQL library (ecpglib), and communicate with the PostgreSQL server using the normal frontend-backend
protocol.

Embedded SQL has advantages over other methods for handling SQL commands from C code. First, it
takes care of the tedious passing of information to and from variables in your C program. Second, the
SQL code in the program is checked at build time for syntactical correctness. Third, embedded SQL in C
is specified in the SQL standard and supported by many other SQL database systems. The PostgreSQL
implementation is designed to match this standard as much as possible, and it is usually possible to port
embedded SQL programs written for other SQL databases to PostgreSQL with relative ease.

As already stated, programs written for the embedded SQL interface are normal C programs with special
code inserted to perform database-related actions. This special code always has the form:

EXEC SQL ...;

These statements syntactically take the place of a C statement. Depending on the particular statement, they
can appear at the global level or within a function. Embedded SQL statements follow the case-sensitivity
rules of normal SQL code, and not those of C.

The following sections explain all the embedded SQL statements.

33.2. Managing Database Connections
This section describes how to open, close, and switch database connections.

33.2.1. Connecting to the Database Server
One connects to a database using the following statement:

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

730

Chapter 33. ECPG - Embedded SQL in C

The target can be specified in the following ways:

• dbname[@hostname][:port]

• tcp:postgresql://hostname[:port][/dbname][?options]

• unix:postgresql://hostname[:port][/dbname][?options]

• an SQL string literal containing one of the above forms

• a reference to a character variable containing one of the above forms (see examples)

• DEFAULT

If you specify the connection target literally (that is, not through a variable reference) and you don’t quote
the value, then the case-insensitivity rules of normal SQL are applied. In that case you can also double-
quote the individual parameters separately as needed. In practice, it is probably less error-prone to use a
(single-quoted) string literal or a variable reference. The connection target DEFAULT initiates a connection
to the default database under the default user name. No separate user name or connection name can be
specified in that case.

There are also different ways to specify the user name:

• username

• username/password

• username IDENTIFIED BY password

• username USING password

As above, the parameters username and password can be an SQL identifier, an SQL string literal, or a
reference to a character variable.

The connection-name is used to handle multiple connections in one program. It can be omitted if a
program uses only one connection. The most recently opened connection becomes the current connection,
which is used by default when an SQL statement is to be executed (see later in this chapter).

Here are some examples of CONNECT statements:

EXEC SQL CONNECT TO mydb@sql.mydomain.com;

EXEC SQL CONNECT TO unix:postgresql://sql.mydomain.com/mydb AS myconnection USER john;

EXEC SQL BEGIN DECLARE SECTION;
const char *target = "mydb@sql.mydomain.com";
const char *user = "john";
const char *passwd = "secret";
EXEC SQL END DECLARE SECTION;
...

EXEC SQL CONNECT TO :target USER :user USING :passwd;
/* or EXEC SQL CONNECT TO :target USER :user/:passwd; */

The last form makes use of the variant referred to above as character variable reference. You will see in
later sections how C variables can be used in SQL statements when you prefix them with a colon.

731

Chapter 33. ECPG - Embedded SQL in C

Be advised that the format of the connection target is not specified in the SQL standard. So if you want
to develop portable applications, you might want to use something based on the last example above to
encapsulate the connection target string somewhere.

33.2.2. Choosing a Connection
SQL statements in embedded SQL programs are by default executed on the current connection, that is,
the most recently opened one. If an application needs to manage multiple connections, then there are two
ways to handle this.

The first option is to explicitly choose a connection for each SQL statement, for example:

EXEC SQL AT connection-name SELECT ...;

This option is particularly suitable if the application needs to use several connections in mixed order.

If your application uses multiple threads of execution, they cannot share a connection concurrently. You
must either explicitly control access to the connection (using mutexes) or use a connection for each thread.
If each thread uses its own connection, you will need to use the AT clause to specify which connection
the thread will use.

The second option is to execute a statement to switch the current connection. That statement is:

EXEC SQL SET CONNECTION connection-name;

This option is particularly convenient if many statements are to be executed on the same connection. It is
not thread-aware.

Here is an example program managing multiple database connections:

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
char dbname[1024];

EXEC SQL END DECLARE SECTION;

int
main()
{

EXEC SQL CONNECT TO testdb1 AS con1 USER testuser;
EXEC SQL CONNECT TO testdb2 AS con2 USER testuser;
EXEC SQL CONNECT TO testdb3 AS con3 USER testuser;

/* This query would be executed in the last opened database "testdb3". */
EXEC SQL SELECT current_database() INTO :dbname;
printf("current=%s (should be testdb3)\n", dbname);

/* Using "AT" to run a query in "testdb2" */
EXEC SQL AT con2 SELECT current_database() INTO :dbname;
printf("current=%s (should be testdb2)\n", dbname);

/* Switch the current connection to "testdb1". */
EXEC SQL SET CONNECTION con1;

732

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL SELECT current_database() INTO :dbname;
printf("current=%s (should be testdb1)\n", dbname);

EXEC SQL DISCONNECT ALL;
return 0;

}

This example would produce this output:

current=testdb3 (should be testdb3)
current=testdb2 (should be testdb2)
current=testdb1 (should be testdb1)

33.2.3. Closing a Connection
To close a connection, use the following statement:

EXEC SQL DISCONNECT [connection];

The connection can be specified in the following ways:

• connection-name

• DEFAULT

• CURRENT

• ALL

If no connection name is specified, the current connection is closed.

It is good style that an application always explicitly disconnect from every connection it opened.

33.3. Running SQL Commands
Any SQL command can be run from within an embedded SQL application. Below are some examples of
how to do that.

33.3.1. Executing SQL Statements
Creating a table:

EXEC SQL CREATE TABLE foo (number integer, ascii char(16));
EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number);
EXEC SQL COMMIT;

733

Chapter 33. ECPG - Embedded SQL in C

Inserting rows:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, ’doodad’);
EXEC SQL COMMIT;

Deleting rows:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

Updates:

EXEC SQL UPDATE foo
SET ascii = ’foobar’
WHERE number = 9999;

EXEC SQL COMMIT;

SELECT statements that return a single result row can also be executed using EXEC SQL directly. To handle
result sets with multiple rows, an application has to use a cursor; see Section 33.3.2 below. (As a special
case, an application can fetch multiple rows at once into an array host variable; see Section 33.4.4.3.1.)

Single-row select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = ’doodad’;

Also, a configuration parameter can be retrieved with the SHOW command:

EXEC SQL SHOW search_path INTO :var;

The tokens of the form :something are host variables, that is, they refer to variables in the C program.
They are explained in Section 33.4.

33.3.2. Using Cursors
To retrieve a result set holding multiple rows, an application has to declare a cursor and fetch each row
from the cursor. The steps to use a cursor are the following: declare a cursor, open it, fetch a row from the
cursor, repeat, and finally close it.

Select using cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
SELECT number, ascii FROM foo
ORDER BY ascii;

EXEC SQL OPEN foo_bar;

734

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

For more details about declaration of the cursor, see DECLARE, and see FETCH for FETCH command
details.

Note: The ECPG DECLARE command does not actually cause a statement to be sent to the Post-
greSQL backend. The cursor is opened in the backend (using the backend’s DECLARE command) at
the point when the OPEN command is executed.

33.3.3. Managing Transactions
In the default mode, statements are committed only when EXEC SQL COMMIT is issued. The embedded
SQL interface also supports autocommit of transactions (similar to libpq behavior) via the -t command-
line option to ecpg (see ecpg) or via the EXEC SQL SET AUTOCOMMIT TO ON statement. In autocommit
mode, each command is automatically committed unless it is inside an explicit transaction block. This
mode can be explicitly turned off using EXEC SQL SET AUTOCOMMIT TO OFF.

The following transaction management commands are available:

EXEC SQL COMMIT

Commit an in-progress transaction.

EXEC SQL ROLLBACK

Roll back an in-progress transaction.

EXEC SQL SET AUTOCOMMIT TO ON

Enable autocommit mode.

SET AUTOCOMMIT TO OFF

Disable autocommit mode. This is the default.

33.3.4. Prepared Statements
When the values to be passed to an SQL statement are not known at compile time, or the same statement
is going to be used many times, then prepared statements can be useful.

The statement is prepared using the command PREPARE. For the values that are not known yet, use the
placeholder “?”:

EXEC SQL PREPARE stmt1 FROM "SELECT oid, datname FROM pg_database WHERE oid = ?";

735

Chapter 33. ECPG - Embedded SQL in C

If a statement returns a single row, the application can call EXECUTE after PREPARE to execute the state-
ment, supplying the actual values for the placeholders with a USING clause:

EXEC SQL EXECUTE stmt1 INTO :dboid, :dbname USING 1;

If a statement returns multiple rows, the application can use a cursor declared based on the prepared
statement. To bind input parameters, the cursor must be opened with a USING clause:

EXEC SQL PREPARE stmt1 FROM "SELECT oid,datname FROM pg_database WHERE oid > ?";
EXEC SQL DECLARE foo_bar CURSOR FOR stmt1;

/* when end of result set reached, break out of while loop */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

EXEC SQL OPEN foo_bar USING 100;
...
while (1)
{

EXEC SQL FETCH NEXT FROM foo_bar INTO :dboid, :dbname;
...

}
EXEC SQL CLOSE foo_bar;

When you don’t need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

For more details about PREPARE, see PREPARE. Also see Section 33.5 for more details about using
placeholders and input parameters.

33.4. Using Host Variables
In Section 33.3 you saw how you can execute SQL statements from an embedded SQL program. Some
of those statements only used fixed values and did not provide a way to insert user-supplied values into
statements or have the program process the values returned by the query. Those kinds of statements are
not really useful in real applications. This section explains in detail how you can pass data between your
C program and the embedded SQL statements using a simple mechanism called host variables. In an
embedded SQL program we consider the SQL statements to be guests in the C program code which is the
host language. Therefore the variables of the C program are called host variables.

Another way to exchange values between PostgreSQL backends and ECPG applications is the use of SQL
descriptors, described in Section 33.7.

736

Chapter 33. ECPG - Embedded SQL in C

33.4.1. Overview
Passing data between the C program and the SQL statements is particularly simple in embedded SQL.
Instead of having the program paste the data into the statement, which entails various complications, such
as properly quoting the value, you can simply write the name of a C variable into the SQL statement,
prefixed by a colon. For example:

EXEC SQL INSERT INTO sometable VALUES (:v1, ’foo’, :v2);

This statements refers to two C variables named v1 and v2 and also uses a regular SQL string literal, to
illustrate that you are not restricted to use one kind of data or the other.

This style of inserting C variables in SQL statements works anywhere a value expression is expected in
an SQL statement.

33.4.2. Declare Sections
To pass data from the program to the database, for example as parameters in a query, or to pass data from
the database back to the program, the C variables that are intended to contain this data need to be declared
in specially marked sections, so the embedded SQL preprocessor is made aware of them.

This section starts with:

EXEC SQL BEGIN DECLARE SECTION;

and ends with:

EXEC SQL END DECLARE SECTION;

Between those lines, there must be normal C variable declarations, such as:

int x = 4;
char foo[16], bar[16];

As you can see, you can optionally assign an initial value to the variable. The variable’s scope is deter-
mined by the location of its declaring section within the program. You can also declare variables with the
following syntax which implicitly creates a declare section:

EXEC SQL int i = 4;

You can have as many declare sections in a program as you like.

The declarations are also echoed to the output file as normal C variables, so there’s no need to declare
them again. Variables that are not intended to be used in SQL commands can be declared normally outside
these special sections.

The definition of a structure or union also must be listed inside a DECLARE section. Otherwise the prepro-
cessor cannot handle these types since it does not know the definition.

737

Chapter 33. ECPG - Embedded SQL in C

33.4.3. Retrieving Query Results
Now you should be able to pass data generated by your program into an SQL command. But how do you
retrieve the results of a query? For that purpose, embedded SQL provides special variants of the usual
commands SELECT and FETCH. These commands have a special INTO clause that specifies which host
variables the retrieved values are to be stored in. SELECT is used for a query that returns only single row,
and FETCH is used for a query that returns multiple rows, using a cursor.

Here is an example:

/*
* assume this table:

* CREATE TABLE test1 (a int, b varchar(50));

*/

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;

So the INTO clause appears between the select list and the FROM clause. The number of elements in the
select list and the list after INTO (also called the target list) must be equal.

Here is an example using the command FETCH:

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

...

do
{

...
EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
...

} while (...);

Here the INTO clause appears after all the normal clauses.

738

Chapter 33. ECPG - Embedded SQL in C

33.4.4. Type Mapping
When ECPG applications exchange values between the PostgreSQL server and the C application, such
as when retrieving query results from the server or executing SQL statements with input parameters, the
values need to be converted between PostgreSQL data types and host language variable types (C language
data types, concretely). One of the main points of ECPG is that it takes care of this automatically in most
cases.

In this respect, there are two kinds of data types: Some simple PostgreSQL data types, such as integer
and text, can be read and written by the application directly. Other PostgreSQL data types, such as
timestamp and numeric can only be accessed through special library functions; see Section 33.4.4.2.

Table 33-1 shows which PostgreSQL data types correspond to which C data types. When you wish to send
or receive a value of a given PostgreSQL data type, you should declare a C variable of the corresponding
C data type in the declare section.

Table 33-1. Mapping Between PostgreSQL Data Types and C Variable Types

PostgreSQL data type Host variable type
smallint short

integer int

bigint long long int

decimal decimala

numeric numerica

real float

double precision double

smallserial short

serial int

bigserial long long int

oid unsigned int

character(n), varchar(n), text char[n+1], VARCHAR[n+1]b

name char[NAMEDATALEN]

timestamp timestampa

interval intervala

date datea

boolean boolc

Notes:
a. This type can only be accessed through special library functions; see Section 33.4.4.2.
b. declared in ecpglib.h

c. declared in ecpglib.h if not native

33.4.4.1. Handling Character Strings

To handle SQL character string data types, such as varchar and text, there are two possible ways to
declare the host variables.

739

Chapter 33. ECPG - Embedded SQL in C

One way is using char[], an array of char, which is the most common way to handle character data in
C.

EXEC SQL BEGIN DECLARE SECTION;
char str[50];

EXEC SQL END DECLARE SECTION;

Note that you have to take care of the length yourself. If you use this host variable as the target variable
of a query which returns a string with more than 49 characters, a buffer overflow occurs.

The other way is using the VARCHAR type, which is a special type provided by ECPG. The definition on
an array of type VARCHAR is converted into a named struct for every variable. A declaration like:

VARCHAR var[180];

is converted into:

struct varchar_var { int len; char arr[180]; } var;

The member arr hosts the string including a terminating zero byte. Thus, to store a string in a VARCHAR
host variable, the host variable has to be declared with the length including the zero byte terminator. The
member len holds the length of the string stored in the arr without the terminating zero byte. When a
host variable is used as input for a query, if strlen(arr) and len are different, the shorter one is used.

VARCHAR can be written in upper or lower case, but not in mixed case.

char and VARCHAR host variables can also hold values of other SQL types, which will be stored in their
string forms.

33.4.4.2. Accessing Special Data Types

ECPG contains some special types that help you to interact easily with some special data types from
the PostgreSQL server. In particular, it has implemented support for the numeric, decimal, date,
timestamp, and interval types. These data types cannot usefully be mapped to primitive host vari-
able types (such as int, long long int, or char[]), because they have a complex internal structure.
Applications deal with these types by declaring host variables in special types and accessing them using
functions in the pgtypes library. The pgtypes library, described in detail in Section 33.6 contains basic
functions to deal with those types, such that you do not need to send a query to the SQL server just for
adding an interval to a time stamp for example.

The follow subsections describe these special data types. For more details about pgtypes library functions,
see Section 33.6.

33.4.4.2.1. timestamp, date

Here is a pattern for handling timestamp variables in the ECPG host application.

First, the program has to include the header file for the timestamp type:

#include <pgtypes_timestamp.h>

Next, declare a host variable as type timestamp in the declare section:

740

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;
EXEC SQL END DECLARE SECTION;

And after reading a value into the host variable, process it using pgtypes library functions.
In following example, the timestamp value is converted into text (ASCII) form with the
PGTYPEStimestamp_to_asc() function:

EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));

This example will show some result like following:

ts = 2010-06-27 18:03:56.949343

In addition, the DATE type can be handled in the same way. The program has to include
pgtypes_date.h, declare a host variable as the date type and convert a DATE value into a text form
using PGTYPESdate_to_asc() function. For more details about the pgtypes library functions, see
Section 33.6.

33.4.4.2.2. interval

The handling of the interval type is also similar to the timestamp and date types. It is required,
however, to allocate memory for an interval type value explicitly. In other words, the memory space
for the variable has to be allocated in the heap memory, not in the stack memory.

Here is an example program:

#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_interval.h>

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;

interval *in;
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb;

in = PGTYPESinterval_new();
EXEC SQL SELECT ’1 min’::interval INTO :in;
printf("interval = %s\n", PGTYPESinterval_to_asc(in));
PGTYPESinterval_free(in);

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;

741

Chapter 33. ECPG - Embedded SQL in C

return 0;
}

33.4.4.2.3. numeric, decimal

The handling of the numeric and decimal types is similar to the interval type: It requires defining a
pointer, allocating some memory space on the heap, and accessing the variable using the pgtypes library
functions. For more details about the pgtypes library functions, see Section 33.6.

No functions are provided specifically for the decimal type. An application has to convert it to a numeric
variable using a pgtypes library function to do further processing.

Here is an example program handling numeric and decimal type variables.

#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_numeric.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;

numeric *num;
numeric *num2;
decimal *dec;

EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb;

num = PGTYPESnumeric_new();
dec = PGTYPESdecimal_new();

EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2) INTO :num, :dec;

printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));

/* Convert decimal to numeric to show a decimal value. */
num2 = PGTYPESnumeric_new();
PGTYPESnumeric_from_decimal(dec, num2);

printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

PGTYPESnumeric_free(num2);
PGTYPESdecimal_free(dec);
PGTYPESnumeric_free(num);

742

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;
return 0;

}

33.4.4.3. Host Variables with Nonprimitive Types

As a host variable you can also use arrays, typedefs, structs, and pointers.

33.4.4.3.1. Arrays

There are two use cases for arrays as host variables. The first is a way to store some text string in char[]

or VARCHAR[], as explained Section 33.4.4.1. The second use case is to retrieve multiple rows from a
query result without using a cursor. Without an array, to process a query result consisting of multiple
rows, it is required to use a cursor and the FETCH command. But with array host variables, multiple rows
can be received at once. The length of the array has to be defined to be able to accommodate all rows,
otherwise a buffer overflow will likely occur.

Following example scans the pg_database system table and shows all OIDs and names of the available
databases:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;

int dbid[8];
char dbname[8][16];
int i;

EXEC SQL END DECLARE SECTION;

memset(dbname, 0, sizeof(char)* 16 * 8);
memset(dbid, 0, sizeof(int) * 8);

EXEC SQL CONNECT TO testdb;

/* Retrieve multiple rows into arrays at once. */
EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

for (i = 0; i < 8; i++)
printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;
return 0;

}

This example shows following result. (The exact values depend on local circumstances.)

743

Chapter 33. ECPG - Embedded SQL in C

oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=

33.4.4.3.2. Structures

A structure whose member names match the column names of a query result, can be used to retrieve
multiple columns at once. The structure enables handling multiple column values in a single host variable.

The following example retrieves OIDs, names, and sizes of the available databases from the
pg_database system table and using the pg_database_size() function. In this example, a structure
variable dbinfo_t with members whose names match each column in the SELECT result is used to
retrieve one result row without putting multiple host variables in the FETCH statement.

EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{

int oid;
char datname[65];
long long int size;

} dbinfo_t;

dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

memset(&dbval, 0, sizeof(dbinfo_t));

EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
EXEC SQL OPEN cur1;

/* when end of result set reached, break out of while loop */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

/* Fetch multiple columns into one structure. */
EXEC SQL FETCH FROM cur1 INTO :dbval;

/* Print members of the structure. */
printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, dbval.size);

}

EXEC SQL CLOSE cur1;

This example shows following result. (The exact values depend on local circumstances.)

744

Chapter 33. ECPG - Embedded SQL in C

oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012

Structure host variables “absorb” as many columns as the structure as fields. Additional columns can be
assigned to other host variables. For example, the above program could also be restructured like this, with
the size variable outside the structure:

EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{

int oid;
char datname[65];

} dbinfo_t;

dbinfo_t dbval;
long long int size;

EXEC SQL END DECLARE SECTION;

memset(&dbval, 0, sizeof(dbinfo_t));

EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size FROM pg_database;
EXEC SQL OPEN cur1;

/* when end of result set reached, break out of while loop */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

/* Fetch multiple columns into one structure. */
EXEC SQL FETCH FROM cur1 INTO :dbval, :size;

/* Print members of the structure. */
printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, size);

}

EXEC SQL CLOSE cur1;

33.4.4.3.3. Typedefs

Use the typedef keyword to map new types to already existing types.

EXEC SQL BEGIN DECLARE SECTION;
typedef char mychartype[40];
typedef long serial_t;

EXEC SQL END DECLARE SECTION;

Note that you could also use:

745

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL TYPE serial_t IS long;

This declaration does not need to be part of a declare section.

33.4.4.3.4. Pointers

You can declare pointers to the most common types. Note however that you cannot use pointers as target
variables of queries without auto-allocation. See Section 33.7 for more information on auto-allocation.

EXEC SQL BEGIN DECLARE SECTION;
int *intp;
char **charp;

EXEC SQL END DECLARE SECTION;

33.4.5. Handling Nonprimitive SQL Data Types
This section contains information on how to handle nonscalar and user-defined SQL-level data types in
ECPG applications. Note that this is distinct from the handling of host variables of nonprimitive types,
described in the previous section.

33.4.5.1. Arrays

SQL-level arrays are not directly supported in ECPG. It is not possible to simply map an SQL array into
a C array host variable. This will result in undefined behavior. Some workarounds exist, however.

If a query accesses elements of an array separately, then this avoids the use of arrays in ECPG. Then, a
host variable with a type that can be mapped to the element type should be used. For example, if a column
type is array of integer, a host variable of type int can be used. Also if the element type is varchar
or text, a host variable of type char[] or VARCHAR[] can be used.

Here is an example. Assume the following table:

CREATE TABLE t3 (
ii integer[]

);

testdb=> SELECT * FROM t3;
ii

{1,2,3,4,5}

(1 row)

The following example program retrieves the 4th element of the array and stores it into a host variable of
type int:

EXEC SQL BEGIN DECLARE SECTION;
int ii;

746

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

EXEC SQL FETCH FROM cur1 INTO :ii ;
printf("ii=%d\n", ii);

}

EXEC SQL CLOSE cur1;

This example shows the following result:

ii=4

To map multiple array elements to the multiple elements in an array type host variables each element of
array column and each element of the host variable array have to be managed separately, for example:

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

EXEC SQL FETCH FROM cur1 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
...

}

Note again that

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

747

Chapter 33. ECPG - Embedded SQL in C

/* WRONG */
EXEC SQL FETCH FROM cur1 INTO :ii_a;
...

}

would not work correctly in this case, because you cannot map an array type column to an array host
variable directly.

Another workaround is to store arrays in their external string representation in host variables of type
char[] or VARCHAR[]. For more details about this representation, see Section 8.15.2. Note that this
means that the array cannot be accessed naturally as an array in the host program (without further pro-
cessing that parses the text representation).

33.4.5.2. Composite Types

Composite types are not directly supported in ECPG, but an easy workaround is possible. The available
workarounds are similar to the ones described for arrays above: Either access each attribute separately or
use the external string representation.

For the following examples, assume the following type and table:

CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);
INSERT INTO t4 VALUES ((256, ’PostgreSQL’));

The most obvious solution is to access each attribute separately. The following program retrieves data
from the example table by selecting each attribute of the type comp_t separately:

EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

/* Fetch each element of the composite type column into host variables. */
EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;

To enhance this example, the host variables to store values in the FETCH command can be gathered into one
structure. For more details about the host variable in the structure form, see Section 33.4.4.3.2. To switch

748

Chapter 33. ECPG - Embedded SQL in C

to the structure, the example can be modified as below. The two host variables, intval and textval,
become members of the comp_t structure, and the structure is specified on the FETCH command.

EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{

int intval;
varchar textval[33];

} comp_t;

comp_t compval;
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

/* Put all values in the SELECT list into one structure. */
EXEC SQL FETCH FROM cur1 INTO :compval;

printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}

EXEC SQL CLOSE cur1;

Although a structure is used in the FETCH command, the attribute names in the SELECT clause are specified
one by one. This can be enhanced by using a * to ask for all attributes of the composite type value.

...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

/* Put all values in the SELECT list into one structure. */
EXEC SQL FETCH FROM cur1 INTO :compval;

printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}
...

This way, composite types can be mapped into structures almost seamlessly, even though ECPG does not
understand the composite type itself.

Finally, it is also possible to store composite type values in their external string representation in host
variables of type char[] or VARCHAR[]. But that way, it is not easily possible to access the fields of the
value from the host program.

749

Chapter 33. ECPG - Embedded SQL in C

33.4.5.3. User-defined Base Types

New user-defined base types are not directly supported by ECPG. You can use the external string repre-
sentation and host variables of type char[] or VARCHAR[], and this solution is indeed appropriate and
sufficient for many types.

Here is an example using the data type complex from the example in Section 35.11. The external
string representation of that type is (%lf,%lf), which is defined in the functions complex_in() and
complex_out() functions in Section 35.11. The following example inserts the complex type values
(1,1) and (3,3) into the columns a and b, and select them from the table after that.

EXEC SQL BEGIN DECLARE SECTION;
varchar a[64];
varchar b[64];

EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO test_complex VALUES (’(1,1)’, ’(3,3)’);

EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

EXEC SQL FETCH FROM cur1 INTO :a, :b;
printf("a=%s, b=%s\n", a.arr, b.arr);

}

EXEC SQL CLOSE cur1;

This example shows following result:

a=(1,1), b=(3,3)

Another workaround is avoiding the direct use of the user-defined types in ECPG and instead create a
function or cast that converts between the user-defined type and a primitive type that ECPG can handle.
Note, however, that type casts, especially implicit ones, should be introduced into the type system very
carefully.

For example,

CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex ’(1,0’)’ + $2 * complex ’(0,1)’ $$;

After this definition, the following

EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

750

Chapter 33. ECPG - Embedded SQL in C

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b), create_complex(:c, :d));

has the same effect as

EXEC SQL INSERT INTO test_complex VALUES (’(1,2)’, ’(3,4)’);

33.4.6. Indicators
The examples above do not handle null values. In fact, the retrieval examples will raise an error if they
fetch a null value from the database. To be able to pass null values to the database or retrieve null values
from the database, you need to append a second host variable specification to each host variable that
contains data. This second host variable is called the indicator and contains a flag that tells whether the
datum is null, in which case the value of the real host variable is ignored. Here is an example that handles
the retrieval of null values correctly:

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;

The indicator variable val_ind will be zero if the value was not null, and it will be negative if the value
was null.

The indicator has another function: if the indicator value is positive, it means that the value is not null, but
it was truncated when it was stored in the host variable.

If the argument -r no_indicator is passed to the preprocessor ecpg, it works in “no-indicator” mode.
In no-indicator mode, if no indicator variable is specified, null values are signaled (on input and output)
for character string types as empty string and for integer types as the lowest possible value for type (for
example, INT_MIN for int).

33.5. Dynamic SQL
In many cases, the particular SQL statements that an application has to execute are known at the time the
application is written. In some cases, however, the SQL statements are composed at run time or provided
by an external source. In these cases you cannot embed the SQL statements directly into the C source

751

Chapter 33. ECPG - Embedded SQL in C

code, but there is a facility that allows you to call arbitrary SQL statements that you provide in a string
variable.

33.5.1. Executing Statements without a Result Set
The simplest way to execute an arbitrary SQL statement is to use the command EXECUTE IMMEDIATE.
For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "CREATE TABLE test1 (...);";
EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :stmt;

EXECUTE IMMEDIATE can be used for SQL statements that do not return a result set (e.g., DDL, INSERT,
UPDATE, DELETE). You cannot execute statements that retrieve data (e.g., SELECT) this way. The next
section describes how to do that.

33.5.2. Executing a Statement with Input Parameters
A more powerful way to execute arbitrary SQL statements is to prepare them once and execute the pre-
pared statement as often as you like. It is also possible to prepare a generalized version of a statement
and then execute specific versions of it by substituting parameters. When preparing the statement, write
question marks where you want to substitute parameters later. For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "INSERT INTO test1 VALUES(?, ?);";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
...

EXEC SQL EXECUTE mystmt USING 42, ’foobar’;

When you don’t need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

33.5.3. Executing a Statement with a Result Set
To execute an SQL statement with a single result row, EXECUTE can be used. To save the result, add an
INTO clause.

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "SELECT a, b, c FROM test1 WHERE a > ?";
int v1, v2;

752

Chapter 33. ECPG - Embedded SQL in C

VARCHAR v3[50];
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
...

EXEC SQL EXECUTE mystmt INTO :v1, :v2, :v3 USING 37;

An EXECUTE command can have an INTO clause, a USING clause, both, or neither.

If a query is expected to return more than one result row, a cursor should be used, as in the following
example. (See Section 33.3.2 for more details about the cursor.)

EXEC SQL BEGIN DECLARE SECTION;
char dbaname[128];
char datname[128];
char *stmt = "SELECT u.usename as dbaname, d.datname "

" FROM pg_database d, pg_user u "
" WHERE d.datdba = u.usesysid";

EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;

EXEC SQL PREPARE stmt1 FROM :stmt;

EXEC SQL DECLARE cursor1 CURSOR FOR stmt1;
EXEC SQL OPEN cursor1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

EXEC SQL FETCH cursor1 INTO :dbaname,:datname;
printf("dbaname=%s, datname=%s\n", dbaname, datname);

}

EXEC SQL CLOSE cursor1;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;

33.6. pgtypes Library
The pgtypes library maps PostgreSQL database types to C equivalents that can be used in C programs.
It also offers functions to do basic calculations with those types within C, i.e., without the help of the
PostgreSQL server. See the following example:

EXEC SQL BEGIN DECLARE SECTION;
date date1;

753

Chapter 33. ECPG - Embedded SQL in C

timestamp ts1, tsout;
interval iv1;
char *out;

EXEC SQL END DECLARE SECTION;

PGTYPESdate_today(&date1);
EXEC SQL SELECT started, duration INTO :ts1, :iv1 FROM datetbl WHERE d=:date1;
PGTYPEStimestamp_add_interval(&ts1, &iv1, &tsout);
out = PGTYPEStimestamp_to_asc(&tsout);
printf("Started + duration: %s\n", out);
free(out);

33.6.1. The numeric Type
The numeric type offers to do calculations with arbitrary precision. See Section 8.1 for the equivalent
type in the PostgreSQL server. Because of the arbitrary precision this variable needs to be able to expand
and shrink dynamically. That’s why you can only create numeric variables on the heap, by means of the
PGTYPESnumeric_new and PGTYPESnumeric_free functions. The decimal type, which is similar but
limited in precision, can be created on the stack as well as on the heap.

The following functions can be used to work with the numeric type:

PGTYPESnumeric_new

Request a pointer to a newly allocated numeric variable.

numeric *PGTYPESnumeric_new(void);

PGTYPESnumeric_free

Free a numeric type, release all of its memory.

void PGTYPESnumeric_free(numeric *var);

PGTYPESnumeric_from_asc

Parse a numeric type from its string notation.

numeric *PGTYPESnumeric_from_asc(char *str, char **endptr);

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4. If the value could be
parsed successfully, a valid pointer is returned, else the NULL pointer. At the moment ECPG always
parses the complete string and so it currently does not support to store the address of the first invalid
character in *endptr. You can safely set endptr to NULL.

PGTYPESnumeric_to_asc

Returns a pointer to a string allocated by malloc that contains the string representation of the nu-
meric type num.

char *PGTYPESnumeric_to_asc(numeric *num, int dscale);

The numeric value will be printed with dscale decimal digits, with rounding applied if necessary.

754

Chapter 33. ECPG - Embedded SQL in C

PGTYPESnumeric_add

Add two numeric variables into a third one.

int PGTYPESnumeric_add(numeric *var1, numeric *var2, numeric *result);

The function adds the variables var1 and var2 into the result variable result. The function returns
0 on success and -1 in case of error.

PGTYPESnumeric_sub

Subtract two numeric variables and return the result in a third one.

int PGTYPESnumeric_sub(numeric *var1, numeric *var2, numeric *result);

The function subtracts the variable var2 from the variable var1. The result of the operation is stored
in the variable result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_mul

Multiply two numeric variables and return the result in a third one.

int PGTYPESnumeric_mul(numeric *var1, numeric *var2, numeric *result);

The function multiplies the variables var1 and var2. The result of the operation is stored in the
variable result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_div

Divide two numeric variables and return the result in a third one.

int PGTYPESnumeric_div(numeric *var1, numeric *var2, numeric *result);

The function divides the variables var1 by var2. The result of the operation is stored in the variable
result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_cmp

Compare two numeric variables.

int PGTYPESnumeric_cmp(numeric *var1, numeric *var2)

This function compares two numeric variables. In case of error, INT_MAX is returned. On success,
the function returns one of three possible results:

• 1, if var1 is bigger than var2

• -1, if var1 is smaller than var2

• 0, if var1 and var2 are equal

PGTYPESnumeric_from_int

Convert an int variable to a numeric variable.

int PGTYPESnumeric_from_int(signed int int_val, numeric *var);

This function accepts a variable of type signed int and stores it in the numeric variable var. Upon
success, 0 is returned and -1 in case of a failure.

PGTYPESnumeric_from_long

Convert a long int variable to a numeric variable.

int PGTYPESnumeric_from_long(signed long int long_val, numeric *var);

This function accepts a variable of type signed long int and stores it in the numeric variable var.
Upon success, 0 is returned and -1 in case of a failure.

755

Chapter 33. ECPG - Embedded SQL in C

PGTYPESnumeric_copy

Copy over one numeric variable into another one.

int PGTYPESnumeric_copy(numeric *src, numeric *dst);

This function copies over the value of the variable that src points to into the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_from_double

Convert a variable of type double to a numeric.

int PGTYPESnumeric_from_double(double d, numeric *dst);

This function accepts a variable of type double and stores the result in the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_to_double

Convert a variable of type numeric to double.

int PGTYPESnumeric_to_double(numeric *nv, double *dp)

The function converts the numeric value from the variable that nv points to into the double variable
that dp points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_int

Convert a variable of type numeric to int.

int PGTYPESnumeric_to_int(numeric *nv, int *ip);

The function converts the numeric value from the variable that nv points to into the integer variable
that ip points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_long

Convert a variable of type numeric to long.

int PGTYPESnumeric_to_long(numeric *nv, long *lp);

The function converts the numeric value from the variable that nv points to into the long integer
variable that lp points to. It returns 0 on success and -1 if an error occurs, including overflow. On
overflow, the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_decimal

Convert a variable of type numeric to decimal.

int PGTYPESnumeric_to_decimal(numeric *src, decimal *dst);

The function converts the numeric value from the variable that src points to into the decimal variable
that dst points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_from_decimal

Convert a variable of type decimal to numeric.

int PGTYPESnumeric_from_decimal(decimal *src, numeric *dst);

The function converts the decimal value from the variable that src points to into the numeric vari-
able that dst points to. It returns 0 on success and -1 if an error occurs. Since the decimal type is
implemented as a limited version of the numeric type, overflow cannot occur with this conversion.

756

Chapter 33. ECPG - Embedded SQL in C

33.6.2. The date Type
The date type in C enables your programs to deal with data of the SQL type date. See Section 8.5 for the
equivalent type in the PostgreSQL server.

The following functions can be used to work with the date type:

PGTYPESdate_from_timestamp

Extract the date part from a timestamp.

date PGTYPESdate_from_timestamp(timestamp dt);

The function receives a timestamp as its only argument and returns the extracted date part from this
timestamp.

PGTYPESdate_from_asc

Parse a date from its textual representation.

date PGTYPESdate_from_asc(char *str, char **endptr);

The function receives a C char* string str and a pointer to a C char* string endptr. At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

Note that the function always assumes MDY-formatted dates and there is currently no variable to
change that within ECPG.

Table 33-2 shows the allowed input formats.

Table 33-2. Valid Input Formats for PGTYPESdate_from_asc

Input Result
January 8, 1999 January 8, 1999

1999-01-08 January 8, 1999

1/8/1999 January 8, 1999

1/18/1999 January 18, 1999

01/02/03 February 1, 2003

1999-Jan-08 January 8, 1999

Jan-08-1999 January 8, 1999

08-Jan-1999 January 8, 1999

99-Jan-08 January 8, 1999

08-Jan-99 January 8, 1999

08-Jan-06 January 8, 2006

Jan-08-99 January 8, 1999

19990108 ISO 8601; January 8, 1999

990108 ISO 8601; January 8, 1999

1999.008 year and day of year

757

Chapter 33. ECPG - Embedded SQL in C

Input Result
J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

PGTYPESdate_to_asc

Return the textual representation of a date variable.

char *PGTYPESdate_to_asc(date dDate);

The function receives the date dDate as its only parameter. It will output the date in the form
1999-01-18, i.e., in the YYYY-MM-DD format.

PGTYPESdate_julmdy

Extract the values for the day, the month and the year from a variable of type date.

void PGTYPESdate_julmdy(date d, int *mdy);

The function receives the date d and a pointer to an array of 3 integer values mdy. The variable name
indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1] will
be set to the value of the day and mdy[2] will contain the year.

PGTYPESdate_mdyjul

Create a date value from an array of 3 integers that specify the day, the month and the year of the
date.

void PGTYPESdate_mdyjul(int *mdy, date *jdate);

The function receives the array of the 3 integers (mdy) as its first argument and as its second argument
a pointer to a variable of type date that should hold the result of the operation.

PGTYPESdate_dayofweek

Return a number representing the day of the week for a date value.

int PGTYPESdate_dayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.

• 0 - Sunday

• 1 - Monday

• 2 - Tuesday

• 3 - Wednesday

• 4 - Thursday

• 5 - Friday

• 6 - Saturday

PGTYPESdate_today

Get the current date.

void PGTYPESdate_today(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

758

Chapter 33. ECPG - Embedded SQL in C

PGTYPESdate_fmt_asc

Convert a variable of type date to its textual representation using a format mask.

int PGTYPESdate_fmt_asc(date dDate, char *fmtstring, char *outbuf);

The function receives the date to convert (dDate), the format mask (fmtstring) and the string that
will hold the textual representation of the date (outbuf).

On success, 0 is returned and a negative value if an error occurred.

The following literals are the field specifiers you can use:

• dd - The number of the day of the month.

• mm - The number of the month of the year.

• yy - The number of the year as a two digit number.

• yyyy - The number of the year as a four digit number.

• ddd - The name of the day (abbreviated).

• mmm - The name of the month (abbreviated).

All other characters are copied 1:1 to the output string.

Table 33-3 indicates a few possible formats. This will give you an idea of how to use this function.
All output lines are based on the same date: November 23, 1959.

Table 33-3. Valid Input Formats for PGTYPESdate_fmt_asc

Format Result
mmddyy 112359

ddmmyy 231159

yymmdd 591123

yy/mm/dd 59/11/23

yy mm dd 59 11 23

yy.mm.dd 59.11.23

.mm.yyyy.dd. .11.1959.23.

mmm. dd, yyyy Nov. 23, 1959

mmm dd yyyy Nov 23 1959

yyyy dd mm 1959 23 11

ddd, mmm. dd, yyyy Mon, Nov. 23, 1959

(ddd) mmm. dd, yyyy (Mon) Nov. 23, 1959

PGTYPESdate_defmt_asc

Use a format mask to convert a C char* string to a value of type date.

int PGTYPESdate_defmt_asc(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the

759

Chapter 33. ECPG - Embedded SQL in C

year, mm to indicate the position of the month and dd to indicate the position of the day.

Table 33-4 indicates a few possible formats. This will give you an idea of how to use this function.

Table 33-4. Valid Input Formats for rdefmtdate

Format String Result
ddmmyy 21-2-54 1954-02-21

ddmmyy 2-12-54 1954-12-02

ddmmyy 20111954 1954-11-20

ddmmyy 130464 1964-04-13

mmm.dd.yyyy MAR-12-1967 1967-03-12

yy/mm/dd 1954, February 3rd 1954-02-03

mmm.dd.yyyy 041269 1969-04-12

yy/mm/dd In the year 2525, in

the month of July,

mankind will be alive

on the 28th day

2525-07-28

dd-mm-yy I said on the 28th of

July in the year 2525

2525-07-28

mmm.dd.yyyy 9/14/58 1958-09-14

yy/mm/dd 47/03/29 1947-03-29

mmm.dd.yyyy oct 28 1975 1975-10-28

mmddyy Nov 14th, 1985 1985-11-14

33.6.3. The timestamp Type
The timestamp type in C enables your programs to deal with data of the SQL type timestamp. See Section
8.5 for the equivalent type in the PostgreSQL server.

The following functions can be used to work with the timestamp type:

PGTYPEStimestamp_from_asc

Parse a timestamp from its textual representation into a timestamp variable.

timestamp PGTYPEStimestamp_from_asc(char *str, char **endptr);

The function receives the string to parse (str) and a pointer to a C char* (endptr). At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

The function returns the parsed timestamp on success. On error, PGTYPESInvalidTimestamp is
returned and errno is set to PGTYPES_TS_BAD_TIMESTAMP. See PGTYPESInvalidTimestamp

for important notes on this value.

760

Chapter 33. ECPG - Embedded SQL in C

In general, the input string can contain any combination of an allowed date specification, a whitespace
character and an allowed time specification. Note that time zones are not supported by ECPG. It can
parse them but does not apply any calculation as the PostgreSQL server does for example. Timezone
specifiers are silently discarded.

Table 33-5 contains a few examples for input strings.

Table 33-5. Valid Input Formats for PGTYPEStimestamp_from_asc

Input Result
1999-01-08 04:05:06 1999-01-08 04:05:06

January 8 04:05:06 1999 PST 1999-01-08 04:05:06

1999-Jan-08 04:05:06.789-8 1999-01-08 04:05:06.789 (time zone

specifier ignored)

J2451187 04:05-08:00 1999-01-08 04:05:00 (time zone

specifier ignored)

PGTYPEStimestamp_to_asc

Converts a date to a C char* string.

char *PGTYPEStimestamp_to_asc(timestamp tstamp);

The function receives the timestamp tstamp as its only argument and returns an allocated string that
contains the textual representation of the timestamp.

PGTYPEStimestamp_current

Retrieve the current timestamp.

void PGTYPEStimestamp_current(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points
to.

PGTYPEStimestamp_fmt_asc

Convert a timestamp variable to a C char* using a format mask.

int PGTYPEStimestamp_fmt_asc(timestamp *ts, char *output, int str_len, char *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

You can use the following format specifiers for the format mask. The format specifiers are the same
ones that are used in the strftime function in libc. Any non-format specifier will be copied into the
output buffer.

• %A - is replaced by national representation of the full weekday name.

• %a - is replaced by national representation of the abbreviated weekday name.

• %B - is replaced by national representation of the full month name.

• %b - is replaced by national representation of the abbreviated month name.

• %C - is replaced by (year / 100) as decimal number; single digits are preceded by a zero.

761

Chapter 33. ECPG - Embedded SQL in C

• %c - is replaced by national representation of time and date.

• %D - is equivalent to %m/%d/%y.

• %d - is replaced by the day of the month as a decimal number (01-31).

• %E* %O* - POSIX locale extensions. The sequences %Ec %EC %Ex %EX %Ey %EY %Od %Oe %OH %OI
%Om %OM %OS %Ou %OU %OV %Ow %OW %Oy are supposed to provide alternative representations.

Additionally %OB implemented to represent alternative months names (used standalone, without
day mentioned).

• %e - is replaced by the day of month as a decimal number (1-31); single digits are preceded by a
blank.

• %F - is equivalent to %Y-%m-%d.

• %G - is replaced by a year as a decimal number with century. This year is the one that contains the
greater part of the week (Monday as the first day of the week).

• %g - is replaced by the same year as in %G, but as a decimal number without century (00-99).

• %H - is replaced by the hour (24-hour clock) as a decimal number (00-23).

• %h - the same as %b.

• %I - is replaced by the hour (12-hour clock) as a decimal number (01-12).

• %j - is replaced by the day of the year as a decimal number (001-366).

• %k - is replaced by the hour (24-hour clock) as a decimal number (0-23); single digits are preceded
by a blank.

• %l - is replaced by the hour (12-hour clock) as a decimal number (1-12); single digits are preceded
by a blank.

• %M - is replaced by the minute as a decimal number (00-59).

• %m - is replaced by the month as a decimal number (01-12).

• %n - is replaced by a newline.

• %O* - the same as %E*.

• %p - is replaced by national representation of either “ante meridiem” or “post meridiem” as appro-
priate.

• %R - is equivalent to %H:%M.

• %r - is equivalent to %I:%M:%S %p.

• %S - is replaced by the second as a decimal number (00-60).

• %s - is replaced by the number of seconds since the Epoch, UTC.

• %T - is equivalent to %H:%M:%S

• %t - is replaced by a tab.

• %U - is replaced by the week number of the year (Sunday as the first day of the week) as a decimal
number (00-53).

• %u - is replaced by the weekday (Monday as the first day of the week) as a decimal number (1-7).

762

Chapter 33. ECPG - Embedded SQL in C

• %V - is replaced by the week number of the year (Monday as the first day of the week) as a decimal
number (01-53). If the week containing January 1 has four or more days in the new year, then it is
week 1; otherwise it is the last week of the previous year, and the next week is week 1.

• %v - is equivalent to %e-%b-%Y.

• %W - is replaced by the week number of the year (Monday as the first day of the week) as a decimal
number (00-53).

• %w - is replaced by the weekday (Sunday as the first day of the week) as a decimal number (0-6).

• %X - is replaced by national representation of the time.

• %x - is replaced by national representation of the date.

• %Y - is replaced by the year with century as a decimal number.

• %y - is replaced by the year without century as a decimal number (00-99).

• %Z - is replaced by the time zone name.

• %z - is replaced by the time zone offset from UTC; a leading plus sign stands for east of UTC,
a minus sign for west of UTC, hours and minutes follow with two digits each and no delimiter
between them (common form for RFC 822 date headers).

• %+ - is replaced by national representation of the date and time.

• %-* - GNU libc extension. Do not do any padding when performing numerical outputs.

• $_* - GNU libc extension. Explicitly specify space for padding.

• %0* - GNU libc extension. Explicitly specify zero for padding.

• %% - is replaced by %.

PGTYPEStimestamp_sub

Subtract one timestamp from another one and save the result in a variable of type interval.

int PGTYPEStimestamp_sub(timestamp *ts1, timestamp *ts2, interval *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_defmt_asc

Parse a timestamp value from its textual representation using a formatting mask.

int PGTYPEStimestamp_defmt_asc(char *str, char *fmt, timestamp *d);

The function receives the textual representation of a timestamp in the variable str as well as the
formatting mask to use in the variable fmt. The result will be stored in the variable that d points to.

If the formatting mask fmt is NULL, the function will fall back to the default formatting mask which
is %Y-%m-%d %H:%M:%S.

This is the reverse function to PGTYPEStimestamp_fmt_asc. See the documentation there in order
to find out about the possible formatting mask entries.

763

Chapter 33. ECPG - Embedded SQL in C

PGTYPEStimestamp_add_interval

Add an interval variable to a timestamp variable.

int PGTYPEStimestamp_add_interval(timestamp *tin, interval *span, timestamp *tout);

The function receives a pointer to a timestamp variable tin and a pointer to an interval variable
span. It adds the interval to the timestamp and saves the resulting timestamp in the variable that
tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_sub_interval

Subtract an interval variable from a timestamp variable.

int PGTYPEStimestamp_sub_interval(timestamp *tin, interval *span, timestamp *tout);

The function subtracts the interval variable that span points to from the timestamp variable that tin
points to and saves the result into the variable that tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

33.6.4. The interval Type
The interval type in C enables your programs to deal with data of the SQL type interval. See Section 8.5
for the equivalent type in the PostgreSQL server.

The following functions can be used to work with the interval type:

PGTYPESinterval_new

Return a pointer to a newly allocated interval variable.

interval *PGTYPESinterval_new(void);

PGTYPESinterval_free

Release the memory of a previously allocated interval variable.

void PGTYPESinterval_new(interval *intvl);

PGTYPESinterval_from_asc

Parse an interval from its textual representation.

interval *PGTYPESinterval_from_asc(char *str, char **endptr);

The function parses the input string str and returns a pointer to an allocated interval variable. At
the moment ECPG always parses the complete string and so it currently does not support to store the
address of the first invalid character in *endptr. You can safely set endptr to NULL.

PGTYPESinterval_to_asc

Convert a variable of type interval to its textual representation.

char *PGTYPESinterval_to_asc(interval *span);

The function converts the interval variable that span points to into a C char*. The output looks like
this example: @ 1 day 12 hours 59 mins 10 secs.

764

Chapter 33. ECPG - Embedded SQL in C

PGTYPESinterval_copy

Copy a variable of type interval.

int PGTYPESinterval_copy(interval *intvlsrc, interval *intvldest);

The function copies the interval variable that intvlsrc points to into the variable that intvldest
points to. Note that you need to allocate the memory for the destination variable before.

33.6.5. The decimal Type
The decimal type is similar to the numeric type. However it is limited to a maximum precision of 30
significant digits. In contrast to the numeric type which can be created on the heap only, the decimal
type can be created either on the stack or on the heap (by means of the functions PGTYPESdecimal_new
and PGTYPESdecimal_free). There are a lot of other functions that deal with the decimal type in the
Informix compatibility mode described in Section 33.15.

The following functions can be used to work with the decimal type and are not only contained in the
libcompat library.

PGTYPESdecimal_new

Request a pointer to a newly allocated decimal variable.

decimal *PGTYPESdecimal_new(void);

PGTYPESdecimal_free

Free a decimal type, release all of its memory.

void PGTYPESdecimal_free(decimal *var);

33.6.6. errno Values of pgtypeslib

PGTYPES_NUM_BAD_NUMERIC

An argument should contain a numeric variable (or point to a numeric variable) but in fact its in-
memory representation was invalid.

PGTYPES_NUM_OVERFLOW

An overflow occurred. Since the numeric type can deal with almost arbitrary precision, converting a
numeric variable into other types might cause overflow.

PGTYPES_NUM_UNDERFLOW

An underflow occurred. Since the numeric type can deal with almost arbitrary precision, converting
a numeric variable into other types might cause underflow.

PGTYPES_NUM_DIVIDE_ZERO

A division by zero has been attempted.

765

Chapter 33. ECPG - Embedded SQL in C

PGTYPES_DATE_BAD_DATE

An invalid date string was passed to the PGTYPESdate_from_asc function.

PGTYPES_DATE_ERR_EARGS

Invalid arguments were passed to the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_ERR_ENOSHORTDATE

An invalid token in the input string was found by the PGTYPESdate_defmt_asc function.

PGTYPES_INTVL_BAD_INTERVAL

An invalid interval string was passed to the PGTYPESinterval_from_asc function, or an invalid
interval value was passed to the PGTYPESinterval_to_asc function.

PGTYPES_DATE_ERR_ENOTDMY

There was a mismatch in the day/month/year assignment in the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_BAD_DAY

An invalid day of the month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_BAD_MONTH

An invalid month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_TS_BAD_TIMESTAMP

An invalid timestamp string pass passed to the PGTYPEStimestamp_from_asc function, or an
invalid timestamp value was passed to the PGTYPEStimestamp_to_asc function.

PGTYPES_TS_ERR_EINFTIME

An infinite timestamp value was encountered in a context that cannot handle it.

33.6.7. Special Constants of pgtypeslib

PGTYPESInvalidTimestamp

A value of type timestamp representing an invalid time stamp. This is returned by the function
PGTYPEStimestamp_from_asc on parse error. Note that due to the internal representation of the
timestamp data type, PGTYPESInvalidTimestamp is also a valid timestamp at the same time.
It is set to 1899-12-31 23:59:59. In order to detect errors, make sure that your application
does not only test for PGTYPESInvalidTimestamp but also for errno != 0 after each call to
PGTYPEStimestamp_from_asc.

766

Chapter 33. ECPG - Embedded SQL in C

33.7. Using Descriptor Areas
An SQL descriptor area is a more sophisticated method for processing the result of a SELECT, FETCH or a
DESCRIBE statement. An SQL descriptor area groups the data of one row of data together with metadata
items into one data structure. The metadata is particularly useful when executing dynamic SQL statements,
where the nature of the result columns might not be known ahead of time. PostgreSQL provides two ways
to use Descriptor Areas: the named SQL Descriptor Areas and the C-structure SQLDAs.

33.7.1. Named SQL Descriptor Areas
A named SQL descriptor area consists of a header, which contains information concerning the entire
descriptor, and one or more item descriptor areas, which basically each describe one column in the result
row.

Before you can use an SQL descriptor area, you need to allocate one:

EXEC SQL ALLOCATE DESCRIPTOR identifier;

The identifier serves as the “variable name” of the descriptor area. When you don’t need the descriptor
anymore, you should deallocate it:

EXEC SQL DEALLOCATE DESCRIPTOR identifier;

To use a descriptor area, specify it as the storage target in an INTO clause, instead of listing host variables:

EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc;

If the result set is empty, the Descriptor Area will still contain the metadata from the query, i.e. the field
names.

For not yet executed prepared queries, the DESCRIBE statement can be used to get the metadata of the
result set:

EXEC SQL BEGIN DECLARE SECTION;
char *sql_stmt = "SELECT * FROM table1";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;

Before PostgreSQL 9.0, the SQL keyword was optional, so using DESCRIPTOR and SQL DESCRIPTOR

produced named SQL Descriptor Areas. Now it is mandatory, omitting the SQL keyword produces SQLDA
Descriptor Areas, see Section 33.7.2.

In DESCRIBE and FETCH statements, the INTO and USING keywords can be used to similarly: they produce
the result set and the metadata in a Descriptor Area.

Now how do you get the data out of the descriptor area? You can think of the descriptor area as a structure
with named fields. To retrieve the value of a field from the header and store it into a host variable, use the
following command:

767

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL GET DESCRIPTOR name :hostvar = field;

Currently, there is only one header field defined: COUNT, which tells how many item descriptor areas exist
(that is, how many columns are contained in the result). The host variable needs to be of an integer type.
To get a field from the item descriptor area, use the following command:

EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field;

num can be a literal integer or a host variable containing an integer. Possible fields are:

CARDINALITY (integer)

number of rows in the result set

DATA

actual data item (therefore, the data type of this field depends on the query)

DATETIME_INTERVAL_CODE (integer)

When TYPE is 9, DATETIME_INTERVAL_CODE will have a value of 1 for DATE, 2 for TIME, 3 for
TIMESTAMP, 4 for TIME WITH TIME ZONE, or 5 for TIMESTAMP WITH TIME ZONE.

DATETIME_INTERVAL_PRECISION (integer)

not implemented

INDICATOR (integer)

the indicator (indicating a null value or a value truncation)

KEY_MEMBER (integer)

not implemented

LENGTH (integer)

length of the datum in characters

NAME (string)

name of the column

NULLABLE (integer)

not implemented

OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

PRECISION (integer)

precision (for type numeric)

RETURNED_LENGTH (integer)

length of the datum in characters

RETURNED_OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

768

Chapter 33. ECPG - Embedded SQL in C

SCALE (integer)

scale (for type numeric)

TYPE (integer)

numeric code of the data type of the column

In EXECUTE, DECLARE and OPEN statements, the effect of the INTO and USING keywords are different.
A Descriptor Area can also be manually built to provide the input parameters for a query or a cursor and
USING SQL DESCRIPTOR name is the way to pass the input parameters into a parametrized query. The
statement to build a named SQL Descriptor Area is below:

EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar;

PostgreSQL supports retrieving more that one record in one FETCH statement and storing the data in host
variables in this case assumes that the variable is an array. E.g.:

EXEC SQL BEGIN DECLARE SECTION;
int id[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc;

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :id = DATA;

33.7.2. SQLDA Descriptor Areas
An SQLDA Descriptor Area is a C language structure which can be also used to get the result set and the
metadata of a query. One structure stores one record from the result set.

EXEC SQL include sqlda.h;
sqlda_t *mysqlda;

EXEC SQL FETCH 3 FROM mycursor INTO DESCRIPTOR mysqlda;

Note that the SQL keyword is omitted. The paragraphs about the use cases of the INTO and USING key-
words in Section 33.7.1 also apply here with an addition. In a DESCRIBE statement the DESCRIPTOR

keyword can be completely omitted if the INTO keyword is used:

EXEC SQL DESCRIBE prepared_statement INTO mysqlda;

The general flow of a program that uses SQLDA is:

1. Prepare a query, and declare a cursor for it.

2. Declare an SQLDA for the result rows.

769

Chapter 33. ECPG - Embedded SQL in C

3. Declare an SQLDA for the input parameters, and initialize them (memory allocation, parameter set-
tings).

4. Open a cursor with the input SQLDA.

5. Fetch rows from the cursor, and store them into an output SQLDA.

6. Read values from the output SQLDA into the host variables (with conversion if necessary).

7. Close the cursor.

8. Free the memory area allocated for the input SQLDA.

33.7.2.1. SQLDA Data Structure

SQLDA uses three data structure types: sqlda_t, sqlvar_t, and struct sqlname.

Tip: PostgreSQL’s SQLDA has a similar data structure to the one in IBM DB2 Universal Database, so
some technical information on DB2’s SQLDA could help understanding PostgreSQL’s one better.

33.7.2.1.1. sqlda_t Structure

The structure type sqlda_t is the type of the actual SQLDA. It holds one record. And two or more
sqlda_t structures can be connected in a linked list with the pointer in the desc_next field, thus rep-
resenting an ordered collection of rows. So, when two or more rows are fetched, the application can read
them by following the desc_next pointer in each sqlda_t node.

The definition of sqlda_t is:

struct sqlda_struct
{

char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlda_struct *desc_next;
struct sqlvar_struct sqlvar[1];

};

typedef struct sqlda_struct sqlda_t;

The meaning of the fields is:

sqldaid

It contains the literal string "SQLDA ".

sqldabc

It contains the size of the allocated space in bytes.

770

Chapter 33. ECPG - Embedded SQL in C

sqln

It contains the number of input parameters for a parametrized query case it’s passed into OPEN,
DECLARE or EXECUTE statements using the USING keyword. In case it’s used as output of SELECT,
EXECUTE or FETCH statements, its value is the same as sqld statement

sqld

It contains the number of fields in a result set.

desc_next

If the query returns more than one record, multiple linked SQLDA structures are returned, and
desc_next holds a pointer to the next entry in the list.

sqlvar

This is the array of the columns in the result set.

33.7.2.1.2. sqlvar_t Structure

The structure type sqlvar_t holds a column value and metadata such as type and length. The definition
of the type is:

struct sqlvar_struct
{

short sqltype;
short sqllen;
char *sqldata;
short *sqlind;
struct sqlname sqlname;

};

typedef struct sqlvar_struct sqlvar_t;

The meaning of the fields is:

sqltype

Contains the type identifier of the field. For values, see enum ECPGttype in ecpgtype.h.

sqllen

Contains the binary length of the field. e.g. 4 bytes for ECPGt_int.

sqldata

Points to the data. The format of the data is described in Section 33.4.4.

sqlind

Points to the null indicator. 0 means not null, -1 means null.

771

Chapter 33. ECPG - Embedded SQL in C

sqlname

The name of the field.

33.7.2.1.3. struct sqlname Structure

A struct sqlname structure holds a column name. It is used as a member of the sqlvar_t structure.
The definition of the structure is:

#define NAMEDATALEN 64

struct sqlname
{

short length;
char data[NAMEDATALEN];

};

The meaning of the fields is:

length

Contains the length of the field name.

data

Contains the actual field name.

33.7.2.2. Retrieving a Result Set Using an SQLDA

The general steps to retrieve a query result set through an SQLDA are:

1. Declare an sqlda_t structure to receive the result set.

2. Execute FETCH/EXECUTE/DESCRIBE commands to process a query specifying the declared SQLDA.

3. Check the number of records in the result set by looking at sqln, a member of the sqlda_t structure.

4. Get the values of each column from sqlvar[0], sqlvar[1], etc., members of the sqlda_t struc-
ture.

5. Go to next row (sqlda_t structure) by following the desc_next pointer, a member of the sqlda_t
structure.

6. Repeat above as you need.

Here is an example retrieving a result set through an SQLDA.

First, declare a sqlda_t structure to receive the result set.

sqlda_t *sqlda1;

772

Chapter 33. ECPG - Embedded SQL in C

Next, specify the SQLDA in a command. This is a FETCH command example.

EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Run a loop following the linked list to retrieve the rows.

sqlda_t *cur_sqlda;

for (cur_sqlda = sqlda1;
cur_sqlda != NULL;
cur_sqlda = cur_sqlda->desc_next)

{
...

}

Inside the loop, run another loop to retrieve each column data (sqlvar_t structure) of the row.

for (i = 0; i < cur_sqlda->sqld; i++)
{

sqlvar_t v = cur_sqlda->sqlvar[i];
char *sqldata = v.sqldata;
short sqllen = v.sqllen;
...

}

To get a column value, check the sqltype value, a member of the sqlvar_t structure. Then, switch to
an appropriate way, depending on the column type, to copy data from the sqlvar field to a host variable.

char var_buf[1024];

switch (v.sqltype)
{

case ECPGt_char:
memset(&var_buf, 0, sizeof(var_buf));
memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf) - 1 : sqllen));
break;

case ECPGt_int: /* integer */
memcpy(&intval, sqldata, sqllen);
snprintf(var_buf, sizeof(var_buf), "%d", intval);
break;

...
}

773

Chapter 33. ECPG - Embedded SQL in C

33.7.2.3. Passing Query Parameters Using an SQLDA

The general steps to use an SQLDA to pass input parameters to a prepared query are:

1. Create a prepared query (prepared statement)

2. Declare a sqlda_t structure as an input SQLDA.

3. Allocate memory area (as sqlda_t structure) for the input SQLDA.

4. Set (copy) input values in the allocated memory.

5. Open a cursor with specifying the input SQLDA.

Here is an example.

First, create a prepared statement.

EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid, * FROM pg_database d, pg_stat_database s WHERE d.oid = s.datid AND (d.datname = ? OR d.oid = ?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :query;

Next, allocate memory for an SQLDA, and set the number of input parameters in sqln, a member vari-
able of the sqlda_t structure. When two or more input parameters are required for the prepared query,
the application has to allocate additional memory space which is calculated by (nr. of params - 1) *
sizeof(sqlvar_t). The example shown here allocates memory space for two input parameters.

sqlda_t *sqlda2;

sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

sqlda2->sqln = 2; /* number of input variables */

After memory allocation, store the parameter values into the sqlvar[] array. (This is same array used for
retrieving column values when the SQLDA is receiving a result set.) In this example, the input parameters
are "postgres", having a string type, and 1, having an integer type.

sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen = 8;

int intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen = sizeof(intval);

By opening a cursor and specifying the SQLDA that was set up beforehand, the input parameters are
passed to the prepared statement.

774

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Finally, after using input SQLDAs, the allocated memory space must be freed explicitly, unlike SQLDAs
used for receiving query results.

free(sqlda2);

33.7.2.4. A Sample Application Using SQLDA

Here is an example program, which describes how to fetch access statistics of the databases, specified by
the input parameters, from the system catalogs.

This application joins two system tables, pg_database and pg_stat_database on the database OID, and
also fetches and shows the database statistics which are retrieved by two input parameters (a database
postgres, and OID 1).

First, declare an SQLDA for input and an SQLDA for output.

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* an output descriptor */
sqlda_t *sqlda2; /* an input descriptor */

Next, connect to the database, prepare a statement, and declare a cursor for the prepared statement.

int
main(void)
{

EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND (d.datname=? OR d.oid=?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;

EXEC SQL PREPARE stmt1 FROM :query;
EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Next, put some values in the input SQLDA for the input parameters. Allocate memory for the input
SQLDA, and set the number of input parameters to sqln. Store type, value, and value length into
sqltype, sqldata, and sqllen in the sqlvar structure.

/* Create SQLDA structure for input parameters. */
sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
sqlda2->sqln = 2; /* number of input variables */

775

Chapter 33. ECPG - Embedded SQL in C

sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen = 8;

intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *)&intval;
sqlda2->sqlvar[1].sqllen = sizeof(intval);

After setting up the input SQLDA, open a cursor with the input SQLDA.

/* Open a cursor with input parameters. */
EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Fetch rows into the output SQLDA from the opened cursor. (Generally, you have to call FETCH repeatedly
in the loop, to fetch all rows in the result set.)

while (1)
{

sqlda_t *cur_sqlda;

/* Assign descriptor to the cursor */
EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Next, retrieve the fetched records from the SQLDA, by following the linked list of the sqlda_t structure.

for (cur_sqlda = sqlda1 ;
cur_sqlda != NULL ;
cur_sqlda = cur_sqlda->desc_next)

{
...

Read each columns in the first record. The number of columns is stored in sqld, the actual data of the
first column is stored in sqlvar[0], both members of the sqlda_t structure.

/* Print every column in a row. */
for (i = 0; i < sqlda1->sqld; i++)
{

sqlvar_t v = sqlda1->sqlvar[i];
char *sqldata = v.sqldata;
short sqllen = v.sqllen;

strncpy(name_buf, v.sqlname.data, v.sqlname.length);
name_buf[v.sqlname.length] = ’\0’;

776

Chapter 33. ECPG - Embedded SQL in C

Now, the column data is stored in the variable v. Copy every datum into host variables, looking at
v.sqltype for the type of the column.

switch (v.sqltype) {
int intval;
double doubleval;
unsigned long long int longlongval;

case ECPGt_char:
memset(&var_buf, 0, sizeof(var_buf));
memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf)-1 : sqllen));
break;

case ECPGt_int: /* integer */
memcpy(&intval, sqldata, sqllen);
snprintf(var_buf, sizeof(var_buf), "%d", intval);
break;

...

default:
...

}

printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
}

Close the cursor after processing all of records, and disconnect from the database.

EXEC SQL CLOSE cur1;
EXEC SQL COMMIT;

EXEC SQL DISCONNECT ALL;

The whole program is shown in Example 33-1.

Example 33-1. Example SQLDA Program

#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* descriptor for output */
sqlda_t *sqlda2; /* descriptor for input */

EXEC SQL WHENEVER NOT FOUND DO BREAK;

777

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{

EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE d.oid=s.datid AND (d.datname=? OR d.oid=?)";

int intval;
unsigned long long int longlongval;
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO uptimedb AS con1 USER uptime;

EXEC SQL PREPARE stmt1 FROM :query;
EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

/* Create a SQLDA structure for an input parameter */
sqlda2 = (sqlda_t *)malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
sqlda2->sqln = 2; /* a number of input variables */

sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen = 8;

intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen = sizeof(intval);

/* Open a cursor with input parameters. */
EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

while (1)
{

sqlda_t *cur_sqlda;

/* Assign descriptor to the cursor */
EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

for (cur_sqlda = sqlda1 ;
cur_sqlda != NULL ;
cur_sqlda = cur_sqlda->desc_next)

{
int i;
char name_buf[1024];
char var_buf[1024];

/* Print every column in a row. */
for (i=0 ; i<cur_sqlda->sqld ; i++)
{

sqlvar_t v = cur_sqlda->sqlvar[i];

778

Chapter 33. ECPG - Embedded SQL in C

char *sqldata = v.sqldata;
short sqllen = v.sqllen;

strncpy(name_buf, v.sqlname.data, v.sqlname.length);
name_buf[v.sqlname.length] = ’\0’;

switch (v.sqltype)
{

case ECPGt_char:
memset(&var_buf, 0, sizeof(var_buf));
memcpy(&var_buf, sqldata, (sizeof(var_buf)<=sqllen ? sizeof(var_buf)-1 : sqllen));
break;

case ECPGt_int: /* integer */
memcpy(&intval, sqldata, sqllen);
snprintf(var_buf, sizeof(var_buf), "%d", intval);
break;

case ECPGt_long_long: /* bigint */
memcpy(&longlongval, sqldata, sqllen);
snprintf(var_buf, sizeof(var_buf), "%lld", longlongval);
break;

default:
{

int i;
memset(var_buf, 0, sizeof(var_buf));
for (i = 0; i < sqllen; i++)
{

char tmpbuf[16];
snprintf(tmpbuf, sizeof(tmpbuf), "%02x ", (unsigned char) sqldata[i]);
strncat(var_buf, tmpbuf, sizeof(var_buf));

}
}

break;
}

printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
}

printf("\n");
}

}

EXEC SQL CLOSE cur1;
EXEC SQL COMMIT;

EXEC SQL DISCONNECT ALL;

return 0;
}

The output of this example should look something like the following (some numbers will vary).

779

Chapter 33. ECPG - Embedded SQL in C

oid = 1 (type: 1)
datname = template1 (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = t (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = {=c/uptime,uptime=CTc/uptime} (type: 1)
datid = 1 (type: 1)
datname = template1 (type: 1)
numbackends = 0 (type: 5)
xact_commit = 113606 (type: 9)
xact_rollback = 0 (type: 9)
blks_read = 130 (type: 9)
blks_hit = 7341714 (type: 9)
tup_returned = 38262679 (type: 9)
tup_fetched = 1836281 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

oid = 11511 (type: 1)
datname = postgres (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = f (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = (type: 1)
datid = 11511 (type: 1)
datname = postgres (type: 1)
numbackends = 0 (type: 5)
xact_commit = 221069 (type: 9)
xact_rollback = 18 (type: 9)
blks_read = 1176 (type: 9)
blks_hit = 13943750 (type: 9)
tup_returned = 77410091 (type: 9)
tup_fetched = 3253694 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

780

Chapter 33. ECPG - Embedded SQL in C

33.8. Error Handling
This section describes how you can handle exceptional conditions and warnings in an embedded SQL
program. There are two nonexclusive facilities for this.

• Callbacks can be configured to handle warning and error conditions using the WHENEVER command.

• Detailed information about the error or warning can be obtained from the sqlca variable.

33.8.1. Setting Callbacks
One simple method to catch errors and warnings is to set a specific action to be executed whenever a
particular condition occurs. In general:

EXEC SQL WHENEVER condition action;

condition can be one of the following:

SQLERROR

The specified action is called whenever an error occurs during the execution of an SQL statement.

SQLWARNING

The specified action is called whenever a warning occurs during the execution of an SQL statement.

NOT FOUND

The specified action is called whenever an SQL statement retrieves or affects zero rows. (This con-
dition is not an error, but you might be interested in handling it specially.)

action can be one of the following:

CONTINUE

This effectively means that the condition is ignored. This is the default.

GOTO label

GO TO label

Jump to the specified label (using a C goto statement).

SQLPRINT

Print a message to standard error. This is useful for simple programs or during prototyping. The
details of the message cannot be configured.

STOP

Call exit(1), which will terminate the program.

781

Chapter 33. ECPG - Embedded SQL in C

DO BREAK

Execute the C statement break. This should only be used in loops or switch statements.

CALL name (args)

DO name (args)

Call the specified C functions with the specified arguments.

The SQL standard only provides for the actions CONTINUE and GOTO (and GO TO).

Here is an example that you might want to use in a simple program. It prints a simple message when a
warning occurs and aborts the program when an error happens:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

The statement EXEC SQL WHENEVER is a directive of the SQL preprocessor, not a C statement. The
error or warning actions that it sets apply to all embedded SQL statements that appear below the point
where the handler is set, unless a different action was set for the same condition between the first EXEC
SQL WHENEVER and the SQL statement causing the condition, regardless of the flow of control in the C
program. So neither of the two following C program excerpts will have the desired effect:

/*
* WRONG

*/
int main(int argc, char *argv[])
{

...
if (verbose) {

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
}
...
EXEC SQL SELECT ...;
...

}

/*
* WRONG

*/
int main(int argc, char *argv[])
{

...
set_error_handler();
...
EXEC SQL SELECT ...;
...

}

static void set_error_handler(void)
{

EXEC SQL WHENEVER SQLERROR STOP;
}

782

Chapter 33. ECPG - Embedded SQL in C

33.8.2. sqlca
For more powerful error handling, the embedded SQL interface provides a global variable with the name
sqlca (SQL communication area) that has the following structure:

struct
{

char sqlcaid[8];
long sqlabc;
long sqlcode;
struct
{

int sqlerrml;
char sqlerrmc[SQLERRMC_LEN];

} sqlerrm;
char sqlerrp[8];
long sqlerrd[6];
char sqlwarn[8];
char sqlstate[5];

} sqlca;

(In a multithreaded program, every thread automatically gets its own copy of sqlca. This works similarly
to the handling of the standard C global variable errno.)

sqlca covers both warnings and errors. If multiple warnings or errors occur during the execution of a
statement, then sqlca will only contain information about the last one.

If no error occurred in the last SQL statement, sqlca.sqlcode will be 0 and sqlca.sqlstate will be
"00000". If a warning or error occurred, then sqlca.sqlcode will be negative and sqlca.sqlstate

will be different from "00000". A positive sqlca.sqlcode indicates a harmless condition, such as that
the last query returned zero rows. sqlcode and sqlstate are two different error code schemes; details
appear below.

If the last SQL statement was successful, then sqlca.sqlerrd[1] contains the OID of the processed
row, if applicable, and sqlca.sqlerrd[2] contains the number of processed or returned rows, if appli-
cable to the command.

In case of an error or warning, sqlca.sqlerrm.sqlerrmc will contain a string that describes the er-
ror. The field sqlca.sqlerrm.sqlerrml contains the length of the error message that is stored in
sqlca.sqlerrm.sqlerrmc (the result of strlen(), not really interesting for a C programmer). Note
that some messages are too long to fit in the fixed-size sqlerrmc array; they will be truncated.

In case of a warning, sqlca.sqlwarn[2] is set to W. (In all other cases, it is set to something different
from W.) If sqlca.sqlwarn[1] is set to W, then a value was truncated when it was stored in a host
variable. sqlca.sqlwarn[0] is set to W if any of the other elements are set to indicate a warning.

The fields sqlcaid, sqlcabc, sqlerrp, and the remaining elements of sqlerrd and sqlwarn cur-
rently contain no useful information.

783

Chapter 33. ECPG - Embedded SQL in C

The structure sqlca is not defined in the SQL standard, but is implemented in several other SQL database
systems. The definitions are similar at the core, but if you want to write portable applications, then you
should investigate the different implementations carefully.

Here is one example that combines the use of WHENEVER and sqlca, printing out the contents of sqlca
when an error occurs. This is perhaps useful for debugging or prototyping applications, before installing
a more “user-friendly” error handler.

EXEC SQL WHENEVER SQLERROR CALL print_sqlca();

void
print_sqlca()
{

fprintf(stderr, "==== sqlca ====\n");
fprintf(stderr, "sqlcode: %ld\n", sqlca.sqlcode);
fprintf(stderr, "sqlerrm.sqlerrml: %d\n", sqlca.sqlerrm.sqlerrml);
fprintf(stderr, "sqlerrm.sqlerrmc: %s\n", sqlca.sqlerrm.sqlerrmc);
fprintf(stderr, "sqlerrd: %ld %ld %ld %ld %ld %ld\n", sqlca.sqlerrd[0],sqlca.sqlerrd[1],sqlca.sqlerrd[2],

sqlca.sqlerrd[3],sqlca.sqlerrd[4],sqlca.sqlerrd[5]);
fprintf(stderr, "sqlwarn: %d %d %d %d %d %d %d %d\n", sqlca.sqlwarn[0], sqlca.sqlwarn[1], sqlca.sqlwarn[2],

sqlca.sqlwarn[3], sqlca.sqlwarn[4], sqlca.sqlwarn[5],
sqlca.sqlwarn[6], sqlca.sqlwarn[7]);

fprintf(stderr, "sqlstate: %5s\n", sqlca.sqlstate);
fprintf(stderr, "===============\n");

}

The result could look as follows (here an error due to a misspelled table name):

==== sqlca ====
sqlcode: -400
sqlerrm.sqlerrml: 49
sqlerrm.sqlerrmc: relation "pg_databasep" does not exist on line 38
sqlerrd: 0 0 0 0 0 0
sqlwarn: 0 0 0 0 0 0 0 0
sqlstate: 42P01
===============

33.8.3. SQLSTATE vs. SQLCODE
The fields sqlca.sqlstate and sqlca.sqlcode are two different schemes that provide error codes.
Both are derived from the SQL standard, but SQLCODE has been marked deprecated in the SQL-92 edition
of the standard and has been dropped in later editions. Therefore, new applications are strongly encouraged
to use SQLSTATE.

SQLSTATE is a five-character array. The five characters contain digits or upper-case letters that represent
codes of various error and warning conditions. SQLSTATE has a hierarchical scheme: the first two charac-
ters indicate the general class of the condition, the last three characters indicate a subclass of the general
condition. A successful state is indicated by the code 00000. The SQLSTATE codes are for the most part
defined in the SQL standard. The PostgreSQL server natively supports SQLSTATE error codes; therefore

784

Chapter 33. ECPG - Embedded SQL in C

a high degree of consistency can be achieved by using this error code scheme throughout all applications.
For further information see Appendix A.

SQLCODE, the deprecated error code scheme, is a simple integer. A value of 0 indicates success, a positive
value indicates success with additional information, a negative value indicates an error. The SQL standard
only defines the positive value +100, which indicates that the last command returned or affected zero
rows, and no specific negative values. Therefore, this scheme can only achieve poor portability and does
not have a hierarchical code assignment. Historically, the embedded SQL processor for PostgreSQL has
assigned some specific SQLCODE values for its use, which are listed below with their numeric value and
their symbolic name. Remember that these are not portable to other SQL implementations. To simplify
the porting of applications to the SQLSTATE scheme, the corresponding SQLSTATE is also listed. There is,
however, no one-to-one or one-to-many mapping between the two schemes (indeed it is many-to-many),
so you should consult the global SQLSTATE listing in Appendix A in each case.

These are the assigned SQLCODE values:

0 (ECPG_NO_ERROR)

Indicates no error. (SQLSTATE 00000)

100 (ECPG_NOT_FOUND)

This is a harmless condition indicating that the last command retrieved or processed zero rows, or
that you are at the end of the cursor. (SQLSTATE 02000)

When processing a cursor in a loop, you could use this code as a way to detect when to abort the
loop, like this:

while (1)
{

EXEC SQL FETCH ... ;
if (sqlca.sqlcode == ECPG_NOT_FOUND)

break;
}

But WHENEVER NOT FOUND DO BREAK effectively does this internally, so there is usually no ad-
vantage in writing this out explicitly.

-12 (ECPG_OUT_OF_MEMORY)

Indicates that your virtual memory is exhausted. The numeric value is defined as -ENOMEM. (SQL-
STATE YE001)

-200 (ECPG_UNSUPPORTED)

Indicates the preprocessor has generated something that the library does not know about. Perhaps
you are running incompatible versions of the preprocessor and the library. (SQLSTATE YE002)

-201 (ECPG_TOO_MANY_ARGUMENTS)

This means that the command specified more host variables than the command expected. (SQL-
STATE 07001 or 07002)

-202 (ECPG_TOO_FEW_ARGUMENTS)

This means that the command specified fewer host variables than the command expected. (SQL-
STATE 07001 or 07002)

785

Chapter 33. ECPG - Embedded SQL in C

-203 (ECPG_TOO_MANY_MATCHES)

This means a query has returned multiple rows but the statement was only prepared to store one
result row (for example, because the specified variables are not arrays). (SQLSTATE 21000)

-204 (ECPG_INT_FORMAT)

The host variable is of type int and the datum in the database is of a different type and contains a
value that cannot be interpreted as an int. The library uses strtol() for this conversion. (SQL-
STATE 42804)

-205 (ECPG_UINT_FORMAT)

The host variable is of type unsigned int and the datum in the database is of a different type and
contains a value that cannot be interpreted as an unsigned int. The library uses strtoul() for
this conversion. (SQLSTATE 42804)

-206 (ECPG_FLOAT_FORMAT)

The host variable is of type float and the datum in the database is of another type and contains a
value that cannot be interpreted as a float. The library uses strtod() for this conversion. (SQL-
STATE 42804)

-207 (ECPG_NUMERIC_FORMAT)

The host variable is of type numeric and the datum in the database is of another type and contains a
value that cannot be interpreted as a numeric value. (SQLSTATE 42804)

-208 (ECPG_INTERVAL_FORMAT)

The host variable is of type interval and the datum in the database is of another type and contains
a value that cannot be interpreted as an interval value. (SQLSTATE 42804)

-209 (ECPG_DATE_FORMAT)

The host variable is of type date and the datum in the database is of another type and contains a
value that cannot be interpreted as a date value. (SQLSTATE 42804)

-210 (ECPG_TIMESTAMP_FORMAT)

The host variable is of type timestamp and the datum in the database is of another type and contains
a value that cannot be interpreted as a timestamp value. (SQLSTATE 42804)

-211 (ECPG_CONVERT_BOOL)

This means the host variable is of type bool and the datum in the database is neither ’t’ nor ’f’.
(SQLSTATE 42804)

-212 (ECPG_EMPTY)

The statement sent to the PostgreSQL server was empty. (This cannot normally happen in an embed-
ded SQL program, so it might point to an internal error.) (SQLSTATE YE002)

-213 (ECPG_MISSING_INDICATOR)

A null value was returned and no null indicator variable was supplied. (SQLSTATE 22002)

-214 (ECPG_NO_ARRAY)

An ordinary variable was used in a place that requires an array. (SQLSTATE 42804)

786

Chapter 33. ECPG - Embedded SQL in C

-215 (ECPG_DATA_NOT_ARRAY)

The database returned an ordinary variable in a place that requires array value. (SQLSTATE 42804)

-220 (ECPG_NO_CONN)

The program tried to access a connection that does not exist. (SQLSTATE 08003)

-221 (ECPG_NOT_CONN)

The program tried to access a connection that does exist but is not open. (This is an internal error.)
(SQLSTATE YE002)

-230 (ECPG_INVALID_STMT)

The statement you are trying to use has not been prepared. (SQLSTATE 26000)

-239 (ECPG_INFORMIX_DUPLICATE_KEY)

Duplicate key error, violation of unique constraint (Informix compatibility mode). (SQLSTATE
23505)

-240 (ECPG_UNKNOWN_DESCRIPTOR)

The descriptor specified was not found. The statement you are trying to use has not been prepared.
(SQLSTATE 33000)

-241 (ECPG_INVALID_DESCRIPTOR_INDEX)

The descriptor index specified was out of range. (SQLSTATE 07009)

-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM)

An invalid descriptor item was requested. (This is an internal error.) (SQLSTATE YE002)

-243 (ECPG_VAR_NOT_NUMERIC)

During the execution of a dynamic statement, the database returned a numeric value and the host
variable was not numeric. (SQLSTATE 07006)

-244 (ECPG_VAR_NOT_CHAR)

During the execution of a dynamic statement, the database returned a non-numeric value and the host
variable was numeric. (SQLSTATE 07006)

-284 (ECPG_INFORMIX_SUBSELECT_NOT_ONE)

A result of the subquery is not single row (Informix compatibility mode). (SQLSTATE 21000)

-400 (ECPG_PGSQL)

Some error caused by the PostgreSQL server. The message contains the error message from the
PostgreSQL server.

-401 (ECPG_TRANS)

The PostgreSQL server signaled that we cannot start, commit, or rollback the transaction. (SQL-
STATE 08007)

-402 (ECPG_CONNECT)

The connection attempt to the database did not succeed. (SQLSTATE 08001)

-403 (ECPG_DUPLICATE_KEY)

Duplicate key error, violation of unique constraint. (SQLSTATE 23505)

787

Chapter 33. ECPG - Embedded SQL in C

-404 (ECPG_SUBSELECT_NOT_ONE)

A result for the subquery is not single row. (SQLSTATE 21000)

-602 (ECPG_WARNING_UNKNOWN_PORTAL)

An invalid cursor name was specified. (SQLSTATE 34000)

-603 (ECPG_WARNING_IN_TRANSACTION)

Transaction is in progress. (SQLSTATE 25001)

-604 (ECPG_WARNING_NO_TRANSACTION)

There is no active (in-progress) transaction. (SQLSTATE 25P01)

-605 (ECPG_WARNING_PORTAL_EXISTS)

An existing cursor name was specified. (SQLSTATE 42P03)

33.9. Preprocessor Directives
Several preprocessor directives are available that modify how the ecpg preprocessor parses and processes
a file.

33.9.1. Including Files
To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDE filename;
EXEC SQL INCLUDE <filename>;
EXEC SQL INCLUDE "filename";

The embedded SQL preprocessor will look for a file named filename.h, preprocess it, and include it in
the resulting C output. Thus, embedded SQL statements in the included file are handled correctly.

The ecpg preprocessor will search a file at several directories in following order:

• current directory

• /usr/local/include

• PostgreSQL include directory, defined at build time (e.g., /usr/local/pgsql/include)

• /usr/include

But when EXEC SQL INCLUDE "filename" is used, only the current directory is searched.

In each directory, the preprocessor will first look for the file name as given, and if not found will append
.h to the file name and try again (unless the specified file name already has that suffix).

Note that EXEC SQL INCLUDE is not the same as:

#include <filename.h>

788

Chapter 33. ECPG - Embedded SQL in C

because this file would not be subject to SQL command preprocessing. Naturally, you can continue to use
the C #include directive to include other header files.

Note: The include file name is case-sensitive, even though the rest of the EXEC SQL INCLUDE com-
mand follows the normal SQL case-sensitivity rules.

33.9.2. The define and undef Directives
Similar to the directive #define that is known from C, embedded SQL has a similar concept:

EXEC SQL DEFINE name;
EXEC SQL DEFINE name value;

So you can define a name:

EXEC SQL DEFINE HAVE_FEATURE;

And you can also define constants:

EXEC SQL DEFINE MYNUMBER 12;
EXEC SQL DEFINE MYSTRING ’abc’;

Use undef to remove a previous definition:

EXEC SQL UNDEF MYNUMBER;

Of course you can continue to use the C versions #define and #undef in your embedded SQL program.
The difference is where your defined values get evaluated. If you use EXEC SQL DEFINE then the ecpg
preprocessor evaluates the defines and substitutes the values. For example if you write:

EXEC SQL DEFINE MYNUMBER 12;
...
EXEC SQL UPDATE Tbl SET col = MYNUMBER;

then ecpg will already do the substitution and your C compiler will never see any name or identifier
MYNUMBER. Note that you cannot use #define for a constant that you are going to use in an embedded
SQL query because in this case the embedded SQL precompiler is not able to see this declaration.

33.9.3. ifdef, ifndef, else, elif, and endif Directives
You can use the following directives to compile code sections conditionally:

EXEC SQL ifdef name;

Checks a name and processes subsequent lines if name has been created with EXEC SQL define

name.

789

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL ifndef name;

Checks a name and processes subsequent lines if name has not been created with EXEC SQL define

name.

EXEC SQL else;

Starts processing an alternative section to a section introduced by either EXEC SQL ifdef name or
EXEC SQL ifndef name.

EXEC SQL elif name;

Checks name and starts an alternative section if name has been created with EXEC SQL define

name.

EXEC SQL endif;

Ends an alternative section.

Example:

EXEC SQL ifndef TZVAR;
EXEC SQL SET TIMEZONE TO ’GMT’;
EXEC SQL elif TZNAME;
EXEC SQL SET TIMEZONE TO TZNAME;
EXEC SQL else;
EXEC SQL SET TIMEZONE TO TZVAR;
EXEC SQL endif;

33.10. Processing Embedded SQL Programs
Now that you have an idea how to form embedded SQL C programs, you probably want to know how
to compile them. Before compiling you run the file through the embedded SQL C preprocessor, which
converts the SQL statements you used to special function calls. After compiling, you must link with a
special library that contains the needed functions. These functions fetch information from the arguments,
perform the SQL command using the libpq interface, and put the result in the arguments specified for
output.

The preprocessor program is called ecpg and is included in a normal PostgreSQL installation. Embedded
SQL programs are typically named with an extension .pgc. If you have a program file called prog1.pgc,
you can preprocess it by simply calling:

ecpg prog1.pgc

This will create a file called prog1.c. If your input files do not follow the suggested naming pattern, you
can specify the output file explicitly using the -o option.

The preprocessed file can be compiled normally, for example:

cc -c prog1.c

790

Chapter 33. ECPG - Embedded SQL in C

The generated C source files include header files from the PostgreSQL installation, so if you
installed PostgreSQL in a location that is not searched by default, you have to add an option such as
-I/usr/local/pgsql/include to the compilation command line.

To link an embedded SQL program, you need to include the libecpg library, like so:

cc -o myprog prog1.o prog2.o ... -lecpg

Again, you might have to add an option like -L/usr/local/pgsql/lib to that command line.

If you manage the build process of a larger project using make, it might be convenient to include the
following implicit rule to your makefiles:

ECPG = ecpg

%.c: %.pgc
$(ECPG) $<

The complete syntax of the ecpg command is detailed in ecpg.

The ecpg library is thread-safe by default. However, you might need to use some threading command-line
options to compile your client code.

33.11. Library Functions
The libecpg library primarily contains “hidden” functions that are used to implement the functionality
expressed by the embedded SQL commands. But there are some functions that can usefully be called
directly. Note that this makes your code unportable.

• ECPGdebug(int on, FILE *stream) turns on debug logging if called with the first argument non-
zero. Debug logging is done on stream. The log contains all SQL statements with all the input variables
inserted, and the results from the PostgreSQL server. This can be very useful when searching for errors
in your SQL statements.

Note: On Windows, if the ecpg libraries and an application are compiled with different flags, this
function call will crash the application because the internal representation of the FILE pointers differ.
Specifically, multithreaded/single-threaded, release/debug, and static/dynamic flags should be the
same for the library and all applications using that library.

• ECPGget_PGconn(const char *connection_name) returns the library database connection han-
dle identified by the given name. If connection_name is set to NULL, the current connection handle is
returned. If no connection handle can be identified, the function returns NULL. The returned connection
handle can be used to call any other functions from libpq, if necessary.

Note: It is a bad idea to manipulate database connection handles made from ecpg directly with
libpq routines.

791

Chapter 33. ECPG - Embedded SQL in C

• ECPGtransactionStatus(const char *connection_name) returns the current transaction
status of the given connection identified by connection_name. See Section 31.2 and libpq’s
PQtransactionStatus() for details about the returned status codes.

• ECPGstatus(int lineno, const char* connection_name) returns true if you are connected to
a database and false if not. connection_name can be NULL if a single connection is being used.

33.12. Large Objects
Large objects are not directly supported by ECPG, but ECPG application can manipulate large ob-
jects through the libpq large object functions, obtaining the necessary PGconn object by calling the
ECPGget_PGconn() function. (However, use of the ECPGget_PGconn() function and touching PGconn
objects directly should be done very carefully and ideally not mixed with other ECPG database access
calls.)

For more details about the ECPGget_PGconn(), see Section 33.11. For information about the large object
function interface, see Chapter 32.

Large object functions have to be called in a transaction block, so when autocommit is off, BEGIN com-
mands have to be issued explicitly.

Example 33-2 shows an example program that illustrates how to create, write, and read a large object in
an ECPG application.

Example 33-2. ECPG Program Accessing Large Objects

#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <libpq/libpq-fs.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{

PGconn *conn;
Oid loid;
int fd;
char buf[256];
int buflen = 256;
char buf2[256];
int rc;

memset(buf, 1, buflen);

EXEC SQL CONNECT TO testdb AS con1;

792

Chapter 33. ECPG - Embedded SQL in C

conn = ECPGget_PGconn("con1");
printf("conn = %p\n", conn);

/* create */
loid = lo_create(conn, 0);
if (loid < 0)

printf("lo_create() failed: %s", PQerrorMessage(conn));

printf("loid = %d\n", loid);

/* write test */
fd = lo_open(conn, loid, INV_READ|INV_WRITE);
if (fd < 0)

printf("lo_open() failed: %s", PQerrorMessage(conn));

printf("fd = %d\n", fd);

rc = lo_write(conn, fd, buf, buflen);
if (rc < 0)

printf("lo_write() failed\n");

rc = lo_close(conn, fd);
if (rc < 0)

printf("lo_close() failed: %s", PQerrorMessage(conn));

/* read test */
fd = lo_open(conn, loid, INV_READ);
if (fd < 0)

printf("lo_open() failed: %s", PQerrorMessage(conn));

printf("fd = %d\n", fd);

rc = lo_read(conn, fd, buf2, buflen);
if (rc < 0)

printf("lo_read() failed\n");

rc = lo_close(conn, fd);
if (rc < 0)

printf("lo_close() failed: %s", PQerrorMessage(conn));

/* check */
rc = memcmp(buf, buf2, buflen);
printf("memcmp() = %d\n", rc);

/* cleanup */
rc = lo_unlink(conn, loid);
if (rc < 0)

printf("lo_unlink() failed: %s", PQerrorMessage(conn));

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;
return 0;

}

793

Chapter 33. ECPG - Embedded SQL in C

33.13. C++ Applications
ECPG has some limited support for C++ applications. This section describes some caveats.

The ecpg preprocessor takes an input file written in C (or something like C) and embedded SQL com-
mands, converts the embedded SQL commands into C language chunks, and finally generates a .c file.
The header file declarations of the library functions used by the C language chunks that ecpg generates
are wrapped in extern "C" { ... } blocks when used under C++, so they should work seamlessly in
C++.

In general, however, the ecpg preprocessor only understands C; it does not handle the special syntax and
reserved words of the C++ language. So, some embedded SQL code written in C++ application code that
uses complicated features specific to C++ might fail to be preprocessed correctly or might not work as
expected.

A safe way to use the embedded SQL code in a C++ application is hiding the ECPG calls in a C module,
which the C++ application code calls into to access the database, and linking that together with the rest of
the C++ code. See Section 33.13.2 about that.

33.13.1. Scope for Host Variables
The ecpg preprocessor understands the scope of variables in C. In the C language, this is rather simple
because the scopes of variables is based on their code blocks. In C++, however, the class member variables
are referenced in a different code block from the declared position, so the ecpg preprocessor will not
understand the scope of the class member variables.

For example, in the following case, the ecpg preprocessor cannot find any declaration for the variable
dbname in the test method, so an error will occur.

class TestCpp
{

EXEC SQL BEGIN DECLARE SECTION;
char dbname[1024];
EXEC SQL END DECLARE SECTION;

public:
TestCpp();
void test();
~TestCpp();

};

TestCpp::TestCpp()
{

EXEC SQL CONNECT TO testdb1;
}

void Test::test()
{

EXEC SQL SELECT current_database() INTO :dbname;
printf("current_database = %s\n", dbname);

}

794

Chapter 33. ECPG - Embedded SQL in C

TestCpp::~TestCpp()
{

EXEC SQL DISCONNECT ALL;
}

This code will result in an error like this:

ecpg test_cpp.pgc

test_cpp.pgc:28: ERROR: variable "dbname" is not declared

To avoid this scope issue, the test method could be modified to use a local variable as intermediate stor-
age. But this approach is only a poor workaround, because it uglifies the code and reduces performance.

void TestCpp::test()
{

EXEC SQL BEGIN DECLARE SECTION;
char tmp[1024];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT current_database() INTO :tmp;
strlcpy(dbname, tmp, sizeof(tmp));

printf("current_database = %s\n", dbname);
}

33.13.2. C++ Application Development with External C Module
If you understand these technical limitations of the ecpg preprocessor in C++, you might come to the
conclusion that linking C objects and C++ objects at the link stage to enable C++ applications to use
ECPG features could be better than writing some embedded SQL commands in C++ code directly. This
section describes a way to separate some embedded SQL commands from C++ application code with a
simple example. In this example, the application is implemented in C++, while C and ECPG is used to
connect to the PostgreSQL server.

Three kinds of files have to be created: a C file (*.pgc), a header file, and a C++ file:

test_mod.pgc

A sub-routine module to execute SQL commands embedded in C. It is going to be converted into
test_mod.c by the preprocessor.

#include "test_mod.h"
#include <stdio.h>

void
db_connect()
{

EXEC SQL CONNECT TO testdb1;
}

795

Chapter 33. ECPG - Embedded SQL in C

void
db_test()
{

EXEC SQL BEGIN DECLARE SECTION;
char dbname[1024];
EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT current_database() INTO :dbname;
printf("current_database = %s\n", dbname);

}

void
db_disconnect()
{

EXEC SQL DISCONNECT ALL;
}

test_mod.h

A header file with declarations of the functions in the C module (test_mod.pgc). It is included by
test_cpp.cpp. This file has to have an extern "C" block around the declarations, because it will
be linked from the C++ module.

#ifdef __cplusplus
extern "C" {
#endif

void db_connect();
void db_test();
void db_disconnect();

#ifdef __cplusplus
}
#endif

test_cpp.cpp

The main code for the application, including the main routine, and in this example a C++ class.

#include "test_mod.h"

class TestCpp
{
public:
TestCpp();
void test();
~TestCpp();

};

TestCpp::TestCpp()
{

db_connect();
}

void

796

TestCpp::test()
{

db_test();
}

TestCpp::~TestCpp()
{

db_disconnect();
}

int
main(void)
{

TestCpp *t = new TestCpp();

t->test();
return 0;

}

To build the application, proceed as follows. Convert test_mod.pgc into test_mod.c by running ecpg,
and generate test_mod.o by compiling test_mod.c with the C compiler:

ecpg -o test_mod.c test_mod.pgc
cc -c test_mod.c -o test_mod.o

Next, generate test_cpp.o by compiling test_cpp.cpp with the C++ compiler:.

c++ -c test_cpp.cpp -o test_cpp.o

Finally, link these object files, test_cpp.o and test_mod.o, into one executable, using the C++ com-
piler driver:

c++ test_cpp.o test_mod.o -lecpg -o test_cpp

33.14. Embedded SQL Commands
This section describes all SQL commands that are specific to embedded SQL. Also refer to the SQL
commands listed in Reference I, SQL Commands, which can also be used in embedded SQL, unless
stated otherwise.

797

ALLOCATE DESCRIPTOR

ALLOCATE DESCRIPTOR

Name
ALLOCATE DESCRIPTOR — allocate an SQL descriptor area

Synopsis
ALLOCATE DESCRIPTOR name

Description
ALLOCATE DESCRIPTOR allocates a new named SQL descriptor area, which can be used to exchange
data between the PostgreSQL server and the host program.

Descriptor areas should be freed after use using the DEALLOCATE DESCRIPTOR command.

Parameters

name

A name of SQL descriptor, case sensitive. This can be an SQL identifier or a host variable.

Examples
EXEC SQL ALLOCATE DESCRIPTOR mydesc;

Compatibility
ALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

798

CONNECT

Name
CONNECT — establish a database connection

Synopsis
CONNECT TO connection_target [AS connection_name] [USER connection_user_name]
CONNECT TO DEFAULT
CONNECT connection_user_name

DATABASE connection_target

Description
The CONNECT command establishes a connection between the client and the PostgreSQL server.

Parameters

connection_target

connection_target specifies the target server of the connection on one of several forms.

[database_name] [@host] [:port]

Connect over TCP/IP

unix:postgresql://host [:port] / [database_name] [?connection_option]

Connect over Unix-domain sockets

tcp:postgresql://host [:port] / [database_name] [?connection_option]

Connect over TCP/IP

SQL string constant

containing a value in one of the above forms

host variable

host variable of type char[] or VARCHAR[] containing a value in one of the above forms

connection_object

An optional identifier for the connection, so that it can be referred to in other commands. This can
be an SQL identifier or a host variable.

799

CONNECT

connection_user

The user name for the database connection.

This parameter can also specify user name and password, using one the forms user_name/password,
user_name IDENTIFIED BY password, or user_name USING password.

User name and password can be SQL identifiers, string constants, or host variables.

DEFAULT

Use all default connection parameters, as defined by libpq.

Examples
Here a several variants for specifying connection parameters:

EXEC SQL CONNECT TO "connectdb" AS main;
EXEC SQL CONNECT TO "connectdb" AS second;
EXEC SQL CONNECT TO "unix:postgresql://200.46.204.71/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO "unix:postgresql://localhost/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO ’connectdb’ AS main;
EXEC SQL CONNECT TO ’unix:postgresql://localhost/connectdb’ AS main USER :user;
EXEC SQL CONNECT TO :db AS :id;
EXEC SQL CONNECT TO :db USER connectuser USING :pw;
EXEC SQL CONNECT TO @localhost AS main USER connectdb;
EXEC SQL CONNECT TO REGRESSDB1 as main;
EXEC SQL CONNECT TO AS main USER connectdb;
EXEC SQL CONNECT TO connectdb AS :id;
EXEC SQL CONNECT TO connectdb AS main USER connectuser/connectdb;
EXEC SQL CONNECT TO connectdb AS main;
EXEC SQL CONNECT TO connectdb@localhost AS main;
EXEC SQL CONNECT TO tcp:postgresql://localhost/ USER connectdb;
EXEC SQL CONNECT TO tcp:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO tcp:postgresql://localhost:20/connectdb USER connectuser IDENTIFIED BY connectpw;
EXEC SQL CONNECT TO unix:postgresql://localhost/ AS main USER connectdb;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb AS main USER connectuser;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser USING "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb?connect_timeout=14 USER connectuser;

Here is an example program that illustrates the use of host variables to specify connection parameters:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;

char *dbname = "testdb"; /* database name */
char *user = "testuser"; /* connection user name */
char *connection = "tcp:postgresql://localhost:5432/testdb";

/* connection string */
char ver[256]; /* buffer to store the version string */

800

CONNECT

EXEC SQL END DECLARE SECTION;

ECPGdebug(1, stderr);

EXEC SQL CONNECT TO :dbname USER :user;
EXEC SQL SELECT version() INTO :ver;
EXEC SQL DISCONNECT;

printf("version: %s\n", ver);

EXEC SQL CONNECT TO :connection USER :user;
EXEC SQL SELECT version() INTO :ver;
EXEC SQL DISCONNECT;

printf("version: %s\n", ver);

return 0;
}

Compatibility
CONNECT is specified in the SQL standard, but the format of the connection parameters is implementation-
specific.

See Also
DISCONNECT, SET CONNECTION

801

DEALLOCATE DESCRIPTOR

Name
DEALLOCATE DESCRIPTOR — deallocate an SQL descriptor area

Synopsis
DEALLOCATE DESCRIPTOR name

Description
DEALLOCATE DESCRIPTOR deallocates a named SQL descriptor area.

Parameters

name

The name of the descriptor which is going to be deallocated. It is case sensitive. This can be an SQL
identifier or a host variable.

Examples
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility
DEALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

802

DECLARE

Name
DECLARE — define a cursor

Synopsis
DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH | WITHOUT } HOLD] FOR prepared_name

DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description
DECLARE declares a cursor for iterating over the result set of a prepared statement. This command has
slightly different semantics from the direct SQL command DECLARE: Whereas the latter executes a query
and prepares the result set for retrieval, this embedded SQL command merely declares a name as a “loop
variable” for iterating over the result set of a query; the actual execution happens when the cursor is
opened with the OPEN command.

Parameters

cursor_name

A cursor name, case sensitive. This can be an SQL identifier or a host variable.

prepared_name

The name of a prepared query, either as an SQL identifier or a host variable.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

For the meaning of the cursor options, see DECLARE.

Examples
Examples declaring a cursor for a query:

EXEC SQL DECLARE C CURSOR FOR SELECT * FROM My_Table;
EXEC SQL DECLARE C CURSOR FOR SELECT Item1 FROM T;
EXEC SQL DECLARE cur1 CURSOR FOR SELECT version();

An example declaring a cursor for a prepared statement:

EXEC SQL PREPARE stmt1 AS SELECT version();

803

DECLARE

EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Compatibility
DECLARE is specified in the SQL standard.

See Also
OPEN, CLOSE, DECLARE

804

DESCRIBE

Name
DESCRIBE — obtain information about a prepared statement or result set

Synopsis
DESCRIBE [OUTPUT] prepared_name USING [SQL] DESCRIPTOR descriptor_name

DESCRIBE [OUTPUT] prepared_name INTO [SQL] DESCRIPTOR descriptor_name

DESCRIBE [OUTPUT] prepared_name INTO sqlda_name

Description
DESCRIBE retrieves metadata information about the result columns contained in a prepared statement,
without actually fetching a row.

Parameters

prepared_name

The name of a prepared statement. This can be an SQL identifier or a host variable.

descriptor_name

A descriptor name. It is case sensitive. It can be an SQL identifier or a host variable.

sqlda_name

The name of an SQLDA variable.

Examples
EXEC SQL ALLOCATE DESCRIPTOR mydesc;
EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;
EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :charvar = NAME;
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility
DESCRIBE is specified in the SQL standard.

805

DESCRIBE

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

806

DISCONNECT

Name
DISCONNECT — terminate a database connection

Synopsis
DISCONNECT connection_name

DISCONNECT [CURRENT]
DISCONNECT DEFAULT
DISCONNECT ALL

Description
DISCONNECT closes a connection (or all connections) to the database.

Parameters

connection_name

A database connection name established by the CONNECT command.

CURRENT

Close the “current” connection, which is either the most recently opened connection, or the connec-
tion set by the SET CONNECTION command. This is also the default if no argument is given to the
DISCONNECT command.

DEFAULT

Close the default connection.

ALL

Close all open connections.

Examples
int
main(void)
{

EXEC SQL CONNECT TO testdb AS DEFAULT USER testuser;
EXEC SQL CONNECT TO testdb AS con1 USER testuser;
EXEC SQL CONNECT TO testdb AS con2 USER testuser;
EXEC SQL CONNECT TO testdb AS con3 USER testuser;

EXEC SQL DISCONNECT CURRENT; /* close con3 */

807

DISCONNECT

EXEC SQL DISCONNECT DEFAULT; /* close DEFAULT */
EXEC SQL DISCONNECT ALL; /* close con2 and con1 */

return 0;
}

Compatibility
DISCONNECT is specified in the SQL standard.

See Also
CONNECT, SET CONNECTION

808

EXECUTE IMMEDIATE

Name
EXECUTE IMMEDIATE — dynamically prepare and execute a statement

Synopsis
EXECUTE IMMEDIATE string

Description
EXECUTE IMMEDIATE immediately prepares and executes a dynamically specified SQL statement, with-
out retrieving result rows.

Parameters

string

A literal C string or a host variable containing the SQL statement to be executed.

Examples
Here is an example that executes an INSERT statement using EXECUTE IMMEDIATE and a host variable
named command:

sprintf(command, "INSERT INTO test (name, amount, letter) VALUES (’db: ”r1”’, 1, ’f’)");
EXEC SQL EXECUTE IMMEDIATE :command;

Compatibility
EXECUTE IMMEDIATE is specified in the SQL standard.

809

GET DESCRIPTOR

Name
GET DESCRIPTOR — get information from an SQL descriptor area

Synopsis
GET DESCRIPTOR descriptor_name :cvariable = descriptor_header_item [, ...]
GET DESCRIPTOR descriptor_name VALUE column_number :cvariable = descriptor_item [, ...]

Description
GET DESCRIPTOR retrieves information about a query result set from an SQL descriptor area and stores
it into host variables. A descriptor area is typically populated using FETCH or SELECT before using this
command to transfer the information into host language variables.

This command has two forms: The first form retrieves descriptor “header” items, which apply to the result
set in its entirety. One example is the row count. The second form, which requires the column number as
additional parameter, retrieves information about a particular column. Examples are the column name and
the actual column value.

Parameters

descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to retrieve. Only COUNT, to get the number of
columns in the result set, is currently supported.

column_number

The number of the column about which information is to be retrieved. The count starts at 1.

descriptor_item

A token identifying which item of information about a column to retrieve. See Section 33.7.1 for a
list of supported items.

cvariable

A host variable that will receive the data retrieved from the descriptor area.

810

GET DESCRIPTOR

Examples
An example to retrieve the number of columns in a result set:

EXEC SQL GET DESCRIPTOR d :d_count = COUNT;

An example to retrieve a data length in the first column:

EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;

An example to retrieve the data body of the second column as a string:

EXEC SQL GET DESCRIPTOR d VALUE 2 :d_data = DATA;

Here is an example for a whole procedure of executing SELECT current_database(); and showing
the number of columns, the column data length, and the column data:

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;

int d_count;
char d_data[1024];
int d_returned_octet_length;

EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;
EXEC SQL ALLOCATE DESCRIPTOR d;

/* Declare, open a cursor, and assign a descriptor to the cursor */
EXEC SQL DECLARE cur CURSOR FOR SELECT current_database();
EXEC SQL OPEN cur;
EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;

/* Get a number of total columns */
EXEC SQL GET DESCRIPTOR d :d_count = COUNT;
printf("d_count = %d\n", d_count);

/* Get length of a returned column */
EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;
printf("d_returned_octet_length = %d\n", d_returned_octet_length);

/* Fetch the returned column as a string */
EXEC SQL GET DESCRIPTOR d VALUE 1 :d_data = DATA;
printf("d_data = %s\n", d_data);

/* Closing */
EXEC SQL CLOSE cur;
EXEC SQL COMMIT;

811

GET DESCRIPTOR

EXEC SQL DEALLOCATE DESCRIPTOR d;
EXEC SQL DISCONNECT ALL;

return 0;
}

When the example is executed, the result will look like this:

d_count = 1
d_returned_octet_length = 6
d_data = testdb

Compatibility
GET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, SET DESCRIPTOR

812

OPEN

Name
OPEN — open a dynamic cursor

Synopsis
OPEN cursor_name

OPEN cursor_name USING value [, ...]
OPEN cursor_name USING SQL DESCRIPTOR descriptor_name

Description
OPEN opens a cursor and optionally binds actual values to the placeholders in the cursor’s declaration. The
cursor must previously have been declared with the DECLARE command. The execution of OPEN causes
the query to start executing on the server.

Parameters

cursor_name

The name of the cursor to be opened. This can be an SQL identifier or a host variable.

value

A value to be bound to a placeholder in the cursor. This can be an SQL constant, a host variable, or
a host variable with indicator.

descriptor_name

The name of a descriptor containing values to be bound to the placeholders in the cursor. This can be
an SQL identifier or a host variable.

Examples
EXEC SQL OPEN a;
EXEC SQL OPEN d USING 1, ’test’;
EXEC SQL OPEN c1 USING SQL DESCRIPTOR mydesc;
EXEC SQL OPEN :curname1;

Compatibility
OPEN is specified in the SQL standard.

813

OPEN

See Also
DECLARE, CLOSE

814

PREPARE

Name
PREPARE — prepare a statement for execution

Synopsis
PREPARE name FROM string

Description
PREPARE prepares a statement dynamically specified as a string for execution. This is different from
the direct SQL statement PREPARE, which can also be used in embedded programs. The EXECUTE
command is used to execute either kind of prepared statement.

Parameters

prepared_name

An identifier for the prepared query.

string

A literal C string or a host variable containing a preparable statement, one of the SELECT, INSERT,
UPDATE, or DELETE.

Examples
char *stmt = "SELECT * FROM test1 WHERE a = ? AND b = ?";

EXEC SQL ALLOCATE DESCRIPTOR outdesc;
EXEC SQL PREPARE foo FROM :stmt;

EXEC SQL EXECUTE foo USING SQL DESCRIPTOR indesc INTO SQL DESCRIPTOR outdesc;

Compatibility
PREPARE is specified in the SQL standard.

815

PREPARE

See Also
EXECUTE

816

SET AUTOCOMMIT

Name
SET AUTOCOMMIT — set the autocommit behavior of the current session

Synopsis
SET AUTOCOMMIT { = | TO } { ON | OFF }

Description
SET AUTOCOMMIT sets the autocommit behavior of the current database session. By default, embedded
SQL programs are not in autocommit mode, so COMMIT needs to be issued explicitly when desired. This
command can change the session to autocommit mode, where each individual statement is committed
implicitly.

Compatibility
SET AUTOCOMMIT is an extension of PostgreSQL ECPG.

817

SET CONNECTION

Name
SET CONNECTION — select a database connection

Synopsis
SET CONNECTION [TO | =] connection_name

Description
SET CONNECTION sets the “current” database connection, which is the one that all commands use unless
overridden.

Parameters

connection_name

A database connection name established by the CONNECT command.

DEFAULT

Set the connection to the default connection.

Examples
EXEC SQL SET CONNECTION TO con2;
EXEC SQL SET CONNECTION = con1;

Compatibility
SET CONNECTION is specified in the SQL standard.

See Also
CONNECT, DISCONNECT

818

SET DESCRIPTOR

Name
SET DESCRIPTOR — set information in an SQL descriptor area

Synopsis
SET DESCRIPTOR descriptor_name descriptor_header_item = value [, ...]
SET DESCRIPTOR descriptor_name VALUE number descriptor_item = value [, ...]

Description
SET DESCRIPTOR populates an SQL descriptor area with values. The descriptor area is then typically
used to bind parameters in a prepared query execution.

This command has two forms: The first form applies to the descriptor “header”, which is independent of
a particular datum. The second form assigns values to particular datums, identified by number.

Parameters

descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to set. Only COUNT, to set the number of descrip-
tor items, is currently supported.

number

The number of the descriptor item to set. The count starts at 1.

descriptor_item

A token identifying which item of information to set in the descriptor. See Section 33.7.1 for a list of
supported items.

value

A value to store into the descriptor item. This can be an SQL constant or a host variable.

Examples
EXEC SQL SET DESCRIPTOR indesc COUNT = 1;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = 2;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = :val1;
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val1, DATA = ’some string’;

819

SET DESCRIPTOR

EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val2null, DATA = :val2;

Compatibility
SET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

820

TYPE

Name
TYPE — define a new data type

Synopsis
TYPE type_name IS ctype

Description
The TYPE command defines a new C type. It is equivalent to putting a typedef into a declare section.

This command is only recognized when ecpg is run with the -c option.

Parameters

type_name

The name for the new type. It must be a valid C type name.

ctype

A C type specification.

Examples
EXEC SQL TYPE customer IS

struct
{

varchar name[50];
int phone;

};

EXEC SQL TYPE cust_ind IS
struct ind
{

short name_ind;
short phone_ind;

};

EXEC SQL TYPE c IS char reference;
EXEC SQL TYPE ind IS union { int integer; short smallint; };
EXEC SQL TYPE intarray IS int[AMOUNT];
EXEC SQL TYPE str IS varchar[BUFFERSIZ];
EXEC SQL TYPE string IS char[11];

821

TYPE

Here is an example program that uses EXEC SQL TYPE:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

EXEC SQL TYPE tt IS
struct
{

varchar v[256];
int i;

};

EXEC SQL TYPE tt_ind IS
struct ind {

short v_ind;
short i_ind;

};

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;

tt t;
tt_ind t_ind;

EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1;

EXEC SQL SELECT current_database(), 256 INTO :t:t_ind LIMIT 1;

printf("t.v = %s\n", t.v.arr);
printf("t.i = %d\n", t.i);

printf("t_ind.v_ind = %d\n", t_ind.v_ind);
printf("t_ind.i_ind = %d\n", t_ind.i_ind);

EXEC SQL DISCONNECT con1;

return 0;
}

The output from this program looks like this:

t.v = testdb
t.i = 256
t_ind.v_ind = 0
t_ind.i_ind = 0

822

TYPE

Compatibility
The TYPE command is a PostgreSQL extension.

823

VAR

Name
VAR — define a variable

Synopsis
VAR varname IS ctype

Description
The VAR command assigns a new C data type to a host variable. The host variable must be previously
declared in a declare section.

Parameters

varname

A C variable name.

ctype

A C type specification.

Examples
Exec sql begin declare section;
short a;
exec sql end declare section;
EXEC SQL VAR a IS int;

Compatibility
The VAR command is a PostgreSQL extension.

824

WHENEVER

Name
WHENEVER — specify the action to be taken when an SQL statement causes a specific class condition to
be raised

Synopsis
WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action

Description
Define a behavior which is called on the special cases (Rows not found, SQL warnings or errors) in the
result of SQL execution.

Parameters
See Section 33.8.1 for a description of the parameters.

Examples
EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLWARNING DO warn();
EXEC SQL WHENEVER SQLERROR sqlprint;
EXEC SQL WHENEVER SQLERROR CALL print2();
EXEC SQL WHENEVER SQLERROR DO handle_error("select");
EXEC SQL WHENEVER SQLERROR DO sqlnotice(NULL, NONO);
EXEC SQL WHENEVER SQLERROR DO sqlprint();
EXEC SQL WHENEVER SQLERROR GOTO error_label;
EXEC SQL WHENEVER SQLERROR STOP;

A typical application is the use of WHENEVER NOT FOUND BREAK to handle looping through result sets:

int
main(void)
{

EXEC SQL CONNECT TO testdb AS con1;
EXEC SQL ALLOCATE DESCRIPTOR d;
EXEC SQL DECLARE cur CURSOR FOR SELECT current_database(), ’hoge’, 256;
EXEC SQL OPEN cur;

/* when end of result set reached, break out of while loop */

825

WHENEVER

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;
...

}

EXEC SQL CLOSE cur;
EXEC SQL COMMIT;

EXEC SQL DEALLOCATE DESCRIPTOR d;
EXEC SQL DISCONNECT ALL;

return 0;
}

Compatibility
WHENEVER is specified in the SQL standard, but most of the actions are PostgreSQL extensions.

826

Chapter 33. ECPG - Embedded SQL in C

33.15. Informix Compatibility Mode
ecpg can be run in a so-called Informix compatibility mode. If this mode is active, it tries to behave as
if it were the Informix precompiler for Informix E/SQL. Generally spoken this will allow you to use the
dollar sign instead of the EXEC SQL primitive to introduce embedded SQL commands.:

$int j = 3;
$CONNECT TO :dbname;
$CREATE TABLE test(i INT PRIMARY KEY, j INT);
$INSERT INTO test(i, j) VALUES (7, :j);
$COMMIT;

Note: There must not be any white space between the $ and a following preprocessor directive, that
is, include, define, ifdef, etc. Otherwise, the preprocessor will parse the token as a host variable.

There are two compatibility modes: INFORMIX, INFORMIX_SE

When linking programs that use this compatibility mode, remember to link against libcompat that is
shipped with ECPG.

Besides the previously explained syntactic sugar, the Informix compatibility mode ports some functions
for input, output and transformation of data as well as embedded SQL statements known from E/SQL to
ECPG.

Informix compatibility mode is closely connected to the pgtypeslib library of ECPG. pgtypeslib maps SQL
data types to data types within the C host program and most of the additional functions of the Informix
compatibility mode allow you to operate on those C host program types. Note however that the extent of
the compatibility is limited. It does not try to copy Informix behavior; it allows you to do more or less
the same operations and gives you functions that have the same name and the same basic behavior but
it is no drop-in replacement if you are using Informix at the moment. Moreover, some of the data types
are different. For example, PostgreSQL’s datetime and interval types do not know about ranges like for
example YEAR TO MINUTE so you won’t find support in ECPG for that either.

33.15.1. Additional Types
The Informix-special "string" pseudo-type for storing right-trimmed character string data is now supported
in Informix-mode without using typedef. In fact, in Informix-mode, ECPG refuses to process source files
that contain typedef sometype string;

EXEC SQL BEGIN DECLARE SECTION;
string userid; /* this variable will contain trimmed data */
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH MYCUR INTO :userid;

827

Chapter 33. ECPG - Embedded SQL in C

33.15.2. Additional/Missing Embedded SQL Statements

CLOSE DATABASE

This statement closes the current connection. In fact, this is a synonym for ECPG’s DISCONNECT
CURRENT.:

$CLOSE DATABASE; /* close the current connection */
EXEC SQL CLOSE DATABASE;

FREE cursor_name

Due to the differences how ECPG works compared to Informix’s ESQL/C (i.e. which steps are purely
grammar transformations and which steps rely on the underlying run-time library) there is no FREE

cursor_name statement in ECPG. This is because in ECPG, DECLARE CURSOR doesn’t translate
to a function call into the run-time library that uses to the cursor name. This means that there’s no
run-time bookkeeping of SQL cursors in the ECPG run-time library, only in the PostgreSQL server.

FREE statement_name

FREE statement_name is a synonym for DEALLOCATE PREPARE statement_name.

33.15.3. Informix-compatible SQLDA Descriptor Areas
Informix-compatible mode supports a different structure than the one described in Section 33.7.2. See
below:

struct sqlvar_compat
{

short sqltype;
int sqllen;
char *sqldata;
short *sqlind;
char *sqlname;
char *sqlformat;
short sqlitype;
short sqlilen;
char *sqlidata;
int sqlxid;
char *sqltypename;
short sqltypelen;
short sqlownerlen;
short sqlsourcetype;
char *sqlownername;
int sqlsourceid;
char *sqlilongdata;
int sqlflags;
void *sqlreserved;

};

struct sqlda_compat

828

Chapter 33. ECPG - Embedded SQL in C

{
short sqld;
struct sqlvar_compat *sqlvar;
char desc_name[19];
short desc_occ;
struct sqlda_compat *desc_next;
void *reserved;

};

typedef struct sqlvar_compat sqlvar_t;
typedef struct sqlda_compat sqlda_t;

The global properties are:

sqld

The number of fields in the SQLDA descriptor.

sqlvar

Pointer to the per-field properties.

desc_name

Unused, filled with zero-bytes.

desc_occ

Size of the allocated structure.

desc_next

Pointer to the next SQLDA structure if the result set contains more than one record.

reserved

Unused pointer, contains NULL. Kept for Informix-compatibility.

The per-field properties are below, they are stored in the sqlvar array:

sqltype

Type of the field. Constants are in sqltypes.h

sqllen

Length of the field data.

sqldata

Pointer to the field data. The pointer is of char * type, the data pointed by it is in a binary format.
Example:

int intval;

switch (sqldata->sqlvar[i].sqltype)
{

case SQLINTEGER:
intval = *(int *)sqldata->sqlvar[i].sqldata;
break;

829

Chapter 33. ECPG - Embedded SQL in C

...
}

sqlind

Pointer to the NULL indicator. If returned by DESCRIBE or FETCH then it’s always a valid pointer.
If used as input for EXECUTE ... USING sqlda; then NULL-pointer value means that the value
for this field is non-NULL. Otherwise a valid pointer and sqlitype has to be properly set. Example:

if (*(int2 *)sqldata->sqlvar[i].sqlind != 0)
printf("value is NULL\n");

sqlname

Name of the field. 0-terminated string.

sqlformat

Reserved in Informix, value of PQfformat() for the field.

sqlitype

Type of the NULL indicator data. It’s always SQLSMINT when returning data from the server. When
the SQLDA is used for a parametrized query, the data is treated according to the set type.

sqlilen

Length of the NULL indicator data.

sqlxid

Extended type of the field, result of PQftype().

sqltypename

sqltypelen

sqlownerlen

sqlsourcetype

sqlownername

sqlsourceid

sqlflags

sqlreserved

Unused.

sqlilongdata

It equals to sqldata if sqllen is larger than 32KB.

Example:

EXEC SQL INCLUDE sqlda.h;

sqlda_t *sqlda; /* This doesn’t need to be under embedded DECLARE SECTION */

EXEC SQL BEGIN DECLARE SECTION;
char *prep_stmt = "select * from table1";
int i;
EXEC SQL END DECLARE SECTION;

...

830

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL PREPARE mystmt FROM :prep_stmt;

EXEC SQL DESCRIBE mystmt INTO sqlda;

printf("# of fields: %d\n", sqlda->sqld);
for (i = 0; i < sqlda->sqld; i++)

printf("field %d: \"%s\"\n", sqlda->sqlvar[i]->sqlname);

EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
EXEC SQL OPEN mycursor;
EXEC SQL WHENEVER NOT FOUND GOTO out;

while (1)
{
EXEC SQL FETCH mycursor USING sqlda;

}

EXEC SQL CLOSE mycursor;

free(sqlda); /* The main structure is all to be free(),

* sqlda and sqlda->sqlvar is in one allocated area */

For more information, see the sqlda.h header and the src/interfaces/ecpg/test/compat_informix/sqlda.pgc
regression test.

33.15.4. Additional Functions

decadd

Add two decimal type values.

int decadd(decimal *arg1, decimal *arg2, decimal *sum);

The function receives a pointer to the first operand of type decimal (arg1), a pointer to the second
operand of type decimal (arg2) and a pointer to a value of type decimal that will contain the sum
(sum). On success, the function returns 0. ECPG_INFORMIX_NUM_OVERFLOW is returned in case
of overflow and ECPG_INFORMIX_NUM_UNDERFLOW in case of underflow. -1 is returned for other
failures and errno is set to the respective errno number of the pgtypeslib.

deccmp

Compare two variables of type decimal.

int deccmp(decimal *arg1, decimal *arg2);

The function receives a pointer to the first decimal value (arg1), a pointer to the second decimal
value (arg2) and returns an integer value that indicates which is the bigger value.

• 1, if the value that arg1 points to is bigger than the value that var2 points to

• -1, if the value that arg1 points to is smaller than the value that arg2 points to

• 0, if the value that arg1 points to and the value that arg2 points to are equal

831

Chapter 33. ECPG - Embedded SQL in C

deccopy

Copy a decimal value.

void deccopy(decimal *src, decimal *target);

The function receives a pointer to the decimal value that should be copied as the first argument (src)
and a pointer to the target structure of type decimal (target) as the second argument.

deccvasc

Convert a value from its ASCII representation into a decimal type.

int deccvasc(char *cp, int len, decimal *np);

The function receives a pointer to string that contains the string representation of the number to be
converted (cp) as well as its length len. np is a pointer to the decimal value that saves the result of
the operation.

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4.

The function returns 0 on success. If overflow or underflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW is returned. If the
ASCII representation could not be parsed, ECPG_INFORMIX_BAD_NUMERIC is returned or
ECPG_INFORMIX_BAD_EXPONENT if this problem occurred while parsing the exponent.

deccvdbl

Convert a value of type double to a value of type decimal.

int deccvdbl(double dbl, decimal *np);

The function receives the variable of type double that should be converted as its first argument (dbl).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

deccvint

Convert a value of type int to a value of type decimal.

int deccvint(int in, decimal *np);

The function receives the variable of type int that should be converted as its first argument (in). As
the second argument (np), the function receives a pointer to the decimal variable that should hold the
result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

deccvlong

Convert a value of type long to a value of type decimal.

int deccvlong(long lng, decimal *np);

The function receives the variable of type long that should be converted as its first argument (lng).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

decdiv

Divide two variables of type decimal.

int decdiv(decimal *n1, decimal *n2, decimal *result);

832

Chapter 33. ECPG - Embedded SQL in C

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1/n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the division fails. If overflow or underflow occurred,
the function returns ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW

respectively. If an attempt to divide by zero is observed, the function returns
ECPG_INFORMIX_DIVIDE_ZERO.

decmul

Multiply two decimal values.

int decmul(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1*n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the multiplication fails. If overflow
or underflow occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or
ECPG_INFORMIX_NUM_UNDERFLOW respectively.

decsub

Subtract one decimal value from another.

int decsub(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1-n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the subtraction fails. If overflow
or underflow occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or
ECPG_INFORMIX_NUM_UNDERFLOW respectively.

dectoasc

Convert a variable of type decimal to its ASCII representation in a C char* string.

int dectoasc(decimal *np, char *cp, int len, int right)

The function receives a pointer to a variable of type decimal (np) that it converts to its textual rep-
resentation. cp is the buffer that should hold the result of the operation. The parameter right spec-
ifies, how many digits right of the decimal point should be included in the output. The result will
be rounded to this number of decimal digits. Setting right to -1 indicates that all available decimal
digits should be included in the output. If the length of the output buffer, which is indicated by len

is not sufficient to hold the textual representation including the trailing zero byte, only a single *
character is stored in the result and -1 is returned.

The function returns either -1 if the buffer cp was too small or ECPG_INFORMIX_OUT_OF_MEMORY
if memory was exhausted.

dectodbl

Convert a variable of type decimal to a double.

int dectodbl(decimal *np, double *dblp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the double
variable that should hold the result of the operation (dblp).

On success, 0 is returned and a negative value if the conversion failed.

833

Chapter 33. ECPG - Embedded SQL in C

dectoint

Convert a variable to type decimal to an integer.

int dectoint(decimal *np, int *ip);

The function receives a pointer to the decimal value to convert (np) and a pointer to the integer
variable that should hold the result of the operation (ip).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits an
integer to the range from -32767 to 32767, while the limits in the ECPG implementation depend on
the architecture (-INT_MAX .. INT_MAX).

dectolong

Convert a variable to type decimal to a long integer.

int dectolong(decimal *np, long *lngp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the long variable
that should hold the result of the operation (lngp).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits a
long integer to the range from -2,147,483,647 to 2,147,483,647, while the limits in the ECPG imple-
mentation depend on the architecture (-LONG_MAX .. LONG_MAX).

rdatestr

Converts a date to a C char* string.

int rdatestr(date d, char *str);

The function receives two arguments, the first one is the date to convert (d and the second one is a
pointer to the target string. The output format is always yyyy-mm-dd, so you need to allocate at least
11 bytes (including the zero-byte terminator) for the string.

The function returns 0 on success and a negative value in case of error.

Note that ECPG’s implementation differs from the Informix implementation. In Informix the format
can be influenced by setting environment variables. In ECPG however, you cannot change the output
format.

rstrdate

Parse the textual representation of a date.

int rstrdate(char *str, date *d);

The function receives the textual representation of the date to convert (str) and a pointer to a variable
of type date (d). This function does not allow you to specify a format mask. It uses the default
format mask of Informix which is mm/dd/yyyy. Internally, this function is implemented by means
of rdefmtdate. Therefore, rstrdate is not faster and if you have the choice you should opt for
rdefmtdate which allows you to specify the format mask explicitly.

The function returns the same values as rdefmtdate.

834

Chapter 33. ECPG - Embedded SQL in C

rtoday

Get the current date.

void rtoday(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

Internally this function uses the PGTYPESdate_today function.

rjulmdy

Extract the values for the day, the month and the year from a variable of type date.

int rjulmdy(date d, short mdy[3]);

The function receives the date d and a pointer to an array of 3 short integer values mdy. The variable
name indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1]
will be set to the value of the day and mdy[2] will contain the year.

The function always returns 0 at the moment.

Internally the function uses the PGTYPESdate_julmdy function.

rdefmtdate

Use a format mask to convert a character string to a value of type date.

int rdefmtdate(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the
year, mm to indicate the position of the month and dd to indicate the position of the day.

The function returns the following values:

• 0 - The function terminated successfully.

• ECPG_INFORMIX_ENOSHORTDATE - The date does not contain delimiters between day, month and
year. In this case the input string must be exactly 6 or 8 bytes long but isn’t.

• ECPG_INFORMIX_ENOTDMY - The format string did not correctly indicate the sequential order of
year, month and day.

• ECPG_INFORMIX_BAD_DAY - The input string does not contain a valid day.

• ECPG_INFORMIX_BAD_MONTH - The input string does not contain a valid month.

• ECPG_INFORMIX_BAD_YEAR - The input string does not contain a valid year.

Internally this function is implemented to use the PGTYPESdate_defmt_asc function. See the ref-
erence there for a table of example input.

rfmtdate

Convert a variable of type date to its textual representation using a format mask.

int rfmtdate(date d, char *fmt, char *str);

The function receives the date to convert (d), the format mask (fmt) and the string that will hold the
textual representation of the date (str).

835

Chapter 33. ECPG - Embedded SQL in C

On success, 0 is returned and a negative value if an error occurred.

Internally this function uses the PGTYPESdate_fmt_asc function, see the reference there for exam-
ples.

rmdyjul

Create a date value from an array of 3 short integers that specify the day, the month and the year of
the date.

int rmdyjul(short mdy[3], date *d);

The function receives the array of the 3 short integers (mdy) and a pointer to a variable of type date
that should hold the result of the operation.

Currently the function returns always 0.

Internally the function is implemented to use the function PGTYPESdate_mdyjul.

rdayofweek

Return a number representing the day of the week for a date value.

int rdayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.

• 0 - Sunday

• 1 - Monday

• 2 - Tuesday

• 3 - Wednesday

• 4 - Thursday

• 5 - Friday

• 6 - Saturday

Internally the function is implemented to use the function PGTYPESdate_dayofweek.

dtcurrent

Retrieve the current timestamp.

void dtcurrent(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points
to.

dtcvasc

Parses a timestamp from its textual representation into a timestamp variable.

int dtcvasc(char *str, timestamp *ts);

The function receives the string to parse (str) and a pointer to the timestamp variable that should
hold the result of the operation (ts).

The function returns 0 on success and a negative value in case of error.

Internally this function uses the PGTYPEStimestamp_from_asc function. See the reference there
for a table with example inputs.

836

Chapter 33. ECPG - Embedded SQL in C

dtcvfmtasc

Parses a timestamp from its textual representation using a format mask into a timestamp variable.

dtcvfmtasc(char *inbuf, char *fmtstr, timestamp *dtvalue)

The function receives the string to parse (inbuf), the format mask to use (fmtstr) and a pointer to
the timestamp variable that should hold the result of the operation (dtvalue).

This function is implemented by means of the PGTYPEStimestamp_defmt_asc function. See the
documentation there for a list of format specifiers that can be used.

The function returns 0 on success and a negative value in case of error.

dtsub

Subtract one timestamp from another and return a variable of type interval.

int dtsub(timestamp *ts1, timestamp *ts2, interval *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

dttoasc

Convert a timestamp variable to a C char* string.

int dttoasc(timestamp *ts, char *output);

The function receives a pointer to the timestamp variable to convert (ts) and the string that should
hold the result of the operation output). It converts ts to its textual representation according to the
SQL standard, which is be YYYY-MM-DD HH:MM:SS.

Upon success, the function returns 0 and a negative value if an error occurred.

dttofmtasc

Convert a timestamp variable to a C char* using a format mask.

int dttofmtasc(timestamp *ts, char *output, int str_len, char *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

Internally, this function uses the PGTYPEStimestamp_fmt_asc function. See the reference there
for information on what format mask specifiers can be used.

intoasc

Convert an interval variable to a C char* string.

int intoasc(interval *i, char *str);

The function receives a pointer to the interval variable to convert (i) and the string that should hold
the result of the operation str). It converts i to its textual representation according to the SQL
standard, which is be YYYY-MM-DD HH:MM:SS.

Upon success, the function returns 0 and a negative value if an error occurred.

837

Chapter 33. ECPG - Embedded SQL in C

rfmtlong

Convert a long integer value to its textual representation using a format mask.

int rfmtlong(long lng_val, char *fmt, char *outbuf);

The function receives the long value lng_val, the format mask fmt and a pointer to the output
buffer outbuf. It converts the long value according to the format mask to its textual representation.

The format mask can be composed of the following format specifying characters:

• * (asterisk) - if this position would be blank otherwise, fill it with an asterisk.

• & (ampersand) - if this position would be blank otherwise, fill it with a zero.

• # - turn leading zeroes into blanks.

• < - left-justify the number in the string.

• , (comma) - group numbers of four or more digits into groups of three digits separated by a
comma.

• . (period) - this character separates the whole-number part of the number from the fractional part.

• - (minus) - the minus sign appears if the number is a negative value.

• + (plus) - the plus sign appears if the number is a positive value.

• (- this replaces the minus sign in front of the negative number. The minus sign will not appear.

•) - this character replaces the minus and is printed behind the negative value.

• $ - the currency symbol.

rupshift

Convert a string to upper case.

void rupshift(char *str);

The function receives a pointer to the string and transforms every lower case character to upper case.

byleng

Return the number of characters in a string without counting trailing blanks.

int byleng(char *str, int len);

The function expects a fixed-length string as its first argument (str) and its length as its second
argument (len). It returns the number of significant characters, that is the length of the string without
trailing blanks.

ldchar

Copy a fixed-length string into a null-terminated string.

void ldchar(char *src, int len, char *dest);

The function receives the fixed-length string to copy (src), its length (len) and a pointer to the
destination memory (dest). Note that you need to reserve at least len+1 bytes for the string that
dest points to. The function copies at most len bytes to the new location (less if the source string
has trailing blanks) and adds the null-terminator.

838

Chapter 33. ECPG - Embedded SQL in C

rgetmsg

int rgetmsg(int msgnum, char *s, int maxsize);

This function exists but is not implemented at the moment!

rtypalign

int rtypalign(int offset, int type);

This function exists but is not implemented at the moment!

rtypmsize

int rtypmsize(int type, int len);

This function exists but is not implemented at the moment!

rtypwidth

int rtypwidth(int sqltype, int sqllen);

This function exists but is not implemented at the moment!

rsetnull

Set a variable to NULL.

int rsetnull(int t, char *ptr);

The function receives an integer that indicates the type of the variable and a pointer to the variable
itself that is cast to a C char* pointer.

The following types exist:

• CCHARTYPE - For a variable of type char or char*

• CSHORTTYPE - For a variable of type short int

• CINTTYPE - For a variable of type int

• CBOOLTYPE - For a variable of type boolean

• CFLOATTYPE - For a variable of type float

• CLONGTYPE - For a variable of type long

• CDOUBLETYPE - For a variable of type double

• CDECIMALTYPE - For a variable of type decimal

• CDATETYPE - For a variable of type date

• CDTIMETYPE - For a variable of type timestamp

Here is an example of a call to this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

rsetnull(CCHARTYPE, (char *) c);
rsetnull(CSHORTTYPE, (char *) &s);
rsetnull(CINTTYPE, (char *) &i);

839

Chapter 33. ECPG - Embedded SQL in C

risnull

Test if a variable is NULL.

int risnull(int t, char *ptr);

The function receives the type of the variable to test (t) as well a pointer to this variable (ptr). Note
that the latter needs to be cast to a char*. See the function rsetnull for a list of possible variable
types.

Here is an example of how to use this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

risnull(CCHARTYPE, (char *) c);
risnull(CSHORTTYPE, (char *) &s);
risnull(CINTTYPE, (char *) &i);

33.15.5. Additional Constants
Note that all constants here describe errors and all of them are defined to represent negative values. In
the descriptions of the different constants you can also find the value that the constants represent in the
current implementation. However you should not rely on this number. You can however rely on the fact
all of them are defined to represent negative values.

ECPG_INFORMIX_NUM_OVERFLOW

Functions return this value if an overflow occurred in a calculation. Internally it is defined as -1200
(the Informix definition).

ECPG_INFORMIX_NUM_UNDERFLOW

Functions return this value if an underflow occurred in a calculation. Internally it is defined as -1201
(the Informix definition).

ECPG_INFORMIX_DIVIDE_ZERO

Functions return this value if an attempt to divide by zero is observed. Internally it is defined as -1202
(the Informix definition).

ECPG_INFORMIX_BAD_YEAR

Functions return this value if a bad value for a year was found while parsing a date. Internally it is
defined as -1204 (the Informix definition).

ECPG_INFORMIX_BAD_MONTH

Functions return this value if a bad value for a month was found while parsing a date. Internally it is
defined as -1205 (the Informix definition).

ECPG_INFORMIX_BAD_DAY

Functions return this value if a bad value for a day was found while parsing a date. Internally it is
defined as -1206 (the Informix definition).

840

Chapter 33. ECPG - Embedded SQL in C

ECPG_INFORMIX_ENOSHORTDATE

Functions return this value if a parsing routine needs a short date representation but did not get the
date string in the right length. Internally it is defined as -1209 (the Informix definition).

ECPG_INFORMIX_DATE_CONVERT

Functions return this value if an error occurred during date formatting. Internally it is defined as
-1210 (the Informix definition).

ECPG_INFORMIX_OUT_OF_MEMORY

Functions return this value if memory was exhausted during their operation. Internally it is defined
as -1211 (the Informix definition).

ECPG_INFORMIX_ENOTDMY

Functions return this value if a parsing routine was supposed to get a format mask (like mmddyy) but
not all fields were listed correctly. Internally it is defined as -1212 (the Informix definition).

ECPG_INFORMIX_BAD_NUMERIC

Functions return this value either if a parsing routine cannot parse the textual representation for
a numeric value because it contains errors or if a routine cannot complete a calculation involving
numeric variables because at least one of the numeric variables is invalid. Internally it is defined as
-1213 (the Informix definition).

ECPG_INFORMIX_BAD_EXPONENT

Functions return this value if a parsing routine cannot parse an exponent. Internally it is defined as
-1216 (the Informix definition).

ECPG_INFORMIX_BAD_DATE

Functions return this value if a parsing routine cannot parse a date. Internally it is defined as -1218
(the Informix definition).

ECPG_INFORMIX_EXTRA_CHARS

Functions return this value if a parsing routine is passed extra characters it cannot parse. Internally it
is defined as -1264 (the Informix definition).

33.16. Internals
This section explains how ECPG works internally. This information can occasionally be useful to help
users understand how to use ECPG.

The first four lines written by ecpg to the output are fixed lines. Two are comments and two are include
lines necessary to interface to the library. Then the preprocessor reads through the file and writes output.
Normally it just echoes everything to the output.

When it sees an EXEC SQL statement, it intervenes and changes it. The command starts with EXEC SQL

and ends with ;. Everything in between is treated as an SQL statement and parsed for variable substitution.

841

Chapter 33. ECPG - Embedded SQL in C

Variable substitution occurs when a symbol starts with a colon (:). The variable with that name is looked
up among the variables that were previously declared within a EXEC SQL DECLARE section.

The most important function in the library is ECPGdo, which takes care of executing most commands. It
takes a variable number of arguments. This can easily add up to 50 or so arguments, and we hope this will
not be a problem on any platform.

The arguments are:

A line number

This is the line number of the original line; used in error messages only.

A string

This is the SQL command that is to be issued. It is modified by the input variables, i.e., the variables
that where not known at compile time but are to be entered in the command. Where the variables
should go the string contains ?.

Input variables

Every input variable causes ten arguments to be created. (See below.)

ECPGt_EOIT

An enum telling that there are no more input variables.

Output variables

Every output variable causes ten arguments to be created. (See below.) These variables are filled by
the function.

ECPGt_EORT

An enum telling that there are no more variables.

For every variable that is part of the SQL command, the function gets ten arguments:

1. The type as a special symbol.

2. A pointer to the value or a pointer to the pointer.

3. The size of the variable if it is a char or varchar.

4. The number of elements in the array (for array fetches).

5. The offset to the next element in the array (for array fetches).

6. The type of the indicator variable as a special symbol.

7. A pointer to the indicator variable.

8. 0

9. The number of elements in the indicator array (for array fetches).

10. The offset to the next element in the indicator array (for array fetches).

Note that not all SQL commands are treated in this way. For instance, an open cursor statement like:

842

Chapter 33. ECPG - Embedded SQL in C

EXEC SQL OPEN cursor;

is not copied to the output. Instead, the cursor’s DECLARE command is used at the position of the OPEN

command because it indeed opens the cursor.

Here is a complete example describing the output of the preprocessor of a file foo.pgc (details might
change with each particular version of the preprocessor):

EXEC SQL BEGIN DECLARE SECTION;
int index;
int result;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

int index;
int result;

/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ? ",

ECPGt_int,&(index),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
ECPGt_int,&(result),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);

#line 147 "foo.pgc"

(The indentation here is added for readability and not something the preprocessor does.)

843

Chapter 34. The Information Schema
The information schema consists of a set of views that contain information about the objects defined in the
current database. The information schema is defined in the SQL standard and can therefore be expected
to be portable and remain stable — unlike the system catalogs, which are specific to PostgreSQL and
are modelled after implementation concerns. The information schema views do not, however, contain
information about PostgreSQL-specific features; to inquire about those you need to query the system
catalogs or other PostgreSQL-specific views.

Note: When querying the database for constraint information, it is possible for a standard-compliant
query that expects to return one row to return several. This is because the SQL standard requires con-
straint names to be unique within a schema, but PostgreSQL does not enforce this restriction. Post-
greSQL automatically-generated constraint names avoid duplicates in the same schema, but users
can specify such duplicate names.

This problem can appear when querying information schema views such as
check_constraint_routine_usage, check_constraints, domain_constraints, and
referential_constraints. Some other views have similar issues but contain the table name
to help distinguish duplicate rows, e.g., constraint_column_usage, constraint_table_usage,
table_constraints.

34.1. The Schema
The information schema itself is a schema named information_schema. This schema automatically
exists in all databases. The owner of this schema is the initial database user in the cluster, and that user
naturally has all the privileges on this schema, including the ability to drop it (but the space savings
achieved by that are minuscule).

By default, the information schema is not in the schema search path, so you need to access all objects in
it through qualified names. Since the names of some of the objects in the information schema are generic
names that might occur in user applications, you should be careful if you want to put the information
schema in the path.

34.2. Data Types
The columns of the information schema views use special data types that are defined in the information
schema. These are defined as simple domains over ordinary built-in types. You should not use these types
for work outside the information schema, but your applications must be prepared for them if they select
from the information schema.

These types are:

cardinal_number

A nonnegative integer.

844

Chapter 34. The Information Schema

character_data

A character string (without specific maximum length).

sql_identifier

A character string. This type is used for SQL identifiers, the type character_data is used for any
other kind of text data.

time_stamp

A domain over the type timestamp with time zone

yes_or_no

A character string domain that contains either YES or NO. This is used to represent Boolean
(true/false) data in the information schema. (The information schema was invented before the type
boolean was added to the SQL standard, so this convention is necessary to keep the information
schema backward compatible.)

Every column in the information schema has one of these five types.

34.3. information_schema_catalog_name
information_schema_catalog_name is a table that always contains one row and one column con-
taining the name of the current database (current catalog, in SQL terminology).

Table 34-1. information_schema_catalog_name Columns

Name Data Type Description
catalog_name sql_identifier Name of the database that

contains this information schema

34.4. administrable_role_authorizations
The view administrable_role_authorizations identifies all roles that the current user has the
admin option for.

Table 34-2. administrable_role_authorizations Columns

Name Data Type Description
grantee sql_identifier Name of the role to which this

role membership was granted
(can be the current user, or a
different role in case of nested
role memberships)

role_name sql_identifier Name of a role

845

Chapter 34. The Information Schema

Name Data Type Description
is_grantable yes_or_no Always YES

34.5. applicable_roles
The view applicable_roles identifies all roles whose privileges the current user can use. This means
there is some chain of role grants from the current user to the role in question. The current user itself is
also an applicable role. The set of applicable roles is generally used for permission checking.

Table 34-3. applicable_roles Columns

Name Data Type Description
grantee sql_identifier Name of the role to which this

role membership was granted
(can be the current user, or a
different role in case of nested
role memberships)

role_name sql_identifier Name of a role

is_grantable yes_or_no YES if the grantee has the admin
option on the role, NO if not

34.6. attributes
The view attributes contains information about the attributes of composite data types defined in the
database. (Note that the view does not give information about table columns, which are sometimes called
attributes in PostgreSQL contexts.) Only those attributes are shown that the current user has access to (by
way of being the owner of or having some privilege on the type).

Table 34-4. attributes Columns

Name Data Type Description
udt_catalog sql_identifier Name of the database containing

the data type (always the current
database)

udt_schema sql_identifier Name of the schema containing
the data type

udt_name sql_identifier Name of the data type

attribute_name sql_identifier Name of the attribute

ordinal_position cardinal_number Ordinal position of the attribute
within the data type (count starts
at 1)

846

Chapter 34. The Information Schema

Name Data Type Description
attribute_default character_data Default expression of the

attribute

is_nullable yes_or_no YES if the attribute is possibly
nullable, NO if it is known not
nullable.

data_type character_data Data type of the attribute, if it is
a built-in type, or ARRAY if it is
some array (in that case, see the
view element_types), else
USER-DEFINED (in that case, the
type is identified in
attribute_udt_name and
associated columns).

character_maximum_length cardinal_number If data_type identifies a
character or bit string type, the
declared maximum length; null
for all other data types or if no
maximum length was declared.

character_octet_length cardinal_number If data_type identifies a
character type, the maximum
possible length in octets (bytes)
of a datum; null for all other data
types. The maximum octet length
depends on the declared
character maximum length (see
above) and the server encoding.

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the attribute
(always the current database),
null if default or the data type of
the attribute is not collatable

collation_schema sql_identifier Name of the schema containing
the collation of the attribute, null
if default or the data type of the
attribute is not collatable

847

Chapter 34. The Information Schema

Name Data Type Description
collation_name sql_identifier Name of the collation of the

attribute, null if default or the
data type of the attribute is not
collatable

numeric_precision cardinal_number If data_type identifies a
numeric type, this column
contains the (declared or
implicit) precision of the type for
this attribute. The precision
indicates the number of
significant digits. It can be
expressed in decimal (base 10) or
binary (base 2) terms, as
specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

numeric_precision_radix cardinal_number If data_type identifies a
numeric type, this column
indicates in which base the
values in the columns
numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10. For
all other data types, this column
is null.

numeric_scale cardinal_number If data_type identifies an
exact numeric type, this column
contains the (declared or
implicit) scale of the type for this
attribute. The scale indicates the
number of significant digits to
the right of the decimal point. It
can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

848

Chapter 34. The Information Schema

Name Data Type Description
datetime_precision cardinal_number If data_type identifies a date,

time, timestamp, or interval type,
this column contains the
(declared or implicit) fractional
seconds precision of the type for
this attribute, that is, the number
of decimal digits maintained
following the decimal point in
the seconds value. For all other
data types, this column is null.

interval_type character_data If data_type identifies an
interval type, this column
contains the specification which
fields the intervals include for
this attribute, e.g., YEAR TO

MONTH, DAY TO SECOND, etc. If
no field restrictions were
specified (that is, the interval
accepts all fields), and for all
other data types, this field is null.

interval_precision cardinal_number Applies to a feature not available
in PostgreSQL (see
datetime_precision for the
fractional seconds precision of
interval type attributes)

attribute_udt_catalog sql_identifier Name of the database that the
attribute data type is defined in
(always the current database)

attribute_udt_schema sql_identifier Name of the schema that the
attribute data type is defined in

attribute_udt_name sql_identifier Name of the attribute data type

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

849

Chapter 34. The Information Schema

Name Data Type Description
dtd_identifier sql_identifier An identifier of the data type

descriptor of the column, unique
among the data type descriptors
pertaining to the table. This is
mainly useful for joining with
other instances of such
identifiers. (The specific format
of the identifier is not defined
and not guaranteed to remain the
same in future versions.)

is_derived_reference_attributeyes_or_no Applies to a feature not available
in PostgreSQL

See also under Section 34.16, a similarly structured view, for further information on some of the columns.

34.7. character_sets
The view character_sets identifies the character sets available in the current database. Since Post-
greSQL does not support multiple character sets within one database, this view only shows one, which is
the database encoding.

Take note of how the following terms are used in the SQL standard:

character repertoire

An abstract collection of characters, for example UNICODE, UCS, or LATIN1. Not exposed as an SQL
object, but visible in this view.

character encoding form

An encoding of some character repertoire. Most older character repertoires only use one encoding
form, and so there are no separate names for them (e.g., LATIN1 is an encoding form applicable to
the LATIN1 repertoire). But for example Unicode has the encoding forms UTF8, UTF16, etc. (not all
supported by PostgreSQL). Encoding forms are not exposed as an SQL object, but are visible in this
view.

character set

A named SQL object that identifies a character repertoire, a character encoding, and a default colla-
tion. A predefined character set would typically have the same name as an encoding form, but users
could define other names. For example, the character set UTF8 would typically identify the character
repertoire UCS, encoding form UTF8, and some default collation.

You can think of an “encoding” in PostgreSQL either as a character set or a character encoding form.
They will have the same name, and there can only be one in one database.

Table 34-5. character_sets Columns

Name Data Type Description

850

Chapter 34. The Information Schema

Name Data Type Description
character_set_catalog sql_identifier Character sets are currently not

implemented as schema objects,
so this column is null.

character_set_schema sql_identifier Character sets are currently not
implemented as schema objects,
so this column is null.

character_set_name sql_identifier Name of the character set,
currently implemented as
showing the name of the
database encoding

character_repertoire sql_identifier Character repertoire, showing
UCS if the encoding is UTF8, else
just the encoding name

form_of_use sql_identifier Character encoding form, same
as the database encoding

default_collate_catalog sql_identifier Name of the database containing
the default collation (always the
current database, if any collation
is identified)

default_collate_schema sql_identifier Name of the schema containing
the default collation

default_collate_name sql_identifier Name of the default collation.
The default collation is identified
as the collation that matches the
COLLATE and CTYPE settings of
the current database. If there is
no such collation, then this
column and the associated
schema and catalog columns are
null.

34.8. check_constraint_routine_usage
The view check_constraint_routine_usage identifies routines (functions and procedures) that are
used by a check constraint. Only those routines are shown that are owned by a currently enabled role.

Table 34-6. check_constraint_routine_usage Columns

Name Data Type Description
constraint_catalog sql_identifier Name of the database containing

the constraint (always the current
database)

851

Chapter 34. The Information Schema

Name Data Type Description
constraint_schema sql_identifier Name of the schema containing

the constraint

constraint_name sql_identifier Name of the constraint

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 34.40 for
more information.

34.9. check_constraints
The view check_constraints contains all check constraints, either defined on a table or on a domain,
that are owned by a currently enabled role. (The owner of the table or domain is the owner of the con-
straint.)

Table 34-7. check_constraints Columns

Name Data Type Description
constraint_catalog sql_identifier Name of the database containing

the constraint (always the current
database)

constraint_schema sql_identifier Name of the schema containing
the constraint

constraint_name sql_identifier Name of the constraint

check_clause character_data The check expression of the
check constraint

34.10. collations
The view collations contains the collations available in the current database.

Table 34-8. collations Columns

Name Data Type Description
collation_catalog sql_identifier Name of the database containing

the collation (always the current
database)

852

Chapter 34. The Information Schema

Name Data Type Description
collation_schema sql_identifier Name of the schema containing

the collation

collation_name sql_identifier Name of the default collation

pad_attribute character_data Always NO PAD (The alternative
PAD SPACE is not supported by
PostgreSQL.)

34.11. collation_character_set_applicability
The view collation_character_set_applicability identifies which character set the available
collations are applicable to. In PostgreSQL, there is only one character set per database (see explanation
in Section 34.7), so this view does not provide much useful information.

Table 34-9. collation_character_set_applicability Columns

Name Data Type Description
collation_catalog sql_identifier Name of the database containing

the collation (always the current
database)

collation_schema sql_identifier Name of the schema containing
the collation

collation_name sql_identifier Name of the default collation

character_set_catalog sql_identifier Character sets are currently not
implemented as schema objects,
so this column is null

character_set_schema sql_identifier Character sets are currently not
implemented as schema objects,
so this column is null

character_set_name sql_identifier Name of the character set

34.12. column_domain_usage
The view column_domain_usage identifies all columns (of a table or a view) that make use of some
domain defined in the current database and owned by a currently enabled role.

Table 34-10. column_domain_usage Columns

Name Data Type Description

853

Chapter 34. The Information Schema

Name Data Type Description
domain_catalog sql_identifier Name of the database containing

the domain (always the current
database)

domain_schema sql_identifier Name of the schema containing
the domain

domain_name sql_identifier Name of the domain

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

34.13. column_options
The view column_options contains all the options defined for foreign table columns in the current
database. Only those foreign table columns are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 34-11. column_options Columns

Name Data Type Description
table_catalog sql_identifier Name of the database that

contains the foreign table
(always the current database)

table_schema sql_identifier Name of the schema that
contains the foreign table

table_name sql_identifier Name of the foreign table

column_name sql_identifier Name of the column

option_name sql_identifier Name of an option

option_value character_data Value of the option

34.14. column_privileges
The view column_privileges identifies all privileges granted on columns to a currently enabled role
or by a currently enabled role. There is one row for each combination of column, grantor, and grantee.

If a privilege has been granted on an entire table, it will show up in this view as a grant for each col-
umn, but only for the privilege types where column granularity is possible: SELECT, INSERT, UPDATE,
REFERENCES.

854

Chapter 34. The Information Schema

Table 34-12. column_privileges Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table that contains
the column (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column

table_name sql_identifier Name of the table that contains
the column

column_name sql_identifier Name of the column

privilege_type character_data Type of the privilege: SELECT,
INSERT, UPDATE, or
REFERENCES

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

34.15. column_udt_usage
The view column_udt_usage identifies all columns that use data types owned by a currently enabled
role. Note that in PostgreSQL, built-in data types behave like user-defined types, so they are included here
as well. See also Section 34.16 for details.

Table 34-13. column_udt_usage Columns

Name Data Type Description
udt_catalog sql_identifier Name of the database that the

column data type (the underlying
type of the domain, if applicable)
is defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
column data type (the underlying
type of the domain, if applicable)
is defined in

855

Chapter 34. The Information Schema

Name Data Type Description
udt_name sql_identifier Name of the column data type

(the underlying type of the
domain, if applicable)

table_catalog sql_identifier Name of the database containing
the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

34.16. columns
The view columns contains information about all table columns (or view columns) in the database. Sys-
tem columns (oid, etc.) are not included. Only those columns are shown that the current user has access
to (by way of being the owner or having some privilege).

Table 34-14. columns Columns

Name Data Type Description
table_catalog sql_identifier Name of the database containing

the table (always the current
database)

table_schema sql_identifier Name of the schema containing
the table

table_name sql_identifier Name of the table

column_name sql_identifier Name of the column

ordinal_position cardinal_number Ordinal position of the column
within the table (count starts at 1)

column_default character_data Default expression of the column

is_nullable yes_or_no YES if the column is possibly
nullable, NO if it is known not
nullable. A not-null constraint is
one way a column can be known
not nullable, but there can be
others.

856

Chapter 34. The Information Schema

Name Data Type Description
data_type character_data Data type of the column, if it is a

built-in type, or ARRAY if it is
some array (in that case, see the
view element_types), else
USER-DEFINED (in that case, the
type is identified in udt_name

and associated columns). If the
column is based on a domain,
this column refers to the type
underlying the domain (and the
domain is identified in
domain_name and associated
columns).

character_maximum_length cardinal_number If data_type identifies a
character or bit string type, the
declared maximum length; null
for all other data types or if no
maximum length was declared.

character_octet_length cardinal_number If data_type identifies a
character type, the maximum
possible length in octets (bytes)
of a datum; null for all other data
types. The maximum octet length
depends on the declared
character maximum length (see
above) and the server encoding.

numeric_precision cardinal_number If data_type identifies a
numeric type, this column
contains the (declared or
implicit) precision of the type for
this column. The precision
indicates the number of
significant digits. It can be
expressed in decimal (base 10) or
binary (base 2) terms, as
specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

857

Chapter 34. The Information Schema

Name Data Type Description
numeric_precision_radix cardinal_number If data_type identifies a

numeric type, this column
indicates in which base the
values in the columns
numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10. For
all other data types, this column
is null.

numeric_scale cardinal_number If data_type identifies an
exact numeric type, this column
contains the (declared or
implicit) scale of the type for this
column. The scale indicates the
number of significant digits to
the right of the decimal point. It
can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

datetime_precision cardinal_number If data_type identifies a date,
time, timestamp, or interval type,
this column contains the
(declared or implicit) fractional
seconds precision of the type for
this column, that is, the number
of decimal digits maintained
following the decimal point in
the seconds value. For all other
data types, this column is null.

interval_type character_data If data_type identifies an
interval type, this column
contains the specification which
fields the intervals include for
this column, e.g., YEAR TO

MONTH, DAY TO SECOND, etc. If
no field restrictions were
specified (that is, the interval
accepts all fields), and for all
other data types, this field is null.

858

Chapter 34. The Information Schema

Name Data Type Description
interval_precision cardinal_number Applies to a feature not available

in PostgreSQL (see
datetime_precision for the
fractional seconds precision of
interval type columns)

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the column
(always the current database),
null if default or the data type of
the column is not collatable

collation_schema sql_identifier Name of the schema containing
the collation of the column, null
if default or the data type of the
column is not collatable

collation_name sql_identifier Name of the collation of the
column, null if default or the data
type of the column is not
collatable

domain_catalog sql_identifier If the column has a domain type,
the name of the database that the
domain is defined in (always the
current database), else null.

domain_schema sql_identifier If the column has a domain type,
the name of the schema that the
domain is defined in, else null.

domain_name sql_identifier If the column has a domain type,
the name of the domain, else
null.

udt_catalog sql_identifier Name of the database that the
column data type (the underlying
type of the domain, if applicable)
is defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
column data type (the underlying
type of the domain, if applicable)
is defined in

859

Chapter 34. The Information Schema

Name Data Type Description
udt_name sql_identifier Name of the column data type

(the underlying type of the
domain, if applicable)

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the column, unique
among the data type descriptors
pertaining to the table. This is
mainly useful for joining with
other instances of such
identifiers. (The specific format
of the identifier is not defined
and not guaranteed to remain the
same in future versions.)

is_self_referencing yes_or_no Applies to a feature not available
in PostgreSQL

is_identity yes_or_no Applies to a feature not available
in PostgreSQL

identity_generation character_data Applies to a feature not available
in PostgreSQL

identity_start character_data Applies to a feature not available
in PostgreSQL

identity_increment character_data Applies to a feature not available
in PostgreSQL

identity_maximum character_data Applies to a feature not available
in PostgreSQL

identity_minimum character_data Applies to a feature not available
in PostgreSQL

identity_cycle yes_or_no Applies to a feature not available
in PostgreSQL

is_generated character_data Applies to a feature not available
in PostgreSQL

generation_expression character_data Applies to a feature not available
in PostgreSQL

860

Chapter 34. The Information Schema

Name Data Type Description
is_updatable yes_or_no YES if the column is updatable,

NO if not (Columns in base tables
are always updatable, columns in
views not necessarily)

Since data types can be defined in a variety of ways in SQL, and PostgreSQL contains additional ways
to define data types, their representation in the information schema can be somewhat difficult. The col-
umn data_type is supposed to identify the underlying built-in type of the column. In PostgreSQL, this
means that the type is defined in the system catalog schema pg_catalog. This column might be useful
if the application can handle the well-known built-in types specially (for example, format the numeric
types differently or use the data in the precision columns). The columns udt_name, udt_schema, and
udt_catalog always identify the underlying data type of the column, even if the column is based on a
domain. (Since PostgreSQL treats built-in types like user-defined types, built-in types appear here as well.
This is an extension of the SQL standard.) These columns should be used if an application wants to pro-
cess data differently according to the type, because in that case it wouldn’t matter if the column is really
based on a domain. If the column is based on a domain, the identity of the domain is stored in the columns
domain_name, domain_schema, and domain_catalog. If you want to pair up columns with their as-
sociated data types and treat domains as separate types, you could write coalesce(domain_name,

udt_name), etc.

34.17. constraint_column_usage
The view constraint_column_usage identifies all columns in the current database that are used by
some constraint. Only those columns are shown that are contained in a table owned by a currently enabled
role. For a check constraint, this view identifies the columns that are used in the check expression. For a
foreign key constraint, this view identifies the columns that the foreign key references. For a unique or
primary key constraint, this view identifies the constrained columns.

Table 34-15. constraint_column_usage Columns

Name Data Type Description
table_catalog sql_identifier Name of the database that

contains the table that contains
the column that is used by some
constraint (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column that is used by some
constraint

table_name sql_identifier Name of the table that contains
the column that is used by some
constraint

861

Chapter 34. The Information Schema

Name Data Type Description
column_name sql_identifier Name of the column that is used

by some constraint

constraint_catalog sql_identifier Name of the database that
contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

34.18. constraint_table_usage
The view constraint_table_usage identifies all tables in the current database that are used
by some constraint and are owned by a currently enabled role. (This is different from the view
table_constraints, which identifies all table constraints along with the table they are defined on.)
For a foreign key constraint, this view identifies the table that the foreign key references. For a unique or
primary key constraint, this view simply identifies the table the constraint belongs to. Check constraints
and not-null constraints are not included in this view.

Table 34-16. constraint_table_usage Columns

Name Data Type Description
table_catalog sql_identifier Name of the database that

contains the table that is used by
some constraint (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table that is used by
some constraint

table_name sql_identifier Name of the table that is used by
some constraint

constraint_catalog sql_identifier Name of the database that
contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

34.19. data_type_privileges
The view data_type_privileges identifies all data type descriptors that the current user has access to,
by way of being the owner of the described object or having some privilege for it. A data type descriptor

862

Chapter 34. The Information Schema

is generated whenever a data type is used in the definition of a table column, a domain, or a function (as
parameter or return type) and stores some information about how the data type is used in that instance (for
example, the declared maximum length, if applicable). Each data type descriptor is assigned an arbitrary
identifier that is unique among the data type descriptor identifiers assigned for one object (table, domain,
function). This view is probably not useful for applications, but it is used to define some other views in
the information schema.

Table 34-17. data_type_privileges Columns

Name Data Type Description
object_catalog sql_identifier Name of the database that

contains the described object
(always the current database)

object_schema sql_identifier Name of the schema that
contains the described object

object_name sql_identifier Name of the described object

object_type character_data The type of the described object:
one of TABLE (the data type
descriptor pertains to a column
of that table), DOMAIN (the data
type descriptors pertains to that
domain), ROUTINE (the data type
descriptor pertains to a parameter
or the return data type of that
function).

dtd_identifier sql_identifier The identifier of the data type
descriptor, which is unique
among the data type descriptors
for that same object.

34.20. domain_constraints
The view domain_constraints contains all constraints belonging to domains defined in the current
database. Only those domains are shown that the current user has access to (by way of being the owner or
having some privilege).

Table 34-18. domain_constraints Columns

Name Data Type Description
constraint_catalog sql_identifier Name of the database that

contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

863

Chapter 34. The Information Schema

Name Data Type Description
constraint_name sql_identifier Name of the constraint

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that
contains the domain

domain_name sql_identifier Name of the domain

is_deferrable yes_or_no YES if the constraint is
deferrable, NO if not

initially_deferred yes_or_no YES if the constraint is deferrable
and initially deferred, NO if not

34.21. domain_udt_usage
The view domain_udt_usage identifies all domains that are based on data types owned by a currently
enabled role. Note that in PostgreSQL, built-in data types behave like user-defined types, so they are
included here as well.

Table 34-19. domain_udt_usage Columns

Name Data Type Description
udt_catalog sql_identifier Name of the database that the

domain data type is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the
domain data type is defined in

udt_name sql_identifier Name of the domain data type

domain_catalog sql_identifier Name of the database that
contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that
contains the domain

domain_name sql_identifier Name of the domain

34.22. domains
The view domains contains all domains defined in the current database. Only those domains are shown
that the current user has access to (by way of being the owner or having some privilege).

864

Chapter 34. The Information Schema

Table 34-20. domains Columns

Name Data Type Description
domain_catalog sql_identifier Name of the database that

contains the domain (always the
current database)

domain_schema sql_identifier Name of the schema that
contains the domain

domain_name sql_identifier Name of the domain

data_type character_data Data type of the domain, if it is a
built-in type, or ARRAY if it is
some array (in that case, see the
view element_types), else
USER-DEFINED (in that case, the
type is identified in udt_name

and associated columns).

character_maximum_length cardinal_number If the domain has a character or
bit string type, the declared
maximum length; null for all
other data types or if no
maximum length was declared.

character_octet_length cardinal_number If the domain has a character
type, the maximum possible
length in octets (bytes) of a
datum; null for all other data
types. The maximum octet length
depends on the declared
character maximum length (see
above) and the server encoding.

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the domain
(always the current database),
null if default or the data type of
the domain is not collatable

collation_schema sql_identifier Name of the schema containing
the collation of the domain, null
if default or the data type of the
domain is not collatable

865

Chapter 34. The Information Schema

Name Data Type Description
collation_name sql_identifier Name of the collation of the

domain, null if default or the data
type of the domain is not
collatable

numeric_precision cardinal_number If the domain has a numeric
type, this column contains the
(declared or implicit) precision
of the type for this domain. The
precision indicates the number of
significant digits. It can be
expressed in decimal (base 10) or
binary (base 2) terms, as
specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

numeric_precision_radix cardinal_number If the domain has a numeric
type, this column indicates in
which base the values in the
columns numeric_precision
and numeric_scale are
expressed. The value is either 2
or 10. For all other data types,
this column is null.

numeric_scale cardinal_number If the domain has an exact
numeric type, this column
contains the (declared or
implicit) scale of the type for this
domain. The scale indicates the
number of significant digits to
the right of the decimal point. It
can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.
For all other data types, this
column is null.

866

Chapter 34. The Information Schema

Name Data Type Description
datetime_precision cardinal_number If data_type identifies a date,

time, timestamp, or interval type,
this column contains the
(declared or implicit) fractional
seconds precision of the type for
this domain, that is, the number
of decimal digits maintained
following the decimal point in
the seconds value. For all other
data types, this column is null.

interval_type character_data If data_type identifies an
interval type, this column
contains the specification which
fields the intervals include for
this domain, e.g., YEAR TO

MONTH, DAY TO SECOND, etc. If
no field restrictions were
specified (that is, the interval
accepts all fields), and for all
other data types, this field is null.

interval_precision cardinal_number Applies to a feature not available
in PostgreSQL (see
datetime_precision for the
fractional seconds precision of
interval type domains)

domain_default character_data Default expression of the domain

udt_catalog sql_identifier Name of the database that the
domain data type is defined in
(always the current database)

udt_schema sql_identifier Name of the schema that the
domain data type is defined in

udt_name sql_identifier Name of the domain data type

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

867

Chapter 34. The Information Schema

Name Data Type Description
dtd_identifier sql_identifier An identifier of the data type

descriptor of the domain, unique
among the data type descriptors
pertaining to the domain (which
is trivial, because a domain only
contains one data type
descriptor). This is mainly useful
for joining with other instances
of such identifiers. (The specific
format of the identifier is not
defined and not guaranteed to
remain the same in future
versions.)

34.23. element_types
The view element_types contains the data type descriptors of the elements of arrays. When a table
column, composite-type attribute, domain, function parameter, or function return value is defined to be of
an array type, the respective information schema view only contains ARRAY in the column data_type.
To obtain information on the element type of the array, you can join the respective view with this view.
For example, to show the columns of a table with data types and array element types, if applicable, you
could do:

SELECT c.column_name, c.data_type, e.data_type AS element_type
FROM information_schema.columns c LEFT JOIN information_schema.element_types e

ON ((c.table_catalog, c.table_schema, c.table_name, ’TABLE’, c.dtd_identifier)
= (e.object_catalog, e.object_schema, e.object_name, e.object_type, e.collection_type_identifier))

WHERE c.table_schema = ’...’ AND c.table_name = ’...’
ORDER BY c.ordinal_position;

This view only includes objects that the current user has access to, by way of being the owner or having
some privilege.

Table 34-21. element_types Columns

Name Data Type Description
object_catalog sql_identifier Name of the database that

contains the object that uses the
array being described (always the
current database)

object_schema sql_identifier Name of the schema that
contains the object that uses the
array being described

object_name sql_identifier Name of the object that uses the
array being described

868

Chapter 34. The Information Schema

Name Data Type Description
object_type character_data The type of the object that uses

the array being described: one of
TABLE (the array is used by a
column of that table),
USER-DEFINED TYPE (the array
is used by an attribute of that
composite type), DOMAIN (the
array is used by that domain),
ROUTINE (the array is used by a
parameter or the return data type
of that function).

collection_type_identifiersql_identifier The identifier of the data type
descriptor of the array being
described. Use this to join with
the dtd_identifier columns
of other information schema
views.

data_type character_data Data type of the array elements,
if it is a built-in type, else
USER-DEFINED (in that case, the
type is identified in udt_name

and associated columns).

character_maximum_length cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Name of the database containing
the collation of the element type
(always the current database),
null if default or the data type of
the element is not collatable

869

Chapter 34. The Information Schema

Name Data Type Description
collation_schema sql_identifier Name of the schema containing

the collation of the element type,
null if default or the data type of
the element is not collatable

collation_name sql_identifier Name of the collation of the
element type, null if default or
the data type of the element is
not collatable

numeric_precision cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

interval_type character_data Always null, since this
information is not applied to
array element data types in
PostgreSQL

interval_precision cardinal_number Always null, since this
information is not applied to
array element data types in
PostgreSQL

domain_default character_data Not yet implemented

udt_catalog sql_identifier Name of the database that the
data type of the elements is
defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
data type of the elements is
defined in

udt_name sql_identifier Name of the data type of the
elements

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

870

Chapter 34. The Information Schema

Name Data Type Description
scope_schema sql_identifier Applies to a feature not available

in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the element. This is
currently not useful.

34.24. enabled_roles
The view enabled_roles identifies the currently “enabled roles”. The enabled roles are recursively
defined as the current user together with all roles that have been granted to the enabled roles with automatic
inheritance. In other words, these are all roles that the current user has direct or indirect, automatically
inheriting membership in.

For permission checking, the set of “applicable roles” is applied, which can be broader than the set of
enabled roles. So generally, it is better to use the view applicable_roles instead of this one; see also
there.

Table 34-22. enabled_roles Columns

Name Data Type Description
role_name sql_identifier Name of a role

34.25. foreign_data_wrapper_options
The view foreign_data_wrapper_options contains all the options defined for foreign-data wrappers
in the current database. Only those foreign-data wrappers are shown that the current user has access to (by
way of being the owner or having some privilege).

Table 34-23. foreign_data_wrapper_options Columns

Name Data Type Description
foreign_data_wrapper_catalogsql_identifier Name of the database that the

foreign-data wrapper is defined
in (always the current database)

foreign_data_wrapper_name sql_identifier Name of the foreign-data
wrapper

871

Chapter 34. The Information Schema

Name Data Type Description
option_name sql_identifier Name of an option

option_value character_data Value of the option

34.26. foreign_data_wrappers
The view foreign_data_wrappers contains all foreign-data wrappers defined in the current database.
Only those foreign-data wrappers are shown that the current user has access to (by way of being the owner
or having some privilege).

Table 34-24. foreign_data_wrappers Columns

Name Data Type Description
foreign_data_wrapper_catalogsql_identifier Name of the database that

contains the foreign-data
wrapper (always the current
database)

foreign_data_wrapper_name sql_identifier Name of the foreign-data
wrapper

authorization_identifier sql_identifier Name of the owner of the foreign
server

library_name character_data File name of the library that
implementing this foreign-data
wrapper

foreign_data_wrapper_languagecharacter_data Language used to implement this
foreign-data wrapper

34.27. foreign_server_options
The view foreign_server_options contains all the options defined for foreign servers in the current
database. Only those foreign servers are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 34-25. foreign_server_options Columns

Name Data Type Description
foreign_server_catalog sql_identifier Name of the database that the

foreign server is defined in
(always the current database)

foreign_server_name sql_identifier Name of the foreign server

option_name sql_identifier Name of an option

872

Chapter 34. The Information Schema

Name Data Type Description
option_value character_data Value of the option

34.28. foreign_servers
The view foreign_servers contains all foreign servers defined in the current database. Only those
foreign servers are shown that the current user has access to (by way of being the owner or having some
privilege).

Table 34-26. foreign_servers Columns

Name Data Type Description
foreign_server_catalog sql_identifier Name of the database that the

foreign server is defined in
(always the current database)

foreign_server_name sql_identifier Name of the foreign server

foreign_data_wrapper_catalogsql_identifier Name of the database that
contains the foreign-data
wrapper used by the foreign
server (always the current
database)

foreign_data_wrapper_name sql_identifier Name of the foreign-data
wrapper used by the foreign
server

foreign_server_type character_data Foreign server type information,
if specified upon creation

foreign_server_version character_data Foreign server version
information, if specified upon
creation

authorization_identifier sql_identifier Name of the owner of the foreign
server

34.29. foreign_table_options
The view foreign_table_options contains all the options defined for foreign tables in the current
database. Only those foreign tables are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 34-27. foreign_table_options Columns

Name Data Type Description

873

Chapter 34. The Information Schema

Name Data Type Description
foreign_table_catalog sql_identifier Name of the database that

contains the foreign table
(always the current database)

foreign_table_schema sql_identifier Name of the schema that
contains the foreign table

foreign_table_name sql_identifier Name of the foreign table

foreign_server_catalog sql_identifier Name of the database that the
foreign server is defined in
(always the current database)

foreign_server_name sql_identifier Name of the foreign server

option_name sql_identifier Name of an option

option_value character_data Value of the option

34.30. foreign_tables
The view foreign_tables contains all foreign tables defined in the current database. Only those foreign
tables are shown that the current user has access to (by way of being the owner or having some privilege).

Table 34-28. foreign_tables Columns

Name Data Type Description
foreign_table_catalog sql_identifier Name of the database that the

foreign table is defined in
(always the current database)

foreign_table_schema sql_identifier Name of the schema that
contains the foreign table

foreign_table_name sql_identifier Name of the foreign table

foreign_server_catalog sql_identifier Name of the database that the
foreign server is defined in
(always the current database)

foreign_server_name sql_identifier Name of the foreign server

34.31. key_column_usage
The view key_column_usage identifies all columns in the current database that are restricted by some
unique, primary key, or foreign key constraint. Check constraints are not included in this view. Only those
columns are shown that the current user has access to, by way of being the owner or having some privilege.

Table 34-29. key_column_usage Columns

874

Chapter 34. The Information Schema

Name Data Type Description
constraint_catalog sql_identifier Name of the database that

contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

table_catalog sql_identifier Name of the database that
contains the table that contains
the column that is restricted by
this constraint (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column that is restricted by
this constraint

table_name sql_identifier Name of the table that contains
the column that is restricted by
this constraint

column_name sql_identifier Name of the column that is
restricted by this constraint

ordinal_position cardinal_number Ordinal position of the column
within the constraint key (count
starts at 1)

position_in_unique_constraintcardinal_number For a foreign-key constraint,
ordinal position of the referenced
column within its unique
constraint (count starts at 1);
otherwise null

34.32. parameters
The view parameters contains information about the parameters (arguments) of all functions in the
current database. Only those functions are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 34-30. parameters Columns

Name Data Type Description
specific_catalog sql_identifier Name of the database containing

the function (always the current
database)

875

Chapter 34. The Information Schema

Name Data Type Description
specific_schema sql_identifier Name of the schema containing

the function

specific_name sql_identifier The “specific name” of the
function. See Section 34.40 for
more information.

ordinal_position cardinal_number Ordinal position of the
parameter in the argument list of
the function (count starts at 1)

parameter_mode character_data IN for input parameter, OUT for
output parameter, and INOUT for
input/output parameter.

is_result yes_or_no Applies to a feature not available
in PostgreSQL

as_locator yes_or_no Applies to a feature not available
in PostgreSQL

parameter_name sql_identifier Name of the parameter, or null if
the parameter has no name

data_type character_data Data type of the parameter, if it
is a built-in type, or ARRAY if it is
some array (in that case, see the
view element_types), else
USER-DEFINED (in that case, the
type is identified in udt_name

and associated columns).

character_maximum_length cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Always null, since this
information is not applied to
parameter data types in
PostgreSQL

876

Chapter 34. The Information Schema

Name Data Type Description
collation_schema sql_identifier Always null, since this

information is not applied to
parameter data types in
PostgreSQL

collation_name sql_identifier Always null, since this
information is not applied to
parameter data types in
PostgreSQL

numeric_precision cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

interval_type character_data Always null, since this
information is not applied to
parameter data types in
PostgreSQL

interval_precision cardinal_number Always null, since this
information is not applied to
parameter data types in
PostgreSQL

udt_catalog sql_identifier Name of the database that the
data type of the parameter is
defined in (always the current
database)

udt_schema sql_identifier Name of the schema that the
data type of the parameter is
defined in

udt_name sql_identifier Name of the data type of the
parameter

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

877

Chapter 34. The Information Schema

Name Data Type Description
scope_schema sql_identifier Applies to a feature not available

in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the parameter,
unique among the data type
descriptors pertaining to the
function. This is mainly useful
for joining with other instances
of such identifiers. (The specific
format of the identifier is not
defined and not guaranteed to
remain the same in future
versions.)

34.33. referential_constraints
The view referential_constraints contains all referential (foreign key) constraints in the current
database. Only those constraints are shown for which the current user has write access to the referencing
table (by way of being the owner or having some privilege other than SELECT).

Table 34-31. referential_constraints Columns

Name Data Type Description
constraint_catalog sql_identifier Name of the database containing

the constraint (always the current
database)

constraint_schema sql_identifier Name of the schema containing
the constraint

constraint_name sql_identifier Name of the constraint

unique_constraint_catalog sql_identifier Name of the database that
contains the unique or primary
key constraint that the foreign
key constraint references (always
the current database)

unique_constraint_schema sql_identifier Name of the schema that
contains the unique or primary
key constraint that the foreign
key constraint references

878

Chapter 34. The Information Schema

Name Data Type Description
unique_constraint_name sql_identifier Name of the unique or primary

key constraint that the foreign
key constraint references

match_option character_data Match option of the foreign key
constraint: FULL, PARTIAL, or
NONE.

update_rule character_data Update rule of the foreign key
constraint: CASCADE, SET NULL,
SET DEFAULT, RESTRICT, or NO
ACTION.

delete_rule character_data Delete rule of the foreign key
constraint: CASCADE, SET NULL,
SET DEFAULT, RESTRICT, or NO
ACTION.

34.34. role_column_grants
The view role_column_grants identifies all privileges granted on columns where the grantor or grantee
is a currently enabled role. Further information can be found under column_privileges. The only
effective difference between this view and column_privileges is that this view omits columns that
have been made accessible to the current user by way of a grant to PUBLIC.

Table 34-32. role_column_grants Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table that contains
the column (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column

table_name sql_identifier Name of the table that contains
the column

column_name sql_identifier Name of the column

privilege_type character_data Type of the privilege: SELECT,
INSERT, UPDATE, or
REFERENCES

879

Chapter 34. The Information Schema

Name Data Type Description
is_grantable yes_or_no YES if the privilege is grantable,

NO if not

34.35. role_routine_grants
The view role_routine_grants identifies all privileges granted on functions where the grantor or
grantee is a currently enabled role. Further information can be found under routine_privileges. The
only effective difference between this view and routine_privileges is that this view omits functions
that have been made accessible to the current user by way of a grant to PUBLIC.

Table 34-33. role_routine_grants Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 34.40 for
more information.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (might be
duplicated in case of
overloading)

privilege_type character_data Always EXECUTE (the only
privilege type for functions)

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

880

Chapter 34. The Information Schema

34.36. role_table_grants
The view role_table_grants identifies all privileges granted on tables or views where the grantor or
grantee is a currently enabled role. Further information can be found under table_privileges. The
only effective difference between this view and table_privileges is that this view omits tables that
have been made accessible to the current user by way of a grant to PUBLIC.

Table 34-34. role_table_grants Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table

table_name sql_identifier Name of the table

privilege_type character_data Type of the privilege: SELECT,
INSERT, UPDATE, DELETE,
TRUNCATE, REFERENCES, or
TRIGGER

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

with_hierarchy yes_or_no In the SQL standard, WITH
HIERARCHY OPTION is a
separate (sub-)privilege allowing
certain operations on table
inheritance hierarchies. In
PostgreSQL, this is included in
the SELECT privilege, so this
column shows YES if the
privilege is SELECT, else NO.

34.37. role_udt_grants
The view role_udt_grants is intended to identify USAGE privileges granted on user-defined types
where the grantor or grantee is a currently enabled role. Further information can be found under
udt_privileges. The only effective difference between this view and udt_privileges is that this
view omits objects that have been made accessible to the current user by way of a grant to PUBLIC. Since
data types do not have real privileges in PostgreSQL, but only an implicit grant to PUBLIC, this view is
empty.

881

Chapter 34. The Information Schema

Table 34-35. role_udt_grants Columns

Name Data Type Description
grantor sql_identifier The name of the role that granted

the privilege

grantee sql_identifier The name of the role that the
privilege was granted to

udt_catalog sql_identifier Name of the database containing
the type (always the current
database)

udt_schema sql_identifier Name of the schema containing
the type

udt_name sql_identifier Name of the type

privilege_type character_data Always TYPE USAGE

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

34.38. role_usage_grants
The view role_usage_grants identifies USAGE privileges granted on various kinds of objects
where the grantor or grantee is a currently enabled role. Further information can be found under
usage_privileges. The only effective difference between this view and usage_privileges is that
this view omits objects that have been made accessible to the current user by way of a grant to PUBLIC.

Table 34-36. role_usage_grants Columns

Name Data Type Description
grantor sql_identifier The name of the role that granted

the privilege

grantee sql_identifier The name of the role that the
privilege was granted to

object_catalog sql_identifier Name of the database containing
the object (always the current
database)

object_schema sql_identifier Name of the schema containing
the object, if applicable, else an
empty string

object_name sql_identifier Name of the object

object_type character_data COLLATION or DOMAIN or
FOREIGN DATA WRAPPER or
FOREIGN SERVER or SEQUENCE

privilege_type character_data Always USAGE

882

Chapter 34. The Information Schema

Name Data Type Description
is_grantable yes_or_no YES if the privilege is grantable,

NO if not

34.39. routine_privileges
The view routine_privileges identifies all privileges granted on functions to a currently enabled role
or by a currently enabled role. There is one row for each combination of function, grantor, and grantee.

Table 34-37. routine_privileges Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 34.40 for
more information.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (might be
duplicated in case of
overloading)

privilege_type character_data Always EXECUTE (the only
privilege type for functions)

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

34.40. routines
The view routines contains all functions in the current database. Only those functions are shown that
the current user has access to (by way of being the owner or having some privilege).

883

Chapter 34. The Information Schema

Table 34-38. routines Columns

Name Data Type Description
specific_catalog sql_identifier Name of the database containing

the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. This is a name that
uniquely identifies the function
in the schema, even if the real
name of the function is
overloaded. The format of the
specific name is not defined, it
should only be used to compare
it to other instances of specific
routine names.

routine_catalog sql_identifier Name of the database containing
the function (always the current
database)

routine_schema sql_identifier Name of the schema containing
the function

routine_name sql_identifier Name of the function (might be
duplicated in case of
overloading)

routine_type character_data Always FUNCTION (In the future
there might be other types of
routines.)

module_catalog sql_identifier Applies to a feature not available
in PostgreSQL

module_schema sql_identifier Applies to a feature not available
in PostgreSQL

module_name sql_identifier Applies to a feature not available
in PostgreSQL

udt_catalog sql_identifier Applies to a feature not available
in PostgreSQL

udt_schema sql_identifier Applies to a feature not available
in PostgreSQL

udt_name sql_identifier Applies to a feature not available
in PostgreSQL

884

Chapter 34. The Information Schema

Name Data Type Description
data_type character_data Return data type of the function,

if it is a built-in type, or ARRAY if
it is some array (in that case, see
the view element_types), else
USER-DEFINED (in that case, the
type is identified in
type_udt_name and associated
columns).

character_maximum_length cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

character_octet_length cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Always null, since this
information is not applied to
return data types in PostgreSQL

collation_schema sql_identifier Always null, since this
information is not applied to
return data types in PostgreSQL

collation_name sql_identifier Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_precision_radix cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

numeric_scale cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

datetime_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

885

Chapter 34. The Information Schema

Name Data Type Description
interval_type character_data Always null, since this

information is not applied to
return data types in PostgreSQL

interval_precision cardinal_number Always null, since this
information is not applied to
return data types in PostgreSQL

type_udt_catalog sql_identifier Name of the database that the
return data type of the function is
defined in (always the current
database)

type_udt_schema sql_identifier Name of the schema that the
return data type of the function is
defined in

type_udt_name sql_identifier Name of the return data type of
the function

scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

scope_name sql_identifier Applies to a feature not available
in PostgreSQL

maximum_cardinality cardinal_number Always null, because arrays
always have unlimited maximum
cardinality in PostgreSQL

dtd_identifier sql_identifier An identifier of the data type
descriptor of the return data type
of this function, unique among
the data type descriptors
pertaining to the function. This is
mainly useful for joining with
other instances of such
identifiers. (The specific format
of the identifier is not defined
and not guaranteed to remain the
same in future versions.)

routine_body character_data If the function is an SQL
function, then SQL, else
EXTERNAL.

886

Chapter 34. The Information Schema

Name Data Type Description
routine_definition character_data The source text of the function

(null if the function is not owned
by a currently enabled role).
(According to the SQL standard,
this column is only applicable if
routine_body is SQL, but in
PostgreSQL it will contain
whatever source text was
specified when the function was
created.)

external_name character_data If this function is a C function,
then the external name (link
symbol) of the function; else
null. (This works out to be the
same value that is shown in
routine_definition.)

external_language character_data The language the function is
written in

parameter_style character_data Always GENERAL (The SQL
standard defines other parameter
styles, which are not available in
PostgreSQL.)

is_deterministic yes_or_no If the function is declared
immutable (called deterministic
in the SQL standard), then YES,
else NO. (You cannot query the
other volatility levels available in
PostgreSQL through the
information schema.)

sql_data_access character_data Always MODIFIES, meaning
that the function possibly
modifies SQL data. This
information is not useful for
PostgreSQL.

is_null_call yes_or_no If the function automatically
returns null if any of its
arguments are null, then YES,
else NO.

sql_path character_data Applies to a feature not available
in PostgreSQL

887

Chapter 34. The Information Schema

Name Data Type Description
schema_level_routine yes_or_no Always YES (The opposite

would be a method of a
user-defined type, which is a
feature not available in
PostgreSQL.)

max_dynamic_result_sets cardinal_number Applies to a feature not available
in PostgreSQL

is_user_defined_cast yes_or_no Applies to a feature not available
in PostgreSQL

is_implicitly_invocable yes_or_no Applies to a feature not available
in PostgreSQL

security_type character_data If the function runs with the
privileges of the current user,
then INVOKER, if the function
runs with the privileges of the
user who defined it, then
DEFINER.

to_sql_specific_catalog sql_identifier Applies to a feature not available
in PostgreSQL

to_sql_specific_schema sql_identifier Applies to a feature not available
in PostgreSQL

to_sql_specific_name sql_identifier Applies to a feature not available
in PostgreSQL

as_locator yes_or_no Applies to a feature not available
in PostgreSQL

created time_stamp Applies to a feature not available
in PostgreSQL

last_altered time_stamp Applies to a feature not available
in PostgreSQL

new_savepoint_level yes_or_no Applies to a feature not available
in PostgreSQL

is_udt_dependent yes_or_no Currently always NO. The
alternative YES applies to a
feature not available in
PostgreSQL.

result_cast_from_data_typecharacter_data Applies to a feature not available
in PostgreSQL

result_cast_as_locator yes_or_no Applies to a feature not available
in PostgreSQL

result_cast_char_max_lengthcardinal_number Applies to a feature not available
in PostgreSQL

result_cast_char_octet_lengthcharacter_data Applies to a feature not available
in PostgreSQL

888

Chapter 34. The Information Schema

Name Data Type Description
result_cast_char_set_catalogsql_identifier Applies to a feature not available

in PostgreSQL

result_cast_char_set_schemasql_identifier Applies to a feature not available
in PostgreSQL

result_cast_char_set_name sql_identifier Applies to a feature not available
in PostgreSQL

result_cast_collation_catalogsql_identifier Applies to a feature not available
in PostgreSQL

result_cast_collation_schemasql_identifier Applies to a feature not available
in PostgreSQL

result_cast_collation_namesql_identifier Applies to a feature not available
in PostgreSQL

result_cast_numeric_precisioncardinal_number Applies to a feature not available
in PostgreSQL

result_cast_numeric_precision_radixcardinal_number Applies to a feature not available
in PostgreSQL

result_cast_numeric_scale cardinal_number Applies to a feature not available
in PostgreSQL

result_cast_datetime_precisioncharacter_data Applies to a feature not available
in PostgreSQL

result_cast_interval_type character_data Applies to a feature not available
in PostgreSQL

result_cast_interval_precisioncardinal_number Applies to a feature not available
in PostgreSQL

result_cast_type_udt_catalogsql_identifier Applies to a feature not available
in PostgreSQL

result_cast_type_udt_schemasql_identifier Applies to a feature not available
in PostgreSQL

result_cast_type_udt_name sql_identifier Applies to a feature not available
in PostgreSQL

result_cast_scope_catalog sql_identifier Applies to a feature not available
in PostgreSQL

result_cast_scope_schema sql_identifier Applies to a feature not available
in PostgreSQL

result_cast_scope_name sql_identifier Applies to a feature not available
in PostgreSQL

result_cast_maximum_cardinalitycardinal_number Applies to a feature not available
in PostgreSQL

result_cast_dtd_identifiersql_identifier Applies to a feature not available
in PostgreSQL

889

Chapter 34. The Information Schema

34.41. schemata
The view schemata contains all schemas in the current database that are owned by a currently enabled
role.

Table 34-39. schemata Columns

Name Data Type Description
catalog_name sql_identifier Name of the database that the

schema is contained in (always
the current database)

schema_name sql_identifier Name of the schema

schema_owner sql_identifier Name of the owner of the
schema

default_character_set_catalogsql_identifier Applies to a feature not available
in PostgreSQL

default_character_set_schemasql_identifier Applies to a feature not available
in PostgreSQL

default_character_set_namesql_identifier Applies to a feature not available
in PostgreSQL

sql_path character_data Applies to a feature not available
in PostgreSQL

34.42. sequences
The view sequences contains all sequences defined in the current database. Only those sequences are
shown that the current user has access to (by way of being the owner or having some privilege).

Table 34-40. sequences Columns

Name Data Type Description
sequence_catalog sql_identifier Name of the database that

contains the sequence (always
the current database)

sequence_schema sql_identifier Name of the schema that
contains the sequence

sequence_name sql_identifier Name of the sequence

data_type character_data The data type of the sequence.
In PostgreSQL, this is currently
always bigint.

890

Chapter 34. The Information Schema

Name Data Type Description
numeric_precision cardinal_number This column contains the

(declared or implicit) precision
of the sequence data type (see
above). The precision indicates
the number of significant digits.
It can be expressed in decimal
(base 10) or binary (base 2)
terms, as specified in the column
numeric_precision_radix.

numeric_precision_radix cardinal_number This column indicates in which
base the values in the columns
numeric_precision and
numeric_scale are expressed.
The value is either 2 or 10.

numeric_scale cardinal_number This column contains the
(declared or implicit) scale of the
sequence data type (see above).
The scale indicates the number
of significant digits to the right of
the decimal point. It can be
expressed in decimal (base 10) or
binary (base 2) terms, as
specified in the column
numeric_precision_radix.

start_value character_data The start value of the sequence

minimum_value character_data The minimum value of the
sequence

maximum_value character_data The maximum value of the
sequence

increment character_data The increment of the sequence

cycle_option yes_or_no YES if the sequence cycles, else
NO

Note that in accordance with the SQL standard, the start, minimum, maximum, and increment values are
returned as character strings.

34.43. sql_features
The table sql_features contains information about which formal features defined in the SQL standard
are supported by PostgreSQL. This is the same information that is presented in Appendix D. There you
can also find some additional background information.

Table 34-41. sql_features Columns

891

Chapter 34. The Information Schema

Name Data Type Description
feature_id character_data Identifier string of the feature

feature_name character_data Descriptive name of the feature

sub_feature_id character_data Identifier string of the subfeature,
or a zero-length string if not a
subfeature

sub_feature_name character_data Descriptive name of the
subfeature, or a zero-length
string if not a subfeature

is_supported yes_or_no YES if the feature is fully
supported by the current version
of PostgreSQL, NO if not

is_verified_by character_data Always null, since the
PostgreSQL development group
does not perform formal testing
of feature conformance

comments character_data Possibly a comment about the
supported status of the feature

34.44. sql_implementation_info
The table sql_implementation_info contains information about various aspects that are left
implementation-defined by the SQL standard. This information is primarily intended for use in the
context of the ODBC interface; users of other interfaces will probably find this information to be of little
use. For this reason, the individual implementation information items are not described here; you will
find them in the description of the ODBC interface.

Table 34-42. sql_implementation_info Columns

Name Data Type Description
implementation_info_id character_data Identifier string of the

implementation information item

implementation_info_name character_data Descriptive name of the
implementation information item

integer_value cardinal_number Value of the implementation
information item, or null if the
value is contained in the column
character_value

892

Chapter 34. The Information Schema

Name Data Type Description
character_value character_data Value of the implementation

information item, or null if the
value is contained in the column
integer_value

comments character_data Possibly a comment pertaining to
the implementation information
item

34.45. sql_languages
The table sql_languages contains one row for each SQL language binding that is supported by Post-
greSQL. PostgreSQL supports direct SQL and embedded SQL in C; that is all you will learn from this
table.

This table was removed from the SQL standard in SQL:2008, so there are no entries referring to standards
later than SQL:2003.

Table 34-43. sql_languages Columns

Name Data Type Description
sql_language_source character_data The name of the source of the

language definition; always ISO
9075, that is, the SQL standard

sql_language_year character_data The year the standard referenced
in sql_language_source was
approved.

sql_language_conformance character_data The standard conformance level
for the language binding. For
ISO 9075:2003 this is always
CORE.

sql_language_integrity character_data Always null (This value is
relevant to an earlier version of
the SQL standard.)

sql_language_implementationcharacter_data Always null

sql_language_binding_stylecharacter_data The language binding style,
either DIRECT or EMBEDDED

sql_language_programming_languagecharacter_data The programming language, if
the binding style is EMBEDDED,
else null. PostgreSQL only
supports the language C.

893

Chapter 34. The Information Schema

34.46. sql_packages
The table sql_packages contains information about which feature packages defined in the SQL standard
are supported by PostgreSQL. Refer to Appendix D for background information on feature packages.

Table 34-44. sql_packages Columns

Name Data Type Description
feature_id character_data Identifier string of the package

feature_name character_data Descriptive name of the package

is_supported yes_or_no YES if the package is fully
supported by the current version
of PostgreSQL, NO if not

is_verified_by character_data Always null, since the
PostgreSQL development group
does not perform formal testing
of feature conformance

comments character_data Possibly a comment about the
supported status of the package

34.47. sql_parts
The table sql_parts contains information about which of the several parts of the SQL standard are
supported by PostgreSQL.

Table 34-45. sql_parts Columns

Name Data Type Description
feature_id character_data An identifier string containing

the number of the part

feature_name character_data Descriptive name of the part

is_supported yes_or_no YES if the part is fully supported
by the current version of
PostgreSQL, NO if not

is_verified_by character_data Always null, since the
PostgreSQL development group
does not perform formal testing
of feature conformance

comments character_data Possibly a comment about the
supported status of the part

894

Chapter 34. The Information Schema

34.48. sql_sizing
The table sql_sizing contains information about various size limits and maximum values in Post-
greSQL. This information is primarily intended for use in the context of the ODBC interface; users of
other interfaces will probably find this information to be of little use. For this reason, the individual sizing
items are not described here; you will find them in the description of the ODBC interface.

Table 34-46. sql_sizing Columns

Name Data Type Description
sizing_id cardinal_number Identifier of the sizing item

sizing_name character_data Descriptive name of the sizing
item

supported_value cardinal_number Value of the sizing item, or 0 if
the size is unlimited or cannot be
determined, or null if the features
for which the sizing item is
applicable are not supported

comments character_data Possibly a comment pertaining to
the sizing item

34.49. sql_sizing_profiles
The table sql_sizing_profiles contains information about the sql_sizing values that are required
by various profiles of the SQL standard. PostgreSQL does not track any SQL profiles, so this table is
empty.

Table 34-47. sql_sizing_profiles Columns

Name Data Type Description
sizing_id cardinal_number Identifier of the sizing item

sizing_name character_data Descriptive name of the sizing
item

profile_id character_data Identifier string of a profile

required_value cardinal_number The value required by the SQL
profile for the sizing item, or 0 if
the profile places no limit on the
sizing item, or null if the profile
does not require any of the
features for which the sizing item
is applicable

comments character_data Possibly a comment pertaining to
the sizing item within the profile

895

Chapter 34. The Information Schema

34.50. table_constraints
The view table_constraints contains all constraints belonging to tables that the current user owns or
has some privilege other than SELECT on.

Table 34-48. table_constraints Columns

Name Data Type Description
constraint_catalog sql_identifier Name of the database that

contains the constraint (always
the current database)

constraint_schema sql_identifier Name of the schema that
contains the constraint

constraint_name sql_identifier Name of the constraint

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table

table_name sql_identifier Name of the table

constraint_type character_data Type of the constraint: CHECK,
FOREIGN KEY, PRIMARY KEY,
or UNIQUE

is_deferrable yes_or_no YES if the constraint is
deferrable, NO if not

initially_deferred yes_or_no YES if the constraint is deferrable
and initially deferred, NO if not

34.51. table_privileges
The view table_privileges identifies all privileges granted on tables or views to a currently enabled
role or by a currently enabled role. There is one row for each combination of table, grantor, and grantee.

Table 34-49. table_privileges Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

table_catalog sql_identifier Name of the database that
contains the table (always the
current database)

896

Chapter 34. The Information Schema

Name Data Type Description
table_schema sql_identifier Name of the schema that

contains the table

table_name sql_identifier Name of the table

privilege_type character_data Type of the privilege: SELECT,
INSERT, UPDATE, DELETE,
TRUNCATE, REFERENCES, or
TRIGGER

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

with_hierarchy yes_or_no In the SQL standard, WITH
HIERARCHY OPTION is a
separate (sub-)privilege allowing
certain operations on table
inheritance hierarchies. In
PostgreSQL, this is included in
the SELECT privilege, so this
column shows YES if the
privilege is SELECT, else NO.

34.52. tables
The view tables contains all tables and views defined in the current database. Only those tables and
views are shown that the current user has access to (by way of being the owner or having some privilege).

Table 34-50. tables Columns

Name Data Type Description
table_catalog sql_identifier Name of the database that

contains the table (always the
current database)

table_schema sql_identifier Name of the schema that
contains the table

table_name sql_identifier Name of the table

table_type character_data Type of the table: BASE TABLE

for a persistent base table (the
normal table type), VIEW for a
view, FOREIGN TABLE for a
foreign table, or LOCAL
TEMPORARY for a temporary
table

self_referencing_column_namesql_identifier Applies to a feature not available
in PostgreSQL

897

Chapter 34. The Information Schema

Name Data Type Description
reference_generation character_data Applies to a feature not available

in PostgreSQL

user_defined_type_catalog sql_identifier If the table is a typed table, the
name of the database that
contains the underlying data type
(always the current database),
else null.

user_defined_type_schema sql_identifier If the table is a typed table, the
name of the schema that contains
the underlying data type, else
null.

user_defined_type_name sql_identifier If the table is a typed table, the
name of the underlying data type,
else null.

is_insertable_into yes_or_no YES if the table is insertable
into, NO if not (Base tables are
always insertable into, views not
necessarily.)

is_typed yes_or_no YES if the table is a typed table,
NO if not

commit_action character_data Not yet implemented

34.53. triggered_update_columns
For triggers in the current database that specify a column list (like UPDATE OF column1, column2),
the view triggered_update_columns identifies these columns. Triggers that do not specify a column
list are not included in this view. Only those columns are shown that the current user owns or has some
privilege other than SELECT on.

Table 34-51. triggered_update_columns Columns

Name Data Type Description
trigger_catalog sql_identifier Name of the database that

contains the trigger (always the
current database)

trigger_schema sql_identifier Name of the schema that
contains the trigger

trigger_name sql_identifier Name of the trigger

event_object_catalog sql_identifier Name of the database that
contains the table that the trigger
is defined on (always the current
database)

898

Chapter 34. The Information Schema

Name Data Type Description
event_object_schema sql_identifier Name of the schema that

contains the table that the trigger
is defined on

event_object_table sql_identifier Name of the table that the trigger
is defined on

event_object_column sql_identifier Name of the column that the
trigger is defined on

34.54. triggers
The view triggers contains all triggers defined in the current database on tables and views that the
current user owns or has some privilege other than SELECT on.

Table 34-52. triggers Columns

Name Data Type Description
trigger_catalog sql_identifier Name of the database that

contains the trigger (always the
current database)

trigger_schema sql_identifier Name of the schema that
contains the trigger

trigger_name sql_identifier Name of the trigger

event_manipulation character_data Event that fires the trigger
(INSERT, UPDATE, or DELETE)

event_object_catalog sql_identifier Name of the database that
contains the table that the trigger
is defined on (always the current
database)

event_object_schema sql_identifier Name of the schema that
contains the table that the trigger
is defined on

event_object_table sql_identifier Name of the table that the trigger
is defined on

action_order cardinal_number Not yet implemented

action_condition character_data WHEN condition of the trigger,
null if none (also null if the table
is not owned by a currently
enabled role)

action_statement character_data Statement that is executed by the
trigger (currently always
EXECUTE PROCEDURE

function(...))

899

Chapter 34. The Information Schema

Name Data Type Description
action_orientation character_data Identifies whether the trigger

fires once for each processed row
or once for each statement (ROW
or STATEMENT)

action_timing character_data Time at which the trigger fires
(BEFORE, AFTER, or INSTEAD
OF)

action_reference_old_tablesql_identifier Applies to a feature not available
in PostgreSQL

action_reference_new_tablesql_identifier Applies to a feature not available
in PostgreSQL

action_reference_old_row sql_identifier Applies to a feature not available
in PostgreSQL

action_reference_new_row sql_identifier Applies to a feature not available
in PostgreSQL

created time_stamp Applies to a feature not available
in PostgreSQL

Triggers in PostgreSQL have two incompatibilities with the SQL standard that affect the representation
in the information schema. First, trigger names are local to each table in PostgreSQL, rather than being
independent schema objects. Therefore there can be duplicate trigger names defined in one schema, so
long as they belong to different tables. (trigger_catalog and trigger_schema are really the values
pertaining to the table that the trigger is defined on.) Second, triggers can be defined to fire on multiple
events in PostgreSQL (e.g., ON INSERT OR UPDATE), whereas the SQL standard only allows one. If a
trigger is defined to fire on multiple events, it is represented as multiple rows in the information schema,
one for each type of event. As a consequence of these two issues, the primary key of the view triggers

is really (trigger_catalog, trigger_schema, event_object_table, trigger_name,

event_manipulation) instead of (trigger_catalog, trigger_schema, trigger_name),
which is what the SQL standard specifies. Nonetheless, if you define your triggers in a manner that
conforms with the SQL standard (trigger names unique in the schema and only one event type per
trigger), this will not affect you.

Note: Prior to PostgreSQL 9.1, this view’s columns action_timing, action_reference_old_table,
action_reference_new_table, action_reference_old_row, and action_reference_new_row

were named condition_timing, condition_reference_old_table,
condition_reference_new_table, condition_reference_old_row, and
condition_reference_new_row respectively. That was how they were named in the SQL:1999
standard. The new naming conforms to SQL:2003 and later.

34.55. udt_privileges
The view udt_privileges identifies USAGE privileges granted on user-defined types to a currently en-

900

Chapter 34. The Information Schema

abled role or by a currently enabled role. There is one row for each combination of column, grantor, and
grantee. This view shows only composite types (see under Section 34.57 for why); see Section 34.56 for
domain privileges.

Table 34-53. udt_privileges Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

udt_catalog sql_identifier Name of the database containing
the type (always the current
database)

udt_schema sql_identifier Name of the schema containing
the type

udt_name sql_identifier Name of the type

privilege_type character_data Always TYPE USAGE

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

34.56. usage_privileges
The view usage_privileges identifies USAGE privileges granted on various kinds of objects to a cur-
rently enabled role or by a currently enabled role. In PostgreSQL, this currently applies to collations,
domains, foreign-data wrappers, foreign servers, and sequences. There is one row for each combination
of object, grantor, and grantee.

Since collations do not have real privileges in PostgreSQL, this view shows implicit non-grantable USAGE
privileges granted by the owner to PUBLIC for all collations. The other object types, however, show real
privileges.

In PostgreSQL, sequences also support SELECT and UPDATE privileges in addition to the USAGE privilege.
These are nonstandard and therefore not visible in the information schema.

Table 34-54. usage_privileges Columns

Name Data Type Description
grantor sql_identifier Name of the role that granted the

privilege

grantee sql_identifier Name of the role that the
privilege was granted to

object_catalog sql_identifier Name of the database containing
the object (always the current
database)

901

Chapter 34. The Information Schema

Name Data Type Description
object_schema sql_identifier Name of the schema containing

the object, if applicable, else an
empty string

object_name sql_identifier Name of the object

object_type character_data COLLATION or DOMAIN or
FOREIGN DATA WRAPPER or
FOREIGN SERVER or SEQUENCE

privilege_type character_data Always USAGE

is_grantable yes_or_no YES if the privilege is grantable,
NO if not

34.57. user_defined_types
The view user_defined_types currently contains all composite types defined in the current database.
Only those types are shown that the current user has access to (by way of being the owner or having some
privilege).

SQL knows about two kinds of user-defined types: structured types (also known as composite types in
PostgreSQL) and distinct types (not implemented in PostgreSQL). To be future-proof, use the column
user_defined_type_category to differentiate between these. Other user-defined types such as base
types and enums, which are PostgreSQL extensions, are not shown here. For domains, see Section 34.22
instead.

Table 34-55. user_defined_types Columns

Name Data Type Description
user_defined_type_catalog sql_identifier Name of the database that

contains the type (always the
current database)

user_defined_type_schema sql_identifier Name of the schema that
contains the type

user_defined_type_name sql_identifier Name of the type

user_defined_type_categorycharacter_data Currently always STRUCTURED

is_instantiable yes_or_no Applies to a feature not available
in PostgreSQL

is_final yes_or_no Applies to a feature not available
in PostgreSQL

ordering_form character_data Applies to a feature not available
in PostgreSQL

ordering_category character_data Applies to a feature not available
in PostgreSQL

902

Chapter 34. The Information Schema

Name Data Type Description
ordering_routine_catalog sql_identifier Applies to a feature not available

in PostgreSQL

ordering_routine_schema sql_identifier Applies to a feature not available
in PostgreSQL

ordering_routine_name sql_identifier Applies to a feature not available
in PostgreSQL

reference_type character_data Applies to a feature not available
in PostgreSQL

data_type character_data Applies to a feature not available
in PostgreSQL

character_maximum_length cardinal_number Applies to a feature not available
in PostgreSQL

character_octet_length cardinal_number Applies to a feature not available
in PostgreSQL

character_set_catalog sql_identifier Applies to a feature not available
in PostgreSQL

character_set_schema sql_identifier Applies to a feature not available
in PostgreSQL

character_set_name sql_identifier Applies to a feature not available
in PostgreSQL

collation_catalog sql_identifier Applies to a feature not available
in PostgreSQL

collation_schema sql_identifier Applies to a feature not available
in PostgreSQL

collation_name sql_identifier Applies to a feature not available
in PostgreSQL

numeric_precision cardinal_number Applies to a feature not available
in PostgreSQL

numeric_precision_radix cardinal_number Applies to a feature not available
in PostgreSQL

numeric_scale cardinal_number Applies to a feature not available
in PostgreSQL

datetime_precision cardinal_number Applies to a feature not available
in PostgreSQL

interval_type character_data Applies to a feature not available
in PostgreSQL

interval_precision cardinal_number Applies to a feature not available
in PostgreSQL

source_dtd_identifier sql_identifier Applies to a feature not available
in PostgreSQL

ref_dtd_identifier sql_identifier Applies to a feature not available
in PostgreSQL

903

Chapter 34. The Information Schema

34.58. user_mapping_options
The view user_mapping_options contains all the options defined for user mappings in the current
database. Only those user mappings are shown where the current user has access to the corresponding
foreign server (by way of being the owner or having some privilege).

Table 34-56. user_mapping_options Columns

Name Data Type Description
authorization_identifier sql_identifier Name of the user being mapped,

or PUBLIC if the mapping is
public

foreign_server_catalog sql_identifier Name of the database that the
foreign server used by this
mapping is defined in (always the
current database)

foreign_server_name sql_identifier Name of the foreign server used
by this mapping

option_name sql_identifier Name of an option

option_value character_data Value of the option. This column
will show as null unless the
current user is the user being
mapped, or the mapping is for
PUBLIC and the current user is
the server owner, or the current
user is a superuser. The intent is
to protect password information
stored as user mapping option.

34.59. user_mappings
The view user_mappings contains all user mappings defined in the current database. Only those user
mappings are shown where the current user has access to the corresponding foreign server (by way of
being the owner or having some privilege).

Table 34-57. user_mappings Columns

Name Data Type Description
authorization_identifier sql_identifier Name of the user being mapped,

or PUBLIC if the mapping is
public

904

Chapter 34. The Information Schema

Name Data Type Description
foreign_server_catalog sql_identifier Name of the database that the

foreign server used by this
mapping is defined in (always the
current database)

foreign_server_name sql_identifier Name of the foreign server used
by this mapping

34.60. view_column_usage
The view view_column_usage identifies all columns that are used in the query expression of a view (the
SELECT statement that defines the view). A column is only included if the table that contains the column
is owned by a currently enabled role.

Note: Columns of system tables are not included. This should be fixed sometime.

Table 34-58. view_column_usage Columns

Name Data Type Description
view_catalog sql_identifier Name of the database that

contains the view (always the
current database)

view_schema sql_identifier Name of the schema that
contains the view

view_name sql_identifier Name of the view

table_catalog sql_identifier Name of the database that
contains the table that contains
the column that is used by the
view (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that contains
the column that is used by the
view

table_name sql_identifier Name of the table that contains
the column that is used by the
view

column_name sql_identifier Name of the column that is used
by the view

905

Chapter 34. The Information Schema

34.61. view_routine_usage
The view view_routine_usage identifies all routines (functions and procedures) that are used in the
query expression of a view (the SELECT statement that defines the view). A routine is only included if that
routine is owned by a currently enabled role.

Table 34-59. view_routine_usage Columns

Name Data Type Description
table_catalog sql_identifier Name of the database containing

the view (always the current
database)

table_schema sql_identifier Name of the schema containing
the view

table_name sql_identifier Name of the view

specific_catalog sql_identifier Name of the database containing
the function (always the current
database)

specific_schema sql_identifier Name of the schema containing
the function

specific_name sql_identifier The “specific name” of the
function. See Section 34.40 for
more information.

34.62. view_table_usage
The view view_table_usage identifies all tables that are used in the query expression of a view (the
SELECT statement that defines the view). A table is only included if that table is owned by a currently
enabled role.

Note: System tables are not included. This should be fixed sometime.

Table 34-60. view_table_usage Columns

Name Data Type Description
view_catalog sql_identifier Name of the database that

contains the view (always the
current database)

view_schema sql_identifier Name of the schema that
contains the view

view_name sql_identifier Name of the view

906

Chapter 34. The Information Schema

Name Data Type Description
table_catalog sql_identifier Name of the database that

contains the table that is used by
the view (always the current
database)

table_schema sql_identifier Name of the schema that
contains the table that is used by
the view

table_name sql_identifier Name of the table that is used by
the view

34.63. views
The view views contains all views defined in the current database. Only those views are shown that the
current user has access to (by way of being the owner or having some privilege).

Table 34-61. views Columns

Name Data Type Description
table_catalog sql_identifier Name of the database that

contains the view (always the
current database)

table_schema sql_identifier Name of the schema that
contains the view

table_name sql_identifier Name of the view

view_definition character_data Query expression defining the
view (null if the view is not
owned by a currently enabled
role)

check_option character_data Applies to a feature not available
in PostgreSQL

is_updatable yes_or_no YES if the view is updatable
(allows UPDATE and DELETE),
NO if not

is_insertable_into yes_or_no YES if the view is insertable into
(allows INSERT), NO if not

is_trigger_updatable yes_or_no YES if the view has an INSTEAD

OF UPDATE trigger defined on it,
NO if not

is_trigger_deletable yes_or_no YES if the view has an INSTEAD

OF DELETE trigger defined on it,
NO if not

907

Chapter 34. The Information Schema

Name Data Type Description
is_trigger_insertable_intoyes_or_no YES if the view has an INSTEAD

OF INSERT trigger defined on it,
NO if not

908

V. Server Programming
This part is about extending the server functionality with user-defined functions, data types, triggers,
etc. These are advanced topics which should probably be approached only after all the other user doc-
umentation about PostgreSQL has been understood. Later chapters in this part describe the server-side
programming languages available in the PostgreSQL distribution as well as general issues concerning
server-side programming languages. It is essential to read at least the earlier sections of Chapter 35 (cov-
ering functions) before diving into the material about server-side programming languages.

Chapter 35. Extending SQL
In the sections that follow, we will discuss how you can extend the PostgreSQL SQL query language by
adding:

• functions (starting in Section 35.3)
• aggregates (starting in Section 35.10)
• data types (starting in Section 35.11)
• operators (starting in Section 35.12)
• operator classes for indexes (starting in Section 35.14)
• packages of related objects (starting in Section 35.15)

35.1. How Extensibility Works
PostgreSQL is extensible because its operation is catalog-driven. If you are familiar with standard rela-
tional database systems, you know that they store information about databases, tables, columns, etc., in
what are commonly known as system catalogs. (Some systems call this the data dictionary.) The catalogs
appear to the user as tables like any other, but the DBMS stores its internal bookkeeping in them. One
key difference between PostgreSQL and standard relational database systems is that PostgreSQL stores
much more information in its catalogs: not only information about tables and columns, but also informa-
tion about data types, functions, access methods, and so on. These tables can be modified by the user,
and since PostgreSQL bases its operation on these tables, this means that PostgreSQL can be extended
by users. By comparison, conventional database systems can only be extended by changing hardcoded
procedures in the source code or by loading modules specially written by the DBMS vendor.

The PostgreSQL server can moreover incorporate user-written code into itself through dynamic loading.
That is, the user can specify an object code file (e.g., a shared library) that implements a new type or
function, and PostgreSQL will load it as required. Code written in SQL is even more trivial to add to
the server. This ability to modify its operation “on the fly” makes PostgreSQL uniquely suited for rapid
prototyping of new applications and storage structures.

35.2. The PostgreSQL Type System
PostgreSQL data types are divided into base types, composite types, domains, and pseudo-types.

35.2.1. Base Types
Base types are those, like int4, that are implemented below the level of the SQL language (typically in a
low-level language such as C). They generally correspond to what are often known as abstract data types.
PostgreSQL can only operate on such types through functions provided by the user and only understands
the behavior of such types to the extent that the user describes them. Base types are further subdivided

911

Chapter 35. Extending SQL

into scalar and array types. For each scalar type, a corresponding array type is automatically created that
can hold variable-size arrays of that scalar type.

35.2.2. Composite Types
Composite types, or row types, are created whenever the user creates a table. It is also possible to use
CREATE TYPE to define a “stand-alone” composite type with no associated table. A composite type
is simply a list of types with associated field names. A value of a composite type is a row or record of
field values. The user can access the component fields from SQL queries. Refer to Section 8.16 for more
information on composite types.

35.2.3. Domains
A domain is based on a particular base type and for many purposes is interchangeable with its base type.
However, a domain can have constraints that restrict its valid values to a subset of what the underlying
base type would allow.

Domains can be created using the SQL command CREATE DOMAIN. Their creation and use is not
discussed in this chapter.

35.2.4. Pseudo-Types
There are a few “pseudo-types” for special purposes. Pseudo-types cannot appear as columns of tables or
attributes of composite types, but they can be used to declare the argument and result types of functions.
This provides a mechanism within the type system to identify special classes of functions. Table 8-24 lists
the existing pseudo-types.

35.2.5. Polymorphic Types
Five pseudo-types of special interest are anyelement, anyarray, anynonarray, anyenum, and
anyrange, which are collectively called polymorphic types. Any function declared using these types is
said to be a polymorphic function. A polymorphic function can operate on many different data types,
with the specific data type(s) being determined by the data types actually passed to it in a particular call.

Polymorphic arguments and results are tied to each other and are resolved to a specific data type when a
query calling a polymorphic function is parsed. Each position (either argument or return value) declared
as anyelement is allowed to have any specific actual data type, but in any given call they must all be
the same actual type. Each position declared as anyarray can have any array data type, but similarly
they must all be the same type. And similarly, positions declared as anyrange must all be the same
range type. Furthermore, if there are positions declared anyarray and others declared anyelement,
the actual array type in the anyarray positions must be an array whose elements are the same type
appearing in the anyelement positions. Similarly, if there are positions declared anyrange and others
declared anyelement, the actual range type in the anyrange positions must be a range whose subtype
is the same type appearing in the anyelement positions. anynonarray is treated exactly the same as
anyelement, but adds the additional constraint that the actual type must not be an array type. anyenum

912

Chapter 35. Extending SQL

is treated exactly the same as anyelement, but adds the additional constraint that the actual type must be
an enum type.

Thus, when more than one argument position is declared with a polymorphic type, the net effect is that
only certain combinations of actual argument types are allowed. For example, a function declared as
equal(anyelement, anyelement) will take any two input values, so long as they are of the same
data type.

When the return value of a function is declared as a polymorphic type, there must be at least one argument
position that is also polymorphic, and the actual data type supplied as the argument determines the actual
result type for that call. For example, if there were not already an array subscripting mechanism, one
could define a function that implements subscripting as subscript(anyarray, integer) returns

anyelement. This declaration constrains the actual first argument to be an array type, and allows the
parser to infer the correct result type from the actual first argument’s type. Another example is that a
function declared as f(anyarray) returns anyenum will only accept arrays of enum types.

Note that anynonarray and anyenum do not represent separate type variables; they are the same type as
anyelement, just with an additional constraint. For example, declaring a function as f(anyelement,
anyenum) is equivalent to declaring it as f(anyenum, anyenum): both actual arguments have to be the
same enum type.

A variadic function (one taking a variable number of arguments, as in Section 35.4.5) can be polymorphic:
this is accomplished by declaring its last parameter as VARIADIC anyarray. For purposes of argument
matching and determining the actual result type, such a function behaves the same as if you had written
the appropriate number of anynonarray parameters.

35.3. User-defined Functions
PostgreSQL provides four kinds of functions:

• query language functions (functions written in SQL) (Section 35.4)

• procedural language functions (functions written in, for example, PL/pgSQL or PL/Tcl) (Section 35.7)

• internal functions (Section 35.8)

• C-language functions (Section 35.9)

Every kind of function can take base types, composite types, or combinations of these as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. Functions can
also be defined to return sets of base or composite values.

Many kinds of functions can take or return certain pseudo-types (such as polymorphic types), but the
available facilities vary. Consult the description of each kind of function for more details.

It’s easiest to define SQL functions, so we’ll start by discussing those. Most of the concepts presented for
SQL functions will carry over to the other types of functions.

913

Chapter 35. Extending SQL

Throughout this chapter, it can be useful to look at the reference page of the CREATE FUNCTION com-
mand to understand the examples better. Some examples from this chapter can be found in funcs.sql

and funcs.c in the src/tutorial directory in the PostgreSQL source distribution.

35.4. Query Language (SQL) Functions
SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the list.
In the simple (non-set) case, the first row of the last query’s result will be returned. (Bear in mind that “the
first row” of a multirow result is not well-defined unless you use ORDER BY.) If the last query happens to
return no rows at all, the null value will be returned.

Alternatively, an SQL function can be declared to return a set, by specifying the function’s return type as
SETOF sometype, or equivalently by declaring it as RETURNS TABLE(columns). In this case all rows of
the last query’s result are returned. Further details appear below.

The body of an SQL function must be a list of SQL statements separated by semicolons. A semicolon
after the last statement is optional. Unless the function is declared to return void, the last statement must
be a SELECT, or an INSERT, UPDATE, or DELETE that has a RETURNING clause.

Any collection of commands in the SQL language can be packaged together and defined as a function.
Besides SELECT queries, the commands can include data modification queries (INSERT, UPDATE, and
DELETE), as well as other SQL commands. (You cannot use transaction control commands, e.g. COMMIT,
SAVEPOINT, and some utility commands, e.g. VACUUM, in SQL functions.) However, the final command
must be a SELECT or have a RETURNING clause that returns whatever is specified as the function’s return
type. Alternatively, if you want to define a SQL function that performs actions but has no useful value to
return, you can define it as returning void. For example, this function removes rows with negative salaries
from the emp table:

CREATE FUNCTION clean_emp() RETURNS void AS ’
DELETE FROM emp

WHERE salary < 0;
’ LANGUAGE SQL;

SELECT clean_emp();

clean_emp

(1 row)

The syntax of the CREATE FUNCTION command requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant.
If you choose to use regular single-quoted string constant syntax, you must double single quote marks (’)
and backslashes (\) (assuming escape string syntax) in the body of the function (see Section 4.1.2.1).

914

Chapter 35. Extending SQL

35.4.1. Arguments for SQL Functions
Arguments of a SQL function can be referenced in the function body using either names or numbers.
Examples of both methods appear below.

To use a name, declare the function argument as having a name, and then just write that name in the
function body. If the argument name is the same as any column name in the current SQL command within
the function, the column name will take precedence. To override this, qualify the argument name with the
name of the function itself, that is function_name.argument_name. (If this would conflict with a qualified
column name, again the column name wins. You can avoid the ambiguity by choosing a different alias for
the table within the SQL command.)

In the older numeric approach, arguments are referenced using the syntax $n: $1 refers to the first input
argument, $2 to the second, and so on. This will work whether or not the particular argument was declared
with a name.

If an argument is of a composite type, then the dot notation, e.g., argname.fieldname or
$1.fieldname, can be used to access attributes of the argument. Again, you might need to qualify the
argument’s name with the function name to make the form with an argument name unambiguous.

SQL function arguments can only be used as data values, not as identifiers. Thus for example this is
reasonable:

INSERT INTO mytable VALUES ($1);

but this will not work:

INSERT INTO $1 VALUES (42);

Note: The ability to use names to reference SQL function arguments was added in PostgreSQL 9.2.
Functions to be used in older servers must use the $n notation.

35.4.2. SQL Functions on Base Types
The simplest possible SQL function has no arguments and simply returns a base type, such as integer:

CREATE FUNCTION one() RETURNS integer AS $$
SELECT 1 AS result;

$$ LANGUAGE SQL;

-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS ’

SELECT 1 AS result;
’ LANGUAGE SQL;

SELECT one();

one

915

Chapter 35. Extending SQL

1

Notice that we defined a column alias within the function body for the result of the function (with the
name result), but this column alias is not visible outside the function. Hence, the result is labeled one

instead of result.

It is almost as easy to define SQL functions that take base types as arguments:

CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
SELECT x + y;

$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

answer

3

Alternatively, we could dispense with names for the arguments and use numbers:

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
SELECT $1 + $2;

$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

answer

3

Here is a more useful function, which might be used to debit a bank account:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS integer AS $$
UPDATE bank

SET balance = balance - debit
WHERE accountno = tf1.accountno;

SELECT 1;
$$ LANGUAGE SQL;

A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tf1(17, 100.0);

In this example, we chose the name accountno for the first argument, but this is the same as the
name of a column in the bank table. Within the UPDATE command, accountno refers to the column
bank.accountno, so tf1.accountno must be used to refer to the argument. We could of course avoid
this by using a different name for the argument.

916

Chapter 35. Extending SQL

In practice one would probably like a more useful result from the function than a constant 1, so a more
likely definition is:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS integer AS $$
UPDATE bank

SET balance = balance - debit
WHERE accountno = tf1.accountno;

SELECT balance FROM bank WHERE accountno = tf1.accountno;
$$ LANGUAGE SQL;

which adjusts the balance and returns the new balance. The same thing could be done in one command
using RETURNING:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS integer AS $$
UPDATE bank

SET balance = balance - debit
WHERE accountno = tf1.accountno

RETURNING balance;
$$ LANGUAGE SQL;

35.4.3. SQL Functions on Composite Types
When writing functions with arguments of composite types, we must not only specify which argument
we want but also the desired attribute (field) of that argument. For example, suppose that emp is a table
containing employee data, and therefore also the name of the composite type of each row of the table.
Here is a function double_salary that computes what someone’s salary would be if it were doubled:

CREATE TABLE emp (
name text,
salary numeric,
age integer,
cubicle point

);

INSERT INTO emp VALUES (’Bill’, 4200, 45, ’(2,1)’);

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
SELECT $1.salary * 2 AS salary;

$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
FROM emp
WHERE emp.cubicle ~= point ’(2,1)’;

name | dream
------+-------
Bill | 8400

917

Chapter 35. Extending SQL

Notice the use of the syntax $1.salary to select one field of the argument row value. Also notice how
the calling SELECT command uses * to select the entire current row of a table as a composite value. The
table row can alternatively be referenced using just the table name, like this:

SELECT name, double_salary(emp) AS dream
FROM emp
WHERE emp.cubicle ~= point ’(2,1)’;

but this usage is deprecated since it’s easy to get confused.

Sometimes it is handy to construct a composite argument value on-the-fly. This can be done with the ROW
construct. For example, we could adjust the data being passed to the function:

SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
FROM emp;

It is also possible to build a function that returns a composite type. This is an example of a function that
returns a single emp row:

CREATE FUNCTION new_emp() RETURNS emp AS $$
SELECT text ’None’ AS name,

1000.0 AS salary,
25 AS age,
point ’(2,2)’ AS cubicle;

$$ LANGUAGE SQL;

In this example we have specified each of the attributes with a constant value, but any computation could
have been substituted for these constants.

Note two important things about defining the function:

• The select list order in the query must be exactly the same as that in which the columns appear in the
table associated with the composite type. (Naming the columns, as we did above, is irrelevant to the
system.)

• You must typecast the expressions to match the definition of the composite type, or you will get errors
like this:

ERROR: function declared to return emp returns varchar instead of text at column 1

A different way to define the same function is:

CREATE FUNCTION new_emp() RETURNS emp AS $$
SELECT ROW(’None’, 1000.0, 25, ’(2,2)’)::emp;

$$ LANGUAGE SQL;

Here we wrote a SELECT that returns just a single column of the correct composite type. This isn’t really
better in this situation, but it is a handy alternative in some cases — for example, if we need to compute
the result by calling another function that returns the desired composite value.

We could call this function directly in either of two ways:

918

Chapter 35. Extending SQL

SELECT new_emp();

new_emp

(None,1000.0,25,"(2,2)")

SELECT * FROM new_emp();

name | salary | age | cubicle
------+--------+-----+---------
None | 1000.0 | 25 | (2,2)

The second way is described more fully in Section 35.4.7.

When you use a function that returns a composite type, you might want only one field (attribute) from its
result. You can do that with syntax like this:

SELECT (new_emp()).name;

name

None

The extra parentheses are needed to keep the parser from getting confused. If you try to do it without
them, you get something like this:

SELECT new_emp().name;
ERROR: syntax error at or near "."
LINE 1: SELECT new_emp().name;

^

Another option is to use functional notation for extracting an attribute. The simple way to explain this is
that we can use the notations attribute(table) and table.attribute interchangeably.

SELECT name(new_emp());

name

None

-- This is the same as:
-- SELECT emp.name AS youngster FROM emp WHERE emp.age < 30;

SELECT name(emp) AS youngster FROM emp WHERE age(emp) < 30;

youngster

Sam
Andy

919

Chapter 35. Extending SQL

Tip: The equivalence between functional notation and attribute notation makes it possible to use
functions on composite types to emulate “computed fields”. For example, using the previous definition
for double_salary(emp), we can write

SELECT emp.name, emp.double_salary FROM emp;

An application using this wouldn’t need to be directly aware that double_salary isn’t a real column
of the table. (You can also emulate computed fields with views.)

Because of this behavior, it’s unwise to give a function that takes a single composite-type argument
the same name as any of the fields of that composite type.

Another way to use a function returning a composite type is to pass the result to another function that
accepts the correct row type as input:

CREATE FUNCTION getname(emp) RETURNS text AS $$
SELECT $1.name;

$$ LANGUAGE SQL;

SELECT getname(new_emp());
getname

None

(1 row)

Still another way to use a function that returns a composite type is to call it as a table function, as described
in Section 35.4.7.

35.4.4. SQL Functions with Output Parameters
An alternative way of describing a function’s results is to define it with output parameters, as in this
example:

CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS ’SELECT x + y’
LANGUAGE SQL;

SELECT add_em(3,7);
add_em

10

(1 row)

This is not essentially different from the version of add_em shown in Section 35.4.2. The real value of
output parameters is that they provide a convenient way of defining functions that return several columns.
For example,

CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int)
AS ’SELECT x + y, x * y’

920

Chapter 35. Extending SQL

LANGUAGE SQL;

SELECT * FROM sum_n_product(11,42);
sum | product

-----+---------
53 | 462

(1 row)

What has essentially happened here is that we have created an anonymous composite type for the result
of the function. The above example has the same end result as

CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS ’SELECT $1 + $2, $1 * $2’
LANGUAGE SQL;

but not having to bother with the separate composite type definition is often handy. Notice that the names
attached to the output parameters are not just decoration, but determine the column names of the anony-
mous composite type. (If you omit a name for an output parameter, the system will choose a name on its
own.)

Notice that output parameters are not included in the calling argument list when invoking such a function
from SQL. This is because PostgreSQL considers only the input parameters to define the function’s call-
ing signature. That means also that only the input parameters matter when referencing the function for
purposes such as dropping it. We could drop the above function with either of

DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int);
DROP FUNCTION sum_n_product (int, int);

Parameters can be marked as IN (the default), OUT, INOUT, or VARIADIC. An INOUT parameter serves
as both an input parameter (part of the calling argument list) and an output parameter (part of the result
record type). VARIADIC parameters are input parameters, but are treated specially as described next.

35.4.5. SQL Functions with Variable Numbers of Arguments
SQL functions can be declared to accept variable numbers of arguments, so long as all the “optional”
arguments are of the same data type. The optional arguments will be passed to the function as an array.
The function is declared by marking the last parameter as VARIADIC; this parameter must be declared as
being of an array type. For example:

CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);

$$ LANGUAGE SQL;

SELECT mleast(10, -1, 5, 4.4);
mleast

-1

(1 row)

921

Chapter 35. Extending SQL

Effectively, all the actual arguments at or beyond the VARIADIC position are gathered up into a one-
dimensional array, as if you had written

SELECT mleast(ARRAY[10, -1, 5, 4.4]); -- doesn’t work

You can’t actually write that, though — or at least, it will not match this function definition. A parameter
marked VARIADIC matches one or more occurrences of its element type, not of its own type.

Sometimes it is useful to be able to pass an already-constructed array to a variadic function; this is partic-
ularly handy when one variadic function wants to pass on its array parameter to another one. You can do
that by specifying VARIADIC in the call:

SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);

This prevents expansion of the function’s variadic parameter into its element type, thereby allowing the
array argument value to match normally. VARIADIC can only be attached to the last actual argument of a
function call.

The array element parameters generated from a variadic parameter are treated as not having any names of
their own. This means it is not possible to call a variadic function using named arguments (Section 4.3),
except when you specify VARIADIC. For example, this will work:

SELECT mleast(VARIADIC arr := ARRAY[10, -1, 5, 4.4]);

but not these:

SELECT mleast(arr := 10);
SELECT mleast(arr := ARRAY[10, -1, 5, 4.4]);

35.4.6. SQL Functions with Default Values for Arguments
Functions can be declared with default values for some or all input arguments. The default values are
inserted whenever the function is called with insufficiently many actual arguments. Since arguments can
only be omitted from the end of the actual argument list, all parameters after a parameter with a default
value have to have default values as well. (Although the use of named argument notation could allow this
restriction to be relaxed, it’s still enforced so that positional argument notation works sensibly.)

For example:

CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)
RETURNS int
LANGUAGE SQL
AS $$

SELECT $1 + $2 + $3;
$$;

SELECT foo(10, 20, 30);
foo

60

922

Chapter 35. Extending SQL

(1 row)

SELECT foo(10, 20);
foo

33

(1 row)

SELECT foo(10);
foo

15

(1 row)

SELECT foo(); -- fails since there is no default for the first argument
ERROR: function foo() does not exist

The = sign can also be used in place of the key word DEFAULT.

35.4.7. SQL Functions as Table Sources
All SQL functions can be used in the FROM clause of a query, but it is particularly useful for functions
returning composite types. If the function is defined to return a base type, the table function produces
a one-column table. If the function is defined to return a composite type, the table function produces a
column for each attribute of the composite type.

Here is an example:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, ’Joe’);
INSERT INTO foo VALUES (1, 2, ’Ed’);
INSERT INTO foo VALUES (2, 1, ’Mary’);

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
SELECT * FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

fooid | foosubid | fooname | upper
-------+----------+---------+-------

1 | 1 | Joe | JOE
(1 row)

As the example shows, we can work with the columns of the function’s result just the same as if they were
columns of a regular table.

Note that we only got one row out of the function. This is because we did not use SETOF. That is described
in the next section.

923

Chapter 35. Extending SQL

35.4.8. SQL Functions Returning Sets
When an SQL function is declared as returning SETOF sometype, the function’s final query is executed
to completion, and each row it outputs is returned as an element of the result set.

This feature is normally used when calling the function in the FROM clause. In this case each row returned
by the function becomes a row of the table seen by the query. For example, assume that table foo has the
same contents as above, and we say:

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;

$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

Then we would get:

fooid | foosubid | fooname
-------+----------+---------

1 | 1 | Joe
1 | 2 | Ed

(2 rows)

It is also possible to return multiple rows with the columns defined by output parameters, like this:

CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);

CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int)
RETURNS SETOF record
AS $$

SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

SELECT * FROM sum_n_product_with_tab(10);
sum | product

-----+---------
11 | 10
13 | 30
15 | 50
17 | 70

(4 rows)

The key point here is that you must write RETURNS SETOF record to indicate that the function returns
multiple rows instead of just one. If there is only one output parameter, write that parameter’s type instead
of record.

Currently, functions returning sets can also be called in the select list of a query. For each row that the
query generates by itself, the function returning set is invoked, and an output row is generated for each
element of the function’s result set. Note, however, that this capability is deprecated and might be removed
in future releases. The following is an example function returning a set from the select list:

924

Chapter 35. Extending SQL

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
SELECT name FROM nodes WHERE parent = $1

$$ LANGUAGE SQL;

SELECT * FROM nodes;
name | parent

-----------+--------
Top |
Child1 | Top
Child2 | Top
Child3 | Top
SubChild1 | Child1
SubChild2 | Child1

(6 rows)

SELECT listchildren(’Top’);
listchildren

Child1
Child2
Child3

(3 rows)

SELECT name, listchildren(name) FROM nodes;
name | listchildren

--------+--------------
Top | Child1
Top | Child2
Top | Child3
Child1 | SubChild1
Child1 | SubChild2

(5 rows)

In the last SELECT, notice that no output row appears for Child2, Child3, etc. This happens because
listchildren returns an empty set for those arguments, so no result rows are generated.

Note: If a function’s last command is INSERT, UPDATE, or DELETE with RETURNING, that command
will always be executed to completion, even if the function is not declared with SETOF or the calling
query does not fetch all the result rows. Any extra rows produced by the RETURNING clause are silently
dropped, but the commanded table modifications still happen (and are all completed before returning
from the function).

35.4.9. SQL Functions Returning TABLE

There is another way to declare a function as returning a set, which is to use the syntax RETURNS

TABLE(columns). This is equivalent to using one or more OUT parameters plus marking the function
as returning SETOF record (or SETOF a single output parameter’s type, as appropriate). This notation is
specified in recent versions of the SQL standard, and thus may be more portable than using SETOF.

925

Chapter 35. Extending SQL

For example, the preceding sum-and-product example could also be done this way:

CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$

SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

It is not allowed to use explicit OUT or INOUT parameters with the RETURNS TABLE notation — you must
put all the output columns in the TABLE list.

35.4.10. Polymorphic SQL Functions
SQL functions can be declared to accept and return the polymorphic types anyelement, anyarray,
anynonarray, anyenum, and anyrange. See Section 35.2.5 for a more detailed explanation of polymor-
phic functions. Here is a polymorphic function make_array that builds up an array from two arbitrary
data type elements:

CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
SELECT ARRAY[$1, $2];

$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array(’a’::text, ’b’) AS textarray;
intarray | textarray

----------+-----------
{1,2} | {a,b}

(1 row)

Notice the use of the typecast ’a’::text to specify that the argument is of type text. This is required
if the argument is just a string literal, since otherwise it would be treated as type unknown, and array of
unknown is not a valid type. Without the typecast, you will get errors like this:

ERROR: could not determine polymorphic type because input has type "unknown"

It is permitted to have polymorphic arguments with a fixed return type, but the converse is not. For exam-
ple:

CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
SELECT $1 > $2;

$$ LANGUAGE SQL;

SELECT is_greater(1, 2);
is_greater

f

(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
SELECT 1;

926

Chapter 35. Extending SQL

$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A function returning a polymorphic type must have at least one polymorphic argument.

Polymorphism can be used with functions that have output arguments. For example:

CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray)
AS ’select $1, array[$1,$1]’ LANGUAGE SQL;

SELECT * FROM dup(22);
f2 | f3

----+---------
22 | {22,22}

(1 row)

Polymorphism can also be used with variadic functions. For example:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);

$$ LANGUAGE SQL;

SELECT anyleast(10, -1, 5, 4);
anyleast

-1

(1 row)

SELECT anyleast(’abc’::text, ’def’);
anyleast

abc

(1 row)

CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$
SELECT array_to_string($2, $1);

$$ LANGUAGE SQL;

SELECT concat_values(’|’, 1, 4, 2);
concat_values

1|4|2

(1 row)

927

Chapter 35. Extending SQL

35.4.11. SQL Functions with Collations
When a SQL function has one or more parameters of collatable data types, a collation is identified for
each function call depending on the collations assigned to the actual arguments, as described in Section
22.2. If a collation is successfully identified (i.e., there are no conflicts of implicit collations among the
arguments) then all the collatable parameters are treated as having that collation implicitly. This will
affect the behavior of collation-sensitive operations within the function. For example, using the anyleast
function described above, the result of

SELECT anyleast(’abc’::text, ’ABC’);

will depend on the database’s default collation. In C locale the result will be ABC, but in many other locales
it will be abc. The collation to use can be forced by adding a COLLATE clause to any of the arguments,
for example

SELECT anyleast(’abc’::text, ’ABC’ COLLATE "C");

Alternatively, if you wish a function to operate with a particular collation regardless of what it is called
with, insert COLLATE clauses as needed in the function definition. This version of anyleastwould always
use en_US locale to compare strings:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i);

$$ LANGUAGE SQL;

But note that this will throw an error if applied to a non-collatable data type.

If no common collation can be identified among the actual arguments, then a SQL function treats its
parameters as having their data types’ default collation (which is usually the database’s default collation,
but could be different for parameters of domain types).

The behavior of collatable parameters can be thought of as a limited form of polymorphism, applicable
only to textual data types.

35.5. Function Overloading
More than one function can be defined with the same SQL name, so long as the arguments they take
are different. In other words, function names can be overloaded. When a query is executed, the server
will determine which function to call from the data types and the number of the provided arguments.
Overloading can also be used to simulate functions with a variable number of arguments, up to a finite
maximum number.

When creating a family of overloaded functions, one should be careful not to create ambiguities. For
instance, given the functions:

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

928

Chapter 35. Extending SQL

it is not immediately clear which function would be called with some trivial input like test(1, 1.5).
The currently implemented resolution rules are described in Chapter 10, but it is unwise to design a system
that subtly relies on this behavior.

A function that takes a single argument of a composite type should generally not have the same name
as any attribute (field) of that type. Recall that attribute(table) is considered equivalent to
table.attribute. In the case that there is an ambiguity between a function on a composite type and
an attribute of the composite type, the attribute will always be used. It is possible to override that choice
by schema-qualifying the function name (that is, schema.func(table)) but it’s better to avoid the
problem by not choosing conflicting names.

Another possible conflict is between variadic and non-variadic functions. For instance, it is possible to
create both foo(numeric) and foo(VARIADIC numeric[]). In this case it is unclear which one should
be matched to a call providing a single numeric argument, such as foo(10.1). The rule is that the
function appearing earlier in the search path is used, or if the two functions are in the same schema, the
non-variadic one is preferred.

When overloading C-language functions, there is an additional constraint: The C name of each function
in the family of overloaded functions must be different from the C names of all other functions, either
internal or dynamically loaded. If this rule is violated, the behavior is not portable. You might get a run-
time linker error, or one of the functions will get called (usually the internal one). The alternative form
of the AS clause for the SQL CREATE FUNCTION command decouples the SQL function name from the
function name in the C source code. For instance:

CREATE FUNCTION test(int) RETURNS int
AS ’filename’, ’test_1arg’
LANGUAGE C;

CREATE FUNCTION test(int, int) RETURNS int
AS ’filename’, ’test_2arg’
LANGUAGE C;

The names of the C functions here reflect one of many possible conventions.

35.6. Function Volatility Categories
Every function has a volatility classification, with the possibilities being VOLATILE, STABLE, or
IMMUTABLE. VOLATILE is the default if the CREATE FUNCTION command does not specify a
category. The volatility category is a promise to the optimizer about the behavior of the function:

• A VOLATILE function can do anything, including modifying the database. It can return different results
on successive calls with the same arguments. The optimizer makes no assumptions about the behavior
of such functions. A query using a volatile function will re-evaluate the function at every row where its
value is needed.

• A STABLE function cannot modify the database and is guaranteed to return the same results given the
same arguments for all rows within a single statement. This category allows the optimizer to optimize
multiple calls of the function to a single call. In particular, it is safe to use an expression containing
such a function in an index scan condition. (Since an index scan will evaluate the comparison value
only once, not once at each row, it is not valid to use a VOLATILE function in an index scan condition.)

929

Chapter 35. Extending SQL

• An IMMUTABLE function cannot modify the database and is guaranteed to return the same results given
the same arguments forever. This category allows the optimizer to pre-evaluate the function when a
query calls it with constant arguments. For example, a query like SELECT ... WHERE x = 2 + 2

can be simplified on sight to SELECT ... WHERE x = 4, because the function underlying the integer
addition operator is marked IMMUTABLE.

For best optimization results, you should label your functions with the strictest volatility category that is
valid for them.

Any function with side-effects must be labeled VOLATILE, so that calls to it cannot be optimized away.
Even a function with no side-effects needs to be labeled VOLATILE if its value can change within a single
query; some examples are random(), currval(), timeofday().

Another important example is that the current_timestamp family of functions qualify as STABLE,
since their values do not change within a transaction.

There is relatively little difference between STABLE and IMMUTABLE categories when considering simple
interactive queries that are planned and immediately executed: it doesn’t matter a lot whether a function
is executed once during planning or once during query execution startup. But there is a big difference
if the plan is saved and reused later. Labeling a function IMMUTABLE when it really isn’t might allow it
to be prematurely folded to a constant during planning, resulting in a stale value being re-used during
subsequent uses of the plan. This is a hazard when using prepared statements or when using function
languages that cache plans (such as PL/pgSQL).

For functions written in SQL or in any of the standard procedural languages, there is a second important
property determined by the volatility category, namely the visibility of any data changes that have been
made by the SQL command that is calling the function. A VOLATILE function will see such changes, a
STABLE or IMMUTABLE function will not. This behavior is implemented using the snapshotting behavior
of MVCC (see Chapter 13): STABLE and IMMUTABLE functions use a snapshot established as of the start
of the calling query, whereas VOLATILE functions obtain a fresh snapshot at the start of each query they
execute.

Note: Functions written in C can manage snapshots however they want, but it’s usually a good idea
to make C functions work this way too.

Because of this snapshotting behavior, a function containing only SELECT commands can safely be
marked STABLE, even if it selects from tables that might be undergoing modifications by concurrent
queries. PostgreSQL will execute all commands of a STABLE function using the snapshot established for
the calling query, and so it will see a fixed view of the database throughout that query.

The same snapshotting behavior is used for SELECT commands within IMMUTABLE functions. It is gen-
erally unwise to select from database tables within an IMMUTABLE function at all, since the immutability
will be broken if the table contents ever change. However, PostgreSQL does not enforce that you do not
do that.

A common error is to label a function IMMUTABLE when its results depend on a configuration parameter.
For example, a function that manipulates timestamps might well have results that depend on the TimeZone
setting. For safety, such functions should be labeled STABLE instead.

930

Chapter 35. Extending SQL

Note: Before PostgreSQL release 8.0, the requirement that STABLE and IMMUTABLE functions cannot
modify the database was not enforced by the system. Releases 8.0 and later enforce it by requir-
ing SQL functions and procedural language functions of these categories to contain no SQL com-
mands other than SELECT. (This is not a completely bulletproof test, since such functions could still
call VOLATILE functions that modify the database. If you do that, you will find that the STABLE or
IMMUTABLE function does not notice the database changes applied by the called function, since they
are hidden from its snapshot.)

35.7. Procedural Language Functions
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). Procedural languages aren’t built into
the PostgreSQL server; they are offered by loadable modules. See Chapter 38 and following chapters for
more information.

35.8. Internal Functions
Internal functions are functions written in C that have been statically linked into the PostgreSQL server.
The “body” of the function definition specifies the C-language name of the function, which need not be
the same as the name being declared for SQL use. (For reasons of backward compatibility, an empty body
is accepted as meaning that the C-language function name is the same as the SQL name.)

Normally, all internal functions present in the server are declared during the initialization of the database
cluster (see Section 17.2), but a user could use CREATE FUNCTION to create additional alias names for an
internal function. Internal functions are declared in CREATE FUNCTION with language name internal.
For instance, to create an alias for the sqrt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
AS ’dsqrt’
LANGUAGE internal
STRICT;

(Most internal functions expect to be declared “strict”.)

Note: Not all “predefined” functions are “internal” in the above sense. Some predefined functions are
written in SQL.

35.9. C-Language Functions
User-defined functions can be written in C (or a language that can be made compatible with C, such as
C++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and
are loaded by the server on demand. The dynamic loading feature is what distinguishes “C language”

931

Chapter 35. Extending SQL

functions from “internal” functions — the actual coding conventions are essentially the same for both.
(Hence, the standard internal function library is a rich source of coding examples for user-defined C
functions.)

Two different calling conventions are currently used for C functions. The newer “version 1” calling con-
vention is indicated by writing a PG_FUNCTION_INFO_V1() macro call for the function, as illustrated
below. Lack of such a macro indicates an old-style (“version 0”) function. The language name specified
in CREATE FUNCTION is C in either case. Old-style functions are now deprecated because of portability
problems and lack of functionality, but they are still supported for compatibility reasons.

35.9.1. Dynamic Loading
The first time a user-defined function in a particular loadable object file is called in a session, the dynamic
loader loads that object file into memory so that the function can be called. The CREATE FUNCTION for a
user-defined C function must therefore specify two pieces of information for the function: the name of the
loadable object file, and the C name (link symbol) of the specific function to call within that object file. If
the C name is not explicitly specified then it is assumed to be the same as the SQL function name.

The following algorithm is used to locate the shared object file based on the name given in the CREATE

FUNCTION command:

1. If the name is an absolute path, the given file is loaded.

2. If the name starts with the string $libdir, that part is replaced by the PostgreSQL package library
directory name, which is determined at build time.

3. If the name does not contain a directory part, the file is searched for in the path specified by the
configuration variable dynamic_library_path.

4. Otherwise (the file was not found in the path, or it contains a non-absolute directory part), the dynamic
loader will try to take the name as given, which will most likely fail. (It is unreliable to depend on the
current working directory.)

If this sequence does not work, the platform-specific shared library file name extension (often .so) is
appended to the given name and this sequence is tried again. If that fails as well, the load will fail.

It is recommended to locate shared libraries either relative to $libdir or through the dynamic library
path. This simplifies version upgrades if the new installation is at a different location. The actual directory
that $libdir stands for can be found out with the command pg_config --pkglibdir.

The user ID the PostgreSQL server runs as must be able to traverse the path to the file you intend to load.
Making the file or a higher-level directory not readable and/or not executable by the postgres user is a
common mistake.

In any case, the file name that is given in the CREATE FUNCTION command is recorded literally in the
system catalogs, so if the file needs to be loaded again the same procedure is applied.

Note: PostgreSQL will not compile a C function automatically. The object file must be compiled before
it is referenced in a CREATE FUNCTION command. See Section 35.9.6 for additional information.

932

Chapter 35. Extending SQL

To ensure that a dynamically loaded object file is not loaded into an incompatible server, PostgreSQL
checks that the file contains a “magic block” with the appropriate contents. This allows the server to
detect obvious incompatibilities, such as code compiled for a different major version of PostgreSQL. A
magic block is required as of PostgreSQL 8.2. To include a magic block, write this in one (and only one)
of the module source files, after having included the header fmgr.h:

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

The #ifdef test can be omitted if the code doesn’t need to compile against pre-8.2 PostgreSQL releases.

After it is used for the first time, a dynamically loaded object file is retained in memory. Future calls in
the same session to the function(s) in that file will only incur the small overhead of a symbol table lookup.
If you need to force a reload of an object file, for example after recompiling it, begin a fresh session.

Optionally, a dynamically loaded file can contain initialization and finalization functions. If the file in-
cludes a function named _PG_init, that function will be called immediately after loading the file. The
function receives no parameters and should return void. If the file includes a function named _PG_fini,
that function will be called immediately before unloading the file. Likewise, the function receives no pa-
rameters and should return void. Note that _PG_fini will only be called during an unload of the file, not
during process termination. (Presently, unloads are disabled and will never occur, but this may change in
the future.)

35.9.2. Base Types in C-Language Functions
To know how to write C-language functions, you need to know how PostgreSQL internally represents
base data types and how they can be passed to and from functions. Internally, PostgreSQL regards a base
type as a “blob of memory”. The user-defined functions that you define over a type in turn define the way
that PostgreSQL can operate on it. That is, PostgreSQL will only store and retrieve the data from disk and
use your user-defined functions to input, process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length

• pass by reference, fixed-length

• pass by reference, variable-length

By-value types can only be 1, 2, or 4 bytes in length (also 8 bytes, if sizeof(Datum) is 8 on your
machine). You should be careful to define your types such that they will be the same size (in bytes) on
all architectures. For example, the long type is dangerous because it is 4 bytes on some machines and 8
bytes on others, whereas int type is 4 bytes on most Unix machines. A reasonable implementation of the
int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

933

Chapter 35. Extending SQL

On the other hand, fixed-length types of any size can be passed by-reference. For example, here is a sample
implementation of a PostgreSQL type:

/* 16-byte structure, passed by reference */
typedef struct
{

double x, y;
} Point;

Only pointers to such types can be used when passing them in and out of PostgreSQL functions. To return
a value of such a type, allocate the right amount of memory with palloc, fill in the allocated memory,
and return a pointer to it. (Also, if you just want to return the same value as one of your input arguments
that’s of the same data type, you can skip the extra palloc and just return the pointer to the input value.)

Finally, all variable-length types must also be passed by reference. All variable-length types must begin
with an opaque length field of exactly 4 bytes, which will be set by SET_VARSIZE; never set this field
directly! All data to be stored within that type must be located in the memory immediately following that
length field. The length field contains the total length of the structure, that is, it includes the size of the
length field itself.

Another important point is to avoid leaving any uninitialized bits within data type values; for example,
take care to zero out any alignment padding bytes that might be present in structs. Without this, logically-
equivalent constants of your data type might be seen as unequal by the planner, leading to inefficient
(though not incorrect) plans.

Warning
Never modify the contents of a pass-by-reference input value. If you do so you are
likely to corrupt on-disk data, since the pointer you are given might point directly
into a disk buffer. The sole exception to this rule is explained in Section 35.10.

As an example, we can define the type text as follows:

typedef struct {
int4 length;
char data[1];

} text;

Obviously, the data field declared here is not long enough to hold all possible strings. Since it’s impossible
to declare a variable-size structure in C, we rely on the knowledge that the C compiler won’t range-check
array subscripts. We just allocate the necessary amount of space and then access the array as if it were
declared the right length. (This is a common trick, which you can read about in many textbooks about C.)

When manipulating variable-length types, we must be careful to allocate the correct amount of memory
and set the length field correctly. For example, if we wanted to store 40 bytes in a text structure, we
might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);

934

Chapter 35. Extending SQL

SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination->data, buffer, 40);
...

VARHDRSZ is the same as sizeof(int32), but it’s considered good style to use the macro VARHDRSZ

to refer to the size of the overhead for a variable-length type. Also, the length field must be set using the
SET_VARSIZE macro, not by simple assignment.

Table 35-1 specifies which C type corresponds to which SQL type when writing a C-language function
that uses a built-in type of PostgreSQL. The “Defined In” column gives the header file that needs to be
included to get the type definition. (The actual definition might be in a different file that is included by
the listed file. It is recommended that users stick to the defined interface.) Note that you should always
include postgres.h first in any source file, because it declares a number of things that you will need
anyway.

Table 35-1. Equivalent C Types for Built-in SQL Types

SQL Type C Type Defined In
abstime AbsoluteTime utils/nabstime.h

boolean bool postgres.h (maybe compiler
built-in)

box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)

character BpChar* postgres.h

cid CommandId postgres.h

date DateADT utils/date.h

smallint (int2) int2 or int16 postgres.h

int2vector int2vector* postgres.h

integer (int4) int4 or int32 postgres.h

real (float4) float4* postgres.h

double precision (float8) float8* postgres.h

interval Interval* datatype/timestamp.h

lseg LSEG* utils/geo_decls.h

name Name postgres.h

oid Oid postgres.h

oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc regproc postgres.h

reltime RelativeTime utils/nabstime.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

935

Chapter 35. Extending SQL

SQL Type C Type Defined In
time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp* datatype/timestamp.h

tinterval TimeInterval utils/nabstime.h

varchar VarChar* postgres.h

xid TransactionId postgres.h

Now that we’ve gone over all of the possible structures for base types, we can show some examples of
real functions.

35.9.3. Version 0 Calling Conventions
We present the “old style” calling convention first — although this approach is now deprecated, it’s easier
to get a handle on initially. In the version-0 method, the arguments and result of the C function are just
declared in normal C style, but being careful to use the C representation of each SQL data type as shown
above.

Here are some examples:

#include "postgres.h"
#include <string.h>
#include "utils/geo_decls.h"

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

/* by value */

int
add_one(int arg)
{

return arg + 1;
}

/* by reference, fixed length */

float8 *
add_one_float8(float8 *arg)
{

float8 *result = (float8 *) palloc(sizeof(float8));

*result = *arg + 1.0;

return result;
}

Point *

936

Chapter 35. Extending SQL

makepoint(Point *pointx, Point *pointy)
{

Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;
new_point->y = pointy->y;

return new_point;
}

/* by reference, variable length */

text *
copytext(text *t)
{

/*
* VARSIZE is the total size of the struct in bytes.

*/
text *new_t = (text *) palloc(VARSIZE(t));
SET_VARSIZE(new_t, VARSIZE(t));
/*
* VARDATA is a pointer to the data region of the struct.

*/
memcpy((void *) VARDATA(new_t), /* destination */

(void *) VARDATA(t), /* source */
VARSIZE(t) - VARHDRSZ); /* how many bytes */

return new_t;
}

text *
concat_text(text *arg1, text *arg2)
{

int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);

SET_VARSIZE(new_text, new_text_size);
memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1) - VARHDRSZ);
memcpy(VARDATA(new_text) + (VARSIZE(arg1) - VARHDRSZ),

VARDATA(arg2), VARSIZE(arg2) - VARHDRSZ);
return new_text;

}

Supposing that the above code has been prepared in file funcs.c and compiled into a shared object, we
could define the functions to PostgreSQL with commands like this:

CREATE FUNCTION add_one(integer) RETURNS integer
AS ’DIRECTORY/funcs’, ’add_one’
LANGUAGE C STRICT;

-- note overloading of SQL function name "add_one"
CREATE FUNCTION add_one(double precision) RETURNS double precision

AS ’DIRECTORY/funcs’, ’add_one_float8’

937

Chapter 35. Extending SQL

LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
AS ’DIRECTORY/funcs’, ’makepoint’
LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
AS ’DIRECTORY/funcs’, ’copytext’
LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
AS ’DIRECTORY/funcs’, ’concat_text’
LANGUAGE C STRICT;

Here, DIRECTORY stands for the directory of the shared library file (for instance the PostgreSQL tutorial
directory, which contains the code for the examples used in this section). (Better style would be to use just
’funcs’ in the AS clause, after having added DIRECTORY to the search path. In any case, we can omit
the system-specific extension for a shared library, commonly .so or .sl.)

Notice that we have specified the functions as “strict”, meaning that the system should automatically
assume a null result if any input value is null. By doing this, we avoid having to check for null inputs
in the function code. Without this, we’d have to check for null values explicitly, by checking for a null
pointer for each pass-by-reference argument. (For pass-by-value arguments, we don’t even have a way to
check!)

Although this calling convention is simple to use, it is not very portable; on some architectures there are
problems with passing data types that are smaller than int this way. Also, there is no simple way to
return a null result, nor to cope with null arguments in any way other than making the function strict. The
version-1 convention, presented next, overcomes these objections.

35.9.4. Version 1 Calling Conventions
The version-1 calling convention relies on macros to suppress most of the complexity of passing argu-
ments and results. The C declaration of a version-1 function is always:

Datum funcname(PG_FUNCTION_ARGS)

In addition, the macro call:

PG_FUNCTION_INFO_V1(funcname);

must appear in the same source file. (Conventionally, it’s written just before the function itself.) This
macro call is not needed for internal-language functions, since PostgreSQL assumes that all internal
functions use the version-1 convention. It is, however, required for dynamically-loaded functions.

In a version-1 function, each actual argument is fetched using a PG_GETARG_xxx() macro that corre-
sponds to the argument’s data type, and the result is returned using a PG_RETURN_xxx() macro for the
return type. PG_GETARG_xxx() takes as its argument the number of the function argument to fetch, where
the count starts at 0. PG_RETURN_xxx() takes as its argument the actual value to return.

938

Chapter 35. Extending SQL

Here we show the same functions as above, coded in version-1 style:

#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

/* by value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{

int32 arg = PG_GETARG_INT32(0);

PG_RETURN_INT32(arg + 1);
}

/* by reference, fixed length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{

/* The macros for FLOAT8 hide its pass-by-reference nature. */
float8 arg = PG_GETARG_FLOAT8(0);

PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{

/* Here, the pass-by-reference nature of Point is not hidden. */
Point *pointx = PG_GETARG_POINT_P(0);
Point *pointy = PG_GETARG_POINT_P(1);
Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;
new_point->y = pointy->y;

PG_RETURN_POINT_P(new_point);
}

/* by reference, variable length */

939

Chapter 35. Extending SQL

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{

text *t = PG_GETARG_TEXT_P(0);
/*
* VARSIZE is the total size of the struct in bytes.

*/
text *new_t = (text *) palloc(VARSIZE(t));
SET_VARSIZE(new_t, VARSIZE(t));
/*
* VARDATA is a pointer to the data region of the struct.

*/
memcpy((void *) VARDATA(new_t), /* destination */

(void *) VARDATA(t), /* source */
VARSIZE(t) - VARHDRSZ); /* how many bytes */

PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{

text *arg1 = PG_GETARG_TEXT_P(0);
text *arg2 = PG_GETARG_TEXT_P(1);
int32 new_text_size = VARSIZE(arg1) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);

SET_VARSIZE(new_text, new_text_size);
memcpy(VARDATA(new_text), VARDATA(arg1), VARSIZE(arg1) - VARHDRSZ);
memcpy(VARDATA(new_text) + (VARSIZE(arg1) - VARHDRSZ),

VARDATA(arg2), VARSIZE(arg2) - VARHDRSZ);
PG_RETURN_TEXT_P(new_text);

}

The CREATE FUNCTION commands are the same as for the version-0 equivalents.

At first glance, the version-1 coding conventions might appear to be just pointless obscurantism. They do,
however, offer a number of improvements, because the macros can hide unnecessary detail. An example is
that in coding add_one_float8, we no longer need to be aware that float8 is a pass-by-reference type.
Another example is that the GETARG macros for variable-length types allow for more efficient fetching of
“toasted” (compressed or out-of-line) values.

One big improvement in version-1 functions is better handling of null inputs and results. The macro
PG_ARGISNULL(n) allows a function to test whether each input is null. (Of course, doing this is only
necessary in functions not declared “strict”.) As with the PG_GETARG_xxx() macros, the input arguments
are counted beginning at zero. Note that one should refrain from executing PG_GETARG_xxx() until one

940

Chapter 35. Extending SQL

has verified that the argument isn’t null. To return a null result, execute PG_RETURN_NULL(); this works
in both strict and nonstrict functions.

Other options provided in the new-style interface are two variants of the PG_GETARG_xxx() macros. The
first of these, PG_GETARG_xxx_COPY(), guarantees to return a copy of the specified argument that is
safe for writing into. (The normal macros will sometimes return a pointer to a value that is physically
stored in a table, which must not be written to. Using the PG_GETARG_xxx_COPY() macros guarantees a
writable result.) The second variant consists of the PG_GETARG_xxx_SLICE() macros which take three
arguments. The first is the number of the function argument (as above). The second and third are the
offset and length of the segment to be returned. Offsets are counted from zero, and a negative length
requests that the remainder of the value be returned. These macros provide more efficient access to parts
of large values in the case where they have storage type “external”. (The storage type of a column can
be specified using ALTER TABLE tablename ALTER COLUMN colname SET STORAGE storagetype.
storagetype is one of plain, external, extended, or main.)

Finally, the version-1 function call conventions make it possible to return set results (Section 35.9.9) and
implement trigger functions (Chapter 36) and procedural-language call handlers (Chapter 49). Version-1
code is also more portable than version-0, because it does not break restrictions on function call protocol
in the C standard. For more details see src/backend/utils/fmgr/README in the source distribution.

35.9.5. Writing Code
Before we turn to the more advanced topics, we should discuss some coding rules for PostgreSQL C-
language functions. While it might be possible to load functions written in languages other than C into
PostgreSQL, this is usually difficult (when it is possible at all) because other languages, such as C++,
FORTRAN, or Pascal often do not follow the same calling convention as C. That is, other languages do
not pass argument and return values between functions in the same way. For this reason, we will assume
that your C-language functions are actually written in C.

The basic rules for writing and building C functions are as follows:

• Use pg_config --includedir-server to find out where the PostgreSQL server header files are
installed on your system (or the system that your users will be running on).

• Compiling and linking your code so that it can be dynamically loaded into PostgreSQL always requires
special flags. See Section 35.9.6 for a detailed explanation of how to do it for your particular operating
system.

• Remember to define a “magic block” for your shared library, as described in Section 35.9.1.

• When allocating memory, use the PostgreSQL functions palloc and pfree instead of the correspond-
ing C library functions malloc and free. The memory allocated by palloc will be freed automati-
cally at the end of each transaction, preventing memory leaks.

• Always zero the bytes of your structures using memset (or allocate them with palloc0 in the first
place). Even if you assign to each field of your structure, there might be alignment padding (holes in
the structure) that contain garbage values. Without this, it’s difficult to support hash indexes or hash
joins, as you must pick out only the significant bits of your data structure to compute a hash. The
planner also sometimes relies on comparing constants via bitwise equality, so you can get undesirable
planning results if logically-equivalent values aren’t bitwise equal.

941

Chapter 35. Extending SQL

• Most of the internal PostgreSQL types are declared in postgres.h, while the function manager inter-
faces (PG_FUNCTION_ARGS, etc.) are in fmgr.h, so you will need to include at least these two files.
For portability reasons it’s best to include postgres.h first, before any other system or user header
files. Including postgres.h will also include elog.h and palloc.h for you.

• Symbol names defined within object files must not conflict with each other or with symbols defined in
the PostgreSQL server executable. You will have to rename your functions or variables if you get error
messages to this effect.

35.9.6. Compiling and Linking Dynamically-loaded Functions
Before you are able to use your PostgreSQL extension functions written in C, they must be compiled and
linked in a special way to produce a file that can be dynamically loaded by the server. To be precise, a
shared library needs to be created.

For information beyond what is contained in this section you should read the documentation of your
operating system, in particular the manual pages for the C compiler, cc, and the link editor, ld. In addition,
the PostgreSQL source code contains several working examples in the contrib directory. If you rely on
these examples you will make your modules dependent on the availability of the PostgreSQL source code,
however.

Creating shared libraries is generally analogous to linking executables: first the source files are compiled
into object files, then the object files are linked together. The object files need to be created as position-
independent code (PIC), which conceptually means that they can be placed at an arbitrary location in
memory when they are loaded by the executable. (Object files intended for executables are usually not
compiled that way.) The command to link a shared library contains special flags to distinguish it from
linking an executable (at least in theory — on some systems the practice is much uglier).

In the following examples we assume that your source code is in a file foo.c and we will create a shared
library foo.so. The intermediate object file will be called foo.o unless otherwise noted. A shared library
can contain more than one object file, but we only use one here.

FreeBSD

The compiler flag to create PIC is -fpic. To create shared libraries the compiler flag is -shared.

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

This is applicable as of version 3.0 of FreeBSD.

HP-UX

The compiler flag of the system compiler to create PIC is +z. When using GCC it’s -fpic. The
linker flag for shared libraries is -b. So:

cc +z -c foo.c

or:

gcc -fpic -c foo.c

and then:

ld -b -o foo.sl foo.o

HP-UX uses the extension .sl for shared libraries, unlike most other systems.

942

Chapter 35. Extending SQL

IRIX

PIC is the default, no special compiler options are necessary. The linker option to produce shared
libraries is -shared.

cc -c foo.c
ld -shared -o foo.so foo.o

Linux

The compiler flag to create PIC is -fpic. On some platforms in some situations -fPIC must be used
if -fpic does not work. Refer to the GCC manual for more information. The compiler flag to create
a shared library is -shared. A complete example looks like this:

cc -fpic -c foo.c
cc -shared -o foo.so foo.o

Mac OS X

Here is an example. It assumes the developer tools are installed.

cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o

NetBSD

The compiler flag to create PIC is -fpic. For ELF systems, the compiler with the flag -shared is
used to link shared libraries. On the older non-ELF systems, ld -Bshareable is used.

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

OpenBSD

The compiler flag to create PIC is -fpic. ld -Bshareable is used to link shared libraries.

gcc -fpic -c foo.c
ld -Bshareable -o foo.so foo.o

Solaris

The compiler flag to create PIC is -KPIC with the Sun compiler and -fpic with GCC. To link shared
libraries, the compiler option is -G with either compiler or alternatively -shared with GCC.

cc -KPIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fpic -c foo.c
gcc -G -o foo.so foo.o

Tru64 UNIX

PIC is the default, so the compilation command is the usual one. ld with special options is used to
do the linking.

cc -c foo.c
ld -shared -expect_unresolved ’*’ -o foo.so foo.o

The same procedure is used with GCC instead of the system compiler; no special options are re-
quired.

943

Chapter 35. Extending SQL

UnixWare

The compiler flag to create PIC is -K PIC with the SCO compiler and -fpic with GCC. To link
shared libraries, the compiler option is -G with the SCO compiler and -shared with GCC.

cc -K PIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fpic -c foo.c
gcc -shared -o foo.so foo.o

Tip: If this is too complicated for you, you should consider using GNU Libtool1, which hides the
platform differences behind a uniform interface.

The resulting shared library file can then be loaded into PostgreSQL. When specifying the file name to the
CREATE FUNCTION command, one must give it the name of the shared library file, not the intermediate
object file. Note that the system’s standard shared-library extension (usually .so or .sl) can be omitted
from the CREATE FUNCTION command, and normally should be omitted for best portability.

Refer back to Section 35.9.1 about where the server expects to find the shared library files.

35.9.7. Composite-type Arguments
Composite types do not have a fixed layout like C structures. Instances of a composite type can contain null
fields. In addition, composite types that are part of an inheritance hierarchy can have different fields than
other members of the same inheritance hierarchy. Therefore, PostgreSQL provides a function interface for
accessing fields of composite types from C.

Suppose we want to write a function to answer the query:

SELECT name, c_overpaid(emp, 1500) AS overpaid
FROM emp
WHERE name = ’Bill’ OR name = ’Sam’;

Using call conventions version 0, we can define c_overpaid as:

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

bool
c_overpaid(HeapTupleHeader t, /* the current row of emp */

int32 limit)
{

bool isnull;
int32 salary;

1. http://www.gnu.org/software/libtool/

944

Chapter 35. Extending SQL

salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull));
if (isnull)

return false;
return salary > limit;

}

In version-1 coding, the above would look like this:

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{

HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0);
int32 limit = PG_GETARG_INT32(1);
bool isnull;
Datum salary;

salary = GetAttributeByName(t, "salary", &isnull);
if (isnull)

PG_RETURN_BOOL(false);
/* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */

PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}

GetAttributeByName is the PostgreSQL system function that returns attributes out of the specified row.
It has three arguments: the argument of type HeapTupleHeader passed into the function, the name of the
desired attribute, and a return parameter that tells whether the attribute is null. GetAttributeByName re-
turns a Datum value that you can convert to the proper data type by using the appropriate DatumGetXXX()
macro. Note that the return value is meaningless if the null flag is set; always check the null flag before
trying to do anything with the result.

There is also GetAttributeByNum, which selects the target attribute by column number instead of name.

The following command declares the function c_overpaid in SQL:

CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
AS ’DIRECTORY/funcs’, ’c_overpaid’
LANGUAGE C STRICT;

Notice we have used STRICT so that we did not have to check whether the input arguments were NULL.

945

Chapter 35. Extending SQL

35.9.8. Returning Rows (Composite Types)
To return a row or composite-type value from a C-language function, you can use a special API that
provides macros and functions to hide most of the complexity of building composite data types. To use
this API, the source file must include:

#include "funcapi.h"

There are two ways you can build a composite data value (henceforth a “tuple”): you can build it from an
array of Datum values, or from an array of C strings that can be passed to the input conversion functions of
the tuple’s column data types. In either case, you first need to obtain or construct a TupleDesc descriptor
for the tuple structure. When working with Datums, you pass the TupleDesc to BlessTupleDesc, and
then call heap_form_tuple for each row. When working with C strings, you pass the TupleDesc to
TupleDescGetAttInMetadata, and then call BuildTupleFromCStrings for each row. In the case of
a function returning a set of tuples, the setup steps can all be done once during the first call of the function.

Several helper functions are available for setting up the needed TupleDesc. The recommended way to do
this in most functions returning composite values is to call:

TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
Oid *resultTypeId,
TupleDesc *resultTupleDesc)

passing the same fcinfo struct passed to the calling function itself. (This of course requires that you
use the version-1 calling conventions.) resultTypeId can be specified as NULL or as the address of a
local variable to receive the function’s result type OID. resultTupleDesc should be the address of a
local TupleDesc variable. Check that the result is TYPEFUNC_COMPOSITE; if so, resultTupleDesc has
been filled with the needed TupleDesc. (If it is not, you can report an error along the lines of “function
returning record called in context that cannot accept type record”.)

Tip: get_call_result_type can resolve the actual type of a polymorphic function result; so it is
useful in functions that return scalar polymorphic results, not only functions that return composites.
The resultTypeId output is primarily useful for functions returning polymorphic scalars.

Note: get_call_result_type has a sibling get_expr_result_type, which can be used to
resolve the expected output type for a function call represented by an expression tree. This
can be used when trying to determine the result type from outside the function itself. There is
also get_func_result_type, which can be used when only the function’s OID is available.
However these functions are not able to deal with functions declared to return record, and
get_func_result_type cannot resolve polymorphic types, so you should preferentially use
get_call_result_type.

Older, now-deprecated functions for obtaining TupleDescs are:

TupleDesc RelationNameGetTupleDesc(const char *relname)

to get a TupleDesc for the row type of a named relation, and:

946

Chapter 35. Extending SQL

TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)

to get a TupleDesc based on a type OID. This can be used to get a TupleDesc for a base or composite
type. It will not work for a function that returns record, however, and it cannot resolve polymorphic
types.

Once you have a TupleDesc, call:

TupleDesc BlessTupleDesc(TupleDesc tupdesc)

if you plan to work with Datums, or:

AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)

if you plan to work with C strings. If you are writing a function returning set, you can save the results of
these functions in the FuncCallContext structure — use the tuple_desc or attinmeta field respec-
tively.

When working with Datums, use:

HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)

to build a HeapTuple given user data in Datum form.

When working with C strings, use:

HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)

to build a HeapTuple given user data in C string form. values is an array of C strings, one for each
attribute of the return row. Each C string should be in the form expected by the input function of the
attribute data type. In order to return a null value for one of the attributes, the corresponding pointer in the
values array should be set to NULL. This function will need to be called again for each row you return.

Once you have built a tuple to return from your function, it must be converted into a Datum. Use:

HeapTupleGetDatum(HeapTuple tuple)

to convert a HeapTuple into a valid Datum. This Datum can be returned directly if you intend to return
just a single row, or it can be used as the current return value in a set-returning function.

An example appears in the next section.

35.9.9. Returning Sets
There is also a special API that provides support for returning sets (multiple rows) from a C-language
function. A set-returning function must follow the version-1 calling conventions. Also, source files must
include funcapi.h, as above.

A set-returning function (SRF) is called once for each item it returns. The SRF must therefore
save enough state to remember what it was doing and return the next item on each call. The
structure FuncCallContext is provided to help control this process. Within a function,
fcinfo->flinfo->fn_extra is used to hold a pointer to FuncCallContext across calls.

typedef struct

947

Chapter 35. Extending SQL

{
/*
* Number of times we’ve been called before

*
* call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and

* incremented for you every time SRF_RETURN_NEXT() is called.

*/
uint32 call_cntr;

/*
* OPTIONAL maximum number of calls

*
* max_calls is here for convenience only and setting it is optional.

* If not set, you must provide alternative means to know when the

* function is done.

*/
uint32 max_calls;

/*
* OPTIONAL pointer to result slot

*
* This is obsolete and only present for backward compatibility, viz,

* user-defined SRFs that use the deprecated TupleDescGetSlot().

*/
TupleTableSlot *slot;

/*
* OPTIONAL pointer to miscellaneous user-provided context information

*
* user_fctx is for use as a pointer to your own data to retain

* arbitrary context information between calls of your function.

*/
void *user_fctx;

/*
* OPTIONAL pointer to struct containing attribute type input metadata

*
* attinmeta is for use when returning tuples (i.e., composite data types)

* and is not used when returning base data types. It is only needed

* if you intend to use BuildTupleFromCStrings() to create the return

* tuple.

*/
AttInMetadata *attinmeta;

/*
* memory context used for structures that must live for multiple calls

*
* multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used

* by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory

* context for any memory that is to be reused across multiple calls

* of the SRF.

*/
MemoryContext multi_call_memory_ctx;

948

Chapter 35. Extending SQL

/*
* OPTIONAL pointer to struct containing tuple description

*
* tuple_desc is for use when returning tuples (i.e., composite data types)

* and is only needed if you are going to build the tuples with

* heap_form_tuple() rather than with BuildTupleFromCStrings(). Note that

* the TupleDesc pointer stored here should usually have been run through

* BlessTupleDesc() first.

*/
TupleDesc tuple_desc;

} FuncCallContext;

An SRF uses several functions and macros that automatically manipulate the FuncCallContext struc-
ture (and expect to find it via fn_extra). Use:

SRF_IS_FIRSTCALL()

to determine if your function is being called for the first or a subsequent time. On the first call (only) use:

SRF_FIRSTCALL_INIT()

to initialize the FuncCallContext. On every function call, including the first, use:

SRF_PERCALL_SETUP()

to properly set up for using the FuncCallContext and clearing any previously returned data left over
from the previous pass.

If your function has data to return, use:

SRF_RETURN_NEXT(funcctx, result)

to return it to the caller. (result must be of type Datum, either a single value or a tuple prepared as
described above.) Finally, when your function is finished returning data, use:

SRF_RETURN_DONE(funcctx)

to clean up and end the SRF.

The memory context that is current when the SRF is called is a transient context that will be cleared
between calls. This means that you do not need to call pfree on everything you allocated using palloc;
it will go away anyway. However, if you want to allocate any data structures to live across calls, you need
to put them somewhere else. The memory context referenced by multi_call_memory_ctx is a suitable
location for any data that needs to survive until the SRF is finished running. In most cases, this means that
you should switch into multi_call_memory_ctx while doing the first-call setup.

A complete pseudo-code example looks like the following:

Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{

949

Chapter 35. Extending SQL

FuncCallContext *funcctx;
Datum result;
further declarations as needed

if (SRF_IS_FIRSTCALL())
{

MemoryContext oldcontext;

funcctx = SRF_FIRSTCALL_INIT();
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* One-time setup code appears here: */
user code

if returning composite

build TupleDesc, and perhaps AttInMetadata

endif returning composite

user code

MemoryContextSwitchTo(oldcontext);
}

/* Each-time setup code appears here: */
user code

funcctx = SRF_PERCALL_SETUP();
user code

/* this is just one way we might test whether we are done: */
if (funcctx->call_cntr < funcctx->max_calls)
{

/* Here we want to return another item: */
user code

obtain result Datum

SRF_RETURN_NEXT(funcctx, result);
}
else
{

/* Here we are done returning items and just need to clean up: */
user code

SRF_RETURN_DONE(funcctx);
}

}

A complete example of a simple SRF returning a composite type looks like:

PG_FUNCTION_INFO_V1(retcomposite);

Datum
retcomposite(PG_FUNCTION_ARGS)
{

FuncCallContext *funcctx;
int call_cntr;
int max_calls;
TupleDesc tupdesc;
AttInMetadata *attinmeta;

950

Chapter 35. Extending SQL

/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{

MemoryContext oldcontext;

/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();

/* switch to memory context appropriate for multiple function calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

/* total number of tuples to be returned */
funcctx->max_calls = PG_GETARG_UINT32(0);

/* Build a tuple descriptor for our result type */
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)

ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("function returning record called in context "

"that cannot accept type record")));

/*
* generate attribute metadata needed later to produce tuples from raw

* C strings

*/
attinmeta = TupleDescGetAttInMetadata(tupdesc);
funcctx->attinmeta = attinmeta;

MemoryContextSwitchTo(oldcontext);
}

/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();

call_cntr = funcctx->call_cntr;
max_calls = funcctx->max_calls;
attinmeta = funcctx->attinmeta;

if (call_cntr < max_calls) /* do when there is more left to send */
{

char **values;
HeapTuple tuple;
Datum result;

/*
* Prepare a values array for building the returned tuple.

* This should be an array of C strings which will

* be processed later by the type input functions.

*/
values = (char **) palloc(3 * sizeof(char *));
values[0] = (char *) palloc(16 * sizeof(char));
values[1] = (char *) palloc(16 * sizeof(char));

951

Chapter 35. Extending SQL

values[2] = (char *) palloc(16 * sizeof(char));

snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

/* build a tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);

/* make the tuple into a datum */
result = HeapTupleGetDatum(tuple);

/* clean up (this is not really necessary) */
pfree(values[0]);
pfree(values[1]);
pfree(values[2]);
pfree(values);

SRF_RETURN_NEXT(funcctx, result);
}
else /* do when there is no more left */
{

SRF_RETURN_DONE(funcctx);
}

}

One way to declare this function in SQL is:

CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);

CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
RETURNS SETOF __retcomposite
AS ’filename’, ’retcomposite’
LANGUAGE C IMMUTABLE STRICT;

A different way is to use OUT parameters:

CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
OUT f1 integer, OUT f2 integer, OUT f3 integer)
RETURNS SETOF record
AS ’filename’, ’retcomposite’
LANGUAGE C IMMUTABLE STRICT;

Notice that in this method the output type of the function is formally an anonymous record type.

The directory contrib/tablefunc module in the source distribution contains more examples of set-returning
functions.

952

Chapter 35. Extending SQL

35.9.10. Polymorphic Arguments and Return Types
C-language functions can be declared to accept and return the polymorphic types anyelement,
anyarray, anynonarray, anyenum, and anyrange. See Section 35.2.5 for a more detailed
explanation of polymorphic functions. When function arguments or return types are defined as
polymorphic types, the function author cannot know in advance what data type it will be called with, or
need to return. There are two routines provided in fmgr.h to allow a version-1 C function to discover
the actual data types of its arguments and the type it is expected to return. The routines are called
get_fn_expr_rettype(FmgrInfo *flinfo) and get_fn_expr_argtype(FmgrInfo *flinfo,

int argnum). They return the result or argument type OID, or InvalidOid if the information is not
available. The structure flinfo is normally accessed as fcinfo->flinfo. The parameter argnum is
zero based. get_call_result_type can also be used as an alternative to get_fn_expr_rettype.

For example, suppose we want to write a function to accept a single element of any type, and return a
one-dimensional array of that type:

PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{

ArrayType *result;
Oid element_type = get_fn_expr_argtype(fcinfo->flinfo, 0);
Datum element;
bool isnull;
int16 typlen;
bool typbyval;
char typalign;
int ndims;
int dims[MAXDIM];
int lbs[MAXDIM];

if (!OidIsValid(element_type))
elog(ERROR, "could not determine data type of input");

/* get the provided element, being careful in case it’s NULL */
isnull = PG_ARGISNULL(0);
if (isnull)

element = (Datum) 0;
else

element = PG_GETARG_DATUM(0);

/* we have one dimension */
ndims = 1;
/* and one element */
dims[0] = 1;
/* and lower bound is 1 */
lbs[0] = 1;

/* get required info about the element type */
get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);

/* now build the array */
result = construct_md_array(&element, &isnull, ndims, dims, lbs,

953

Chapter 35. Extending SQL

element_type, typlen, typbyval, typalign);

PG_RETURN_ARRAYTYPE_P(result);
}

The following command declares the function make_array in SQL:

CREATE FUNCTION make_array(anyelement) RETURNS anyarray
AS ’DIRECTORY/funcs’, ’make_array’
LANGUAGE C IMMUTABLE;

There is a variant of polymorphism that is only available to C-language functions: they can be declared
to take parameters of type "any". (Note that this type name must be double-quoted, since it’s also a SQL
reserved word.) This works like anyelement except that it does not constrain different "any" arguments
to be the same type, nor do they help determine the function’s result type. A C-language function can also
declare its final parameter to be VARIADIC "any". This will match one or more actual arguments of any
type (not necessarily the same type). These arguments will not be gathered into an array as happens with
normal variadic functions; they will just be passed to the function separately. The PG_NARGS() macro
and the methods described above must be used to determine the number of actual arguments and their
types when using this feature.

35.9.11. Transform Functions
Some function calls can be simplified during planning based on properties specific to the function. For
example, int4mul(n, 1) could be simplified to just n. To define such function-specific optimizations,
write a transform function and place its OID in the protransform field of the primary function’s
pg_proc entry. The transform function must have the SQL signature protransform(internal)

RETURNS internal. The argument, actually FuncExpr *, is a dummy node representing a call to
the primary function. If the transform function’s study of the expression tree proves that a simplified
expression tree can substitute for all possible concrete calls represented thereby, build and return that
simplified expression. Otherwise, return a NULL pointer (not a SQL null).

We make no guarantee that PostgreSQL will never call the primary function in cases that the transform
function could simplify. Ensure rigorous equivalence between the simplified expression and an actual call
to the primary function.

Currently, this facility is not exposed to users at the SQL level because of security concerns, so it is only
practical to use for optimizing built-in functions.

35.9.12. Shared Memory and LWLocks
Add-ins can reserve LWLocks and an allocation of shared memory on server startup. The add-in’s shared
library must be preloaded by specifying it in shared_preload_libraries. Shared memory is reserved by
calling:

void RequestAddinShmemSpace(int size)

954

Chapter 35. Extending SQL

from your _PG_init function.

LWLocks are reserved by calling:

void RequestAddinLWLocks(int n)

from _PG_init.

To avoid possible race-conditions, each backend should use the LWLock AddinShmemInitLock when
connecting to and initializing its allocation of shared memory, as shown here:

static mystruct *ptr = NULL;

if (!ptr)
{

bool found;

LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
ptr = ShmemInitStruct("my struct name", size, &found);
if (!found)
{

initialize contents of shmem area;
acquire any requested LWLocks using:
ptr->mylockid = LWLockAssign();

}
LWLockRelease(AddinShmemInitLock);

}

35.9.13. Using C++ for Extensibility
Although the PostgreSQL backend is written in C, it is possible to write extensions in C++ if these guide-
lines are followed:

• All functions accessed by the backend must present a C interface to the backend; these C functions can
then call C++ functions. For example, extern C linkage is required for backend-accessed functions.
This is also necessary for any functions that are passed as pointers between the backend and C++ code.

• Free memory using the appropriate deallocation method. For example, most backend memory is allo-
cated using palloc(), so use pfree() to free it. Using C++ delete in such cases will fail.

• Prevent exceptions from propagating into the C code (use a catch-all block at the top level of all extern
C functions). This is necessary even if the C++ code does not explicitly throw any exceptions, because
events like out-of-memory can still throw exceptions. Any exceptions must be caught and appropriate
errors passed back to the C interface. If possible, compile C++ with -fno-exceptions to eliminate
exceptions entirely; in such cases, you must check for failures in your C++ code, e.g. check for NULL
returned by new().

• If calling backend functions from C++ code, be sure that the C++ call stack contains only plain old data
structures (POD). This is necessary because backend errors generate a distant longjmp() that does not
properly unroll a C++ call stack with non-POD objects.

955

Chapter 35. Extending SQL

In summary, it is best to place C++ code behind a wall of extern C functions that interface to the
backend, and avoid exception, memory, and call stack leakage.

35.10. User-defined Aggregates
Aggregate functions in PostgreSQL are expressed in terms of state values and state transition functions.
That is, an aggregate operates using a state value that is updated as each successive input row is processed.
To define a new aggregate function, one selects a data type for the state value, an initial value for the state,
and a state transition function. The state transition function is just an ordinary function that could also be
used outside the context of the aggregate. A final function can also be specified, in case the desired result
of the aggregate is different from the data that needs to be kept in the running state value.

Thus, in addition to the argument and result data types seen by a user of the aggregate, there is an internal
state-value data type that might be different from both the argument and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a running
function of the column values from each row. sum is an example of this kind of aggregate. sum starts at
zero and always adds the current row’s value to its running total. For example, if we want to make a sum
aggregate to work on a data type for complex numbers, we only need the addition function for that data
type. The aggregate definition would be:

CREATE AGGREGATE sum (complex)
(

sfunc = complex_add,
stype = complex,
initcond = ’(0,0)’

);

SELECT sum(a) FROM test_complex;

sum

(34,53.9)

(Notice that we are relying on function overloading: there is more than one aggregate named sum, but
PostgreSQL can figure out which kind of sum applies to a column of type complex.)

The above definition of sum will return zero (the initial state condition) if there are no nonnull input
values. Perhaps we want to return null in that case instead — the SQL standard expects sum to behave
that way. We can do this simply by omitting the initcond phrase, so that the initial state condition is
null. Ordinarily this would mean that the sfunc would need to check for a null state-condition input. But
for sum and some other simple aggregates like max and min, it is sufficient to insert the first nonnull input
value into the state variable and then start applying the transition function at the second nonnull input
value. PostgreSQL will do that automatically if the initial condition is null and the transition function is
marked “strict” (i.e., not to be called for null inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is retained
unchanged whenever a null input value is encountered. Thus, null values are ignored. If you need some

956

Chapter 35. Extending SQL

other behavior for null inputs, do not declare your transition function as strict; instead code it to test for
null inputs and do whatever is needed.

avg (average) is a more complex example of an aggregate. It requires two pieces of running state: the
sum of the inputs and the count of the number of inputs. The final result is obtained by dividing these
quantities. Average is typically implemented by using an array as the state value. For example, the built-in
implementation of avg(float8) looks like:

CREATE AGGREGATE avg (float8)
(

sfunc = float8_accum,
stype = float8[],
finalfunc = float8_avg,
initcond = ’{0,0,0}’

);

(float8_accum requires a three-element array, not just two elements, because it accumulates the sum of
squares as well as the sum and count of the inputs. This is so that it can be used for some other aggregates
besides avg.)

Aggregate functions can use polymorphic state transition functions or final functions, so that the same
functions can be used to implement multiple aggregates. See Section 35.2.5 for an explanation of poly-
morphic functions. Going a step further, the aggregate function itself can be specified with polymorphic
input type(s) and state type, allowing a single aggregate definition to serve for multiple input data types.
Here is an example of a polymorphic aggregate:

CREATE AGGREGATE array_accum (anyelement)
(

sfunc = array_append,
stype = anyarray,
initcond = ’{}’

);

Here, the actual state type for any aggregate call is the array type having the actual input type as elements.
The behavior of the aggregate is to concatenate all the inputs into an array of that type. (Note: the built-in
aggregate array_agg provides similar functionality, with better performance than this definition would
have.)

Here’s the output using two different actual data types as arguments:

SELECT attrelid::regclass, array_accum(attname)
FROM pg_attribute
WHERE attnum > 0 AND attrelid = ’pg_tablespace’::regclass
GROUP BY attrelid;

attrelid | array_accum
---------------+---------------------------------------
pg_tablespace | {spcname,spcowner,spcacl,spcoptions}

(1 row)

SELECT attrelid::regclass, array_accum(atttypid::regtype)
FROM pg_attribute
WHERE attnum > 0 AND attrelid = ’pg_tablespace’::regclass

957

Chapter 35. Extending SQL

GROUP BY attrelid;

attrelid | array_accum
---------------+---------------------------
pg_tablespace | {name,oid,aclitem[],text[]}

(1 row)

A function written in C can detect that it is being called as an aggregate transition or final function by
calling AggCheckCallContext, for example:

if (AggCheckCallContext(fcinfo, NULL))

One reason for checking this is that when it is true for a transition function, the first input must be a
temporary transition value and can therefore safely be modified in-place rather than allocating a new
copy. See int8inc() for an example. (This is the only case where it is safe for a function to modify a
pass-by-reference input. In particular, aggregate final functions should not modify their inputs in any case,
because in some cases they will be re-executed on the same final transition value.)

For further details see the CREATE AGGREGATE command.

35.11. User-defined Types
As described in Section 35.2, PostgreSQL can be extended to support new data types. This section de-
scribes how to define new base types, which are data types defined below the level of the SQL language.
Creating a new base type requires implementing functions to operate on the type in a low-level language,
usually C.

The examples in this section can be found in complex.sql and complex.c in the src/tutorial

directory of the source distribution. See the README file in that directory for instructions about running
the examples.

A user-defined type must always have input and output functions. These functions determine how the type
appears in strings (for input by the user and output to the user) and how the type is organized in memory.
The input function takes a null-terminated character string as its argument and returns the internal (in
memory) representation of the type. The output function takes the internal representation of the type as
argument and returns a null-terminated character string. If we want to do anything more with the type than
merely store it, we must provide additional functions to implement whatever operations we’d like to have
for the type.

Suppose we want to define a type complex that represents complex numbers. A natural way to represent
a complex number in memory would be the following C structure:

typedef struct Complex {
double x;
double y;

} Complex;

We will need to make this a pass-by-reference type, since it’s too large to fit into a single Datum value.

As the external string representation of the type, we choose a string of the form (x,y).

958

Chapter 35. Extending SQL

The input and output functions are usually not hard to write, especially the output function. But when
defining the external string representation of the type, remember that you must eventually write a complete
and robust parser for that representation as your input function. For instance:

PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{

char *str = PG_GETARG_CSTRING(0);
double x,

y;
Complex *result;

if (sscanf(str, " (%lf , %lf)", &x, &y) != 2)
ereport(ERROR,

(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for complex: \"%s\"",

str)));

result = (Complex *) palloc(sizeof(Complex));
result->x = x;
result->y = y;
PG_RETURN_POINTER(result);

}

The output function can simply be:

PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{

Complex *complex = (Complex *) PG_GETARG_POINTER(0);
char *result;

result = (char *) palloc(100);
snprintf(result, 100, "(%g,%g)", complex->x, complex->y);
PG_RETURN_CSTRING(result);

}

You should be careful to make the input and output functions inverses of each other. If you do not, you
will have severe problems when you need to dump your data into a file and then read it back in. This is a
particularly common problem when floating-point numbers are involved.

Optionally, a user-defined type can provide binary input and output routines. Binary I/O is normally faster
but less portable than textual I/O. As with textual I/O, it is up to you to define exactly what the external
binary representation is. Most of the built-in data types try to provide a machine-independent binary
representation. For complex, we will piggy-back on the binary I/O converters for type float8:

PG_FUNCTION_INFO_V1(complex_recv);

959

Chapter 35. Extending SQL

Datum
complex_recv(PG_FUNCTION_ARGS)
{

StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
Complex *result;

result = (Complex *) palloc(sizeof(Complex));
result->x = pq_getmsgfloat8(buf);
result->y = pq_getmsgfloat8(buf);
PG_RETURN_POINTER(result);

}

PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)
{

Complex *complex = (Complex *) PG_GETARG_POINTER(0);
StringInfoData buf;

pq_begintypsend(&buf);
pq_sendfloat8(&buf, complex->x);
pq_sendfloat8(&buf, complex->y);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));

}

Once we have written the I/O functions and compiled them into a shared library, we can define the
complex type in SQL. First we declare it as a shell type:

CREATE TYPE complex;

This serves as a placeholder that allows us to reference the type while defining its I/O functions. Now we
can define the I/O functions:

CREATE FUNCTION complex_in(cstring)
RETURNS complex
AS ’filename’
LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_out(complex)
RETURNS cstring
AS ’filename’
LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_recv(internal)
RETURNS complex
AS ’filename’
LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_send(complex)
RETURNS bytea
AS ’filename’

960

Chapter 35. Extending SQL

LANGUAGE C IMMUTABLE STRICT;

Finally, we can provide the full definition of the data type:

CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out,
receive = complex_recv,
send = complex_send,
alignment = double

);

When you define a new base type, PostgreSQL automatically provides support for arrays of that type. The
array type typically has the same name as the base type with the underscore character (_) prepended.

Once the data type exists, we can declare additional functions to provide useful operations on the data
type. Operators can then be defined atop the functions, and if needed, operator classes can be created to
support indexing of the data type. These additional layers are discussed in following sections.

If the values of your data type vary in size (in internal form), you should make the data type TOAST-able
(see Section 56.2). You should do this even if the data are always too small to be compressed or stored
externally, because TOAST can save space on small data too, by reducing header overhead.

To do this, the internal representation must follow the standard layout for variable-length data: the first
four bytes must be a char[4] field which is never accessed directly (customarily named vl_len_).
You must use SET_VARSIZE() to store the size of the datum in this field and VARSIZE() to retrieve
it. The C functions operating on the data type must always be careful to unpack any toasted values they
are handed, by using PG_DETOAST_DATUM. (This detail is customarily hidden by defining type-specific
GETARG_DATATYPE_P macros.) Then, when running the CREATE TYPE command, specify the internal
length as variable and select the appropriate storage option.

If the alignment is unimportant (either just for a specific function or because the data type specifies byte
alignment anyway) then it’s possible to avoid some of the overhead of PG_DETOAST_DATUM. You can
use PG_DETOAST_DATUM_PACKED instead (customarily hidden by defining a GETARG_DATATYPE_PP

macro) and using the macros VARSIZE_ANY_EXHDR and VARDATA_ANY to access a potentially-packed
datum. Again, the data returned by these macros is not aligned even if the data type definition specifies an
alignment. If the alignment is important you must go through the regular PG_DETOAST_DATUM interface.

Note: Older code frequently declares vl_len_ as an int32 field instead of char[4]. This is OK as
long as the struct definition has other fields that have at least int32 alignment. But it is dangerous to
use such a struct definition when working with a potentially unaligned datum; the compiler may take
it as license to assume the datum actually is aligned, leading to core dumps on architectures that are
strict about alignment.

For further details see the description of the CREATE TYPE command.

961

Chapter 35. Extending SQL

35.12. User-defined Operators
Every operator is “syntactic sugar” for a call to an underlying function that does the real work; so you
must first create the underlying function before you can create the operator. However, an operator is not
merely syntactic sugar, because it carries additional information that helps the query planner optimize
queries that use the operator. The next section will be devoted to explaining that additional information.

PostgreSQL supports left unary, right unary, and binary operators. Operators can be overloaded; that is, the
same operator name can be used for different operators that have different numbers and types of operands.
When a query is executed, the system determines the operator to call from the number and types of the
provided operands.

Here is an example of creating an operator for adding two complex numbers. We assume we’ve already
created the definition of type complex (see Section 35.11). First we need a function that does the work,
then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS ’filename’, ’complex_add’
LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +

);

Now we could execute a query like this:

SELECT (a + b) AS c FROM test_complex;

c

(5.2,6.05)
(133.42,144.95)

We’ve shown how to create a binary operator here. To create unary operators, just omit one of leftarg
(for left unary) or rightarg (for right unary). The procedure clause and the argument clauses are the
only required items in CREATE OPERATOR. The commutator clause shown in the example is an optional
hint to the query optimizer. Further details about commutator and other optimizer hints appear in the
next section.

35.13. Operator Optimization Information
A PostgreSQL operator definition can include several optional clauses that tell the system useful things
about how the operator behaves. These clauses should be provided whenever appropriate, because they

962

Chapter 35. Extending SQL

can make for considerable speedups in execution of queries that use the operator. But if you provide them,
you must be sure that they are right! Incorrect use of an optimization clause can result in slow queries,
subtly wrong output, or other Bad Things. You can always leave out an optimization clause if you are not
sure about it; the only consequence is that queries might run slower than they need to.

Additional optimization clauses might be added in future versions of PostgreSQL. The ones described
here are all the ones that release 9.2.7 understands.

35.13.1. COMMUTATOR
The COMMUTATOR clause, if provided, names an operator that is the commutator of the operator being
defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all possible
input values x, y. Notice that B is also the commutator of A. For example, operators < and > for a
particular data type are usually each others’ commutators, and operator + is usually commutative with
itself. But operator - is usually not commutative with anything.

The left operand type of a commutable operator is the same as the right operand type of its commutator,
and vice versa. So the name of the commutator operator is all that PostgreSQL needs to be given to look
up the commutator, and that’s all that needs to be provided in the COMMUTATOR clause.

It’s critical to provide commutator information for operators that will be used in indexes and join clauses,
because this allows the query optimizer to “flip around” such a clause to the forms needed for different plan
types. For example, consider a query with a WHERE clause like tab1.x = tab2.y, where tab1.x and
tab2.y are of a user-defined type, and suppose that tab2.y is indexed. The optimizer cannot generate
an index scan unless it can determine how to flip the clause around to tab2.y = tab1.x, because the
index-scan machinery expects to see the indexed column on the left of the operator it is given. PostgreSQL
will not simply assume that this is a valid transformation — the creator of the = operator must specify that
it is valid, by marking the operator with commutator information.

When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven’t defined yet? There are two solutions to this problem:

• One way is to omit the COMMUTATOR clause in the first operator that you define, and then provide one
in the second operator’s definition. Since PostgreSQL knows that commutative operators come in pairs,
when it sees the second definition it will automatically go back and fill in the missing COMMUTATOR

clause in the first definition.

• The other, more straightforward way is just to include COMMUTATOR clauses in both definitions. When
PostgreSQL processes the first definition and realizes that COMMUTATOR refers to a nonexistent operator,
the system will make a dummy entry for that operator in the system catalog. This dummy entry will have
valid data only for the operator name, left and right operand types, and result type, since that’s all that
PostgreSQL can deduce at this point. The first operator’s catalog entry will link to this dummy entry.
Later, when you define the second operator, the system updates the dummy entry with the additional
information from the second definition. If you try to use the dummy operator before it’s been filled in,
you’ll just get an error message.

963

Chapter 35. Extending SQL

35.13.2. NEGATOR
The NEGATOR clause, if provided, names an operator that is the negator of the operator being defined. We
say that operator A is the negator of operator B if both return Boolean results and (x A y) equals NOT
(x B y) for all possible inputs x, y. Notice that B is also the negator of A. For example, < and >= are a
negator pair for most data types. An operator can never validly be its own negator.

Unlike commutators, a pair of unary operators could validly be marked as each others’ negators; that
would mean (A x) equals NOT (B x) for all x, or the equivalent for right unary operators.

An operator’s negator must have the same left and/or right operand types as the operator to be defined, so
just as with COMMUTATOR, only the operator name need be given in the NEGATOR clause.

Providing a negator is very helpful to the query optimizer since it allows expressions like NOT (x = y)

to be simplified into x <> y. This comes up more often than you might think, because NOT operations
can be inserted as a consequence of other rearrangements.

Pairs of negator operators can be defined using the same methods explained above for commutator pairs.

35.13.3. RESTRICT
The RESTRICT clause, if provided, names a restriction selectivity estimation function for the operator.
(Note that this is a function name, not an operator name.) RESTRICT clauses only make sense for binary
operators that return boolean. The idea behind a restriction selectivity estimator is to guess what fraction
of the rows in a table will satisfy a WHERE-clause condition of the form:

column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving it some idea
of how many rows will be eliminated by WHERE clauses that have this form. (What happens if the constant
is on the left, you might be wondering? Well, that’s one of the things that COMMUTATOR is for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but fortu-
nately you can usually just use one of the system’s standard estimators for many of your own operators.
These are the standard restriction estimators:

eqsel for =
neqsel for <>

scalarltsel for < or <=
scalargtsel for > or >=

It might seem a little odd that these are the categories, but they make sense if you think about it. = will
typically accept only a small fraction of the rows in a table; <> will typically reject only a small fraction.
< will accept a fraction that depends on where the given constant falls in the range of values for that
table column (which, it just so happens, is information collected by ANALYZE and made available to the
selectivity estimator). <= will accept a slightly larger fraction than < for the same comparison constant,
but they’re close enough to not be worth distinguishing, especially since we’re not likely to do better than
a rough guess anyhow. Similar remarks apply to > and >=.

You can frequently get away with using either eqsel or neqsel for operators that have very high or very
low selectivity, even if they aren’t really equality or inequality. For example, the approximate-equality

964

Chapter 35. Extending SQL

geometric operators use eqsel on the assumption that they’ll usually only match a small fraction of the
entries in a table.

You can use scalarltsel and scalargtsel for comparisons on data types that have
some sensible means of being converted into numeric scalars for range comparisons. If
possible, add the data type to those understood by the function convert_to_scalar() in
src/backend/utils/adt/selfuncs.c. (Eventually, this function should be replaced by
per-data-type functions identified through a column of the pg_type system catalog; but that hasn’t
happened yet.) If you do not do this, things will still work, but the optimizer’s estimates won’t be as good
as they could be.

There are additional selectivity estimation functions designed for geometric operators in
src/backend/utils/adt/geo_selfuncs.c: areasel, positionsel, and contsel. At this
writing these are just stubs, but you might want to use them (or even better, improve them) anyway.

35.13.4. JOIN
The JOIN clause, if provided, names a join selectivity estimation function for the operator. (Note that this
is a function name, not an operator name.) JOIN clauses only make sense for binary operators that return
boolean. The idea behind a join selectivity estimator is to guess what fraction of the rows in a pair of
tables will satisfy a WHERE-clause condition of the form:

table1.column1 OP table2.column2

for the current operator. As with the RESTRICT clause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.

As before, this chapter will make no attempt to explain how to write a join selectivity estimator function,
but will just suggest that you use one of the standard estimators if one is applicable:

eqjoinsel for =
neqjoinsel for <>

scalarltjoinsel for < or <=
scalargtjoinsel for > or >=
areajoinsel for 2D area-based comparisons
positionjoinsel for 2D position-based comparisons
contjoinsel for 2D containment-based comparisons

35.13.5. HASHES
The HASHES clause, if present, tells the system that it is permissible to use the hash join method for a
join based on this operator. HASHES only makes sense for a binary operator that returns boolean, and in
practice the operator must represent equality for some data type or pair of data types.

The assumption underlying hash join is that the join operator can only return true for pairs of left and
right values that hash to the same hash code. If two values get put in different hash buckets, the join
will never compare them at all, implicitly assuming that the result of the join operator must be false. So
it never makes sense to specify HASHES for operators that do not represent some form of equality. In

965

Chapter 35. Extending SQL

most cases it is only practical to support hashing for operators that take the same data type on both sides.
However, sometimes it is possible to design compatible hash functions for two or more data types; that is,
functions that will generate the same hash codes for “equal” values, even though the values have different
representations. For example, it’s fairly simple to arrange this property when hashing integers of different
widths.

To be marked HASHES, the join operator must appear in a hash index operator family. This is not enforced
when you create the operator, since of course the referencing operator family couldn’t exist yet. But
attempts to use the operator in hash joins will fail at run time if no such operator family exists. The
system needs the operator family to find the data-type-specific hash function(s) for the operator’s input
data type(s). Of course, you must also create suitable hash functions before you can create the operator
family.

Care should be exercised when preparing a hash function, because there are machine-dependent ways in
which it might fail to do the right thing. For example, if your data type is a structure in which there might
be uninteresting pad bits, you cannot simply pass the whole structure to hash_any. (Unless you write your
other operators and functions to ensure that the unused bits are always zero, which is the recommended
strategy.) Another example is that on machines that meet the IEEE floating-point standard, negative zero
and positive zero are different values (different bit patterns) but they are defined to compare equal. If a
float value might contain negative zero then extra steps are needed to ensure it generates the same hash
value as positive zero.

A hash-joinable operator must have a commutator (itself if the two operand data types are the same, or
a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a hash operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note: The function underlying a hash-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a hash join.

Note: If a hash-joinable operator has an underlying function that is marked strict, the function must
also be complete: that is, it should return true or false, never null, for any two nonnull inputs. If this
rule is not followed, hash-optimization of IN operations might generate wrong results. (Specifically, IN
might return false where the correct answer according to the standard would be null; or it might yield
an error complaining that it wasn’t prepared for a null result.)

35.13.6. MERGES
The MERGES clause, if present, tells the system that it is permissible to use the merge-join method for a
join based on this operator. MERGES only makes sense for a binary operator that returns boolean, and in
practice the operator must represent equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order and then scanning
them in parallel. So, both data types must be capable of being fully ordered, and the join operator must
be one that can only succeed for pairs of values that fall at the “same place” in the sort order. In practice

966

Chapter 35. Extending SQL

this means that the join operator must behave like equality. But it is possible to merge-join two distinct
data types so long as they are logically compatible. For example, the smallint-versus-integer equality
operator is merge-joinable. We only need sorting operators that will bring both data types into a logically
compatible sequence.

To be marked MERGES, the join operator must appear as an equality member of a btree index operator
family. This is not enforced when you create the operator, since of course the referencing operator family
couldn’t exist yet. But the operator will not actually be used for merge joins unless a matching operator
family can be found. The MERGES flag thus acts as a hint to the planner that it’s worth looking for a
matching operator family.

A merge-joinable operator must have a commutator (itself if the two operand data types are the same,
or a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a btree operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note: The function underlying a merge-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a merge join.

35.14. Interfacing Extensions To Indexes
The procedures described thus far let you define new types, new functions, and new operators. However,
we cannot yet define an index on a column of a new data type. To do this, we must define an operator
class for the new data type. Later in this section, we will illustrate this concept in an example: a new
operator class for the B-tree index method that stores and sorts complex numbers in ascending absolute
value order.

Operator classes can be grouped into operator families to show the relationships between semantically
compatible classes. When only a single data type is involved, an operator class is sufficient, so we’ll focus
on that case first and then return to operator families.

35.14.1. Index Methods and Operator Classes
The pg_am table contains one row for every index method (internally known as access method). Support
for regular access to tables is built into PostgreSQL, but all index methods are described in pg_am. It is
possible to add a new index method by defining the required interface routines and then creating a row in
pg_am — but that is beyond the scope of this chapter (see Chapter 52).

The routines for an index method do not directly know anything about the data types that the index method
will operate on. Instead, an operator class identifies the set of operations that the index method needs to
use to work with a particular data type. Operator classes are so called because one thing they specify is
the set of WHERE-clause operators that can be used with an index (i.e., can be converted into an index-scan
qualification). An operator class can also specify some support procedures that are needed by the internal
operations of the index method, but do not directly correspond to any WHERE-clause operator that can be
used with the index.

967

Chapter 35. Extending SQL

It is possible to define multiple operator classes for the same data type and index method. By doing this,
multiple sets of indexing semantics can be defined for a single data type. For example, a B-tree index
requires a sort ordering to be defined for each data type it works on. It might be useful for a complex-
number data type to have one B-tree operator class that sorts the data by complex absolute value, another
that sorts by real part, and so on. Typically, one of the operator classes will be deemed most commonly
useful and will be marked as the default operator class for that data type and index method.

The same operator class name can be used for several different index methods (for example, both B-tree
and hash index methods have operator classes named int4_ops), but each such class is an independent
entity and must be defined separately.

35.14.2. Index Method Strategies
The operators associated with an operator class are identified by “strategy numbers”, which serve to
identify the semantics of each operator within the context of its operator class. For example, B-trees
impose a strict ordering on keys, lesser to greater, and so operators like “less than” and “greater than or
equal to” are interesting with respect to a B-tree. Because PostgreSQL allows the user to define operators,
PostgreSQL cannot look at the name of an operator (e.g., < or >=) and tell what kind of comparison it is.
Instead, the index method defines a set of “strategies”, which can be thought of as generalized operators.
Each operator class specifies which actual operator corresponds to each strategy for a particular data type
and interpretation of the index semantics.

The B-tree index method defines five strategies, shown in Table 35-2.

Table 35-2. B-tree Strategies

Operation Strategy Number
less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

Hash indexes support only equality comparisons, and so they use only one strategy, shown in Table 35-3.

Table 35-3. Hash Strategies

Operation Strategy Number
equal 1

GiST indexes are more flexible: they do not have a fixed set of strategies at all. Instead, the “consistency”
support routine of each particular GiST operator class interprets the strategy numbers however it likes.
As an example, several of the built-in GiST index operator classes index two-dimensional geometric
objects, providing the “R-tree” strategies shown in Table 35-4. Four of these are true two-dimensional
tests (overlaps, same, contains, contained by); four of them consider only the X direction; and the other
four provide the same tests in the Y direction.

968

Chapter 35. Extending SQL

Table 35-4. GiST Two-Dimensional “R-tree” Strategies

Operation Strategy Number
strictly left of 1

does not extend to right of 2

overlaps 3

does not extend to left of 4

strictly right of 5

same 6

contains 7

contained by 8

does not extend above 9

strictly below 10

strictly above 11

does not extend below 12

SP-GiST indexes are similar to GiST indexes in flexibility: they don’t have a fixed set of strategies. Instead
the support routines of each operator class interpret the strategy numbers according to the operator class’s
definition. As an example, the strategy numbers used by the built-in operator classes for points are shown
in Table 35-5.

Table 35-5. SP-GiST Point Strategies

Operation Strategy Number
strictly left of 1

strictly right of 5

same 6

contained by 8

strictly below 10

strictly above 11

GIN indexes are similar to GiST and SP-GiST indexes, in that they don’t have a fixed set of strategies
either. Instead the support routines of each operator class interpret the strategy numbers according to the
operator class’s definition. As an example, the strategy numbers used by the built-in operator classes for
arrays are shown in Table 35-6.

Table 35-6. GIN Array Strategies

Operation Strategy Number
overlap 1

contains 2

is contained by 3

equal 4

969

Chapter 35. Extending SQL

Notice that all the operators listed above return Boolean values. In practice, all operators defined as index
method search operators must return type boolean, since they must appear at the top level of a WHERE

clause to be used with an index. (Some index access methods also support ordering operators, which
typically don’t return Boolean values; that feature is discussed in Section 35.14.7.)

35.14.3. Index Method Support Routines
Strategies aren’t usually enough information for the system to figure out how to use an index. In practice,
the index methods require additional support routines in order to work. For example, the B-tree index
method must be able to compare two keys and determine whether one is greater than, equal to, or less
than the other. Similarly, the hash index method must be able to compute hash codes for key values. These
operations do not correspond to operators used in qualifications in SQL commands; they are administrative
routines used by the index methods, internally.

Just as with strategies, the operator class identifies which specific functions should play each of these roles
for a given data type and semantic interpretation. The index method defines the set of functions it needs,
and the operator class identifies the correct functions to use by assigning them to the “support function
numbers” specified by the index method.

B-trees require a single support function, and allow a second one to be supplied at the operator class
author’s option, as shown in Table 35-7.

Table 35-7. B-tree Support Functions

Function Support Number
Compare two keys and return an integer less than

zero, zero, or greater than zero, indicating whether
the first key is less than, equal to, or greater than
the second

1

Return the addresses of C-callable sort support
function(s), as documented in
utils/sortsupport.h (optional)

2

Hash indexes require one support function, shown in Table 35-8.

Table 35-8. Hash Support Functions

Function Support Number
Compute the hash value for a key 1

GiST indexes require seven support functions, with an optional eighth, as shown in Table 35-9. (For more
information see Chapter 53.)

Table 35-9. GiST Support Functions

Function Description Support Number

970

Chapter 35. Extending SQL

Function Description Support Number
consistent determine whether key satisfies

the query qualifier
1

union compute union of a set of keys 2

compress compute a compressed
representation of a key or value
to be indexed

3

decompress compute a decompressed
representation of a compressed
key

4

penalty compute penalty for inserting
new key into subtree with given
subtree’s key

5

picksplit determine which entries of a
page are to be moved to the new
page and compute the union keys
for resulting pages

6

equal compare two keys and return true
if they are equal

7

distance determine distance from key to
query value (optional)

8

SP-GiST indexes require five support functions, as shown in Table 35-10. (For more information see
Chapter 54.)

Table 35-10. SP-GiST Support Functions

Function Description Support Number
config provide basic information about

the operator class
1

choose determine how to insert a new
value into an inner tuple

2

picksplit determine how to partition a set
of values

3

inner_consistent determine which sub-partitions
need to be searched for a query

4

leaf_consistent determine whether key satisfies
the query qualifier

5

GIN indexes require four support functions, with an optional fifth, as shown in Table 35-11. (For more
information see Chapter 55.)

Table 35-11. GIN Support Functions

Function Description Support Number

971

Chapter 35. Extending SQL

Function Description Support Number
compare compare two keys and return an

integer less than zero, zero, or
greater than zero, indicating
whether the first key is less than,
equal to, or greater than the
second

1

extractValue extract keys from a value to be
indexed

2

extractQuery extract keys from a query
condition

3

consistent determine whether value matches
query condition

4

comparePartial compare partial key from query
and key from index, and return
an integer less than zero, zero, or
greater than zero, indicating
whether GIN should ignore this
index entry, treat the entry as a
match, or stop the index scan
(optional)

5

Unlike search operators, support functions return whichever data type the particular index method expects;
for example in the case of the comparison function for B-trees, a signed integer. The number and types of
the arguments to each support function are likewise dependent on the index method. For B-tree and hash
the comparison and hashing support functions take the same input data types as do the operators included
in the operator class, but this is not the case for most GiST, SP-GiST, and GIN support functions.

35.14.4. An Example
Now that we have seen the ideas, here is the promised example of creating a new operator class. (You can
find a working copy of this example in src/tutorial/complex.c and src/tutorial/complex.sql
in the source distribution.) The operator class encapsulates operators that sort complex numbers in abso-
lute value order, so we choose the name complex_abs_ops. First, we need a set of operators. The proce-
dure for defining operators was discussed in Section 35.12. For an operator class on B-trees, the operators
we require are:

• absolute-value less-than (strategy 1)
• absolute-value less-than-or-equal (strategy 2)
• absolute-value equal (strategy 3)
• absolute-value greater-than-or-equal (strategy 4)
• absolute-value greater-than (strategy 5)

972

Chapter 35. Extending SQL

The least error-prone way to define a related set of comparison operators is to write the B-tree comparison
support function first, and then write the other functions as one-line wrappers around the support function.
This reduces the odds of getting inconsistent results for corner cases. Following this approach, we first
write:

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{

double amag = Mag(a),
bmag = Mag(b);

if (amag < bmag)
return -1;

if (amag > bmag)
return 1;

return 0;
}

Now the less-than function looks like:

PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{

Complex *a = (Complex *) PG_GETARG_POINTER(0);
Complex *b = (Complex *) PG_GETARG_POINTER(1);

PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}

The other four functions differ only in how they compare the internal function’s result to zero.

Next we declare the functions and the operators based on the functions to SQL:

CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
AS ’filename’, ’complex_abs_lt’
LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR < (
leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
commutator = > , negator = >= ,
restrict = scalarltsel, join = scalarltjoinsel

);

It is important to specify the correct commutator and negator operators, as well as suitable restriction and
join selectivity functions, otherwise the optimizer will be unable to make effective use of the index. Note
that the less-than, equal, and greater-than cases should use different selectivity functions.

Other things worth noting are happening here:

973

Chapter 35. Extending SQL

• There can only be one operator named, say, = and taking type complex for both operands. In this case
we don’t have any other operator = for complex, but if we were building a practical data type we’d
probably want = to be the ordinary equality operation for complex numbers (and not the equality of the
absolute values). In that case, we’d need to use some other operator name for complex_abs_eq.

• Although PostgreSQL can cope with functions having the same SQL name as long as they have different
argument data types, C can only cope with one global function having a given name. So we shouldn’t
name the C function something simple like abs_eq. Usually it’s a good practice to include the data
type name in the C function name, so as not to conflict with functions for other data types.

• We could have made the SQL name of the function abs_eq, relying on PostgreSQL to distinguish it
by argument data types from any other SQL function of the same name. To keep the example simple,
we make the function have the same names at the C level and SQL level.

The next step is the registration of the support routine required by B-trees. The example C code that
implements this is in the same file that contains the operator functions. This is how we declare the function:

CREATE FUNCTION complex_abs_cmp(complex, complex)
RETURNS integer
AS ’filename’
LANGUAGE C IMMUTABLE STRICT;

Now that we have the required operators and support routine, we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
DEFAULT FOR TYPE complex USING btree AS

OPERATOR 1 < ,
OPERATOR 2 <= ,
OPERATOR 3 = ,
OPERATOR 4 >= ,
OPERATOR 5 > ,
FUNCTION 1 complex_abs_cmp(complex, complex);

And we’re done! It should now be possible to create and use B-tree indexes on complex columns.

We could have written the operator entries more verbosely, as in:

OPERATOR 1 < (complex, complex) ,

but there is no need to do so when the operators take the same data type we are defining the operator class
for.

The above example assumes that you want to make this new operator class the default B-tree operator
class for the complex data type. If you don’t, just leave out the word DEFAULT.

974

Chapter 35. Extending SQL

35.14.5. Operator Classes and Operator Families
So far we have implicitly assumed that an operator class deals with only one data type. While there
certainly can be only one data type in a particular index column, it is often useful to index operations that
compare an indexed column to a value of a different data type. Also, if there is use for a cross-data-type
operator in connection with an operator class, it is often the case that the other data type has a related
operator class of its own. It is helpful to make the connections between related classes explicit, because
this can aid the planner in optimizing SQL queries (particularly for B-tree operator classes, since the
planner contains a great deal of knowledge about how to work with them).

To handle these needs, PostgreSQL uses the concept of an operator family. An operator family contains
one or more operator classes, and can also contain indexable operators and corresponding support func-
tions that belong to the family as a whole but not to any single class within the family. We say that such
operators and functions are “loose” within the family, as opposed to being bound into a specific class. Typ-
ically each operator class contains single-data-type operators while cross-data-type operators are loose in
the family.

All the operators and functions in an operator family must have compatible semantics, where the com-
patibility requirements are set by the index method. You might therefore wonder why bother to single out
particular subsets of the family as operator classes; and indeed for many purposes the class divisions are
irrelevant and the family is the only interesting grouping. The reason for defining operator classes is that
they specify how much of the family is needed to support any particular index. If there is an index using
an operator class, then that operator class cannot be dropped without dropping the index — but other parts
of the operator family, namely other operator classes and loose operators, could be dropped. Thus, an op-
erator class should be specified to contain the minimum set of operators and functions that are reasonably
needed to work with an index on a specific data type, and then related but non-essential operators can be
added as loose members of the operator family.

As an example, PostgreSQL has a built-in B-tree operator family integer_ops, which includes operator
classes int8_ops, int4_ops, and int2_ops for indexes on bigint (int8), integer (int4), and
smallint (int2) columns respectively. The family also contains cross-data-type comparison operators
allowing any two of these types to be compared, so that an index on one of these types can be searched
using a comparison value of another type. The family could be duplicated by these definitions:

CREATE OPERATOR FAMILY integer_ops USING btree;

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree FAMILY integer_ops AS
-- standard int8 comparisons
OPERATOR 1 < ,
OPERATOR 2 <= ,
OPERATOR 3 = ,
OPERATOR 4 >= ,
OPERATOR 5 > ,
FUNCTION 1 btint8cmp(int8, int8) ,
FUNCTION 2 btint8sortsupport(internal) ;

CREATE OPERATOR CLASS int4_ops
DEFAULT FOR TYPE int4 USING btree FAMILY integer_ops AS
-- standard int4 comparisons
OPERATOR 1 < ,
OPERATOR 2 <= ,

975

Chapter 35. Extending SQL

OPERATOR 3 = ,
OPERATOR 4 >= ,
OPERATOR 5 > ,
FUNCTION 1 btint4cmp(int4, int4) ,
FUNCTION 2 btint4sortsupport(internal) ;

CREATE OPERATOR CLASS int2_ops
DEFAULT FOR TYPE int2 USING btree FAMILY integer_ops AS
-- standard int2 comparisons
OPERATOR 1 < ,
OPERATOR 2 <= ,
OPERATOR 3 = ,
OPERATOR 4 >= ,
OPERATOR 5 > ,
FUNCTION 1 btint2cmp(int2, int2) ,
FUNCTION 2 btint2sortsupport(internal) ;

ALTER OPERATOR FAMILY integer_ops USING btree ADD
-- cross-type comparisons int8 vs int2
OPERATOR 1 < (int8, int2) ,
OPERATOR 2 <= (int8, int2) ,
OPERATOR 3 = (int8, int2) ,
OPERATOR 4 >= (int8, int2) ,
OPERATOR 5 > (int8, int2) ,
FUNCTION 1 btint82cmp(int8, int2) ,

-- cross-type comparisons int8 vs int4
OPERATOR 1 < (int8, int4) ,
OPERATOR 2 <= (int8, int4) ,
OPERATOR 3 = (int8, int4) ,
OPERATOR 4 >= (int8, int4) ,
OPERATOR 5 > (int8, int4) ,
FUNCTION 1 btint84cmp(int8, int4) ,

-- cross-type comparisons int4 vs int2
OPERATOR 1 < (int4, int2) ,
OPERATOR 2 <= (int4, int2) ,
OPERATOR 3 = (int4, int2) ,
OPERATOR 4 >= (int4, int2) ,
OPERATOR 5 > (int4, int2) ,
FUNCTION 1 btint42cmp(int4, int2) ,

-- cross-type comparisons int4 vs int8
OPERATOR 1 < (int4, int8) ,
OPERATOR 2 <= (int4, int8) ,
OPERATOR 3 = (int4, int8) ,
OPERATOR 4 >= (int4, int8) ,
OPERATOR 5 > (int4, int8) ,
FUNCTION 1 btint48cmp(int4, int8) ,

-- cross-type comparisons int2 vs int8
OPERATOR 1 < (int2, int8) ,
OPERATOR 2 <= (int2, int8) ,

976

Chapter 35. Extending SQL

OPERATOR 3 = (int2, int8) ,
OPERATOR 4 >= (int2, int8) ,
OPERATOR 5 > (int2, int8) ,
FUNCTION 1 btint28cmp(int2, int8) ,

-- cross-type comparisons int2 vs int4
OPERATOR 1 < (int2, int4) ,
OPERATOR 2 <= (int2, int4) ,
OPERATOR 3 = (int2, int4) ,
OPERATOR 4 >= (int2, int4) ,
OPERATOR 5 > (int2, int4) ,
FUNCTION 1 btint24cmp(int2, int4) ;

Notice that this definition “overloads” the operator strategy and support function numbers: each number
occurs multiple times within the family. This is allowed so long as each instance of a particular number
has distinct input data types. The instances that have both input types equal to an operator class’s input
type are the primary operators and support functions for that operator class, and in most cases should be
declared as part of the operator class rather than as loose members of the family.

In a B-tree operator family, all the operators in the family must sort compatibly, meaning that the transitive
laws hold across all the data types supported by the family: “if A = B and B = C, then A = C”, and “if
A < B and B < C, then A < C”. Moreover, implicit or binary coercion casts between types represented
in the operator family must not change the associated sort ordering. For each operator in the family there
must be a support function having the same two input data types as the operator. It is recommended that
a family be complete, i.e., for each combination of data types, all operators are included. Each operator
class should include just the non-cross-type operators and support function for its data type.

To build a multiple-data-type hash operator family, compatible hash support functions must be created
for each data type supported by the family. Here compatibility means that the functions are guaranteed to
return the same hash code for any two values that are considered equal by the family’s equality operators,
even when the values are of different types. This is usually difficult to accomplish when the types have
different physical representations, but it can be done in some cases. Furthermore, casting a value from one
data type represented in the operator family to another data type also represented in the operator family
via an implicit or binary coercion cast must not change the computed hash value. Notice that there is
only one support function per data type, not one per equality operator. It is recommended that a family be
complete, i.e., provide an equality operator for each combination of data types. Each operator class should
include just the non-cross-type equality operator and the support function for its data type.

GiST, SP-GiST, and GIN indexes do not have any explicit notion of cross-data-type operations. The set of
operators supported is just whatever the primary support functions for a given operator class can handle.

Note: Prior to PostgreSQL 8.3, there was no concept of operator families, and so any cross-data-type
operators intended to be used with an index had to be bound directly into the index’s operator class.
While this approach still works, it is deprecated because it makes an index’s dependencies too broad,
and because the planner can handle cross-data-type comparisons more effectively when both data
types have operators in the same operator family.

977

Chapter 35. Extending SQL

35.14.6. System Dependencies on Operator Classes
PostgreSQL uses operator classes to infer the properties of operators in more ways than just whether
they can be used with indexes. Therefore, you might want to create operator classes even if you have no
intention of indexing any columns of your data type.

In particular, there are SQL features such as ORDER BY and DISTINCT that require comparison and sorting
of values. To implement these features on a user-defined data type, PostgreSQL looks for the default B-
tree operator class for the data type. The “equals” member of this operator class defines the system’s
notion of equality of values for GROUP BY and DISTINCT, and the sort ordering imposed by the operator
class defines the default ORDER BY ordering.

Comparison of arrays of user-defined types also relies on the semantics defined by the default B-tree
operator class.

If there is no default B-tree operator class for a data type, the system will look for a default hash operator
class. But since that kind of operator class only provides equality, in practice it is only enough to support
array equality.

When there is no default operator class for a data type, you will get errors like “could not identify an
ordering operator” if you try to use these SQL features with the data type.

Note: In PostgreSQL versions before 7.4, sorting and grouping operations would implicitly use oper-
ators named =, <, and >. The new behavior of relying on default operator classes avoids having to
make any assumption about the behavior of operators with particular names.

Another important point is that an operator that appears in a hash operator family is a candidate for hash
joins, hash aggregation, and related optimizations. The hash operator family is essential here since it
identifies the hash function(s) to use.

35.14.7. Ordering Operators
Some index access methods (currently, only GiST) support the concept of ordering operators. What we
have been discussing so far are search operators. A search operator is one for which the index can be
searched to find all rows satisfying WHERE indexed_column operator constant. Note that nothing is
promised about the order in which the matching rows will be returned. In contrast, an ordering operator
does not restrict the set of rows that can be returned, but instead determines their order. An ordering
operator is one for which the index can be scanned to return rows in the order represented by ORDER BY

indexed_column operator constant. The reason for defining ordering operators that way is that it
supports nearest-neighbor searches, if the operator is one that measures distance. For example, a query
like

SELECT * FROM places ORDER BY location <-> point ’(101,456)’ LIMIT 10;

finds the ten places closest to a given target point. A GiST index on the location column can do this
efficiently because <-> is an ordering operator.

While search operators have to return Boolean results, ordering operators usually return some other type,
such as float or numeric for distances. This type is normally not the same as the data type being indexed.
To avoid hard-wiring assumptions about the behavior of different data types, the definition of an ordering

978

Chapter 35. Extending SQL

operator is required to name a B-tree operator family that specifies the sort ordering of the result data type.
As was stated in the previous section, B-tree operator families define PostgreSQL’s notion of ordering, so
this is a natural representation. Since the point <-> operator returns float8, it could be specified in an
operator class creation command like this:

OPERATOR 15 <-> (point, point) FOR ORDER BY float_ops

where float_ops is the built-in operator family that includes operations on float8. This declaration
states that the index is able to return rows in order of increasing values of the <-> operator.

35.14.8. Special Features of Operator Classes
There are two special features of operator classes that we have not discussed yet, mainly because they are
not useful with the most commonly used index methods.

Normally, declaring an operator as a member of an operator class (or family) means that the index method
can retrieve exactly the set of rows that satisfy a WHERE condition using the operator. For example:

SELECT * FROM table WHERE integer_column < 4;

can be satisfied exactly by a B-tree index on the integer column. But there are cases where an index
is useful as an inexact guide to the matching rows. For example, if a GiST index stores only bounding
boxes for geometric objects, then it cannot exactly satisfy a WHERE condition that tests overlap between
nonrectangular objects such as polygons. Yet we could use the index to find objects whose bounding box
overlaps the bounding box of the target object, and then do the exact overlap test only on the objects found
by the index. If this scenario applies, the index is said to be “lossy” for the operator. Lossy index searches
are implemented by having the index method return a recheck flag when a row might or might not really
satisfy the query condition. The core system will then test the original query condition on the retrieved
row to see whether it should be returned as a valid match. This approach works if the index is guaranteed
to return all the required rows, plus perhaps some additional rows, which can be eliminated by performing
the original operator invocation. The index methods that support lossy searches (currently, GiST, SP-GiST
and GIN) allow the support functions of individual operator classes to set the recheck flag, and so this is
essentially an operator-class feature.

Consider again the situation where we are storing in the index only the bounding box of a complex object
such as a polygon. In this case there’s not much value in storing the whole polygon in the index entry
— we might as well store just a simpler object of type box. This situation is expressed by the STORAGE
option in CREATE OPERATOR CLASS: we’d write something like:

CREATE OPERATOR CLASS polygon_ops
DEFAULT FOR TYPE polygon USING gist AS

...
STORAGE box;

At present, only the GiST and GIN index methods support a STORAGE type that’s different from the col-
umn data type. The GiST compress and decompress support routines must deal with data-type conver-
sion when STORAGE is used. In GIN, the STORAGE type identifies the type of the “key” values, which nor-
mally is different from the type of the indexed column — for example, an operator class for integer-array
columns might have keys that are just integers. The GIN extractValue and extractQuery support
routines are responsible for extracting keys from indexed values.

979

Chapter 35. Extending SQL

35.15. Packaging Related Objects into an Extension
A useful extension to PostgreSQL typically includes multiple SQL objects; for example, a new data type
will require new functions, new operators, and probably new index operator classes. It is helpful to collect
all these objects into a single package to simplify database management. PostgreSQL calls such a package
an extension. To define an extension, you need at least a script file that contains the SQL commands to
create the extension’s objects, and a control file that specifies a few basic properties of the extension itself.
If the extension includes C code, there will typically also be a shared library file into which the C code
has been built. Once you have these files, a simple CREATE EXTENSION command loads the objects
into your database.

The main advantage of using an extension, rather than just running the SQL script to load a bunch of
“loose” objects into your database, is that PostgreSQL will then understand that the objects of the exten-
sion go together. You can drop all the objects with a single DROP EXTENSION command (no need to
maintain a separate “uninstall” script). Even more useful, pg_dump knows that it should not dump the
individual member objects of the extension — it will just include a CREATE EXTENSION command in
dumps, instead. This vastly simplifies migration to a new version of the extension that might contain more
or different objects than the old version. Note however that you must have the extension’s control, script,
and other files available when loading such a dump into a new database.

PostgreSQL will not let you drop an individual object contained in an extension, except by dropping the
whole extension. Also, while you can change the definition of an extension member object (for example,
via CREATE OR REPLACE FUNCTION for a function), bear in mind that the modified definition will not
be dumped by pg_dump. Such a change is usually only sensible if you concurrently make the same change
in the extension’s script file. (But there are special provisions for tables containing configuration data; see
below.)

The extension mechanism also has provisions for packaging modification scripts that adjust the definitions
of the SQL objects contained in an extension. For example, if version 1.1 of an extension adds one function
and changes the body of another function compared to 1.0, the extension author can provide an update
script that makes just those two changes. The ALTER EXTENSION UPDATE command can then be used
to apply these changes and track which version of the extension is actually installed in a given database.

The kinds of SQL objects that can be members of an extension are shown in the description of ALTER
EXTENSION. Notably, objects that are database-cluster-wide, such as databases, roles, and tablespaces,
cannot be extension members since an extension is only known within one database. (Although an exten-
sion script is not prohibited from creating such objects, if it does so they will not be tracked as part of the
extension.) Also notice that while a table can be a member of an extension, its subsidiary objects such as
indexes are not directly considered members of the extension. Another important point is that schemas
can belong to extensions, but not vice versa: an extension as such has an unqualified name and does not
exist “within” any schema. The extension’s member objects, however, will belong to schemas whenever
appropriate for their object types. It may or may not be appropriate for an extension to own the schema(s)
its member objects are within.

35.15.1. Extension Files
The CREATE EXTENSION command relies on a control file for each extension, which must be
named the same as the extension with a suffix of .control, and must be placed in the installation’s
SHAREDIR/extension directory. There must also be at least one SQL script file, which follows the
naming pattern extension--version.sql (for example, foo--1.0.sql for version 1.0 of extension

980

Chapter 35. Extending SQL

foo). By default, the script file(s) are also placed in the SHAREDIR/extension directory; but the
control file can specify a different directory for the script file(s).

The file format for an extension control file is the same as for the postgresql.conf file, namely a list
of parameter_name = value assignments, one per line. Blank lines and comments introduced by # are
allowed. Be sure to quote any value that is not a single word or number.

A control file can set the following parameters:

directory (string)

The directory containing the extension’s SQL script file(s). Unless an absolute path is given, the name
is relative to the installation’s SHAREDIR directory. The default behavior is equivalent to specifying
directory = ’extension’.

default_version (string)

The default version of the extension (the one that will be installed if no version is specified in CREATE
EXTENSION). Although this can be omitted, that will result in CREATE EXTENSION failing if no
VERSION option appears, so you generally don’t want to do that.

comment (string)

A comment (any string) about the extension. Alternatively, the comment can be set by means of the
COMMENT command in the script file.

encoding (string)

The character set encoding used by the script file(s). This should be specified if the script files contain
any non-ASCII characters. Otherwise the files will be assumed to be in the database encoding.

module_pathname (string)

The value of this parameter will be substituted for each occurrence of MODULE_PATHNAME

in the script file(s). If it is not set, no substitution is made. Typically, this is set to
$libdir/shared_library_name and then MODULE_PATHNAME is used in CREATE FUNCTION

commands for C-language functions, so that the script files do not need to hard-wire the name of the
shared library.

requires (string)

A list of names of extensions that this extension depends on, for example requires = ’foo,

bar’. Those extensions must be installed before this one can be installed.

superuser (boolean)

If this parameter is true (which is the default), only superusers can create the extension or update
it to a new version. If it is set to false, just the privileges required to execute the commands in the
installation or update script are required.

relocatable (boolean)

An extension is relocatable if it is possible to move its contained objects into a different schema after
initial creation of the extension. The default is false, i.e. the extension is not relocatable. See below
for more information.

schema (string)

This parameter can only be set for non-relocatable extensions. It forces the extension to be loaded
into exactly the named schema and not any other. See below for more information.

981

Chapter 35. Extending SQL

In addition to the primary control file extension.control, an extension can have secondary control files
named in the style extension--version.control. If supplied, these must be located in the script file
directory. Secondary control files follow the same format as the primary control file. Any parameters set
in a secondary control file override the primary control file when installing or updating to that version of
the extension. However, the parameters directory and default_version cannot be set in a secondary
control file.

An extension’s SQL script files can contain any SQL commands, except for transaction control commands
(BEGIN, COMMIT, etc) and commands that cannot be executed inside a transaction block (such as VACUUM).
This is because the script files are implicitly executed within a transaction block.

An extension’s SQL script files can also contain lines beginning with \echo, which will be ignored
(treated as comments) by the extension mechanism. This provision is commonly used to throw an error if
the script file is fed to psql rather than being loaded via CREATE EXTENSION (see example script below).
Without that, users might accidentally load the extension’s contents as “loose” objects rather than as an
extension, a state of affairs that’s a bit tedious to recover from.

While the script files can contain any characters allowed by the specified encoding, control files should
contain only plain ASCII, because there is no way for PostgreSQL to know what encoding a control file
is in. In practice this is only an issue if you want to use non-ASCII characters in the extension’s comment.
Recommended practice in that case is to not use the control file comment parameter, but instead use
COMMENT ON EXTENSION within a script file to set the comment.

35.15.2. Extension Relocatability
Users often wish to load the objects contained in an extension into a different schema than the extension’s
author had in mind. There are three supported levels of relocatability:

• A fully relocatable extension can be moved into another schema at any time, even after it’s been loaded
into a database. This is done with the ALTER EXTENSION SET SCHEMA command, which automati-
cally renames all the member objects into the new schema. Normally, this is only possible if the exten-
sion contains no internal assumptions about what schema any of its objects are in. Also, the extension’s
objects must all be in one schema to begin with (ignoring objects that do not belong to any schema,
such as procedural languages). Mark a fully relocatable extension by setting relocatable = true

in its control file.

• An extension might be relocatable during installation but not afterwards. This is typically the case
if the extension’s script file needs to reference the target schema explicitly, for example in setting
search_path properties for SQL functions. For such an extension, set relocatable = false in its
control file, and use @extschema@ to refer to the target schema in the script file. All occurrences of
this string will be replaced by the actual target schema’s name before the script is executed. The user
can set the target schema using the SCHEMA option of CREATE EXTENSION.

• If the extension does not support relocation at all, set relocatable = false in its control file, and
also set schema to the name of the intended target schema. This will prevent use of the SCHEMA option
of CREATE EXTENSION, unless it specifies the same schema named in the control file. This choice is
typically necessary if the extension contains internal assumptions about schema names that can’t be
replaced by uses of @extschema@. The @extschema@ substitution mechanism is available in this case
too, although it is of limited use since the schema name is determined by the control file.

982

Chapter 35. Extending SQL

In all cases, the script file will be executed with search_path initially set to point to the target schema; that
is, CREATE EXTENSION does the equivalent of this:

SET LOCAL search_path TO @extschema@;

This allows the objects created by the script file to go into the target schema. The script file can change
search_path if it wishes, but that is generally undesirable. search_path is restored to its previous
setting upon completion of CREATE EXTENSION.

The target schema is determined by the schema parameter in the control file if that is given, otherwise by
the SCHEMA option of CREATE EXTENSION if that is given, otherwise the current default object creation
schema (the first one in the caller’s search_path). When the control file schema parameter is used, the
target schema will be created if it doesn’t already exist, but in the other two cases it must already exist.

If any prerequisite extensions are listed in requires in the control file, their target schemas are appended
to the initial setting of search_path. This allows their objects to be visible to the new extension’s script
file.

Although a non-relocatable extension can contain objects spread across multiple schemas, it is usually de-
sirable to place all the objects meant for external use into a single schema, which is considered the exten-
sion’s target schema. Such an arrangement works conveniently with the default setting of search_path
during creation of dependent extensions.

35.15.3. Extension Configuration Tables
Some extensions include configuration tables, which contain data that might be added or changed by the
user after installation of the extension. Ordinarily, if a table is part of an extension, neither the table’s
definition nor its content will be dumped by pg_dump. But that behavior is undesirable for a configuration
table; any data changes made by the user need to be included in dumps, or the extension will behave
differently after a dump and reload.

To solve this problem, an extension’s script file can mark a table it has created as a configuration table,
which will cause pg_dump to include the table’s contents (not its definition) in dumps. To do that, call the
function pg_extension_config_dump(regclass, text) after creating the table, for example

CREATE TABLE my_config (key text, value text);

SELECT pg_catalog.pg_extension_config_dump(’my_config’, ”);

Any number of tables can be marked this way.

When the second argument of pg_extension_config_dump is an empty string, the entire contents of
the table are dumped by pg_dump. This is usually only correct if the table is initially empty as created
by the extension script. If there is a mixture of initial data and user-provided data in the table, the sec-
ond argument of pg_extension_config_dump provides a WHERE condition that selects the data to be
dumped. For example, you might do

CREATE TABLE my_config (key text, value text, standard_entry boolean);

SELECT pg_catalog.pg_extension_config_dump(’my_config’, ’WHERE NOT standard_entry’);

and then make sure that standard_entry is true only in the rows created by the extension’s script.

983

Chapter 35. Extending SQL

More complicated situations, such as initially-provided rows that might be modified by users, can be
handled by creating triggers on the configuration table to ensure that modified rows are marked correctly.

You can alter the filter condition associated with a configuration table by calling
pg_extension_config_dump again. (This would typically be useful in an extension update script.)
The only way to mark a table as no longer a configuration table is to dissociate it from the extension with
ALTER EXTENSION ... DROP TABLE.

35.15.4. Extension Updates
One advantage of the extension mechanism is that it provides convenient ways to manage updates to the
SQL commands that define an extension’s objects. This is done by associating a version name or number
with each released version of the extension’s installation script. In addition, if you want users to be able to
update their databases dynamically from one version to the next, you should provide update scripts that
make the necessary changes to go from one version to the next. Update scripts have names following the
pattern extension--oldversion--newversion.sql (for example, foo--1.0--1.1.sql contains the
commands to modify version 1.0 of extension foo into version 1.1).

Given that a suitable update script is available, the command ALTER EXTENSION UPDATE will update
an installed extension to the specified new version. The update script is run in the same environment that
CREATE EXTENSION provides for installation scripts: in particular, search_path is set up in the same
way, and any new objects created by the script are automatically added to the extension.

If an extension has secondary control files, the control parameters that are used for an update script are
those associated with the script’s target (new) version.

The update mechanism can be used to solve an important special case: converting a “loose” collection of
objects into an extension. Before the extension mechanism was added to PostgreSQL (in 9.1), many people
wrote extension modules that simply created assorted unpackaged objects. Given an existing database
containing such objects, how can we convert the objects into a properly packaged extension? Dropping
them and then doing a plain CREATE EXTENSION is one way, but it’s not desirable if the objects have
dependencies (for example, if there are table columns of a data type created by the extension). The way
to fix this situation is to create an empty extension, then use ALTER EXTENSION ADD to attach each
pre-existing object to the extension, then finally create any new objects that are in the current extension
version but were not in the unpackaged release. CREATE EXTENSION supports this case with its FROM
old_version option, which causes it to not run the normal installation script for the target version, but
instead the update script named extension--old_version--target_version.sql. The choice of the
dummy version name to use as old_version is up to the extension author, though unpackaged is a
common convention. If you have multiple prior versions you need to be able to update into extension
style, use multiple dummy version names to identify them.

ALTER EXTENSION is able to execute sequences of update script files to achieve a requested update. For
example, if only foo--1.0--1.1.sql and foo--1.1--2.0.sql are available, ALTER EXTENSION

will apply them in sequence if an update to version 2.0 is requested when 1.0 is currently installed.

PostgreSQL doesn’t assume anything about the properties of version names: for example, it does not know
whether 1.1 follows 1.0. It just matches up the available version names and follows the path that requires
applying the fewest update scripts. (A version name can actually be any string that doesn’t contain -- or
leading or trailing -.)

984

Chapter 35. Extending SQL

Sometimes it is useful to provide “downgrade” scripts, for example foo--1.1--1.0.sql to allow revert-
ing the changes associated with version 1.1. If you do that, be careful of the possibility that a downgrade
script might unexpectedly get applied because it yields a shorter path. The risky case is where there is a
“fast path” update script that jumps ahead several versions as well as a downgrade script to the fast path’s
start point. It might take fewer steps to apply the downgrade and then the fast path than to move ahead
one version at a time. If the downgrade script drops any irreplaceable objects, this will yield undesirable
results.

To check for unexpected update paths, use this command:

SELECT * FROM pg_extension_update_paths(’extension_name’);

This shows each pair of distinct known version names for the specified extension, together with the up-
date path sequence that would be taken to get from the source version to the target version, or NULL if
there is no available update path. The path is shown in textual form with -- separators. You can use
regexp_split_to_array(path,’--’) if you prefer an array format.

35.15.5. Extension Example
Here is a complete example of an SQL-only extension, a two-element composite type that can store any
type of value in its slots, which are named “k” and “v”. Non-text values are automatically coerced to text
for storage.

The script file pair--1.0.sql looks like this:

-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION pair" to load this file. \quit

CREATE TYPE pair AS (k text, v text);

CREATE OR REPLACE FUNCTION pair(anyelement, text)
RETURNS pair LANGUAGE SQL AS ’SELECT ROW($1, $2)::pair’;

CREATE OR REPLACE FUNCTION pair(text, anyelement)
RETURNS pair LANGUAGE SQL AS ’SELECT ROW($1, $2)::pair’;

CREATE OR REPLACE FUNCTION pair(anyelement, anyelement)
RETURNS pair LANGUAGE SQL AS ’SELECT ROW($1, $2)::pair’;

CREATE OR REPLACE FUNCTION pair(text, text)
RETURNS pair LANGUAGE SQL AS ’SELECT ROW($1, $2)::pair;’;

CREATE OPERATOR ~> (LEFTARG = text, RIGHTARG = anyelement, PROCEDURE = pair);
CREATE OPERATOR ~> (LEFTARG = anyelement, RIGHTARG = text, PROCEDURE = pair);
CREATE OPERATOR ~> (LEFTARG = anyelement, RIGHTARG = anyelement, PROCEDURE = pair);
CREATE OPERATOR ~> (LEFTARG = text, RIGHTARG = text, PROCEDURE = pair);

The control file pair.control looks like this:

pair extension

985

Chapter 35. Extending SQL

comment = ’A key/value pair data type’
default_version = ’1.0’
relocatable = true

While you hardly need a makefile to install these two files into the correct directory, you could use a
Makefile containing this:

EXTENSION = pair
DATA = pair--1.0.sql

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

This makefile relies on PGXS, which is described in Section 35.16. The command make install will
install the control and script files into the correct directory as reported by pg_config.

Once the files are installed, use the CREATE EXTENSION command to load the objects into any partic-
ular database.

35.16. Extension Building Infrastructure
If you are thinking about distributing your PostgreSQL extension modules, setting up a portable build
system for them can be fairly difficult. Therefore the PostgreSQL installation provides a build infrastruc-
ture for extensions, called PGXS, so that simple extension modules can be built simply against an already
installed server. PGXS is mainly intended for extensions that include C code, although it can be used for
pure-SQL extensions too. Note that PGXS is not intended to be a universal build system framework that
can be used to build any software interfacing to PostgreSQL; it simply automates common build rules
for simple server extension modules. For more complicated packages, you might need to write your own
build system.

To use the PGXS infrastructure for your extension, you must write a simple makefile. In the makefile,
you need to set some variables and finally include the global PGXS makefile. Here is an example that
builds an extension module named isbn_issn, consisting of a shared library containing some C code,
an extension control file, a SQL script, and a documentation text file:

MODULES = isbn_issn
EXTENSION = isbn_issn
DATA = isbn_issn--1.0.sql
DOCS = README.isbn_issn

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

The last three lines should always be the same. Earlier in the file, you assign variables or add custom make
rules.

Set one of these three variables to specify what is built:

986

Chapter 35. Extending SQL

MODULES

list of shared-library objects to be built from source files with same stem (do not include library
suffixes in this list)

MODULE_big

a shared library to build from multiple source files (list object files in OBJS)

PROGRAM

an executable program to build (list object files in OBJS)

The following variables can also be set:

EXTENSION

extension name(s); for each name you must provide an extension.control file, which will be
installed into prefix/share/extension

MODULEDIR

subdirectory of prefix/share into which DATA and DOCS files should be installed (if not set,
default is extension if EXTENSION is set, or contrib if not)

DATA

random files to install into prefix/share/$MODULEDIR

DATA_built

random files to install into prefix/share/$MODULEDIR, which need to be built first

DATA_TSEARCH

random files to install under prefix/share/tsearch_data

DOCS

random files to install under prefix/doc/$MODULEDIR

SCRIPTS

script files (not binaries) to install into prefix/bin

SCRIPTS_built

script files (not binaries) to install into prefix/bin, which need to be built first

REGRESS

list of regression test cases (without suffix), see below

REGRESS_OPTS

additional switches to pass to pg_regress

EXTRA_CLEAN

extra files to remove in make clean

PG_CPPFLAGS

will be added to CPPFLAGS

987

Chapter 35. Extending SQL

PG_LIBS

will be added to PROGRAM link line

SHLIB_LINK

will be added to MODULE_big link line

PG_CONFIG

path to pg_config program for the PostgreSQL installation to build against (typically just pg_config
to use the first one in your PATH)

Put this makefile as Makefile in the directory which holds your extension. Then you can do make to
compile, and then make install to install your module. By default, the extension is compiled and
installed for the PostgreSQL installation that corresponds to the first pg_config program found in your
PATH. You can use a different installation by setting PG_CONFIG to point to its pg_config program,
either within the makefile or on the make command line.

Caution
Changing PG_CONFIG only works when building against PostgreSQL 8.3 or later.
With older releases it does not work to set it to anything except pg_config; you
must alter your PATH to select the installation to build against.

The scripts listed in the REGRESS variable are used for regression testing of your module, which can be
invoked by make installcheck after doing make install. For this to work you must have a running
PostgreSQL server. The script files listed in REGRESS must appear in a subdirectory named sql/ in your
extension’s directory. These files must have extension .sql, which must not be included in the REGRESS
list in the makefile. For each test there should also be a file containing the expected output in a subdirectory
named expected/, with the same stem and extension .out. make installcheck executes each test
script with psql, and compares the resulting output to the matching expected file. Any differences will be
written to the file regression.diffs in diff -c format. Note that trying to run a test that is missing
its expected file will be reported as “trouble”, so make sure you have all expected files.

Tip: The easiest way to create the expected files is to create empty files, then do a test run (which will
of course report differences). Inspect the actual result files found in the results/ directory, then copy
them to expected/ if they match what you expect from the test.

988

Chapter 36. Triggers
This chapter provides general information about writing trigger functions. Trigger functions can be written
in most of the available procedural languages, including PL/pgSQL (Chapter 39), PL/Tcl (Chapter 40),
PL/Perl (Chapter 41), and PL/Python (Chapter 42). After reading this chapter, you should consult the
chapter for your favorite procedural language to find out the language-specific details of writing a trigger
in it.

It is also possible to write a trigger function in C, although most people find it easier to use one of the
procedural languages. It is not currently possible to write a trigger function in the plain SQL function
language.

36.1. Overview of Trigger Behavior
A trigger is a specification that the database should automatically execute a particular function whenever
a certain type of operation is performed. Triggers can be attached to both tables and views.

On tables, triggers can be defined to execute either before or after any INSERT, UPDATE, or DELETE
operation, either once per modified row, or once per SQL statement. UPDATE triggers can moreover be set
to fire only if certain columns are mentioned in the SET clause of the UPDATE statement. Triggers can also
fire for TRUNCATE statements. If a trigger event occurs, the trigger’s function is called at the appropriate
time to handle the event.

On views, triggers can be defined to execute instead of INSERT, UPDATE, or DELETE operations. INSTEAD
OF triggers are fired once for each row that needs to be modified in the view. It is the responsibility of
the trigger’s function to perform the necessary modifications to the underlying base tables and, where
appropriate, return the modified row as it will appear in the view. Triggers on views can also be defined to
execute once per SQL statement, before or after INSERT, UPDATE, or DELETE operations.

The trigger function must be defined before the trigger itself can be created. The trigger function must be
declared as a function taking no arguments and returning type trigger. (The trigger function receives its
input through a specially-passed TriggerData structure, not in the form of ordinary function arguments.)

Once a suitable trigger function has been created, the trigger is established with CREATE TRIGGER. The
same trigger function can be used for multiple triggers.

PostgreSQL offers both per-row triggers and per-statement triggers. With a per-row trigger, the trigger
function is invoked once for each row that is affected by the statement that fired the trigger. In contrast,
a per-statement trigger is invoked only once when an appropriate statement is executed, regardless of the
number of rows affected by that statement. In particular, a statement that affects zero rows will still result
in the execution of any applicable per-statement triggers. These two types of triggers are sometimes called
row-level triggers and statement-level triggers, respectively. Triggers on TRUNCATE may only be defined
at statement level. On views, triggers that fire before or after may only be defined at statement level, while
triggers that fire instead of an INSERT, UPDATE, or DELETE may only be defined at row level.

Triggers are also classified according to whether they fire before, after, or instead of the operation. These
are referred to as BEFORE triggers, AFTER triggers, and INSTEAD OF triggers respectively. Statement-level
BEFORE triggers naturally fire before the statement starts to do anything, while statement-level AFTER
triggers fire at the very end of the statement. These types of triggers may be defined on tables or views.
Row-level BEFORE triggers fire immediately before a particular row is operated on, while row-level AFTER

989

Chapter 36. Triggers

triggers fire at the end of the statement (but before any statement-level AFTER triggers). These types of
triggers may only be defined on tables. Row-level INSTEAD OF triggers may only be defined on views,
and fire immediately as each row in the view is identified as needing to be operated on.

Trigger functions invoked by per-statement triggers should always return NULL. Trigger functions invoked
by per-row triggers can return a table row (a value of type HeapTuple) to the calling executor, if they
choose. A row-level trigger fired before an operation has the following choices:

• It can return NULL to skip the operation for the current row. This instructs the executor to not perform
the row-level operation that invoked the trigger (the insertion, modification, or deletion of a particular
table row).

• For row-level INSERT and UPDATE triggers only, the returned row becomes the row that will be inserted
or will replace the row being updated. This allows the trigger function to modify the row being inserted
or updated.

A row-level BEFORE trigger that does not intend to cause either of these behaviors must be careful to
return as its result the same row that was passed in (that is, the NEW row for INSERT and UPDATE triggers,
the OLD row for DELETE triggers).

A row-level INSTEAD OF trigger should either return NULL to indicate that it did not modify any data
from the view’s underlying base tables, or it should return the view row that was passed in (the NEW row
for INSERT and UPDATE operations, or the OLD row for DELETE operations). A nonnull return value is
used to signal that the trigger performed the necessary data modifications in the view. This will cause
the count of the number of rows affected by the command to be incremented. For INSERT and UPDATE

operations, the trigger may modify the NEW row before returning it. This will change the data returned
by INSERT RETURNING or UPDATE RETURNING, and is useful when the view will not show exactly the
same data that was provided.

The return value is ignored for row-level triggers fired after an operation, and so they can return NULL.

If more than one trigger is defined for the same event on the same relation, the triggers will be fired
in alphabetical order by trigger name. In the case of BEFORE and INSTEAD OF triggers, the possibly-
modified row returned by each trigger becomes the input to the next trigger. If any BEFORE or INSTEAD
OF trigger returns NULL, the operation is abandoned for that row and subsequent triggers are not fired (for
that row).

A trigger definition can also specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values of
columns of the row. (Statement-level triggers can also have WHEN conditions, although the feature is not so
useful for them.) In a BEFORE trigger, the WHEN condition is evaluated just before the function is or would
be executed, so using WHEN is not materially different from testing the same condition at the beginning
of the trigger function. However, in an AFTER trigger, the WHEN condition is evaluated just after the row
update occurs, and it determines whether an event is queued to fire the trigger at the end of statement. So
when an AFTER trigger’s WHEN condition does not return true, it is not necessary to queue an event nor
to re-fetch the row at end of statement. This can result in significant speedups in statements that modify
many rows, if the trigger only needs to be fired for a few of the rows. INSTEAD OF triggers do not support
WHEN conditions.

Typically, row-level BEFORE triggers are used for checking or modifying the data that will be inserted
or updated. For example, a BEFORE trigger might be used to insert the current time into a timestamp

column, or to check that two elements of the row are consistent. Row-level AFTER triggers are most
sensibly used to propagate the updates to other tables, or make consistency checks against other tables.

990

Chapter 36. Triggers

The reason for this division of labor is that an AFTER trigger can be certain it is seeing the final value
of the row, while a BEFORE trigger cannot; there might be other BEFORE triggers firing after it. If you
have no specific reason to make a trigger BEFORE or AFTER, the BEFORE case is more efficient, since the
information about the operation doesn’t have to be saved until end of statement.

If a trigger function executes SQL commands then these commands might fire triggers again. This is
known as cascading triggers. There is no direct limitation on the number of cascade levels. It is possible
for cascades to cause a recursive invocation of the same trigger; for example, an INSERT trigger might
execute a command that inserts an additional row into the same table, causing the INSERT trigger to be
fired again. It is the trigger programmer’s responsibility to avoid infinite recursion in such scenarios.

When a trigger is being defined, arguments can be specified for it. The purpose of including arguments in
the trigger definition is to allow different triggers with similar requirements to call the same function. As
an example, there could be a generalized trigger function that takes as its arguments two column names
and puts the current user in one and the current time stamp in the other. Properly written, this trigger
function would be independent of the specific table it is triggering on. So the same function could be
used for INSERT events on any table with suitable columns, to automatically track creation of records in
a transaction table for example. It could also be used to track last-update events if defined as an UPDATE

trigger.

Each programming language that supports triggers has its own method for making the trigger input data
available to the trigger function. This input data includes the type of trigger event (e.g., INSERT or
UPDATE) as well as any arguments that were listed in CREATE TRIGGER. For a row-level trigger, the
input data also includes the NEW row for INSERT and UPDATE triggers, and/or the OLD row for UPDATE
and DELETE triggers. Statement-level triggers do not currently have any way to examine the individual
row(s) modified by the statement.

36.2. Visibility of Data Changes
If you execute SQL commands in your trigger function, and these commands access the table that the
trigger is for, then you need to be aware of the data visibility rules, because they determine whether these
SQL commands will see the data change that the trigger is fired for. Briefly:

• Statement-level triggers follow simple visibility rules: none of the changes made by a statement are
visible to statement-level triggers that are invoked before the statement, whereas all modifications are
visible to statement-level AFTER triggers.

• The data change (insertion, update, or deletion) causing the trigger to fire is naturally not visible to SQL
commands executed in a row-level BEFORE trigger, because it hasn’t happened yet.

• However, SQL commands executed in a row-level BEFORE trigger will see the effects of data changes
for rows previously processed in the same outer command. This requires caution, since the ordering of
these change events is not in general predictable; a SQL command that affects multiple rows can visit
the rows in any order.

• Similarly, a row-level INSTEAD OF trigger will see the effects of data changes made by previous firings
of INSTEAD OF triggers in the same outer command.

• When a row-level AFTER trigger is fired, all data changes made by the outer command are already
complete, and are visible to the invoked trigger function.

991

Chapter 36. Triggers

If your trigger function is written in any of the standard procedural languages, then the above statements
apply only if the function is declared VOLATILE. Functions that are declared STABLE or IMMUTABLE will
not see changes made by the calling command in any case.

Further information about data visibility rules can be found in Section 43.4. The example in Section 36.4
contains a demonstration of these rules.

36.3. Writing Trigger Functions in C
This section describes the low-level details of the interface to a trigger function. This information is only
needed when writing trigger functions in C. If you are using a higher-level language then these details
are handled for you. In most cases you should consider using a procedural language before writing your
triggers in C. The documentation of each procedural language explains how to write a trigger in that
language.

Trigger functions must use the “version 1” function manager interface.

When a function is called by the trigger manager, it is not passed any normal arguments, but it is passed a
“context” pointer pointing to a TriggerData structure. C functions can check whether they were called
from the trigger manager or not by executing the macro:

CALLED_AS_TRIGGER(fcinfo)

which expands to:

((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

If this returns true, then it is safe to cast fcinfo->context to type TriggerData * and make use of
the pointed-to TriggerData structure. The function must not alter the TriggerData structure or any of
the data it points to.

struct TriggerData is defined in commands/trigger.h:

typedef struct TriggerData
{

NodeTag type;
TriggerEvent tg_event;
Relation tg_relation;
HeapTuple tg_trigtuple;
HeapTuple tg_newtuple;
Trigger *tg_trigger;
Buffer tg_trigtuplebuf;
Buffer tg_newtuplebuf;

} TriggerData;

where the members are defined as follows:

type

Always T_TriggerData.

992

Chapter 36. Triggers

tg_event

Describes the event for which the function is called. You can use the following macros to examine
tg_event:

TRIGGER_FIRED_BEFORE(tg_event)

Returns true if the trigger fired before the operation.

TRIGGER_FIRED_AFTER(tg_event)

Returns true if the trigger fired after the operation.

TRIGGER_FIRED_INSTEAD(tg_event)

Returns true if the trigger fired instead of the operation.

TRIGGER_FIRED_FOR_ROW(tg_event)

Returns true if the trigger fired for a row-level event.

TRIGGER_FIRED_FOR_STATEMENT(tg_event)

Returns true if the trigger fired for a statement-level event.

TRIGGER_FIRED_BY_INSERT(tg_event)

Returns true if the trigger was fired by an INSERT command.

TRIGGER_FIRED_BY_UPDATE(tg_event)

Returns true if the trigger was fired by an UPDATE command.

TRIGGER_FIRED_BY_DELETE(tg_event)

Returns true if the trigger was fired by a DELETE command.

TRIGGER_FIRED_BY_TRUNCATE(tg_event)

Returns true if the trigger was fired by a TRUNCATE command.

tg_relation

A pointer to a structure describing the relation that the trigger fired for. Look at utils/rel.h for
details about this structure. The most interesting things are tg_relation->rd_att (descriptor of
the relation tuples) and tg_relation->rd_rel->relname (relation name; the type is not char*
but NameData; use SPI_getrelname(tg_relation) to get a char* if you need a copy of the
name).

tg_trigtuple

A pointer to the row for which the trigger was fired. This is the row being inserted, updated, or
deleted. If this trigger was fired for an INSERT or DELETE then this is what you should return from
the function if you don’t want to replace the row with a different one (in the case of INSERT) or skip
the operation.

tg_newtuple

A pointer to the new version of the row, if the trigger was fired for an UPDATE, and NULL if it is for
an INSERT or a DELETE. This is what you have to return from the function if the event is an UPDATE

and you don’t want to replace this row by a different one or skip the operation.

993

Chapter 36. Triggers

tg_trigger

A pointer to a structure of type Trigger, defined in utils/reltrigger.h:

typedef struct Trigger
{

Oid tgoid;
char *tgname;
Oid tgfoid;
int16 tgtype;
char tgenabled;
bool tgisinternal;
Oid tgconstrrelid;
Oid tgconstrindid;
Oid tgconstraint;
bool tgdeferrable;
bool tginitdeferred;
int16 tgnargs;
int16 tgnattr;
int16 *tgattr;
char **tgargs;
char *tgqual;

} Trigger;

where tgname is the trigger’s name, tgnargs is the number of arguments in tgargs, and tgargs

is an array of pointers to the arguments specified in the CREATE TRIGGER statement. The other
members are for internal use only.

tg_trigtuplebuf

The buffer containing tg_trigtuple, or InvalidBuffer if there is no such tuple or it is not stored
in a disk buffer.

tg_newtuplebuf

The buffer containing tg_newtuple, or InvalidBuffer if there is no such tuple or it is not stored
in a disk buffer.

A trigger function must return either a HeapTuple pointer or a NULL pointer (not an SQL null value, that
is, do not set isNull true). Be careful to return either tg_trigtuple or tg_newtuple, as appropriate,
if you don’t want to modify the row being operated on.

36.4. A Complete Trigger Example
Here is a very simple example of a trigger function written in C. (Examples of triggers written in proce-
dural languages can be found in the documentation of the procedural languages.)

The function trigf reports the number of rows in the table ttest and skips the actual operation if the
command attempts to insert a null value into the column x. (So the trigger acts as a not-null constraint but
doesn’t abort the transaction.)

First, the table definition:

CREATE TABLE ttest (

994

Chapter 36. Triggers

x integer
);

This is the source code of the trigger function:

#include "postgres.h"
#include "executor/spi.h" /* this is what you need to work with SPI */
#include "commands/trigger.h" /* ... triggers ... */
#include "utils/rel.h" /* ... and relations */

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

extern Datum trigf(PG_FUNCTION_ARGS);

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{

TriggerData *trigdata = (TriggerData *) fcinfo->context;
TupleDesc tupdesc;
HeapTuple rettuple;
char *when;
bool checknull = false;
bool isnull;
int ret, i;

/* make sure it’s called as a trigger at all */
if (!CALLED_AS_TRIGGER(fcinfo))

elog(ERROR, "trigf: not called by trigger manager");

/* tuple to return to executor */
if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))

rettuple = trigdata->tg_newtuple;
else

rettuple = trigdata->tg_trigtuple;

/* check for null values */
if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)

&& TRIGGER_FIRED_BEFORE(trigdata->tg_event))
checknull = true;

if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
when = "before";

else
when = "after ";

tupdesc = trigdata->tg_relation->rd_att;

/* connect to SPI manager */

995

Chapter 36. Triggers

if ((ret = SPI_connect()) < 0)
elog(ERROR, "trigf (fired %s): SPI_connect returned %d", when, ret);

/* get number of rows in table */
ret = SPI_exec("SELECT count(*) FROM ttest", 0);

if (ret < 0)
elog(ERROR, "trigf (fired %s): SPI_exec returned %d", when, ret);

/* count(*) returns int8, so be careful to convert */
i = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],

SPI_tuptable->tupdesc,
1,
&isnull));

elog (INFO, "trigf (fired %s): there are %d rows in ttest", when, i);

SPI_finish();

if (checknull)
{

SPI_getbinval(rettuple, tupdesc, 1, &isnull);
if (isnull)

rettuple = NULL;
}

return PointerGetDatum(rettuple);
}

After you have compiled the source code (see Section 35.9.6), declare the function and the triggers:

CREATE FUNCTION trigf() RETURNS trigger
AS ’filename’
LANGUAGE C;

CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();

CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();

Now you can test the operation of the trigger:

=> INSERT INTO ttest VALUES (NULL);
INFO: trigf (fired before): there are 0 rows in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

=> SELECT * FROM ttest;

996

Chapter 36. Triggers

x

(0 rows)

=> INSERT INTO ttest VALUES (1);
INFO: trigf (fired before): there are 0 rows in ttest
INFO: trigf (fired after): there are 1 rows in ttest

^^^^^^^^
remember what we said about visibility.

INSERT 167793 1
vac=> SELECT * FROM ttest;
x

1

(1 row)

=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest

^^^^^^
remember what we said about visibility.

INSERT 167794 1
=> SELECT * FROM ttest;
x

1
2

(2 rows)

=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
UPDATE 0
=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
UPDATE 1
vac=> SELECT * FROM ttest;
x

1
4

(2 rows)

=> DELETE FROM ttest;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest

^^^^^^
remember what we said about visibility.

DELETE 2
=> SELECT * FROM ttest;
x

997

Chapter 36. Triggers

(0 rows)

There are more complex examples in src/test/regress/regress.c and in spi.

998

Chapter 37. The Rule System
This chapter discusses the rule system in PostgreSQL. Production rule systems are conceptually simple,
but there are many subtle points involved in actually using them.

Some other database systems define active database rules, which are usually stored procedures and trig-
gers. In PostgreSQL, these can be implemented using functions and triggers as well.

The rule system (more precisely speaking, the query rewrite rule system) is totally different from stored
procedures and triggers. It modifies queries to take rules into consideration, and then passes the modified
query to the query planner for planning and execution. It is very powerful, and can be used for many
things such as query language procedures, views, and versions. The theoretical foundations and the power
of this rule system are also discussed in On Rules, Procedures, Caching and Views in Database Systems
and A Unified Framework for Version Modeling Using Production Rules in a Database System.

37.1. The Query Tree
To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

The rule system is located between the parser and the planner. It takes the output of the parser, one query
tree, and the user-defined rewrite rules, which are also query trees with some extra information, and creates
zero or more query trees as result. So its input and output are always things the parser itself could have
produced and thus, anything it sees is basically representable as an SQL statement.

Now what is a query tree? It is an internal representation of an SQL statement where the single parts
that it is built from are stored separately. These query trees can be shown in the server log if you set the
configuration parameters debug_print_parse, debug_print_rewritten, or debug_print_plan.
The rule actions are also stored as query trees, in the system catalog pg_rewrite. They are not formatted
like the log output, but they contain exactly the same information.

Reading a raw query tree requires some experience. But since SQL representations of query trees are
sufficient to understand the rule system, this chapter will not teach how to read them.

When reading the SQL representations of the query trees in this chapter it is necessary to be able to
identify the parts the statement is broken into when it is in the query tree structure. The parts of a query
tree are

the command type

This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) produced the
query tree.

the range table

The range table is a list of relations that are used in the query. In a SELECT statement these are the
relations given after the FROM key word.

Every range table entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the query tree, the range table entries are referenced by number rather than by
name, so here it doesn’t matter if there are duplicate names as it would in an SQL statement. This

999

Chapter 37. The Rule System

can happen after the range tables of rules have been merged in. The examples in this chapter will not
have this situation.

the result relation

This is an index into the range table that identifies the relation where the results of the query go.

SELECT queries don’t have a result relation. (The special case of SELECT INTO is mostly identical
to CREATE TABLE followed by INSERT ... SELECT, and is not discussed separately here.)

For INSERT, UPDATE, and DELETE commands, the result relation is the table (or view!) where the
changes are to take effect.

the target list

The target list is a list of expressions that define the result of the query. In the case of a SELECT, these
expressions are the ones that build the final output of the query. They correspond to the expressions
between the key words SELECT and FROM. (* is just an abbreviation for all the column names of a
relation. It is expanded by the parser into the individual columns, so the rule system never sees it.)

DELETE commands don’t need a normal target list because they don’t produce any result. Instead, the
rule system adds a special CTID entry to the empty target list, to allow the executor to find the row to
be deleted. (CTID is added when the result relation is an ordinary table. If it is a view, a whole-row
variable is added instead, as described in Section 37.2.4.)

For INSERT commands, the target list describes the new rows that should go into the result relation.
It consists of the expressions in the VALUES clause or the ones from the SELECT clause in INSERT

... SELECT. The first step of the rewrite process adds target list entries for any columns that were
not assigned to by the original command but have defaults. Any remaining columns (with neither a
given value nor a default) will be filled in by the planner with a constant null expression.

For UPDATE commands, the target list describes the new rows that should replace the old ones. In
the rule system, it contains just the expressions from the SET column = expression part of the
command. The planner will handle missing columns by inserting expressions that copy the values
from the old row into the new one. Just as for DELETE, the rule system adds a CTID or whole-row
variable so that the executor can identify the old row to be updated.

Every entry in the target list contains an expression that can be a constant value, a variable pointing
to a column of one of the relations in the range table, a parameter, or an expression tree made of
function calls, constants, variables, operators, etc.

the qualification

The query’s qualification is an expression much like one of those contained in the target list entries.
The result value of this expression is a Boolean that tells whether the operation (INSERT, UPDATE,
DELETE, or SELECT) for the final result row should be executed or not. It corresponds to the WHERE
clause of an SQL statement.

the join tree

The query’s join tree shows the structure of the FROM clause. For a simple query like SELECT ...

FROM a, b, c, the join tree is just a list of the FROM items, because we are allowed to join them
in any order. But when JOIN expressions, particularly outer joins, are used, we have to join in the
order shown by the joins. In that case, the join tree shows the structure of the JOIN expressions. The
restrictions associated with particular JOIN clauses (from ON or USING expressions) are stored as
qualification expressions attached to those join-tree nodes. It turns out to be convenient to store the

1000

Chapter 37. The Rule System

top-level WHERE expression as a qualification attached to the top-level join-tree item, too. So really
the join tree represents both the FROM and WHERE clauses of a SELECT.

the others

The other parts of the query tree like the ORDER BY clause aren’t of interest here. The rule sys-
tem substitutes some entries there while applying rules, but that doesn’t have much to do with the
fundamentals of the rule system.

37.2. Views and the Rule System
Views in PostgreSQL are implemented using the rule system. In fact, there is essentially no difference
between:

CREATE VIEW myview AS SELECT * FROM mytab;

compared against the two commands:

CREATE TABLE myview (same column list as mytab);
CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD

SELECT * FROM mytab;

because this is exactly what the CREATE VIEW command does internally. This has some side effects. One
of them is that the information about a view in the PostgreSQL system catalogs is exactly the same as it
is for a table. So for the parser, there is absolutely no difference between a table and a view. They are the
same thing: relations.

37.2.1. How SELECT Rules Work
Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT,
UPDATE or DELETE. And they have different semantics from rules on the other command types in that
they modify the query tree in place instead of creating a new one. So SELECT rules are described first.

Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional SELECT
action that is INSTEAD. This restriction was required to make rules safe enough to open them for ordinary
users, and it restricts ON SELECT rules to act like views.

The examples for this chapter are two join views that do some calculations and some more views using
them in turn. One of the two first views is customized later by adding rules for INSERT, UPDATE, and
DELETE operations so that the final result will be a view that behaves like a real table with some magic
functionality. This is not such a simple example to start from and this makes things harder to get into. But
it’s better to have one example that covers all the points discussed step by step rather than having many
different ones that might mix up in mind.

For the example, we need a little min function that returns the lower of 2 integer values. We create that as:

CREATE FUNCTION min(integer, integer) RETURNS integer AS $$
SELECT CASE WHEN $1 < $2 THEN $1 ELSE $2 END

$$ LANGUAGE SQL STRICT;

1001

Chapter 37. The Rule System

The real tables we need in the first two rule system descriptions are these:

CREATE TABLE shoe_data (
shoename text, -- primary key
sh_avail integer, -- available number of pairs
slcolor text, -- preferred shoelace color
slminlen real, -- minimum shoelace length
slmaxlen real, -- maximum shoelace length
slunit text -- length unit

);

CREATE TABLE shoelace_data (
sl_name text, -- primary key
sl_avail integer, -- available number of pairs
sl_color text, -- shoelace color
sl_len real, -- shoelace length
sl_unit text -- length unit

);

CREATE TABLE unit (
un_name text, -- primary key
un_fact real -- factor to transform to cm

);

As you can see, they represent shoe-store data.

The views are created as:

CREATE VIEW shoe AS
SELECT sh.shoename,

sh.sh_avail,
sh.slcolor,
sh.slminlen,
sh.slminlen * un.un_fact AS slminlen_cm,
sh.slmaxlen,
sh.slmaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit

FROM shoe_data sh, unit un
WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
SELECT s.sl_name,

s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
SELECT rsh.shoename,

1002

Chapter 37. The Rule System

rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM shoe rsh, shoelace rsl
WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

The CREATE VIEW command for the shoelace view (which is the simplest one we have) will create a
relation shoelace and an entry in pg_rewrite that tells that there is a rewrite rule that must be applied
whenever the relation shoelace is referenced in a query’s range table. The rule has no rule qualification
(discussed later, with the non-SELECT rules, since SELECT rules currently cannot have them) and it is
INSTEAD. Note that rule qualifications are not the same as query qualifications. The action of our rule has
a query qualification. The action of the rule is one query tree that is a copy of the SELECT statement in the
view creation command.

Note: The two extra range table entries for NEW and OLD that you can see in the pg_rewrite entry
aren’t of interest for SELECT rules.

Now we populate unit, shoe_data and shoelace_data and run a simple query on a view:

INSERT INTO unit VALUES (’cm’, 1.0);
INSERT INTO unit VALUES (’m’, 100.0);
INSERT INTO unit VALUES (’inch’, 2.54);

INSERT INTO shoe_data VALUES (’sh1’, 2, ’black’, 70.0, 90.0, ’cm’);
INSERT INTO shoe_data VALUES (’sh2’, 0, ’black’, 30.0, 40.0, ’inch’);
INSERT INTO shoe_data VALUES (’sh3’, 4, ’brown’, 50.0, 65.0, ’cm’);
INSERT INTO shoe_data VALUES (’sh4’, 3, ’brown’, 40.0, 50.0, ’inch’);

INSERT INTO shoelace_data VALUES (’sl1’, 5, ’black’, 80.0, ’cm’);
INSERT INTO shoelace_data VALUES (’sl2’, 6, ’black’, 100.0, ’cm’);
INSERT INTO shoelace_data VALUES (’sl3’, 0, ’black’, 35.0 , ’inch’);
INSERT INTO shoelace_data VALUES (’sl4’, 8, ’black’, 40.0 , ’inch’);
INSERT INTO shoelace_data VALUES (’sl5’, 4, ’brown’, 1.0 , ’m’);
INSERT INTO shoelace_data VALUES (’sl6’, 0, ’brown’, 0.9 , ’m’);
INSERT INTO shoelace_data VALUES (’sl7’, 7, ’brown’, 60 , ’cm’);
INSERT INTO shoelace_data VALUES (’sl8’, 1, ’brown’, 40 , ’inch’);

SELECT * FROM shoelace;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 7 | brown | 60 | cm | 60
sl3 | 0 | black | 35 | inch | 88.9
sl4 | 8 | black | 40 | inch | 101.6
sl8 | 1 | brown | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100

1003

Chapter 37. The Rule System

sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

This is the simplest SELECT you can do on our views, so we take this opportunity to explain the basics of
view rules. The SELECT * FROM shoelace was interpreted by the parser and produced the query tree:

SELECT shoelace.sl_name, shoelace.sl_avail,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl_len_cm

FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there are
rules for any relation. When processing the range table entry for shoelace (the only one up to now) it
finds the _RETURN rule with the query tree:

SELECT s.sl_name, s.sl_avail,
s.sl_color, s.sl_len, s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace old, shoelace new,
shoelace_data s, unit u

WHERE s.sl_unit = u.un_name;

To expand the view, the rewriter simply creates a subquery range-table entry containing the rule’s action
query tree, and substitutes this range table entry for the original one that referenced the view. The resulting
rewritten query tree is almost the same as if you had typed:

SELECT shoelace.sl_name, shoelace.sl_avail,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl_len_cm

FROM (SELECT s.sl_name,
s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the subquery’s range table has two extra entries shoelace old and
shoelace new. These entries don’t participate directly in the query, since they aren’t referenced by the
subquery’s join tree or target list. The rewriter uses them to store the access privilege check information
that was originally present in the range-table entry that referenced the view. In this way, the executor will
still check that the user has proper privileges to access the view, even though there’s no direct use of the
view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table entries
in the top query (in this example there are no more), and it will recursively check the range-table entries in
the added subquery to see if any of them reference views. (But it won’t expand old or new — otherwise

1004

Chapter 37. The Rule System

we’d have infinite recursion!) In this example, there are no rewrite rules for shoelace_data or unit, so
rewriting is complete and the above is the final result given to the planner.

Now we want to write a query that finds out for which shoes currently in the store we have the matching
shoelaces (color and length) and where the total number of exactly matching pairs is greater or equal to
two.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
sh1 | 2 | sl1 | 5 | 2
sh3 | 4 | sl7 | 7 | 4

(2 rows)

The output of the parser this time is the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM shoe_ready shoe_ready
WHERE shoe_ready.total_avail >= 2;

The first rule applied will be the one for the shoe_ready view and it results in the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM shoe rsh, shoelace rsl
WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready

WHERE shoe_ready.total_avail >= 2;

Similarly, the rules for shoe and shoelace are substituted into the range table of the subquery, leading
to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail

FROM (SELECT sh.shoename,
sh.sh_avail,

1005

Chapter 37. The Rule System

sh.slcolor,
sh.slminlen,
sh.slminlen * un.un_fact AS slminlen_cm,
sh.slmaxlen,
sh.slmaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit

FROM shoe_data sh, unit un
WHERE sh.slunit = un.un_name) rsh,

(SELECT s.sl_name,
s.sl_avail,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl_len_cm

FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) rsl

WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.slminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready

WHERE shoe_ready.total_avail > 2;

It turns out that the planner will collapse this tree into a two-level query tree: the bottommost SELECT
commands will be “pulled up” into the middle SELECT since there’s no need to process them separately.
But the middle SELECT will remain separate from the top, because it contains aggregate functions. If we
pulled those up it would change the behavior of the topmost SELECT, which we don’t want. However,
collapsing the query tree is an optimization that the rewrite system doesn’t have to concern itself with.

37.2.2. View Rules in Non-SELECT Statements
Two details of the query tree aren’t touched in the description of view rules above. These are the command
type and the result relation. In fact, the command type is not needed by view rules, but the result relation
may affect the way in which the query rewriter works, because special care needs to be taken if the result
relation is a view.

There are only a few differences between a query tree for a SELECT and one for any other command.
Obviously, they have a different command type and for a command other than a SELECT, the result relation
points to the range-table entry where the result should go. Everything else is absolutely the same. So
having two tables t1 and t2 with columns a and b, the query trees for the two statements:

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;

are nearly identical. In particular:

• The range tables contain entries for the tables t1 and t2.

• The target lists contain one variable that points to column b of the range table entry for table t2.

1006

Chapter 37. The Rule System

• The qualification expressions compare the columns a of both range-table entries for equality.

• The join trees show a simple join between t1 and t2.

The consequence is, that both query trees result in similar execution plans: They are both joins over the
two tables. For the UPDATE the missing columns from t1 are added to the target list by the planner and
the final query tree will read as:

UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as:

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

But there is a little problem in UPDATE: the part of the executor plan that does the join does not care what
the results from the join are meant for. It just produces a result set of rows. The fact that one is a SELECT
command and the other is an UPDATE is handled higher up in the executor, where it knows that this is an
UPDATE, and it knows that this result should go into table t1. But which of the rows that are there has to
be replaced by the new row?

To resolve this problem, another entry is added to the target list in UPDATE (and also in DELETE) state-
ments: the current tuple ID (CTID). This is a system column containing the file block number and position
in the block for the row. Knowing the table, the CTID can be used to retrieve the original row of t1 to be
updated. After adding the CTID to the target list, the query actually looks like:

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Now another detail of PostgreSQL enters the stage. Old table rows aren’t overwritten, and this is why
ROLLBACK is fast. In an UPDATE, the new result row is inserted into the table (after stripping the CTID)
and in the row header of the old row, which the CTID pointed to, the cmax and xmax entries are set to the
current command counter and current transaction ID. Thus the old row is hidden, and after the transaction
commits the vacuum cleaner can eventually remove the dead row.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There is
no difference.

37.2.3. The Power of Views in PostgreSQL
The above demonstrates how the rule system incorporates view definitions into the original query tree. In
the second example, a simple SELECT from one view created a final query tree that is a join of 4 tables
(unit was used twice with different names).

The benefit of implementing views with the rule system is, that the planner has all the information about
which tables have to be scanned plus the relationships between these tables plus the restrictive qualifica-
tions from the views plus the qualifications from the original query in one single query tree. And this is
still the situation when the original query is already a join over views. The planner has to decide which
is the best path to execute the query, and the more information the planner has, the better this decision
can be. And the rule system as implemented in PostgreSQL ensures, that this is all information available
about the query up to that point.

1007

Chapter 37. The Rule System

37.2.4. Updating a View
What happens if a view is named as the target relation for an INSERT, UPDATE, or DELETE? Simply
doing the substitutions described above would give a query tree in which the result relation points at a
subquery range-table entry, which will not work. Instead, the rewriter assumes that the operation will be
handled by an INSTEAD OF trigger on the view. (If there is no such trigger, the executor will throw an
error when execution starts.) Rewriting works slightly differently in this case. For INSERT, the rewriter
does nothing at all with the view, leaving it as the result relation for the query. For UPDATE and DELETE,
it’s still necessary to expand the view query to produce the “old” rows that the command will attempt to
update or delete. So the view is expanded as normal, but another unexpanded range-table entry is added
to the query to represent the view in its capacity as the result relation.

The problem that now arises is how to identify the rows to be updated in the view. Recall that when the
result relation is a table, a special CTID entry is added to the target list to identify the physical locations
of the rows to be updated. This does not work if the result relation is a view, because a view does not
have any CTID, since its rows do not have actual physical locations. Instead, for an UPDATE or DELETE
operation, a special wholerow entry is added to the target list, which expands to include all columns from
the view. The executor uses this value to supply the “old” row to the INSTEAD OF trigger. It is up to the
trigger to work out what to update based on the old and new row values.

If there are no INSTEAD OF triggers to update the view, the executor will throw an error, because it
cannot automatically update a view by itself. To change this, we can define rules that modify the behavior
of INSERT, UPDATE, and DELETE commands on a view. These rules will rewrite the command, typically
into a command that updates one or more tables, rather than views. That is the topic of the next section.

Note that rules are evaluated first, rewriting the original query before it is planned and executed. Therefore,
if a view has INSTEAD OF triggers as well as rules on INSERT, UPDATE, or DELETE, then the rules will
be evaluated first, and depending on the result, the triggers may not be used at all.

37.3. Rules on INSERT, UPDATE, and DELETE

Rules that are defined on INSERT, UPDATE, and DELETE are significantly different from the view rules
described in the previous section. First, their CREATE RULE command allows more:

• They are allowed to have no action.

• They can have multiple actions.

• They can be INSTEAD or ALSO (the default).

• The pseudorelations NEW and OLD become useful.

• They can have rule qualifications.

Second, they don’t modify the query tree in place. Instead they create zero or more new query trees and
can throw away the original one.

1008

Chapter 37. The Rule System

37.3.1. How Update Rules Work
Keep the syntax:

CREATE [OR REPLACE] RULE name AS ON event

TO table [WHERE condition]
DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

in mind. In the following, update rules means rules that are defined on INSERT, UPDATE, or DELETE.

Update rules get applied by the rule system when the result relation and the command type of a query
tree are equal to the object and event given in the CREATE RULE command. For update rules, the rule
system creates a list of query trees. Initially the query-tree list is empty. There can be zero (NOTHING key
word), one, or multiple actions. To simplify, we will look at a rule with one action. This rule can have a
qualification or not and it can be INSTEAD or ALSO (the default).

What is a rule qualification? It is a restriction that tells when the actions of the rule should be done
and when not. This qualification can only reference the pseudorelations NEW and/or OLD, which basically
represent the relation that was given as object (but with a special meaning).

So we have three cases that produce the following query trees for a one-action rule.

No qualification, with either ALSO or INSTEAD

the query tree from the rule action with the original query tree’s qualification added

Qualification given and ALSO

the query tree from the rule action with the rule qualification and the original query tree’s qualification
added

Qualification given and INSTEAD

the query tree from the rule action with the rule qualification and the original query tree’s qualifica-
tion; and the original query tree with the negated rule qualification added

Finally, if the rule is ALSO, the unchanged original query tree is added to the list. Since only qualified
INSTEAD rules already add the original query tree, we end up with either one or two output query trees
for a rule with one action.

For ON INSERT rules, the original query (if not suppressed by INSTEAD) is done before any actions
added by rules. This allows the actions to see the inserted row(s). But for ON UPDATE and ON DELETE

rules, the original query is done after the actions added by rules. This ensures that the actions can see the
to-be-updated or to-be-deleted rows; otherwise, the actions might do nothing because they find no rows
matching their qualifications.

The query trees generated from rule actions are thrown into the rewrite system again, and maybe more
rules get applied resulting in more or less query trees. So a rule’s actions must have either a different
command type or a different result relation than the rule itself is on, otherwise this recursive process will
end up in an infinite loop. (Recursive expansion of a rule will be detected and reported as an error.)

The query trees found in the actions of the pg_rewrite system catalog are only templates. Since they can
reference the range-table entries for NEW and OLD, some substitutions have to be made before they can be
used. For any reference to NEW, the target list of the original query is searched for a corresponding entry.
If found, that entry’s expression replaces the reference. Otherwise, NEW means the same as OLD (for an
UPDATE) or is replaced by a null value (for an INSERT). Any reference to OLD is replaced by a reference
to the range-table entry that is the result relation.

1009

Chapter 37. The Rule System

After the system is done applying update rules, it applies view rules to the produced query tree(s). Views
cannot insert new update actions so there is no need to apply update rules to the output of view rewriting.

37.3.1.1. A First Rule Step by Step

Say we want to trace changes to the sl_avail column in the shoelace_data relation. So we set up a log
table and a rule that conditionally writes a log entry when an UPDATE is performed on shoelace_data.

CREATE TABLE shoelace_log (
sl_name text, -- shoelace changed
sl_avail integer, -- new available value
log_who text, -- who did it
log_when timestamp -- when

);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
WHERE NEW.sl_avail <> OLD.sl_avail
DO INSERT INTO shoelace_log VALUES (

NEW.sl_name,
NEW.sl_avail,
current_user,
current_timestamp

);

Now someone does:

UPDATE shoelace_data SET sl_avail = 6 WHERE sl_name = ’sl7’;

and we look at the log table:

SELECT * FROM shoelace_log;

sl_name | sl_avail | log_who | log_when
---------+----------+---------+----------------------------------
sl7 | 6 | Al | Tue Oct 20 16:14:45 1998 MET DST

(1 row)

That’s what we expected. What happened in the background is the following. The parser created the query
tree:

UPDATE shoelace_data SET sl_avail = 6
FROM shoelace_data shoelace_data
WHERE shoelace_data.sl_name = ’sl7’;

There is a rule log_shoelace that is ON UPDATE with the rule qualification expression:

NEW.sl_avail <> OLD.sl_avail

and the action:

1010

Chapter 37. The Rule System

INSERT INTO shoelace_log VALUES (
new.sl_name, new.sl_avail,
current_user, current_timestamp)

FROM shoelace_data new, shoelace_data old;

(This looks a little strange since you cannot normally write INSERT ... VALUES ... FROM. The FROM
clause here is just to indicate that there are range-table entries in the query tree for new and old. These
are needed so that they can be referenced by variables in the INSERT command’s query tree.)

The rule is a qualified ALSO rule, so the rule system has to return two query trees: the modified rule action
and the original query tree. In step 1, the range table of the original query is incorporated into the rule’s
action query tree. This results in:

INSERT INTO shoelace_log VALUES (
new.sl_name, new.sl_avail,
current_user, current_timestamp)

FROM shoelace_data new, shoelace_data old,
shoelace_data shoelace_data;

In step 2, the rule qualification is added to it, so the result set is restricted to rows where sl_avail

changes:

INSERT INTO shoelace_log VALUES (
new.sl_name, new.sl_avail,
current_user, current_timestamp)

FROM shoelace_data new, shoelace_data old,
shoelace_data shoelace_data

WHERE new.sl_avail <> old.sl_avail;

(This looks even stranger, since INSERT ... VALUES doesn’t have a WHERE clause either, but the planner
and executor will have no difficulty with it. They need to support this same functionality anyway for
INSERT ... SELECT.)

In step 3, the original query tree’s qualification is added, restricting the result set further to only the rows
that would have been touched by the original query:

INSERT INTO shoelace_log VALUES (
new.sl_name, new.sl_avail,
current_user, current_timestamp)

FROM shoelace_data new, shoelace_data old,
shoelace_data shoelace_data

WHERE new.sl_avail <> old.sl_avail
AND shoelace_data.sl_name = ’sl7’;

Step 4 replaces references to NEW by the target list entries from the original query tree or by the matching
variable references from the result relation:

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name, 6,
current_user, current_timestamp)

FROM shoelace_data new, shoelace_data old,
shoelace_data shoelace_data

1011

Chapter 37. The Rule System

WHERE 6 <> old.sl_avail
AND shoelace_data.sl_name = ’sl7’;

Step 5 changes OLD references into result relation references:

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name, 6,
current_user, current_timestamp)

FROM shoelace_data new, shoelace_data old,
shoelace_data shoelace_data

WHERE 6 <> shoelace_data.sl_avail
AND shoelace_data.sl_name = ’sl7’;

That’s it. Since the rule is ALSO, we also output the original query tree. In short, the output from the rule
system is a list of two query trees that correspond to these statements:

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name, 6,
current_user, current_timestamp)

FROM shoelace_data
WHERE 6 <> shoelace_data.sl_avail

AND shoelace_data.sl_name = ’sl7’;

UPDATE shoelace_data SET sl_avail = 6
WHERE sl_name = ’sl7’;

These are executed in this order, and that is exactly what the rule was meant to do.

The substitutions and the added qualifications ensure that, if the original query would be, say:

UPDATE shoelace_data SET sl_color = ’green’
WHERE sl_name = ’sl7’;

no log entry would get written. In that case, the original query tree does not contain a target list entry
for sl_avail, so NEW.sl_avail will get replaced by shoelace_data.sl_avail. Thus, the extra
command generated by the rule is:

INSERT INTO shoelace_log VALUES (
shoelace_data.sl_name, shoelace_data.sl_avail,
current_user, current_timestamp)

FROM shoelace_data
WHERE shoelace_data.sl_avail <> shoelace_data.sl_avail

AND shoelace_data.sl_name = ’sl7’;

and that qualification will never be true.

It will also work if the original query modifies multiple rows. So if someone issued the command:

UPDATE shoelace_data SET sl_avail = 0
WHERE sl_color = ’black’;

1012

Chapter 37. The Rule System

four rows in fact get updated (sl1, sl2, sl3, and sl4). But sl3 already has sl_avail = 0. In this case,
the original query trees qualification is different and that results in the extra query tree:

INSERT INTO shoelace_log
SELECT shoelace_data.sl_name, 0,

current_user, current_timestamp
FROM shoelace_data

WHERE 0 <> shoelace_data.sl_avail
AND shoelace_data.sl_color = ’black’;

being generated by the rule. This query tree will surely insert three new log entries. And that’s absolutely
correct.

Here we can see why it is important that the original query tree is executed last. If the UPDATE had been
executed first, all the rows would have already been set to zero, so the logging INSERT would not find any
row where 0 <> shoelace_data.sl_avail.

37.3.2. Cooperation with Views
A simple way to protect view relations from the mentioned possibility that someone can try to run INSERT,
UPDATE, or DELETE on them is to let those query trees get thrown away. So we could create the rules:

CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_del_protect AS ON DELETE TO shoe
DO INSTEAD NOTHING;

If someone now tries to do any of these operations on the view relation shoe, the rule system will apply
these rules. Since the rules have no actions and are INSTEAD, the resulting list of query trees will be empty
and the whole query will become nothing because there is nothing left to be optimized or executed after
the rule system is done with it.

A more sophisticated way to use the rule system is to create rules that rewrite the query tree into one that
does the right operation on the real tables. To do that on the shoelace view, we create the following
rules:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
DO INSTEAD
INSERT INTO shoelace_data VALUES (

NEW.sl_name,
NEW.sl_avail,
NEW.sl_color,
NEW.sl_len,
NEW.sl_unit

);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
DO INSTEAD
UPDATE shoelace_data

1013

Chapter 37. The Rule System

SET sl_name = NEW.sl_name,
sl_avail = NEW.sl_avail,
sl_color = NEW.sl_color,
sl_len = NEW.sl_len,
sl_unit = NEW.sl_unit

WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
DO INSTEAD
DELETE FROM shoelace_data
WHERE sl_name = OLD.sl_name;

If you want to support RETURNING queries on the view, you need to make the rules include RETURNING
clauses that compute the view rows. This is usually pretty trivial for views on a single table, but it’s a bit
tedious for join views such as shoelace. An example for the insert case is:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
DO INSTEAD
INSERT INTO shoelace_data VALUES (

NEW.sl_name,
NEW.sl_avail,
NEW.sl_color,
NEW.sl_len,
NEW.sl_unit

)
RETURNING

shoelace_data.*,
(SELECT shoelace_data.sl_len * u.un_fact
FROM unit u WHERE shoelace_data.sl_unit = u.un_name);

Note that this one rule supports both INSERT and INSERT RETURNING queries on the view — the
RETURNING clause is simply ignored for INSERT.

Now assume that once in a while, a pack of shoelaces arrives at the shop and a big parts list along with it.
But you don’t want to manually update the shoelace view every time. Instead we setup two little tables:
one where you can insert the items from the part list, and one with a special trick. The creation commands
for these are:

CREATE TABLE shoelace_arrive (
arr_name text,
arr_quant integer

);

CREATE TABLE shoelace_ok (
ok_name text,
ok_quant integer

);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
DO INSTEAD
UPDATE shoelace

SET sl_avail = sl_avail + NEW.ok_quant

1014

Chapter 37. The Rule System

WHERE sl_name = NEW.ok_name;

Now you can fill the table shoelace_arrive with the data from the parts list:

SELECT * FROM shoelace_arrive;

arr_name | arr_quant
----------+-----------
sl3 | 10
sl6 | 20
sl8 | 20
(3 rows)

Take a quick look at the current data:

SELECT * FROM shoelace;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 6 | brown | 60 | cm | 60
sl3 | 0 | black | 35 | inch | 88.9
sl4 | 8 | black | 40 | inch | 101.6
sl8 | 1 | brown | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100
sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

Now move the arrived shoelaces in:

INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

and check the results:

SELECT * FROM shoelace ORDER BY sl_name;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 6 | brown | 60 | cm | 60
sl4 | 8 | black | 40 | inch | 101.6
sl3 | 10 | black | 35 | inch | 88.9
sl8 | 21 | brown | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100
sl6 | 20 | brown | 0.9 | m | 90
(8 rows)

SELECT * FROM shoelace_log;

sl_name | sl_avail | log_who| log_when
---------+----------+--------+----------------------------------
sl7 | 6 | Al | Tue Oct 20 19:14:45 1998 MET DST

1015

Chapter 37. The Rule System

sl3 | 10 | Al | Tue Oct 20 19:25:16 1998 MET DST
sl6 | 20 | Al | Tue Oct 20 19:25:16 1998 MET DST
sl8 | 21 | Al | Tue Oct 20 19:25:16 1998 MET DST
(4 rows)

It’s a long way from the one INSERT ... SELECT to these results. And the description of the query-tree
transformation will be the last in this chapter. First, there is the parser’s output:

INSERT INTO shoelace_ok
SELECT shoelace_arrive.arr_name, shoelace_arrive.arr_quant
FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

Now the first rule shoelace_ok_ins is applied and turns this into:

UPDATE shoelace
SET sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok old, shoelace_ok new,
shoelace shoelace

WHERE shoelace.sl_name = shoelace_arrive.arr_name;

and throws away the original INSERT on shoelace_ok. This rewritten query is passed to the rule system
again, and the second applied rule shoelace_upd produces:

UPDATE shoelace_data
SET sl_name = shoelace.sl_name,

sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant,
sl_color = shoelace.sl_color,
sl_len = shoelace.sl_len,
sl_unit = shoelace.sl_unit

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok old, shoelace_ok new,
shoelace shoelace, shoelace old,
shoelace new, shoelace_data shoelace_data

WHERE shoelace.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = shoelace.sl_name;

Again it’s an INSTEAD rule and the previous query tree is trashed. Note that this query still uses the view
shoelace. But the rule system isn’t finished with this step, so it continues and applies the _RETURN rule
on it, and we get:

UPDATE shoelace_data
SET sl_name = s.sl_name,

sl_avail = s.sl_avail + shoelace_arrive.arr_quant,
sl_color = s.sl_color,
sl_len = s.sl_len,
sl_unit = s.sl_unit

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok old, shoelace_ok new,
shoelace shoelace, shoelace old,
shoelace new, shoelace_data shoelace_data,
shoelace old, shoelace new,

1016

Chapter 37. The Rule System

shoelace_data s, unit u
WHERE s.sl_name = shoelace_arrive.arr_name

AND shoelace_data.sl_name = s.sl_name;

Finally, the rule log_shoelace gets applied, producing the extra query tree:

INSERT INTO shoelace_log
SELECT s.sl_name,

s.sl_avail + shoelace_arrive.arr_quant,
current_user,
current_timestamp

FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok old, shoelace_ok new,
shoelace shoelace, shoelace old,
shoelace new, shoelace_data shoelace_data,
shoelace old, shoelace new,
shoelace_data s, unit u,
shoelace_data old, shoelace_data new
shoelace_log shoelace_log

WHERE s.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = s.sl_name
AND (s.sl_avail + shoelace_arrive.arr_quant) <> s.sl_avail;

After that the rule system runs out of rules and returns the generated query trees.

So we end up with two final query trees that are equivalent to the SQL statements:

INSERT INTO shoelace_log
SELECT s.sl_name,

s.sl_avail + shoelace_arrive.arr_quant,
current_user,
current_timestamp

FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
shoelace_data s

WHERE s.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl_name = s.sl_name
AND s.sl_avail + shoelace_arrive.arr_quant <> s.sl_avail;

UPDATE shoelace_data
SET sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant

FROM shoelace_arrive shoelace_arrive,
shoelace_data shoelace_data,
shoelace_data s

WHERE s.sl_name = shoelace_arrive.sl_name
AND shoelace_data.sl_name = s.sl_name;

The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

There is a little detail that’s a bit ugly. Looking at the two queries, it turns out that the shoelace_data
relation appears twice in the range table where it could definitely be reduced to one. The planner does not
handle it and so the execution plan for the rule systems output of the INSERT will be

Nested Loop

1017

Chapter 37. The Rule System

-> Merge Join
-> Seq Scan

-> Sort
-> Seq Scan on s

-> Seq Scan
-> Sort

-> Seq Scan on shoelace_arrive
-> Seq Scan on shoelace_data

while omitting the extra range table entry would result in a

Merge Join
-> Seq Scan

-> Sort
-> Seq Scan on s

-> Seq Scan
-> Sort

-> Seq Scan on shoelace_arrive

which produces exactly the same entries in the log table. Thus, the rule system caused one extra scan on
the table shoelace_data that is absolutely not necessary. And the same redundant scan is done once
more in the UPDATE. But it was a really hard job to make that all possible at all.

Now we make a final demonstration of the PostgreSQL rule system and its power. Say you add some
shoelaces with extraordinary colors to your database:

INSERT INTO shoelace VALUES (’sl9’, 0, ’pink’, 35.0, ’inch’, 0.0);
INSERT INTO shoelace VALUES (’sl10’, 1000, ’magenta’, 40.0, ’inch’, 0.0);

We would like to make a view to check which shoelace entries do not fit any shoe in color. The view for
this is:

CREATE VIEW shoelace_mismatch AS
SELECT * FROM shoelace WHERE NOT EXISTS

(SELECT shoename FROM shoe WHERE slcolor = sl_color);

Its output is:

SELECT * FROM shoelace_mismatch;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
sl9 | 0 | pink | 35 | inch | 88.9
sl10 | 1000 | magenta | 40 | inch | 101.6

Now we want to set it up so that mismatching shoelaces that are not in stock are deleted from the database.
To make it a little harder for PostgreSQL, we don’t delete it directly. Instead we create one more view:

CREATE VIEW shoelace_can_delete AS
SELECT * FROM shoelace_mismatch WHERE sl_avail = 0;

and do it this way:

1018

Chapter 37. The Rule System

DELETE FROM shoelace WHERE EXISTS
(SELECT * FROM shoelace_can_delete

WHERE sl_name = shoelace.sl_name);

Voilà:

SELECT * FROM shoelace;

sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
sl1 | 5 | black | 80 | cm | 80
sl2 | 6 | black | 100 | cm | 100
sl7 | 6 | brown | 60 | cm | 60
sl4 | 8 | black | 40 | inch | 101.6
sl3 | 10 | black | 35 | inch | 88.9
sl8 | 21 | brown | 40 | inch | 101.6
sl10 | 1000 | magenta | 40 | inch | 101.6
sl5 | 4 | brown | 1 | m | 100
sl6 | 20 | brown | 0.9 | m | 90

(9 rows)

A DELETE on a view, with a subquery qualification that in total uses 4 nesting/joined views, where one of
them itself has a subquery qualification containing a view and where calculated view columns are used,
gets rewritten into one single query tree that deletes the requested data from a real table.

There are probably only a few situations out in the real world where such a construct is necessary. But it
makes you feel comfortable that it works.

37.4. Rules and Privileges
Due to rewriting of queries by the PostgreSQL rule system, other tables/views than those used in the
original query get accessed. When update rules are used, this can include write access to tables.

Rewrite rules don’t have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The PostgreSQL rule system changes the behavior of the
default access control system. Relations that are used due to rules get checked against the privileges of the
rule owner, not the user invoking the rule. This means that a user only needs the required privileges for
the tables/views that he names explicitly in his queries.

For example: A user has a list of phone numbers where some of them are private, the others are of interest
for the secretary of the office. He can construct the following:

CREATE TABLE phone_data (person text, phone text, private boolean);
CREATE VIEW phone_number AS

SELECT person, CASE WHEN NOT private THEN phone END AS phone
FROM phone_data;

GRANT SELECT ON phone_number TO secretary;

1019

Chapter 37. The Rule System

Nobody except him (and the database superusers) can access the phone_data table. But because of
the GRANT, the secretary can run a SELECT on the phone_number view. The rule system will rewrite
the SELECT from phone_number into a SELECT from phone_data. Since the user is the owner of
phone_number and therefore the owner of the rule, the read access to phone_data is now checked
against his privileges and the query is permitted. The check for accessing phone_number is also per-
formed, but this is done against the invoking user, so nobody but the user and the secretary can use it.

The privileges are checked rule by rule. So the secretary is for now the only one who can see the public
phone numbers. But the secretary can setup another view and grant access to that to the public. Then,
anyone can see the phone_number data through the secretary’s view. What the secretary cannot do is
to create a view that directly accesses phone_data. (Actually he can, but it will not work since every
access will be denied during the permission checks.) And as soon as the user will notice, that the secretary
opened his phone_number view, he can revoke his access. Immediately, any access to the secretary’s
view would fail.

One might think that this rule-by-rule checking is a security hole, but in fact it isn’t. But if it did not work
this way, the secretary could set up a table with the same columns as phone_number and copy the data
to there once per day. Then it’s his own data and he can grant access to everyone he wants. A GRANT

command means, “I trust you”. If someone you trust does the thing above, it’s time to think it over and
then use REVOKE.

Note that while views can be used to hide the contents of certain columns using the technique shown
above, they cannot be used to reliably conceal the data in unseen rows unless the security_barrier

flag has been set. For example, the following view is insecure:

CREATE VIEW phone_number AS
SELECT person, phone FROM phone_data WHERE phone NOT LIKE ’412%’;

This view might seem secure, since the rule system will rewrite any SELECT from phone_number into a
SELECT from phone_data and add the qualification that only entries where phone does not begin with
412 are wanted. But if the user can create his or her own functions, it is not difficult to convince the
planner to execute the user-defined function prior to the NOT LIKE expression. For example:

CREATE FUNCTION tricky(text, text) RETURNS bool AS $$
BEGIN

RAISE NOTICE ’% => %’, $1, $2;
RETURN true;

END
$$ LANGUAGE plpgsql COST 0.0000000000000000000001;

SELECT * FROM phone_number WHERE tricky(person, phone);

Every person and phone number in the phone_data table will be printed as a NOTICE, because the
planner will choose to execute the inexpensive tricky function before the more expensive NOT LIKE.
Even if the user is prevented from defining new functions, built-in functions can be used in similar attacks.
(For example, most casting functions include their input values in the error messages they produce.)

Similar considerations apply to update rules. In the examples of the previous section, the owner of the
tables in the example database could grant the privileges SELECT, INSERT, UPDATE, and DELETE on the
shoelace view to someone else, but only SELECT on shoelace_log. The rule action to write log entries
will still be executed successfully, and that other user could see the log entries. But he cannot create fake
entries, nor could he manipulate or remove existing ones. In this case, there is no possibility of subverting

1020

Chapter 37. The Rule System

the rules by convincing the planner to alter the order of operations, because the only rule which references
shoelace_log is an unqualified INSERT. This might not be true in more complex scenarios.

When it is necessary for a view to provide row-level security, the security_barrier attribute should
be applied to the view. This prevents maliciously-chosen functions and operators from being invoked on
rows until after the view has done its work. For example, if the view shown above had been created like
this, it would be secure:

CREATE VIEW phone_number WITH (security_barrier) AS
SELECT person, phone FROM phone_data WHERE phone NOT LIKE ’412%’;

Views created with the security_barrier may perform far worse than views created without this
option. In general, there is no way to avoid this: the fastest possible plan must be rejected if it may
compromise security. For this reason, this option is not enabled by default.

The query planner has more flexibility when dealing with functions that have no side effects. Such func-
tions are referred to as LEAKPROOF, and include many simple, commonly used operators, such as many
equality operators. The query planner can safely allow such functions to be evaluated at any point in the
query execution process, since invoking them on rows invisible to the user will not leak any information
about the unseen rows. In contrast, a function that might throw an error depending on the values received
as arguments (such as one that throws an error in the event of overflow or division by zero) are not leak-
proof, and could provide significant information about the unseen rows if applied before the security
view’s row filters.

It is important to understand that even a view created with the security_barrier option is intended to
be secure only in the limited sense that the contents of the invisible tuples will not be passed to possibly-
insecure functions. The user may well have other means of making inferences about the unseen data; for
example, they can see the query plan using EXPLAIN, or measure the run time of queries against the view.
A malicious attacker might be able to infer something about the amount of unseen data, or even gain some
information about the data distribution or most common values (since these things may affect the run time
of the plan; or even, since they are also reflected in the optimizer statistics, the choice of plan). If these
types of "covert channel" attacks are of concern, it is probably unwise to grant any access to the data at
all.

37.5. Rules and Command Status
The PostgreSQL server returns a command status string, such as INSERT 149592 1, for each command
it receives. This is simple enough when there are no rules involved, but what happens when the query is
rewritten by rules?

Rules affect the command status as follows:

• If there is no unconditional INSTEAD rule for the query, then the originally given query will be executed,
and its command status will be returned as usual. (But note that if there were any conditional INSTEAD
rules, the negation of their qualifications will have been added to the original query. This might reduce
the number of rows it processes, and if so the reported status will be affected.)

• If there is any unconditional INSTEAD rule for the query, then the original query will not be executed
at all. In this case, the server will return the command status for the last query that was inserted by an
INSTEAD rule (conditional or unconditional) and is of the same command type (INSERT, UPDATE, or

1021

Chapter 37. The Rule System

DELETE) as the original query. If no query meeting those requirements is added by any rule, then the
returned command status shows the original query type and zeroes for the row-count and OID fields.

(This system was established in PostgreSQL 7.3. In versions before that, the command status might show
different results when rules exist.)

The programmer can ensure that any desired INSTEAD rule is the one that sets the command status in the
second case, by giving it the alphabetically last rule name among the active rules, so that it gets applied
last.

37.6. Rules Versus Triggers
Many things that can be done using triggers can also be implemented using the PostgreSQL rule system.
One of the things that cannot be implemented by rules are some kinds of constraints, especially foreign
keys. It is possible to place a qualified rule that rewrites a command to NOTHING if the value of a column
does not appear in another table. But then the data is silently thrown away and that’s not a good idea.
If checks for valid values are required, and in the case of an invalid value an error message should be
generated, it must be done by a trigger.

In this chapter, we focused on using rules to update views. All of the update rule examples in this chapter
can also be implemented using INSTEAD OF triggers on the views. Writing such triggers is often easier
than writing rules, particularly if complex logic is required to perform the update.

For the things that can be implemented by both, which is best depends on the usage of the database. A
trigger is fired once for each affected row. A rule modifies the query or generates an additional query. So
if many rows are affected in one statement, a rule issuing one extra command is likely to be faster than
a trigger that is called for every single row and must re-determine what to do many times. However, the
trigger approach is conceptually far simpler than the rule approach, and is easier for novices to get right.

Here we show an example of how the choice of rules versus triggers plays out in one situation. There are
two tables:

CREATE TABLE computer (
hostname text, -- indexed
manufacturer text -- indexed

);

CREATE TABLE software (
software text, -- indexed
hostname text -- indexed

);

Both tables have many thousands of rows and the indexes on hostname are unique. The rule or trigger
should implement a constraint that deletes rows from software that reference a deleted computer. The
trigger would use this command:

DELETE FROM software WHERE hostname = $1;

Since the trigger is called for each individual row deleted from computer, it can prepare and save the
plan for this command and pass the hostname value in the parameter. The rule would be written as:

CREATE RULE computer_del AS ON DELETE TO computer

1022

Chapter 37. The Rule System

DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a:

DELETE FROM computer WHERE hostname = ’mypc.local.net’;

the table computer is scanned by index (fast), and the command issued by the trigger would also use an
index scan (also fast). The extra command from the rule would be:

DELETE FROM software WHERE computer.hostname = ’mypc.local.net’
AND software.hostname = computer.hostname;

Since there are appropriate indexes setup, the planner will create a plan of

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.

With the next delete we want to get rid of all the 2000 computers where the hostname starts with old.
There are two possible commands to do that. One is:

DELETE FROM computer WHERE hostname >= ’old’
AND hostname < ’ole’

The command added by the rule will be:

DELETE FROM software WHERE computer.hostname >= ’old’ AND computer.hostname < ’ole’
AND software.hostname = computer.hostname;

with the plan

Hash Join
-> Seq Scan on software
-> Hash

-> Index Scan using comp_hostidx on computer

The other possible command is:

DELETE FROM computer WHERE hostname ~ ’^old’;

which results in the following executing plan for the command added by the rule:

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

This shows, that the planner does not realize that the qualification for hostname in computer could also
be used for an index scan on software when there are multiple qualification expressions combined with
AND, which is what it does in the regular-expression version of the command. The trigger will get invoked
once for each of the 2000 old computers that have to be deleted, and that will result in one index scan over
computer and 2000 index scans over software. The rule implementation will do it with two commands

1023

Chapter 37. The Rule System

that use indexes. And it depends on the overall size of the table software whether the rule will still be
faster in the sequential scan situation. 2000 command executions from the trigger over the SPI manager
take some time, even if all the index blocks will soon be in the cache.

The last command we look at is:

DELETE FROM computer WHERE manufacturer = ’bim’;

Again this could result in many rows to be deleted from computer. So the trigger will again run many
commands through the executor. The command generated by the rule will be:

DELETE FROM software WHERE computer.manufacturer = ’bim’
AND software.hostname = computer.hostname;

The plan for that command will again be the nested loop over two index scans, only using a different index
on computer:

Nestloop
-> Index Scan using comp_manufidx on computer
-> Index Scan using soft_hostidx on software

In any of these cases, the extra commands from the rule system will be more or less independent from the
number of affected rows in a command.

The summary is, rules will only be significantly slower than triggers if their actions result in large and
badly qualified joins, a situation where the planner fails.

1024

Chapter 38. Procedural Languages
PostgreSQL allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). For a function written in a procedural
language, the database server has no built-in knowledge about how to interpret the function’s source
text. Instead, the task is passed to a special handler that knows the details of the language. The handler
could either do all the work of parsing, syntax analysis, execution, etc. itself, or it could serve as “glue”
between PostgreSQL and an existing implementation of a programming language. The handler itself is a
C language function compiled into a shared object and loaded on demand, just like any other C function.

There are currently four procedural languages available in the standard PostgreSQL distribution:
PL/pgSQL (Chapter 39), PL/Tcl (Chapter 40), PL/Perl (Chapter 41), and PL/Python (Chapter 42). There
are additional procedural languages available that are not included in the core distribution. Appendix H
has information about finding them. In addition other languages can be defined by users; the basics of
developing a new procedural language are covered in Chapter 49.

38.1. Installing Procedural Languages
A procedural language must be “installed” into each database where it is to be used. But procedural
languages installed in the database template1 are automatically available in all subsequently created
databases, since their entries in template1 will be copied by CREATE DATABASE. So the database ad-
ministrator can decide which languages are available in which databases and can make some languages
available by default if he chooses.

For the languages supplied with the standard distribution, it is only necessary to execute CREATE

EXTENSION language_name to install the language into the current database. Alternatively, the
program createlang can be used to do this from the shell command line. For example, to install the
language PL/Perl into the database template1, use:

createlang plperl template1

The manual procedure described below is only recommended for installing languages that have not been
packaged as extensions.

Manual Procedural Language Installation

A procedural language is installed in a database in five steps, which must be carried out by a database
superuser. In most cases the required SQL commands should be packaged as the installation script of an
“extension”, so that CREATE EXTENSION can be used to execute them.

1. The shared object for the language handler must be compiled and installed into an appropriate library
directory. This works in the same way as building and installing modules with regular user-defined
C functions does; see Section 35.9.6. Often, the language handler will depend on an external library
that provides the actual programming language engine; if so, that must be installed as well.

2. The handler must be declared with the command

CREATE FUNCTION handler_function_name()
RETURNS language_handler
AS ’path-to-shared-object’

1025

Chapter 38. Procedural Languages

LANGUAGE C;

The special return type of language_handler tells the database system that this function does not
return one of the defined SQL data types and is not directly usable in SQL statements.

3. Optionally, the language handler can provide an “inline” handler function that executes anonymous
code blocks (DO commands) written in this language. If an inline handler function is provided by the
language, declare it with a command like

CREATE FUNCTION inline_function_name(internal)
RETURNS void
AS ’path-to-shared-object’
LANGUAGE C;

4. Optionally, the language handler can provide a “validator” function that checks a function definition
for correctness without actually executing it. The validator function is called by CREATE FUNCTION

if it exists. If a validator function is provided by the language, declare it with a command like

CREATE FUNCTION validator_function_name(oid)
RETURNS void
AS ’path-to-shared-object’
LANGUAGE C STRICT;

5. Finally, the PL must be declared with the command

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE language-name

HANDLER handler_function_name

[INLINE inline_function_name]
[VALIDATOR validator_function_name] ;

The optional key word TRUSTED specifies that the language does not grant access to data that the user
would not otherwise have. Trusted languages are designed for ordinary database users (those without
superuser privilege) and allows them to safely create functions and trigger procedures. Since PL func-
tions are executed inside the database server, the TRUSTED flag should only be given for languages
that do not allow access to database server internals or the file system. The languages PL/pgSQL,
PL/Tcl, and PL/Perl are considered trusted; the languages PL/TclU, PL/PerlU, and PL/PythonU are
designed to provide unlimited functionality and should not be marked trusted.

Example 38-1 shows how the manual installation procedure would work with the language PL/Perl.

Example 38-1. Manual Installation of PL/Perl

The following command tells the database server where to find the shared object for the PL/Perl language’s
call handler function:

CREATE FUNCTION plperl_call_handler() RETURNS language_handler AS
’$libdir/plperl’ LANGUAGE C;

PL/Perl has an inline handler function and a validator function, so we declare those too:

CREATE FUNCTION plperl_inline_handler(internal) RETURNS void AS
’$libdir/plperl’ LANGUAGE C;

CREATE FUNCTION plperl_validator(oid) RETURNS void AS
’$libdir/plperl’ LANGUAGE C STRICT;

The command:

CREATE TRUSTED PROCEDURAL LANGUAGE plperl

1026

Chapter 38. Procedural Languages

HANDLER plperl_call_handler
INLINE plperl_inline_handler
VALIDATOR plperl_validator;

then defines that the previously declared functions should be invoked for functions and trigger procedures
where the language attribute is plperl.

In a default PostgreSQL installation, the handler for the PL/pgSQL language is built and installed into the
“library” directory; furthermore, the PL/pgSQL language itself is installed in all databases. If Tcl support
is configured in, the handlers for PL/Tcl and PL/TclU are built and installed in the library directory, but the
language itself is not installed in any database by default. Likewise, the PL/Perl and PL/PerlU handlers are
built and installed if Perl support is configured, and the PL/PythonU handler is installed if Python support
is configured, but these languages are not installed by default.

1027

Chapter 39. PL/pgSQL - SQL Procedural
Language

39.1. Overview
PL/pgSQL is a loadable procedural language for the PostgreSQL database system. The design goals of
PL/pgSQL were to create a loadable procedural language that

• can be used to create functions and trigger procedures,

• adds control structures to the SQL language,

• can perform complex computations,

• inherits all user-defined types, functions, and operators,

• can be defined to be trusted by the server,

• is easy to use.

Functions created with PL/pgSQL can be used anywhere that built-in functions could be used. For ex-
ample, it is possible to create complex conditional computation functions and later use them to define
operators or use them in index expressions.

In PostgreSQL 9.0 and later, PL/pgSQL is installed by default. However it is still a loadable module, so
especially security-conscious administrators could choose to remove it.

39.1.1. Advantages of Using PL/pgSQL
SQL is the language PostgreSQL and most other relational databases use as query language. It’s portable
and easy to learn. But every SQL statement must be executed individually by the database server.

That means that your client application must send each query to the database server, wait for it to be
processed, receive and process the results, do some computation, then send further queries to the server.
All this incurs interprocess communication and will also incur network overhead if your client is on a
different machine than the database server.

With PL/pgSQL you can group a block of computation and a series of queries inside the database server,
thus having the power of a procedural language and the ease of use of SQL, but with considerable savings
of client/server communication overhead.

• Extra round trips between client and server are eliminated

• Intermediate results that the client does not need do not have to be marshaled or transferred between
server and client

• Multiple rounds of query parsing can be avoided

1028

Chapter 39. PL/pgSQL - SQL Procedural Language

This can result in a considerable performance increase as compared to an application that does not use
stored functions.

Also, with PL/pgSQL you can use all the data types, operators and functions of SQL.

39.1.2. Supported Argument and Result Data Types
Functions written in PL/pgSQL can accept as arguments any scalar or array data type supported by the
server, and they can return a result of any of these types. They can also accept or return any composite type
(row type) specified by name. It is also possible to declare a PL/pgSQL function as returning record,
which means that the result is a row type whose columns are determined by specification in the calling
query, as discussed in Section 7.2.1.4.

PL/pgSQL functions can be declared to accept a variable number of arguments by using the VARIADIC

marker. This works exactly the same way as for SQL functions, as discussed in Section 35.4.5.

PL/pgSQL functions can also be declared to accept and return the polymorphic types anyelement,
anyarray, anynonarray, anyenum, and anyrange. The actual data types handled by a polymorphic
function can vary from call to call, as discussed in Section 35.2.5. An example is shown in Section 39.3.1.

PL/pgSQL functions can also be declared to return a “set” (or table) of any data type that can be returned
as a single instance. Such a function generates its output by executing RETURN NEXT for each desired
element of the result set, or by using RETURN QUERY to output the result of evaluating a query.

Finally, a PL/pgSQL function can be declared to return void if it has no useful return value.

PL/pgSQL functions can also be declared with output parameters in place of an explicit specification
of the return type. This does not add any fundamental capability to the language, but it is often conve-
nient, especially for returning multiple values. The RETURNS TABLE notation can also be used in place of
RETURNS SETOF.

Specific examples appear in Section 39.3.1 and Section 39.6.1.

39.2. Structure of PL/pgSQL
PL/pgSQL is a block-structured language. The complete text of a function definition must be a block. A
block is defined as:

[<<label>>]
[DECLARE

declarations]
BEGIN

statements

END [label];

Each declaration and each statement within a block is terminated by a semicolon. A block that appears
within another block must have a semicolon after END, as shown above; however the final END that con-
cludes a function body does not require a semicolon.

1029

Chapter 39. PL/pgSQL - SQL Procedural Language

Tip: A common mistake is to write a semicolon immediately after BEGIN. This is incorrect and will
result in a syntax error.

A label is only needed if you want to identify the block for use in an EXIT statement, or to qualify the
names of the variables declared in the block. If a label is given after END, it must match the label at the
block’s beginning.

All key words are case-insensitive. Identifiers are implicitly converted to lower case unless double-quoted,
just as they are in ordinary SQL commands.

Comments work the same way in PL/pgSQL code as in ordinary SQL. A double dash (--) starts a com-
ment that extends to the end of the line. A /* starts a block comment that extends to the matching occur-
rence of */. Block comments nest.

Any statement in the statement section of a block can be a subblock. Subblocks can be used for logical
grouping or to localize variables to a small group of statements. Variables declared in a subblock mask
any similarly-named variables of outer blocks for the duration of the subblock; but you can access the
outer variables anyway if you qualify their names with their block’s label. For example:

CREATE FUNCTION somefunc() RETURNS integer AS $$
<< outerblock >>

DECLARE
quantity integer := 30;

BEGIN
RAISE NOTICE ’Quantity here is %’, quantity; -- Prints 30
quantity := 50;
--
-- Create a subblock
--
DECLARE

quantity integer := 80;
BEGIN

RAISE NOTICE ’Quantity here is %’, quantity; -- Prints 80
RAISE NOTICE ’Outer quantity here is %’, outerblock.quantity; -- Prints 50

END;

RAISE NOTICE ’Quantity here is %’, quantity; -- Prints 50

RETURN quantity;
END;
$$ LANGUAGE plpgsql;

Note: There is actually a hidden “outer block” surrounding the body of any PL/pgSQL function. This
block provides the declarations of the function’s parameters (if any), as well as some special variables
such as FOUND (see Section 39.5.5). The outer block is labeled with the function’s name, meaning that
parameters and special variables can be qualified with the function’s name.

1030

Chapter 39. PL/pgSQL - SQL Procedural Language

It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the
similarly-named SQL commands for transaction control. PL/pgSQL’s BEGIN/END are only for group-
ing; they do not start or end a transaction. Functions and trigger procedures are always executed within a
transaction established by an outer query — they cannot start or commit that transaction, since there would
be no context for them to execute in. However, a block containing an EXCEPTION clause effectively forms
a subtransaction that can be rolled back without affecting the outer transaction. For more about that see
Section 39.6.6.

39.3. Declarations
All variables used in a block must be declared in the declarations section of the block. (The only exceptions
are that the loop variable of a FOR loop iterating over a range of integer values is automatically declared
as an integer variable, and likewise the loop variable of a FOR loop iterating over a cursor’s result is
automatically declared as a record variable.)

PL/pgSQL variables can have any SQL data type, such as integer, varchar, and char.

Here are some examples of variable declarations:

user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;

The general syntax of a variable declaration is:

name [CONSTANT] type [COLLATE collation_name] [NOT NULL] [{ DEFAULT | := } expression];

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is entered.
If the DEFAULT clause is not given then the variable is initialized to the SQL null value. The CONSTANT
option prevents the variable from being assigned to after initialization, so that its value will remain con-
stant for the duration of the block. The COLLATE option specifies a collation to use for the variable (see
Section 39.3.6). If NOT NULL is specified, an assignment of a null value results in a run-time error. All
variables declared as NOT NULL must have a nonnull default value specified.

A variable’s default value is evaluated and assigned to the variable each time the block is entered (not just
once per function call). So, for example, assigning now() to a variable of type timestamp causes the
variable to have the time of the current function call, not the time when the function was precompiled.

Examples:

quantity integer DEFAULT 32;
url varchar := ’http://mysite.com’;
user_id CONSTANT integer := 10;

1031

Chapter 39. PL/pgSQL - SQL Procedural Language

39.3.1. Declaring Function Parameters
Parameters passed to functions are named with the identifiers $1, $2, etc. Optionally, aliases can be
declared for $n parameter names for increased readability. Either the alias or the numeric identifier can
then be used to refer to the parameter value.

There are two ways to create an alias. The preferred way is to give a name to the parameter in the CREATE
FUNCTION command, for example:

CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$
BEGIN

RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

The other way, which was the only way available before PostgreSQL 8.0, is to explicitly declare an alias,
using the declaration syntax

name ALIAS FOR $n;

The same example in this style looks like:

CREATE FUNCTION sales_tax(real) RETURNS real AS $$
DECLARE

subtotal ALIAS FOR $1;
BEGIN

RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Note: These two examples are not perfectly equivalent. In the first case, subtotal could be refer-
enced as sales_tax.subtotal, but in the second case it could not. (Had we attached a label to the
inner block, subtotal could be qualified with that label, instead.)

Some more examples:

CREATE FUNCTION instr(varchar, integer) RETURNS integer AS $$
DECLARE

v_string ALIAS FOR $1;
index ALIAS FOR $2;

BEGIN
-- some computations using v_string and index here

END;
$$ LANGUAGE plpgsql;

CREATE FUNCTION concat_selected_fields(in_t sometablename) RETURNS text AS $$
BEGIN

RETURN in_t.f1 || in_t.f3 || in_t.f5 || in_t.f7;
END;

1032

Chapter 39. PL/pgSQL - SQL Procedural Language

$$ LANGUAGE plpgsql;

When a PL/pgSQL function is declared with output parameters, the output parameters are given $n names
and optional aliases in just the same way as the normal input parameters. An output parameter is effec-
tively a variable that starts out NULL; it should be assigned to during the execution of the function. The
final value of the parameter is what is returned. For instance, the sales-tax example could also be done this
way:

CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$
BEGIN

tax := subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Notice that we omitted RETURNS real — we could have included it, but it would be redundant.

Output parameters are most useful when returning multiple values. A trivial example is:

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN

sum := x + y;
prod := x * y;

END;
$$ LANGUAGE plpgsql;

As discussed in Section 35.4.4, this effectively creates an anonymous record type for the function’s results.
If a RETURNS clause is given, it must say RETURNS record.

Another way to declare a PL/pgSQL function is with RETURNS TABLE, for example:

CREATE FUNCTION extended_sales(p_itemno int)
RETURNS TABLE(quantity int, total numeric) AS $$
BEGIN

RETURN QUERY SELECT quantity, quantity * price FROM sales
WHERE itemno = p_itemno;

END;
$$ LANGUAGE plpgsql;

This is exactly equivalent to declaring one or more OUT parameters and specifying RETURNS SETOF

sometype.

When the return type of a PL/pgSQL function is declared as a polymorphic type (anyelement,
anyarray, anynonarray, anyenum, or anyrange), a special parameter $0 is created. Its data type is
the actual return type of the function, as deduced from the actual input types (see Section 35.2.5). This
allows the function to access its actual return type as shown in Section 39.3.3. $0 is initialized to null and
can be modified by the function, so it can be used to hold the return value if desired, though that is not
required. $0 can also be given an alias. For example, this function works on any data type that has a +

operator:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement)
RETURNS anyelement AS $$
DECLARE

1033

Chapter 39. PL/pgSQL - SQL Procedural Language

result ALIAS FOR $0;
BEGIN

result := v1 + v2 + v3;
RETURN result;

END;
$$ LANGUAGE plpgsql;

The same effect can be had by declaring one or more output parameters as polymorphic types. In this
case the special $0 parameter is not used; the output parameters themselves serve the same purpose. For
example:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement,
OUT sum anyelement)

AS $$
BEGIN

sum := v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

39.3.2. ALIAS
newname ALIAS FOR oldname;

The ALIAS syntax is more general than is suggested in the previous section: you can declare an alias for
any variable, not just function parameters. The main practical use for this is to assign a different name for
variables with predetermined names, such as NEW or OLD within a trigger procedure.

Examples:

DECLARE
prior ALIAS FOR old;
updated ALIAS FOR new;

Since ALIAS creates two different ways to name the same object, unrestricted use can be confusing. It’s
best to use it only for the purpose of overriding predetermined names.

39.3.3. Copying Types
variable%TYPE

%TYPE provides the data type of a variable or table column. You can use this to declare variables that will
hold database values. For example, let’s say you have a column named user_id in your users table. To
declare a variable with the same data type as users.user_id you write:

user_id users.user_id%TYPE;

1034

Chapter 39. PL/pgSQL - SQL Procedural Language

By using %TYPE you don’t need to know the data type of the structure you are referencing, and most
importantly, if the data type of the referenced item changes in the future (for instance: you change the
type of user_id from integer to real), you might not need to change your function definition.

%TYPE is particularly valuable in polymorphic functions, since the data types needed for internal variables
can change from one call to the next. Appropriate variables can be created by applying %TYPE to the
function’s arguments or result placeholders.

39.3.4. Row Types
name table_name%ROWTYPE;
name composite_type_name;

A variable of a composite type is called a row variable (or row-type variable). Such a variable can hold
a whole row of a SELECT or FOR query result, so long as that query’s column set matches the declared
type of the variable. The individual fields of the row value are accessed using the usual dot notation, for
example rowvar.field.

A row variable can be declared to have the same type as the rows of an existing table or view, by using
the table_name%ROWTYPE notation; or it can be declared by giving a composite type’s name. (Since
every table has an associated composite type of the same name, it actually does not matter in PostgreSQL
whether you write %ROWTYPE or not. But the form with %ROWTYPE is more portable.)

Parameters to a function can be composite types (complete table rows). In that case, the corresponding
identifier $n will be a row variable, and fields can be selected from it, for example $1.user_id.

Only the user-defined columns of a table row are accessible in a row-type variable, not the OID or other
system columns (because the row could be from a view). The fields of the row type inherit the table’s field
size or precision for data types such as char(n).

Here is an example of using composite types. table1 and table2 are existing tables having at least the
mentioned fields:

CREATE FUNCTION merge_fields(t_row table1) RETURNS text AS $$
DECLARE

t2_row table2%ROWTYPE;
BEGIN

SELECT * INTO t2_row FROM table2 WHERE ... ;
RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;

END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM table1 t WHERE ... ;

39.3.5. Record Types
name RECORD;

1035

Chapter 39. PL/pgSQL - SQL Procedural Language

Record variables are similar to row-type variables, but they have no predefined structure. They take on the
actual row structure of the row they are assigned during a SELECT or FOR command. The substructure of a
record variable can change each time it is assigned to. A consequence of this is that until a record variable
is first assigned to, it has no substructure, and any attempt to access a field in it will draw a run-time error.

Note that RECORD is not a true data type, only a placeholder. One should also realize that when a
PL/pgSQL function is declared to return type record, this is not quite the same concept as a record
variable, even though such a function might use a record variable to hold its result. In both cases the
actual row structure is unknown when the function is written, but for a function returning record the
actual structure is determined when the calling query is parsed, whereas a record variable can change its
row structure on-the-fly.

39.3.6. Collation of PL/pgSQL Variables
When a PL/pgSQL function has one or more parameters of collatable data types, a collation is identified
for each function call depending on the collations assigned to the actual arguments, as described in Section
22.2. If a collation is successfully identified (i.e., there are no conflicts of implicit collations among the
arguments) then all the collatable parameters are treated as having that collation implicitly. This will affect
the behavior of collation-sensitive operations within the function. For example, consider

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
BEGIN

RETURN a < b;
END;
$$ LANGUAGE plpgsql;

SELECT less_than(text_field_1, text_field_2) FROM table1;
SELECT less_than(text_field_1, text_field_2 COLLATE "C") FROM table1;

The first use of less_than will use the common collation of text_field_1 and text_field_2 for
the comparison, while the second use will use C collation.

Furthermore, the identified collation is also assumed as the collation of any local variables that are of
collatable types. Thus this function would not work any differently if it were written as

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
DECLARE

local_a text := a;
local_b text := b;

BEGIN
RETURN local_a < local_b;

END;
$$ LANGUAGE plpgsql;

If there are no parameters of collatable data types, or no common collation can be identified for them, then
parameters and local variables use the default collation of their data type (which is usually the database’s
default collation, but could be different for variables of domain types).

A local variable of a collatable data type can have a different collation associated with it by including the
COLLATE option in its declaration, for example

1036

Chapter 39. PL/pgSQL - SQL Procedural Language

DECLARE
local_a text COLLATE "en_US";

This option overrides the collation that would otherwise be given to the variable according to the rules
above.

Also, of course explicit COLLATE clauses can be written inside a function if it is desired to force a partic-
ular collation to be used in a particular operation. For example,

CREATE FUNCTION less_than_c(a text, b text) RETURNS boolean AS $$
BEGIN

RETURN a < b COLLATE "C";
END;
$$ LANGUAGE plpgsql;

This overrides the collations associated with the table columns, parameters, or local variables used in the
expression, just as would happen in a plain SQL command.

39.4. Expressions
All expressions used in PL/pgSQL statements are processed using the server’s main SQL executor. For
example, when you write a PL/pgSQL statement like

IF expression THEN ...

PL/pgSQL will evaluate the expression by feeding a query like

SELECT expression

to the main SQL engine. While forming the SELECT command, any occurrences of PL/pgSQL variable
names are replaced by parameters, as discussed in detail in Section 39.10.1. This allows the query plan for
the SELECT to be prepared just once and then reused for subsequent evaluations with different values of
the variables. Thus, what really happens on first use of an expression is essentially a PREPARE command.
For example, if we have declared two integer variables x and y, and we write

IF x < y THEN ...

what happens behind the scenes is equivalent to

PREPARE statement_name(integer, integer) AS SELECT $1 < $2;

and then this prepared statement is EXECUTEd for each execution of the IF statement, with the current
values of the PL/pgSQL variables supplied as parameter values. Normally these details are not important
to a PL/pgSQL user, but they are useful to know when trying to diagnose a problem. More information
appears in Section 39.10.2.

1037

Chapter 39. PL/pgSQL - SQL Procedural Language

39.5. Basic Statements
In this section and the following ones, we describe all the statement types that are explicitly understood by
PL/pgSQL. Anything not recognized as one of these statement types is presumed to be an SQL command
and is sent to the main database engine to execute, as described in Section 39.5.2 and Section 39.5.3.

39.5.1. Assignment
An assignment of a value to a PL/pgSQL variable is written as:

variable := expression;

As explained previously, the expression in such a statement is evaluated by means of an SQL SELECT

command sent to the main database engine. The expression must yield a single value (possibly a row
value, if the variable is a row or record variable). The target variable can be a simple variable (optionally
qualified with a block name), a field of a row or record variable, or an element of an array that is a simple
variable or field.

If the expression’s result data type doesn’t match the variable’s data type, or the variable has a specific
size/precision (like char(20)), the result value will be implicitly converted by the PL/pgSQL interpreter
using the result type’s output-function and the variable type’s input-function. Note that this could poten-
tially result in run-time errors generated by the input function, if the string form of the result value is not
acceptable to the input function.

Examples:

tax := subtotal * 0.06;
my_record.user_id := 20;

39.5.2. Executing a Command With No Result
For any SQL command that does not return rows, for example INSERT without a RETURNING clause, you
can execute the command within a PL/pgSQL function just by writing the command.

Any PL/pgSQL variable name appearing in the command text is treated as a parameter, and then the cur-
rent value of the variable is provided as the parameter value at run time. This is exactly like the processing
described earlier for expressions; for details see Section 39.10.1.

When executing a SQL command in this way, PL/pgSQL may cache and re-use the execution plan for the
command, as discussed in Section 39.10.2.

Sometimes it is useful to evaluate an expression or SELECT query but discard the result, for example
when calling a function that has side-effects but no useful result value. To do this in PL/pgSQL, use the
PERFORM statement:

PERFORM query;

This executes query and discards the result. Write the query the same way you would write an SQL
SELECT command, but replace the initial keyword SELECT with PERFORM. For WITH queries, use

1038

Chapter 39. PL/pgSQL - SQL Procedural Language

PERFORM and then place the query in parentheses. (In this case, the query can only return one row.)
PL/pgSQL variables will be substituted into the query just as for commands that return no result, and the
plan is cached in the same way. Also, the special variable FOUND is set to true if the query produced at
least one row, or false if it produced no rows (see Section 39.5.5).

Note: One might expect that writing SELECT directly would accomplish this result, but at present the
only accepted way to do it is PERFORM. A SQL command that can return rows, such as SELECT, will be
rejected as an error unless it has an INTO clause as discussed in the next section.

An example:

PERFORM create_mv(’cs_session_page_requests_mv’, my_query);

39.5.3. Executing a Query with a Single-row Result
The result of a SQL command yielding a single row (possibly of multiple columns) can be assigned to
a record variable, row-type variable, or list of scalar variables. This is done by writing the base SQL
command and adding an INTO clause. For example,

SELECT select_expressions INTO [STRICT] target FROM ...;
INSERT ... RETURNING expressions INTO [STRICT] target;
UPDATE ... RETURNING expressions INTO [STRICT] target;
DELETE ... RETURNING expressions INTO [STRICT] target;

where target can be a record variable, a row variable, or a comma-separated list of simple variables
and record/row fields. PL/pgSQL variables will be substituted into the rest of the query, and the plan is
cached, just as described above for commands that do not return rows. This works for SELECT,
INSERT/UPDATE/DELETE with RETURNING, and utility commands that return row-set results (such as
EXPLAIN). Except for the INTO clause, the SQL command is the same as it would be written outside
PL/pgSQL.

Tip: Note that this interpretation of SELECT with INTO is quite different from PostgreSQL’s regular
SELECT INTO command, wherein the INTO target is a newly created table. If you want to create a table
from a SELECT result inside a PL/pgSQL function, use the syntax CREATE TABLE ... AS SELECT.

If a row or a variable list is used as target, the query’s result columns must exactly match the structure
of the target as to number and data types, or else a run-time error occurs. When a record variable is the
target, it automatically configures itself to the row type of the query result columns.

The INTO clause can appear almost anywhere in the SQL command. Customarily it is written either just
before or just after the list of select_expressions in a SELECT command, or at the end of the command
for other command types. It is recommended that you follow this convention in case the PL/pgSQL parser
becomes stricter in future versions.

1039

Chapter 39. PL/pgSQL - SQL Procedural Language

If STRICT is not specified in the INTO clause, then target will be set to the first row returned by the
query, or to nulls if the query returned no rows. (Note that “the first row” is not well-defined unless you’ve
used ORDER BY.) Any result rows after the first row are discarded. You can check the special FOUND
variable (see Section 39.5.5) to determine whether a row was returned:

SELECT * INTO myrec FROM emp WHERE empname = myname;
IF NOT FOUND THEN

RAISE EXCEPTION ’employee % not found’, myname;
END IF;

If the STRICT option is specified, the query must return exactly one row or a run-time error will be
reported, either NO_DATA_FOUND (no rows) or TOO_MANY_ROWS (more than one row). You can use an
exception block if you wish to catch the error, for example:

BEGIN
SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE EXCEPTION ’employee % not found’, myname;

WHEN TOO_MANY_ROWS THEN
RAISE EXCEPTION ’employee % not unique’, myname;

END;

Successful execution of a command with STRICT always sets FOUND to true.

For INSERT/UPDATE/DELETE with RETURNING, PL/pgSQL reports an error for more than one returned
row, even when STRICT is not specified. This is because there is no option such as ORDER BY with which
to determine which affected row should be returned.

Note: The STRICT option matches the behavior of Oracle PL/SQL’s SELECT INTO and related state-
ments.

To handle cases where you need to process multiple result rows from a SQL query, see Section 39.6.4.

39.5.4. Executing Dynamic Commands
Oftentimes you will want to generate dynamic commands inside your PL/pgSQL functions, that is, com-
mands that will involve different tables or different data types each time they are executed. PL/pgSQL’s
normal attempts to cache plans for commands (as discussed in Section 39.10.2) will not work in such
scenarios. To handle this sort of problem, the EXECUTE statement is provided:

EXECUTE command-string [INTO [STRICT] target] [USING expression [, ...]];

where command-string is an expression yielding a string (of type text) containing the command to be
executed. The optional target is a record variable, a row variable, or a comma-separated list of simple
variables and record/row fields, into which the results of the command will be stored. The optional USING
expressions supply values to be inserted into the command.

1040

Chapter 39. PL/pgSQL - SQL Procedural Language

No substitution of PL/pgSQL variables is done on the computed command string. Any required variable
values must be inserted in the command string as it is constructed; or you can use parameters as described
below.

Also, there is no plan caching for commands executed via EXECUTE. Instead, the command is always
planned each time the statement is run. Thus the command string can be dynamically created within the
function to perform actions on different tables and columns.

The INTO clause specifies where the results of a SQL command returning rows should be assigned. If a
row or variable list is provided, it must exactly match the structure of the query’s results (when a record
variable is used, it will configure itself to match the result structure automatically). If multiple rows are
returned, only the first will be assigned to the INTO variable. If no rows are returned, NULL is assigned
to the INTO variable(s). If no INTO clause is specified, the query results are discarded.

If the STRICT option is given, an error is reported unless the query produces exactly one row.

The command string can use parameter values, which are referenced in the command as $1, $2, etc. These
symbols refer to values supplied in the USING clause. This method is often preferable to inserting data
values into the command string as text: it avoids run-time overhead of converting the values to text and
back, and it is much less prone to SQL-injection attacks since there is no need for quoting or escaping.
An example is:

EXECUTE ’SELECT count(*) FROM mytable WHERE inserted_by = $1 AND inserted <= $2’
INTO c
USING checked_user, checked_date;

Note that parameter symbols can only be used for data values — if you want to use dynamically deter-
mined table or column names, you must insert them into the command string textually. For example, if
the preceding query needed to be done against a dynamically selected table, you could do this:

EXECUTE ’SELECT count(*) FROM ’
|| tabname::regclass
|| ’ WHERE inserted_by = $1 AND inserted <= $2’

INTO c
USING checked_user, checked_date;

Another restriction on parameter symbols is that they only work in SELECT, INSERT, UPDATE, and
DELETE commands. In other statement types (generically called utility statements), you must insert values
textually even if they are just data values.

An EXECUTE with a simple constant command string and some USING parameters, as in the first example
above, is functionally equivalent to just writing the command directly in PL/pgSQL and allowing re-
placement of PL/pgSQL variables to happen automatically. The important difference is that EXECUTE will
re-plan the command on each execution, generating a plan that is specific to the current parameter values;
whereas PL/pgSQL may otherwise create a generic plan and cache it for re-use. In situations where the
best plan depends strongly on the parameter values, it can be helpful to use EXECUTE to positively ensure
that a generic plan is not selected.

SELECT INTO is not currently supported within EXECUTE; instead, execute a plain SELECT command and
specify INTO as part of the EXECUTE itself.

1041

Chapter 39. PL/pgSQL - SQL Procedural Language

Note: The PL/pgSQL EXECUTE statement is not related to the EXECUTE SQL statement supported
by the PostgreSQL server. The server’s EXECUTE statement cannot be used directly within PL/pgSQL
functions (and is not needed).

Example 39-1. Quoting Values In Dynamic Queries

When working with dynamic commands you will often have to handle escaping of single quotes. The
recommended method for quoting fixed text in your function body is dollar quoting. (If you have legacy
code that does not use dollar quoting, please refer to the overview in Section 39.11.1, which can save you
some effort when translating said code to a more reasonable scheme.)

Dynamic values that are to be inserted into the constructed query require careful handling since they might
themselves contain quote characters. An example (this assumes that you are using dollar quoting for the
function as a whole, so the quote marks need not be doubled):

EXECUTE ’UPDATE tbl SET ’
|| quote_ident(colname)
|| ’ = ’
|| quote_literal(newvalue)
|| ’ WHERE key = ’
|| quote_literal(keyvalue);

This example demonstrates the use of the quote_ident and quote_literal functions (see
Section 9.4). For safety, expressions containing column or table identifiers should be passed through
quote_ident before insertion in a dynamic query. Expressions containing values that should be literal
strings in the constructed command should be passed through quote_literal. These functions take the
appropriate steps to return the input text enclosed in double or single quotes respectively, with any
embedded special characters properly escaped.

Because quote_literal is labelled STRICT, it will always return null when called with a null argument.
In the above example, if newvalue or keyvalue were null, the entire dynamic query string would be-
come null, leading to an error from EXECUTE. You can avoid this problem by using the quote_nullable
function, which works the same as quote_literal except that when called with a null argument it
returns the string NULL. For example,

EXECUTE ’UPDATE tbl SET ’
|| quote_ident(colname)
|| ’ = ’
|| quote_nullable(newvalue)
|| ’ WHERE key = ’
|| quote_nullable(keyvalue);

If you are dealing with values that might be null, you should usually use quote_nullable in place of
quote_literal.

As always, care must be taken to ensure that null values in a query do not deliver unintended results. For
example the WHERE clause

’WHERE key = ’ || quote_nullable(keyvalue)

will never succeed if keyvalue is null, because the result of using the equality operator = with a null
operand is always null. If you wish null to work like an ordinary key value, you would need to rewrite the
above as
’WHERE key IS NOT DISTINCT FROM ’ || quote_nullable(keyvalue)

1042

Chapter 39. PL/pgSQL - SQL Procedural Language

(At present, IS NOT DISTINCT FROM is handled much less efficiently than =, so don’t do this unless
you must. See Section 9.2 for more information on nulls and IS DISTINCT.)

Note that dollar quoting is only useful for quoting fixed text. It would be a very bad idea to try to write
this example as:

EXECUTE ’UPDATE tbl SET ’
|| quote_ident(colname)
|| ’ = $$’
|| newvalue
|| ’$$ WHERE key = ’
|| quote_literal(keyvalue);

because it would break if the contents of newvalue happened to contain $$. The same objection would
apply to any other dollar-quoting delimiter you might pick. So, to safely quote text that is not known in
advance, you must use quote_literal, quote_nullable, or quote_ident, as appropriate.

Dynamic SQL statements can also be safely constructed using the format function (see Section 9.4). For
example:

EXECUTE format(’UPDATE tbl SET %I = %L WHERE key = %L’, colname, newvalue, keyvalue);

The format function can be used in conjunction with the USING clause:
EXECUTE format(’UPDATE tbl SET %I = $1 WHERE key = $2’, colname)

USING newvalue, keyvalue;

This form is more efficient, because the parameters newvalue and keyvalue are not converted to text.

A much larger example of a dynamic command and EXECUTE can be seen in Example 39-8, which builds
and executes a CREATE FUNCTION command to define a new function.

39.5.5. Obtaining the Result Status
There are several ways to determine the effect of a command. The first method is to use the GET

DIAGNOSTICS command, which has the form:

GET [CURRENT] DIAGNOSTICS variable = item [, ...];

This command allows retrieval of system status indicators. Each item is a key word identifying a status
value to be assigned to the specified variable (which should be of the right data type to receive it). The
currently available status items are ROW_COUNT, the number of rows processed by the last SQL command
sent to the SQL engine, and RESULT_OID, the OID of the last row inserted by the most recent SQL
command. Note that RESULT_OID is only useful after an INSERT command into a table containing OIDs.

An example:

GET DIAGNOSTICS integer_var = ROW_COUNT;

The second method to determine the effects of a command is to check the special variable named FOUND,
which is of type boolean. FOUND starts out false within each PL/pgSQL function call. It is set by each of
the following types of statements:

1043

Chapter 39. PL/pgSQL - SQL Procedural Language

• A SELECT INTO statement sets FOUND true if a row is assigned, false if no row is returned.

• A PERFORM statement sets FOUND true if it produces (and discards) one or more rows, false if no row is
produced.

• UPDATE, INSERT, and DELETE statements set FOUND true if at least one row is affected, false if no row
is affected.

• A FETCH statement sets FOUND true if it returns a row, false if no row is returned.

• A MOVE statement sets FOUND true if it successfully repositions the cursor, false otherwise.

• A FOR or FOREACH statement sets FOUND true if it iterates one or more times, else false. FOUND is
set this way when the loop exits; inside the execution of the loop, FOUND is not modified by the loop
statement, although it might be changed by the execution of other statements within the loop body.

• RETURN QUERY and RETURN QUERY EXECUTE statements set FOUND true if the query returns at least
one row, false if no row is returned.

Other PL/pgSQL statements do not change the state of FOUND. Note in particular that EXECUTE changes
the output of GET DIAGNOSTICS, but does not change FOUND.

FOUND is a local variable within each PL/pgSQL function; any changes to it affect only the current func-
tion.

39.5.6. Doing Nothing At All
Sometimes a placeholder statement that does nothing is useful. For example, it can indicate that one arm
of an if/then/else chain is deliberately empty. For this purpose, use the NULL statement:

NULL;

For example, the following two fragments of code are equivalent:

BEGIN
y := x / 0;

EXCEPTION
WHEN division_by_zero THEN

NULL; -- ignore the error
END;

BEGIN
y := x / 0;

EXCEPTION
WHEN division_by_zero THEN -- ignore the error

END;

Which is preferable is a matter of taste.

Note: In Oracle’s PL/SQL, empty statement lists are not allowed, and so NULL statements are required
for situations such as this. PL/pgSQL allows you to just write nothing, instead.

1044

Chapter 39. PL/pgSQL - SQL Procedural Language

39.6. Control Structures
Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL’s
control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

39.6.1. Returning From a Function
There are two commands available that allow you to return data from a function: RETURN and RETURN

NEXT.

39.6.1.1. RETURN

RETURN expression;

RETURN with an expression terminates the function and returns the value of expression to the caller.
This form is used for PL/pgSQL functions that do not return a set.

When returning a scalar type, any expression can be used. The expression’s result will be automatically
cast into the function’s return type as described for assignments. To return a composite (row) value, you
must write a record or row variable as the expression.

If you declared the function with output parameters, write just RETURN with no expression. The current
values of the output parameter variables will be returned.

If you declared the function to return void, a RETURN statement can be used to exit the function early;
but do not write an expression following RETURN.

The return value of a function cannot be left undefined. If control reaches the end of the top-level block
of the function without hitting a RETURN statement, a run-time error will occur. This restriction does not
apply to functions with output parameters and functions returning void, however. In those cases a RETURN
statement is automatically executed if the top-level block finishes.

39.6.1.2. RETURN NEXT and RETURN QUERY

RETURN NEXT expression;
RETURN QUERY query;
RETURN QUERY EXECUTE command-string [USING expression [, ...]];

When a PL/pgSQL function is declared to return SETOF sometype, the procedure to follow is slightly
different. In that case, the individual items to return are specified by a sequence of RETURN NEXT or
RETURN QUERY commands, and then a final RETURN command with no argument is used to indicate
that the function has finished executing. RETURN NEXT can be used with both scalar and composite data
types; with a composite result type, an entire “table” of results will be returned. RETURN QUERY appends
the results of executing a query to the function’s result set. RETURN NEXT and RETURN QUERY can be
freely intermixed in a single set-returning function, in which case their results will be concatenated.

RETURN NEXT and RETURN QUERY do not actually return from the function — they simply append zero or
more rows to the function’s result set. Execution then continues with the next statement in the PL/pgSQL
function. As successive RETURN NEXT or RETURN QUERY commands are executed, the result set is built

1045

Chapter 39. PL/pgSQL - SQL Procedural Language

up. A final RETURN, which should have no argument, causes control to exit the function (or you can just
let control reach the end of the function).

RETURN QUERY has a variant RETURN QUERY EXECUTE, which specifies the query to be executed dy-
namically. Parameter expressions can be inserted into the computed query string via USING, in just the
same way as in the EXECUTE command.

If you declared the function with output parameters, write just RETURN NEXT with no expression. On
each execution, the current values of the output parameter variable(s) will be saved for eventual return
as a row of the result. Note that you must declare the function as returning SETOF record when there
are multiple output parameters, or SETOF sometype when there is just one output parameter of type
sometype, in order to create a set-returning function with output parameters.

Here is an example of a function using RETURN NEXT:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, ’three’);
INSERT INTO foo VALUES (4, 5, ’six’);

CREATE OR REPLACE FUNCTION getAllFoo() RETURNS SETOF foo AS
$BODY$
DECLARE

r foo%rowtype;
BEGIN

FOR r IN SELECT * FROM foo
WHERE fooid > 0
LOOP

-- can do some processing here
RETURN NEXT r; -- return current row of SELECT

END LOOP;
RETURN;

END
$BODY$
LANGUAGE plpgsql;

SELECT * FROM getallfoo();

Note: The current implementation of RETURN NEXT and RETURN QUERY stores the entire result set
before returning from the function, as discussed above. That means that if a PL/pgSQL function
produces a very large result set, performance might be poor: data will be written to disk to avoid
memory exhaustion, but the function itself will not return until the entire result set has been generated.
A future version of PL/pgSQL might allow users to define set-returning functions that do not have this
limitation. Currently, the point at which data begins being written to disk is controlled by the work_mem
configuration variable. Administrators who have sufficient memory to store larger result sets in memory
should consider increasing this parameter.

1046

Chapter 39. PL/pgSQL - SQL Procedural Language

39.6.2. Conditionals
IF and CASE statements let you execute alternative commands based on certain conditions. PL/pgSQL
has three forms of IF:

• IF ... THEN

• IF ... THEN ... ELSE

• IF ... THEN ... ELSIF ... THEN ... ELSE

and two forms of CASE:

• CASE ... WHEN ... THEN ... ELSE ... END CASE

• CASE WHEN ... THEN ... ELSE ... END CASE

39.6.2.1. IF-THEN

IF boolean-expression THEN
statements

END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be
executed if the condition is true. Otherwise, they are skipped.

Example:

IF v_user_id <> 0 THEN
UPDATE users SET email = v_email WHERE user_id = v_user_id;

END IF;

39.6.2.2. IF-THEN-ELSE

IF boolean-expression THEN
statements

ELSE
statements

END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements that
should be executed if the condition is not true. (Note this includes the case where the condition evaluates
to NULL.)

Examples:

IF parentid IS NULL OR parentid = ”
THEN

RETURN fullname;

1047

Chapter 39. PL/pgSQL - SQL Procedural Language

ELSE
RETURN hp_true_filename(parentid) || ’/’ || fullname;

END IF;

IF v_count > 0 THEN
INSERT INTO users_count (count) VALUES (v_count);
RETURN ’t’;

ELSE
RETURN ’f’;

END IF;

39.6.2.3. IF-THEN-ELSIF

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

...]]
[ELSE

statements]
END IF;

Sometimes there are more than just two alternatives. IF-THEN-ELSIF provides a convenient method of
checking several alternatives in turn. The IF conditions are tested successively until the first one that
is true is found. Then the associated statement(s) are executed, after which control passes to the next
statement after END IF. (Any subsequent IF conditions are not tested.) If none of the IF conditions is
true, then the ELSE block (if any) is executed.

Here is an example:

IF number = 0 THEN
result := ’zero’;

ELSIF number > 0 THEN
result := ’positive’;

ELSIF number < 0 THEN
result := ’negative’;

ELSE
-- hmm, the only other possibility is that number is null
result := ’NULL’;

END IF;

The key word ELSIF can also be spelled ELSEIF.

An alternative way of accomplishing the same task is to nest IF-THEN-ELSE statements, as in the follow-
ing example:

IF demo_row.sex = ’m’ THEN

1048

Chapter 39. PL/pgSQL - SQL Procedural Language

pretty_sex := ’man’;
ELSE

IF demo_row.sex = ’f’ THEN
pretty_sex := ’woman’;

END IF;
END IF;

However, this method requires writing a matching END IF for each IF, so it is much more cumbersome
than using ELSIF when there are many alternatives.

39.6.2.4. Simple CASE

CASE search-expression

WHEN expression [, expression [...]] THEN
statements

[WHEN expression [, expression [...]] THEN
statements

...]
[ELSE

statements]
END CASE;

The simple form of CASE provides conditional execution based on equality of operands. The
search-expression is evaluated (once) and successively compared to each expression in the WHEN
clauses. If a match is found, then the corresponding statements are executed, and then control passes
to the next statement after END CASE. (Subsequent WHEN expressions are not evaluated.) If no match
is found, the ELSE statements are executed; but if ELSE is not present, then a CASE_NOT_FOUND

exception is raised.

Here is a simple example:

CASE x
WHEN 1, 2 THEN

msg := ’one or two’;
ELSE

msg := ’other value than one or two’;
END CASE;

39.6.2.5. Searched CASE

CASE
WHEN boolean-expression THEN

statements

[WHEN boolean-expression THEN
statements

...]
[ELSE

1049

Chapter 39. PL/pgSQL - SQL Procedural Language

statements]
END CASE;

The searched form of CASE provides conditional execution based on truth of Boolean expressions. Each
WHEN clause’s boolean-expression is evaluated in turn, until one is found that yields true. Then the
corresponding statements are executed, and then control passes to the next statement after END CASE.
(Subsequent WHEN expressions are not evaluated.) If no true result is found, the ELSE statements are
executed; but if ELSE is not present, then a CASE_NOT_FOUND exception is raised.

Here is an example:

CASE
WHEN x BETWEEN 0 AND 10 THEN

msg := ’value is between zero and ten’;
WHEN x BETWEEN 11 AND 20 THEN

msg := ’value is between eleven and twenty’;
END CASE;

This form of CASE is entirely equivalent to IF-THEN-ELSIF, except for the rule that reaching an omitted
ELSE clause results in an error rather than doing nothing.

39.6.3. Simple Loops
With the LOOP, EXIT, CONTINUE, WHILE, FOR, and FOREACH statements, you can arrange for your
PL/pgSQL function to repeat a series of commands.

39.6.3.1. LOOP

[<<label>>]
LOOP

statements

END LOOP [label];

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or RETURN
statement. The optional label can be used by EXIT and CONTINUE statements within nested loops to
specify which loop those statements refer to.

39.6.3.2. EXIT

EXIT [label] [WHEN boolean-expression];

If no label is given, the innermost loop is terminated and the statement following END LOOP is executed
next. If label is given, it must be the label of the current or some outer level of nested loop or block. Then
the named loop or block is terminated and control continues with the statement after the loop’s/block’s
corresponding END.

1050

Chapter 39. PL/pgSQL - SQL Procedural Language

If WHEN is specified, the loop exit occurs only if boolean-expression is true. Otherwise, control passes
to the statement after EXIT.

EXIT can be used with all types of loops; it is not limited to use with unconditional loops.

When used with a BEGIN block, EXIT passes control to the next statement after the end of the block. Note
that a label must be used for this purpose; an unlabelled EXIT is never considered to match a BEGIN block.
(This is a change from pre-8.4 releases of PostgreSQL, which would allow an unlabelled EXIT to match
a BEGIN block.)

Examples:

LOOP
-- some computations
IF count > 0 THEN

EXIT; -- exit loop
END IF;

END LOOP;

LOOP
-- some computations
EXIT WHEN count > 0; -- same result as previous example

END LOOP;

<<ablock>>

BEGIN
-- some computations
IF stocks > 100000 THEN

EXIT ablock; -- causes exit from the BEGIN block
END IF;
-- computations here will be skipped when stocks > 100000

END;

39.6.3.3. CONTINUE

CONTINUE [label] [WHEN boolean-expression];

If no label is given, the next iteration of the innermost loop is begun. That is, all statements remaining in
the loop body are skipped, and control returns to the loop control expression (if any) to determine whether
another loop iteration is needed. If label is present, it specifies the label of the loop whose execution will
be continued.

If WHEN is specified, the next iteration of the loop is begun only if boolean-expression is true. Other-
wise, control passes to the statement after CONTINUE.

CONTINUE can be used with all types of loops; it is not limited to use with unconditional loops.

Examples:

LOOP
-- some computations
EXIT WHEN count > 100;

1051

Chapter 39. PL/pgSQL - SQL Procedural Language

CONTINUE WHEN count < 50;
-- some computations for count IN [50 .. 100]

END LOOP;

39.6.3.4. WHILE

[<<label>>]
WHILE boolean-expression LOOP

statements

END LOOP [label];

The WHILE statement repeats a sequence of statements so long as the boolean-expression evaluates
to true. The expression is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
-- some computations here

END LOOP;

WHILE NOT done LOOP
-- some computations here

END LOOP;

39.6.3.5. FOR (Integer Variant)

[<<label>>]
FOR name IN [REVERSE] expression .. expression [BY expression] LOOP

statements

END LOOP [label];

This form of FOR creates a loop that iterates over a range of integer values. The variable name is auto-
matically defined as type integer and exists only inside the loop (any existing definition of the variable
name is ignored within the loop). The two expressions giving the lower and upper bound of the range are
evaluated once when entering the loop. If the BY clause isn’t specified the iteration step is 1, otherwise it’s
the value specified in the BY clause, which again is evaluated once on loop entry. If REVERSE is specified
then the step value is subtracted, rather than added, after each iteration.

Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
-- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop

END LOOP;

FOR i IN REVERSE 10..1 LOOP
-- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop

END LOOP;

1052

Chapter 39. PL/pgSQL - SQL Procedural Language

FOR i IN REVERSE 10..1 BY 2 LOOP
-- i will take on the values 10,8,6,4,2 within the loop

END LOOP;

If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop body is
not executed at all. No error is raised.

If a label is attached to the FOR loop then the integer loop variable can be referenced with a qualified
name, using that label.

39.6.4. Looping Through Query Results
Using a different type of FOR loop, you can iterate through the results of a query and manipulate that data
accordingly. The syntax is:

[<<label>>]
FOR target IN query LOOP

statements

END LOOP [label];

The target is a record variable, row variable, or comma-separated list of scalar variables. The target
is successively assigned each row resulting from the query and the loop body is executed for each row.
Here is an example:

CREATE FUNCTION cs_refresh_mviews() RETURNS integer AS $$
DECLARE

mviews RECORD;
BEGIN

RAISE NOTICE ’Refreshing materialized views...’;

FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP

-- Now "mviews" has one record from cs_materialized_views

RAISE NOTICE ’Refreshing materialized view %s ...’, quote_ident(mviews.mv_name);
EXECUTE ’TRUNCATE TABLE ’ || quote_ident(mviews.mv_name);
EXECUTE ’INSERT INTO ’

|| quote_ident(mviews.mv_name) || ’ ’
|| mviews.mv_query;

END LOOP;

RAISE NOTICE ’Done refreshing materialized views.’;
RETURN 1;

END;
$$ LANGUAGE plpgsql;

If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the loop.

1053

Chapter 39. PL/pgSQL - SQL Procedural Language

The query used in this type of FOR statement can be any SQL command that returns rows to the caller:
SELECT is the most common case, but you can also use INSERT, UPDATE, or DELETE with a RETURNING
clause. Some utility commands such as EXPLAIN will work too.

PL/pgSQL variables are substituted into the query text, and the query plan is cached for possible re-use,
as discussed in detail in Section 39.10.1 and Section 39.10.2.

The FOR-IN-EXECUTE statement is another way to iterate over rows:

[<<label>>]
FOR target IN EXECUTE text_expression [USING expression [, ...]] LOOP

statements

END LOOP [label];

This is like the previous form, except that the source query is specified as a string expression, which is
evaluated and replanned on each entry to the FOR loop. This allows the programmer to choose the speed
of a preplanned query or the flexibility of a dynamic query, just as with a plain EXECUTE statement. As
with EXECUTE, parameter values can be inserted into the dynamic command via USING.

Another way to specify the query whose results should be iterated through is to declare it as a cursor. This
is described in Section 39.7.4.

39.6.5. Looping Through Arrays
The FOREACH loop is much like a FOR loop, but instead of iterating through the rows returned by a
SQL query, it iterates through the elements of an array value. (In general, FOREACH is meant for looping
through components of a composite-valued expression; variants for looping through composites besides
arrays may be added in future.) The FOREACH statement to loop over an array is:

[<<label>>]
FOREACH target [SLICE number] IN ARRAY expression LOOP

statements

END LOOP [label];

Without SLICE, or if SLICE 0 is specified, the loop iterates through individual elements of the array pro-
duced by evaluating the expression. The target variable is assigned each element value in sequence,
and the loop body is executed for each element. Here is an example of looping through the elements of an
integer array:

CREATE FUNCTION sum(int[]) RETURNS int8 AS $$
DECLARE
s int8 := 0;
x int;

BEGIN
FOREACH x IN ARRAY $1
LOOP
s := s + x;

END LOOP;
RETURN s;

END;

1054

Chapter 39. PL/pgSQL - SQL Procedural Language

$$ LANGUAGE plpgsql;

The elements are visited in storage order, regardless of the number of array dimensions. Although the
target is usually just a single variable, it can be a list of variables when looping through an array of
composite values (records). In that case, for each array element, the variables are assigned from successive
columns of the composite value.

With a positive SLICE value, FOREACH iterates through slices of the array rather than single elements.
The SLICE value must be an integer constant not larger than the number of dimensions of the array. The
target variable must be an array, and it receives successive slices of the array value, where each slice is
of the number of dimensions specified by SLICE. Here is an example of iterating through one-dimensional
slices:

CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$
DECLARE
x int[];

BEGIN
FOREACH x SLICE 1 IN ARRAY $1
LOOP
RAISE NOTICE ’row = %’, x;

END LOOP;
END;
$$ LANGUAGE plpgsql;

SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);

NOTICE: row = {1,2,3}
NOTICE: row = {4,5,6}
NOTICE: row = {7,8,9}
NOTICE: row = {10,11,12}

39.6.6. Trapping Errors
By default, any error occurring in a PL/pgSQL function aborts execution of the function, and indeed of
the surrounding transaction as well. You can trap errors and recover from them by using a BEGIN block
with an EXCEPTION clause. The syntax is an extension of the normal syntax for a BEGIN block:

[<<label>>]
[DECLARE

declarations]
BEGIN

statements

EXCEPTION
WHEN condition [OR condition ...] THEN

handler_statements

[WHEN condition [OR condition ...] THEN
handler_statements

...]
END;

1055

Chapter 39. PL/pgSQL - SQL Procedural Language

If no error occurs, this form of block simply executes all the statements, and then control passes to
the next statement after END. But if an error occurs within the statements, further processing
of the statements is abandoned, and control passes to the EXCEPTION list. The list is searched
for the first condition matching the error that occurred. If a match is found, the corresponding
handler_statements are executed, and then control passes to the next statement after END. If no
match is found, the error propagates out as though the EXCEPTION clause were not there at all: the error
can be caught by an enclosing block with EXCEPTION, or if there is none it aborts processing of the
function.

The condition names can be any of those shown in Appendix A. A category name matches
any error within its category. The special condition name OTHERS matches every error type except
QUERY_CANCELED. (It is possible, but often unwise, to trap QUERY_CANCELED by name.) Condition
names are not case-sensitive. Also, an error condition can be specified by SQLSTATE code; for example
these are equivalent:

WHEN division_by_zero THEN ...
WHEN SQLSTATE ’22012’ THEN ...

If a new error occurs within the selected handler_statements, it cannot be caught by this EXCEPTION
clause, but is propagated out. A surrounding EXCEPTION clause could catch it.

When an error is caught by an EXCEPTION clause, the local variables of the PL/pgSQL function remain as
they were when the error occurred, but all changes to persistent database state within the block are rolled
back. As an example, consider this fragment:

INSERT INTO mytab(firstname, lastname) VALUES(’Tom’, ’Jones’);
BEGIN

UPDATE mytab SET firstname = ’Joe’ WHERE lastname = ’Jones’;
x := x + 1;
y := x / 0;

EXCEPTION
WHEN division_by_zero THEN

RAISE NOTICE ’caught division_by_zero’;
RETURN x;

END;

When control reaches the assignment to y, it will fail with a division_by_zero error. This will be
caught by the EXCEPTION clause. The value returned in the RETURN statement will be the incremented
value of x, but the effects of the UPDATE command will have been rolled back. The INSERT command
preceding the block is not rolled back, however, so the end result is that the database contains Tom Jones

not Joe Jones.

Tip: A block containing an EXCEPTION clause is significantly more expensive to enter and exit than a
block without one. Therefore, don’t use EXCEPTION without need.

1056

Chapter 39. PL/pgSQL - SQL Procedural Language

Example 39-2. Exceptions with UPDATE/INSERT

This example uses exception handling to perform either UPDATE or INSERT, as appropriate:

CREATE TABLE db (a INT PRIMARY KEY, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN

LOOP
-- first try to update the key
UPDATE db SET b = data WHERE a = key;
IF found THEN

RETURN;
END IF;
-- not there, so try to insert the key
-- if someone else inserts the same key concurrently,
-- we could get a unique-key failure
BEGIN

INSERT INTO db(a,b) VALUES (key, data);
RETURN;

EXCEPTION WHEN unique_violation THEN
-- Do nothing, and loop to try the UPDATE again.

END;
END LOOP;

END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, ’david’);
SELECT merge_db(1, ’dennis’);

This coding assumes the unique_violation error is caused by the INSERT, and not by, say, an INSERT
in a trigger function on the table. It might also misbehave if there is more than one unique index on the
table, since it will retry the operation regardless of which index caused the error. More safety could be had
by using the features discussed next to check that the trapped error was the one expected.

39.6.6.1. Obtaining information about an error

Exception handlers frequently need to identify the specific error that occurred. There are two ways
to get information about the current exception in PL/pgSQL: special variables and the GET STACKED

DIAGNOSTICS command.

Within an exception handler, the special variable SQLSTATE contains the error code that corresponds to
the exception that was raised (refer to Table A-1 for a list of possible error codes). The special variable
SQLERRM contains the error message associated with the exception. These variables are undefined outside
exception handlers.

Within an exception handler, one may also retrieve information about the current exception by using the
GET STACKED DIAGNOSTICS command, which has the form:

GET STACKED DIAGNOSTICS variable = item [, ...];

1057

Chapter 39. PL/pgSQL - SQL Procedural Language

Each item is a key word identifying a status value to be assigned to the specified variable (which should
be of the right data type to receive it). The currently available status items are shown in Table 39-1.

Table 39-1. Error diagnostics values

Name Type Description
RETURNED_SQLSTATE text the SQLSTATE error code of the

exception

MESSAGE_TEXT text the text of the exception’s
primary message

PG_EXCEPTION_DETAIL text the text of the exception’s detail
message, if any

PG_EXCEPTION_HINT text the text of the exception’s hint
message, if any

PG_EXCEPTION_CONTEXT text line(s) of text describing the call
stack

If the exception did not set a value for an item, an empty string will be returned.

Here is an example:

DECLARE
text_var1 text;
text_var2 text;
text_var3 text;

BEGIN
-- some processing which might cause an exception
...

EXCEPTION WHEN OTHERS THEN
GET STACKED DIAGNOSTICS text_var1 = MESSAGE_TEXT,

text_var2 = PG_EXCEPTION_DETAIL,
text_var3 = PG_EXCEPTION_HINT;

END;

39.7. Cursors
Rather than executing a whole query at once, it is possible to set up a cursor that encapsulates the query,
and then read the query result a few rows at a time. One reason for doing this is to avoid memory overrun
when the result contains a large number of rows. (However, PL/pgSQL users do not normally need to
worry about that, since FOR loops automatically use a cursor internally to avoid memory problems.) A
more interesting usage is to return a reference to a cursor that a function has created, allowing the caller
to read the rows. This provides an efficient way to return large row sets from functions.

1058

Chapter 39. PL/pgSQL - SQL Procedural Language

39.7.1. Declaring Cursor Variables
All access to cursors in PL/pgSQL goes through cursor variables, which are always of the special data
type refcursor. One way to create a cursor variable is just to declare it as a variable of type refcursor.
Another way is to use the cursor declaration syntax, which in general is:

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;

(FOR can be replaced by IS for Oracle compatibility.) If SCROLL is specified, the cursor will be capable of
scrolling backward; if NO SCROLL is specified, backward fetches will be rejected; if neither specification
appears, it is query-dependent whether backward fetches will be allowed. arguments, if specified, is a
comma-separated list of pairs name datatype that define names to be replaced by parameter values in
the given query. The actual values to substitute for these names will be specified later, when the cursor is
opened.

Some examples:

DECLARE
curs1 refcursor;
curs2 CURSOR FOR SELECT * FROM tenk1;
curs3 CURSOR (key integer) FOR SELECT * FROM tenk1 WHERE unique1 = key;

All three of these variables have the data type refcursor, but the first can be used with any query, while
the second has a fully specified query already bound to it, and the last has a parameterized query bound
to it. (key will be replaced by an integer parameter value when the cursor is opened.) The variable curs1
is said to be unbound since it is not bound to any particular query.

39.7.2. Opening Cursors
Before a cursor can be used to retrieve rows, it must be opened. (This is the equivalent action to the
SQL command DECLARE CURSOR.) PL/pgSQL has three forms of the OPEN statement, two of which use
unbound cursor variables while the third uses a bound cursor variable.

Note: Bound cursor variables can also be used without explicitly opening the cursor, via the FOR

statement described in Section 39.7.4.

39.7.2.1. OPEN FOR query

OPEN unbound_cursorvar [[NO] SCROLL] FOR query;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open already,
and it must have been declared as an unbound cursor variable (that is, as a simple refcursor variable).
The query must be a SELECT, or something else that returns rows (such as EXPLAIN). The query is treated
in the same way as other SQL commands in PL/pgSQL: PL/pgSQL variable names are substituted, and the
query plan is cached for possible reuse. When a PL/pgSQL variable is substituted into the cursor query,
the value that is substituted is the one it has at the time of the OPEN; subsequent changes to the variable
will not affect the cursor’s behavior. The SCROLL and NO SCROLL options have the same meanings as for
a bound cursor.

1059

Chapter 39. PL/pgSQL - SQL Procedural Language

An example:

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

39.7.2.2. OPEN FOR EXECUTE

OPEN unbound_cursorvar [[NO] SCROLL] FOR EXECUTE query_string

[USING expression [, ...]];

The cursor variable is opened and given the specified query to execute. The cursor cannot be open already,
and it must have been declared as an unbound cursor variable (that is, as a simple refcursor variable).
The query is specified as a string expression, in the same way as in the EXECUTE command. As usual,
this gives flexibility so the query plan can vary from one run to the next (see Section 39.10.2), and it also
means that variable substitution is not done on the command string. As with EXECUTE, parameter values
can be inserted into the dynamic command via USING. The SCROLL and NO SCROLL options have the
same meanings as for a bound cursor.

An example:

OPEN curs1 FOR EXECUTE ’SELECT * FROM ’ || quote_ident(tabname)
|| ’ WHERE col1 = $1’ USING keyvalue;

In this example, the table name is inserted into the query textually, so use of quote_ident() is recom-
mended to guard against SQL injection. The comparison value for col1 is inserted via a USING parameter,
so it needs no quoting.

39.7.2.3. Opening a Bound Cursor

OPEN bound_cursorvar [([argument_name :=] argument_value [, ...])];

This form of OPEN is used to open a cursor variable whose query was bound to it when it was declared.
The cursor cannot be open already. A list of actual argument value expressions must appear if and only if
the cursor was declared to take arguments. These values will be substituted in the query.

The query plan for a bound cursor is always considered cacheable; there is no equivalent of EXECUTE
in this case. Notice that SCROLL and NO SCROLL cannot be specified in OPEN, as the cursor’s scrolling
behavior was already determined.

Argument values can be passed using either positional or named notation. In positional notation, all argu-
ments are specified in order. In named notation, each argument’s name is specified using := to separate it
from the argument expression. Similar to calling functions, described in Section 4.3, it is also allowed to
mix positional and named notation.

Examples (these use the cursor declaration examples above):

OPEN curs2;
OPEN curs3(42);
OPEN curs3(key := 42);

1060

Chapter 39. PL/pgSQL - SQL Procedural Language

Because variable substitution is done on a bound cursor’s query, there are really two ways to pass values
into the cursor: either with an explicit argument to OPEN, or implicitly by referencing a PL/pgSQL variable
in the query. However, only variables declared before the bound cursor was declared will be substituted
into it. In either case the value to be passed is determined at the time of the OPEN. For example, another
way to get the same effect as the curs3 example above is

DECLARE
key integer;
curs4 CURSOR FOR SELECT * FROM tenk1 WHERE unique1 = key;

BEGIN
key := 42;
OPEN curs4;

39.7.3. Using Cursors
Once a cursor has been opened, it can be manipulated with the statements described here.

These manipulations need not occur in the same function that opened the cursor to begin with. You can re-
turn a refcursor value out of a function and let the caller operate on the cursor. (Internally, a refcursor
value is simply the string name of a so-called portal containing the active query for the cursor. This name
can be passed around, assigned to other refcursor variables, and so on, without disturbing the portal.)

All portals are implicitly closed at transaction end. Therefore a refcursor value is usable to reference
an open cursor only until the end of the transaction.

39.7.3.1. FETCH

FETCH [direction { FROM | IN }] cursor INTO target;

FETCH retrieves the next row from the cursor into a target, which might be a row variable, a record variable,
or a comma-separated list of simple variables, just like SELECT INTO. If there is no next row, the target
is set to NULL(s). As with SELECT INTO, the special variable FOUND can be checked to see whether a
row was obtained or not.

The direction clause can be any of the variants allowed in the SQL FETCH command except the ones
that can fetch more than one row; namely, it can be NEXT, PRIOR, FIRST, LAST, ABSOLUTE count,
RELATIVE count, FORWARD, or BACKWARD. Omitting direction is the same as specifying NEXT.
direction values that require moving backward are likely to fail unless the cursor was declared or
opened with the SCROLL option.

cursor must be the name of a refcursor variable that references an open cursor portal.

Examples:

FETCH curs1 INTO rowvar;
FETCH curs2 INTO foo, bar, baz;
FETCH LAST FROM curs3 INTO x, y;

1061

Chapter 39. PL/pgSQL - SQL Procedural Language

FETCH RELATIVE -2 FROM curs4 INTO x;

39.7.3.2. MOVE

MOVE [direction { FROM | IN }] cursor;

MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only repositions the cursor and does not return the row moved to. As with SELECT INTO, the
special variable FOUND can be checked to see whether there was a next row to move to.

The direction clause can be any of the variants allowed in the SQL FETCH command, namely NEXT,
PRIOR, FIRST, LAST, ABSOLUTE count, RELATIVE count, ALL, FORWARD [count | ALL], or BACKWARD
[count | ALL]. Omitting direction is the same as specifying NEXT. direction values that require
moving backward are likely to fail unless the cursor was declared or opened with the SCROLL option.

Examples:

MOVE curs1;
MOVE LAST FROM curs3;
MOVE RELATIVE -2 FROM curs4;
MOVE FORWARD 2 FROM curs4;

39.7.3.3. UPDATE/DELETE WHERE CURRENT OF

UPDATE table SET ... WHERE CURRENT OF cursor;
DELETE FROM table WHERE CURRENT OF cursor;

When a cursor is positioned on a table row, that row can be updated or deleted using the cursor to identify
the row. There are restrictions on what the cursor’s query can be (in particular, no grouping) and it’s best
to use FOR UPDATE in the cursor. For more information see the DECLARE reference page.

An example:

UPDATE foo SET dataval = myval WHERE CURRENT OF curs1;

39.7.3.4. CLOSE

CLOSE cursor;

CLOSE closes the portal underlying an open cursor. This can be used to release resources earlier than end
of transaction, or to free up the cursor variable to be opened again.

An example:

CLOSE curs1;

1062

Chapter 39. PL/pgSQL - SQL Procedural Language

39.7.3.5. Returning Cursors

PL/pgSQL functions can return cursors to the caller. This is useful to return multiple rows or columns,
especially with very large result sets. To do this, the function opens the cursor and returns the cursor name
to the caller (or simply opens the cursor using a portal name specified by or otherwise known to the caller).
The caller can then fetch rows from the cursor. The cursor can be closed by the caller, or it will be closed
automatically when the transaction closes.

The portal name used for a cursor can be specified by the programmer or automatically generated. To
specify a portal name, simply assign a string to the refcursor variable before opening it. The string
value of the refcursor variable will be used by OPEN as the name of the underlying portal. However,
if the refcursor variable is null, OPEN automatically generates a name that does not conflict with any
existing portal, and assigns it to the refcursor variable.

Note: A bound cursor variable is initialized to the string value representing its name, so that the portal
name is the same as the cursor variable name, unless the programmer overrides it by assignment
before opening the cursor. But an unbound cursor variable defaults to the null value initially, so it will
receive an automatically-generated unique name, unless overridden.

The following example shows one way a cursor name can be supplied by the caller:

CREATE TABLE test (col text);
INSERT INTO test VALUES (’123’);

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS ’
BEGIN

OPEN $1 FOR SELECT col FROM test;
RETURN $1;

END;
’ LANGUAGE plpgsql;

BEGIN;
SELECT reffunc(’funccursor’);
FETCH ALL IN funccursor;
COMMIT;

The following example uses automatic cursor name generation:

CREATE FUNCTION reffunc2() RETURNS refcursor AS ’
DECLARE

ref refcursor;
BEGIN

OPEN ref FOR SELECT col FROM test;
RETURN ref;

END;
’ LANGUAGE plpgsql;

1063

Chapter 39. PL/pgSQL - SQL Procedural Language

-- need to be in a transaction to use cursors.
BEGIN;
SELECT reffunc2();

reffunc2

<unnamed cursor 1>

(1 row)

FETCH ALL IN "<unnamed cursor 1>";
COMMIT;

The following example shows one way to return multiple cursors from a single function:

CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor AS $$
BEGIN

OPEN $1 FOR SELECT * FROM table_1;
RETURN NEXT $1;
OPEN $2 FOR SELECT * FROM table_2;
RETURN NEXT $2;

END;
$$ LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;

SELECT * FROM myfunc(’a’, ’b’);

FETCH ALL FROM a;
FETCH ALL FROM b;
COMMIT;

39.7.4. Looping Through a Cursor’s Result
There is a variant of the FOR statement that allows iterating through the rows returned by a cursor. The
syntax is:

[<<label>>]
FOR recordvar IN bound_cursorvar [([argument_name :=] argument_value [, ...])] LOOP

statements

END LOOP [label];

The cursor variable must have been bound to some query when it was declared, and it cannot be open
already. The FOR statement automatically opens the cursor, and it closes the cursor again when the loop
exits. A list of actual argument value expressions must appear if and only if the cursor was declared to

1064

Chapter 39. PL/pgSQL - SQL Procedural Language

take arguments. These values will be substituted in the query, in just the same way as during an OPEN (see
Section 39.7.2.3).

The variable recordvar is automatically defined as type record and exists only inside the loop (any
existing definition of the variable name is ignored within the loop). Each row returned by the cursor is
successively assigned to this record variable and the loop body is executed.

39.8. Errors and Messages
Use the RAISE statement to report messages and raise errors.

RAISE [level] ’format’ [, expression [, ...]] [USING option = expression [, ...]];
RAISE [level] condition_name [USING option = expression [, ...]];
RAISE [level] SQLSTATE ’sqlstate’ [USING option = expression [, ...]];
RAISE [level] USING option = expression [, ...];
RAISE ;

The level option specifies the error severity. Allowed levels are DEBUG, LOG, INFO, NOTICE, WARNING,
and EXCEPTION, with EXCEPTION being the default. EXCEPTION raises an error (which normally aborts
the current transaction); the other levels only generate messages of different priority levels. Whether
messages of a particular priority are reported to the client, written to the server log, or both is controlled
by the log_min_messages and client_min_messages configuration variables. See Chapter 18 for more
information.

After level if any, you can write a format (which must be a simple string literal, not an expression).
The format string specifies the error message text to be reported. The format string can be followed by
optional argument expressions to be inserted into the message. Inside the format string, % is replaced by
the string representation of the next optional argument’s value. Write %% to emit a literal %.

In this example, the value of v_job_id will replace the % in the string:

RAISE NOTICE ’Calling cs_create_job(%)’, v_job_id;

You can attach additional information to the error report by writing USING followed by option

= expression items. The allowed option keywords are MESSAGE, DETAIL, HINT, and ERRCODE,
while each expression can be any string-valued expression. MESSAGE sets the error message text
(this option can’t be used in the form of RAISE that includes a format string before USING). DETAIL
supplies an error detail message, while HINT supplies a hint message. ERRCODE specifies the error code
(SQLSTATE) to report, either by condition name as shown in Appendix A, or directly as a five-character
SQLSTATE code.

This example will abort the transaction with the given error message and hint:

RAISE EXCEPTION ’Nonexistent ID --> %’, user_id
USING HINT = ’Please check your user ID’;

These two examples show equivalent ways of setting the SQLSTATE:

1065

Chapter 39. PL/pgSQL - SQL Procedural Language

RAISE ’Duplicate user ID: %’, user_id USING ERRCODE = ’unique_violation’;
RAISE ’Duplicate user ID: %’, user_id USING ERRCODE = ’23505’;

There is a second RAISE syntax in which the main argument is the condition name or SQLSTATE to be
reported, for example:

RAISE division_by_zero;
RAISE SQLSTATE ’22012’;

In this syntax, USING can be used to supply a custom error message, detail, or hint. Another way to do the
earlier example is

RAISE unique_violation USING MESSAGE = ’Duplicate user ID: ’ || user_id;

Still another variant is to write RAISE USING or RAISE level USING and put everything else into the
USING list.

The last variant of RAISE has no parameters at all. This form can only be used inside a BEGIN block’s
EXCEPTION clause; it causes the error currently being handled to be re-thrown.

Note: Before PostgreSQL 9.1, RAISE without parameters was interpreted as re-throwing the error
from the block containing the active exception handler. Thus an EXCEPTION clause nested within that
handler could not catch it, even if the RAISE was within the nested EXCEPTION clause’s block. This
was deemed surprising as well as being incompatible with Oracle’s PL/SQL.

If no condition name nor SQLSTATE is specified in a RAISE EXCEPTION command, the default is to use
RAISE_EXCEPTION (P0001). If no message text is specified, the default is to use the condition name or
SQLSTATE as message text.

Note: When specifying an error code by SQLSTATE code, you are not limited to the predefined error
codes, but can select any error code consisting of five digits and/or upper-case ASCII letters, other
than 00000. It is recommended that you avoid throwing error codes that end in three zeroes, because
these are category codes and can only be trapped by trapping the whole category.

39.9. Trigger Procedures
PL/pgSQL can be used to define trigger procedures. A trigger procedure is created with the CREATE

FUNCTION command, declaring it as a function with no arguments and a return type of trigger. Note
that the function must be declared with no arguments even if it expects to receive arguments specified in
CREATE TRIGGER — trigger arguments are passed via TG_ARGV, as described below.

When a PL/pgSQL function is called as a trigger, several special variables are created automatically in the
top-level block. They are:

1066

Chapter 39. PL/pgSQL - SQL Procedural Language

NEW

Data type RECORD; variable holding the new database row for INSERT/UPDATE operations in row-
level triggers. This variable is NULL in statement-level triggers and for DELETE operations.

OLD

Data type RECORD; variable holding the old database row for UPDATE/DELETE operations in row-
level triggers. This variable is NULL in statement-level triggers and for INSERT operations.

TG_NAME

Data type name; variable that contains the name of the trigger actually fired.

TG_WHEN

Data type text; a string of BEFORE, AFTER, or INSTEAD OF, depending on the trigger’s definition.

TG_LEVEL

Data type text; a string of either ROW or STATEMENT depending on the trigger’s definition.

TG_OP

Data type text; a string of INSERT, UPDATE, DELETE, or TRUNCATE telling for which operation the
trigger was fired.

TG_RELID

Data type oid; the object ID of the table that caused the trigger invocation.

TG_RELNAME

Data type name; the name of the table that caused the trigger invocation. This is now deprecated, and
could disappear in a future release. Use TG_TABLE_NAME instead.

TG_TABLE_NAME

Data type name; the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name; the name of the schema of the table that caused the trigger invocation.

TG_NARGS

Data type integer; the number of arguments given to the trigger procedure in the CREATE TRIGGER

statement.

TG_ARGV[]

Data type array of text; the arguments from the CREATE TRIGGER statement. The index counts
from 0. Invalid indexes (less than 0 or greater than or equal to tg_nargs) result in a null value.

A trigger function must return either NULL or a record/row value having exactly the structure of the table
the trigger was fired for.

Row-level triggers fired BEFORE can return null to signal the trigger manager to skip the rest of the oper-
ation for this row (i.e., subsequent triggers are not fired, and the INSERT/UPDATE/DELETE does not occur
for this row). If a nonnull value is returned then the operation proceeds with that row value. Returning a
row value different from the original value of NEW alters the row that will be inserted or updated. Thus, if
the trigger function wants the triggering action to succeed normally without altering the row value, NEW

1067

Chapter 39. PL/pgSQL - SQL Procedural Language

(or a value equal thereto) has to be returned. To alter the row to be stored, it is possible to replace single
values directly in NEW and return the modified NEW, or to build a complete new record/row to return. In
the case of a before-trigger on DELETE, the returned value has no direct effect, but it has to be nonnull to
allow the trigger action to proceed. Note that NEW is null in DELETE triggers, so returning that is usually
not sensible. The usual idiom in DELETE triggers is to return OLD.

INSTEAD OF triggers (which are always row-level triggers, and may only be used on views) can return
null to signal that they did not perform any updates, and that the rest of the operation for this row should be
skipped (i.e., subsequent triggers are not fired, and the row is not counted in the rows-affected status for the
surrounding INSERT/UPDATE/DELETE). Otherwise a nonnull value should be returned, to signal that the
trigger performed the requested operation. For INSERT and UPDATE operations, the return value should be
NEW, which the trigger function may modify to support INSERT RETURNING and UPDATE RETURNING

(this will also affect the row value passed to any subsequent triggers). For DELETE operations, the return
value should be OLD.

The return value of a row-level trigger fired AFTER or a statement-level trigger fired BEFORE or AFTER is
always ignored; it might as well be null. However, any of these types of triggers might still abort the entire
operation by raising an error.

Example 39-3 shows an example of a trigger procedure in PL/pgSQL.

Example 39-3. A PL/pgSQL Trigger Procedure

This example trigger ensures that any time a row is inserted or updated in the table, the current user name
and time are stamped into the row. And it checks that an employee’s name is given and that the salary is a
positive value.

CREATE TABLE emp (
empname text,
salary integer,
last_date timestamp,
last_user text

);

CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp
BEGIN

-- Check that empname and salary are given
IF NEW.empname IS NULL THEN

RAISE EXCEPTION ’empname cannot be null’;
END IF;
IF NEW.salary IS NULL THEN

RAISE EXCEPTION ’% cannot have null salary’, NEW.empname;
END IF;

-- Who works for us when she must pay for it?
IF NEW.salary < 0 THEN

RAISE EXCEPTION ’% cannot have a negative salary’, NEW.empname;
END IF;

-- Remember who changed the payroll when
NEW.last_date := current_timestamp;
NEW.last_user := current_user;
RETURN NEW;

1068

Chapter 39. PL/pgSQL - SQL Procedural Language

END;
emp_stamp LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

Another way to log changes to a table involves creating a new table that holds a row for each insert,
update, or delete that occurs. This approach can be thought of as auditing changes to a table. Example
39-4 shows an example of an audit trigger procedure in PL/pgSQL.

Example 39-4. A PL/pgSQL Trigger Procedure For Auditing

This example trigger ensures that any insert, update or delete of a row in the emp table is recorded (i.e.,
audited) in the emp_audit table. The current time and user name are stamped into the row, together with
the type of operation performed on it.

CREATE TABLE emp (
empname text NOT NULL,
salary integer

);

CREATE TABLE emp_audit(
operation char(1) NOT NULL,
stamp timestamp NOT NULL,
userid text NOT NULL,
empname text NOT NULL,
salary integer

);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
BEGIN

--
-- Create a row in emp_audit to reflect the operation performed on emp,
-- make use of the special variable TG_OP to work out the operation.
--
IF (TG_OP = ’DELETE’) THEN

INSERT INTO emp_audit SELECT ’D’, now(), user, OLD.*;
RETURN OLD;

ELSIF (TG_OP = ’UPDATE’) THEN
INSERT INTO emp_audit SELECT ’U’, now(), user, NEW.*;
RETURN NEW;

ELSIF (TG_OP = ’INSERT’) THEN
INSERT INTO emp_audit SELECT ’I’, now(), user, NEW.*;
RETURN NEW;

END IF;
RETURN NULL; -- result is ignored since this is an AFTER trigger

END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp

FOR EACH ROW EXECUTE PROCEDURE process_emp_audit();

1069

Chapter 39. PL/pgSQL - SQL Procedural Language

A variation of the previous example uses a view joining the main table to the audit table, to show when
each entry was last modified. This approach still records the full audit trail of changes to the table, but
also presents a simplified view of the audit trail, showing just the last modified timestamp derived from
the audit trail for each entry. Example 39-5 shows an example of an audit trigger on a view in PL/pgSQL.

Example 39-5. A PL/pgSQL View Trigger Procedure For Auditing

This example uses a trigger on the view to make it updatable, and ensure that any insert, update or delete
of a row in the view is recorded (i.e., audited) in the emp_audit table. The current time and user name
are recorded, together with the type of operation performed, and the view displays the last modified time
of each row.

CREATE TABLE emp (
empname text PRIMARY KEY,
salary integer

);

CREATE TABLE emp_audit(
operation char(1) NOT NULL,
userid text NOT NULL,
empname text NOT NULL,
salary integer,
stamp timestamp NOT NULL

);

CREATE VIEW emp_view AS
SELECT e.empname,

e.salary,
max(ea.stamp) AS last_updated

FROM emp e
LEFT JOIN emp_audit ea ON ea.empname = e.empname

GROUP BY 1, 2;

CREATE OR REPLACE FUNCTION update_emp_view() RETURNS TRIGGER AS $$
BEGIN

--
-- Perform the required operation on emp, and create a row in emp_audit
-- to reflect the change made to emp.
--
IF (TG_OP = ’DELETE’) THEN

DELETE FROM emp WHERE empname = OLD.empname;
IF NOT FOUND THEN RETURN NULL; END IF;

OLD.last_updated = now();
INSERT INTO emp_audit VALUES(’D’, user, OLD.*);
RETURN OLD;

ELSIF (TG_OP = ’UPDATE’) THEN
UPDATE emp SET salary = NEW.salary WHERE empname = OLD.empname;
IF NOT FOUND THEN RETURN NULL; END IF;

NEW.last_updated = now();
INSERT INTO emp_audit VALUES(’U’, user, NEW.*);
RETURN NEW;

1070

Chapter 39. PL/pgSQL - SQL Procedural Language

ELSIF (TG_OP = ’INSERT’) THEN
INSERT INTO emp VALUES(NEW.empname, NEW.salary);

NEW.last_updated = now();
INSERT INTO emp_audit VALUES(’I’, user, NEW.*);
RETURN NEW;

END IF;
END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_view

FOR EACH ROW EXECUTE PROCEDURE update_emp_view();

One use of triggers is to maintain a summary table of another table. The resulting summary can be used
in place of the original table for certain queries — often with vastly reduced run times. This technique is
commonly used in Data Warehousing, where the tables of measured or observed data (called fact tables)
might be extremely large. Example 39-6 shows an example of a trigger procedure in PL/pgSQL that
maintains a summary table for a fact table in a data warehouse.

Example 39-6. A PL/pgSQL Trigger Procedure For Maintaining A Summary Table

The schema detailed here is partly based on the Grocery Store example from The Data Warehouse Toolkit
by Ralph Kimball.

--
-- Main tables - time dimension and sales fact.
--
CREATE TABLE time_dimension (

time_key integer NOT NULL,
day_of_week integer NOT NULL,
day_of_month integer NOT NULL,
month integer NOT NULL,
quarter integer NOT NULL,
year integer NOT NULL

);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);

CREATE TABLE sales_fact (
time_key integer NOT NULL,
product_key integer NOT NULL,
store_key integer NOT NULL,
amount_sold numeric(12,2) NOT NULL,
units_sold integer NOT NULL,
amount_cost numeric(12,2) NOT NULL

);
CREATE INDEX sales_fact_time ON sales_fact(time_key);

--
-- Summary table - sales by time.
--
CREATE TABLE sales_summary_bytime (

time_key integer NOT NULL,

1071

Chapter 39. PL/pgSQL - SQL Procedural Language

amount_sold numeric(15,2) NOT NULL,
units_sold numeric(12) NOT NULL,
amount_cost numeric(15,2) NOT NULL

);
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_key);

--
-- Function and trigger to amend summarized column(s) on UPDATE, INSERT, DELETE.
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER
AS $maint_sales_summary_bytime$

DECLARE
delta_time_key integer;
delta_amount_sold numeric(15,2);
delta_units_sold numeric(12);
delta_amount_cost numeric(15,2);

BEGIN

-- Work out the increment/decrement amount(s).
IF (TG_OP = ’DELETE’) THEN

delta_time_key = OLD.time_key;
delta_amount_sold = -1 * OLD.amount_sold;
delta_units_sold = -1 * OLD.units_sold;
delta_amount_cost = -1 * OLD.amount_cost;

ELSIF (TG_OP = ’UPDATE’) THEN

-- forbid updates that change the time_key -
-- (probably not too onerous, as DELETE + INSERT is how most
-- changes will be made).
IF (OLD.time_key != NEW.time_key) THEN

RAISE EXCEPTION ’Update of time_key : % -> % not allowed’,
OLD.time_key, NEW.time_key;

END IF;

delta_time_key = OLD.time_key;
delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
delta_units_sold = NEW.units_sold - OLD.units_sold;
delta_amount_cost = NEW.amount_cost - OLD.amount_cost;

ELSIF (TG_OP = ’INSERT’) THEN

delta_time_key = NEW.time_key;
delta_amount_sold = NEW.amount_sold;
delta_units_sold = NEW.units_sold;
delta_amount_cost = NEW.amount_cost;

END IF;

-- Insert or update the summary row with the new values.
<<insert_update>>

1072

Chapter 39. PL/pgSQL - SQL Procedural Language

LOOP
UPDATE sales_summary_bytime

SET amount_sold = amount_sold + delta_amount_sold,
units_sold = units_sold + delta_units_sold,
amount_cost = amount_cost + delta_amount_cost

WHERE time_key = delta_time_key;

EXIT insert_update WHEN found;

BEGIN
INSERT INTO sales_summary_bytime (

time_key,
amount_sold,
units_sold,
amount_cost)

VALUES (
delta_time_key,
delta_amount_sold,
delta_units_sold,
delta_amount_cost

);

EXIT insert_update;

EXCEPTION
WHEN UNIQUE_VIOLATION THEN

-- do nothing
END;

END LOOP insert_update;

RETURN NULL;

END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;

CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact

FOR EACH ROW EXECUTE PROCEDURE maint_sales_summary_bytime();

INSERT INTO sales_fact VALUES(1,1,1,10,3,15);
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);
INSERT INTO sales_fact VALUES(2,3,1,10,1,13);
SELECT * FROM sales_summary_bytime;
DELETE FROM sales_fact WHERE product_key = 1;
SELECT * FROM sales_summary_bytime;
UPDATE sales_fact SET units_sold = units_sold * 2;
SELECT * FROM sales_summary_bytime;

1073

Chapter 39. PL/pgSQL - SQL Procedural Language

39.10. PL/pgSQL Under the Hood
This section discusses some implementation details that are frequently important for PL/pgSQL users to
know.

39.10.1. Variable Substitution
SQL statements and expressions within a PL/pgSQL function can refer to variables and parameters of
the function. Behind the scenes, PL/pgSQL substitutes query parameters for such references. Parameters
will only be substituted in places where a parameter or column reference is syntactically allowed. As an
extreme case, consider this example of poor programming style:

INSERT INTO foo (foo) VALUES (foo);

The first occurrence of foo must syntactically be a table name, so it will not be substituted, even if the
function has a variable named foo. The second occurrence must be the name of a column of the table, so
it will not be substituted either. Only the third occurrence is a candidate to be a reference to the function’s
variable.

Note: PostgreSQL versions before 9.0 would try to substitute the variable in all three cases, leading
to syntax errors.

Since the names of variables are syntactically no different from the names of table columns, there can be
ambiguity in statements that also refer to tables: is a given name meant to refer to a table column, or a
variable? Let’s change the previous example to

INSERT INTO dest (col) SELECT foo + bar FROM src;

Here, dest and src must be table names, and col must be a column of dest, but foo and bar might
reasonably be either variables of the function or columns of src.

By default, PL/pgSQL will report an error if a name in a SQL statement could refer to either a variable
or a table column. You can fix such a problem by renaming the variable or column, or by qualifying the
ambiguous reference, or by telling PL/pgSQL which interpretation to prefer.

The simplest solution is to rename the variable or column. A common coding rule is to use a different
naming convention for PL/pgSQL variables than you use for column names. For example, if you consis-
tently name function variables v_something while none of your column names start with v_, no conflicts
will occur.

Alternatively you can qualify ambiguous references to make them clear. In the above example, src.foo
would be an unambiguous reference to the table column. To create an unambiguous reference to a variable,
declare it in a labeled block and use the block’s label (see Section 39.2). For example,

<<block>>

DECLARE
foo int;

BEGIN
foo := ...;
INSERT INTO dest (col) SELECT block.foo + bar FROM src;

1074

Chapter 39. PL/pgSQL - SQL Procedural Language

Here block.foo means the variable even if there is a column foo in src. Function parameters, as well
as special variables such as FOUND, can be qualified by the function’s name, because they are implicitly
declared in an outer block labeled with the function’s name.

Sometimes it is impractical to fix all the ambiguous references in a large body of PL/pgSQL code. In such
cases you can specify that PL/pgSQL should resolve ambiguous references as the variable (which is com-
patible with PL/pgSQL’s behavior before PostgreSQL 9.0), or as the table column (which is compatible
with some other systems such as Oracle).

To change this behavior on a system-wide basis, set the configuration parameter
plpgsql.variable_conflict to one of error, use_variable, or use_column (where error

is the factory default). This parameter affects subsequent compilations of statements in PL/pgSQL
functions, but not statements already compiled in the current session. Because changing this setting can
cause unexpected changes in the behavior of PL/pgSQL functions, it can only be changed by a superuser.

You can also set the behavior on a function-by-function basis, by inserting one of these special commands
at the start of the function text:

#variable_conflict error
#variable_conflict use_variable
#variable_conflict use_column

These commands affect only the function they are written in, and override the setting of
plpgsql.variable_conflict. An example is

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
#variable_conflict use_variable
DECLARE

curtime timestamp := now();
BEGIN

UPDATE users SET last_modified = curtime, comment = comment
WHERE users.id = id;

END;
$$ LANGUAGE plpgsql;

In the UPDATE command, curtime, comment, and id will refer to the function’s variable and param-
eters whether or not users has columns of those names. Notice that we had to qualify the reference to
users.id in the WHERE clause to make it refer to the table column. But we did not have to qualify the ref-
erence to comment as a target in the UPDATE list, because syntactically that must be a column of users.
We could write the same function without depending on the variable_conflict setting in this way:

CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
<<fn>>

DECLARE
curtime timestamp := now();

BEGIN
UPDATE users SET last_modified = fn.curtime, comment = stamp_user.comment
WHERE users.id = stamp_user.id;

END;
$$ LANGUAGE plpgsql;

1075

Chapter 39. PL/pgSQL - SQL Procedural Language

Variable substitution does not happen in the command string given to EXECUTE or one of its variants. If
you need to insert a varying value into such a command, do so as part of constructing the string value, or
use USING, as illustrated in Section 39.5.4.

Variable substitution currently works only in SELECT, INSERT, UPDATE, and DELETE commands, because
the main SQL engine allows query parameters only in these commands. To use a non-constant name
or value in other statement types (generically called utility statements), you must construct the utility
statement as a string and EXECUTE it.

39.10.2. Plan Caching
The PL/pgSQL interpreter parses the function’s source text and produces an internal binary instruction
tree the first time the function is called (within each session). The instruction tree fully translates the
PL/pgSQL statement structure, but individual SQL expressions and SQL commands used in the function
are not translated immediately.

As each expression and SQL command is first executed in the function, the PL/pgSQL interpreter parses
and analyzes the command to create a prepared statement, using the SPI manager’s SPI_prepare func-
tion. Subsequent visits to that expression or command reuse the prepared statement. Thus, a function with
conditional code paths that are seldom visited will never incur the overhead of analyzing those commands
that are never executed within the current session. A disadvantage is that errors in a specific expression or
command cannot be detected until that part of the function is reached in execution. (Trivial syntax errors
will be detected during the initial parsing pass, but anything deeper will not be detected until execution.)

PL/pgSQL (or more precisely, the SPI manager) can furthermore attempt to cache the execution plan
associated with any particular prepared statement. If a cached plan is not used, then a fresh execution plan
is generated on each visit to the statement, and the current parameter values (that is, PL/pgSQL variable
values) can be used to optimize the selected plan. If the statement has no parameters, or is executed many
times, the SPI manager will consider creating a generic plan that is not dependent on specific parameter
values, and caching that for re-use. Typically this will happen only if the execution plan is not very
sensitive to the values of the PL/pgSQL variables referenced in it. If it is, generating a plan each time is a
net win.

Because PL/pgSQL saves prepared statements and sometimes execution plans in this way, SQL commands
that appear directly in a PL/pgSQL function must refer to the same tables and columns on every execution;
that is, you cannot use a parameter as the name of a table or column in an SQL command. To get around
this restriction, you can construct dynamic commands using the PL/pgSQL EXECUTE statement — at the
price of performing new parse analysis and constructing a new execution plan on every execution.

The mutable nature of record variables presents another problem in this connection. When fields of a
record variable are used in expressions or statements, the data types of the fields must not change from
one call of the function to the next, since each expression will be analyzed using the data type that is
present when the expression is first reached. EXECUTE can be used to get around this problem when
necessary.

If the same function is used as a trigger for more than one table, PL/pgSQL prepares and caches state-
ments independently for each such table — that is, there is a cache for each trigger function and table
combination, not just for each function. This alleviates some of the problems with varying data types; for
instance, a trigger function will be able to work successfully with a column named key even if it happens
to have different types in different tables.

1076

Chapter 39. PL/pgSQL - SQL Procedural Language

Likewise, functions having polymorphic argument types have a separate statement cache for each com-
bination of actual argument types they have been invoked for, so that data type differences do not cause
unexpected failures.

Statement caching can sometimes have surprising effects on the interpretation of time-sensitive values.
For example there is a difference between what these two functions do:

CREATE FUNCTION logfunc1(logtxt text) RETURNS void AS $$
BEGIN

INSERT INTO logtable VALUES (logtxt, ’now’);
END;

$$ LANGUAGE plpgsql;

and:

CREATE FUNCTION logfunc2(logtxt text) RETURNS void AS $$
DECLARE

curtime timestamp;
BEGIN

curtime := ’now’;
INSERT INTO logtable VALUES (logtxt, curtime);

END;
$$ LANGUAGE plpgsql;

In the case of logfunc1, the PostgreSQL main parser knows when analyzing the INSERT that the string
’now’ should be interpreted as timestamp, because the target column of logtable is of that type.
Thus, ’now’ will be converted to a timestamp constant when the INSERT is analyzed, and then used
in all invocations of logfunc1 during the lifetime of the session. Needless to say, this isn’t what the
programmer wanted. A better idea is to use the now() or current_timestamp function.

In the case of logfunc2, the PostgreSQL main parser does not know what type ’now’ should become and
therefore it returns a data value of type text containing the string now. During the ensuing assignment to
the local variable curtime, the PL/pgSQL interpreter casts this string to the timestamp type by calling
the text_out and timestamp_in functions for the conversion. So, the computed time stamp is updated
on each execution as the programmer expects. Even though this happens to work as expected, it’s not
terribly efficient, so use of the now() function would still be a better idea.

39.11. Tips for Developing in PL/pgSQL
One good way to develop in PL/pgSQL is to use the text editor of your choice to create your functions,
and in another window, use psql to load and test those functions. If you are doing it this way, it is a good
idea to write the function using CREATE OR REPLACE FUNCTION. That way you can just reload the file
to update the function definition. For example:

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$
....

$$ LANGUAGE plpgsql;

1077

Chapter 39. PL/pgSQL - SQL Procedural Language

While running psql, you can load or reload such a function definition file with:

\i filename.sql

and then immediately issue SQL commands to test the function.

Another good way to develop in PL/pgSQL is with a GUI database access tool that facilitates development
in a procedural language. One example of such a tool is pgAdmin, although others exist. These tools often
provide convenient features such as escaping single quotes and making it easier to recreate and debug
functions.

39.11.1. Handling of Quotation Marks
The code of a PL/pgSQL function is specified in CREATE FUNCTION as a string literal. If you write
the string literal in the ordinary way with surrounding single quotes, then any single quotes inside the
function body must be doubled; likewise any backslashes must be doubled (assuming escape string syntax
is used). Doubling quotes is at best tedious, and in more complicated cases the code can become downright
incomprehensible, because you can easily find yourself needing half a dozen or more adjacent quote
marks. It’s recommended that you instead write the function body as a “dollar-quoted” string literal (see
Section 4.1.2.4). In the dollar-quoting approach, you never double any quote marks, but instead take care
to choose a different dollar-quoting delimiter for each level of nesting you need. For example, you might
write the CREATE FUNCTION command as:

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$
....

$PROC$ LANGUAGE plpgsql;

Within this, you might use quote marks for simple literal strings in SQL commands and $$ to delimit
fragments of SQL commands that you are assembling as strings. If you need to quote text that includes
$$, you could use Q, and so on.

The following chart shows what you have to do when writing quote marks without dollar quoting. It might
be useful when translating pre-dollar quoting code into something more comprehensible.

1 quotation mark

To begin and end the function body, for example:

CREATE FUNCTION foo() RETURNS integer AS ’
....

’ LANGUAGE plpgsql;

Anywhere within a single-quoted function body, quote marks must appear in pairs.

2 quotation marks

For string literals inside the function body, for example:

a_output := ”Blah”;
SELECT * FROM users WHERE f_name=”foobar”;

In the dollar-quoting approach, you’d just write:

a_output := ’Blah’;
SELECT * FROM users WHERE f_name=’foobar’;

1078

Chapter 39. PL/pgSQL - SQL Procedural Language

which is exactly what the PL/pgSQL parser would see in either case.

4 quotation marks

When you need a single quotation mark in a string constant inside the function body, for example:

a_output := a_output || ” AND name LIKE ””foobar”” AND xyz”

The value actually appended to a_output would be: AND name LIKE ’foobar’ AND xyz.

In the dollar-quoting approach, you’d write:

a_output := a_output || $$ AND name LIKE ’foobar’ AND xyz$$

being careful that any dollar-quote delimiters around this are not just $$.

6 quotation marks

When a single quotation mark in a string inside the function body is adjacent to the end of that string
constant, for example:

a_output := a_output || ” AND name LIKE ””foobar”””

The value appended to a_output would then be: AND name LIKE ’foobar’.

In the dollar-quoting approach, this becomes:

a_output := a_output || $$ AND name LIKE ’foobar’$$

10 quotation marks

When you want two single quotation marks in a string constant (which accounts for 8 quotation
marks) and this is adjacent to the end of that string constant (2 more). You will probably only need
that if you are writing a function that generates other functions, as in Example 39-8. For example:

a_output := a_output || ” if v_” ||
referrer_keys.kind || ” like ”””””
|| referrer_keys.key_string || ”””””
then return ””” || referrer_keys.referrer_type
|| ”””; end if;”;

The value of a_output would then be:

if v_... like ”...” then return ”...”; end if;

In the dollar-quoting approach, this becomes:

a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like ’$$
|| referrer_keys.key_string || $$’
then return ’$$ || referrer_keys.referrer_type
|| $$’; end if;$$;

where we assume we only need to put single quote marks into a_output, because it will be re-quoted
before use.

39.12. Porting from Oracle PL/SQL
This section explains differences between PostgreSQL’s PL/pgSQL language and Oracle’s PL/SQL lan-
guage, to help developers who port applications from Oracle® to PostgreSQL.

1079

Chapter 39. PL/pgSQL - SQL Procedural Language

PL/pgSQL is similar to PL/SQL in many aspects. It is a block-structured, imperative language, and all
variables have to be declared. Assignments, loops, conditionals are similar. The main differences you
should keep in mind when porting from PL/SQL to PL/pgSQL are:

• If a name used in a SQL command could be either a column name of a table or a reference to
a variable of the function, PL/SQL treats it as a column name. This corresponds to PL/pgSQL’s
plpgsql.variable_conflict = use_column behavior, which is not the default, as explained in
Section 39.10.1. It’s often best to avoid such ambiguities in the first place, but if you have to port a
large amount of code that depends on this behavior, setting variable_conflict may be the best
solution.

• In PostgreSQL the function body must be written as a string literal. Therefore you need to use dollar
quoting or escape single quotes in the function body. (See Section 39.11.1.)

• Instead of packages, use schemas to organize your functions into groups.

• Since there are no packages, there are no package-level variables either. This is somewhat annoying.
You can keep per-session state in temporary tables instead.

• Integer FOR loops with REVERSE work differently: PL/SQL counts down from the second number to
the first, while PL/pgSQL counts down from the first number to the second, requiring the loop bounds
to be swapped when porting. This incompatibility is unfortunate but is unlikely to be changed. (See
Section 39.6.3.5.)

• FOR loops over queries (other than cursors) also work differently: the target variable(s) must have been
declared, whereas PL/SQL always declares them implicitly. An advantage of this is that the variable
values are still accessible after the loop exits.

• There are various notational differences for the use of cursor variables.

39.12.1. Porting Examples
Example 39-7 shows how to port a simple function from PL/SQL to PL/pgSQL.

Example 39-7. Porting a Simple Function from PL/SQL to PL/pgSQL

Here is an Oracle PL/SQL function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
v_version varchar)

RETURN varchar IS
BEGIN

IF v_version IS NULL THEN
RETURN v_name;

END IF;
RETURN v_name || ’/’ || v_version;

END;
/
show errors;

Let’s go through this function and see the differences compared to PL/pgSQL:

1080

Chapter 39. PL/pgSQL - SQL Procedural Language

• The RETURN key word in the function prototype (not the function body) becomes RETURNS in Post-
greSQL. Also, IS becomes AS, and you need to add a LANGUAGE clause because PL/pgSQL is not the
only possible function language.

• In PostgreSQL, the function body is considered to be a string literal, so you need to use quote marks or
dollar quotes around it. This substitutes for the terminating / in the Oracle approach.

• The show errors command does not exist in PostgreSQL, and is not needed since errors are reported
automatically.

This is how this function would look when ported to PostgreSQL:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
v_version varchar)

RETURNS varchar AS $$
BEGIN

IF v_version IS NULL THEN
RETURN v_name;

END IF;
RETURN v_name || ’/’ || v_version;

END;
$$ LANGUAGE plpgsql;

Example 39-8 shows how to port a function that creates another function and how to handle the ensuing
quoting problems.

Example 39-8. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL

The following procedure grabs rows from a SELECT statement and builds a large function with the results
in IF statements, for the sake of efficiency.

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
CURSOR referrer_keys IS

SELECT * FROM cs_referrer_keys
ORDER BY try_order;

func_cmd VARCHAR(4000);
BEGIN

func_cmd := ’CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VARCHAR,
v_domain IN VARCHAR, v_url IN VARCHAR) RETURN VARCHAR IS BEGIN’;

FOR referrer_key IN referrer_keys LOOP
func_cmd := func_cmd ||
’ IF v_’ || referrer_key.kind
|| ’ LIKE ”’ || referrer_key.key_string
|| ”’ THEN RETURN ”’ || referrer_key.referrer_type
|| ”’; END IF;’;

END LOOP;

func_cmd := func_cmd || ’ RETURN NULL; END;’;

1081

Chapter 39. PL/pgSQL - SQL Procedural Language

EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;

Here is how this function would end up in PostgreSQL:

CREATE OR REPLACE FUNCTION cs_update_referrer_type_proc() RETURNS void AS $func$
DECLARE

referrer_keys CURSOR IS
SELECT * FROM cs_referrer_keys
ORDER BY try_order;

func_body text;
func_cmd text;

BEGIN
func_body := ’BEGIN’;

FOR referrer_key IN referrer_keys LOOP
func_body := func_body ||
’ IF v_’ || referrer_key.kind
|| ’ LIKE ’ || quote_literal(referrer_key.key_string)
|| ’ THEN RETURN ’ || quote_literal(referrer_key.referrer_type)
|| ’; END IF;’ ;

END LOOP;

func_body := func_body || ’ RETURN NULL; END;’;

func_cmd :=
’CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host varchar,

v_domain varchar,
v_url varchar)

RETURNS varchar AS ’
|| quote_literal(func_body)
|| ’ LANGUAGE plpgsql;’ ;

EXECUTE func_cmd;
END;
$func$ LANGUAGE plpgsql;

Notice how the body of the function is built separately and passed through quote_literal to
double any quote marks in it. This technique is needed because we cannot safely use dollar quoting
for defining the new function: we do not know for sure what strings will be interpolated from
the referrer_key.key_string field. (We are assuming here that referrer_key.kind can
be trusted to always be host, domain, or url, but referrer_key.key_string might be
anything, in particular it might contain dollar signs.) This function is actually an improvement on the
Oracle original, because it will not generate broken code when referrer_key.key_string or
referrer_key.referrer_type contain quote marks.

Example 39-9 shows how to port a function with OUT parameters and string manipulation. PostgreSQL
does not have a built-in instr function, but you can create one using a combination of other functions.
In Section 39.12.3 there is a PL/pgSQL implementation of instr that you can use to make your porting
easier.

1082

Chapter 39. PL/pgSQL - SQL Procedural Language

Example 39-9. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL
to PL/pgSQL

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host, path,
and query).

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_parse_url(
v_url IN VARCHAR,
v_host OUT VARCHAR, -- This will be passed back
v_path OUT VARCHAR, -- This one too
v_query OUT VARCHAR) -- And this one

IS
a_pos1 INTEGER;
a_pos2 INTEGER;

BEGIN
v_host := NULL;
v_path := NULL;
v_query := NULL;
a_pos1 := instr(v_url, ’//’);

IF a_pos1 = 0 THEN
RETURN;

END IF;
a_pos2 := instr(v_url, ’/’, a_pos1 + 2);
IF a_pos2 = 0 THEN

v_host := substr(v_url, a_pos1 + 2);
v_path := ’/’;
RETURN;

END IF;

v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
a_pos1 := instr(v_url, ’?’, a_pos2 + 1);

IF a_pos1 = 0 THEN
v_path := substr(v_url, a_pos2);
RETURN;

END IF;

v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
v_query := substr(v_url, a_pos1 + 1);

END;
/
show errors;

Here is a possible translation into PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_parse_url(
v_url IN VARCHAR,
v_host OUT VARCHAR, -- This will be passed back
v_path OUT VARCHAR, -- This one too
v_query OUT VARCHAR) -- And this one

AS $$
DECLARE

1083

Chapter 39. PL/pgSQL - SQL Procedural Language

a_pos1 INTEGER;
a_pos2 INTEGER;

BEGIN
v_host := NULL;
v_path := NULL;
v_query := NULL;
a_pos1 := instr(v_url, ’//’);

IF a_pos1 = 0 THEN
RETURN;

END IF;
a_pos2 := instr(v_url, ’/’, a_pos1 + 2);
IF a_pos2 = 0 THEN

v_host := substr(v_url, a_pos1 + 2);
v_path := ’/’;
RETURN;

END IF;

v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
a_pos1 := instr(v_url, ’?’, a_pos2 + 1);

IF a_pos1 = 0 THEN
v_path := substr(v_url, a_pos2);
RETURN;

END IF;

v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
v_query := substr(v_url, a_pos1 + 1);

END;
$$ LANGUAGE plpgsql;

This function could be used like this:
SELECT * FROM cs_parse_url(’http://foobar.com/query.cgi?baz’);

Example 39-10 shows how to port a procedure that uses numerous features that are specific to Oracle.

Example 39-10. Porting a Procedure from PL/SQL to PL/pgSQL

The Oracle version:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
a_running_job_count INTEGER;
PRAGMA AUTONOMOUS_TRANSACTION;Ê

BEGIN
LOCK TABLE cs_jobs IN EXCLUSIVE MODE;Ë

SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

IF a_running_job_count > 0 THEN
COMMIT; -- free lockÌ

raise_application_error(-20000,
’Unable to create a new job: a job is currently running.’);

END IF;

1084

Chapter 39. PL/pgSQL - SQL Procedural Language

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

BEGIN
INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, sysdate);

EXCEPTION
WHEN dup_val_on_index THEN NULL; -- don’t worry if it already exists

END;
COMMIT;

END;
/
show errors

Procedures like this can easily be converted into PostgreSQL functions returning void. This procedure in
particular is interesting because it can teach us some things:

Ê There is no PRAGMA statement in PostgreSQL.

Ë If you do a LOCK TABLE in PL/pgSQL, the lock will not be released until the calling transaction is
finished.

Ì You cannot issue COMMIT in a PL/pgSQL function. The function is running within some outer trans-
action and so COMMIT would imply terminating the function’s execution. However, in this particular
case it is not necessary anyway, because the lock obtained by the LOCK TABLE will be released when
we raise an error.

This is how we could port this procedure to PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_create_job(v_job_id integer) RETURNS void AS $$
DECLARE

a_running_job_count integer;
BEGIN

LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

IF a_running_job_count > 0 THEN
RAISE EXCEPTION ’Unable to create a new job: a job is currently running’;Ê

END IF;

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

BEGIN
INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());

EXCEPTION
WHEN unique_violation THEN Ë

-- don’t worry if it already exists
END;

END;
$$ LANGUAGE plpgsql;

1085

Chapter 39. PL/pgSQL - SQL Procedural Language

Ê The syntax of RAISE is considerably different from Oracle’s statement, although the basic case
RAISE exception_name works similarly.

Ë The exception names supported by PL/pgSQL are different from Oracle’s. The set of built-in ex-
ception names is much larger (see Appendix A). There is not currently a way to declare user-defined
exception names, although you can throw user-chosen SQLSTATE values instead.

The main functional difference between this procedure and the Oracle equivalent is that the exclusive lock
on the cs_jobs table will be held until the calling transaction completes. Also, if the caller later aborts
(for example due to an error), the effects of this procedure will be rolled back.

39.12.2. Other Things to Watch For
This section explains a few other things to watch for when porting Oracle PL/SQL functions to Post-
greSQL.

39.12.2.1. Implicit Rollback after Exceptions

In PL/pgSQL, when an exception is caught by an EXCEPTION clause, all database changes since the
block’s BEGIN are automatically rolled back. That is, the behavior is equivalent to what you’d get in
Oracle with:

BEGIN
SAVEPOINT s1;
... code here ...

EXCEPTION
WHEN ... THEN

ROLLBACK TO s1;
... code here ...

WHEN ... THEN
ROLLBACK TO s1;
... code here ...

END;

If you are translating an Oracle procedure that uses SAVEPOINT and ROLLBACK TO in this style, your task
is easy: just omit the SAVEPOINT and ROLLBACK TO. If you have a procedure that uses SAVEPOINT and
ROLLBACK TO in a different way then some actual thought will be required.

39.12.2.2. EXECUTE

The PL/pgSQL version of EXECUTE works similarly to the PL/SQL version, but you have to remember to
use quote_literal and quote_ident as described in Section 39.5.4. Constructs of the type EXECUTE
’SELECT * FROM $1’; will not work reliably unless you use these functions.

1086

Chapter 39. PL/pgSQL - SQL Procedural Language

39.12.2.3. Optimizing PL/pgSQL Functions

PostgreSQL gives you two function creation modifiers to optimize execution: “volatility” (whether the
function always returns the same result when given the same arguments) and “strictness” (whether the
function returns null if any argument is null). Consult the CREATE FUNCTION reference page for details.

When making use of these optimization attributes, your CREATE FUNCTION statement might look some-
thing like this:

CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

39.12.3. Appendix
This section contains the code for a set of Oracle-compatible instr functions that you can use to simplify
your porting efforts.

--
-- instr functions that mimic Oracle’s counterpart
-- Syntax: instr(string1, string2, [n], [m]) where [] denotes optional parameters.
--
-- Searches string1 beginning at the nth character for the mth occurrence
-- of string2. If n is negative, search backwards. If m is not passed,
-- assume 1 (search starts at first character).
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
DECLARE

pos integer;
BEGIN

pos:= instr($1, $2, 1);
RETURN pos;

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search varchar, beg_index integer)
RETURNS integer AS $$
DECLARE

pos integer NOT NULL DEFAULT 0;
temp_str varchar;
beg integer;
length integer;
ss_length integer;

BEGIN
IF beg_index > 0 THEN

temp_str := substring(string FROM beg_index);
pos := position(string_to_search IN temp_str);

1087

Chapter 39. PL/pgSQL - SQL Procedural Language

IF pos = 0 THEN
RETURN 0;

ELSE
RETURN pos + beg_index - 1;

END IF;
ELSE

ss_length := char_length(string_to_search);
length := char_length(string);
beg := length + beg_index - ss_length + 2;

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);
pos := position(string_to_search IN temp_str);

IF pos > 0 THEN
RETURN beg;

END IF;

beg := beg - 1;
END LOOP;

RETURN 0;
END IF;

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search varchar,
beg_index integer, occur_index integer)

RETURNS integer AS $$
DECLARE

pos integer NOT NULL DEFAULT 0;
occur_number integer NOT NULL DEFAULT 0;
temp_str varchar;
beg integer;
i integer;
length integer;
ss_length integer;

BEGIN
IF beg_index > 0 THEN

beg := beg_index;
temp_str := substring(string FROM beg_index);

FOR i IN 1..occur_index LOOP
pos := position(string_to_search IN temp_str);

IF i = 1 THEN
beg := beg + pos - 1;

ELSE
beg := beg + pos;

END IF;

1088

Chapter 39. PL/pgSQL - SQL Procedural Language

temp_str := substring(string FROM beg + 1);
END LOOP;

IF pos = 0 THEN
RETURN 0;

ELSE
RETURN beg;

END IF;
ELSE

ss_length := char_length(string_to_search);
length := char_length(string);
beg := length + beg_index - ss_length + 2;

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);
pos := position(string_to_search IN temp_str);

IF pos > 0 THEN
occur_number := occur_number + 1;

IF occur_number = occur_index THEN
RETURN beg;

END IF;
END IF;

beg := beg - 1;
END LOOP;

RETURN 0;
END IF;

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

1089

Chapter 40. PL/Tcl - Tcl Procedural Language
PL/Tcl is a loadable procedural language for the PostgreSQL database system that enables the Tcl
language1 to be used to write functions and trigger procedures.

40.1. Overview
PL/Tcl offers most of the capabilities a function writer has in the C language, with a few restrictions, and
with the addition of the powerful string processing libraries that are available for Tcl.

One compelling good restriction is that everything is executed from within the safety of the context of a
Tcl interpreter. In addition to the limited command set of safe Tcl, only a few commands are available to
access the database via SPI and to raise messages via elog(). PL/Tcl provides no way to access internals
of the database server or to gain OS-level access under the permissions of the PostgreSQL server process,
as a C function can do. Thus, unprivileged database users can be trusted to use this language; it does not
give them unlimited authority.

The other notable implementation restriction is that Tcl functions cannot be used to create input/output
functions for new data types.

Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl. For example, one might
want a Tcl function that sends email. To handle these cases, there is a variant of PL/Tcl called PL/TclU

(for untrusted Tcl). This is the exact same language except that a full Tcl interpreter is used. If PL/TclU
is used, it must be installed as an untrusted procedural language so that only database superusers can
create functions in it. The writer of a PL/TclU function must take care that the function cannot be used to
do anything unwanted, since it will be able to do anything that could be done by a user logged in as the
database administrator.

The shared object code for the PL/Tcl and PL/TclU call handlers is automatically built and installed in
the PostgreSQL library directory if Tcl support is specified in the configuration step of the installation
procedure. To install PL/Tcl and/or PL/TclU in a particular database, use the CREATE EXTENSION com-
mand or the createlang program, for example createlang pltcl dbname or createlang pltclu

dbname.

40.2. PL/Tcl Functions and Arguments
To create a function in the PL/Tcl language, use the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$
PL/Tcl function body

$$ LANGUAGE pltcl;

PL/TclU is the same, except that the language has to be specified as pltclu.

The body of the function is simply a piece of Tcl script. When the function is called, the argument values
are passed as variables $1 ... $n to the Tcl script. The result is returned from the Tcl code in the usual way,
with a return statement.

1. http://www.tcl.tk/

1090

Chapter 40. PL/Tcl - Tcl Procedural Language

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
if {$1 > $2} {return $1}
return $2

$$ LANGUAGE pltcl STRICT;

Note the clause STRICT, which saves us from having to think about null input values: if a null value is
passed, the function will not be called at all, but will just return a null result automatically.

In a nonstrict function, if the actual value of an argument is null, the corresponding $n variable will be
set to an empty string. To detect whether a particular argument is null, use the function argisnull. For
example, suppose that we wanted tcl_max with one null and one nonnull argument to return the nonnull
argument, rather than null:

CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
if {[argisnull 1]} {

if {[argisnull 2]} { return_null }
return $2

}
if {[argisnull 2]} { return $1 }
if {$1 > $2} {return $1}
return $2

$$ LANGUAGE pltcl;

As shown above, to return a null value from a PL/Tcl function, execute return_null. This can be done
whether the function is strict or not.

Composite-type arguments are passed to the function as Tcl arrays. The element names of the array are
the attribute names of the composite type. If an attribute in the passed row has the null value, it will not
appear in the array. Here is an example:

CREATE TABLE employee (
name text,
salary integer,
age integer

);

CREATE FUNCTION overpaid(employee) RETURNS boolean AS $$
if {200000.0 < $1(salary)} {

return "t"
}
if {$1(age) < 30 && 100000.0 < $1(salary)} {

return "t"
}
return "f"

$$ LANGUAGE pltcl;

There is currently no support for returning a composite-type result value, nor for returning sets.

1091

Chapter 40. PL/Tcl - Tcl Procedural Language

PL/Tcl does not currently have full support for domain types: it treats a domain the same as the underlying
scalar type. This means that constraints associated with the domain will not be enforced. This is not an
issue for function arguments, but it is a hazard if you declare a PL/Tcl function as returning a domain
type.

40.3. Data Values in PL/Tcl
The argument values supplied to a PL/Tcl function’s code are simply the input arguments converted to
text form (just as if they had been displayed by a SELECT statement). Conversely, the return command
will accept any string that is acceptable input format for the function’s declared return type. So, within the
PL/Tcl function, all values are just text strings.

40.4. Global Data in PL/Tcl
Sometimes it is useful to have some global data that is held between two calls to a function or is shared
between different functions. This is easily done in PL/Tcl, but there are some restrictions that must be
understood.

For security reasons, PL/Tcl executes functions called by any one SQL role in a separate Tcl interpreter
for that role. This prevents accidental or malicious interference by one user with the behavior of another
user’s PL/Tcl functions. Each such interpreter will have its own values for any “global” Tcl variables.
Thus, two PL/Tcl functions will share the same global variables if and only if they are executed by the
same SQL role. In an application wherein a single session executes code under multiple SQL roles (via
SECURITY DEFINER functions, use of SET ROLE, etc) you may need to take explicit steps to ensure that
PL/Tcl functions can share data. To do that, make sure that functions that should communicate are owned
by the same user, and mark them SECURITY DEFINER. You must of course take care that such functions
can’t be used to do anything unintended.

All PL/TclU functions used in a session execute in the same Tcl interpreter, which of course is distinct
from the interpreter(s) used for PL/Tcl functions. So global data is automatically shared between PL/TclU
functions. This is not considered a security risk because all PL/TclU functions execute at the same trust
level, namely that of a database superuser.

To help protect PL/Tcl functions from unintentionally interfering with each other, a global array is made
available to each function via the upvar command. The global name of this variable is the function’s
internal name, and the local name is GD. It is recommended that GD be used for persistent private data of a
function. Use regular Tcl global variables only for values that you specifically intend to be shared among
multiple functions. (Note that the GD arrays are only global within a particular interpreter, so they do not
bypass the security restrictions mentioned above.)

An example of using GD appears in the spi_execp example below.

1092

Chapter 40. PL/Tcl - Tcl Procedural Language

40.5. Database Access from PL/Tcl
The following commands are available to access the database from the body of a PL/Tcl function:

spi_exec ?-count n? ?-array name? command ?loop-body?

Executes an SQL command given as a string. An error in the command causes an error to be raised.
Otherwise, the return value of spi_exec is the number of rows processed (selected, inserted, up-
dated, or deleted) by the command, or zero if the command is a utility statement. In addition, if the
command is a SELECT statement, the values of the selected columns are placed in Tcl variables as
described below.

The optional -count value tells spi_exec the maximum number of rows to process in the com-
mand. The effect of this is comparable to setting up a query as a cursor and then saying FETCH

n.

If the command is a SELECT statement, the values of the result columns are placed into Tcl variables
named after the columns. If the -array option is given, the column values are instead stored into the
named associative array, with the column names used as array indexes.

If the command is a SELECT statement and no loop-body script is given, then only the first row
of results are stored into Tcl variables; remaining rows, if any, are ignored. No storing occurs if the
query returns no rows. (This case can be detected by checking the result of spi_exec.) For example:

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

will set the Tcl variable $cnt to the number of rows in the pg_proc system catalog.

If the optional loop-body argument is given, it is a piece of Tcl script that is executed once for each
row in the query result. (loop-body is ignored if the given command is not a SELECT.) The values
of the current row’s columns are stored into Tcl variables before each iteration. For example:

spi_exec -array C "SELECT * FROM pg_class" {
elog DEBUG "have table $C(relname)"

}

will print a log message for every row of pg_class. This feature works similarly to other Tcl looping
constructs; in particular continue and break work in the usual way inside the loop body.

If a column of a query result is null, the target variable for it is “unset” rather than being set.

spi_prepare query typelist

Prepares and saves a query plan for later execution. The saved plan will be retained for the life of the
current session.

The query can use parameters, that is, placeholders for values to be supplied whenever the plan is
actually executed. In the query string, refer to parameters by the symbols $1 ... $n. If the query uses
parameters, the names of the parameter types must be given as a Tcl list. (Write an empty list for
typelist if no parameters are used.)

The return value from spi_prepare is a query ID to be used in subsequent calls to spi_execp.
See spi_execp for an example.

spi_execp ?-count n? ?-array name? ?-nulls string? queryid ?value-list?

?loop-body?

Executes a query previously prepared with spi_prepare. queryid is the ID returned by
spi_prepare. If the query references parameters, a value-list must be supplied. This is a Tcl

1093

Chapter 40. PL/Tcl - Tcl Procedural Language

list of actual values for the parameters. The list must be the same length as the parameter type list
previously given to spi_prepare. Omit value-list if the query has no parameters.

The optional value for -nulls is a string of spaces and ’n’ characters telling spi_execp which of
the parameters are null values. If given, it must have exactly the same length as the value-list. If
it is not given, all the parameter values are nonnull.

Except for the way in which the query and its parameters are specified, spi_execp works just like
spi_exec. The -count, -array, and loop-body options are the same, and so is the result value.

Here’s an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS $$
if {![info exists GD(plan)]} {

prepare the saved plan on the first call
set GD(plan) [spi_prepare \

"SELECT count(*) AS cnt FROM t1 WHERE num >= \$1 AND num <= \$2" \
[list int4 int4]]

}
spi_execp -count 1 $GD(plan) [list $1 $2]
return $cnt

$$ LANGUAGE pltcl;

We need backslashes inside the query string given to spi_prepare to ensure that the $n markers
will be passed through to spi_prepare as-is, and not replaced by Tcl variable substitution.

spi_lastoid

Returns the OID of the row inserted by the last spi_exec or spi_execp, if the command was a
single-row INSERT and the modified table contained OIDs. (If not, you get zero.)

quote string

Doubles all occurrences of single quote and backslash characters in the given string. This can be
used to safely quote strings that are to be inserted into SQL commands given to spi_exec or
spi_prepare. For example, think about an SQL command string like:

"SELECT ’$val’ AS ret"

where the Tcl variable val actually contains doesn’t. This would result in the final command
string:

SELECT ’doesn’t’ AS ret

which would cause a parse error during spi_exec or spi_prepare. To work properly, the submit-
ted command should contain:

SELECT ’doesn”t’ AS ret

which can be formed in PL/Tcl using:

"SELECT ’[quote $val]’ AS ret"

One advantage of spi_execp is that you don’t have to quote parameter values like this, since the
parameters are never parsed as part of an SQL command string.

elog level msg

Emits a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, ERROR, and
FATAL. ERROR raises an error condition; if this is not trapped by the surrounding Tcl code, the error
propagates out to the calling query, causing the current transaction or subtransaction to be aborted.
This is effectively the same as the Tcl error command. FATAL aborts the transaction and causes
the current session to shut down. (There is probably no good reason to use this error level in PL/Tcl

1094

Chapter 40. PL/Tcl - Tcl Procedural Language

functions, but it’s provided for completeness.) The other levels only generate messages of different
priority levels. Whether messages of a particular priority are reported to the client, written to the
server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 18 for more information.

40.6. Trigger Procedures in PL/Tcl
Trigger procedures can be written in PL/Tcl. PostgreSQL requires that a procedure that is to be called as
a trigger must be declared as a function with no arguments and a return type of trigger.

The information from the trigger manager is passed to the procedure body in the following variables:

$TG_name

The name of the trigger from the CREATE TRIGGER statement.

$TG_relid

The object ID of the table that caused the trigger procedure to be invoked.

$TG_table_name

The name of the table that caused the trigger procedure to be invoked.

$TG_table_schema

The schema of the table that caused the trigger procedure to be invoked.

$TG_relatts

A Tcl list of the table column names, prefixed with an empty list element. So looking up a column
name in the list with Tcl’s lsearch command returns the element’s number starting with 1 for the
first column, the same way the columns are customarily numbered in PostgreSQL. (Empty list ele-
ments also appear in the positions of columns that have been dropped, so that the attribute numbering
is correct for columns to their right.)

$TG_when

The string BEFORE, AFTER, or INSTEAD OF, depending on the type of trigger event.

$TG_level

The string ROW or STATEMENT depending on the type of trigger event.

$TG_op

The string INSERT, UPDATE, DELETE, or TRUNCATE depending on the type of trigger event.

$NEW

An associative array containing the values of the new table row for INSERT or UPDATE actions, or
empty for DELETE. The array is indexed by column name. Columns that are null will not appear in
the array. This is not set for statement-level triggers.

1095

Chapter 40. PL/Tcl - Tcl Procedural Language

$OLD

An associative array containing the values of the old table row for UPDATE or DELETE actions, or
empty for INSERT. The array is indexed by column name. Columns that are null will not appear in
the array. This is not set for statement-level triggers.

$args

A Tcl list of the arguments to the procedure as given in the CREATE TRIGGER statement. These
arguments are also accessible as $1 ... $n in the procedure body.

The return value from a trigger procedure can be one of the strings OK or SKIP, or a list as returned by the
array get Tcl command. If the return value is OK, the operation (INSERT/UPDATE/DELETE) that fired
the trigger will proceed normally. SKIP tells the trigger manager to silently suppress the operation for
this row. If a list is returned, it tells PL/Tcl to return a modified row to the trigger manager. This is only
meaningful for row-level BEFORE INSERT or UPDATE triggers for which the modified row will be inserted
instead of the one given in $NEW; or for row-level INSTEAD OF INSERT or UPDATE triggers where the
returned row is used to support INSERT RETURNING and UPDATE RETURNING commands. The return
value is ignored for other types of triggers.

Here’s a little example trigger procedure that forces an integer value in a table to keep track of the number
of updates that are performed on the row. For new rows inserted, the value is initialized to 0 and then
incremented on every update operation.

CREATE FUNCTION trigfunc_modcount() RETURNS trigger AS $$
switch $TG_op {

INSERT {
set NEW($1) 0

}
UPDATE {

set NEW($1) $OLD($1)
incr NEW($1)

}
default {

return OK
}

}
return [array get NEW]

$$ LANGUAGE pltcl;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount(’modcnt’);

Notice that the trigger procedure itself does not know the column name; that’s supplied from the trigger
arguments. This lets the trigger procedure be reused with different tables.

1096

Chapter 40. PL/Tcl - Tcl Procedural Language

40.7. Modules and the unknown Command
PL/Tcl has support for autoloading Tcl code when used. It recognizes a special table, pltcl_modules,
which is presumed to contain modules of Tcl code. If this table exists, the module unknown is fetched
from the table and loaded into the Tcl interpreter immediately before the first execution of a PL/Tcl
function in a database session. (This happens separately for each Tcl interpreter, if more than one is used
in a session; see Section 40.4.)

While the unknown module could actually contain any initialization script you need, it normally defines
a Tcl unknown procedure that is invoked whenever Tcl does not recognize an invoked procedure name.
PL/Tcl’s standard version of this procedure tries to find a module in pltcl_modules that will define
the required procedure. If one is found, it is loaded into the interpreter, and then execution is allowed to
proceed with the originally attempted procedure call. A secondary table pltcl_modfuncs provides an
index of which functions are defined by which modules, so that the lookup is reasonably quick.

The PostgreSQL distribution includes support scripts to maintain these tables: pltcl_loadmod,
pltcl_listmod, pltcl_delmod, as well as source for the standard unknown module in
share/unknown.pltcl. This module must be loaded into each database initially to support the
autoloading mechanism.

The tables pltcl_modules and pltcl_modfuncs must be readable by all, but it is wise to make them
owned and writable only by the database administrator. As a security precaution, PL/Tcl will ignore
pltcl_modules (and thus, not attempt to load the unknown module) unless it is owned by a superuser.
But update privileges on this table can be granted to other users, if you trust them sufficiently.

40.8. Tcl Procedure Names
In PostgreSQL, the same function name can be used for different function definitions as long as the
number of arguments or their types differ. Tcl, however, requires all procedure names to be distinct.
PL/Tcl deals with this by making the internal Tcl procedure names contain the object ID of the function
from the system table pg_proc as part of their name. Thus, PostgreSQL functions with the same name
and different argument types will be different Tcl procedures, too. This is not normally a concern for a
PL/Tcl programmer, but it might be visible when debugging.

1097

Chapter 41. PL/Perl - Perl Procedural Language
PL/Perl is a loadable procedural language that enables you to write PostgreSQL functions in the Perl
programming language1.

The main advantage to using PL/Perl is that this allows use, within stored functions, of the manyfold
“string munging” operators and functions available for Perl. Parsing complex strings might be easier
using Perl than it is with the string functions and control structures provided in PL/pgSQL.

To install PL/Perl in a particular database, use CREATE EXTENSION plperl, or from the shell command
line use createlang plperl dbname.

Tip: If a language is installed into template1, all subsequently created databases will have the lan-
guage installed automatically.

Note: Users of source packages must specially enable the build of PL/Perl during the installation
process. (Refer to Chapter 15 for more information.) Users of binary packages might find PL/Perl in a
separate subpackage.

41.1. PL/Perl Functions and Arguments
To create a function in the PL/Perl language, use the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$
PL/Perl function body

$$ LANGUAGE plperl;

The body of the function is ordinary Perl code. In fact, the PL/Perl glue code wraps it inside a Perl
subroutine. A PL/Perl function is called in a scalar context, so it can’t return a list. You can return non-
scalar values (arrays, records, and sets) by returning a reference, as discussed below.

PL/Perl also supports anonymous code blocks called with the DO statement:

DO $$
PL/Perl code

$$ LANGUAGE plperl;

An anonymous code block receives no arguments, and whatever value it might return is discarded. Other-
wise it behaves just like a function.

Note: The use of named nested subroutines is dangerous in Perl, especially if they refer to lexical
variables in the enclosing scope. Because a PL/Perl function is wrapped in a subroutine, any named
subroutine you place inside one will be nested. In general, it is far safer to create anonymous sub-
routines which you call via a coderef. For more information, see the entries for Variable "%s" will

1. http://www.perl.org

1098

Chapter 41. PL/Perl - Perl Procedural Language

not stay shared and Variable "%s" is not available in the perldiag man page, or search the
Internet for “perl nested named subroutine”.

The syntax of the CREATE FUNCTION command requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant. If
you choose to use escape string syntax E”, you must double any single quote marks (’) and backslashes
(\) used in the body of the function (see Section 4.1.2.1).

Arguments and results are handled as in any other Perl subroutine: arguments are passed in @_, and a
result value is returned with return or as the last expression evaluated in the function.

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
if ($_[0] > $_[1]) { return $_[0]; }
return $_[1];

$$ LANGUAGE plperl;

Note: Arguments will be converted from the database’s encoding to UTF-8 for use inside PL/Perl, and
then converted from UTF-8 back to the database encoding upon return.

If an SQL null value is passed to a function, the argument value will appear as “undefined” in Perl.
The above function definition will not behave very nicely with null inputs (in fact, it will act as though
they are zeroes). We could add STRICT to the function definition to make PostgreSQL do something
more reasonable: if a null value is passed, the function will not be called at all, but will just return a
null result automatically. Alternatively, we could check for undefined inputs in the function body. For
example, suppose that we wanted perl_max with one null and one nonnull argument to return the nonnull
argument, rather than a null value:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
my ($x, $y) = @_;
if (not defined $x) {

return undef if not defined $y;
return $y;

}
return $x if not defined $y;
return $x if $x > $y;
return $y;

$$ LANGUAGE plperl;

As shown above, to return an SQL null value from a PL/Perl function, return an undefined value. This can
be done whether the function is strict or not.

Anything in a function argument that is not a reference is a string, which is in the standard PostgreSQL
external text representation for the relevant data type. In the case of ordinary numeric or text types, Perl
will just do the right thing and the programmer will normally not have to worry about it. However, in
other cases the argument will need to be converted into a form that is more usable in Perl. For example,
the decode_bytea function can be used to convert an argument of type bytea into unescaped binary.

1099

Chapter 41. PL/Perl - Perl Procedural Language

Similarly, values passed back to PostgreSQL must be in the external text representation format. For ex-
ample, the encode_bytea function can be used to escape binary data for a return value of type bytea.

Perl can return PostgreSQL arrays as references to Perl arrays. Here is an example:

CREATE OR REPLACE function returns_array()
RETURNS text[][] AS $$

return [[’a"b’,’c,d’],[’e\\f’,’g’]];
$$ LANGUAGE plperl;

select returns_array();

Perl passes PostgreSQL arrays as a blessed PostgreSQL::InServer::ARRAY object. This object may be
treated as an array reference or a string, allowing for backward compatibility with Perl code written for
PostgreSQL versions below 9.1 to run. For example:

CREATE OR REPLACE FUNCTION concat_array_elements(text[]) RETURNS TEXT AS $$
my $arg = shift;
my $result = "";
return undef if (!defined $arg);

as an array reference
for (@$arg) {

$result .= $_;
}

also works as a string
$result .= $arg;

return $result;
$$ LANGUAGE plperl;

SELECT concat_array_elements(ARRAY[’PL’,’/’,’Perl’]);

Note: Multi-dimensional arrays are represented as references to lower-dimensional arrays of refer-
ences in a way common to every Perl programmer.

Composite-type arguments are passed to the function as references to hashes. The keys of the hash are the
attribute names of the composite type. Here is an example:

CREATE TABLE employee (
name text,
basesalary integer,
bonus integer

);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
my ($emp) = @_;

1100

Chapter 41. PL/Perl - Perl Procedural Language

return $emp->{basesalary} + $emp->{bonus};
$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;

A PL/Perl function can return a composite-type result using the same approach: return a reference to a
hash that has the required attributes. For example:

CREATE TYPE testrowperl AS (f1 integer, f2 text, f3 text);

CREATE OR REPLACE FUNCTION perl_row() RETURNS testrowperl AS $$
return {f2 => ’hello’, f1 => 1, f3 => ’world’};

$$ LANGUAGE plperl;

SELECT * FROM perl_row();

Any columns in the declared result data type that are not present in the hash will be returned as null values.

PL/Perl functions can also return sets of either scalar or composite types. Usually you’ll want to return
rows one at a time, both to speed up startup time and to keep from queueing up the entire result set in
memory. You can do this with return_next as illustrated below. Note that after the last return_next,
you must put either return or (better) return undef.

CREATE OR REPLACE FUNCTION perl_set_int(int)
RETURNS SETOF INTEGER AS $$

foreach (0..$_[0]) {
return_next($_);

}
return undef;

$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set()
RETURNS SETOF testrowperl AS $$

return_next({ f1 => 1, f2 => ’Hello’, f3 => ’World’ });
return_next({ f1 => 2, f2 => ’Hello’, f3 => ’PostgreSQL’ });
return_next({ f1 => 3, f2 => ’Hello’, f3 => ’PL/Perl’ });
return undef;

$$ LANGUAGE plperl;

For small result sets, you can return a reference to an array that contains either scalars, references to
arrays, or references to hashes for simple types, array types, and composite types, respectively. Here are
some simple examples of returning the entire result set as an array reference:

CREATE OR REPLACE FUNCTION perl_set_int(int) RETURNS SETOF INTEGER AS $$
return [0..$_[0]];

$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set() RETURNS SETOF testrowperl AS $$

1101

Chapter 41. PL/Perl - Perl Procedural Language

return [
{ f1 => 1, f2 => ’Hello’, f3 => ’World’ },
{ f1 => 2, f2 => ’Hello’, f3 => ’PostgreSQL’ },
{ f1 => 3, f2 => ’Hello’, f3 => ’PL/Perl’ }

];
$$ LANGUAGE plperl;

SELECT * FROM perl_set();

If you wish to use the strict pragma with your code you have a few options. For temporary global use
you can SET plperl.use_strict to true. This will affect subsequent compilations of PL/Perl func-
tions, but not functions already compiled in the current session. For permanent global use you can set
plperl.use_strict to true in the postgresql.conf file.

For permanent use in specific functions you can simply put:

use strict;

at the top of the function body.

The feature pragma is also available to use if your Perl is version 5.10.0 or higher.

41.2. Data Values in PL/Perl
The argument values supplied to a PL/Perl function’s code are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversely, the return and
return_next commands will accept any string that is acceptable input format for the function’s declared
return type.

41.3. Built-in Functions

41.3.1. Database Access from PL/Perl
Access to the database itself from your Perl function can be done via the following functions:

spi_exec_query(query [, max-rows])

spi_exec_query executes an SQL command and returns the entire row set as a reference to an
array of hash references. You should only use this command when you know that the result set will
be relatively small. Here is an example of a query (SELECT command) with the optional maximum
number of rows:

$rv = spi_exec_query(’SELECT * FROM my_table’, 5);

This returns up to 5 rows from the table my_table. If my_table has a column my_column, you can
get that value from row $i of the result like this:

$foo = $rv->{rows}[$i]->{my_column};

1102

Chapter 41. PL/Perl - Perl Procedural Language

The total number of rows returned from a SELECT query can be accessed like this:

$nrows = $rv->{processed}

Here is an example using a different command type:

$query = "INSERT INTO my_table VALUES (1, ’test’)";
$rv = spi_exec_query($query);

You can then access the command status (e.g., SPI_OK_INSERT) like this:

$res = $rv->{status};

To get the number of rows affected, do:

$nrows = $rv->{processed};

Here is a complete example:

CREATE TABLE test (
i int,
v varchar

);

INSERT INTO test (i, v) VALUES (1, ’first line’);
INSERT INTO test (i, v) VALUES (2, ’second line’);
INSERT INTO test (i, v) VALUES (3, ’third line’);
INSERT INTO test (i, v) VALUES (4, ’immortal’);

CREATE OR REPLACE FUNCTION test_munge() RETURNS SETOF test AS $$
my $rv = spi_exec_query(’select i, v from test;’);
my $status = $rv->{status};
my $nrows = $rv->{processed};
foreach my $rn (0 .. $nrows - 1) {

my $row = $rv->{rows}[$rn];
$row->{i} += 200 if defined($row->{i});
$row->{v} =~ tr/A-Za-z/a-zA-Z/ if (defined($row->{v}));
return_next($row);

}
return undef;

$$ LANGUAGE plperl;

SELECT * FROM test_munge();

spi_query(command)

spi_fetchrow(cursor)

spi_cursor_close(cursor)

spi_query and spi_fetchrow work together as a pair for row sets which might be large, or for
cases where you wish to return rows as they arrive. spi_fetchrow works only with spi_query.
The following example illustrates how you use them together:

CREATE TYPE foo_type AS (the_num INTEGER, the_text TEXT);

CREATE OR REPLACE FUNCTION lotsa_md5 (INTEGER) RETURNS SETOF foo_type AS $$
use Digest::MD5 qw(md5_hex);
my $file = ’/usr/share/dict/words’;
my $t = localtime;
elog(NOTICE, "opening file $file at $t");
open my $fh, ’<’, $file # ooh, it’s a file access!

1103

Chapter 41. PL/Perl - Perl Procedural Language

or elog(ERROR, "cannot open $file for reading: $!");
my @words = <$fh>;
close $fh;
$t = localtime;
elog(NOTICE, "closed file $file at $t");
chomp(@words);
my $row;
my $sth = spi_query("SELECT * FROM generate_series(1,$_[0]) AS b(a)");
while (defined ($row = spi_fetchrow($sth))) {

return_next({
the_num => $row->{a},
the_text => md5_hex($words[rand @words])

});
}
return;

$$ LANGUAGE plperlu;

SELECT * from lotsa_md5(500);

Normally, spi_fetchrow should be repeated until it returns undef, indicating that there are no
more rows to read. The cursor returned by spi_query is automatically freed when spi_fetchrow

returns undef. If you do not wish to read all the rows, instead call spi_cursor_close to free the
cursor. Failure to do so will result in memory leaks.

spi_prepare(command, argument types)

spi_query_prepared(plan, arguments)

spi_exec_prepared(plan [, attributes], arguments)

spi_freeplan(plan)

spi_prepare, spi_query_prepared, spi_exec_prepared, and spi_freeplan implement
the same functionality but for prepared queries. spi_prepare accepts a query string with
numbered argument placeholders ($1, $2, etc) and a string list of argument types:

$plan = spi_prepare(’SELECT * FROM test WHERE id > $1 AND name = $2’,
’INTEGER’, ’TEXT’);

Once a query plan is prepared by a call to spi_prepare, the plan can be used instead of the
string query, either in spi_exec_prepared, where the result is the same as returned by
spi_exec_query, or in spi_query_prepared which returns a cursor exactly as spi_query

does, which can be later passed to spi_fetchrow. The optional second parameter to
spi_exec_prepared is a hash reference of attributes; the only attribute currently supported is
limit, which sets the maximum number of rows returned by a query.

The advantage of prepared queries is that is it possible to use one prepared plan for more than one
query execution. After the plan is not needed anymore, it can be freed with spi_freeplan:

CREATE OR REPLACE FUNCTION init() RETURNS VOID AS $$
$_SHARED{my_plan} = spi_prepare(’SELECT (now() + $1)::date AS now’,

’INTERVAL’);
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION add_time(INTERVAL) RETURNS TEXT AS $$
return spi_exec_prepared(

$_SHARED{my_plan},
$_[0]

1104

Chapter 41. PL/Perl - Perl Procedural Language

)->{rows}->[0]->{now};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION done() RETURNS VOID AS $$
spi_freeplan($_SHARED{my_plan});
undef $_SHARED{my_plan};

$$ LANGUAGE plperl;

SELECT init();
SELECT add_time(’1 day’), add_time(’2 days’), add_time(’3 days’);
SELECT done();

add_time | add_time | add_time
------------+------------+------------
2005-12-10 | 2005-12-11 | 2005-12-12

Note that the parameter subscript in spi_prepare is defined via $1, $2, $3, etc, so avoid declaring
query strings in double quotes that might easily lead to hard-to-catch bugs.

Another example illustrates usage of an optional parameter in spi_exec_prepared:

CREATE TABLE hosts AS SELECT id, (’192.168.1.’||id)::inet AS address
FROM generate_series(1,3) AS id;

CREATE OR REPLACE FUNCTION init_hosts_query() RETURNS VOID AS $$
$_SHARED{plan} = spi_prepare(’SELECT * FROM hosts

WHERE address << $1’, ’inet’);
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION query_hosts(inet) RETURNS SETOF hosts AS $$
return spi_exec_prepared(

$_SHARED{plan},
{limit => 2},
$_[0]

)->{rows};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION release_hosts_query() RETURNS VOID AS $$
spi_freeplan($_SHARED{plan});
undef $_SHARED{plan};

$$ LANGUAGE plperl;

SELECT init_hosts_query();
SELECT query_hosts(’192.168.1.0/30’);
SELECT release_hosts_query();

query_hosts

(1,192.168.1.1)
(2,192.168.1.2)

(2 rows)

1105

Chapter 41. PL/Perl - Perl Procedural Language

41.3.2. Utility Functions in PL/Perl

elog(level, msg)

Emit a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, and ERROR.
ERROR raises an error condition; if this is not trapped by the surrounding Perl code, the error propa-
gates out to the calling query, causing the current transaction or subtransaction to be aborted. This is
effectively the same as the Perl die command. The other levels only generate messages of different
priority levels. Whether messages of a particular priority are reported to the client, written to the
server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 18 for more information.

quote_literal(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string.
Embedded single-quotes and backslashes are properly doubled. Note that quote_literal returns
undef on undef input; if the argument might be undef, quote_nullable is often more suitable.

quote_nullable(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string; or, if
the argument is undef, return the unquoted string "NULL". Embedded single-quotes and backslashes
are properly doubled.

quote_ident(string)

Return the given string suitably quoted to be used as an identifier in an SQL statement string. Quotes
are added only if necessary (i.e., if the string contains non-identifier characters or would be case-
folded). Embedded quotes are properly doubled.

decode_bytea(string)

Return the unescaped binary data represented by the contents of the given string, which should be
bytea encoded.

encode_bytea(string)

Return the bytea encoded form of the binary data contents of the given string.

encode_array_literal(array)

encode_array_literal(array, delimiter)

Returns the contents of the referenced array as a string in array literal format (see Section 8.15.2).
Returns the argument value unaltered if it’s not a reference to an array. The delimiter used between
elements of the array literal defaults to ", " if a delimiter is not specified or is undef.

encode_typed_literal(value, typename)

Converts a Perl variable to the value of the data type passed as a second argument and returns a string
representation of this value. Correctly handles nested arrays and values of composite types.

encode_array_constructor(array)

Returns the contents of the referenced array as a string in array constructor format (see Section
4.2.12). Individual values are quoted using quote_nullable. Returns the argument value, quoted
using quote_nullable, if it’s not a reference to an array.

1106

Chapter 41. PL/Perl - Perl Procedural Language

looks_like_number(string)

Returns a true value if the content of the given string looks like a number, according to Perl, returns
false otherwise. Returns undef if the argument is undef. Leading and trailing space is ignored. Inf
and Infinity are regarded as numbers.

is_array_ref(argument)

Returns a true value if the given argument may be treated as an array reference, that is, if ref of the
argument is ARRAY or PostgreSQL::InServer::ARRAY. Returns false otherwise.

41.4. Global Values in PL/Perl
You can use the global hash %_SHARED to store data, including code references, between function calls
for the lifetime of the current session.

Here is a simple example for shared data:

CREATE OR REPLACE FUNCTION set_var(name text, val text) RETURNS text AS $$
if ($_SHARED{$_[0]} = $_[1]) {

return ’ok’;
} else {

return "cannot set shared variable $_[0] to $_[1]";
}

$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION get_var(name text) RETURNS text AS $$
return $_SHARED{$_[0]};

$$ LANGUAGE plperl;

SELECT set_var(’sample’, ’Hello, PL/Perl! How”s tricks?’);
SELECT get_var(’sample’);

Here is a slightly more complicated example using a code reference:

CREATE OR REPLACE FUNCTION myfuncs() RETURNS void AS $$
$_SHARED{myquote} = sub {

my $arg = shift;
$arg =~ s/([’\\])/\\$1/g;
return "’$arg’";

};
$$ LANGUAGE plperl;

SELECT myfuncs(); /* initializes the function */

/* Set up a function that uses the quote function */

CREATE OR REPLACE FUNCTION use_quote(TEXT) RETURNS text AS $$
my $text_to_quote = shift;
my $qfunc = $_SHARED{myquote};

1107

Chapter 41. PL/Perl - Perl Procedural Language

return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;

(You could have replaced the above with the one-liner return $_SHARED{myquote}->($_[0]); at
the expense of readability.)

For security reasons, PL/Perl executes functions called by any one SQL role in a separate Perl interpreter
for that role. This prevents accidental or malicious interference by one user with the behavior of another
user’s PL/Perl functions. Each such interpreter has its own value of the %_SHARED variable and other
global state. Thus, two PL/Perl functions will share the same value of %_SHARED if and only if they are
executed by the same SQL role. In an application wherein a single session executes code under multiple
SQL roles (via SECURITY DEFINER functions, use of SET ROLE, etc) you may need to take explicit steps
to ensure that PL/Perl functions can share data via %_SHARED. To do that, make sure that functions that
should communicate are owned by the same user, and mark them SECURITY DEFINER. You must of
course take care that such functions can’t be used to do anything unintended.

41.5. Trusted and Untrusted PL/Perl
Normally, PL/Perl is installed as a “trusted” programming language named plperl. In this setup, certain
Perl operations are disabled to preserve security. In general, the operations that are restricted are those
that interact with the environment. This includes file handle operations, require, and use (for external
modules). There is no way to access internals of the database server process or to gain OS-level access
with the permissions of the server process, as a C function can do. Thus, any unprivileged database user
can be permitted to use this language.

Here is an example of a function that will not work because file system operations are not allowed for
security reasons:

CREATE FUNCTION badfunc() RETURNS integer AS $$
my $tmpfile = "/tmp/badfile";
open my $fh, ’>’, $tmpfile

or elog(ERROR, qq{could not open the file "$tmpfile": $!});
print $fh "Testing writing to a file\n";
close $fh or elog(ERROR, qq{could not close the file "$tmpfile": $!});
return 1;

$$ LANGUAGE plperl;

The creation of this function will fail as its use of a forbidden operation will be caught by the validator.

Sometimes it is desirable to write Perl functions that are not restricted. For example, one might want a Perl
function that sends mail. To handle these cases, PL/Perl can also be installed as an “untrusted” language
(usually called PL/PerlU). In this case the full Perl language is available. When installing the language,
the language name plperlu will select the untrusted PL/Perl variant.

The writer of a PL/PerlU function must take care that the function cannot be used to do anything unwanted,
since it will be able to do anything that could be done by a user logged in as the database administrator.
Note that the database system allows only database superusers to create functions in untrusted languages.

If the above function was created by a superuser using the language plperlu, execution would succeed.

1108

Chapter 41. PL/Perl - Perl Procedural Language

In the same way, anonymous code blocks written in Perl can use restricted operations if the language is
specified as plperlu rather than plperl, but the caller must be a superuser.

Note: While PL/Perl functions run in a separate Perl interpreter for each SQL role, all PL/PerlU func-
tions executed in a given session run in a single Perl interpreter (which is not any of the ones used
for PL/Perl functions). This allows PL/PerlU functions to share data freely, but no communication can
occur between PL/Perl and PL/PerlU functions.

Note: Perl cannot support multiple interpreters within one process unless it was built with the appro-
priate flags, namely either usemultiplicity or useithreads. (usemultiplicity is preferred unless
you actually need to use threads. For more details, see the perlembed man page.) If PL/Perl is used
with a copy of Perl that was not built this way, then it is only possible to have one Perl interpreter per
session, and so any one session can only execute either PL/PerlU functions, or PL/Perl functions that
are all called by the same SQL role.

41.6. PL/Perl Triggers
PL/Perl can be used to write trigger functions. In a trigger function, the hash reference $_TD contains
information about the current trigger event. $_TD is a global variable, which gets a separate local value
for each invocation of the trigger. The fields of the $_TD hash reference are:

$_TD->{new}{foo}

NEW value of column foo

$_TD->{old}{foo}

OLD value of column foo

$_TD->{name}

Name of the trigger being called

$_TD->{event}

Trigger event: INSERT, UPDATE, DELETE, TRUNCATE, or UNKNOWN

$_TD->{when}

When the trigger was called: BEFORE, AFTER, INSTEAD OF, or UNKNOWN

$_TD->{level}

The trigger level: ROW, STATEMENT, or UNKNOWN

$_TD->{relid}

OID of the table on which the trigger fired

$_TD->{table_name}

Name of the table on which the trigger fired

1109

Chapter 41. PL/Perl - Perl Procedural Language

$_TD->{relname}

Name of the table on which the trigger fired. This has been deprecated, and could be removed in a
future release. Please use $_TD->{table_name} instead.

$_TD->{table_schema}

Name of the schema in which the table on which the trigger fired, is

$_TD->{argc}

Number of arguments of the trigger function

@{$_TD->{args}}

Arguments of the trigger function. Does not exist if $_TD->{argc} is 0.

Row-level triggers can return one of the following:

return;

Execute the operation

"SKIP"

Don’t execute the operation

"MODIFY"

Indicates that the NEW row was modified by the trigger function

Here is an example of a trigger function, illustrating some of the above:

CREATE TABLE test (
i int,
v varchar

);

CREATE OR REPLACE FUNCTION valid_id() RETURNS trigger AS $$
if (($_TD->{new}{i} >= 100) || ($_TD->{new}{i} <= 0)) {

return "SKIP"; # skip INSERT/UPDATE command
} elsif ($_TD->{new}{v} ne "immortal") {

$_TD->{new}{v} .= "(modified by trigger)";
return "MODIFY"; # modify row and execute INSERT/UPDATE command

} else {
return; # execute INSERT/UPDATE command

}
$$ LANGUAGE plperl;

CREATE TRIGGER test_valid_id_trig
BEFORE INSERT OR UPDATE ON test
FOR EACH ROW EXECUTE PROCEDURE valid_id();

1110

Chapter 41. PL/Perl - Perl Procedural Language

41.7. PL/Perl Under the Hood

41.7.1. Configuration
This section lists configuration parameters that affect PL/Perl.

plperl.on_init (string)

Specifies Perl code to be executed when a Perl interpreter is first initialized, before it is specialized
for use by plperl or plperlu. The SPI functions are not available when this code is executed. If
the code fails with an error it will abort the initialization of the interpreter and propagate out to the
calling query, causing the current transaction or subtransaction to be aborted.

The Perl code is limited to a single string. Longer code can be placed into a module and loaded by
the on_init string. Examples:

plperl.on_init = ’require "plperlinit.pl"’
plperl.on_init = ’use lib "/my/app"; use MyApp::PgInit;’

Any modules loaded by plperl.on_init, either directly or indirectly, will be available for use by
plperl. This may create a security risk. To see what modules have been loaded you can use:

DO ’elog(WARNING, join ", ", sort keys %INC)’ LANGUAGE plperl;

Initialization will happen in the postmaster if the plperl library is included in
shared_preload_libraries, in which case extra consideration should be given to the risk of
destabilizing the postmaster. The principal reason for making use of this feature is that Perl modules
loaded by plperl.on_init need be loaded only at postmaster start, and will be instantly available
without loading overhead in individual database sessions. However, keep in mind that the overhead
is avoided only for the first Perl interpreter used by a database session — either PL/PerlU, or
PL/Perl for the first SQL role that calls a PL/Perl function. Any additional Perl interpreters created
in a database session will have to execute plperl.on_init afresh. Also, on Windows there will
be no savings whatsoever from preloading, since the Perl interpreter created in the postmaster
process does not propagate to child processes.

This parameter can only be set in the postgresql.conf file or on the server command line.

plperl.on_plperl_init (string)
plperl.on_plperlu_init (string)

These parameters specify Perl code to be executed when a Perl interpreter is specialized for plperl
or plperlu respectively. This will happen when a PL/Perl or PL/PerlU function is first executed in
a database session, or when an additional interpreter has to be created because the other language
is called or a PL/Perl function is called by a new SQL role. This follows any initialization done by
plperl.on_init. The SPI functions are not available when this code is executed. The Perl code
in plperl.on_plperl_init is executed after “locking down” the interpreter, and thus it can only
perform trusted operations.

If the code fails with an error it will abort the initialization and propagate out to the calling query,
causing the current transaction or subtransaction to be aborted. Any actions already done within Perl
won’t be undone; however, that interpreter won’t be used again. If the language is used again the
initialization will be attempted again within a fresh Perl interpreter.

1111

Chapter 41. PL/Perl - Perl Procedural Language

Only superusers can change these settings. Although these settings can be changed within a session,
such changes will not affect Perl interpreters that have already been used to execute functions.

plperl.use_strict (boolean)

When set true subsequent compilations of PL/Perl functions will have the strict pragma enabled.
This parameter does not affect functions already compiled in the current session.

41.7.2. Limitations and Missing Features
The following features are currently missing from PL/Perl, but they would make welcome contributions.

• PL/Perl functions cannot call each other directly.

• SPI is not yet fully implemented.

• If you are fetching very large data sets using spi_exec_query, you should be aware that these will all
go into memory. You can avoid this by using spi_query/spi_fetchrow as illustrated earlier.

A similar problem occurs if a set-returning function passes a large set of rows back to PostgreSQL
via return. You can avoid this problem too by instead using return_next for each row returned, as
shown previously.

• When a session ends normally, not due to a fatal error, any END blocks that have been defined are
executed. Currently no other actions are performed. Specifically, file handles are not automatically
flushed and objects are not automatically destroyed.

1112

Chapter 42. PL/Python - Python Procedural
Language

The PL/Python procedural language allows PostgreSQL functions to be written in the Python language1.

To install PL/Python in a particular database, use CREATE EXTENSION plpythonu, or from the shell
command line use createlang plpythonu dbname (but see also Section 42.1).

Tip: If a language is installed into template1, all subsequently created databases will have the lan-
guage installed automatically.

As of PostgreSQL 7.4, PL/Python is only available as an “untrusted” language, meaning it does not of-
fer any way of restricting what users can do in it. It has therefore been renamed to plpythonu. The
trusted variant plpython might become available again in future, if a new secure execution mechanism
is developed in Python. The writer of a function in untrusted PL/Python must take care that the function
cannot be used to do anything unwanted, since it will be able to do anything that could be done by a user
logged in as the database administrator. Only superusers can create functions in untrusted languages such
as plpythonu.

Note: Users of source packages must specially enable the build of PL/Python during the installation
process. (Refer to the installation instructions for more information.) Users of binary packages might
find PL/Python in a separate subpackage.

42.1. Python 2 vs. Python 3
PL/Python supports both the Python 2 and Python 3 language variants. (The PostgreSQL installation
instructions might contain more precise information about the exact supported minor versions of Python.)
Because the Python 2 and Python 3 language variants are incompatible in some important aspects, the
following naming and transitioning scheme is used by PL/Python to avoid mixing them:

• The PostgreSQL language named plpython2u implements PL/Python based on the Python 2 language
variant.

• The PostgreSQL language named plpython3u implements PL/Python based on the Python 3 language
variant.

• The language named plpythonu implements PL/Python based on the default Python language variant,
which is currently Python 2. (This default is independent of what any local Python installations might
consider to be their “default”, for example, what /usr/bin/python might be.) The default will prob-
ably be changed to Python 3 in a distant future release of PostgreSQL, depending on the progress of
the migration to Python 3 in the Python community.

1. http://www.python.org

1113

Chapter 42. PL/Python - Python Procedural Language

This scheme is analogous to the recommendations in PEP 3942 regarding the naming and transitioning of
the python command.

It depends on the build configuration or the installed packages whether PL/Python for Python 2 or Python
3 or both are available.

Tip: The built variant depends on which Python version was found during the installation or which
version was explicitly set using the PYTHON environment variable; see Section 15.4. To make both
variants of PL/Python available in one installation, the source tree has to be configured and built
twice.

This results in the following usage and migration strategy:

• Existing users and users who are currently not interested in Python 3 use the language name plpythonu
and don’t have to change anything for the foreseeable future. It is recommended to gradually “future-
proof” the code via migration to Python 2.6/2.7 to simplify the eventual migration to Python 3.

In practice, many PL/Python functions will migrate to Python 3 with few or no changes.

• Users who know that they have heavily Python 2 dependent code and don’t plan to ever change it can
make use of the plpython2u language name. This will continue to work into the very distant future,
until Python 2 support might be completely dropped by PostgreSQL.

• Users who want to dive into Python 3 can use the plpython3u language name, which will keep work-
ing forever by today’s standards. In the distant future, when Python 3 might become the default, they
might like to remove the “3” for aesthetic reasons.

• Daredevils, who want to build a Python-3-only operating system environment, can change the contents
of pg_pltemplate to make plpythonu be equivalent to plpython3u, keeping in mind that this
would make their installation incompatible with most of the rest of the world.

See also the document What’s New In Python 3.03 for more information about porting to Python 3.

It is not allowed to use PL/Python based on Python 2 and PL/Python based on Python 3 in the same
session, because the symbols in the dynamic modules would clash, which could result in crashes of the
PostgreSQL server process. There is a check that prevents mixing Python major versions in a session,
which will abort the session if a mismatch is detected. It is possible, however, to use both PL/Python
variants in the same database, from separate sessions.

42.2. PL/Python Functions
Functions in PL/Python are declared via the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-list)
RETURNS return-type

2. http://www.python.org/dev/peps/pep-0394/
3. http://docs.python.org/py3k/whatsnew/3.0.html

1114

Chapter 42. PL/Python - Python Procedural Language

AS $$
PL/Python function body

$$ LANGUAGE plpythonu;

The body of a function is simply a Python script. When the function is called, its arguments are passed
as elements of the list args; named arguments are also passed as ordinary variables to the Python script.
Use of named arguments is usually more readable. The result is returned from the Python code in the
usual way, with return or yield (in case of a result-set statement). If you do not provide a return value,
Python returns the default None. PL/Python translates Python’s None into the SQL null value.

For example, a function to return the greater of two integers can be defined as:

CREATE FUNCTION pymax (a integer, b integer)
RETURNS integer

AS $$
if a > b:

return a
return b

$$ LANGUAGE plpythonu;

The Python code that is given as the body of the function definition is transformed into a Python function.
For example, the above results in:

def __plpython_procedure_pymax_23456():
if a > b:

return a
return b

assuming that 23456 is the OID assigned to the function by PostgreSQL.

The arguments are set as global variables. Because of the scoping rules of Python, this has the subtle con-
sequence that an argument variable cannot be reassigned inside the function to the value of an expression
that involves the variable name itself, unless the variable is redeclared as global in the block. For example,
the following won’t work:

CREATE FUNCTION pystrip(x text)
RETURNS text

AS $$
x = x.strip() # error
return x

$$ LANGUAGE plpythonu;

because assigning to x makes x a local variable for the entire block, and so the x on the right-hand side of
the assignment refers to a not-yet-assigned local variable x, not the PL/Python function parameter. Using
the global statement, this can be made to work:

CREATE FUNCTION pystrip(x text)
RETURNS text

AS $$
global x
x = x.strip() # ok now
return x

1115

Chapter 42. PL/Python - Python Procedural Language

$$ LANGUAGE plpythonu;

But it is advisable not to rely on this implementation detail of PL/Python. It is better to treat the function
parameters as read-only.

42.3. Data Values
Generally speaking, the aim of PL/Python is to provide a “natural” mapping between the PostgreSQL and
the Python worlds. This informs the data mapping rules described below.

42.3.1. Data Type Mapping
Function arguments are converted from their PostgreSQL type to a corresponding Python type:

• PostgreSQL boolean is converted to Python bool.

• PostgreSQL smallint and int are converted to Python int. PostgreSQL bigint is converted to
long in Python 2 and to int in Python 3.

• PostgreSQL real, double, and numeric are converted to Python float. Note that for the numeric
this loses information and can lead to incorrect results. This might be fixed in a future release.

• PostgreSQL bytea is converted to Python str in Python 2 and to bytes in Python 3. In Python 2, the
string should be treated as a byte sequence without any character encoding.

• All other data types, including the PostgreSQL character string types, are converted to a Python str.
In Python 2, this string will be in the PostgreSQL server encoding; in Python 3, it will be a Unicode
string like all strings.

• For nonscalar data types, see below.

Function return values are converted to the declared PostgreSQL return data type as follows:

• When the PostgreSQL return type is boolean, the return value will be evaluated for truth according to
the Python rules. That is, 0 and empty string are false, but notably ’f’ is true.

• When the PostgreSQL return type is bytea, the return value will be converted to a string (Python 2) or
bytes (Python 3) using the respective Python built-ins, with the result being converted bytea.

• For all other PostgreSQL return types, the returned Python value is converted to a string using the
Python built-in str, and the result is passed to the input function of the PostgreSQL data type.

Strings in Python 2 are required to be in the PostgreSQL server encoding when they are passed to Post-
greSQL. Strings that are not valid in the current server encoding will raise an error, but not all encoding
mismatches can be detected, so garbage data can still result when this is not done correctly. Unicode
strings are converted to the correct encoding automatically, so it can be safer and more convenient to
use those. In Python 3, all strings are Unicode strings.

• For nonscalar data types, see below.

1116

Chapter 42. PL/Python - Python Procedural Language

Note that logical mismatches between the declared PostgreSQL return type and the Python data type of
the actual return object are not flagged; the value will be converted in any case.

42.3.2. Null, None
If an SQL null value is passed to a function, the argument value will appear as None in Python. For exam-
ple, the function definition of pymax shown in Section 42.2 will return the wrong answer for null inputs.
We could add STRICT to the function definition to make PostgreSQL do something more reasonable: if a
null value is passed, the function will not be called at all, but will just return a null result automatically.
Alternatively, we could check for null inputs in the function body:

CREATE FUNCTION pymax (a integer, b integer)
RETURNS integer

AS $$
if (a is None) or (b is None):
return None

if a > b:
return a

return b
$$ LANGUAGE plpythonu;

As shown above, to return an SQL null value from a PL/Python function, return the value None. This can
be done whether the function is strict or not.

42.3.3. Arrays, Lists
SQL array values are passed into PL/Python as a Python list. To return an SQL array value out of a
PL/Python function, return a Python sequence, for example a list or tuple:

CREATE FUNCTION return_arr()
RETURNS int[]

AS $$
return (1, 2, 3, 4, 5)
$$ LANGUAGE plpythonu;

SELECT return_arr();
return_arr

{1,2,3,4,5}

(1 row)

Note that in Python, strings are sequences, which can have undesirable effects that might be familiar to
Python programmers:

CREATE FUNCTION return_str_arr()
RETURNS varchar[]

AS $$
return "hello"
$$ LANGUAGE plpythonu;

1117

Chapter 42. PL/Python - Python Procedural Language

SELECT return_str_arr();
return_str_arr

{h,e,l,l,o}

(1 row)

42.3.4. Composite Types
Composite-type arguments are passed to the function as Python mappings. The element names of the
mapping are the attribute names of the composite type. If an attribute in the passed row has the null value,
it has the value None in the mapping. Here is an example:

CREATE TABLE employee (
name text,
salary integer,
age integer

);

CREATE FUNCTION overpaid (e employee)
RETURNS boolean

AS $$
if e["salary"] > 200000:
return True

if (e["age"] < 30) and (e["salary"] > 100000):
return True

return False
$$ LANGUAGE plpythonu;

There are multiple ways to return row or composite types from a Python function. The following examples
assume we have:

CREATE TYPE named_value AS (
name text,
value integer

);

A composite result can be returned as a:

Sequence type (a tuple or list, but not a set because it is not indexable)

Returned sequence objects must have the same number of items as the composite result type has
fields. The item with index 0 is assigned to the first field of the composite type, 1 to the second and
so on. For example:

CREATE FUNCTION make_pair (name text, value integer)
RETURNS named_value

AS $$
return [name, value]

1118

Chapter 42. PL/Python - Python Procedural Language

or alternatively, as tuple: return (name, value)
$$ LANGUAGE plpythonu;

To return a SQL null for any column, insert None at the corresponding position.

Mapping (dictionary)

The value for each result type column is retrieved from the mapping with the column name as key.
Example:

CREATE FUNCTION make_pair (name text, value integer)
RETURNS named_value

AS $$
return { "name": name, "value": value }

$$ LANGUAGE plpythonu;

Any extra dictionary key/value pairs are ignored. Missing keys are treated as errors. To return a SQL
null value for any column, insert None with the corresponding column name as the key.

Object (any object providing method __getattr__)

This works the same as a mapping. Example:

CREATE FUNCTION make_pair (name text, value integer)
RETURNS named_value

AS $$
class named_value:
def __init__ (self, n, v):
self.name = n
self.value = v

return named_value(name, value)

or simply
class nv: pass
nv.name = name
nv.value = value
return nv

$$ LANGUAGE plpythonu;

Functions with OUT parameters are also supported. For example:

CREATE FUNCTION multiout_simple(OUT i integer, OUT j integer) AS $$
return (1, 2)
$$ LANGUAGE plpythonu;

SELECT * FROM multiout_simple();

1119

Chapter 42. PL/Python - Python Procedural Language

42.3.5. Set-returning Functions
A PL/Python function can also return sets of scalar or composite types. There are several ways to achieve
this because the returned object is internally turned into an iterator. The following examples assume we
have composite type:

CREATE TYPE greeting AS (
how text,
who text

);

A set result can be returned from a:

Sequence type (tuple, list, set)

CREATE FUNCTION greet (how text)
RETURNS SETOF greeting

AS $$
return tuple containing lists as composite types
all other combinations work also
return ([how, "World"], [how, "PostgreSQL"], [how, "PL/Python"])

$$ LANGUAGE plpythonu;

Iterator (any object providing __iter__ and next methods)

CREATE FUNCTION greet (how text)
RETURNS SETOF greeting

AS $$
class producer:
def __init__ (self, how, who):
self.how = how
self.who = who
self.ndx = -1

def __iter__ (self):
return self

def next (self):
self.ndx += 1
if self.ndx == len(self.who):
raise StopIteration

return (self.how, self.who[self.ndx])

return producer(how, ["World", "PostgreSQL", "PL/Python"])
$$ LANGUAGE plpythonu;

Generator (yield)

CREATE FUNCTION greet (how text)
RETURNS SETOF greeting

AS $$
for who in ["World", "PostgreSQL", "PL/Python"]:
yield (how, who)

$$ LANGUAGE plpythonu;

1120

Chapter 42. PL/Python - Python Procedural Language

Warning
Due to Python bug #14831334, some debug versions of Python 2.4 (con-
figured and compiled with option --with-pydebug) are known to crash
the PostgreSQL server when using an iterator to return a set result. Un-
patched versions of Fedora 4 contain this bug. It does not happen in
production versions of Python or on patched versions of Fedora 4.

Set-returning functions with OUT parameters (using RETURNS SETOF record) are also supported. For
example:

CREATE FUNCTION multiout_simple_setof(n integer, OUT integer, OUT integer) RETURNS SETOF record AS $$
return [(1, 2)] * n
$$ LANGUAGE plpythonu;

SELECT * FROM multiout_simple_setof(3);

42.4. Sharing Data
The global dictionary SD is available to store data between function calls. This variable is private static
data. The global dictionary GD is public data, available to all Python functions within a session. Use with
care.

Each function gets its own execution environment in the Python interpreter, so that global data and func-
tion arguments from myfunc are not available to myfunc2. The exception is the data in the GD dictionary,
as mentioned above.

42.5. Anonymous Code Blocks
PL/Python also supports anonymous code blocks called with the DO statement:

DO $$
PL/Python code

$$ LANGUAGE plpythonu;

An anonymous code block receives no arguments, and whatever value it might return is discarded. Other-
wise it behaves just like a function.

1121

Chapter 42. PL/Python - Python Procedural Language

42.6. Trigger Functions
When a function is used as a trigger, the dictionary TD contains trigger-related values:

TD["event"]

contains the event as a string: INSERT, UPDATE, DELETE, or TRUNCATE.

TD["when"]

contains one of BEFORE, AFTER, or INSTEAD OF.

TD["level"]

contains ROW or STATEMENT.

TD["new"]

TD["old"]

For a row-level trigger, one or both of these fields contain the respective trigger rows, depending on
the trigger event.

TD["name"]

contains the trigger name.

TD["table_name"]

contains the name of the table on which the trigger occurred.

TD["table_schema"]

contains the schema of the table on which the trigger occurred.

TD["relid"]

contains the OID of the table on which the trigger occurred.

TD["args"]

If the CREATE TRIGGER command included arguments, they are available in TD["args"][0] to
TD["args"][n-1].

If TD["when"] is BEFORE or INSTEAD OF and TD["level"] is ROW, you can return None or "OK" from
the Python function to indicate the row is unmodified, "SKIP" to abort the event, or if TD["event"] is
INSERT or UPDATE you can return "MODIFY" to indicate you’ve modified the new row. Otherwise the
return value is ignored.

42.7. Database Access
The PL/Python language module automatically imports a Python module called plpy. The functions and
constants in this module are available to you in the Python code as plpy.foo.

1122

Chapter 42. PL/Python - Python Procedural Language

42.7.1. Database Access Functions
The plpy module provides several functions to execute database commands:

plpy.execute(query [, max-rows])

Calling plpy.execute with a query string and an optional row limit argument causes that query to
be run and the result to be returned in a result object.

The result object emulates a list or dictionary object. The result object can be accessed by row number
and column name. For example:

rv = plpy.execute("SELECT * FROM my_table", 5)

returns up to 5 rows from my_table. If my_table has a column my_column, it would be accessed
as:

foo = rv[i]["my_column"]

The number of rows returned can be obtained using the built-in len function.

The result object has these additional methods:

nrows()

Returns the number of rows processed by the command. Note that this is not necessarily the
same as the number of rows returned. For example, an UPDATE command will set this value but
won’t return any rows (unless RETURNING is used).

status()

The SPI_execute() return value.

colnames()

coltypes()

coltypmods()

Return a list of column names, list of column type OIDs, and list of type-specific type modifiers
for the columns, respectively.

These methods raise an exception when called on a result object from a command that did not
produce a result set, e.g., UPDATE without RETURNING, or DROP TABLE. But it is OK to use
these methods on a result set containing zero rows.

The result object can be modified.

Note that calling plpy.execute will cause the entire result set to be read into memory. Only use
that function when you are sure that the result set will be relatively small. If you don’t want to risk
excessive memory usage when fetching large results, use plpy.cursor rather than plpy.execute.

plpy.prepare(query [, argtypes])

plpy.execute(plan [, arguments [, max-rows]])

plpy.prepare prepares the execution plan for a query. It is called with a query string and a list of
parameter types, if you have parameter references in the query. For example:

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1", ["text"])

text is the type of the variable you will be passing for $1. The second argument is optional if you
don’t want to pass any parameters to the query.

1123

Chapter 42. PL/Python - Python Procedural Language

After preparing a statement, you use a variant of the function plpy.execute to run it:

rv = plpy.execute(plan, ["name"], 5)

Pass the plan as the first argument (instead of the query string), and a list of values to substitute into
the query as the second argument. The second argument is optional if the query does not expect any
parameters. The third argument is the optional row limit as before.

Query parameters and result row fields are converted between PostgreSQL and Python data types as
described in Section 42.3. The exception is that composite types are currently not supported: They
will be rejected as query parameters and are converted to strings when appearing in a query result. As
a workaround for the latter problem, the query can sometimes be rewritten so that the composite type
result appears as a result row rather than as a field of the result row. Alternatively, the resulting string
could be parsed apart by hand, but this approach is not recommended because it is not future-proof.

When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI doc-
umentation (Chapter 43) for a description of what this means. In order to make effective use of this
across function calls one needs to use one of the persistent storage dictionaries SD or GD (see Section
42.4). For example:

CREATE FUNCTION usesavedplan() RETURNS trigger AS $$
plan = SD.setdefault("plan", plpy.prepare("SELECT 1"))
rest of function

$$ LANGUAGE plpythonu;

plpy.cursor(query)

plpy.cursor(plan [, arguments])

The plpy.cursor function accepts the same arguments as plpy.execute (except for the row
limit) and returns a cursor object, which allows you to process large result sets in smaller chunks.
As with plpy.execute, either a query string or a plan object along with a list of arguments can be
used.

The cursor object provides a fetch method that accepts an integer parameter and returns a result
object. Each time you call fetch, the returned object will contain the next batch of rows, never
larger than the parameter value. Once all rows are exhausted, fetch starts returning an empty result
object. Cursor objects also provide an iterator interface5, yielding one row at a time until all rows
are exhausted. Data fetched that way is not returned as result objects, but rather as dictionaries, each
dictionary corresponding to a single result row.

An example of two ways of processing data from a large table is:

CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$
odd = 0
for row in plpy.cursor("select num from largetable"):

if row[’num’] % 2:
odd += 1

return odd
$$ LANGUAGE plpythonu;

CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer AS $$
odd = 0
cursor = plpy.cursor("select num from largetable")
while True:

rows = cursor.fetch(batch_size)

5. http://docs.python.org/library/stdtypes.html#iterator-types

1124

Chapter 42. PL/Python - Python Procedural Language

if not rows:
break

for row in rows:
if row[’num’] % 2:

odd += 1
return odd
$$ LANGUAGE plpythonu;

CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$
odd = 0
plan = plpy.prepare("select num from largetable where num % $1 <> 0", ["integer"])
rows = list(plpy.cursor(plan, [2]))

return len(rows)
$$ LANGUAGE plpythonu;

Cursors are automatically disposed of. But if you want to explicitly release all resources held by a
cursor, use the close method. Once closed, a cursor cannot be fetched from anymore.

Tip: Do not confuse objects created by plpy.cursor with DB-API cursors as defined by the
Python Database API specification6. They don’t have anything in common except for the name.

42.7.2. Trapping Errors
Functions accessing the database might encounter errors, which will cause them to abort and raise
an exception. Both plpy.execute and plpy.prepare can raise an instance of a subclass of
plpy.SPIError, which by default will terminate the function. This error can be handled just like any
other Python exception, by using the try/except construct. For example:

CREATE FUNCTION try_adding_joe() RETURNS text AS $$
try:

plpy.execute("INSERT INTO users(username) VALUES (’joe’)")
except plpy.SPIError:

return "something went wrong"
else:

return "Joe added"
$$ LANGUAGE plpythonu;

The actual class of the exception being raised corresponds to the specific condition that caused the error.
Refer to Table A-1 for a list of possible conditions. The module plpy.spiexceptions defines an ex-
ception class for each PostgreSQL condition, deriving their names from the condition name. For instance,
division_by_zero becomes DivisionByZero, unique_violation becomes UniqueViolation,
fdw_error becomes FdwError, and so on. Each of these exception classes inherits from SPIError.
This separation makes it easier to handle specific errors, for instance:

6. http://www.python.org/dev/peps/pep-0249/

1125

Chapter 42. PL/Python - Python Procedural Language

CREATE FUNCTION insert_fraction(numerator int, denominator int) RETURNS text AS $$
from plpy import spiexceptions
try:

plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 / $2)", ["int", "int"])
plpy.execute(plan, [numerator, denominator])

except spiexceptions.DivisionByZero:
return "denominator cannot equal zero"

except spiexceptions.UniqueViolation:
return "already have that fraction"

except plpy.SPIError, e:
return "other error, SQLSTATE %s" % e.sqlstate

else:
return "fraction inserted"

$$ LANGUAGE plpythonu;

Note that because all exceptions from the plpy.spiexceptions module inherit from SPIError, an
except clause handling it will catch any database access error.

As an alternative way of handling different error conditions, you can catch the SPIError exception and
determine the specific error condition inside the except block by looking at the sqlstate attribute of the
exception object. This attribute is a string value containing the “SQLSTATE” error code. This approach
provides approximately the same functionality

42.8. Explicit Subtransactions
Recovering from errors caused by database access as described in Section 42.7.2 can lead to an undesirable
situation where some operations succeed before one of them fails, and after recovering from that error the
data is left in an inconsistent state. PL/Python offers a solution to this problem in the form of explicit
subtransactions.

42.8.1. Subtransaction Context Managers
Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
try:

plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = ’joe’")
plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = ’mary’")

except plpy.SPIError, e:
result = "error transferring funds: %s" % e.args

else:
result = "funds transferred correctly"

plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

If the second UPDATE statement results in an exception being raised, this function will report the error, but
the result of the first UPDATE will nevertheless be committed. In other words, the funds will be withdrawn
from Joe’s account, but will not be transferred to Mary’s account.

1126

Chapter 42. PL/Python - Python Procedural Language

To avoid such issues, you can wrap your plpy.execute calls in an explicit subtransaction. The
plpy module provides a helper object to manage explicit subtransactions that gets created with the
plpy.subtransaction() function. Objects created by this function implement the context manager
interface7. Using explicit subtransactions we can rewrite our function as:

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
try:

with plpy.subtransaction():
plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = ’joe’")
plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = ’mary’")

except plpy.SPIError, e:
result = "error transferring funds: %s" % e.args

else:
result = "funds transferred correctly"

plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

Note that the use of try/catch is still required. Otherwise the exception would propagate to the top
of the Python stack and would cause the whole function to abort with a PostgreSQL error, so that the
operations table would not have any row inserted into it. The subtransaction context manager does
not trap errors, it only assures that all database operations executed inside its scope will be atomically
committed or rolled back. A rollback of the subtransaction block occurs on any kind of exception exit, not
only ones caused by errors originating from database access. A regular Python exception raised inside an
explicit subtransaction block would also cause the subtransaction to be rolled back.

42.8.2. Older Python Versions
Context managers syntax using the with keyword is available by default in Python 2.6. If using PL/Python
with an older Python version, it is still possible to use explicit subtransactions, although not as transpar-
ently. You can call the subtransaction manager’s __enter__ and __exit__ functions using the enter

and exit convenience aliases. The example function that transfers funds could be written as:

CREATE FUNCTION transfer_funds_old() RETURNS void AS $$
try:

subxact = plpy.subtransaction()
subxact.enter()
try:

plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name = ’joe’")
plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name = ’mary’")

except:
import sys
subxact.exit(*sys.exc_info())
raise

else:
subxact.exit(None, None, None)

except plpy.SPIError, e:
result = "error transferring funds: %s" % e.args

else:

7. http://docs.python.org/library/stdtypes.html#context-manager-types

1127

Chapter 42. PL/Python - Python Procedural Language

result = "funds transferred correctly"

plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

Note: Although context managers were implemented in Python 2.5, to use the with syntax in that
version you need to use a future statement8. Because of implementation details, however, you cannot
use future statements in PL/Python functions.

42.9. Utility Functions
The plpy module also provides the functions plpy.debug(msg), plpy.log(msg), plpy.info(msg),
plpy.notice(msg), plpy.warning(msg), plpy.error(msg), and plpy.fatal(msg).
plpy.error and plpy.fatal actually raise a Python exception which, if uncaught, propagates
out to the calling query, causing the current transaction or subtransaction to be aborted. raise

plpy.Error(msg) and raise plpy.Fatal(msg) are equivalent to calling plpy.error and
plpy.fatal, respectively. The other functions only generate messages of different priority levels.
Whether messages of a particular priority are reported to the client, written to the server log, or both is
controlled by the log_min_messages and client_min_messages configuration variables. See Chapter 18
for more information.

Another set of utility functions are plpy.quote_literal(string),
plpy.quote_nullable(string), and plpy.quote_ident(string). They are equivalent to the
built-in quoting functions described in Section 9.4. They are useful when constructing ad-hoc queries. A
PL/Python equivalent of dynamic SQL from Example 39-1 would be:

plpy.execute("UPDATE tbl SET %s = %s WHERE key = %s" % (
plpy.quote_ident(colname),
plpy.quote_nullable(newvalue),
plpy.quote_literal(keyvalue)))

42.10. Environment Variables
Some of the environment variables that are accepted by the Python interpreter can also be used to affect
PL/Python behavior. They would need to be set in the environment of the main PostgreSQL server process,
for example in a start script. The available environment variables depend on the version of Python; see the

8. http://docs.python.org/release/2.5/ref/future.html

1128

Chapter 42. PL/Python - Python Procedural Language

Python documentation for details. At the time of this writing, the following environment variables have
an affect on PL/Python, assuming an adequate Python version:

• PYTHONHOME

• PYTHONPATH

• PYTHONY2K

• PYTHONOPTIMIZE

• PYTHONDEBUG

• PYTHONVERBOSE

• PYTHONCASEOK

• PYTHONDONTWRITEBYTECODE

• PYTHONIOENCODING

• PYTHONUSERBASE

• PYTHONHASHSEED

(It appears to be a Python implementation detail beyond the control of PL/Python that some of the envi-
ronment variables listed on the python man page are only effective in a command-line interpreter and
not an embedded Python interpreter.)

1129

Chapter 43. Server Programming Interface
The Server Programming Interface (SPI) gives writers of user-defined C functions the ability to run SQL
commands inside their functions. SPI is a set of interface functions to simplify access to the parser, planner,
and executor. SPI also does some memory management.

Note: The available procedural languages provide various means to execute SQL commands from
procedures. Most of these facilities are based on SPI, so this documentation might be of use for users
of those languages as well.

To avoid misunderstanding we’ll use the term “function” when we speak of SPI interface functions and
“procedure” for a user-defined C-function that is using SPI.

Note that if a command invoked via SPI fails, then control will not be returned to your procedure. Rather,
the transaction or subtransaction in which your procedure executes will be rolled back. (This might seem
surprising given that the SPI functions mostly have documented error-return conventions. Those conven-
tions only apply for errors detected within the SPI functions themselves, however.) It is possible to recover
control after an error by establishing your own subtransaction surrounding SPI calls that might fail. This
is not currently documented because the mechanisms required are still in flux.

SPI functions return a nonnegative result on success (either via a returned integer value or in the global
variable SPI_result, as described below). On error, a negative result or NULL will be returned.

Source code files that use SPI must include the header file executor/spi.h.

43.1. Interface Functions

SPI_connect

Name
SPI_connect — connect a procedure to the SPI manager

Synopsis
int SPI_connect(void)

Description
SPI_connect opens a connection from a procedure invocation to the SPI manager. You must call this
function if you want to execute commands through SPI. Some utility SPI functions can be called from
unconnected procedures.

1130

SPI_connect

If your procedure is already connected, SPI_connect will return the error code
SPI_ERROR_CONNECT. This could happen if a procedure that has called SPI_connect directly calls
another procedure that calls SPI_connect. While recursive calls to the SPI manager are permitted when
an SQL command called through SPI invokes another function that uses SPI, directly nested calls to
SPI_connect and SPI_finish are forbidden. (But see SPI_push and SPI_pop.)

Return Value

SPI_OK_CONNECT

on success

SPI_ERROR_CONNECT

on error

1131

SPI_finish

Name
SPI_finish — disconnect a procedure from the SPI manager

Synopsis
int SPI_finish(void)

Description
SPI_finish closes an existing connection to the SPI manager. You must call this function after complet-
ing the SPI operations needed during your procedure’s current invocation. You do not need to worry about
making this happen, however, if you abort the transaction via elog(ERROR). In that case SPI will clean
itself up automatically.

If SPI_finish is called without having a valid connection, it will return SPI_ERROR_UNCONNECTED.
There is no fundamental problem with this; it means that the SPI manager has nothing to do.

Return Value

SPI_OK_FINISH

if properly disconnected

SPI_ERROR_UNCONNECTED

if called from an unconnected procedure

1132

SPI_push

Name
SPI_push — push SPI stack to allow recursive SPI usage

Synopsis
void SPI_push(void)

Description
SPI_push should be called before executing another procedure that might itself wish to use SPI. After
SPI_push, SPI is no longer in a “connected” state, and SPI function calls will be rejected unless a fresh
SPI_connect is done. This ensures a clean separation between your procedure’s SPI state and that of
another procedure you call. After the other procedure returns, call SPI_pop to restore access to your own
SPI state.

Note that SPI_execute and related functions automatically do the equivalent of SPI_push before pass-
ing control back to the SQL execution engine, so it is not necessary for you to worry about this when using
those functions. Only when you are directly calling arbitrary code that might contain SPI_connect calls
do you need to issue SPI_push and SPI_pop.

1133

SPI_pop

Name
SPI_pop — pop SPI stack to return from recursive SPI usage

Synopsis
void SPI_pop(void)

Description
SPI_pop pops the previous environment from the SPI call stack. See SPI_push.

1134

SPI_execute

Name
SPI_execute — execute a command

Synopsis
int SPI_execute(const char * command, bool read_only, long count)

Description
SPI_execute executes the specified SQL command for count rows. If read_only is true, the com-
mand must be read-only, and execution overhead is somewhat reduced.

This function can only be called from a connected procedure.

If count is zero then the command is executed for all rows that it applies to. If count is greater than zero,
then no more than count rows will be retrieved; execution stops when the count is reached, much like
adding a LIMIT clause to the query. For example,

SPI_execute("SELECT * FROM foo", true, 5);

will retrieve at most 5 rows from the table. Note that such a limit is only effective when the command
actually returns rows. For example,

SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);

inserts all rows from bar, ignoring the count parameter. However, with

SPI_execute("INSERT INTO foo SELECT * FROM bar RETURNING *", false, 5);

at most 5 rows would be inserted, since execution would stop after the fifth RETURNING result row is
retrieved.

You can pass multiple commands in one string; SPI_execute returns the result for the command ex-
ecuted last. The count limit applies to each command separately (even though only the last result will
actually be returned). The limit is not applied to any hidden commands generated by rules.

When read_only is false, SPI_execute increments the command counter and computes a new snap-
shot before executing each command in the string. The snapshot does not actually change if the current
transaction isolation level is SERIALIZABLE or REPEATABLE READ, but in READ COMMITTED mode the
snapshot update allows each command to see the results of newly committed transactions from other
sessions. This is essential for consistent behavior when the commands are modifying the database.

When read_only is true, SPI_execute does not update either the snapshot or the command counter,
and it allows only plain SELECT commands to appear in the command string. The commands are executed
using the snapshot previously established for the surrounding query. This execution mode is somewhat
faster than the read/write mode due to eliminating per-command overhead. It also allows genuinely stable

1135

SPI_execute

functions to be built: since successive executions will all use the same snapshot, there will be no change
in the results.

It is generally unwise to mix read-only and read-write commands within a single function using SPI;
that could result in very confusing behavior, since the read-only queries would not see the results of any
database updates done by the read-write queries.

The actual number of rows for which the (last) command was executed is returned in the global variable
SPI_processed. If the return value of the function is SPI_OK_SELECT, SPI_OK_INSERT_RETURNING,
SPI_OK_DELETE_RETURNING, or SPI_OK_UPDATE_RETURNING, then you can use the global pointer
SPITupleTable *SPI_tuptable to access the result rows. Some utility commands (such as EXPLAIN)
also return row sets, and SPI_tuptable will contain the result in these cases too.

The structure SPITupleTable is defined thus:

typedef struct
{

MemoryContext tuptabcxt; /* memory context of result table */
uint32 alloced; /* number of alloced vals */
uint32 free; /* number of free vals */
TupleDesc tupdesc; /* row descriptor */
HeapTuple *vals; /* rows */

} SPITupleTable;

vals is an array of pointers to rows. (The number of valid entries is given by SPI_processed.) tupdesc
is a row descriptor which you can pass to SPI functions dealing with rows. tuptabcxt, alloced, and
free are internal fields not intended for use by SPI callers.

SPI_finish frees all SPITupleTables allocated during the current procedure. You can free a particular
result table earlier, if you are done with it, by calling SPI_freetuptable.

Arguments

const char * command

string containing command to execute

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
If the execution of the command was successful then one of the following (nonnegative) values will be
returned:

SPI_OK_SELECT

if a SELECT (but not SELECT INTO) was executed

1136

SPI_execute

SPI_OK_SELINTO

if a SELECT INTO was executed

SPI_OK_INSERT

if an INSERT was executed

SPI_OK_DELETE

if a DELETE was executed

SPI_OK_UPDATE

if an UPDATE was executed

SPI_OK_INSERT_RETURNING

if an INSERT RETURNING was executed

SPI_OK_DELETE_RETURNING

if a DELETE RETURNING was executed

SPI_OK_UPDATE_RETURNING

if an UPDATE RETURNING was executed

SPI_OK_UTILITY

if a utility command (e.g., CREATE TABLE) was executed

SPI_OK_REWRITTEN

if the command was rewritten into another kind of command (e.g., UPDATE became an INSERT) by
a rule.

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if command is NULL or count is less than 0

SPI_ERROR_COPY

if COPY TO stdout or COPY FROM stdin was attempted

SPI_ERROR_TRANSACTION

if a transaction manipulation command was attempted (BEGIN, COMMIT, ROLLBACK, SAVEPOINT,
PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED, or any variant thereof)

SPI_ERROR_OPUNKNOWN

if the command type is unknown (shouldn’t happen)

SPI_ERROR_UNCONNECTED

if called from an unconnected procedure

1137

SPI_execute

Notes
All SPI query-execution functions set both SPI_processed and SPI_tuptable (just the pointer, not
the contents of the structure). Save these two global variables into local procedure variables if you need
to access the result table of SPI_execute or another query-execution function across later calls.

1138

SPI_exec

Name
SPI_exec — execute a read/write command

Synopsis
int SPI_exec(const char * command, long count)

Description
SPI_exec is the same as SPI_execute, with the latter’s read_only parameter always taken as false.

Arguments

const char * command

string containing command to execute

long count

maximum number of rows to return, or 0 for no limit

Return Value
See SPI_execute.

1139

SPI_execute_with_args

Name
SPI_execute_with_args — execute a command with out-of-line parameters

Synopsis
int SPI_execute_with_args(const char *command,

int nargs, Oid *argtypes,
Datum *values, const char *nulls,
bool read_only, long count)

Description
SPI_execute_with_args executes a command that might include references to externally supplied
parameters. The command text refers to a parameter as $n, and the call specifies data types and values for
each such symbol. read_only and count have the same interpretation as in SPI_execute.

The main advantage of this routine compared to SPI_execute is that data values can be inserted into the
command without tedious quoting/escaping, and thus with much less risk of SQL-injection attacks.

Similar results can be achieved with SPI_prepare followed by SPI_execute_plan; however, when
using this function the query plan is always customized to the specific parameter values provided. For
one-time query execution, this function should be preferred. If the same command is to be executed with
many different parameters, either method might be faster, depending on the cost of re-planning versus the
benefit of custom plans.

Arguments

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array containing the OIDs of the data types of the parameters

Datum * values

an array of actual parameter values

const char * nulls

an array describing which parameters are null

If nulls is NULL then SPI_execute_with_args assumes that no parameters are null.

1140

SPI_execute_with_args

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
The return value is the same as for SPI_execute.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1141

SPI_prepare

Name
SPI_prepare — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare(const char * command, int nargs, Oid * argtypes)

Description
SPI_prepare creates and returns a prepared statement for the specified command, but doesn’t execute
the command. The prepared statement can later be executed repeatedly using SPI_execute_plan.

When the same or a similar command is to be executed repeatedly, it is generally advantageous to perform
parse analysis only once, and might furthermore be advantageous to re-use an execution plan for the
command. SPI_prepare converts a command string into a prepared statement that encapsulates the
results of parse analysis. The prepared statement also provides a place for caching an execution plan if it
is found that generating a custom plan for each execution is not helpful.

A prepared command can be generalized by writing parameters ($1, $2, etc.) in place of what would
be constants in a normal command. The actual values of the parameters are then specified when
SPI_execute_plan is called. This allows the prepared command to be used over a wider range of
situations than would be possible without parameters.

The statement returned by SPI_prepare can be used only in the current invocation of the procedure,
since SPI_finish frees memory allocated for such a statement. But the statement can be saved for
longer using the functions SPI_keepplan or SPI_saveplan.

Arguments

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

1142

SPI_prepare

Return Value
SPI_prepare returns a non-null pointer to an SPIPlan, which is an opaque struct representing a pre-
pared statement. On error, NULL will be returned, and SPI_result will be set to one of the same error
codes used by SPI_execute, except that it is set to SPI_ERROR_ARGUMENT if command is NULL, or if
nargs is less than 0, or if nargs is greater than 0 and argtypes is NULL.

Notes
If no parameters are defined, a generic plan will be created at the first use of SPI_execute_plan,
and used for all subsequent executions as well. If there are parameters, the first few uses of
SPI_execute_plan will generate custom plans that are specific to the supplied parameter values.
After enough uses of the same prepared statement, SPI_execute_plan will build a generic plan,
and if that is not too much more expensive than the custom plans, it will start using the generic plan
instead of re-planning each time. If this default behavior is unsuitable, you can alter it by passing the
CURSOR_OPT_GENERIC_PLAN or CURSOR_OPT_CUSTOM_PLAN flag to SPI_prepare_cursor, to force
use of generic or custom plans respectively.

This function should only be called from a connected procedure.

SPIPlanPtr is declared as a pointer to an opaque struct type in spi.h. It is unwise to try to access its
contents directly, as that makes your code much more likely to break in future revisions of PostgreSQL.

The name SPIPlanPtr is somewhat historical, since the data structure no longer necessarily contains an
execution plan.

1143

SPI_prepare_cursor

Name
SPI_prepare_cursor — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare_cursor(const char * command, int nargs,

Oid * argtypes, int cursorOptions)

Description
SPI_prepare_cursor is identical to SPI_prepare, except that it also allows specification of the plan-
ner’s “cursor options” parameter. This is a bit mask having the values shown in nodes/parsenodes.h

for the options field of DeclareCursorStmt. SPI_prepare always takes the cursor options as zero.

Arguments

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
SPI_prepare_cursor has the same return conventions as SPI_prepare.

Notes
Useful bits to set in cursorOptions include CURSOR_OPT_SCROLL, CURSOR_OPT_NO_SCROLL,
CURSOR_OPT_FAST_PLAN, CURSOR_OPT_GENERIC_PLAN, and CURSOR_OPT_CUSTOM_PLAN. Note in
particular that CURSOR_OPT_HOLD is ignored.

1144

SPI_prepare_params

Name
SPI_prepare_params — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare_params(const char * command,

ParserSetupHook parserSetup,
void * parserSetupArg,
int cursorOptions)

Description
SPI_prepare_params creates and returns a prepared statement for the specified command, but doesn’t
execute the command. This function is equivalent to SPI_prepare_cursor, with the addition that the
caller can specify parser hook functions to control the parsing of external parameter references.

Arguments

const char * command

command string

ParserSetupHook parserSetup

Parser hook setup function

void * parserSetupArg

passthrough argument for parserSetup

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
SPI_prepare_params has the same return conventions as SPI_prepare.

1145

SPI_getargcount

Name
SPI_getargcount — return the number of arguments needed by a statement prepared by
SPI_prepare

Synopsis
int SPI_getargcount(SPIPlanPtr plan)

Description
SPI_getargcount returns the number of arguments needed to execute a statement prepared by
SPI_prepare.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value
The count of expected arguments for the plan. If the plan is NULL or invalid, SPI_result is set to
SPI_ERROR_ARGUMENT and -1 is returned.

1146

SPI_getargtypeid

Name
SPI_getargtypeid — return the data type OID for an argument of a statement prepared by
SPI_prepare

Synopsis
Oid SPI_getargtypeid(SPIPlanPtr plan, int argIndex)

Description
SPI_getargtypeid returns the OID representing the type for the argIndex’th argument of a statement
prepared by SPI_prepare. First argument is at index zero.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

int argIndex

zero based index of the argument

Return Value
The type OID of the argument at the given index. If the plan is NULL or invalid, or argIndex is
less than 0 or not less than the number of arguments declared for the plan, SPI_result is set to
SPI_ERROR_ARGUMENT and InvalidOid is returned.

1147

SPI_is_cursor_plan

Name
SPI_is_cursor_plan — return true if a statement prepared by SPI_prepare can be used with
SPI_cursor_open

Synopsis
bool SPI_is_cursor_plan(SPIPlanPtr plan)

Description
SPI_is_cursor_plan returns true if a statement prepared by SPI_prepare can be passed as an ar-
gument to SPI_cursor_open, or false if that is not the case. The criteria are that the plan represents
one single command and that this command returns tuples to the caller; for example, SELECT is allowed
unless it contains an INTO clause, and UPDATE is allowed only if it contains a RETURNING clause.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value
true or false to indicate if the plan can produce a cursor or not, with SPI_result set to zero. If it is
not possible to determine the answer (for example, if the plan is NULL or invalid, or if called when not
connected to SPI), then SPI_result is set to a suitable error code and false is returned.

1148

SPI_execute_plan

Name
SPI_execute_plan — execute a statement prepared by SPI_prepare

Synopsis
int SPI_execute_plan(SPIPlanPtr plan, Datum * values, const char * nulls,

bool read_only, long count)

Description
SPI_execute_plan executes a statement prepared by SPI_prepare or one of its siblings. read_only
and count have the same interpretation as in SPI_execute.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement’s number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement’s number of
arguments. n indicates a null value (entry in values will be ignored); a space indicates a nonnull
value (entry in values is valid).

If nulls is NULL then SPI_execute_plan assumes that no parameters are null.

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

1149

SPI_execute_plan

Return Value
The return value is the same as for SPI_execute, with the following additional possible error (negative)
results:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid, or count is less than 0

SPI_ERROR_PARAM

if values is NULL and plan was prepared with some parameters

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1150

SPI_execute_plan_with_paramlist

Name
SPI_execute_plan_with_paramlist — execute a statement prepared by SPI_prepare

Synopsis
int SPI_execute_plan_with_paramlist(SPIPlanPtr plan,

ParamListInfo params,
bool read_only,
long count)

Description
SPI_execute_plan_with_paramlist executes a statement prepared by SPI_prepare. This function
is equivalent to SPI_execute_plan except that information about the parameter values to be passed
to the query is presented differently. The ParamListInfo representation can be convenient for passing
down values that are already available in that format. It also supports use of dynamic parameter sets via
hook functions specified in ParamListInfo.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
The return value is the same as for SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute_plan if successful.

1151

SPI_execp

Name
SPI_execp — execute a statement in read/write mode

Synopsis
int SPI_execp(SPIPlanPtr plan, Datum * values, const char * nulls, long count)

Description
SPI_execp is the same as SPI_execute_plan, with the latter’s read_only parameter always taken as
false.

Arguments

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement’s number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement’s number of
arguments. n indicates a null value (entry in values will be ignored); a space indicates a nonnull
value (entry in values is valid).

If nulls is NULL then SPI_execp assumes that no parameters are null.

long count

maximum number of rows to return, or 0 for no limit

Return Value
See SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1152

SPI_cursor_open

Name
SPI_cursor_open — set up a cursor using a statement created with SPI_prepare

Synopsis
Portal SPI_cursor_open(const char * name, SPIPlanPtr plan,

Datum * values, const char * nulls,
bool read_only)

Description
SPI_cursor_open sets up a cursor (internally, a portal) that will execute a statement prepared
by SPI_prepare. The parameters have the same meanings as the corresponding parameters to
SPI_execute_plan.

Using a cursor instead of executing the statement directly has two benefits. First, the result rows can be
retrieved a few at a time, avoiding memory overrun for queries that return many rows. Second, a portal
can outlive the current procedure (it can, in fact, live to the end of the current transaction). Returning the
portal name to the procedure’s caller provides a way of returning a row set as result.

The passed-in parameter data will be copied into the cursor’s portal, so it can be freed while the cursor
still exists.

Arguments

const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement’s number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement’s number of
arguments. n indicates a null value (entry in values will be ignored); a space indicates a nonnull
value (entry in values is valid).

If nulls is NULL then SPI_cursor_open assumes that no parameters are null.

1153

SPI_cursor_open

bool read_only

true for read-only execution

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be reported
via elog.

1154

SPI_cursor_open_with_args

Name
SPI_cursor_open_with_args — set up a cursor using a query and parameters

Synopsis
Portal SPI_cursor_open_with_args(const char *name,

const char *command,
int nargs, Oid *argtypes,
Datum *values, const char *nulls,
bool read_only, int cursorOptions)

Description
SPI_cursor_open_with_args sets up a cursor (internally, a portal) that will execute the
specified query. Most of the parameters have the same meanings as the corresponding parameters to
SPI_prepare_cursor and SPI_cursor_open.

For one-time query execution, this function should be preferred over SPI_prepare_cursor followed
by SPI_cursor_open. If the same command is to be executed with many different parameters, either
method might be faster, depending on the cost of re-planning versus the benefit of custom plans.

The passed-in parameter data will be copied into the cursor’s portal, so it can be freed while the cursor
still exists.

Arguments

const char * name

name for portal, or NULL to let the system select a name

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array containing the OIDs of the data types of the parameters

Datum * values

an array of actual parameter values

1155

SPI_cursor_open_with_args

const char * nulls

an array describing which parameters are null

If nulls is NULL then SPI_cursor_open_with_args assumes that no parameters are null.

bool read_only

true for read-only execution

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be reported
via elog.

1156

SPI_cursor_open_with_paramlist

Name
SPI_cursor_open_with_paramlist — set up a cursor using parameters

Synopsis
Portal SPI_cursor_open_with_paramlist(const char *name,

SPIPlanPtr plan,
ParamListInfo params,
bool read_only)

Description
SPI_cursor_open_with_paramlist sets up a cursor (internally, a portal) that will execute a statement
prepared by SPI_prepare. This function is equivalent to SPI_cursor_open except that information
about the parameter values to be passed to the query is presented differently. The ParamListInfo rep-
resentation can be convenient for passing down values that are already available in that format. It also
supports use of dynamic parameter sets via hook functions specified in ParamListInfo.

The passed-in parameter data will be copied into the cursor’s portal, so it can be freed while the cursor
still exists.

Arguments

const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be reported
via elog.

1157

SPI_cursor_find

Name
SPI_cursor_find — find an existing cursor by name

Synopsis
Portal SPI_cursor_find(const char * name)

Description
SPI_cursor_find finds an existing portal by name. This is primarily useful to resolve a cursor name
returned as text by some other function.

Arguments

const char * name

name of the portal

Return Value
pointer to the portal with the specified name, or NULL if none was found

1158

SPI_cursor_fetch

Name
SPI_cursor_fetch — fetch some rows from a cursor

Synopsis
void SPI_cursor_fetch(Portal portal, bool forward, long count)

Description
SPI_cursor_fetch fetches some rows from a cursor. This is equivalent to a subset of the SQL command
FETCH (see SPI_scroll_cursor_fetch for more functionality).

Arguments

Portal portal

portal containing the cursor

bool forward

true for fetch forward, false for fetch backward

long count

maximum number of rows to fetch

Return Value
SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes
Fetching backward may fail if the cursor’s plan was not created with the CURSOR_OPT_SCROLL option.

1159

SPI_cursor_move

Name
SPI_cursor_move — move a cursor

Synopsis
void SPI_cursor_move(Portal portal, bool forward, long count)

Description
SPI_cursor_move skips over some number of rows in a cursor. This is equivalent to a subset of the SQL
command MOVE (see SPI_scroll_cursor_move for more functionality).

Arguments

Portal portal

portal containing the cursor

bool forward

true for move forward, false for move backward

long count

maximum number of rows to move

Notes
Moving backward may fail if the cursor’s plan was not created with the CURSOR_OPT_SCROLL option.

1160

SPI_scroll_cursor_fetch

Name
SPI_scroll_cursor_fetch — fetch some rows from a cursor

Synopsis
void SPI_scroll_cursor_fetch(Portal portal, FetchDirection direction,

long count)

Description
SPI_scroll_cursor_fetch fetches some rows from a cursor. This is equivalent to the SQL command
FETCH.

Arguments

Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to fetch for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to fetch
for FETCH_ABSOLUTE; or relative row number to fetch for FETCH_RELATIVE

Return Value
SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes
See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor’s plan was not created with the
CURSOR_OPT_SCROLL option.

1161

SPI_scroll_cursor_move

Name
SPI_scroll_cursor_move — move a cursor

Synopsis
void SPI_scroll_cursor_move(Portal portal, FetchDirection direction,

long count)

Description
SPI_scroll_cursor_move skips over some number of rows in a cursor. This is equivalent to the SQL
command MOVE.

Arguments

Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to move for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to move
to for FETCH_ABSOLUTE; or relative row number to move to for FETCH_RELATIVE

Return Value
SPI_processed is set as in SPI_execute if successful. SPI_tuptable is set to NULL, since no rows
are returned by this function.

Notes
See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor’s plan was not created with the
CURSOR_OPT_SCROLL option.

1162

SPI_cursor_close

Name
SPI_cursor_close — close a cursor

Synopsis
void SPI_cursor_close(Portal portal)

Description
SPI_cursor_close closes a previously created cursor and releases its portal storage.

All open cursors are closed automatically at the end of a transaction. SPI_cursor_close need only be
invoked if it is desirable to release resources sooner.

Arguments

Portal portal

portal containing the cursor

1163

SPI_keepplan

Name
SPI_keepplan — save a prepared statement

Synopsis
int SPI_keepplan(SPIPlanPtr plan)

Description
SPI_keepplan saves a passed statement (prepared by SPI_prepare) so that it will not be freed by
SPI_finish nor by the transaction manager. This gives you the ability to reuse prepared statements in
the subsequent invocations of your procedure in the current session.

Arguments

SPIPlanPtr plan

the prepared statement to be saved

Return Value
0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

Notes
The passed-in statement is relocated to permanent storage by means of pointer adjustment (no data copy-
ing is required). If you later wish to delete it, use SPI_freeplan on it.

1164

SPI_saveplan

Name
SPI_saveplan — save a prepared statement

Synopsis
SPIPlanPtr SPI_saveplan(SPIPlanPtr plan)

Description
SPI_saveplan copies a passed statement (prepared by SPI_prepare) into memory that will not be
freed by SPI_finish nor by the transaction manager, and returns a pointer to the copied statement. This
gives you the ability to reuse prepared statements in the subsequent invocations of your procedure in the
current session.

Arguments

SPIPlanPtr plan

the prepared statement to be saved

Return Value
Pointer to the copied statement; or NULL if unsuccessful. On error, SPI_result is set thus:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid

SPI_ERROR_UNCONNECTED

if called from an unconnected procedure

Notes
The originally passed-in statement is not freed, so you might wish to do SPI_freeplan on it to avoid
leaking memory until SPI_finish.

In most cases, SPI_keepplan is preferred to this function, since it accomplishes largely the same result
without needing to physically copy the prepared statement’s data structures.

1165

43.2. Interface Support Functions
The functions described here provide an interface for extracting information from result sets returned by
SPI_execute and other SPI functions.

All functions described in this section can be used by both connected and unconnected procedures.

SPI_fname

Name
SPI_fname — determine the column name for the specified column number

Synopsis
char * SPI_fname(TupleDesc rowdesc, int colnumber)

Description
SPI_fname returns a copy of the column name of the specified column. (You can use pfree to release
the copy of the name when you don’t need it anymore.)

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The column name; NULL if colnumber is out of range. SPI_result set to SPI_ERROR_NOATTRIBUTE

on error.

1166

SPI_fnumber

Name
SPI_fnumber — determine the column number for the specified column name

Synopsis
int SPI_fnumber(TupleDesc rowdesc, const char * colname)

Description
SPI_fnumber returns the column number for the column with the specified name.

If colname refers to a system column (e.g., oid) then the appropriate negative column number
will be returned. The caller should be careful to test the return value for exact equality to
SPI_ERROR_NOATTRIBUTE to detect an error; testing the result for less than or equal to 0 is not correct
unless system columns should be rejected.

Arguments

TupleDesc rowdesc

input row description

const char * colname

column name

Return Value
Column number (count starts at 1), or SPI_ERROR_NOATTRIBUTE if the named column was not found.

1167

SPI_getvalue

Name
SPI_getvalue — return the string value of the specified column

Synopsis
char * SPI_getvalue(HeapTuple row, TupleDesc rowdesc, int colnumber)

Description
SPI_getvalue returns the string representation of the value of the specified column.

The result is returned in memory allocated using palloc. (You can use pfree to release the memory
when you don’t need it anymore.)

Arguments

HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
Column value, or NULL if the column is null, colnumber is out of range (SPI_result is
set to SPI_ERROR_NOATTRIBUTE), or no output function is available (SPI_result is set to
SPI_ERROR_NOOUTFUNC).

1168

SPI_getbinval

Name
SPI_getbinval — return the binary value of the specified column

Synopsis
Datum SPI_getbinval(HeapTuple row, TupleDesc rowdesc, int colnumber,

bool * isnull)

Description
SPI_getbinval returns the value of the specified column in the internal form (as type Datum).

This function does not allocate new space for the datum. In the case of a pass-by-reference data type, the
return value will be a pointer into the passed row.

Arguments

HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

bool * isnull

flag for a null value in the column

Return Value
The binary value of the column is returned. The variable pointed to by isnull is set to true if the column
is null, else to false.

SPI_result is set to SPI_ERROR_NOATTRIBUTE on error.

1169

SPI_gettype

Name
SPI_gettype — return the data type name of the specified column

Synopsis
char * SPI_gettype(TupleDesc rowdesc, int colnumber)

Description
SPI_gettype returns a copy of the data type name of the specified column. (You can use pfree to
release the copy of the name when you don’t need it anymore.)

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The data type name of the specified column, or NULL on error. SPI_result is set to
SPI_ERROR_NOATTRIBUTE on error.

1170

SPI_gettypeid

Name
SPI_gettypeid — return the data type OID of the specified column

Synopsis
Oid SPI_gettypeid(TupleDesc rowdesc, int colnumber)

Description
SPI_gettypeid returns the OID of the data type of the specified column.

Arguments

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The OID of the data type of the specified column or InvalidOid on error. On error, SPI_result is set
to SPI_ERROR_NOATTRIBUTE.

1171

SPI_getrelname

Name
SPI_getrelname — return the name of the specified relation

Synopsis
char * SPI_getrelname(Relation rel)

Description
SPI_getrelname returns a copy of the name of the specified relation. (You can use pfree to release the
copy of the name when you don’t need it anymore.)

Arguments

Relation rel

input relation

Return Value
The name of the specified relation.

1172

SPI_getnspname

Name
SPI_getnspname — return the namespace of the specified relation

Synopsis
char * SPI_getnspname(Relation rel)

Description
SPI_getnspname returns a copy of the name of the namespace that the specified Relation belongs to.
This is equivalent to the relation’s schema. You should pfree the return value of this function when you
are finished with it.

Arguments

Relation rel

input relation

Return Value
The name of the specified relation’s namespace.

1173

43.3. Memory Management
PostgreSQL allocates memory within memory contexts, which provide a convenient method of managing
allocations made in many different places that need to live for differing amounts of time. Destroying a
context releases all the memory that was allocated in it. Thus, it is not necessary to keep track of individual
objects to avoid memory leaks; instead only a relatively small number of contexts have to be managed.
palloc and related functions allocate memory from the “current” context.

SPI_connect creates a new memory context and makes it current. SPI_finish restores the previous
current memory context and destroys the context created by SPI_connect. These actions ensure that
transient memory allocations made inside your procedure are reclaimed at procedure exit, avoiding mem-
ory leakage.

However, if your procedure needs to return an object in allocated memory (such as a value of a pass-by-
reference data type), you cannot allocate that memory using palloc, at least not while you are connected
to SPI. If you try, the object will be deallocated by SPI_finish, and your procedure will not work
reliably. To solve this problem, use SPI_palloc to allocate memory for your return object. SPI_palloc
allocates memory in the “upper executor context”, that is, the memory context that was current when
SPI_connect was called, which is precisely the right context for a value returned from your procedure.

If SPI_palloc is called while the procedure is not connected to SPI, then it acts the same as a normal
palloc. Before a procedure connects to the SPI manager, the current memory context is the upper execu-
tor context, so all allocations made by the procedure via palloc or by SPI utility functions are made in
this context.

When SPI_connect is called, the private context of the procedure, which is created by SPI_connect, is
made the current context. All allocations made by palloc, repalloc, or SPI utility functions (except for
SPI_copytuple, SPI_returntuple, SPI_modifytuple, and SPI_palloc) are made in this context.
When a procedure disconnects from the SPI manager (via SPI_finish) the current context is restored
to the upper executor context, and all allocations made in the procedure memory context are freed and
cannot be used any more.

All functions described in this section can be used by both connected and unconnected procedures. In an
unconnected procedure, they act the same as the underlying ordinary server functions (palloc, etc.).

SPI_palloc

Name
SPI_palloc — allocate memory in the upper executor context

Synopsis
void * SPI_palloc(Size size)

1174

SPI_palloc

Description
SPI_palloc allocates memory in the upper executor context.

Arguments

Size size

size in bytes of storage to allocate

Return Value
pointer to new storage space of the specified size

1175

SPI_repalloc

Name
SPI_repalloc — reallocate memory in the upper executor context

Synopsis
void * SPI_repalloc(void * pointer, Size size)

Description
SPI_repalloc changes the size of a memory segment previously allocated using SPI_palloc.

This function is no longer different from plain repalloc. It’s kept just for backward compatibility of
existing code.

Arguments

void * pointer

pointer to existing storage to change

Size size

size in bytes of storage to allocate

Return Value
pointer to new storage space of specified size with the contents copied from the existing area

1176

SPI_pfree

Name
SPI_pfree — free memory in the upper executor context

Synopsis
void SPI_pfree(void * pointer)

Description
SPI_pfree frees memory previously allocated using SPI_palloc or SPI_repalloc.

This function is no longer different from plain pfree. It’s kept just for backward compatibility of existing
code.

Arguments

void * pointer

pointer to existing storage to free

1177

SPI_copytuple

Name
SPI_copytuple — make a copy of a row in the upper executor context

Synopsis
HeapTuple SPI_copytuple(HeapTuple row)

Description
SPI_copytuple makes a copy of a row in the upper executor context. This is normally used to return a
modified row from a trigger. In a function declared to return a composite type, use SPI_returntuple

instead.

Arguments

HeapTuple row

row to be copied

Return Value
the copied row; NULL only if tuple is NULL

1178

SPI_returntuple

Name
SPI_returntuple — prepare to return a tuple as a Datum

Synopsis
HeapTupleHeader SPI_returntuple(HeapTuple row, TupleDesc rowdesc)

Description
SPI_returntuple makes a copy of a row in the upper executor context, returning it in the form of a
row type Datum. The returned pointer need only be converted to Datum via PointerGetDatum before
returning.

Note that this should be used for functions that are declared to return composite types. It is not used for
triggers; use SPI_copytuple for returning a modified row in a trigger.

Arguments

HeapTuple row

row to be copied

TupleDesc rowdesc

descriptor for row (pass the same descriptor each time for most effective caching)

Return Value
HeapTupleHeader pointing to copied row; NULL only if row or rowdesc is NULL

1179

SPI_modifytuple

Name
SPI_modifytuple — create a row by replacing selected fields of a given row

Synopsis
HeapTuple SPI_modifytuple(Relation rel, HeapTuple row, int ncols,

int * colnum, Datum * values, const char * nulls)

Description
SPI_modifytuple creates a new row by substituting new values for selected columns, copying the orig-
inal row’s columns at other positions. The input row is not modified.

Arguments

Relation rel

Used only as the source of the row descriptor for the row. (Passing a relation rather than a row
descriptor is a misfeature.)

HeapTuple row

row to be modified

int ncols

number of column numbers in the array colnum

int * colnum

array of the numbers of the columns that are to be changed (column numbers start at 1)

Datum * values

new values for the specified columns

const char * Nulls

which new values are null, if any (see SPI_execute_plan for the format)

Return Value
new row with modifications, allocated in the upper executor context; NULL only if row is NULL

On error, SPI_result is set as follows:

1180

SPI_modifytuple

SPI_ERROR_ARGUMENT

if rel is NULL, or if row is NULL, or if ncols is less than or equal to 0, or if colnum is NULL, or if
values is NULL.

SPI_ERROR_NOATTRIBUTE

if colnum contains an invalid column number (less than or equal to 0 or greater than the number of
column in row)

1181

SPI_freetuple

Name
SPI_freetuple — free a row allocated in the upper executor context

Synopsis
void SPI_freetuple(HeapTuple row)

Description
SPI_freetuple frees a row previously allocated in the upper executor context.

This function is no longer different from plain heap_freetuple. It’s kept just for backward compatibility
of existing code.

Arguments

HeapTuple row

row to free

1182

SPI_freetuptable

Name
SPI_freetuptable — free a row set created by SPI_execute or a similar function

Synopsis
void SPI_freetuptable(SPITupleTable * tuptable)

Description
SPI_freetuptable frees a row set created by a prior SPI command execution function, such as
SPI_execute. Therefore, this function is usually called with the global variable SPI_tupletable as
argument.

This function is useful if a SPI procedure needs to execute multiple commands and does not want to keep
the results of earlier commands around until it ends. Note that any unfreed row sets will be freed anyway
at SPI_finish.

Arguments

SPITupleTable * tuptable

pointer to row set to free

1183

SPI_freeplan

Name
SPI_freeplan — free a previously saved prepared statement

Synopsis
int SPI_freeplan(SPIPlanPtr plan)

Description
SPI_freeplan releases a prepared statement previously returned by SPI_prepare or saved by
SPI_keepplan or SPI_saveplan.

Arguments

SPIPlanPtr plan

pointer to statement to free

Return Value
0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

1184

Chapter 43. Server Programming Interface

43.4. Visibility of Data Changes
The following rules govern the visibility of data changes in functions that use SPI (or any other C func-
tion):

• During the execution of an SQL command, any data changes made by the command are invisible to the
command itself. For example, in:

INSERT INTO a SELECT * FROM a;

the inserted rows are invisible to the SELECT part.

• Changes made by a command C are visible to all commands that are started after C, no matter whether
they are started inside C (during the execution of C) or after C is done.

• Commands executed via SPI inside a function called by an SQL command (either an ordinary function
or a trigger) follow one or the other of the above rules depending on the read/write flag passed to SPI.
Commands executed in read-only mode follow the first rule: they cannot see changes of the calling
command. Commands executed in read-write mode follow the second rule: they can see all changes
made so far.

• All standard procedural languages set the SPI read-write mode depending on the volatility attribute
of the function. Commands of STABLE and IMMUTABLE functions are done in read-only mode, while
commands of VOLATILE functions are done in read-write mode. While authors of C functions are able
to violate this convention, it’s unlikely to be a good idea to do so.

The next section contains an example that illustrates the application of these rules.

43.5. Examples
This section contains a very simple example of SPI usage. The procedure execq takes an SQL command
as its first argument and a row count as its second, executes the command using SPI_exec and returns
the number of rows that were processed by the command. You can find more complex examples for SPI
in the source tree in src/test/regress/regress.c and in the spi module.

#include "postgres.h"

#include "executor/spi.h"
#include "utils/builtins.h"

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

int execq(text *sql, int cnt);

int
execq(text *sql, int cnt)
{

char *command;

1185

Chapter 43. Server Programming Interface

int ret;
int proc;

/* Convert given text object to a C string */
command = text_to_cstring(sql);

SPI_connect();

ret = SPI_exec(command, cnt);

proc = SPI_processed;
/*
* If some rows were fetched, print them via elog(INFO).

*/
if (ret > 0 && SPI_tuptable != NULL)
{

TupleDesc tupdesc = SPI_tuptable->tupdesc;
SPITupleTable *tuptable = SPI_tuptable;
char buf[8192];
int i, j;

for (j = 0; j < proc; j++)
{

HeapTuple tuple = tuptable->vals[j];

for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
snprintf(buf + strlen (buf), sizeof(buf) - strlen(buf), " %s%s",

SPI_getvalue(tuple, tupdesc, i),
(i == tupdesc->natts) ? " " : " |");

elog(INFO, "EXECQ: %s", buf);
}

}

SPI_finish();
pfree(command);

return (proc);
}

(This function uses call convention version 0, to make the example easier to understand. In real applica-
tions you should use the new version 1 interface.)

This is how you declare the function after having compiled it into a shared library (details are in Section
35.9.6.):

CREATE FUNCTION execq(text, integer) RETURNS integer
AS ’filename’
LANGUAGE C;

Here is a sample session:

=> SELECT execq(’CREATE TABLE a (x integer)’, 0);

1186

Chapter 43. Server Programming Interface

execq

0
(1 row)

=> INSERT INTO a VALUES (execq(’INSERT INTO a VALUES (0)’, 0));
INSERT 0 1
=> SELECT execq(’SELECT * FROM a’, 0);
INFO: EXECQ: 0 -- inserted by execq
INFO: EXECQ: 1 -- returned by execq and inserted by upper INSERT

execq

2
(1 row)

=> SELECT execq(’INSERT INTO a SELECT x + 2 FROM a’, 1);
execq

1

(1 row)

=> SELECT execq(’SELECT * FROM a’, 10);
INFO: EXECQ: 0
INFO: EXECQ: 1
INFO: EXECQ: 2 -- 0 + 2, only one row inserted - as specified

execq

3 -- 10 is the max value only, 3 is the real number of rows
(1 row)

=> DELETE FROM a;
DELETE 3
=> INSERT INTO a VALUES (execq(’SELECT * FROM a’, 0) + 1);
INSERT 0 1
=> SELECT * FROM a;
x

1 -- no rows in a (0) + 1

(1 row)

=> INSERT INTO a VALUES (execq(’SELECT * FROM a’, 0) + 1);
INFO: EXECQ: 1
INSERT 0 1
=> SELECT * FROM a;
x

1
2 -- there was one row in a + 1

(2 rows)

-- This demonstrates the data changes visibility rule:

1187

Chapter 43. Server Programming Interface

=> INSERT INTO a SELECT execq(’SELECT * FROM a’, 0) * x FROM a;
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 2
INSERT 0 2
=> SELECT * FROM a;
x

1
2
2 -- 2 rows * 1 (x in first row)
6 -- 3 rows (2 + 1 just inserted) * 2 (x in second row)

(4 rows) ^^^^^^
rows visible to execq() in different invocations

1188

VI. Reference
The entries in this Reference are meant to provide in reasonable length an authoritative, complete, and
formal summary about their respective subjects. More information about the use of PostgreSQL, in narra-
tive, tutorial, or example form, can be found in other parts of this book. See the cross-references listed on
each reference page.

The reference entries are also available as traditional “man” pages.

I. SQL Commands
This part contains reference information for the SQL commands supported by PostgreSQL. By “SQL”
the language in general is meant; information about the standards conformance and compatibility of each
command can be found on the respective reference page.

ABORT

Name
ABORT — abort the current transaction

Synopsis
ABORT [WORK | TRANSACTION]

Description
ABORT rolls back the current transaction and causes all the updates made by the transaction to be discarded.
This command is identical in behavior to the standard SQL command ROLLBACK, and is present only
for historical reasons.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ABORT when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To abort all changes:

ABORT;

1192

ABORT

Compatibility
This command is a PostgreSQL extension present for historical reasons. ROLLBACK is the equivalent
standard SQL command.

See Also
BEGIN, COMMIT, ROLLBACK

1193

ALTER AGGREGATE

Name
ALTER AGGREGATE — change the definition of an aggregate function

Synopsis
ALTER AGGREGATE name (argtype [, ...]) RENAME TO new_name

ALTER AGGREGATE name (argtype [, ...]) OWNER TO new_owner

ALTER AGGREGATE name (argtype [, ...]) SET SCHEMA new_schema

Description
ALTER AGGREGATE changes the definition of an aggregate function.

You must own the aggregate function to use ALTER AGGREGATE. To change the schema of an aggregate
function, you must also have CREATE privilege on the new schema. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE privilege on the
aggregate function’s schema. (These restrictions enforce that altering the owner doesn’t do anything you
couldn’t do by dropping and recreating the aggregate function. However, a superuser can alter ownership
of any aggregate function anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing aggregate function.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument aggregate
function, write * in place of the list of input data types.

new_name

The new name of the aggregate function.

new_owner

The new owner of the aggregate function.

new_schema

The new schema for the aggregate function.

1194

ALTER AGGREGATE

Examples
To rename the aggregate function myavg for type integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate function myavg for type integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;

To move the aggregate function myavg for type integer into schema myschema:

ALTER AGGREGATE myavg(integer) SET SCHEMA myschema;

Compatibility
There is no ALTER AGGREGATE statement in the SQL standard.

See Also
CREATE AGGREGATE, DROP AGGREGATE

1195

ALTER COLLATION

Name
ALTER COLLATION — change the definition of a collation

Synopsis
ALTER COLLATION name RENAME TO new_name

ALTER COLLATION name OWNER TO new_owner

ALTER COLLATION name SET SCHEMA new_schema

Description
ALTER COLLATION changes the definition of a collation.

You must own the collation to use ALTER COLLATION. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the collation’s
schema. (These restrictions enforce that altering the owner doesn’t do anything you couldn’t do by drop-
ping and recreating the collation. However, a superuser can alter ownership of any collation anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing collation.

new_name

The new name of the collation.

new_owner

The new owner of the collation.

new_schema

The new schema for the collation.

Examples
To rename the collation de_DE to german:

ALTER COLLATION "de_DE" RENAME TO german;

To change the owner of the collation en_US to joe:

1196

ALTER COLLATION

ALTER COLLATION "en_US" OWNER TO joe;

Compatibility
There is no ALTER COLLATION statement in the SQL standard.

See Also
CREATE COLLATION, DROP COLLATION

1197

ALTER CONVERSION

Name
ALTER CONVERSION — change the definition of a conversion

Synopsis
ALTER CONVERSION name RENAME TO new_name

ALTER CONVERSION name OWNER TO new_owner

ALTER CONVERSION name SET SCHEMA new_schema

Description
ALTER CONVERSION changes the definition of a conversion.

You must own the conversion to use ALTER CONVERSION. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the conver-
sion’s schema. (These restrictions enforce that altering the owner doesn’t do anything you couldn’t do
by dropping and recreating the conversion. However, a superuser can alter ownership of any conversion
anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing conversion.

new_name

The new name of the conversion.

new_owner

The new owner of the conversion.

new_schema

The new schema for the conversion.

Examples
To rename the conversion iso_8859_1_to_utf8 to latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO latin1_to_unicode;

To change the owner of the conversion iso_8859_1_to_utf8 to joe:

1198

ALTER CONVERSION

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

Compatibility
There is no ALTER CONVERSION statement in the SQL standard.

See Also
CREATE CONVERSION, DROP CONVERSION

1199

ALTER DATABASE

Name
ALTER DATABASE — change a database

Synopsis
ALTER DATABASE name [[WITH] option [...]]

where option can be:

CONNECTION LIMIT connlimit

ALTER DATABASE name RENAME TO new_name

ALTER DATABASE name OWNER TO new_owner

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name SET configuration_parameter FROM CURRENT
ALTER DATABASE name RESET configuration_parameter

ALTER DATABASE name RESET ALL

Description
ALTER DATABASE changes the attributes of a database.

The first form changes certain per-database settings. (See below for details.) Only the database owner or
a superuser can change these settings.

The second form changes the name of the database. Only the database owner or a superuser can rename a
database; non-superuser owners must also have the CREATEDB privilege. The current database cannot be
renamed. (Connect to a different database if you need to do that.)

The third form changes the owner of the database. To alter the owner, you must own the database and also
be a direct or indirect member of the new owning role, and you must have the CREATEDB privilege. (Note
that superusers have all these privileges automatically.)

The fourth form changes the default tablespace of the database. Only the database owner or a superuser
can do this; you must also have create privilege for the new tablespace. This command physically moves
any tables or indexes in the database’s old default tablespace to the new tablespace. Note that tables and
indexes in non-default tablespaces are not affected.

The remaining forms change the session default for a run-time configuration variable for a PostgreSQL
database. Whenever a new session is subsequently started in that database, the specified value becomes
the session default value. The database-specific default overrides whatever setting is present in
postgresql.conf or has been received from the postgres command line. Only the database owner

1200

ALTER DATABASE

or a superuser can change the session defaults for a database. Certain variables cannot be set this way, or
can only be set by a superuser.

Parameters

name

The name of the database whose attributes are to be altered.

connlimit

How many concurrent connections can be made to this database. -1 means no limit.

new_name

The new name of the database.

new_owner

The new owner of the database.

new_tablespace

The new default tablespace of the database.

configuration_parameter

value

Set this database’s session default for the specified configuration parameter to the given value. If
value is DEFAULT or, equivalently, RESET is used, the database-specific setting is removed, so the
system-wide default setting will be inherited in new sessions. Use RESET ALL to clear all database-
specific settings. SET FROM CURRENT saves the session’s current value of the parameter as the
database-specific value.

See SET and Chapter 18 for more information about allowed parameter names and values.

Notes
It is also possible to tie a session default to a specific role rather than to a database; see ALTER ROLE.
Role-specific settings override database-specific ones if there is a conflict.

Examples
To disable index scans by default in the database test:

ALTER DATABASE test SET enable_indexscan TO off;

1201

ALTER DATABASE

Compatibility
The ALTER DATABASE statement is a PostgreSQL extension.

See Also
CREATE DATABASE, DROP DATABASE, SET, CREATE TABLESPACE

1202

ALTER DEFAULT PRIVILEGES

Name
ALTER DEFAULT PRIVILEGES — define default access privileges

Synopsis
ALTER DEFAULT PRIVILEGES

[FOR { ROLE | USER } target_role [, ...]]
[IN SCHEMA schema_name [, ...]]
abbreviated_grant_or_revoke

where abbreviated_grant_or_revoke is one of:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
[, ...] | ALL [PRIVILEGES] }
ON TABLES
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
[, ...] | ALL [PRIVILEGES] }
ON SEQUENCES
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON FUNCTIONS
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON TYPES
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

REVOKE [GRANT OPTION FOR]
{ { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
[, ...] | ALL [PRIVILEGES] }
ON TABLES
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { USAGE | SELECT | UPDATE }
[, ...] | ALL [PRIVILEGES] }
ON SEQUENCES
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ EXECUTE | ALL [PRIVILEGES] }
ON FUNCTIONS
FROM { [GROUP] role_name | PUBLIC } [, ...]

1203

ALTER DEFAULT PRIVILEGES

[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }
ON TYPES
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

Description
ALTER DEFAULT PRIVILEGES allows you to set the privileges that will be applied to objects created in
the future. (It does not affect privileges assigned to already-existing objects.) Currently, only the privileges
for tables (including views and foreign tables), sequences, functions, and types (including domains) can
be altered.

You can change default privileges only for objects that will be created by yourself or by roles that you are
a member of. The privileges can be set globally (i.e., for all objects created in the current database), or
just for objects created in specified schemas. Default privileges that are specified per-schema are added to
whatever the global default privileges are for the particular object type.

As explained under GRANT, the default privileges for any object type normally grant all grantable per-
missions to the object owner, and may grant some privileges to PUBLIC as well. However, this behavior
can be changed by altering the global default privileges with ALTER DEFAULT PRIVILEGES.

Parameters

target_role

The name of an existing role of which the current role is a member. If FOR ROLE is omitted, the
current role is assumed.

schema_name

The name of an existing schema. If specified, the default privileges are altered for objects later created
in that schema. If IN SCHEMA is omitted, the global default privileges are altered.

role_name

The name of an existing role to grant or revoke privileges for. This parameter, and all the other
parameters in abbreviated_grant_or_revoke, act as described under GRANT or REVOKE,
except that one is setting permissions for a whole class of objects rather than specific named objects.

Notes
Use psql’s \ddp command to obtain information about existing assignments of default privileges. The
meaning of the privilege values is the same as explained for \dp under GRANT.

If you wish to drop a role for which the default privileges have been altered, it is necessary to reverse the
changes in its default privileges or use DROP OWNED BY to get rid of the default privileges entry for the
role.

1204

ALTER DEFAULT PRIVILEGES

Examples
Grant SELECT privilege to everyone for all tables (and views) you subsequently create in schema
myschema, and allow role webuser to INSERT into them too:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT INSERT ON TABLES TO webuser;

Undo the above, so that subsequently-created tables won’t have any more permissions than normal:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE SELECT ON TABLES FROM PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE INSERT ON TABLES FROM webuser;

Remove the public EXECUTE permission that is normally granted on functions, for all functions subse-
quently created by role admin:

ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;

Compatibility
There is no ALTER DEFAULT PRIVILEGES statement in the SQL standard.

See Also
GRANT, REVOKE

1205

ALTER DOMAIN

Name
ALTER DOMAIN — change the definition of a domain

Synopsis
ALTER DOMAIN name

{ SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name

{ SET | DROP } NOT NULL
ALTER DOMAIN name

ADD domain_constraint [NOT VALID]
ALTER DOMAIN name

DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
ALTER DOMAIN name

RENAME CONSTRAINT constraint_name TO new_constraint_name

ALTER DOMAIN name

VALIDATE CONSTRAINT constraint_name

ALTER DOMAIN name

OWNER TO new_owner

ALTER DOMAIN name

RENAME TO new_name

ALTER DOMAIN name

SET SCHEMA new_schema

Description
ALTER DOMAIN changes the definition of an existing domain. There are several sub-forms:

SET/DROP DEFAULT

These forms set or remove the default value for a domain. Note that defaults only apply to subsequent
INSERT commands; they do not affect rows already in a table using the domain.

SET/DROP NOT NULL

These forms change whether a domain is marked to allow NULL values or to reject NULL values.
You can only SET NOT NULL when the columns using the domain contain no null values.

ADD domain_constraint [NOT VALID]

This form adds a new constraint to a domain using the same syntax as CREATE DOMAIN. When
a new constraint is added to a domain, all columns using that domain will be checked against the
newly added constraint. These checks can be suppressed by adding the new constraint using the
NOT VALID option; the constraint can later be made valid using ALTER DOMAIN ... VALIDATE

CONSTRAINT. Newly inserted or updated rows are always checked against all constraints, even those
marked NOT VALID. NOT VALID is only accepted for CHECK constraints.

1206

ALTER DOMAIN

DROP CONSTRAINT [IF EXISTS]

This form drops constraints on a domain. If IF EXISTS is specified and the constraint does not exist,
no error is thrown. In this case a notice is issued instead.

RENAME CONSTRAINT

This form changes the name of a constraint on a domain.

VALIDATE CONSTRAINT

This form validates a constraint previously added as NOT VALID, that is, verify that all data in
columns using the domain satisfy the specified constraint.

OWNER

This form changes the owner of the domain to the specified user.

RENAME

This form changes the name of the domain.

SET SCHEMA

This form changes the schema of the domain. Any constraints associated with the domain are moved
into the new schema as well.

You must own the domain to use ALTER DOMAIN. To change the schema of a domain, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the domain’s schema.
(These restrictions enforce that altering the owner doesn’t do anything you couldn’t do by dropping and
recreating the domain. However, a superuser can alter ownership of any domain anyway.)

Parameters

name

The name (possibly schema-qualified) of an existing domain to alter.

domain_constraint

New domain constraint for the domain.

constraint_name

Name of an existing constraint to drop or rename.

NOT VALID

Do not verify existing column data for constraint validity.

CASCADE

Automatically drop objects that depend on the constraint.

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default behavior.

1207

ALTER DOMAIN

new_name

The new name for the domain.

new_constraint_name

The new name for the constraint.

new_owner

The user name of the new owner of the domain.

new_schema

The new schema for the domain.

Notes
Currently, ALTER DOMAIN ADD CONSTRAINT and ALTER DOMAIN SET NOT NULL will fail if the
named domain or any derived domain is used within a composite-type column of any table in the
database. They should eventually be improved to be able to verify the new constraint for such nested
columns.

Examples
To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) = 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

To rename a check constraint on a domain:

ALTER DOMAIN zipcode RENAME CONSTRAINT zipchk TO zip_check;

To move the domain into a different schema:

1208

ALTER DOMAIN

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility
ALTER DOMAIN conforms to the SQL standard, except for the OWNER, RENAME, SET SCHEMA, and
VALIDATE CONSTRAINT variants, which are PostgreSQL extensions. The NOT VALID clause of the ADD
CONSTRAINT variant is also a PostgreSQL extension.

See Also
CREATE DOMAIN, DROP DOMAIN

1209

ALTER EXTENSION

Name
ALTER EXTENSION — change the definition of an extension

Synopsis
ALTER EXTENSION name UPDATE [TO new_version]
ALTER EXTENSION name SET SCHEMA new_schema

ALTER EXTENSION name ADD member_object

ALTER EXTENSION name DROP member_object

where member_object is:

AGGREGATE agg_name (agg_type [, ...]) |
CAST (source_type AS target_type) |
COLLATION object_name |
CONVERSION object_name |
DOMAIN object_name |
FOREIGN DATA WRAPPER object_name |
FOREIGN TABLE object_name |
FUNCTION function_name ([[argmode] [argname] argtype [, ...]]) |
OPERATOR operator_name (left_type, right_type) |
OPERATOR CLASS object_name USING index_method |
OPERATOR FAMILY object_name USING index_method |
[PROCEDURAL] LANGUAGE object_name |
SCHEMA object_name |
SEQUENCE object_name |
SERVER object_name |
TABLE object_name |
TEXT SEARCH CONFIGURATION object_name |
TEXT SEARCH DICTIONARY object_name |
TEXT SEARCH PARSER object_name |
TEXT SEARCH TEMPLATE object_name |
TYPE object_name |
VIEW object_name

Description
ALTER EXTENSION changes the definition of an installed extension. There are several subforms:

UPDATE

This form updates the extension to a newer version. The extension must supply a suitable update
script (or series of scripts) that can modify the currently-installed version into the requested version.

1210

ALTER EXTENSION

SET SCHEMA

This form moves the extension’s objects into another schema. The extension has to be relocatable
for this command to succeed.

ADD member_object

This form adds an existing object to the extension. This is mainly useful in extension update scripts.
The object will subsequently be treated as a member of the extension; notably, it can only be dropped
by dropping the extension.

DROP member_object

This form removes a member object from the extension. This is mainly useful in extension update
scripts. The object is not dropped, only disassociated from the extension.

See Section 35.15 for more information about these operations.

You must own the extension to use ALTER EXTENSION. The ADD/DROP forms require ownership of the
added/dropped object as well.

Parameters

name

The name of an installed extension.

new_version

The desired new version of the extension. This can be written as either an identifier or a string literal.
If not specified, ALTER EXTENSION UPDATE attempts to update to whatever is shown as the default
version in the extension’s control file.

new_schema

The new schema for the extension.

object_name

agg_name

function_name

operator_name

The name of an object to be added to or removed from the extension. Names of tables, aggregates, do-
mains, foreign tables, functions, operators, operator classes, operator families, sequences, text search
objects, types, and views can be schema-qualified.

agg_type

An input data type on which the aggregate function operates. To reference a zero-argument aggregate
function, write * in place of the list of input data types.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

1211

ALTER EXTENSION

argmode

The mode of a function argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note
that ALTER EXTENSION does not actually pay any attention to OUT arguments, since only the input
arguments are needed to determine the function’s identity. So it is sufficient to list the IN, INOUT,
and VARIADIC arguments.

argname

The name of a function argument. Note that ALTER EXTENSION does not actually pay any atten-
tion to argument names, since only the argument data types are needed to determine the function’s
identity.

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

left_type

right_type

The data type(s) of the operator’s arguments (optionally schema-qualified). Write NONE for the miss-
ing argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

Examples
To update the hstore extension to version 2.0:

ALTER EXTENSION hstore UPDATE TO ’2.0’;

To change the schema of the hstore extension to utils:

ALTER EXTENSION hstore SET SCHEMA utils;

To add an existing function to the hstore extension:

ALTER EXTENSION hstore ADD FUNCTION populate_record(anyelement, hstore);

Compatibility
ALTER EXTENSION is a PostgreSQL extension.

1212

ALTER EXTENSION

See Also
CREATE EXTENSION, DROP EXTENSION

1213

ALTER FOREIGN DATA WRAPPER

Name
ALTER FOREIGN DATA WRAPPER — change the definition of a foreign-data wrapper

Synopsis
ALTER FOREIGN DATA WRAPPER name

[HANDLER handler_function | NO HANDLER]
[VALIDATOR validator_function | NO VALIDATOR]
[OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])]

ALTER FOREIGN DATA WRAPPER name OWNER TO new_owner

ALTER FOREIGN DATA WRAPPER name RENAME TO new_name

Description
ALTER FOREIGN DATA WRAPPER changes the definition of a foreign-data wrapper. The first form of the
command changes the support functions or the generic options of the foreign-data wrapper (at least one
clause is required). The second form changes the owner of the foreign-data wrapper.

Only superusers can alter foreign-data wrappers. Additionally, only superusers can own foreign-data
wrappers.

Parameters

name

The name of an existing foreign-data wrapper.

HANDLER handler_function

Specifies a new handler function for the foreign-data wrapper.

NO HANDLER

This is used to specify that the foreign-data wrapper should no longer have a handler function.

Note that foreign tables that use a foreign-data wrapper with no handler cannot be accessed.

VALIDATOR validator_function

Specifies a new validator function for the foreign-data wrapper.

Note that it is possible that after changing the validator the options to the foreign-data wrapper,
servers, and user mappings have become invalid. It is up to the user to make sure that these options
are correct before using the foreign-data wrapper.

NO VALIDATOR

This is used to specify that the foreign-data wrapper should no longer have a validator function.

1214

ALTER FOREIGN DATA WRAPPER

OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])

Change options for the foreign-data wrapper. ADD, SET, and DROP specify the action to be performed.
ADD is assumed if no operation is explicitly specified. Option names must be unique; names and
values are also validated using the foreign data wrapper’s validator function, if any.

new_owner

The user name of the new owner of the foreign-data wrapper.

new_name

The new name for the foreign-data wrapper.

Examples
Change a foreign-data wrapper dbi, add option foo, drop bar:

ALTER FOREIGN DATA WRAPPER dbi OPTIONS (ADD foo ’1’, DROP ’bar’);

Change the foreign-data wrapper dbi validator to bob.myvalidator:

ALTER FOREIGN DATA WRAPPER dbi VALIDATOR bob.myvalidator;

Compatibility
ALTER FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), except that the HANDLER,
VALIDATOR, OWNER TO, and RENAME clauses are extensions.

See Also
CREATE FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER

1215

ALTER FOREIGN TABLE

Name
ALTER FOREIGN TABLE — change the definition of a foreign table

Synopsis
ALTER FOREIGN TABLE [IF EXISTS] name

action [, ...]
ALTER FOREIGN TABLE [IF EXISTS] name

RENAME [COLUMN] column_name TO new_column_name

ALTER FOREIGN TABLE [IF EXISTS] name

RENAME TO new_name

ALTER FOREIGN TABLE [IF EXISTS] name

SET SCHEMA new_schema

where action is one of:

ADD [COLUMN] column_name data_type [NULL | NOT NULL]
DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
ALTER [COLUMN] column_name [SET DATA] TYPE data_type

ALTER [COLUMN] column_name { SET | DROP } NOT NULL
ALTER [COLUMN] column_name SET STATISTICS integer

ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
ALTER [COLUMN] column_name RESET (attribute_option [, ...])
ALTER [COLUMN] column_name OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])
OWNER TO new_owner

OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])

Description
ALTER FOREIGN TABLE changes the definition of an existing foreign table. There are several subforms:

ADD COLUMN

This form adds a new column to the foreign table, using the same syntax as CREATE FOREIGN
TABLE.

DROP COLUMN [IF EXISTS]

This form drops a column from a foreign table. You will need to say CASCADE if anything outside the
table depends on the column; for example, views. If IF EXISTS is specified and the column does
not exist, no error is thrown. In this case a notice is issued instead.

IF EXISTS

Do not throw an error if the foreign table does not exist. A notice is issued in this case.

1216

ALTER FOREIGN TABLE

SET DATA TYPE

This form changes the type of a column of a foreign table.

SET/DROP NOT NULL

Mark a column as allowing, or not allowing, null values.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. See
the similar form of ALTER TABLE for more details.

SET (attribute_option = value [, ...])

RESET (attribute_option [, ...])

This form sets or resets per-attribute options. See the similar form of ALTER TABLE for more
details.

OWNER

This form changes the owner of the foreign table to the specified user.

RENAME

The RENAME forms change the name of a foreign table or the name of an individual column in a
foreign table.

SET SCHEMA

This form moves the foreign table into another schema.

OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])

Change options for the foreign table or one of its columns. ADD, SET, and DROP specify the action to
be performed. ADD is assumed if no operation is explicitly specified. Duplicate option names are not
allowed (although it’s OK for a table option and a column option to have the same name). Option
names and values are also validated using the foreign data wrapper library.

All the actions except RENAME and SET SCHEMA can be combined into a list of multiple alterations to
apply in parallel. For example, it is possible to add several columns and/or alter the type of several columns
in a single command.

You must own the table to use ALTER FOREIGN TABLE. To change the schema of a foreign table, you
must also have CREATE privilege on the new schema. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the table’s schema.
(These restrictions enforce that altering the owner doesn’t do anything you couldn’t do by dropping and
recreating the table. However, a superuser can alter ownership of any table anyway.) To add a column or
alter a column type, you must also have USAGE privilege on the data type.

Parameters

name

The name (possibly schema-qualified) of an existing foreign table to alter.

1217

ALTER FOREIGN TABLE

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

CASCADE

Automatically drop objects that depend on the dropped column (for example, views referencing the
column).

RESTRICT

Refuse to drop the column if there are any dependent objects. This is the default behavior.

new_owner

The user name of the new owner of the table.

new_schema

The name of the schema to which the table will be moved.

Notes
The key word COLUMN is noise and can be omitted.

Consistency with the foreign server is not checked when a column is added or removed with ADD COLUMN

or DROP COLUMN, a NOT NULL constraint is added, or a column type is changed with SET DATA TYPE.
It is the user’s responsibility to ensure that the table definition matches the remote side.

Refer to CREATE FOREIGN TABLE for a further description of valid parameters.

Examples
To mark a column as not-null:

ALTER FOREIGN TABLE distributors ALTER COLUMN street SET NOT NULL;

To change options of a foreign table:

ALTER FOREIGN TABLE myschema.distributors OPTIONS (ADD opt1 ’value’, SET opt2, ’value2’, DROP opt3 ’value3’);

1218

ALTER FOREIGN TABLE

Compatibility
The forms ADD, DROP, and SET DATA TYPE conform with the SQL standard. The other forms are Post-
greSQL extensions of the SQL standard. Also, the ability to specify more than one manipulation in a
single ALTER FOREIGN TABLE command is an extension.

ALTER FOREIGN TABLE DROP COLUMN can be used to drop the only column of a foreign table, leaving
a zero-column table. This is an extension of SQL, which disallows zero-column foreign tables.

1219

ALTER FUNCTION

Name
ALTER FUNCTION — change the definition of a function

Synopsis
ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])

action [...] [RESTRICT]
ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])

RENAME TO new_name

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
OWNER TO new_owner

ALTER FUNCTION name ([[argmode] [argname] argtype [, ...]])
SET SCHEMA new_schema

where action is one of:

CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
COST execution_cost

ROWS result_rows

SET configuration_parameter { TO | = } { value | DEFAULT }
SET configuration_parameter FROM CURRENT
RESET configuration_parameter

RESET ALL

Description
ALTER FUNCTION changes the definition of a function.

You must own the function to use ALTER FUNCTION. To change a function’s schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the function’s schema.
(These restrictions enforce that altering the owner doesn’t do anything you couldn’t do by dropping and
recreating the function. However, a superuser can alter ownership of any function anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing function.

1220

ALTER FUNCTION

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note that
ALTER FUNCTION does not actually pay any attention to OUT arguments, since only the input argu-
ments are needed to determine the function’s identity. So it is sufficient to list the IN, INOUT, and
VARIADIC arguments.

argname

The name of an argument. Note that ALTER FUNCTION does not actually pay any attention to argu-
ment names, since only the argument data types are needed to determine the function’s identity.

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

new_name

The new name of the function.

new_owner

The new owner of the function. Note that if the function is marked SECURITY DEFINER, it will
subsequently execute as the new owner.

new_schema

The new schema for the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT changes the function so that it will be invoked when some or all of its
arguments are null. RETURNS NULL ON NULL INPUT or STRICT changes the function so that it
is not invoked if any of its arguments are null; instead, a null result is assumed automatically. See
CREATE FUNCTION for more information.

IMMUTABLE

STABLE

VOLATILE

Change the volatility of the function to the specified setting. See CREATE FUNCTION for details.

[EXTERNAL] SECURITY INVOKER

[EXTERNAL] SECURITY DEFINER

Change whether the function is a security definer or not. The key word EXTERNAL is ignored for SQL
conformance. See CREATE FUNCTION for more information about this capability.

LEAKPROOF

Change whether the function is considered leakproof or not. See CREATE FUNCTION for more
information about this capability.

COST execution_cost

Change the estimated execution cost of the function. See CREATE FUNCTION for more informa-
tion.

1221

ALTER FUNCTION

ROWS result_rows

Change the estimated number of rows returned by a set-returning function. See CREATE FUNC-
TION for more information.

configuration_parameter

value

Add or change the assignment to be made to a configuration parameter when the function is called. If
value is DEFAULT or, equivalently, RESET is used, the function-local setting is removed, so that the
function executes with the value present in its environment. Use RESET ALL to clear all function-
local settings. SET FROM CURRENT saves the session’s current value of the parameter as the value to
be applied when the function is entered.

See SET and Chapter 18 for more information about allowed parameter names and values.

RESTRICT

Ignored for conformance with the SQL standard.

Examples
To rename the function sqrt for type integer to square_root:

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the function sqrt for type integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;

To change the schema of the function sqrt for type integer to maths:

ALTER FUNCTION sqrt(integer) SET SCHEMA maths;

To adjust the search path that is automatically set for a function:

ALTER FUNCTION check_password(text) SET search_path = admin, pg_temp;

To disable automatic setting of search_path for a function:

ALTER FUNCTION check_password(text) RESET search_path;

The function will now execute with whatever search path is used by its caller.

1222

ALTER FUNCTION

Compatibility
This statement is partially compatible with the ALTER FUNCTION statement in the SQL standard. The
standard allows more properties of a function to be modified, but does not provide the ability to rename a
function, make a function a security definer, attach configuration parameter values to a function, or change
the owner, schema, or volatility of a function. The standard also requires the RESTRICT key word, which
is optional in PostgreSQL.

See Also
CREATE FUNCTION, DROP FUNCTION

1223

ALTER GROUP

Name
ALTER GROUP — change role name or membership

Synopsis
ALTER GROUP group_name ADD USER user_name [, ...]
ALTER GROUP group_name DROP USER user_name [, ...]

ALTER GROUP group_name RENAME TO new_name

Description
ALTER GROUP changes the attributes of a user group. This is an obsolete command, though still accepted
for backwards compatibility, because groups (and users too) have been superseded by the more general
concept of roles.

The first two variants add users to a group or remove them from a group. (Any role can play the part
of either a “user” or a “group” for this purpose.) These variants are effectively equivalent to granting or
revoking membership in the role named as the “group”; so the preferred way to do this is to use GRANT
or REVOKE.

The third variant changes the name of the group. This is exactly equivalent to renaming the role with
ALTER ROLE.

Parameters

group_name

The name of the group (role) to modify.

user_name

Users (roles) that are to be added to or removed from the group. The users must already exist; ALTER
GROUP does not create or drop users.

new_name

The new name of the group.

Examples
Add users to a group:

ALTER GROUP staff ADD USER karl, john;

1224

ALTER GROUP

Remove a user from a group:

ALTER GROUP workers DROP USER beth;

Compatibility
There is no ALTER GROUP statement in the SQL standard.

See Also
GRANT, REVOKE, ALTER ROLE

1225

ALTER INDEX

Name
ALTER INDEX — change the definition of an index

Synopsis
ALTER INDEX [IF EXISTS] name RENAME TO new_name

ALTER INDEX [IF EXISTS] name SET TABLESPACE tablespace_name

ALTER INDEX [IF EXISTS] name SET (storage_parameter = value [, ...])
ALTER INDEX [IF EXISTS] name RESET (storage_parameter [, ...])

Description
ALTER INDEX changes the definition of an existing index. There are several subforms:

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

RENAME

The RENAME form changes the name of the index. There is no effect on the stored data.

SET TABLESPACE

This form changes the index’s tablespace to the specified tablespace and moves the data file(s) asso-
ciated with the index to the new tablespace. See also CREATE TABLESPACE.

SET (storage_parameter = value [, ...])

This form changes one or more index-method-specific storage parameters for the index. See CRE-
ATE INDEX for details on the available parameters. Note that the index contents will not be modified
immediately by this command; depending on the parameter you might need to rebuild the index with
REINDEX to get the desired effects.

RESET (storage_parameter [, ...])

This form resets one or more index-method-specific storage parameters to their defaults. As with
SET, a REINDEX might be needed to update the index entirely.

Parameters

name

The name (possibly schema-qualified) of an existing index to alter.

1226

ALTER INDEX

new_name

The new name for the index.

tablespace_name

The tablespace to which the index will be moved.

storage_parameter

The name of an index-method-specific storage parameter.

value

The new value for an index-method-specific storage parameter. This might be a number or a word
depending on the parameter.

Notes
These operations are also possible using ALTER TABLE. ALTER INDEX is in fact just an alias for the
forms of ALTER TABLE that apply to indexes.

There was formerly an ALTER INDEX OWNER variant, but this is now ignored (with a warning). An index
cannot have an owner different from its table’s owner. Changing the table’s owner automatically changes
the index as well.

Changing any part of a system catalog index is not permitted.

Examples
To rename an existing index:

ALTER INDEX distributors RENAME TO suppliers;

To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

To change an index’s fill factor (assuming that the index method supports it):

ALTER INDEX distributors SET (fillfactor = 75);
REINDEX INDEX distributors;

Compatibility
ALTER INDEX is a PostgreSQL extension.

1227

ALTER INDEX

See Also
CREATE INDEX, REINDEX

1228

ALTER LANGUAGE

Name
ALTER LANGUAGE — change the definition of a procedural language

Synopsis
ALTER [PROCEDURAL] LANGUAGE name RENAME TO new_name

ALTER [PROCEDURAL] LANGUAGE name OWNER TO new_owner

Description
ALTER LANGUAGE changes the definition of a procedural language. The only functionality is to rename
the language or assign a new owner. You must be superuser or owner of the language to use ALTER

LANGUAGE.

Parameters

name

Name of a language

new_name

The new name of the language

new_owner

The new owner of the language

Compatibility
There is no ALTER LANGUAGE statement in the SQL standard.

See Also
CREATE LANGUAGE, DROP LANGUAGE

1229

ALTER LARGE OBJECT

Name
ALTER LARGE OBJECT — change the definition of a large object

Synopsis
ALTER LARGE OBJECT large_object_oid OWNER TO new_owner

Description
ALTER LARGE OBJECT changes the definition of a large object. The only functionality is to assign a new
owner. You must be superuser or owner of the large object to use ALTER LARGE OBJECT.

Parameters

large_object_oid

OID of the large object to be altered

new_owner

The new owner of the large object

Compatibility
There is no ALTER LARGE OBJECT statement in the SQL standard.

See Also
Chapter 32

1230

ALTER OPERATOR

Name
ALTER OPERATOR — change the definition of an operator

Synopsis
ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE }) OWNER TO new_owner

ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE }) SET SCHEMA new_schema

Description
ALTER OPERATOR changes the definition of an operator. The only currently available functionality is to
change the owner of the operator.

You must own the operator to use ALTER OPERATOR. To alter the owner, you must also be a direct or indi-
rect member of the new owning role, and that role must have CREATE privilege on the operator’s schema.
(These restrictions enforce that altering the owner doesn’t do anything you couldn’t do by dropping and
recreating the operator. However, a superuser can alter ownership of any operator anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator’s left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator’s right operand; write NONE if the operator has no right operand.

new_owner

The new owner of the operator.

new_schema

The new schema for the operator.

Examples
Change the owner of a custom operator a @@ b for type text:

ALTER OPERATOR @@ (text, text) OWNER TO joe;

1231

ALTER OPERATOR

Compatibility
There is no ALTER OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, DROP OPERATOR

1232

ALTER OPERATOR CLASS

Name
ALTER OPERATOR CLASS — change the definition of an operator class

Synopsis
ALTER OPERATOR CLASS name USING index_method RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method OWNER TO new_owner

ALTER OPERATOR CLASS name USING index_method SET SCHEMA new_schema

Description
ALTER OPERATOR CLASS changes the definition of an operator class.

You must own the operator class to use ALTER OPERATOR CLASS. To alter the owner, you must also
be a direct or indirect member of the new owning role, and that role must have CREATE privilege on
the operator class’s schema. (These restrictions enforce that altering the owner doesn’t do anything you
couldn’t do by dropping and recreating the operator class. However, a superuser can alter ownership of
any operator class anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index method this operator class is for.

new_name

The new name of the operator class.

new_owner

The new owner of the operator class.

new_schema

The new schema for the operator class.

Compatibility
There is no ALTER OPERATOR CLASS statement in the SQL standard.

1233

ALTER OPERATOR CLASS

See Also
CREATE OPERATOR CLASS, DROP OPERATOR CLASS, ALTER OPERATOR FAMILY

1234

ALTER OPERATOR FAMILY

Name
ALTER OPERATOR FAMILY — change the definition of an operator family

Synopsis
ALTER OPERATOR FAMILY name USING index_method ADD
{ OPERATOR strategy_number operator_name (op_type, op_type) [FOR SEARCH | FOR ORDER BY sort_family_name]
| FUNCTION support_number [(op_type [, op_type])] function_name (argument_type [, ...])

} [, ...]
ALTER OPERATOR FAMILY name USING index_method DROP
{ OPERATOR strategy_number (op_type [, op_type])
| FUNCTION support_number (op_type [, op_type])

} [, ...]
ALTER OPERATOR FAMILY name USING index_method RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method OWNER TO new_owner

ALTER OPERATOR FAMILY name USING index_method SET SCHEMA new_schema

Description
ALTER OPERATOR FAMILY changes the definition of an operator family. You can add operators and sup-
port functions to the family, remove them from the family, or change the family’s name or owner.

When operators and support functions are added to a family with ALTER OPERATOR FAMILY, they are not
part of any specific operator class within the family, but are just “loose” within the family. This indicates
that these operators and functions are compatible with the family’s semantics, but are not required for
correct functioning of any specific index. (Operators and functions that are so required should be declared
as part of an operator class, instead; see CREATE OPERATOR CLASS.) PostgreSQL will allow loose
members of a family to be dropped from the family at any time, but members of an operator class cannot
be dropped without dropping the whole class and any indexes that depend on it. Typically, single-data-type
operators and functions are part of operator classes because they are needed to support an index on that
specific data type, while cross-data-type operators and functions are made loose members of the family.

You must be a superuser to use ALTER OPERATOR FAMILY. (This restriction is made because an erro-
neous operator family definition could confuse or even crash the server.)

ALTER OPERATOR FAMILY does not presently check whether the operator family definition includes all
the operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user’s responsibility to define a valid operator family.

Refer to Section 35.14 for further information.

1235

ALTER OPERATOR FAMILY

Parameters

name

The name (optionally schema-qualified) of an existing operator family.

index_method

The name of the index method this operator family is for.

strategy_number

The index method’s strategy number for an operator associated with the operator family.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator family.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a left-unary or
right-unary operator. Unlike the comparable syntax in CREATE OPERATOR CLASS, the operand data
types must always be specified.

In an ADD FUNCTION clause, the operand data type(s) the function is intended to support, if different
from the input data type(s) of the function. For B-tree comparison functions and hash functions it
is not necessary to specify op_type since the function’s input data type(s) are always the correct
ones to use. For B-tree sort support functions and all functions in GiST, SP-GiST and GIN operator
classes, it is necessary to specify the operand data type(s) the function is to be used with.

In a DROP FUNCTION clause, the operand data type(s) the function is intended to support must be
specified.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method’s support procedure number for a function associated with the operator family.

function_name

The name (optionally schema-qualified) of a function that is an index method support procedure for
the operator family.

argument_type

The parameter data type(s) of the function.

new_name

The new name of the operator family.

new_owner

The new owner of the operator family.

1236

ALTER OPERATOR FAMILY

new_schema

The new schema for the operator family.

The OPERATOR and FUNCTION clauses can appear in any order.

Notes
Notice that the DROP syntax only specifies the “slot” in the operator family, by strategy or support number
and input data type(s). The name of the operator or function occupying the slot is not mentioned. Also,
for DROP FUNCTION the type(s) to specify are the input data type(s) the function is intended to support;
for GiST, SP-GiST and GIN indexes this might have nothing to do with the actual input argument types
of the function.

Because the index machinery does not check access permissions on functions before using them, including
a function or operator in an operator family is tantamount to granting public execute permission on it. This
is usually not an issue for the sorts of functions that are useful in an operator family.

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

Before PostgreSQL 8.4, the OPERATOR clause could include a RECHECK option. This is no longer sup-
ported because whether an index operator is “lossy” is now determined on-the-fly at run time. This allows
efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command adds cross-data-type operators and support functions to an operator
family that already contains B-tree operator classes for data types int4 and int2.

ALTER OPERATOR FAMILY integer_ops USING btree ADD

-- int4 vs int2
OPERATOR 1 < (int4, int2) ,
OPERATOR 2 <= (int4, int2) ,
OPERATOR 3 = (int4, int2) ,
OPERATOR 4 >= (int4, int2) ,
OPERATOR 5 > (int4, int2) ,
FUNCTION 1 btint42cmp(int4, int2) ,

-- int2 vs int4
OPERATOR 1 < (int2, int4) ,
OPERATOR 2 <= (int2, int4) ,
OPERATOR 3 = (int2, int4) ,
OPERATOR 4 >= (int2, int4) ,
OPERATOR 5 > (int2, int4) ,
FUNCTION 1 btint24cmp(int2, int4) ;

To remove these entries again:

ALTER OPERATOR FAMILY integer_ops USING btree DROP

1237

ALTER OPERATOR FAMILY

-- int4 vs int2
OPERATOR 1 (int4, int2) ,
OPERATOR 2 (int4, int2) ,
OPERATOR 3 (int4, int2) ,
OPERATOR 4 (int4, int2) ,
OPERATOR 5 (int4, int2) ,
FUNCTION 1 (int4, int2) ,

-- int2 vs int4
OPERATOR 1 (int2, int4) ,
OPERATOR 2 (int2, int4) ,
OPERATOR 3 (int2, int4) ,
OPERATOR 4 (int2, int4) ,
OPERATOR 5 (int2, int4) ,
FUNCTION 1 (int2, int4) ;

Compatibility
There is no ALTER OPERATOR FAMILY statement in the SQL standard.

See Also
CREATE OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS, ALTER
OPERATOR CLASS, DROP OPERATOR CLASS

1238

ALTER ROLE

Name
ALTER ROLE — change a database role

Synopsis
ALTER ROLE name [[WITH] option [...]]

where option can be:

SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| CREATEUSER | NOCREATEUSER
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| REPLICATION | NOREPLICATION
| CONNECTION LIMIT connlimit

| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password’
| VALID UNTIL ’timestamp’

ALTER ROLE name RENAME TO new_name

ALTER ROLE name [IN DATABASE database_name] SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE name [IN DATABASE database_name] SET configuration_parameter FROM CURRENT
ALTER ROLE name [IN DATABASE database_name] RESET configuration_parameter

ALTER ROLE name [IN DATABASE database_name] RESET ALL

Description
ALTER ROLE changes the attributes of a PostgreSQL role.

The first variant of this command listed in the synopsis can change many of the role attributes that can
be specified in CREATE ROLE. (All the possible attributes are covered, except that there are no options
for adding or removing memberships; use GRANT and REVOKE for that.) Attributes not mentioned in
the command retain their previous settings. Database superusers can change any of these settings for any
role. Roles having CREATEROLE privilege can change any of these settings, but only for non-superuser
and non-replication roles. Ordinary roles can only change their own password.

The second variant changes the name of the role. Database superusers can rename any role. Roles having
CREATEROLE privilege can rename non-superuser roles. The current session user cannot be renamed.
(Connect as a different user if you need to do that.) Because MD5-encrypted passwords use the role name
as cryptographic salt, renaming a role clears its password if the password is MD5-encrypted.

The remaining variants change a role’s session default for a configuration variable, either for all databases
or, when the IN DATABASE clause is specified, only for sessions in the named database. Whenever the

1239

ALTER ROLE

role subsequently starts a new session, the specified value becomes the session default, overriding what-
ever setting is present in postgresql.conf or has been received from the postgres command line.
This only happens at login time; executing SET ROLE or SET SESSION AUTHORIZATION does not
cause new configuration values to be set. Settings set for all databases are overridden by database-specific
settings attached to a role. Superusers can change anyone’s session defaults. Roles having CREATEROLE

privilege can change defaults for non-superuser roles. Ordinary roles can only set defaults for themselves.
Certain configuration variables cannot be set this way, or can only be set if a superuser issues the com-
mand.

Parameters

name

The name of the role whose attributes are to be altered.

SUPERUSER

NOSUPERUSER

CREATEDB

NOCREATEDB

CREATEROLE

NOCREATEROLE

CREATEUSER

NOCREATEUSER

INHERIT

NOINHERIT

LOGIN

NOLOGIN

REPLICATION

NOREPLICATION

CONNECTION LIMIT connlimit

PASSWORD password

ENCRYPTED

UNENCRYPTED

VALID UNTIL ’timestamp’

These clauses alter attributes originally set by CREATE ROLE. For more information, see the
CREATE ROLE reference page.

new_name

The new name of the role.

database_name

The name of the database the configuration variable should be set in.

configuration_parameter

value

Set this role’s session default for the specified configuration parameter to the given value. If value
is DEFAULT or, equivalently, RESET is used, the role-specific variable setting is removed, so the role
will inherit the system-wide default setting in new sessions. Use RESET ALL to clear all role-specific

1240

ALTER ROLE

settings. SET FROM CURRENT saves the session’s current value of the parameter as the role-specific
value. If IN DATABASE is specified, the configuration parameter is set or removed for the given role
and database only.

Role-specific variable settings take effect only at login; SET ROLE and SET SESSION AUTHO-
RIZATION do not process role-specific variable settings.

See SET and Chapter 18 for more information about allowed parameter names and values.

Notes
Use CREATE ROLE to add new roles, and DROP ROLE to remove a role.

ALTER ROLE cannot change a role’s memberships. Use GRANT and REVOKE to do that.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client’s command history or
the server log. psql contains a command \password that can be used to change a role’s password without
exposing the cleartext password.

It is also possible to tie a session default to a specific database rather than to a role; see ALTER
DATABASE. If there is a conflict, database-role-specific settings override role-specific ones, which in
turn override database-specific ones.

Examples
Change a role’s password:

ALTER ROLE davide WITH PASSWORD ’hu8jmn3’;

Remove a role’s password:

ALTER ROLE davide WITH PASSWORD NULL;

Change a password expiration date, specifying that the password should expire at midday on 4th May
2015 using the time zone which is one hour ahead of UTC:

ALTER ROLE chris VALID UNTIL ’May 4 12:00:00 2015 +1’;

Make a password valid forever:

ALTER ROLE fred VALID UNTIL ’infinity’;

Give a role the ability to create other roles and new databases:

ALTER ROLE miriam CREATEROLE CREATEDB;

1241

ALTER ROLE

Give a role a non-default setting of the maintenance_work_mem parameter:

ALTER ROLE worker_bee SET maintenance_work_mem = 100000;

Give a role a non-default, database-specific setting of the client_min_messages parameter:

ALTER ROLE fred IN DATABASE devel SET client_min_messages = DEBUG;

Compatibility
The ALTER ROLE statement is a PostgreSQL extension.

See Also
CREATE ROLE, DROP ROLE, SET

1242

ALTER SCHEMA

Name
ALTER SCHEMA — change the definition of a schema

Synopsis
ALTER SCHEMA name RENAME TO new_name

ALTER SCHEMA name OWNER TO new_owner

Description
ALTER SCHEMA changes the definition of a schema.

You must own the schema to use ALTER SCHEMA. To rename a schema you must also have the CREATE
privilege for the database. To alter the owner, you must also be a direct or indirect member of the new
owning role, and you must have the CREATE privilege for the database. (Note that superusers have all
these privileges automatically.)

Parameters

name

The name of an existing schema.

new_name

The new name of the schema. The new name cannot begin with pg_, as such names are reserved for
system schemas.

new_owner

The new owner of the schema.

Compatibility
There is no ALTER SCHEMA statement in the SQL standard.

See Also
CREATE SCHEMA, DROP SCHEMA

1243

ALTER SEQUENCE

Name
ALTER SEQUENCE — change the definition of a sequence generator

Synopsis
ALTER SEQUENCE [IF EXISTS] name [INCREMENT [BY] increment]

[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start]
[RESTART [[WITH] restart]]
[CACHE cache] [[NO] CYCLE]
[OWNED BY { table_name.column_name | NONE }]

ALTER SEQUENCE [IF EXISTS] name OWNER TO new_owner

ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name

ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

Description
ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameters not specif-
ically set in the ALTER SEQUENCE command retain their prior settings.

You must own the sequence to use ALTER SEQUENCE. To change a sequence’s schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the sequence’s schema.
(These restrictions enforce that altering the owner doesn’t do anything you couldn’t do by dropping and
recreating the sequence. However, a superuser can alter ownership of any sequence anyway.)

Parameters

name

The name (optionally schema-qualified) of a sequence to be altered.

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

increment

The clause INCREMENT BY increment is optional. A positive value will make an ascending se-
quence, a negative one a descending sequence. If unspecified, the old increment value will be main-
tained.

1244

ALTER SEQUENCE

minvalue

NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate.
If NO MINVALUE is specified, the defaults of 1 and -263-1 for ascending and descending sequences,
respectively, will be used. If neither option is specified, the current minimum value will be main-
tained.

maxvalue

NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If NO
MAXVALUE is specified, the defaults are 263-1 and -1 for ascending and descending sequences, respec-
tively, will be used. If neither option is specified, the current maximum value will be maintained.

start

The optional clause START WITH start changes the recorded start value of the sequence. This
has no effect on the current sequence value; it simply sets the value that future ALTER SEQUENCE

RESTART commands will use.

restart

The optional clause RESTART [WITH restart] changes the current value of the sequence. This
is equivalent to calling the setval function with is_called = false: the specified value will be
returned by the next call of nextval. Writing RESTART with no restart value is equivalent to
supplying the start value that was recorded by CREATE SEQUENCE or last set by ALTER SEQUENCE

START WITH.

cache

The clause CACHE cache enables sequence numbers to be preallocated and stored in memory for
faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache). If
unspecified, the old cache value will be maintained.

CYCLE

The optional CYCLE key word can be used to enable the sequence to wrap around when the maxvalue
or minvalue has been reached by an ascending or descending sequence respectively. If the limit is
reached, the next number generated will be the minvalue or maxvalue, respectively.

NO CYCLE

If the optional NO CYCLE key word is specified, any calls to nextval after the sequence has reached
its maximum value will return an error. If neither CYCLE or NO CYCLE are specified, the old cycle
behavior will be maintained.

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such that
if that column (or its whole table) is dropped, the sequence will be automatically dropped as well. If
specified, this association replaces any previously specified association for the sequence. The speci-
fied table must have the same owner and be in the same schema as the sequence. Specifying OWNED

BY NONE removes any existing association, making the sequence “free-standing”.

1245

ALTER SEQUENCE

new_owner

The user name of the new owner of the sequence.

new_name

The new name for the sequence.

new_schema

The new schema for the sequence.

Notes
To avoid blocking of concurrent transactions that obtain numbers from the same sequence, ALTER
SEQUENCE’s effects on the sequence generation parameters are never rolled back; those changes take
effect immediately and are not reversible. However, the OWNED BY, OWNER TO, RENAME TO, and SET

SCHEMA clauses cause ordinary catalog updates that can be rolled back.

ALTER SEQUENCE will not immediately affect nextval results in backends, other than the current one,
that have preallocated (cached) sequence values. They will use up all cached values prior to noticing the
changed sequence generation parameters. The current backend will be affected immediately.

ALTER SEQUENCE does not affect the currval status for the sequence. (Before PostgreSQL 8.3, it some-
times did.)

For historical reasons, ALTER TABLE can be used with sequences too; but the only variants of ALTER
TABLE that are allowed with sequences are equivalent to the forms shown above.

Examples
Restart a sequence called serial, at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Compatibility
ALTER SEQUENCE conforms to the SQL standard, except for the START WITH, OWNED BY, OWNER TO,
RENAME TO, and SET SCHEMA clauses, which are PostgreSQL extensions.

See Also
CREATE SEQUENCE, DROP SEQUENCE

1246

ALTER SERVER

Name
ALTER SERVER — change the definition of a foreign server

Synopsis
ALTER SERVER name [VERSION ’new_version’]

[OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])]
ALTER SERVER name OWNER TO new_owner

ALTER SERVER name RENAME TO new_name

Description
ALTER SERVER changes the definition of a foreign server. The first form changes the server version string
or the generic options of the server (at least one clause is required). The second form changes the owner
of the server.

To alter the server you must be the owner of the server. Additionally to alter the owner, you must own the
server and also be a direct or indirect member of the new owning role, and you must have USAGE privilege
on the server’s foreign-data wrapper. (Note that superusers satisfy all these criteria automatically.)

Parameters

name

The name of an existing server.

new_version

New server version.

OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])

Change options for the server. ADD, SET, and DROP specify the action to be performed. ADD is as-
sumed if no operation is explicitly specified. Option names must be unique; names and values are
also validated using the server’s foreign-data wrapper library.

new_owner

The user name of the new owner of the foreign server.

new_name

The new name for the foreign server.

1247

ALTER SERVER

Examples
Alter server foo, add connection options:

ALTER SERVER foo OPTIONS (host ’foo’, dbname ’foodb’);

Alter server foo, change version, change host option:

ALTER SERVER foo VERSION ’8.4’ OPTIONS (SET host ’baz’);

Compatibility
ALTER SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The OWNER TO and RENAME forms are Post-
greSQL extensions.

See Also
CREATE SERVER, DROP SERVER

1248

ALTER TABLE

Name
ALTER TABLE — change the definition of a table

Synopsis
ALTER TABLE [IF EXISTS] [ONLY] name [*]

action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]

RENAME [COLUMN] column_name TO new_column_name

ALTER TABLE [IF EXISTS] [ONLY] name [*]
RENAME CONSTRAINT constraint_name TO new_constraint_name

ALTER TABLE [IF EXISTS] name

RENAME TO new_name

ALTER TABLE [IF EXISTS] name

SET SCHEMA new_schema

where action is one of:

ADD [COLUMN] column_name data_type [COLLATE collation] [column_constraint [...]]
DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation] [USING expression]
ALTER [COLUMN] column_name SET DEFAULT expression

ALTER [COLUMN] column_name DROP DEFAULT
ALTER [COLUMN] column_name { SET | DROP } NOT NULL
ALTER [COLUMN] column_name SET STATISTICS integer

ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
ALTER [COLUMN] column_name RESET (attribute_option [, ...])
ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
ADD table_constraint [NOT VALID]
ADD table_constraint_using_index

VALIDATE CONSTRAINT constraint_name

DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
DISABLE TRIGGER [trigger_name | ALL | USER]
ENABLE TRIGGER [trigger_name | ALL | USER]
ENABLE REPLICA TRIGGER trigger_name

ENABLE ALWAYS TRIGGER trigger_name

DISABLE RULE rewrite_rule_name

ENABLE RULE rewrite_rule_name

ENABLE REPLICA RULE rewrite_rule_name

ENABLE ALWAYS RULE rewrite_rule_name

CLUSTER ON index_name

SET WITHOUT CLUSTER
SET WITH OIDS
SET WITHOUT OIDS
SET (storage_parameter = value [, ...])
RESET (storage_parameter [, ...])
INHERIT parent_table

NO INHERIT parent_table

1249

ALTER TABLE

OF type_name

NOT OF
OWNER TO new_owner

SET TABLESPACE new_tablespace

and table_constraint_using_index is:

[CONSTRAINT constraint_name]
{ UNIQUE | PRIMARY KEY } USING INDEX index_name

[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description
ALTER TABLE changes the definition of an existing table. There are several subforms:

ADD COLUMN

This form adds a new column to the table, using the same syntax as CREATE TABLE.

DROP COLUMN [IF EXISTS]

This form drops a column from a table. Indexes and table constraints involving the column will be
automatically dropped as well. You will need to say CASCADE if anything outside the table depends
on the column, for example, foreign key references or views. If IF EXISTS is specified and the
column does not exist, no error is thrown. In this case a notice is issued instead.

IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

SET DATA TYPE

This form changes the type of a column of a table. Indexes and simple table constraints involving
the column will be automatically converted to use the new column type by reparsing the originally
supplied expression. The optional COLLATE clause specifies a collation for the new column; if omit-
ted, the collation is the default for the new column type. The optional USING clause specifies how
to compute the new column value from the old; if omitted, the default conversion is the same as an
assignment cast from old data type to new. A USING clause must be provided if there is no implicit
or assignment cast from old to new type.

SET/DROP DEFAULT

These forms set or remove the default value for a column. The default values only apply to subsequent
INSERT commands; they do not cause rows already in the table to change. Defaults can also be
created for views, in which case they are inserted into INSERT statements on the view before the
view’s ON INSERT rule is applied.

SET/DROP NOT NULL

These forms change whether a column is marked to allow null values or to reject null values. You
can only use SET NOT NULL when the column contains no null values.

1250

ALTER TABLE

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. The
target can be set in the range 0 to 10000; alternatively, set it to -1 to revert to using the system
default statistics target (default_statistics_target). For more information on the use of statistics by the
PostgreSQL query planner, refer to Section 14.2.

SET (attribute_option = value [, ...])

RESET (attribute_option [, ...])

This form sets or resets per-attribute options. Currently, the only defined per-attribute options are
n_distinct and n_distinct_inherited, which override the number-of-distinct-values esti-
mates made by subsequent ANALYZE operations. n_distinct affects the statistics for the table
itself, while n_distinct_inherited affects the statistics gathered for the table plus its inheri-
tance children. When set to a positive value, ANALYZE will assume that the column contains exactly
the specified number of distinct nonnull values. When set to a negative value, which must be greater
than or equal to -1, ANALYZE will assume that the number of distinct nonnull values in the column is
linear in the size of the table; the exact count is to be computed by multiplying the estimated table
size by the absolute value of the given number. For example, a value of -1 implies that all values in
the column are distinct, while a value of -0.5 implies that each value appears twice on the average.
This can be useful when the size of the table changes over time, since the multiplication by the num-
ber of rows in the table is not performed until query planning time. Specify a value of 0 to revert to
estimating the number of distinct values normally. For more information on the use of statistics by
the PostgreSQL query planner, refer to Section 14.2.

SET STORAGE

This form sets the storage mode for a column. This controls whether this column is held inline or in a
secondary TOAST table, and whether the data should be compressed or not. PLAIN must be used for
fixed-length values such as integer and is inline, uncompressed. MAIN is for inline, compressible
data. EXTERNAL is for external, uncompressed data, and EXTENDED is for external, compressed data.
EXTENDED is the default for most data types that support non-PLAIN storage. Use of EXTERNAL
will make substring operations on very large text and bytea values run faster, at the penalty of
increased storage space. Note that SET STORAGE doesn’t itself change anything in the table, it just
sets the strategy to be pursued during future table updates. See Section 56.2 for more information.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a table using the same syntax as CREATE TABLE, plus the
option NOT VALID, which is currently only allowed for foreign key and CHECK constraints. If the
constraint is marked NOT VALID, the potentially-lengthy initial check to verify that all rows in the
table satisfy the constraint is skipped. The constraint will still be enforced against subsequent inserts
or updates (that is, they’ll fail unless there is a matching row in the referenced table, in the case of
foreign keys; and they’ll fail unless the new row matches the specified check constraints). But the
database will not assume that the constraint holds for all rows in the table, until it is validated by
using the VALIDATE CONSTRAINT option.

ADD table_constraint_using_index

This form adds a new PRIMARY KEY or UNIQUE constraint to a table based on an existing unique
index. All the columns of the index will be included in the constraint.

The index cannot have expression columns nor be a partial index. Also, it must be a b-tree index with
default sort ordering. These restrictions ensure that the index is equivalent to one that would be built

1251

ALTER TABLE

by a regular ADD PRIMARY KEY or ADD UNIQUE command.

If PRIMARY KEY is specified, and the index’s columns are not already marked NOT NULL, then this
command will attempt to do ALTER COLUMN SET NOT NULL against each such column. That re-
quires a full table scan to verify the column(s) contain no nulls. In all other cases, this is a fast
operation.

If a constraint name is provided then the index will be renamed to match the constraint name. Other-
wise the constraint will be named the same as the index.

After this command is executed, the index is “owned” by the constraint, in the same way as if the
index had been built by a regular ADD PRIMARY KEY or ADD UNIQUE command. In particular, drop-
ping the constraint will make the index disappear too.

Note: Adding a constraint using an existing index can be helpful in situations where a new con-
straint needs to be added without blocking table updates for a long time. To do that, create the
index using CREATE INDEX CONCURRENTLY, and then install it as an official constraint using this
syntax. See the example below.

VALIDATE CONSTRAINT

This form validates a foreign key or check constraint that was previously created as NOT VALID,
by scanning the table to ensure there are no rows for which the constraint is not satisfied. Nothing
happens if the constraint is already marked valid.

Validation can be a long process on larger tables and currently requires an ACCESS EXCLUSIVE

lock. The value of separating validation from initial creation is that you can defer validation to less
busy times, or can be used to give additional time to correct pre-existing errors while preventing new
errors.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a table. If IF EXISTS is specified and the constraint does
not exist, no error is thrown. In this case a notice is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the table. A disabled trigger is still known
to the system, but is not executed when its triggering event occurs. For a deferred trigger, the enable
status is checked when the event occurs, not when the trigger function is actually executed. One can
disable or enable a single trigger specified by name, or all triggers on the table, or only user triggers
(this option excludes internally generated constraint triggers such as those that are used to implement
foreign key constraints or deferrable uniqueness and exclusion constraints). Disabling or enabling
internally generated constraint triggers requires superuser privileges; it should be done with caution
since of course the integrity of the constraint cannot be guaranteed if the triggers are not executed.
The trigger firing mechanism is also affected by the configuration variable session_replication_role.
Simply enabled triggers will fire when the replication role is “origin” (the default) or “local”. Trig-
gers configured as ENABLE REPLICA will only fire if the session is in “replica” mode, and triggers
configured as ENABLE ALWAYS will fire regardless of the current replication mode.

DISABLE/ENABLE [REPLICA | ALWAYS] RULE

These forms configure the firing of rewrite rules belonging to the table. A disabled rule is still known
to the system, but is not applied during query rewriting. The semantics are as for disabled/enabled

1252

ALTER TABLE

triggers. This configuration is ignored for ON SELECT rules, which are always applied in order to
keep views working even if the current session is in a non-default replication role.

CLUSTER ON

This form selects the default index for future CLUSTER operations. It does not actually re-cluster
the table.

SET WITHOUT CLUSTER

This form removes the most recently used CLUSTER index specification from the table. This affects
future cluster operations that don’t specify an index.

SET WITH OIDS

This form adds an oid system column to the table (see Section 5.4). It does nothing if the table
already has OIDs.

Note that this is not equivalent to ADD COLUMN oid oid; that would add a normal column that
happened to be named oid, not a system column.

SET WITHOUT OIDS

This form removes the oid system column from the table. This is exactly equivalent to DROP

COLUMN oid RESTRICT, except that it will not complain if there is already no oid column.

SET (storage_parameter = value [, ...])

This form changes one or more storage parameters for the table. See Storage Parameters for details
on the available parameters. Note that the table contents will not be modified immediately by this
command; depending on the parameter you might need to rewrite the table to get the desired effects.
That can be done with VACUUM FULL, CLUSTER or one of the forms of ALTER TABLE that forces
a table rewrite.

Note: While CREATE TABLE allows OIDS to be specified in the WITH (storage_parameter) syntax,
ALTER TABLE does not treat OIDS as a storage parameter. Instead use the SET WITH OIDS and
SET WITHOUT OIDS forms to change OID status.

RESET (storage_parameter [, ...])

This form resets one or more storage parameters to their defaults. As with SET, a table rewrite might
be needed to update the table entirely.

INHERIT parent_table

This form adds the target table as a new child of the specified parent table. Subsequently, queries
against the parent will include records of the target table. To be added as a child, the target table
must already contain all the same columns as the parent (it could have additional columns, too). The
columns must have matching data types, and if they have NOT NULL constraints in the parent then
they must also have NOT NULL constraints in the child.

There must also be matching child-table constraints for all CHECK constraints of the parent, except
those marked non-inheritable (that is, created with ALTER TABLE ... ADD CONSTRAINT ... NO

INHERIT) in the parent, which are ignored; all child-table constraints matched must not be marked
non-inheritable. Currently UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints are not consid-
ered, but this might change in the future.

1253

ALTER TABLE

NO INHERIT parent_table

This form removes the target table from the list of children of the specified parent table. Queries
against the parent table will no longer include records drawn from the target table.

OF type_name

This form links the table to a composite type as though CREATE TABLE OF had formed it. The
table’s list of column names and types must precisely match that of the composite type; the presence
of an oid system column is permitted to differ. The table must not inherit from any other table. These
restrictions ensure that CREATE TABLE OF would permit an equivalent table definition.

NOT OF

This form dissociates a typed table from its type.

OWNER

This form changes the owner of the table, sequence, or view to the specified user.

SET TABLESPACE

This form changes the table’s tablespace to the specified tablespace and moves the data file(s) associ-
ated with the table to the new tablespace. Indexes on the table, if any, are not moved; but they can be
moved separately with additional SET TABLESPACE commands. See also CREATE TABLESPACE.

RENAME

The RENAME forms change the name of a table (or an index, sequence, or view), the name of an
individual column in a table, or the name of a constraint of the table. There is no effect on the stored
data.

SET SCHEMA

This form moves the table into another schema. Associated indexes, constraints, and sequences
owned by table columns are moved as well.

All the actions except RENAME and SET SCHEMA can be combined into a list of multiple alterations to
apply in parallel. For example, it is possible to add several columns and/or alter the type of several columns
in a single command. This is particularly useful with large tables, since only one pass over the table need
be made.

You must own the table to use ALTER TABLE. To change the schema of a table, you must also have
CREATE privilege on the new schema. To add the table as a new child of a parent table, you must own the
parent table as well. To alter the owner, you must also be a direct or indirect member of the new owning
role, and that role must have CREATE privilege on the table’s schema. (These restrictions enforce that
altering the owner doesn’t do anything you couldn’t do by dropping and recreating the table. However, a
superuser can alter ownership of any table anyway.) To add a column or alter a column type or use the OF
clause, you must also have USAGE privilege on the data type.

Parameters

name

The name (optionally schema-qualified) of an existing table to alter. If ONLY is specified before the

1254

ALTER TABLE

table name, only that table is altered. If ONLY is not specified, the table and all its descendant tables
(if any) are altered. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the table.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default behav-
ior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the table. (This requires superuser privilege if any of the
triggers are internally generated constraint triggers such as those that are used to implement foreign
key constraints or deferrable uniqueness and exclusion constraints.)

USER

Disable or enable all triggers belonging to the table except for internally generated constraint trig-
gers such as those that are used to implement foreign key constraints or deferrable uniqueness and
exclusion constraints.

index_name

The index name on which the table should be marked for clustering.

storage_parameter

The name of a table storage parameter.

1255

ALTER TABLE

value

The new value for a table storage parameter. This might be a number or a word depending on the
parameter.

parent_table

A parent table to associate or de-associate with this table.

new_owner

The user name of the new owner of the table.

new_tablespace

The name of the tablespace to which the table will be moved.

new_schema

The name of the schema to which the table will be moved.

Notes
The key word COLUMN is noise and can be omitted.

When a column is added with ADD COLUMN, all existing rows in the table are initialized with the column’s
default value (NULL if no DEFAULT clause is specified).

Adding a column with a non-null default or changing the type of an existing column will require the
entire table and indexes to be rewritten. As an exception, if the USING clause does not change the column
contents and the old type is either binary coercible to the new type or an unconstrained domain over the
new type, a table rewrite is not needed, but any indexes on the affected columns must still be rebuilt.
Adding or removing a system oid column also requires rewriting the entire table. Table and/or index
rebuilds may take a significant amount of time for a large table; and will temporarily require as much as
double the disk space.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that existing rows meet the
constraint.

The main reason for providing the option to specify multiple changes in a single ALTER TABLE is that
multiple table scans or rewrites can thereby be combined into a single pass over the table.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to SQL
operations. Subsequent insert and update operations in the table will store a null value for the column.
Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your table, as the
space occupied by the dropped column is not reclaimed. The space will be reclaimed over time as existing
rows are updated. (These statements do not apply when dropping the system oid column; that is done
with an immediate rewrite.)

To force an immediate rewrite of the table, you can use VACUUM FULL, CLUSTER or one of the forms
of ALTER TABLE that forces a rewrite. This results in no semantically-visible change in the table, but
gets rid of no-longer-useful data.

The USING option of SET DATA TYPE can actually specify any expression involving the old values of
the row; that is, it can refer to other columns as well as the one being converted. This allows very general
conversions to be done with the SET DATA TYPE syntax. Because of this flexibility, the USING expression
is not applied to the column’s default value (if any); the result might not be a constant expression as

1256

ALTER TABLE

required for a default. This means that when there is no implicit or assignment cast from old to new type,
SET DATA TYPE might fail to convert the default even though a USING clause is supplied. In such cases,
drop the default with DROP DEFAULT, perform the ALTER TYPE, and then use SET DEFAULT to add a
suitable new default. Similar considerations apply to indexes and constraints involving the column.

If a table has any descendant tables, it is not permitted to add, rename, or change the type of a column,
or rename an inherited constraint in the parent table without doing the same to the descendants. That is,
ALTER TABLE ONLY will be rejected. This ensures that the descendants always have columns matching
the parent.

A recursive DROP COLUMN operation will remove a descendant table’s column only if the descendant
does not inherit that column from any other parents and never had an independent definition of the col-
umn. A nonrecursive DROP COLUMN (i.e., ALTER TABLE ONLY ... DROP COLUMN) never removes any
descendant columns, but instead marks them as independently defined rather than inherited.

The TRIGGER, CLUSTER, OWNER, and TABLESPACE actions never recurse to descendant tables; that is,
they always act as though ONLY were specified. Adding a constraint recurses only for CHECK constraints
that are not marked NO INHERIT.

Changing any part of a system catalog table is not permitted.

Refer to CREATE TABLE for a further description of valid parameters. Chapter 5 has further information
on inheritance.

Examples
To add a column of type varchar to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT;

To change the types of two existing columns in one operation:

ALTER TABLE distributors
ALTER COLUMN address TYPE varchar(80),
ALTER COLUMN name TYPE varchar(100);

To change an integer column containing UNIX timestamps to timestamp with time zone via a
USING clause:

ALTER TABLE foo
ALTER COLUMN foo_timestamp SET DATA TYPE timestamp with time zone
USING

timestamp with time zone ’epoch’ + foo_timestamp * interval ’1 second’;

1257

ALTER TABLE

The same, when the column has a default expression that won’t automatically cast to the new data type:

ALTER TABLE foo
ALTER COLUMN foo_timestamp DROP DEFAULT,
ALTER COLUMN foo_timestamp TYPE timestamp with time zone
USING

timestamp with time zone ’epoch’ + foo_timestamp * interval ’1 second’,
ALTER COLUMN foo_timestamp SET DEFAULT now();

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

To rename an existing constraint:

ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;

To add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

To remove a not-null constraint from a column:

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;

To add a check constraint to a table and all its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

To add a check constraint only to a table and not to its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5) NO INHERIT;

(The check constraint will not be inherited by future children, either.)

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

1258

ALTER TABLE

To remove a check constraint from one table only:

ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;

(The check constraint remains in place for any child tables.)

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES addresses (address);

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zipcode);

To add an automatically named primary key constraint to a table, noting that a table can only ever have
one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

To move a table to a different tablespace:

ALTER TABLE distributors SET TABLESPACE fasttablespace;

To move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

To recreate a primary key constraint, without blocking updates while the index is rebuilt:

CREATE UNIQUE INDEX CONCURRENTLY dist_id_temp_idx ON distributors (dist_id);
ALTER TABLE distributors DROP CONSTRAINT distributors_pkey,

ADD CONSTRAINT distributors_pkey PRIMARY KEY USING INDEX dist_id_temp_idx;

Compatibility
The forms ADD (without USING INDEX), DROP, SET DEFAULT, and SET DATA TYPE (without USING)
conform with the SQL standard. The other forms are PostgreSQL extensions of the SQL standard. Also,
the ability to specify more than one manipulation in a single ALTER TABLE command is an extension.

ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving a zero-column
table. This is an extension of SQL, which disallows zero-column tables.

1259

ALTER TABLE

See Also
CREATE TABLE

1260

ALTER TABLESPACE

Name
ALTER TABLESPACE — change the definition of a tablespace

Synopsis
ALTER TABLESPACE name RENAME TO new_name

ALTER TABLESPACE name OWNER TO new_owner

ALTER TABLESPACE name SET (tablespace_option = value [, ...])
ALTER TABLESPACE name RESET (tablespace_option [, ...])

Description
ALTER TABLESPACE changes the definition of a tablespace.

You must own the tablespace to use ALTER TABLESPACE. To alter the owner, you must also be a direct
or indirect member of the new owning role. (Note that superusers have these privileges automatically.)

Parameters

name

The name of an existing tablespace.

new_name

The new name of the tablespace. The new name cannot begin with pg_, as such names are reserved
for system tablespaces.

new_owner

The new owner of the tablespace.

tablespace_parameter

A tablespace parameter to be set or reset. Currently, the only available parameters are
seq_page_cost and random_page_cost. Setting either value for a particular tablespace
will override the planner’s usual estimate of the cost of reading pages from tables in that
tablespace, as established by the configuration parameters of the same name (see seq_page_cost,
random_page_cost). This may be useful if one tablespace is located on a disk which is faster or
slower than the remainder of the I/O subsystem.

1261

ALTER TABLESPACE

Examples
Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility
There is no ALTER TABLESPACE statement in the SQL standard.

See Also
CREATE TABLESPACE, DROP TABLESPACE

1262

ALTER TEXT SEARCH CONFIGURATION

Name
ALTER TEXT SEARCH CONFIGURATION — change the definition of a text search configuration

Synopsis
ALTER TEXT SEARCH CONFIGURATION name

ADD MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name

ALTER MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name

ALTER MAPPING REPLACE old_dictionary WITH new_dictionary

ALTER TEXT SEARCH CONFIGURATION name

ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary WITH new_dictionary

ALTER TEXT SEARCH CONFIGURATION name

DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name

ALTER TEXT SEARCH CONFIGURATION name OWNER TO new_owner

ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH CONFIGURATION changes the definition of a text search configuration. You can
modify its mappings from token types to dictionaries, or change the configuration’s name or owner.

You must be the owner of the configuration to use ALTER TEXT SEARCH CONFIGURATION.

Parameters

name

The name (optionally schema-qualified) of an existing text search configuration.

token_type

The name of a token type that is emitted by the configuration’s parser.

dictionary_name

The name of a text search dictionary to be consulted for the specified token type(s). If multiple
dictionaries are listed, they are consulted in the specified order.

old_dictionary

The name of a text search dictionary to be replaced in the mapping.

new_dictionary

The name of a text search dictionary to be substituted for old_dictionary.

1263

ALTER TEXT SEARCH CONFIGURATION

new_name

The new name of the text search configuration.

new_owner

The new owner of the text search configuration.

new_schema

The new schema for the text search configuration.

The ADD MAPPING FOR form installs a list of dictionaries to be consulted for the specified token type(s);
it is an error if there is already a mapping for any of the token types. The ALTER MAPPING FOR form does
the same, but first removing any existing mapping for those token types. The ALTER MAPPING REPLACE

forms substitute new_dictionary for old_dictionary anywhere the latter appears. This is done for
only the specified token types when FOR appears, or for all mappings of the configuration when it doesn’t.
The DROP MAPPING form removes all dictionaries for the specified token type(s), causing tokens of those
types to be ignored by the text search configuration. It is an error if there is no mapping for the token
types, unless IF EXISTS appears.

Examples
The following example replaces the english dictionary with the swedish dictionary anywhere that
english is used within my_config.

ALTER TEXT SEARCH CONFIGURATION my_config
ALTER MAPPING REPLACE english WITH swedish;

Compatibility
There is no ALTER TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
CREATE TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1264

ALTER TEXT SEARCH DICTIONARY

Name
ALTER TEXT SEARCH DICTIONARY — change the definition of a text search dictionary

Synopsis
ALTER TEXT SEARCH DICTIONARY name (

option [= value] [, ...]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name

ALTER TEXT SEARCH DICTIONARY name OWNER TO new_owner

ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH DICTIONARY changes the definition of a text search dictionary. You can change
the dictionary’s template-specific options, or change the dictionary’s name or owner.

You must be the owner of the dictionary to use ALTER TEXT SEARCH DICTIONARY.

Parameters

name

The name (optionally schema-qualified) of an existing text search dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The new value to use for a template-specific option. If the equal sign and value are omitted, then any
previous setting for the option is removed from the dictionary, allowing the default to be used.

new_name

The new name of the text search dictionary.

new_owner

The new owner of the text search dictionary.

new_schema

The new schema for the text search dictionary.

Template-specific options can appear in any order.

1265

ALTER TEXT SEARCH DICTIONARY

Examples
The following example command changes the stopword list for a Snowball-based dictionary. Other pa-
rameters remain unchanged.

ALTER TEXT SEARCH DICTIONARY my_dict (StopWords = newrussian);

The following example command changes the language option to dutch, and removes the stopword option
entirely.

ALTER TEXT SEARCH DICTIONARY my_dict (language = dutch, StopWords);

The following example command “updates” the dictionary’s definition without actually changing any-
thing.

ALTER TEXT SEARCH DICTIONARY my_dict (dummy);

(The reason this works is that the option removal code doesn’t complain if there is no such option.) This
trick is useful when changing configuration files for the dictionary: the ALTER will force existing database
sessions to re-read the configuration files, which otherwise they would never do if they had read them
earlier.

Compatibility
There is no ALTER TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
CREATE TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1266

ALTER TEXT SEARCH PARSER

Name
ALTER TEXT SEARCH PARSER — change the definition of a text search parser

Synopsis
ALTER TEXT SEARCH PARSER name RENAME TO new_name

ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH PARSER changes the definition of a text search parser. Currently, the only sup-
ported functionality is to change the parser’s name.

You must be a superuser to use ALTER TEXT SEARCH PARSER.

Parameters

name

The name (optionally schema-qualified) of an existing text search parser.

new_name

The new name of the text search parser.

new_schema

The new schema for the text search parser.

Compatibility
There is no ALTER TEXT SEARCH PARSER statement in the SQL standard.

See Also
CREATE TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1267

ALTER TEXT SEARCH TEMPLATE

Name
ALTER TEXT SEARCH TEMPLATE — change the definition of a text search template

Synopsis
ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name

ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH TEMPLATE changes the definition of a text search template. Currently, the only
supported functionality is to change the template’s name.

You must be a superuser to use ALTER TEXT SEARCH TEMPLATE.

Parameters

name

The name (optionally schema-qualified) of an existing text search template.

new_name

The new name of the text search template.

new_schema

The new schema for the text search template.

Compatibility
There is no ALTER TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
CREATE TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1268

ALTER TRIGGER

Name
ALTER TRIGGER — change the definition of a trigger

Synopsis
ALTER TRIGGER name ON table_name RENAME TO new_name

Description
ALTER TRIGGER changes properties of an existing trigger. The RENAME clause changes the name of the
given trigger without otherwise changing the trigger definition.

You must own the table on which the trigger acts to be allowed to change its properties.

Parameters

name

The name of an existing trigger to alter.

table_name

The name of the table on which this trigger acts.

new_name

The new name for the trigger.

Notes
The ability to temporarily enable or disable a trigger is provided by ALTER TABLE, not by ALTER

TRIGGER, because ALTER TRIGGER has no convenient way to express the option of enabling or disabling
all of a table’s triggers at once.

Examples
To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

1269

ALTER TRIGGER

Compatibility
ALTER TRIGGER is a PostgreSQL extension of the SQL standard.

See Also
ALTER TABLE

1270

ALTER TYPE

Name
ALTER TYPE — change the definition of a type

Synopsis
ALTER TYPE name action [, ...]
ALTER TYPE name OWNER TO new_owner

ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [CASCADE | RESTRICT]
ALTER TYPE name RENAME TO new_name

ALTER TYPE name SET SCHEMA new_schema

ALTER TYPE name ADD VALUE new_enum_value [{ BEFORE | AFTER } existing_enum_value]

where action is one of:

ADD ATTRIBUTE attribute_name data_type [COLLATE collation] [CASCADE | RESTRICT]
DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type [COLLATE collation] [CASCADE | RESTRICT]

Description
ALTER TYPE changes the definition of an existing type. There are several subforms:

ADD ATTRIBUTE

This form adds a new attribute to a composite type, using the same syntax as CREATE TYPE.

DROP ATTRIBUTE [IF EXISTS]

This form drops an attribute from a composite type. If IF EXISTS is specified and the attribute does
not exist, no error is thrown. In this case a notice is issued instead.

SET DATA TYPE

This form changes the type of an attribute of a composite type.

OWNER

This form changes the owner of the type.

RENAME

This form changes the name of the type or the name of an individual attribute of a composite type.

SET SCHEMA

This form moves the type into another schema.

ADD VALUE [BEFORE | AFTER]

This form adds a new value to an enum type. If the new value’s place in the enum’s ordering is not
specified using BEFORE or AFTER, then the new item is placed at the end of the list of values.

1271

ALTER TYPE

CASCADE

Automatically propagate the operation to typed tables of the type being altered, and their descendants.

RESTRICT

Refuse the operation if the type being altered is the type of a typed table. This is the default.

The ADD ATTRIBUTE, DROP ATTRIBUTE, and ALTER ATTRIBUTE actions can be combined into a list
of multiple alterations to apply in parallel. For example, it is possible to add several attributes and/or alter
the type of several attributes in a single command.

You must own the type to use ALTER TYPE. To change the schema of a type, you must also have CREATE
privilege on the new schema. To alter the owner, you must also be a direct or indirect member of the new
owning role, and that role must have CREATE privilege on the type’s schema. (These restrictions enforce
that altering the owner doesn’t do anything you couldn’t do by dropping and recreating the type. However,
a superuser can alter ownership of any type anyway.) To add an attribute or alter an attribute type, you
must also have USAGE privilege on the data type.

Parameters

name

The name (possibly schema-qualified) of an existing type to alter.

new_name

The new name for the type.

new_owner

The user name of the new owner of the type.

new_schema

The new schema for the type.

attribute_name

The name of the attribute to add, alter, or drop.

new_attribute_name

The new name of the attribute to be renamed.

data_type

The data type of the attribute to add, or the new type of the attribute to alter.

new_enum_value

The new value to be added to an enum type’s list of values. Like all enum literals, it needs to be
quoted.

existing_enum_value

The existing enum value that the new value should be added immediately before or after in the enum
type’s sort ordering. Like all enum literals, it needs to be quoted.

1272

ALTER TYPE

Notes
ALTER TYPE ... ADD VALUE (the form that adds a new value to an enum type) cannot be executed
inside a transaction block.

Comparisons involving an added enum value will sometimes be slower than comparisons involving only
original members of the enum type. This will usually only occur if BEFORE or AFTER is used to set the
new value’s sort position somewhere other than at the end of the list. However, sometimes it will happen
even though the new value is added at the end (this occurs if the OID counter “wrapped around” since
the original creation of the enum type). The slowdown is usually insignificant; but if it matters, optimal
performance can be regained by dropping and recreating the enum type, or by dumping and reloading the
database.

Examples
To rename a data type:

ALTER TYPE electronic_mail RENAME TO email;

To change the owner of the type email to joe:

ALTER TYPE email OWNER TO joe;

To change the schema of the type email to customers:

ALTER TYPE email SET SCHEMA customers;

To add a new attribute to a type:

ALTER TYPE compfoo ADD ATTRIBUTE f3 int;

To add a new value to an enum type in a particular sort position:

ALTER TYPE colors ADD VALUE ’orange’ AFTER ’red’;

Compatibility
The variants to add and drop attributes are part of the SQL standard; the other variants are PostgreSQL
extensions.

1273

ALTER TYPE

See Also
CREATE TYPE, DROP TYPE

1274

ALTER USER

Name
ALTER USER — change a database role

Synopsis
ALTER USER name [[WITH] option [...]]

where option can be:

SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| CREATEUSER | NOCREATEUSER
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| REPLICATION | NOREPLICATION
| CONNECTION LIMIT connlimit

| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password’
| VALID UNTIL ’timestamp’

ALTER USER name RENAME TO new_name

ALTER USER name SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER USER name SET configuration_parameter FROM CURRENT
ALTER USER name RESET configuration_parameter

ALTER USER name RESET ALL

Description
ALTER USER is now an alias for ALTER ROLE.

Compatibility
The ALTER USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users
to the implementation.

See Also
ALTER ROLE

1275

ALTER USER MAPPING

Name
ALTER USER MAPPING — change the definition of a user mapping

Synopsis
ALTER USER MAPPING FOR { user_name | USER | CURRENT_USER | PUBLIC }

SERVER server_name

OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])

Description
ALTER USER MAPPING changes the definition of a user mapping.

The owner of a foreign server can alter user mappings for that server for any user. Also, a user can alter a
user mapping for his own user name if USAGE privilege on the server has been granted to the user.

Parameters

user_name

User name of the mapping. CURRENT_USER and USER match the name of the current user. PUBLIC
is used to match all present and future user names in the system.

server_name

Server name of the user mapping.

OPTIONS ([ADD | SET | DROP] option [’value’] [, ...])

Change options for the user mapping. The new options override any previously specified options.
ADD, SET, and DROP specify the action to be performed. ADD is assumed if no operation is explic-
itly specified. Option names must be unique; options are also validated by the server’s foreign-data
wrapper.

Examples
Change the password for user mapping bob, server foo:

ALTER USER MAPPING FOR bob SERVER foo OPTIONS (user ’bob’, password ’public’);

1276

ALTER USER MAPPING

Compatibility
ALTER USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). There is a subtle syntax issue: The
standard omits the FOR key word. Since both CREATE USER MAPPING and DROP USER MAPPING use
FOR in analogous positions, and IBM DB2 (being the other major SQL/MED implementation) also re-
quires it for ALTER USER MAPPING, PostgreSQL diverges from the standard here in the interest of con-
sistency and interoperability.

See Also
CREATE USER MAPPING, DROP USER MAPPING

1277

ALTER VIEW

Name
ALTER VIEW — change the definition of a view

Synopsis
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET DEFAULT expression

ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP DEFAULT
ALTER VIEW [IF EXISTS] name OWNER TO new_owner

ALTER VIEW [IF EXISTS] name RENAME TO new_name

ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema

ALTER VIEW [IF EXISTS] name SET (view_option_name [= view_option_value] [, ...])
ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

Description
ALTER VIEW changes various auxiliary properties of a view. (If you want to modify the view’s defining
query, use CREATE OR REPLACE VIEW.)

You must own the view to use ALTER VIEW. To change a view’s schema, you must also have CREATE

privilege on the new schema. To alter the owner, you must also be a direct or indirect member of the new
owning role, and that role must have CREATE privilege on the view’s schema. (These restrictions enforce
that altering the owner doesn’t do anything you couldn’t do by dropping and recreating the view. However,
a superuser can alter ownership of any view anyway.)

Parameters

name

The name (optionally schema-qualified) of an existing view.

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

SET/DROP DEFAULT

These forms set or remove the default value for a column. A default value associated with a view
column is inserted into INSERT statements on the view before the view’s ON INSERT rule is applied,
if the INSERT does not specify a value for the column.

new_owner

The user name of the new owner of the view.

new_name

The new name for the view.

1278

ALTER VIEW

new_schema

The new schema for the view.

view_option_name

The name of a view option to be set or reset.

view_option_value

The new value for a view option.

Notes
For historical reasons, ALTER TABLE can be used with views too; but the only variants of ALTER TABLE

that are allowed with views are equivalent to the ones shown above.

Examples
To rename the view foo to bar:

ALTER VIEW foo RENAME TO bar;

Compatibility
ALTER VIEW is a PostgreSQL extension of the SQL standard.

See Also
CREATE VIEW, DROP VIEW

1279

ANALYZE

Name
ANALYZE — collect statistics about a database

Synopsis
ANALYZE [VERBOSE] [table_name [(column_name [, ...])]]

Description
ANALYZE collects statistics about the contents of tables in the database, and stores the results in the
pg_statistic system catalog. Subsequently, the query planner uses these statistics to help determine
the most efficient execution plans for queries.

With no parameter, ANALYZE examines every table in the current database. With a parameter, ANALYZE
examines only that table. It is further possible to give a list of column names, in which case only the
statistics for those columns are collected.

Parameters

VERBOSE

Enables display of progress messages.

table_name

The name (possibly schema-qualified) of a specific table to analyze. If omitted, all regular tables (but
not foreign tables) in the current database are analyzed.

column_name

The name of a specific column to analyze. Defaults to all columns.

Outputs
When VERBOSE is specified, ANALYZE emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Notes
Foreign tables are analyzed only when explicitly selected. Not all foreign data wrappers support ANALYZE.
If the table’s wrapper does not support ANALYZE, the command prints a warning and does nothing.

1280

ANALYZE

In the default PostgreSQL configuration, the autovacuum daemon (see Section 23.1.6) takes care of au-
tomatic analyzing of tables when they are first loaded with data, and as they change throughout regular
operation. When autovacuum is disabled, it is a good idea to run ANALYZE periodically, or just after mak-
ing major changes in the contents of a table. Accurate statistics will help the planner to choose the most
appropriate query plan, and thereby improve the speed of query processing. A common strategy for read-
mostly databases is to run VACUUM and ANALYZE once a day during a low-usage time of day. (This will
not be sufficient if there is heavy update activity.)

ANALYZE requires only a read lock on the target table, so it can run in parallel with other activity on the
table.

The statistics collected by ANALYZE usually include a list of some of the most common values in each
column and a histogram showing the approximate data distribution in each column. One or both of these
can be omitted if ANALYZE deems them uninteresting (for example, in a unique-key column, there are
no common values) or if the column data type does not support the appropriate operators. There is more
information about the statistics in Chapter 23.

For large tables, ANALYZE takes a random sample of the table contents, rather than examining every row.
This allows even very large tables to be analyzed in a small amount of time. Note, however, that the
statistics are only approximate, and will change slightly each time ANALYZE is run, even if the actual
table contents did not change. This might result in small changes in the planner’s estimated costs shown
by EXPLAIN. In rare situations, this non-determinism will cause the planner’s choices of query plans
to change after ANALYZE is run. To avoid this, raise the amount of statistics collected by ANALYZE, as
described below.

The extent of analysis can be controlled by adjusting the default_statistics_target configuration variable, or
on a column-by-column basis by setting the per-column statistics target with ALTER TABLE ... ALTER

COLUMN ... SET STATISTICS (see ALTER TABLE). The target value sets the maximum number of
entries in the most-common-value list and the maximum number of bins in the histogram. The default
target value is 100, but this can be adjusted up or down to trade off accuracy of planner estimates against
the time taken for ANALYZE and the amount of space occupied in pg_statistic. In particular, setting
the statistics target to zero disables collection of statistics for that column. It might be useful to do that for
columns that are never used as part of the WHERE, GROUP BY, or ORDER BY clauses of queries, since the
planner will have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number of table rows sam-
pled to prepare the statistics. Increasing the target causes a proportional increase in the time and space
needed to do ANALYZE.

One of the values estimated by ANALYZE is the number of distinct values that appear in each column.
Because only a subset of the rows are examined, this estimate can sometimes be quite inaccurate, even
with the largest possible statistics target. If this inaccuracy leads to bad query plans, a more accurate
value can be determined manually and then installed with ALTER TABLE ... ALTER COLUMN ...

SET (n_distinct = ...) (see ALTER TABLE).

If the table being analyzed has one or more children, ANALYZE will gather statistics twice: once on the
rows of the parent table only, and a second time on the rows of the parent table with all of its children.
This second set of statistics is needed when planning queries that traverse the entire inheritance tree.
The autovacuum daemon, however, will only consider inserts or updates on the parent table itself when
deciding whether to trigger an automatic analyze for that table. If that table is rarely inserted into or
updated, the inheritance statistics will not be up to date unless you run ANALYZE manually.

1281

ANALYZE

If the table being analyzed is completely empty, ANALYZE will not record new statistics for that table. Any
existing statistics will be retained.

Compatibility
There is no ANALYZE statement in the SQL standard.

See Also
VACUUM, vacuumdb, Section 18.4.4, Section 23.1.6

1282

BEGIN

Name
BEGIN — start a transaction block

Synopsis
BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
READ WRITE | READ ONLY
[NOT] DEFERRABLE

Description
BEGIN initiates a transaction block, that is, all statements after a BEGIN command will be executed in
a single transaction until an explicit COMMIT or ROLLBACK is given. By default (without BEGIN),
PostgreSQL executes transactions in “autocommit” mode, that is, each statement is executed in its own
transaction and a commit is implicitly performed at the end of the statement (if execution was successful,
otherwise a rollback is done).

Statements are executed more quickly in a transaction block, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also useful
to ensure consistency when making several related changes: other sessions will be unable to see the
intermediate states wherein not all the related updates have been done.

If the isolation level, read/write mode, or deferrable mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Refer to SET TRANSACTION for information on the meaning of the other parameters to this statement.

Notes
START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

1283

BEGIN

Issuing BEGIN when already inside a transaction block will provoke a warning message. The state of the
transaction is not affected. To nest transactions within a transaction block, use savepoints (see SAVE-
POINT).

For reasons of backwards compatibility, the commas between successive transaction_modes can be
omitted.

Examples
To begin a transaction block:

BEGIN;

Compatibility
BEGIN is a PostgreSQL language extension. It is equivalent to the SQL-standard command START
TRANSACTION, whose reference page contains additional compatibility information.

The DEFERRABLE transaction_mode is a PostgreSQL language extension.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL. You are advised to be
careful about the transaction semantics when porting database applications.

See Also
COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT

1284

CHECKPOINT

Name
CHECKPOINT — force a transaction log checkpoint

Synopsis
CHECKPOINT

Description
A checkpoint is a point in the transaction log sequence at which all data files have been updated to reflect
the information in the log. All data files will be flushed to disk. Refer to Section 29.4 for more details
about what happens during a checkpoint.

The CHECKPOINT command forces an immediate checkpoint when the command is issued, without wait-
ing for a regular checkpoint scheduled by the system (controlled by the settings in Section 18.5.2).
CHECKPOINT is not intended for use during normal operation.

If executed during recovery, the CHECKPOINT command will force a restartpoint (see Section 29.4) rather
than writing a new checkpoint.

Only superusers can call CHECKPOINT.

Compatibility
The CHECKPOINT command is a PostgreSQL language extension.

1285

CLOSE

Name
CLOSE — close a cursor

Synopsis
CLOSE { name | ALL }

Description
CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent oper-
ations are allowed on it. A cursor should be closed when it is no longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated by COMMIT or
ROLLBACK. A holdable cursor is implicitly closed if the transaction that created it aborts via ROLLBACK.
If the creating transaction successfully commits, the holdable cursor remains open until an explicit CLOSE
is executed, or the client disconnects.

Parameters

name

The name of an open cursor to close.

ALL

Close all open cursors.

Notes
PostgreSQL does not have an explicit OPEN cursor statement; a cursor is considered open when it is
declared. Use the DECLARE statement to declare a cursor.

You can see all available cursors by querying the pg_cursors system view.

If a cursor is closed after a savepoint which is later rolled back, the CLOSE is not rolled back; that is, the
cursor remains closed.

Examples
Close the cursor liahona:

CLOSE liahona;

1286

CLOSE

Compatibility
CLOSE is fully conforming with the SQL standard. CLOSE ALL is a PostgreSQL extension.

See Also
DECLARE, FETCH, MOVE

1287

CLUSTER

Name
CLUSTER — cluster a table according to an index

Synopsis
CLUSTER [VERBOSE] table_name [USING index_name]
CLUSTER [VERBOSE]

Description
CLUSTER instructs PostgreSQL to cluster the table specified by table_name based on the index specified
by index_name. The index must already have been defined on table_name.

When a table is clustered, it is physically reordered based on the index information. Clustering is a one-
time operation: when the table is subsequently updated, the changes are not clustered. That is, no attempt
is made to store new or updated rows according to their index order. (If one wishes, one can periodically
recluster by issuing the command again. Also, setting the table’s FILLFACTOR storage parameter to less
than 100% can aid in preserving cluster ordering during updates, since updated rows are kept on the same
page if enough space is available there.)

When a table is clustered, PostgreSQL remembers which index it was clustered by. The form CLUSTER

table_name reclusters the table using the same index as before. You can also use the CLUSTER or SET
WITHOUT CLUSTER forms of ALTER TABLE to set the index to be used for future cluster operations, or
to clear any previous setting.

CLUSTER without any parameter reclusters all the previously-clustered tables in the current database that
the calling user owns, or all such tables if called by a superuser. This form of CLUSTER cannot be executed
inside a transaction block.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This prevents any other
database operations (both reads and writes) from operating on the table until the CLUSTER is finished.

Parameters

table_name

The name (possibly schema-qualified) of a table.

index_name

The name of an index.

VERBOSE

Prints a progress report as each table is clustered.

1288

CLUSTER

Notes
In cases where you are accessing single rows randomly within a table, the actual order of the data in
the table is unimportant. However, if you tend to access some data more than others, and there is an
index that groups them together, you will benefit from using CLUSTER. If you are requesting a range of
indexed values from a table, or a single indexed value that has multiple rows that match, CLUSTER will
help because once the index identifies the table page for the first row that matches, all other rows that
match are probably already on the same table page, and so you save disk accesses and speed up the query.

CLUSTER can re-sort the table using either an index scan on the specified index, or (if the index is a b-tree)
a sequential scan followed by sorting. It will attempt to choose the method that will be faster, based on
planner cost parameters and available statistical information.

When an index scan is used, a temporary copy of the table is created that contains the table data in the
index order. Temporary copies of each index on the table are created as well. Therefore, you need free
space on disk at least equal to the sum of the table size and the index sizes.

When a sequential scan and sort is used, a temporary sort file is also created, so that the peak temporary
space requirement is as much as double the table size, plus the index sizes. This method is often faster
than the index scan method, but if the disk space requirement is intolerable, you can disable this choice
by temporarily setting enable_sort to off.

It is advisable to set maintenance_work_mem to a reasonably large value (but not more than the amount
of RAM you can dedicate to the CLUSTER operation) before clustering.

Because the planner records statistics about the ordering of tables, it is advisable to run ANALYZE on the
newly clustered table. Otherwise, the planner might make poor choices of query plans.

Because CLUSTER remembers which indexes are clustered, one can cluster the tables one wants clustered
manually the first time, then set up a periodic maintenance script that executes CLUSTER without any
parameters, so that the desired tables are periodically reclustered.

Examples
Cluster the table employees on the basis of its index employees_ind:

CLUSTER employees USING employees_ind;

Cluster the employees table using the same index that was used before:

CLUSTER employees;

Cluster all tables in the database that have previously been clustered:

CLUSTER;

1289

CLUSTER

Compatibility
There is no CLUSTER statement in the SQL standard.

The syntax

CLUSTER index_name ON table_name

is also supported for compatibility with pre-8.3 PostgreSQL versions.

See Also
clusterdb

1290

COMMENT

Name
COMMENT — define or change the comment of an object

Synopsis
COMMENT ON
{
AGGREGATE agg_name (agg_type [, ...]) |
CAST (source_type AS target_type) |
COLLATION object_name |
COLUMN relation_name.column_name |
CONSTRAINT constraint_name ON table_name |
CONVERSION object_name |
DATABASE object_name |
DOMAIN object_name |
EXTENSION object_name |
FOREIGN DATA WRAPPER object_name |
FOREIGN TABLE object_name |
FUNCTION function_name ([[argmode] [argname] argtype [, ...]]) |
INDEX object_name |
LARGE OBJECT large_object_oid |
OPERATOR operator_name (left_type, right_type) |
OPERATOR CLASS object_name USING index_method |
OPERATOR FAMILY object_name USING index_method |
[PROCEDURAL] LANGUAGE object_name |
ROLE object_name |
RULE rule_name ON table_name |
SCHEMA object_name |
SEQUENCE object_name |
SERVER object_name |
TABLE object_name |
TABLESPACE object_name |
TEXT SEARCH CONFIGURATION object_name |
TEXT SEARCH DICTIONARY object_name |
TEXT SEARCH PARSER object_name |
TEXT SEARCH TEMPLATE object_name |
TRIGGER trigger_name ON table_name |
TYPE object_name |
VIEW object_name

} IS ’text’

1291

COMMENT

Description
COMMENT stores a comment about a database object.

Only one comment string is stored for each object, so to modify a comment, issue a new COMMENT com-
mand for the same object. To remove a comment, write NULL in place of the text string. Comments are
automatically dropped when their object is dropped.

For most kinds of object, only the object’s owner can set the comment. Roles don’t have owners, so
the rule for COMMENT ON ROLE is that you must be superuser to comment on a superuser role, or have
the CREATEROLE privilege to comment on non-superuser roles. Of course, a superuser can comment on
anything.

Comments can be viewed using psql’s \d family of commands. Other user interfaces to retrieve
comments can be built atop the same built-in functions that psql uses, namely obj_description,
col_description, and shobj_description (see Table 9-54).

Parameters

object_name

relation_name.column_name
agg_name

constraint_name

function_name

operator_name

rule_name

trigger_name

The name of the object to be commented. Names of tables, aggregates, collations, conversions, do-
mains, foreign tables, functions, indexes, operators, operator classes, operator families, sequences,
text search objects, types, and views can be schema-qualified. When commenting on a column,
relation_name must refer to a table, view, composite type, or foreign table.

agg_type

An input data type on which the aggregate function operates. To reference a zero-argument aggregate
function, write * in place of the list of input data types.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note
that COMMENT ON FUNCTION does not actually pay any attention to OUT arguments, since only the
input arguments are needed to determine the function’s identity. So it is sufficient to list the IN,
INOUT, and VARIADIC arguments.

1292

COMMENT

argname

The name of a function argument. Note that COMMENT ON FUNCTION does not actually pay any at-
tention to argument names, since only the argument data types are needed to determine the function’s
identity.

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

large_object_oid

The OID of the large object.

left_type

right_type

The data type(s) of the operator’s arguments (optionally schema-qualified). Write NONE for the miss-
ing argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

text

The new comment, written as a string literal; or NULL to drop the comment.

Notes
There is presently no security mechanism for viewing comments: any user connected to a database can see
all the comments for objects in that database. For shared objects such as databases, roles, and tablespaces,
comments are stored globally so any user connected to any database in the cluster can see all the comments
for shared objects. Therefore, don’t put security-critical information in comments.

Examples
Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS ’This is my table.’;

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Some more examples:

COMMENT ON AGGREGATE my_aggregate (double precision) IS ’Computes sample variance’;
COMMENT ON CAST (text AS int4) IS ’Allow casts from text to int4’;
COMMENT ON COLLATION "fr_CA" IS ’Canadian French’;
COMMENT ON COLUMN my_table.my_column IS ’Employee ID number’;
COMMENT ON CONVERSION my_conv IS ’Conversion to UTF8’;
COMMENT ON CONSTRAINT bar_col_cons ON bar IS ’Constrains column col’;

1293

COMMENT

COMMENT ON DATABASE my_database IS ’Development Database’;
COMMENT ON DOMAIN my_domain IS ’Email Address Domain’;
COMMENT ON EXTENSION hstore IS ’implements the hstore data type’;
COMMENT ON FOREIGN DATA WRAPPER mywrapper IS ’my foreign data wrapper’;
COMMENT ON FOREIGN TABLE my_foreign_table IS ’Employee Information in other database’;
COMMENT ON FUNCTION my_function (timestamp) IS ’Returns Roman Numeral’;
COMMENT ON INDEX my_index IS ’Enforces uniqueness on employee ID’;
COMMENT ON LANGUAGE plpython IS ’Python support for stored procedures’;
COMMENT ON LARGE OBJECT 346344 IS ’Planning document’;
COMMENT ON OPERATOR ^ (text, text) IS ’Performs intersection of two texts’;
COMMENT ON OPERATOR - (NONE, integer) IS ’Unary minus’;
COMMENT ON OPERATOR CLASS int4ops USING btree IS ’4 byte integer operators for btrees’;
COMMENT ON OPERATOR FAMILY integer_ops USING btree IS ’all integer operators for btrees’;
COMMENT ON ROLE my_role IS ’Administration group for finance tables’;
COMMENT ON RULE my_rule ON my_table IS ’Logs updates of employee records’;
COMMENT ON SCHEMA my_schema IS ’Departmental data’;
COMMENT ON SEQUENCE my_sequence IS ’Used to generate primary keys’;
COMMENT ON SERVER myserver IS ’my foreign server’;
COMMENT ON TABLE my_schema.my_table IS ’Employee Information’;
COMMENT ON TABLESPACE my_tablespace IS ’Tablespace for indexes’;
COMMENT ON TEXT SEARCH CONFIGURATION my_config IS ’Special word filtering’;
COMMENT ON TEXT SEARCH DICTIONARY swedish IS ’Snowball stemmer for swedish language’;
COMMENT ON TEXT SEARCH PARSER my_parser IS ’Splits text into words’;
COMMENT ON TEXT SEARCH TEMPLATE snowball IS ’Snowball stemmer’;
COMMENT ON TRIGGER my_trigger ON my_table IS ’Used for RI’;
COMMENT ON TYPE complex IS ’Complex number data type’;
COMMENT ON VIEW my_view IS ’View of departmental costs’;

Compatibility
There is no COMMENT command in the SQL standard.

1294

COMMIT

Name
COMMIT — commit the current transaction

Synopsis
COMMIT [WORK | TRANSACTION]

Description
COMMIT commits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes
Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility
The SQL standard only specifies the two forms COMMIT and COMMIT WORK. Otherwise, this command is
fully conforming.

1295

COMMIT

See Also
BEGIN, ROLLBACK

1296

COMMIT PREPARED

Name
COMMIT PREPARED — commit a transaction that was earlier prepared for two-phase commit

Synopsis
COMMIT PREPARED transaction_id

Description
COMMIT PREPARED commits a transaction that is in prepared state.

Parameters

transaction_id

The transaction identifier of the transaction that is to be committed.

Notes
To commit a prepared transaction, you must be either the same user that executed the transaction origi-
nally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is committed
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Commit the transaction identified by the transaction identifier foobar:

COMMIT PREPARED ’foobar’;

Compatibility
COMMIT PREPARED is a PostgreSQL extension. It is intended for use by external transaction management
systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those systems
is not standardized.

1297

COMMIT PREPARED

See Also
PREPARE TRANSACTION, ROLLBACK PREPARED

1298

COPY

Name
COPY — copy data between a file and a table

Synopsis
COPY table_name [(column_name [, ...])]

FROM { ’filename’ | STDIN }
[[WITH] (option [, ...])]

COPY { table_name [(column_name [, ...])] | (query) }
TO { ’filename’ | STDOUT }
[[WITH] (option [, ...])]

where option can be one of:

FORMAT format_name

OIDS [boolean]
DELIMITER ’delimiter_character’
NULL ’null_string’
HEADER [boolean]
QUOTE ’quote_character’
ESCAPE ’escape_character’
FORCE_QUOTE { (column_name [, ...]) | * }
FORCE_NOT_NULL (column_name [, ...])
ENCODING ’encoding_name’

Description
COPY moves data between PostgreSQL tables and standard file-system files. COPY TO copies the contents
of a table to a file, while COPY FROM copies data from a file to a table (appending the data to whatever is
in the table already). COPY TO can also copy the results of a SELECT query.

If a list of columns is specified, COPY will only copy the data in the specified columns to or from the file.
If there are any columns in the table that are not in the column list, COPY FROM will insert the default
values for those columns.

COPY with a file name instructs the PostgreSQL server to directly read from or write to a file. The file
must be accessible to the server and the name must be specified from the viewpoint of the server. When
STDIN or STDOUT is specified, data is transmitted via the connection between the client and the server.

1299

COPY

Parameters

table_name

The name (optionally schema-qualified) of an existing table.

column_name

An optional list of columns to be copied. If no column list is specified, all columns of the table will
be copied.

query

A SELECT or VALUES command whose results are to be copied. Note that parentheses are required
around the query.

filename

The absolute path name of the input or output file. Windows users might need to use an E” string and
double any backslashes used in the path name.

STDIN

Specifies that input comes from the client application.

STDOUT

Specifies that output goes to the client application.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in
which case TRUE is assumed.

FORMAT

Selects the data format to be read or written: text, csv (Comma Separated Values), or binary. The
default is text.

OIDS

Specifies copying the OID for each row. (An error is raised if OIDS is specified for a table that does
not have OIDs, or in the case of copying a query.)

DELIMITER

Specifies the character that separates columns within each row (line) of the file. The default is a tab
character in text format, a comma in CSV format. This must be a single one-byte character. This
option is not allowed when using binary format.

NULL

Specifies the string that represents a null value. The default is \N (backslash-N) in text format, and
an unquoted empty string in CSV format. You might prefer an empty string even in text format for
cases where you don’t want to distinguish nulls from empty strings. This option is not allowed when
using binary format.

Note: When using COPY FROM, any data item that matches this string will be stored as a null
value, so you should make sure that you use the same string as you used with COPY TO.

1300

COPY

HEADER

Specifies that the file contains a header line with the names of each column in the file. On output, the
first line contains the column names from the table, and on input, the first line is ignored. This option
is allowed only when using CSV format.

QUOTE

Specifies the quoting character to be used when a data value is quoted. The default is double-quote.
This must be a single one-byte character. This option is allowed only when using CSV format.

ESCAPE

Specifies the character that should appear before a data character that matches the QUOTE value. The
default is the same as the QUOTE value (so that the quoting character is doubled if it appears in the
data). This must be a single one-byte character. This option is allowed only when using CSV format.

FORCE_QUOTE

Forces quoting to be used for all non-NULL values in each specified column. NULL output is never
quoted. If * is specified, non-NULL values will be quoted in all columns. This option is allowed only
in COPY TO, and only when using CSV format.

FORCE_NOT_NULL

Do not match the specified columns’ values against the null string. In the default case where the null
string is empty, this means that empty values will be read as zero-length strings rather than nulls,
even when they are not quoted. This option is allowed only in COPY FROM, and only when using CSV
format.

ENCODING

Specifies that the file is encoded in the encoding_name. If this option is omitted, the current client
encoding is used. See the Notes below for more details.

Outputs
On successful completion, a COPY command returns a command tag of the form

COPY count

The count is the number of rows copied.

Notes
COPY can only be used with plain tables, not with views. However, you can write COPY (SELECT *
FROM viewname) TO

COPY only deals with the specific table named; it does not copy data to or from child tables. Thus for
example COPY table TO shows the same data as SELECT * FROM ONLY table. But COPY (SELECT

* FROM table) TO ... can be used to dump all of the data in an inheritance hierarchy.

1301

COPY

You must have select privilege on the table whose values are read by COPY TO, and insert privilege on
the table into which values are inserted by COPY FROM. It is sufficient to have column privileges on the
column(s) listed in the command.

Files named in a COPY command are read or written directly by the server, not by the client application.
Therefore, they must reside on or be accessible to the database server machine, not the client. They must
be accessible to and readable or writable by the PostgreSQL user (the user ID the server runs as), not the
client. COPY naming a file is only allowed to database superusers, since it allows reading or writing any
file that the server has privileges to access.

Do not confuse COPY with the psql instruction \copy. \copy invokes COPY FROM STDIN or COPY TO

STDOUT, and then fetches/stores the data in a file accessible to the psql client. Thus, file accessibility and
access rights depend on the client rather than the server when \copy is used.

It is recommended that the file name used in COPY always be specified as an absolute path. This is enforced
by the server in the case of COPY TO, but for COPY FROM you do have the option of reading from a file
specified by a relative path. The path will be interpreted relative to the working directory of the server
process (normally the cluster’s data directory), not the client’s working directory.

COPY FROM will invoke any triggers and check constraints on the destination table. However, it will not
invoke rules.

COPY input and output is affected by DateStyle. To ensure portability to other PostgreSQL installations
that might use non-default DateStyle settings, DateStyle should be set to ISO before using COPY TO.
It is also a good idea to avoid dumping data with IntervalStyle set to sql_standard, because nega-
tive interval values might be misinterpreted by a server that has a different setting for IntervalStyle.

Input data is interpreted according to ENCODING option or the current client encoding, and output data is
encoded in ENCODING or the current client encoding, even if the data does not pass through the client but
is read from or written to a file directly by the server.

COPY stops operation at the first error. This should not lead to problems in the event of a COPY TO, but
the target table will already have received earlier rows in a COPY FROM. These rows will not be visible
or accessible, but they still occupy disk space. This might amount to a considerable amount of wasted
disk space if the failure happened well into a large copy operation. You might wish to invoke VACUUM to
recover the wasted space.

File Formats

Text Format

When the text format is used, the data read or written is a text file with one line per table row. Columns
in a row are separated by the delimiter character. The column values themselves are strings generated by
the output function, or acceptable to the input function, of each attribute’s data type. The specified null
string is used in place of columns that are null. COPY FROM will raise an error if any line of the input file
contains more or fewer columns than are expected. If OIDS is specified, the OID is read or written as the
first column, preceding the user data columns.

End of data can be represented by a single line containing just backslash-period (\.). An end-of-data
marker is not necessary when reading from a file, since the end of file serves perfectly well; it is needed
only when copying data to or from client applications using pre-3.0 client protocol.

1302

COPY

Backslash characters (\) can be used in the COPY data to quote data characters that might otherwise be
taken as row or column delimiters. In particular, the following characters must be preceded by a backslash
if they appear as part of a column value: backslash itself, newline, carriage return, and the current delimiter
character.

The specified null string is sent by COPY TO without adding any backslashes; conversely, COPY FROM

matches the input against the null string before removing backslashes. Therefore, a null string such as \N
cannot be confused with the actual data value \N (which would be represented as \\N).

The following special backslash sequences are recognized by COPY FROM:

Sequence Represents
\b Backspace (ASCII 8)

\f Form feed (ASCII 12)

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)

\t Tab (ASCII 9)

\v Vertical tab (ASCII 11)

\digits Backslash followed by one to three octal digits
specifies the character with that numeric code

\xdigits Backslash x followed by one or two hex digits
specifies the character with that numeric code

Presently, COPY TO will never emit an octal or hex-digits backslash sequence, but it does use the other
sequences listed above for those control characters.

Any other backslashed character that is not mentioned in the above table will be taken to represent itself.
However, beware of adding backslashes unnecessarily, since that might accidentally produce a string
matching the end-of-data marker (\.) or the null string (\N by default). These strings will be recognized
before any other backslash processing is done.

It is strongly recommended that applications generating COPY data convert data newlines and carriage
returns to the \n and \r sequences respectively. At present it is possible to represent a data carriage
return by a backslash and carriage return, and to represent a data newline by a backslash and newline.
However, these representations might not be accepted in future releases. They are also highly vulnerable
to corruption if the COPY file is transferred across different machines (for example, from Unix to Windows
or vice versa).

COPY TO will terminate each row with a Unix-style newline (“\n”). Servers running on Microsoft Win-
dows instead output carriage return/newline (“\r\n”), but only for COPY to a server file; for consistency
across platforms, COPY TO STDOUT always sends “\n” regardless of server platform. COPY FROM can
handle lines ending with newlines, carriage returns, or carriage return/newlines. To reduce the risk of er-
ror due to un-backslashed newlines or carriage returns that were meant as data, COPY FROM will complain
if the line endings in the input are not all alike.

CSV Format

This format option is used for importing and exporting the Comma Separated Value (CSV) file format
used by many other programs, such as spreadsheets. Instead of the escaping rules used by PostgreSQL’s

1303

COPY

standard text format, it produces and recognizes the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value contains the delimiter
character, the QUOTE character, the NULL string, a carriage return, or line feed character, then the whole
value is prefixed and suffixed by the QUOTE character, and any occurrence within the value of a QUOTE

character or the ESCAPE character is preceded by the escape character. You can also use FORCE_QUOTE to
force quotes when outputting non-NULL values in specific columns.

The CSV format has no standard way to distinguish a NULL value from an empty string. PostgreSQL’s
COPY handles this by quoting. A NULL is output as the NULL parameter string and is not quoted, while
a non-NULL value matching the NULL parameter string is quoted. For example, with the default settings,
a NULL is written as an unquoted empty string, while an empty string data value is written with double
quotes (""). Reading values follows similar rules. You can use FORCE_NOT_NULL to prevent NULL input
comparisons for specific columns.

Because backslash is not a special character in the CSV format, \., the end-of-data marker, could also
appear as a data value. To avoid any misinterpretation, a \. data value appearing as a lone entry on a line
is automatically quoted on output, and on input, if quoted, is not interpreted as the end-of-data marker. If
you are loading a file created by another application that has a single unquoted column and might have a
value of \., you might need to quote that value in the input file.

Note: In CSV format, all characters are significant. A quoted value surrounded by white space, or any
characters other than DELIMITER, will include those characters. This can cause errors if you import
data from a system that pads CSV lines with white space out to some fixed width. If such a situation
arises you might need to preprocess the CSV file to remove the trailing white space, before importing
the data into PostgreSQL.

Note: CSV format will both recognize and produce CSV files with quoted values containing embedded
carriage returns and line feeds. Thus the files are not strictly one line per table row like text-format
files.

Note: Many programs produce strange and occasionally perverse CSV files, so the file format is more
a convention than a standard. Thus you might encounter some files that cannot be imported using
this mechanism, and COPY might produce files that other programs cannot process.

Binary Format

The binary format option causes all data to be stored/read as binary format rather than as text. It is
somewhat faster than the text and CSV formats, but a binary-format file is less portable across machine
architectures and PostgreSQL versions. Also, the binary format is very data type specific; for example it
will not work to output binary data from a smallint column and read it into an integer column, even
though that would work fine in text format.

The binary file format consists of a file header, zero or more tuples containing the row data, and a file
trailer. Headers and data are in network byte order.

1304

COPY

Note: PostgreSQL releases before 7.4 used a different binary file format.

File Header

The file header consists of 15 bytes of fixed fields, followed by a variable-length header extension area.
The fixed fields are:

Signature

11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero byte is a required part of the sig-
nature. (The signature is designed to allow easy identification of files that have been munged by a
non-8-bit-clean transfer. This signature will be changed by end-of-line-translation filters, dropped
zero bytes, dropped high bits, or parity changes.)

Flags field

32-bit integer bit mask to denote important aspects of the file format. Bits are numbered from 0 (LSB)
to 31 (MSB). Note that this field is stored in network byte order (most significant byte first), as are all
the integer fields used in the file format. Bits 16-31 are reserved to denote critical file format issues;
a reader should abort if it finds an unexpected bit set in this range. Bits 0-15 are reserved to signal
backwards-compatible format issues; a reader should simply ignore any unexpected bits set in this
range. Currently only one flag bit is defined, and the rest must be zero:

Bit 16

if 1, OIDs are included in the data; if 0, not

Header extension area length

32-bit integer, length in bytes of remainder of header, not including self. Currently, this is zero, and
the first tuple follows immediately. Future changes to the format might allow additional data to be
present in the header. A reader should silently skip over any header extension data it does not know
what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags field
is not intended to tell readers what is in the extension area. Specific design of header extension contents
is left for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with a 16-bit integer count of the number of fields in the tuple. (Presently, all tuples in
a table will have the same count, but that might not always be true.) Then, repeated for each field in the
tuple, there is a 32-bit length word followed by that many bytes of field data. (The length word does not
include itself, and can be zero.) As a special case, -1 indicates a NULL field value. No value bytes follow
in the NULL case.

1305

COPY

There is no alignment padding or any other extra data between fields.

Presently, all data values in a binary-format file are assumed to be in binary format (format code one). It
is anticipated that a future extension might add a header field that allows per-column format codes to be
specified.

To determine the appropriate binary format for the actual tuple data you should consult the PostgreSQL
source, in particular the *send and *recv functions for each column’s data type (typically these functions
are found in the src/backend/utils/adt/ directory of the source distribution).

If OIDs are included in the file, the OID field immediately follows the field-count word. It is a normal
field except that it’s not included in the field-count. In particular it has a length word — this will allow
handling of 4-byte vs. 8-byte OIDs without too much pain, and will allow OIDs to be shown as null if that
ever proves desirable.

File Trailer

The file trailer consists of a 16-bit integer word containing -1. This is easily distinguished from a tuple’s
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Examples
The following example copies a table to the client using the vertical bar (|) as the field delimiter:

COPY country TO STDOUT (DELIMITER ’|’);

To copy data from a file into the country table:

COPY country FROM ’/usr1/proj/bray/sql/country_data’;

To copy into a file just the countries whose names start with ’A’:

COPY (SELECT * FROM country WHERE country_name LIKE ’A%’) TO ’/usr1/proj/bray/sql/a_list_countries.copy’;

Here is a sample of data suitable for copying into a table from STDIN:

AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA
ZM ZAMBIA
ZW ZIMBABWE

Note that the white space on each line is actually a tab character.

1306

COPY

The following is the same data, output in binary format. The data is shown after filtering through the Unix
utility od -c. The table has three columns; the first has type char(2), the second has type text, and the
third has type integer. All the rows have a null value in the third column.

0000000 P G C O P Y \n 377 \r \n \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 003 \0 \0 \0 002 A F \0 \0 \0 013 A
0000040 F G H A N I S T A N 377 377 377 377 \0 003
0000060 \0 \0 \0 002 A L \0 \0 \0 007 A L B A N I
0000100 A 377 377 377 377 \0 003 \0 \0 \0 002 D Z \0 \0 \0
0000120 007 A L G E R I A 377 377 377 377 \0 003 \0 \0
0000140 \0 002 Z M \0 \0 \0 006 Z A M B I A 377 377
0000160 377 377 \0 003 \0 \0 \0 002 Z W \0 \0 \0 \b Z I
0000200 M B A B W E 377 377 377 377 377 377

Compatibility
There is no COPY statement in the SQL standard.

The following syntax was used before PostgreSQL version 9.0 and is still supported:

COPY table_name [(column_name [, ...])]
FROM { ’filename’ | STDIN }
[[WITH]

[BINARY]
[OIDS]
[DELIMITER [AS] ’delimiter’]
[NULL [AS] ’null string’]
[CSV [HEADER]

[QUOTE [AS] ’quote’]
[ESCAPE [AS] ’escape’]
[FORCE NOT NULL column_name [, ...]]]]

COPY { table_name [(column_name [, ...])] | (query) }
TO { ’filename’ | STDOUT }
[[WITH]

[BINARY]
[OIDS]
[DELIMITER [AS] ’delimiter’]
[NULL [AS] ’null string’]
[CSV [HEADER]

[QUOTE [AS] ’quote’]
[ESCAPE [AS] ’escape’]
[FORCE QUOTE { column_name [, ...] | * }]]]

Note that in this syntax, BINARY and CSV are treated as independent keywords, not as arguments of a
FORMAT option.

The following syntax was used before PostgreSQL version 7.3 and is still supported:

COPY [BINARY] table_name [WITH OIDS]
FROM { ’filename’ | STDIN }

1307

COPY

[[USING] DELIMITERS ’delimiter’]
[WITH NULL AS ’null string’]

COPY [BINARY] table_name [WITH OIDS]
TO { ’filename’ | STDOUT }
[[USING] DELIMITERS ’delimiter’]
[WITH NULL AS ’null string’]

1308

CREATE AGGREGATE

Name
CREATE AGGREGATE — define a new aggregate function

Synopsis
CREATE AGGREGATE name (input_data_type [, ...]) (

SFUNC = sfunc,
STYPE = state_data_type

[, FINALFUNC = ffunc]
[, INITCOND = initial_condition]
[, SORTOP = sort_operator]

)

or the old syntax

CREATE AGGREGATE name (
BASETYPE = base_type,
SFUNC = sfunc,
STYPE = state_data_type

[, FINALFUNC = ffunc]
[, INITCOND = initial_condition]
[, SORTOP = sort_operator]

)

Description
CREATE AGGREGATE defines a new aggregate function. Some basic and commonly-used aggregate func-
tions are included with the distribution; they are documented in Section 9.20. If one defines new types or
needs an aggregate function not already provided, then CREATE AGGREGATE can be used to provide the
desired features.

If a schema name is given (for example, CREATE AGGREGATE myschema.myagg ...) then the aggre-
gate function is created in the specified schema. Otherwise it is created in the current schema.

An aggregate function is identified by its name and input data type(s). Two aggregates in the same schema
can have the same name if they operate on different input types. The name and input data type(s) of an
aggregate must also be distinct from the name and input data type(s) of every ordinary function in the
same schema.

An aggregate function is made from one or two ordinary functions: a state transition function sfunc, and
an optional final calculation function ffunc. These are used as follows:

sfunc(internal-state, next-data-values) ---> next-internal-state
ffunc(internal-state) ---> aggregate-value

1309

CREATE AGGREGATE

PostgreSQL creates a temporary variable of data type stype to hold the current internal state of the aggre-
gate. At each input row, the aggregate argument value(s) are calculated and the state transition function is
invoked with the current state value and the new argument value(s) to calculate a new internal state value.
After all the rows have been processed, the final function is invoked once to calculate the aggregate’s
return value. If there is no final function then the ending state value is returned as-is.

An aggregate function can provide an initial condition, that is, an initial value for the internal state value.
This is specified and stored in the database as a value of type text, but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts out
null.

If the state transition function is declared “strict”, then it cannot be called with null inputs. With such a
transition function, aggregate execution behaves as follows. Rows with any null input values are ignored
(the function is not called and the previous state value is retained). If the initial state value is null, then at
the first row with all-nonnull input values, the first argument value replaces the state value, and the transi-
tion function is invoked at subsequent rows with all-nonnull input values. This is handy for implementing
aggregates like max. Note that this behavior is only available when state_data_type is the same as the
first input_data_type. When these types are different, you must supply a nonnull initial condition or
use a nonstrict transition function.

If the state transition function is not strict, then it will be called unconditionally at each input row, and
must deal with null inputs and null transition values for itself. This allows the aggregate author to have
full control over the aggregate’s handling of null values.

If the final function is declared “strict”, then it will not be called when the ending state value is null;
instead a null result will be returned automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning a null value. For example, the final
function for avg returns null when it sees there were zero input rows.

Aggregates that behave like MIN or MAX can sometimes be optimized by looking into an index instead of
scanning every input row. If this aggregate can be so optimized, indicate it by specifying a sort operator.
The basic requirement is that the aggregate must yield the first element in the sort ordering induced by the
operator; in other words:

SELECT agg(col) FROM tab;

must be equivalent to:

SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

Further assumptions are that the aggregate ignores null inputs, and that it delivers a null result if and only
if there were no non-null inputs. Ordinarily, a data type’s < operator is the proper sort operator for MIN,
and > is the proper sort operator for MAX. Note that the optimization will never actually take effect unless
the specified operator is the “less than” or “greater than” strategy member of a B-tree index operator class.

To be able to create an aggregate function, you must have USAGE privilege on the argument types, the state
type, and the return type, as well as EXECUTE privilege on the transition and final functions.

1310

CREATE AGGREGATE

Parameters

name

The name (optionally schema-qualified) of the aggregate function to create.

input_data_type

An input data type on which this aggregate function operates. To create a zero-argument aggre-
gate function, write * in place of the list of input data types. (An example of such an aggregate is
count(*).)

base_type

In the old syntax for CREATE AGGREGATE, the input data type is specified by a basetype parameter
rather than being written next to the aggregate name. Note that this syntax allows only one input
parameter. To define a zero-argument aggregate function, specify the basetype as "ANY" (not *).

sfunc

The name of the state transition function to be called for each input row. For an N -argument aggregate
function, the sfunc must take N+1 arguments, the first being of type state_data_type and the rest
matching the declared input data type(s) of the aggregate. The function must return a value of type
state_data_type. This function takes the current state value and the current input data value(s),
and returns the next state value.

state_data_type

The data type for the aggregate’s state value.

ffunc

The name of the final function called to compute the aggregate’s result after all input rows have been
traversed. The function must take a single argument of type state_data_type. The return data
type of the aggregate is defined as the return type of this function. If ffunc is not specified, then the
ending state value is used as the aggregate’s result, and the return type is state_data_type.

initial_condition

The initial setting for the state value. This must be a string constant in the form accepted for the data
type state_data_type. If not specified, the state value starts out null.

sort_operator

The associated sort operator for a MIN- or MAX-like aggregate. This is just an operator name (possibly
schema-qualified). The operator is assumed to have the same input data types as the aggregate (which
must be a single-argument aggregate).

The parameters of CREATE AGGREGATE can be written in any order, not just the order illustrated above.

Examples
See Section 35.10.

1311

CREATE AGGREGATE

Compatibility
CREATE AGGREGATE is a PostgreSQL language extension. The SQL standard does not provide for user-
defined aggregate functions.

See Also
ALTER AGGREGATE, DROP AGGREGATE

1312

CREATE CAST

Name
CREATE CAST — define a new cast

Synopsis
CREATE CAST (source_type AS target_type)

WITH FUNCTION function_name (argument_type [, ...])
[AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
WITHOUT FUNCTION
[AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
WITH INOUT
[AS ASSIGNMENT | AS IMPLICIT]

Description
CREATE CAST defines a new cast. A cast specifies how to perform a conversion between two data types.
For example,

SELECT CAST(42 AS float8);

converts the integer constant 42 to type float8 by invoking a previously specified function, in this case
float8(int4). (If no suitable cast has been defined, the conversion fails.)

Two types can be binary coercible, which means that the conversion can be performed “for free” without
invoking any function. This requires that corresponding values use the same internal representation. For
instance, the types text and varchar are binary coercible both ways. Binary coercibility is not neces-
sarily a symmetric relationship. For example, the cast from xml to text can be performed for free in the
present implementation, but the reverse direction requires a function that performs at least a syntax check.
(Two types that are binary coercible both ways are also referred to as binary compatible.)

You can define a cast as an I/O conversion cast by using the WITH INOUT syntax. An I/O conversion cast
is performed by invoking the output function of the source data type, and passing the resulting string to
the input function of the target data type. In many common cases, this feature avoids the need to write a
separate cast function for conversion. An I/O conversion cast acts the same as a regular function-based
cast; only the implementation is different.

By default, a cast can be invoked only by an explicit cast request, that is an explicit CAST(x AS

typename) or x::typename construct.

If the cast is marked AS ASSIGNMENT then it can be invoked implicitly when assigning a value to a
column of the target data type. For example, supposing that foo.f1 is a column of type text, then:

1313

CREATE CAST

INSERT INTO foo (f1) VALUES (42);

will be allowed if the cast from type integer to type text is marked AS ASSIGNMENT, otherwise not.
(We generally use the term assignment cast to describe this kind of cast.)

If the cast is marked AS IMPLICIT then it can be invoked implicitly in any context, whether assignment
or internally in an expression. (We generally use the term implicit cast to describe this kind of cast.) For
example, consider this query:

SELECT 2 + 4.0;

The parser initially marks the constants as being of type integer and numeric respectively. There is no
integer + numeric operator in the system catalogs, but there is a numeric + numeric operator. The
query will therefore succeed if a cast from integer to numeric is available and is marked AS IMPLICIT

— which in fact it is. The parser will apply the implicit cast and resolve the query as if it had been written

SELECT CAST (2 AS numeric) + 4.0;

Now, the catalogs also provide a cast from numeric to integer. If that cast were marked AS IMPLICIT

— which it is not — then the parser would be faced with choosing between the above interpretation and the
alternative of casting the numeric constant to integer and applying the integer + integer operator.
Lacking any knowledge of which choice to prefer, it would give up and declare the query ambiguous. The
fact that only one of the two casts is implicit is the way in which we teach the parser to prefer resolution
of a mixed numeric-and-integer expression as numeric; there is no built-in knowledge about that.

It is wise to be conservative about marking casts as implicit. An overabundance of implicit casting paths
can cause PostgreSQL to choose surprising interpretations of commands, or to be unable to resolve com-
mands at all because there are multiple possible interpretations. A good rule of thumb is to make a cast
implicitly invokable only for information-preserving transformations between types in the same general
type category. For example, the cast from int2 to int4 can reasonably be implicit, but the cast from
float8 to int4 should probably be assignment-only. Cross-type-category casts, such as text to int4,
are best made explicit-only.

Note: Sometimes it is necessary for usability or standards-compliance reasons to provide multiple
implicit casts among a set of types, resulting in ambiguity that cannot be avoided as above. The
parser has a fallback heuristic based on type categories and preferred types that can help to provide
desired behavior in such cases. See CREATE TYPE for more information.

To be able to create a cast, you must own the source or the target data type and have USAGE privilege on
the other type. To create a binary-coercible cast, you must be superuser. (This restriction is made because
an erroneous binary-coercible cast conversion can easily crash the server.)

Parameters

source_type

The name of the source data type of the cast.

1314

CREATE CAST

target_type

The name of the target data type of the cast.

function_name(argument_type [, ...])

The function used to perform the cast. The function name can be schema-qualified. If it is not, the
function will be looked up in the schema search path. The function’s result data type must match the
target type of the cast. Its arguments are discussed below.

WITHOUT FUNCTION

Indicates that the source type is binary-coercible to the target type, so no function is required to
perform the cast.

WITH INOUT

Indicates that the cast is an I/O conversion cast, performed by invoking the output function of the
source data type, and passing the resulting string to the input function of the target data type.

AS ASSIGNMENT

Indicates that the cast can be invoked implicitly in assignment contexts.

AS IMPLICIT

Indicates that the cast can be invoked implicitly in any context.

Cast implementation functions can have one to three arguments. The first argument type must be iden-
tical to or binary-coercible from the cast’s source type. The second argument, if present, must be type
integer; it receives the type modifier associated with the destination type, or -1 if there is none. The
third argument, if present, must be type boolean; it receives true if the cast is an explicit cast, false
otherwise. (Bizarrely, the SQL standard demands different behaviors for explicit and implicit casts in some
cases. This argument is supplied for functions that must implement such casts. It is not recommended that
you design your own data types so that this matters.)

The return type of a cast function must be identical to or binary-coercible to the cast’s target type.

Ordinarily a cast must have different source and target data types. However, it is allowed to declare a
cast with identical source and target types if it has a cast implementation function with more than one
argument. This is used to represent type-specific length coercion functions in the system catalogs. The
named function is used to coerce a value of the type to the type modifier value given by its second
argument.

When a cast has different source and target types and a function that takes more than one argument, it
supports converting from one type to another and applying a length coercion in a single step. When no
such entry is available, coercion to a type that uses a type modifier involves two cast steps, one to convert
between data types and a second to apply the modifier.

A cast to or from a domain type currently has no effect. Casting to or from a domain uses the casts
associated with its underlying type.

Notes
Use DROP CAST to remove user-defined casts.

1315

CREATE CAST

Remember that if you want to be able to convert types both ways you need to declare casts both ways
explicitly.

It is normally not necessary to create casts between user-defined types and the standard string types (text,
varchar, and char(n), as well as user-defined types that are defined to be in the string category). Post-
greSQL provides automatic I/O conversion casts for that. The automatic casts to string types are treated
as assignment casts, while the automatic casts from string types are explicit-only. You can override this
behavior by declaring your own cast to replace an automatic cast, but usually the only reason to do so is
if you want the conversion to be more easily invokable than the standard assignment-only or explicit-only
setting. Another possible reason is that you want the conversion to behave differently from the type’s I/O
function; but that is sufficiently surprising that you should think twice about whether it’s a good idea. (A
small number of the built-in types do indeed have different behaviors for conversions, mostly because of
requirements of the SQL standard.)

Prior to PostgreSQL 7.3, every function that had the same name as a data type, returned that data type,
and took one argument of a different type was automatically a cast function. This convention has been
abandoned in face of the introduction of schemas and to be able to represent binary-coercible casts in the
system catalogs. The built-in cast functions still follow this naming scheme, but they have to be shown as
casts in the system catalog pg_cast as well.

While not required, it is recommended that you continue to follow this old convention of naming cast
implementation functions after the target data type. Many users are used to being able to cast data types
using a function-style notation, that is typename(x). This notation is in fact nothing more nor less than a
call of the cast implementation function; it is not specially treated as a cast. If your conversion functions
are not named to support this convention then you will have surprised users. Since PostgreSQL allows
overloading of the same function name with different argument types, there is no difficulty in having
multiple conversion functions from different types that all use the target type’s name.

Note: Actually the preceding paragraph is an oversimplification: there are two cases in which a
function-call construct will be treated as a cast request without having matched it to an actual function.
If a function call name(x) does not exactly match any existing function, but name is the name of a data
type and pg_cast provides a binary-coercible cast to this type from the type of x, then the call will
be construed as a binary-coercible cast. This exception is made so that binary-coercible casts can be
invoked using functional syntax, even though they lack any function. Likewise, if there is no pg_cast

entry but the cast would be to or from a string type, the call will be construed as an I/O conversion
cast. This exception allows I/O conversion casts to be invoked using functional syntax.

Note: There is also an exception to the exception: I/O conversion casts from composite types to string
types cannot be invoked using functional syntax, but must be written in explicit cast syntax (either CAST
or :: notation). This exception was added because after the introduction of automatically-provided I/O
conversion casts, it was found too easy to accidentally invoke such a cast when a function or column
reference was intended.

1316

CREATE CAST

Examples
To create an assignment cast from type bigint to type int4 using the function int4(bigint):

CREATE CAST (bigint AS int4) WITH FUNCTION int4(bigint) AS ASSIGNMENT;

(This cast is already predefined in the system.)

Compatibility
The CREATE CAST command conforms to the SQL standard, except that SQL does not make provi-
sions for binary-coercible types or extra arguments to implementation functions. AS IMPLICIT is a Post-
greSQL extension, too.

See Also
CREATE FUNCTION, CREATE TYPE, DROP CAST

1317

CREATE COLLATION

Name
CREATE COLLATION — define a new collation

Synopsis
CREATE COLLATION name (

[LOCALE = locale,]
[LC_COLLATE = lc_collate,]
[LC_CTYPE = lc_ctype]

)
CREATE COLLATION name FROM existing_collation

Description
CREATE COLLATION defines a new collation using the specified operating system locale settings, or by
copying an existing collation.

To be able to create a collation, you must have CREATE privilege on the destination schema.

Parameters

name

The name of the collation. The collation name can be schema-qualified. If it is not, the collation is
defined in the current schema. The collation name must be unique within that schema. (The system
catalogs can contain collations with the same name for other encodings, but these are ignored if the
database encoding does not match.)

locale

This is a shortcut for setting LC_COLLATE and LC_CTYPE at once. If you specify this, you cannot
specify either of those parameters.

lc_collate

Use the specified operating system locale for the LC_COLLATE locale category. The locale must be
applicable to the current database encoding. (See CREATE DATABASE for the precise rules.)

lc_ctype

Use the specified operating system locale for the LC_CTYPE locale category. The locale must be
applicable to the current database encoding. (See CREATE DATABASE for the precise rules.)

existing_collation

The name of an existing collation to copy. The new collation will have the same properties as the
existing one, but it will be an independent object.

1318

CREATE COLLATION

Notes
Use DROP COLLATION to remove user-defined collations.

See Section 22.2 for more information about collation support in PostgreSQL.

Examples
To create a collation from the operating system locale fr_FR.utf8 (assuming the current database en-
coding is UTF8):

CREATE COLLATION french (LOCALE = ’fr_FR.utf8’);

To create a collation from an existing collation:

CREATE COLLATION german FROM "de_DE";

This can be convenient to be able to use operating-system-independent collation names in applications.

Compatibility
There is a CREATE COLLATION statement in the SQL standard, but it is limited to copying an existing
collation. The syntax to create a new collation is a PostgreSQL extension.

See Also
ALTER COLLATION, DROP COLLATION

1319

CREATE CONVERSION

Name
CREATE CONVERSION — define a new encoding conversion

Synopsis
CREATE [DEFAULT] CONVERSION name

FOR source_encoding TO dest_encoding FROM function_name

Description
CREATE CONVERSION defines a new conversion between character set encodings. Also, conversions that
are marked DEFAULT can be used for automatic encoding conversion between client and server. For this
purpose, two conversions, from encoding A to B and from encoding B to A, must be defined.

To be able to create a conversion, you must have EXECUTE privilege on the function and CREATE privilege
on the destination schema.

Parameters

DEFAULT

The DEFAULT clause indicates that this conversion is the default for this particular source to destina-
tion encoding. There should be only one default encoding in a schema for the encoding pair.

name

The name of the conversion. The conversion name can be schema-qualified. If it is not, the conversion
is defined in the current schema. The conversion name must be unique within a schema.

source_encoding

The source encoding name.

dest_encoding

The destination encoding name.

function_name

The function used to perform the conversion. The function name can be schema-qualified. If it is not,
the function will be looked up in the path.

The function must have the following signature:

conv_proc(
integer, -- source encoding ID
integer, -- destination encoding ID
cstring, -- source string (null terminated C string)

1320

CREATE CONVERSION

internal, -- destination (fill with a null terminated C string)
integer -- source string length

) RETURNS void;

Notes
Use DROP CONVERSION to remove user-defined conversions.

The privileges required to create a conversion might be changed in a future release.

Examples
To create a conversion from encoding UTF8 to LATIN1 using myfunc:

CREATE CONVERSION myconv FOR ’UTF8’ TO ’LATIN1’ FROM myfunc;

Compatibility
CREATE CONVERSION is a PostgreSQL extension. There is no CREATE CONVERSION statement in the
SQL standard, but a CREATE TRANSLATION statement that is very similar in purpose and syntax.

See Also
ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION

1321

CREATE DATABASE

Name
CREATE DATABASE — create a new database

Synopsis
CREATE DATABASE name

[[WITH] [OWNER [=] user_name]
[TEMPLATE [=] template]
[ENCODING [=] encoding]
[LC_COLLATE [=] lc_collate]
[LC_CTYPE [=] lc_ctype]
[TABLESPACE [=] tablespace_name]
[CONNECTION LIMIT [=] connlimit]]

Description
CREATE DATABASE creates a new PostgreSQL database.

To create a database, you must be a superuser or have the special CREATEDB privilege. See CREATE
USER.

By default, the new database will be created by cloning the standard system database template1. A
different template can be specified by writing TEMPLATE name. In particular, by writing TEMPLATE

template0, you can create a virgin database containing only the standard objects predefined by your
version of PostgreSQL. This is useful if you wish to avoid copying any installation-local objects that
might have been added to template1.

Parameters

name

The name of a database to create.

user_name

The role name of the user who will own the new database, or DEFAULT to use the default (namely,
the user executing the command). To create a database owned by another role, you must be a direct
or indirect member of that role, or be a superuser.

template

The name of the template from which to create the new database, or DEFAULT to use the default
template (template1).

1322

CREATE DATABASE

encoding

Character set encoding to use in the new database. Specify a string constant (e.g., ’SQL_ASCII’),
or an integer encoding number, or DEFAULT to use the default encoding (namely, the encoding of the
template database). The character sets supported by the PostgreSQL server are described in Section
22.3.1. See below for additional restrictions.

lc_collate

Collation order (LC_COLLATE) to use in the new database. This affects the sort order applied to
strings, e.g. in queries with ORDER BY, as well as the order used in indexes on text columns. The
default is to use the collation order of the template database. See below for additional restrictions.

lc_ctype

Character classification (LC_CTYPE) to use in the new database. This affects the categorization of
characters, e.g. lower, upper and digit. The default is to use the character classification of the template
database. See below for additional restrictions.

tablespace_name

The name of the tablespace that will be associated with the new database, or DEFAULT to use the
template database’s tablespace. This tablespace will be the default tablespace used for objects created
in this database. See CREATE TABLESPACE for more information.

connlimit

How many concurrent connections can be made to this database. -1 (the default) means no limit.

Optional parameters can be written in any order, not only the order illustrated above.

Notes
CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient
permissions on the data directory, a full disk, or other file system problems.

Use DROP DATABASE to remove a database.

The program createdb is a wrapper program around this command, provided for convenience.

Although it is possible to copy a database other than template1 by specifying its name as the template,
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that
no other sessions can be connected to the template database while it is being copied. CREATE DATABASE

will fail if any other connection exists when it starts; otherwise, new connections to the template database
are locked out until CREATE DATABASE completes. See Section 21.3 for more information.

The character set encoding specified for the new database must be compatible with the chosen locale
settings (LC_COLLATE and LC_CTYPE). If the locale is C (or equivalently POSIX), then all encodings are
allowed, but for other locale settings there is only one encoding that will work properly. (On Windows,
however, UTF-8 encoding can be used with any locale.) CREATE DATABASE will allow superusers to
specify SQL_ASCII encoding regardless of the locale settings, but this choice is deprecated and may
result in misbehavior of character-string functions if data that is not encoding-compatible with the locale
is stored in the database.

1323

CREATE DATABASE

The encoding and locale settings must match those of the template database, except when template0

is used as template. This is because other databases might contain data that does not match the speci-
fied encoding, or might contain indexes whose sort ordering is affected by LC_COLLATE and LC_CTYPE.
Copying such data would result in a database that is corrupt according to the new settings. template0,
however, is known to not contain any data or indexes that would be affected.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the database, it is possible that both will fail. Also,
the limit is not enforced against superusers.

Examples
To create a new database:

CREATE DATABASE lusiadas;

To create a database sales owned by user salesapp with a default tablespace of salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a database music which supports the ISO-8859-1 character set:

CREATE DATABASE music ENCODING ’LATIN1’ TEMPLATE template0;

In this example, the TEMPLATE template0 clause would only be required if template1’s encoding is
not ISO-8859-1. Note that changing encoding might require selecting new LC_COLLATE and LC_CTYPE

settings as well.

Compatibility
There is no CREATE DATABASE statement in the SQL standard. Databases are equivalent to catalogs,
whose creation is implementation-defined.

See Also
ALTER DATABASE, DROP DATABASE

1324

CREATE DOMAIN

Name
CREATE DOMAIN — define a new domain

Synopsis
CREATE DOMAIN name [AS] data_type

[COLLATE collation]
[DEFAULT expression]
[constraint [...]]

where constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

Description
CREATE DOMAIN creates a new domain. A domain is essentially a data type with optional constraints
(restrictions on the allowed set of values). The user who defines a domain becomes its owner.

If a schema name is given (for example, CREATE DOMAIN myschema.mydomain ...) then the domain
is created in the specified schema. Otherwise it is created in the current schema. The domain name must
be unique among the types and domains existing in its schema.

Domains are useful for abstracting common constraints on fields into a single location for maintenance.
For example, several tables might contain email address columns, all requiring the same CHECK con-
straint to verify the address syntax. Define a domain rather than setting up each table’s constraint individ-
ually.

To be able to create a domain, you must have USAGE privilege on the underlying type.

Parameters

name

The name (optionally schema-qualified) of a domain to be created.

data_type

The underlying data type of the domain. This can include array specifiers.

collation

An optional collation for the domain. If no collation is specified, the underlying data type’s default
collation is used. The underlying type must be collatable if COLLATE is specified.

1325

CREATE DOMAIN

DEFAULT expression

The DEFAULT clause specifies a default value for columns of the domain data type. The value is any
variable-free expression (but subqueries are not allowed). The data type of the default expression
must match the data type of the domain. If no default value is specified, then the default value is the
null value.

The default expression will be used in any insert operation that does not specify a value for the
column. If a default value is defined for a particular column, it overrides any default associated with
the domain. In turn, the domain default overrides any default value associated with the underlying
data type.

CONSTRAINT constraint_name

An optional name for a constraint. If not specified, the system generates a name.

NOT NULL

Values of this domain are normally prevented from being null. However, it is still possible for a
domain with this constraint to take a null value if it is assigned a matching domain type that has be-
come null, e.g. via a LEFT OUTER JOIN, or INSERT INTO tab (domcol) VALUES ((SELECT

domcol FROM tab WHERE false)).

NULL

Values of this domain are allowed to be null. This is the default.

This clause is only intended for compatibility with nonstandard SQL databases. Its use is discouraged
in new applications.

CHECK (expression)

CHECK clauses specify integrity constraints or tests which values of the domain must satisfy. Each
constraint must be an expression producing a Boolean result. It should use the key word VALUE to
refer to the value being tested.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than VALUE.

Examples
This example creates the us_postal_code data type and then uses the type in a table definition. A
regular expression test is used to verify that the value looks like a valid US postal code:

CREATE DOMAIN us_postal_code AS TEXT
CHECK(

VALUE ~ ’^\d{5}$’
OR VALUE ~ ’^\d{5}-\d{4}$’
);

CREATE TABLE us_snail_addy (
address_id SERIAL PRIMARY KEY,
street1 TEXT NOT NULL,
street2 TEXT,
street3 TEXT,
city TEXT NOT NULL,
postal us_postal_code NOT NULL

1326

CREATE DOMAIN

);

Compatibility
The command CREATE DOMAIN conforms to the SQL standard.

See Also
ALTER DOMAIN, DROP DOMAIN

1327

CREATE EXTENSION

Name
CREATE EXTENSION — install an extension

Synopsis
CREATE EXTENSION [IF NOT EXISTS] extension_name

[WITH] [SCHEMA schema_name]
[VERSION version]
[FROM old_version]

Description
CREATE EXTENSION loads a new extension into the current database. There must not be an extension of
the same name already loaded.

Loading an extension essentially amounts to running the extension’s script file. The script will typically
create new SQL objects such as functions, data types, operators and index support methods. CREATE
EXTENSION additionally records the identities of all the created objects, so that they can be dropped again
if DROP EXTENSION is issued.

Loading an extension requires the same privileges that would be required to create its component objects.
For most extensions this means superuser or database owner privileges are needed. The user who runs
CREATE EXTENSION becomes the owner of the extension for purposes of later privilege checks, as well
as the owner of any objects created by the extension’s script.

Parameters

IF NOT EXISTS

Do not throw an error if an extension with the same name already exists. A notice is issued in this
case. Note that there is no guarantee that the existing extension is anything like the one that would
have been created from the currently-available script file.

extension_name

The name of the extension to be installed. PostgreSQL will create the extension using details from
the file SHAREDIR/extension/extension_name.control.

schema_name

The name of the schema in which to install the extension’s objects, given that the extension allows its
contents to be relocated. The named schema must already exist. If not specified, and the extension’s
control file does not specify a schema either, the current default object creation schema is used.

1328

CREATE EXTENSION

Remember that the extension itself is not considered to be within any schema: extensions have un-
qualified names that must be unique database-wide. But objects belonging to the extension can be
within schemas.

version

The version of the extension to install. This can be written as either an identifier or a string literal.
The default version is whatever is specified in the extension’s control file.

old_version

FROM old_version must be specified when, and only when, you are attempting to install an ex-
tension that replaces an “old style” module that is just a collection of objects not packaged into an
extension. This option causes CREATE EXTENSION to run an alternative installation script that ab-
sorbs the existing objects into the extension, instead of creating new objects. Be careful that SCHEMA
specifies the schema containing these pre-existing objects.

The value to use for old_version is determined by the extension’s author, and might vary if there
is more than one version of the old-style module that can be upgraded into an extension. For the
standard additional modules supplied with pre-9.1 PostgreSQL, use unpackaged for old_version
when updating a module to extension style.

Notes
Before you can use CREATE EXTENSION to load an extension into a database, the extension’s supporting
files must be installed. Information about installing the extensions supplied with PostgreSQL can be found
in Additional Supplied Modules.

The extensions currently available for loading can be identified from the pg_available_extensions
or pg_available_extension_versions system views.

For information about writing new extensions, see Section 35.15.

Examples
Install the hstore extension into the current database:

CREATE EXTENSION hstore;

Update a pre-9.1 installation of hstore into extension style:

CREATE EXTENSION hstore SCHEMA public FROM unpackaged;

Be careful to specify the schema in which you installed the existing hstore objects.

Compatibility
CREATE EXTENSION is a PostgreSQL extension.

1329

CREATE EXTENSION

See Also
ALTER EXTENSION, DROP EXTENSION

1330

CREATE FOREIGN DATA WRAPPER

Name
CREATE FOREIGN DATA WRAPPER — define a new foreign-data wrapper

Synopsis
CREATE FOREIGN DATA WRAPPER name

[HANDLER handler_function | NO HANDLER]
[VALIDATOR validator_function | NO VALIDATOR]
[OPTIONS (option ’value’ [, ...])]

Description
CREATE FOREIGN DATA WRAPPER creates a new foreign-data wrapper. The user who defines a foreign-
data wrapper becomes its owner.

The foreign-data wrapper name must be unique within the database.

Only superusers can create foreign-data wrappers.

Parameters

name

The name of the foreign-data wrapper to be created.

HANDLER handler_function

handler_function is the name of a previously registered function that will be called to retrieve the
execution functions for foreign tables. The handler function must take no arguments, and its return
type must be fdw_handler.

It is possible to create a foreign-data wrapper with no handler function, but foreign tables using such
a wrapper can only be declared, not accessed.

VALIDATOR validator_function

validator_function is the name of a previously registered function that will be called to check
the generic options given to the foreign-data wrapper, as well as options for foreign servers and user
mappings using the foreign-data wrapper. If no validator function or NO VALIDATOR is specified,
then options will not be checked at creation time. (Foreign-data wrappers will possibly ignore or
reject invalid option specifications at run time, depending on the implementation.) The validator
function must take two arguments: one of type text[], which will contain the array of options as
stored in the system catalogs, and one of type oid, which will be the OID of the system catalog
containing the options. The return type is ignored; the function should report invalid options using
the ereport(ERROR) function.

1331

CREATE FOREIGN DATA WRAPPER

OPTIONS (option ’value’ [, ...])

This clause specifies options for the new foreign-data wrapper. The allowed option names and values
are specific to each foreign data wrapper and are validated using the foreign-data wrapper’s validator
function. Option names must be unique.

Notes
At the moment, the foreign-data wrapper functionality is rudimentary. There is no support for updating a
foreign table, and optimization of queries is primitive (and mostly left to the wrapper, too).

There is one built-in foreign-data wrapper validator function provided: postgresql_fdw_validator,
which accepts options corresponding to libpq connection parameters.

Examples
Create a useless foreign-data wrapper dummy:

CREATE FOREIGN DATA WRAPPER dummy;

Create a foreign-data wrapper file with handler function file_fdw_handler:

CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;

Create a foreign-data wrapper mywrapper with some options:

CREATE FOREIGN DATA WRAPPER mywrapper
OPTIONS (debug ’true’);

Compatibility
CREATE FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), with the exception that
the HANDLER and VALIDATOR clauses are extensions and the standard clauses LIBRARY and LANGUAGE

are not implemented in PostgreSQL.

Note, however, that the SQL/MED functionality as a whole is not yet conforming.

See Also
ALTER FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER, CREATE SERVER, CRE-
ATE USER MAPPING

1332

CREATE FOREIGN TABLE

Name
CREATE FOREIGN TABLE — define a new foreign table

Synopsis
CREATE FOREIGN TABLE [IF NOT EXISTS] table_name ([
{ column_name data_type [OPTIONS (option ’value’ [, ...])] [NULL | NOT NULL] }

[, ...]
])
SERVER server_name

[OPTIONS (option ’value’ [, ...])]

Description
CREATE FOREIGN TABLE will create a new foreign table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE FOREIGN TABLE myschema.mytable ...) then the
table is created in the specified schema. Otherwise it is created in the current schema. The name of the
foreign table must be distinct from the name of any other foreign table, table, sequence, index, or view in
the same schema.

CREATE FOREIGN TABLE also automatically creates a data type that represents the composite type cor-
responding to one row of the foreign table. Therefore, foreign tables cannot have the same name as any
existing data type in the same schema.

To be able to create a table, you must have USAGE privilege on all column types.

Parameters

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have been
created.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

1333

CREATE FOREIGN TABLE

data_type

The data type of the column. This can include array specifiers. For more information on the data
types supported by PostgreSQL, refer to Chapter 8.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discour-
aged in new applications.

server_name

The name of an existing server for the foreign table.

OPTIONS (option ’value’ [, ...])

Options to be associated with the new foreign table or one of its columns. The allowed option names
and values are specific to each foreign data wrapper and are validated using the foreign-data wrap-
per’s validator function. Duplicate option names are not allowed (although it’s OK for a table option
and a column option to have the same name).

Examples
Create foreign table films with film_server:

CREATE FOREIGN TABLE films (
code char(5) NOT NULL,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute

)
SERVER film_server;

Compatibility
The CREATE FOREIGN TABLE command largely conforms to the SQL standard; however, much as with
CREATE TABLE, NULL constraints and zero-column foreign tables are permitted.

See Also
ALTER FOREIGN TABLE, DROP FOREIGN TABLE, CREATE TABLE, CREATE SERVER

1334

CREATE FUNCTION

Name
CREATE FUNCTION — define a new function

Synopsis
CREATE [OR REPLACE] FUNCTION

name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr] [, ...]])
[RETURNS rettype

| RETURNS TABLE (column_name column_type [, ...])]
{ LANGUAGE lang_name

| WINDOW
| IMMUTABLE | STABLE | VOLATILE | [NOT] LEAKPROOF
| CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
| [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
| COST execution_cost

| ROWS result_rows

| SET configuration_parameter { TO value | = value | FROM CURRENT }
| AS ’definition’
| AS ’obj_file’, ’link_symbol’

} ...
[WITH (attribute [, ...])]

Description
CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will either create a new
function, or replace an existing definition. To be able to define a function, the user must have the USAGE
privilege on the language.

If a schema name is included, then the function is created in the specified schema. Otherwise it is created
in the current schema. The name of the new function must not match any existing function with the same
input argument types in the same schema. However, functions of different argument types can share a
name (this is called overloading).

To replace the current definition of an existing function, use CREATE OR REPLACE FUNCTION. It is not
possible to change the name or argument types of a function this way (if you tried, you would actually
be creating a new, distinct function). Also, CREATE OR REPLACE FUNCTION will not let you change the
return type of an existing function. To do that, you must drop and recreate the function. (When using
OUT parameters, that means you cannot change the types of any OUT parameters except by dropping the
function.)

When CREATE OR REPLACE FUNCTION is used to replace an existing function, the ownership and per-
missions of the function do not change. All other function properties are assigned the values specified or
implied in the command. You must own the function to replace it (this includes being a member of the
owning role).

1335

CREATE FUNCTION

If you drop and then recreate a function, the new function is not the same entity as the old; you will
have to drop existing rules, views, triggers, etc. that refer to the old function. Use CREATE OR REPLACE

FUNCTION to change a function definition without breaking objects that refer to the function. Also, ALTER
FUNCTION can be used to change most of the auxiliary properties of an existing function.

The user that creates the function becomes the owner of the function.

To be able to create a function, you must have USAGE privilege on the argument types and the return type.

Parameters

name

The name (optionally schema-qualified) of the function to create.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Only OUT

arguments can follow a VARIADIC one. Also, OUT and INOUT arguments cannot be used together
with the RETURNS TABLE notation.

argname

The name of an argument. Some languages (including SQL and PL/pgSQL) let you use the name in
the function body. For other languages the name of an input argument is just extra documentation,
so far as the function itself is concerned; but you can use input argument names when calling a
function to improve readability (see Section 4.3). In any case, the name of an output argument is
significant, because it defines the column name in the result row type. (If you omit the name for an
output argument, the system will choose a default column name.)

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any. The argument
types can be base, composite, or domain types, or can reference the type of a table column.

Depending on the implementation language it might also be allowed to specify “pseudotypes” such
as cstring. Pseudotypes indicate that the actual argument type is either incompletely specified, or
outside the set of ordinary SQL data types.

The type of a column is referenced by writing table_name.column_name%TYPE. Using this feature
can sometimes help make a function independent of changes to the definition of a table.

default_expr

An expression to be used as default value if the parameter is not specified. The expression has to be
coercible to the argument type of the parameter. Only input (including INOUT) parameters can have
a default value. All input parameters following a parameter with a default value must have default
values as well.

rettype

The return data type (optionally schema-qualified). The return type can be a base, composite, or
domain type, or can reference the type of a table column. Depending on the implementation language
it might also be allowed to specify “pseudotypes” such as cstring. If the function is not supposed
to return a value, specify void as the return type.

1336

CREATE FUNCTION

When there are OUT or INOUT parameters, the RETURNS clause can be omitted. If present, it must
agree with the result type implied by the output parameters: RECORD if there are multiple output
parameters, or the same type as the single output parameter.

The SETOF modifier indicates that the function will return a set of items, rather than a single item.

The type of a column is referenced by writing table_name.column_name%TYPE.

column_name

The name of an output column in the RETURNS TABLE syntax. This is effectively another way of
declaring a named OUT parameter, except that RETURNS TABLE also implies RETURNS SETOF.

column_type

The data type of an output column in the RETURNS TABLE syntax.

lang_name

The name of the language that the function is implemented in. Can be SQL, C, internal, or the
name of a user-defined procedural language. For backward compatibility, the name can be enclosed
by single quotes.

WINDOW

WINDOW indicates that the function is a window function rather than a plain function. This is currently
only useful for functions written in C. The WINDOW attribute cannot be changed when replacing an
existing function definition.

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function. At most one choice
can be specified. If none of these appear, VOLATILE is the default assumption.

IMMUTABLE indicates that the function cannot modify the database and always returns the same
result when given the same argument values; that is, it does not do database lookups or otherwise use
information not directly present in its argument list. If this option is given, any call of the function
with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a single table scan
it will consistently return the same result for the same argument values, but that its result could
change across SQL statements. This is the appropriate selection for functions whose results depend
on database lookups, parameter variables (such as the current time zone), etc. (It is inappropriate
for AFTER triggers that wish to query rows modified by the current command.) Also note that the
current_timestamp family of functions qualify as stable, since their values do not change within
a transaction.

VOLATILE indicates that the function value can change even within a single table scan, so no opti-
mizations can be made. Relatively few database functions are volatile in this sense; some examples
are random(), currval(), timeofday(). But note that any function that has side-effects must be
classified volatile, even if its result is quite predictable, to prevent calls from being optimized away;
an example is setval().

For additional details see Section 35.6.

1337

CREATE FUNCTION

LEAKPROOF

LEAKPROOF indicates that the function has no side effects. It reveals no information about its argu-
ments other than by its return value. For example, a function which throws an error message for some
argument values but not others, or which includes the argument values in any error message, is not
leakproof. The query planner may push leakproof functions (but not others) into views created with
the security_barrier option. See CREATE VIEW and Section 37.4. This option can only be set
by the superuser.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the function will be called normally when
some of its arguments are null. It is then the function author’s responsibility to check for null values
if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the function always returns null when-
ever any of its arguments are null. If this parameter is specified, the function is not executed when
there are null arguments; instead a null result is assumed automatically.

[EXTERNAL] SECURITY INVOKER

[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER indicates that the function is to be executed with the privileges of the user that
calls it. That is the default. SECURITY DEFINER specifies that the function is to be executed with the
privileges of the user that created it.

The key word EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL,
this feature applies to all functions not only external ones.

execution_cost

A positive number giving the estimated execution cost for the function, in units of cpu_operator_cost.
If the function returns a set, this is the cost per returned row. If the cost is not specified, 1 unit is
assumed for C-language and internal functions, and 100 units for functions in all other languages.
Larger values cause the planner to try to avoid evaluating the function more often than necessary.

result_rows

A positive number giving the estimated number of rows that the planner should expect the function
to return. This is only allowed when the function is declared to return a set. The default assumption
is 1000 rows.

configuration_parameter

value

The SET clause causes the specified configuration parameter to be set to the specified value when the
function is entered, and then restored to its prior value when the function exits. SET FROM CURRENT

saves the session’s current value of the parameter as the value to be applied when the function is
entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside
the function for the same variable are restricted to the function: the configuration parameter’s prior
value is still restored at function exit. However, an ordinary SET command (without LOCAL) overrides

1338

CREATE FUNCTION

the SET clause, much as it would do for a previous SET LOCAL command: the effects of such a
command will persist after function exit, unless the current transaction is rolled back.

See SET and Chapter 18 for more information about allowed parameter names and values.

definition

A string constant defining the function; the meaning depends on the language. It can be an internal
function name, the path to an object file, an SQL command, or text in a procedural language.

It is often helpful to use dollar quoting (see Section 4.1.2.4) to write the function definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the function definition must be escaped by doubling them.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language functions when the function
name in the C language source code is not the same as the name of the SQL function. The string
obj_file is the name of the file containing the dynamically loadable object, and link_symbol is
the function’s link symbol, that is, the name of the function in the C language source code. If the link
symbol is omitted, it is assumed to be the same as the name of the SQL function being defined.

When repeated CREATE FUNCTION calls refer to the same object file, the file is only loaded once per
session. To unload and reload the file (perhaps during development), start a new session.

attribute

The historical way to specify optional pieces of information about the function. The following at-
tributes can appear here:

isStrict

Equivalent to STRICT or RETURNS NULL ON NULL INPUT.

isCachable

isCachable is an obsolete equivalent of IMMUTABLE; it’s still accepted for
backwards-compatibility reasons.

Attribute names are not case-sensitive.

Refer to Section 35.3 for further information on writing functions.

Overloading
PostgreSQL allows function overloading; that is, the same name can be used for several different functions
so long as they have distinct input argument types. However, the C names of all functions must be different,
so you must give overloaded C functions different C names (for example, use the argument types as part
of the C names).

Two functions are considered the same if they have the same names and input argument types, ignoring
any OUT parameters. Thus for example these declarations conflict:

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, out text) ...

1339

CREATE FUNCTION

Functions that have different argument type lists will not be considered to conflict at creation time, but if
defaults are provided they might conflict in use. For example, consider

CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, int default 42) ...

A call foo(10) will fail due to the ambiguity about which function should be called.

Notes
The full SQL type syntax is allowed for declaring a function’s arguments and return value. However,
parenthesized type modifiers (e.g., the precision field for type numeric) are discarded by CREATE

FUNCTION. Thus for example CREATE FUNCTION foo (varchar(10)) ... is exactly the same as
CREATE FUNCTION foo (varchar)

When replacing an existing function with CREATE OR REPLACE FUNCTION, there are restrictions on
changing parameter names. You cannot change the name already assigned to any input parameter (al-
though you can add names to parameters that had none before). If there is more than one output parameter,
you cannot change the names of the output parameters, because that would change the column names of
the anonymous composite type that describes the function’s result. These restrictions are made to ensure
that existing calls of the function do not stop working when it is replaced.

If a function is declared STRICT with a VARIADIC argument, the strictness check tests that the variadic
array as a whole is non-null. The function will still be called if the array has null elements.

Examples
Here are some trivial examples to help you get started. For more information and examples, see Section
35.3.

CREATE FUNCTION add(integer, integer) RETURNS integer
AS ’select $1 + $2;’
LANGUAGE SQL
IMMUTABLE
RETURNS NULL ON NULL INPUT;

Increment an integer, making use of an argument name, in PL/pgSQL:

CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
BEGIN

RETURN i + 1;
END;

$$ LANGUAGE plpgsql;

Return a record containing multiple output parameters:

CREATE FUNCTION dup(in int, out f1 int, out f2 text)

1340

CREATE FUNCTION

AS $$ SELECT $1, CAST($1 AS text) || ’ is text’ $$
LANGUAGE SQL;

SELECT * FROM dup(42);

You can do the same thing more verbosely with an explicitly named composite type:

CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result
AS $$ SELECT $1, CAST($1 AS text) || ’ is text’ $$
LANGUAGE SQL;

SELECT * FROM dup(42);

Another way to return multiple columns is to use a TABLE function:

CREATE FUNCTION dup(int) RETURNS TABLE(f1 int, f2 text)
AS $$ SELECT $1, CAST($1 AS text) || ’ is text’ $$
LANGUAGE SQL;

SELECT * FROM dup(42);

However, a TABLE function is different from the preceding examples, because it actually returns a set of
records, not just one record.

Writing SECURITY DEFINER Functions Safely
Because a SECURITY DEFINER function is executed with the privileges of the user that created it, care is
needed to ensure that the function cannot be misused. For security, search_path should be set to exclude
any schemas writable by untrusted users. This prevents malicious users from creating objects that mask
objects used by the function. Particularly important in this regard is the temporary-table schema, which is
searched first by default, and is normally writable by anyone. A secure arrangement can be had by forcing
the temporary schema to be searched last. To do this, write pg_temp as the last entry in search_path.
This function illustrates safe usage:

CREATE FUNCTION check_password(uname TEXT, pass TEXT)
RETURNS BOOLEAN AS $$
DECLARE passed BOOLEAN;
BEGIN

SELECT (pwd = $2) INTO passed
FROM pwds
WHERE username = $1;

RETURN passed;
END;
$$ LANGUAGE plpgsql

SECURITY DEFINER
-- Set a secure search_path: trusted schema(s), then ’pg_temp’.
SET search_path = admin, pg_temp;

1341

CREATE FUNCTION

Before PostgreSQL version 8.3, the SET option was not available, and so older functions may contain
rather complicated logic to save, set, and restore search_path. The SET option is far easier to use for
this purpose.

Another point to keep in mind is that by default, execute privilege is granted to PUBLIC for newly created
functions (see GRANT for more information). Frequently you will wish to restrict use of a security definer
function to only some users. To do that, you must revoke the default PUBLIC privileges and then grant
execute privilege selectively. To avoid having a window where the new function is accessible to all, create
it and set the privileges within a single transaction. For example:

BEGIN;
CREATE FUNCTION check_password(uname TEXT, pass TEXT) ... SECURITY DEFINER;
REVOKE ALL ON FUNCTION check_password(uname TEXT, pass TEXT) FROM PUBLIC;
GRANT EXECUTE ON FUNCTION check_password(uname TEXT, pass TEXT) TO admins;
COMMIT;

Compatibility
A CREATE FUNCTION command is defined in SQL:1999 and later. The PostgreSQL version is similar but
not fully compatible. The attributes are not portable, neither are the different available languages.

For compatibility with some other database systems, argmode can be written either before or after
argname. But only the first way is standard-compliant.

The SQL standard does not specify parameter defaults. The syntax with the DEFAULT key word is from
Oracle, and it is somewhat in the spirit of the standard: SQL/PSM uses it for variable default values. The
syntax with = is used in T-SQL and Firebird.

See Also
ALTER FUNCTION, DROP FUNCTION, GRANT, LOAD, REVOKE, createlang

1342

CREATE GROUP

Name
CREATE GROUP — define a new database role

Synopsis
CREATE GROUP name [[WITH] option [...]]

where option can be:

SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| CREATEUSER | NOCREATEUSER
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password’
| VALID UNTIL ’timestamp’
| IN ROLE role_name [, ...]
| IN GROUP role_name [, ...]
| ROLE role_name [, ...]
| ADMIN role_name [, ...]
| USER role_name [, ...]
| SYSID uid

Description
CREATE GROUP is now an alias for CREATE ROLE.

Compatibility
There is no CREATE GROUP statement in the SQL standard.

See Also
CREATE ROLE

1343

CREATE INDEX

Name
CREATE INDEX — define a new index

Synopsis
CREATE [UNIQUE] INDEX [CONCURRENTLY] [name] ON table_name [USING method]

({ column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS { FIRST | LAST }] [, ...])
[WITH (storage_parameter = value [, ...])]
[TABLESPACE tablespace_name]
[WHERE predicate]

Description
CREATE INDEX constructs an index on the specified column(s) of the specified table. Indexes are primar-
ily used to enhance database performance (though inappropriate use can result in slower performance).

The key field(s) for the index are specified as column names, or alternatively as expressions written in
parentheses. Multiple fields can be specified if the index method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row.
This feature can be used to obtain fast access to data based on some transformation of the basic data. For
example, an index computed on upper(col) would allow the clause WHERE upper(col) = ’JIM’ to
use an index.

PostgreSQL provides the index methods B-tree, hash, GiST, SP-GiST, and GIN. Users can also define
their own index methods, but that is fairly complicated.

When the WHERE clause is present, a partial index is created. A partial index is an index that contains
entries for only a portion of a table, usually a portion that is more useful for indexing than the rest of the
table. For example, if you have a table that contains both billed and unbilled orders where the unbilled
orders take up a small fraction of the total table and yet that is an often used section, you can improve
performance by creating an index on just that portion. Another possible application is to use WHERE with
UNIQUE to enforce uniqueness over a subset of a table. See Section 11.8 for more discussion.

The expression used in the WHERE clause can refer only to columns of the underlying table, but it can
use all columns, not just the ones being indexed. Presently, subqueries and aggregate expressions are also
forbidden in WHERE. The same restrictions apply to index fields that are expressions.

All functions and operators used in an index definition must be “immutable”, that is, their results must
depend only on their arguments and never on any outside influence (such as the contents of another table
or the current time). This restriction ensures that the behavior of the index is well-defined. To use a user-
defined function in an index expression or WHERE clause, remember to mark the function immutable when
you create it.

1344

CREATE INDEX

Parameters

UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data already
exist) and each time data is added. Attempts to insert or update data which would result in duplicate
entries will generate an error.

CONCURRENTLY

When this option is used, PostgreSQL will build the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table; whereas a standard index build locks out writes
(but not reads) on the table until it’s done. There are several caveats to be aware of when using this
option — see Building Indexes Concurrently.

name

The name of the index to be created. No schema name can be included here; the index is always
created in the same schema as its parent table. If the name is omitted, PostgreSQL chooses a suitable
name based on the parent table’s name and the indexed column name(s).

table_name

The name (possibly schema-qualified) of the table to be indexed.

method

The name of the index method to be used. Choices are btree, hash, gist, spgist and gin. The
default method is btree.

column_name

The name of a column of the table.

expression

An expression based on one or more columns of the table. The expression usually must be written
with surrounding parentheses, as shown in the syntax. However, the parentheses can be omitted if
the expression has the form of a function call.

collation

The name of the collation to use for the index. By default, the index uses the collation declared for the
column to be indexed or the result collation of the expression to be indexed. Indexes with non-default
collations can be useful for queries that involve expressions using non-default collations.

opclass

The name of an operator class. See below for details.

ASC

Specifies ascending sort order (which is the default).

DESC

Specifies descending sort order.

NULLS FIRST

Specifies that nulls sort before non-nulls. This is the default when DESC is specified.

1345

CREATE INDEX

NULLS LAST

Specifies that nulls sort after non-nulls. This is the default when DESC is not specified.

storage_parameter

The name of an index-method-specific storage parameter. See Index Storage Parameters for details.

tablespace_name

The tablespace in which to create the index. If not specified, default_tablespace is consulted, or
temp_tablespaces for indexes on temporary tables.

predicate

The constraint expression for a partial index.

Index Storage Parameters

The optional WITH clause specifies storage parameters for the index. Each index method has its own set of
allowed storage parameters. The B-tree, hash, GiST and SP-GiST index methods all accept this parameter:

FILLFACTOR

The fillfactor for an index is a percentage that determines how full the index method will try to pack
index pages. For B-trees, leaf pages are filled to this percentage during initial index build, and also
when extending the index at the right (adding new largest key values). If pages subsequently become
completely full, they will be split, leading to gradual degradation in the index’s efficiency. B-trees
use a default fillfactor of 90, but any integer value from 10 to 100 can be selected. If the table is
static then fillfactor 100 is best to minimize the index’s physical size, but for heavily updated tables a
smaller fillfactor is better to minimize the need for page splits. The other index methods use fillfactor
in different but roughly analogous ways; the default fillfactor varies between methods.

GiST indexes additionally accept this parameter:

BUFFERING

Determines whether the buffering build technique described in Section 53.3.1 is used to build the
index. With OFF it is disabled, with ON it is enabled, and with AUTO it is initially disabled, but turned
on on-the-fly once the index size reaches effective_cache_size. The default is AUTO.

GIN indexes accept a different parameter:

FASTUPDATE

This setting controls usage of the fast update technique described in Section 55.3.1. It is a Boolean
parameter: ON enables fast update, OFF disables it. (Alternative spellings of ON and OFF are allowed
as described in Section 18.1.) The default is ON.

Note: Turning FASTUPDATE off via ALTER INDEX prevents future insertions from going into the list
of pending index entries, but does not in itself flush previous entries. You might want to VACUUM

the table afterward to ensure the pending list is emptied.

1346

CREATE INDEX

Building Indexes Concurrently

Creating an index can interfere with regular operation of a database. Normally PostgreSQL locks the
table to be indexed against writes and performs the entire index build with a single scan of the table. Other
transactions can still read the table, but if they try to insert, update, or delete rows in the table they will
block until the index build is finished. This could have a severe effect if the system is a live production
database. Very large tables can take many hours to be indexed, and even for smaller tables, an index build
can lock out writers for periods that are unacceptably long for a production system.

PostgreSQL supports building indexes without locking out writes. This method is invoked by specifying
the CONCURRENTLY option of CREATE INDEX. When this option is used, PostgreSQL must perform two
scans of the table, and in addition it must wait for all existing transactions that could potentially use
the index to terminate. Thus this method requires more total work than a standard index build and takes
significantly longer to complete. However, since it allows normal operations to continue while the index
is built, this method is useful for adding new indexes in a production environment. Of course, the extra
CPU and I/O load imposed by the index creation might slow other operations.

In a concurrent index build, the index is actually entered into the system catalogs in one transaction, then
two table scans occur in two more transactions. Any transaction active when the second table scan starts
can block concurrent index creation until it completes, even transactions that only reference the table after
the second table scan starts. Concurrent index creation serially waits for each old transaction to complete
using the method outlined in section Section 45.58.

If a problem arises while scanning the table, such as a uniqueness violation in a unique index, the CREATE
INDEX command will fail but leave behind an “invalid” index. This index will be ignored for querying
purposes because it might be incomplete; however it will still consume update overhead. The psql \d
command will report such an index as INVALID:

postgres=# \d tab
Table "public.tab"

Column | Type | Modifiers
--------+---------+-----------
col | integer |

Indexes:
"idx" btree (col) INVALID

The recommended recovery method in such cases is to drop the index and try again to perform CREATE

INDEX CONCURRENTLY. (Another possibility is to rebuild the index with REINDEX. However, since
REINDEX does not support concurrent builds, this option is unlikely to seem attractive.)

Another caveat when building a unique index concurrently is that the uniqueness constraint is already
being enforced against other transactions when the second table scan begins. This means that constraint
violations could be reported in other queries prior to the index becoming available for use, or even in cases
where the index build eventually fails. Also, if a failure does occur in the second scan, the “invalid” index
continues to enforce its uniqueness constraint afterwards.

Concurrent builds of expression indexes and partial indexes are supported. Errors occurring in the eval-
uation of these expressions could cause behavior similar to that described above for unique constraint
violations.

Regular index builds permit other regular index builds on the same table to occur in parallel, but only one
concurrent index build can occur on a table at a time. In both cases, no other types of schema modification

1347

CREATE INDEX

on the table are allowed meanwhile. Another difference is that a regular CREATE INDEX command can
be performed within a transaction block, but CREATE INDEX CONCURRENTLY cannot.

Notes
See Chapter 11 for information about when indexes can be used, when they are not used, and in which
particular situations they can be useful.

Caution
Hash index operations are not presently WAL-logged, so hash indexes might need
to be rebuilt with REINDEX after a database crash if there were unwritten changes.
Also, changes to hash indexes are not replicated over streaming or file-based repli-
cation after the initial base backup, so they give wrong answers to queries that
subsequently use them. For these reasons, hash index use is presently discour-
aged.

Currently, only the B-tree, GiST and GIN index methods support multicolumn indexes. Up to 32 fields
can be specified by default. (This limit can be altered when building PostgreSQL.) Only B-tree currently
supports unique indexes.

An operator class can be specified for each column of an index. The operator class identifies the operators
to be used by the index for that column. For example, a B-tree index on four-byte integers would use the
int4_ops class; this operator class includes comparison functions for four-byte integers. In practice the
default operator class for the column’s data type is usually sufficient. The main point of having operator
classes is that for some data types, there could be more than one meaningful ordering. For example, we
might want to sort a complex-number data type either by absolute value or by real part. We could do this
by defining two operator classes for the data type and then selecting the proper class when making an
index. More information about operator classes is in Section 11.9 and in Section 35.14.

For index methods that support ordered scans (currently, only B-tree), the optional clauses ASC, DESC,
NULLS FIRST, and/or NULLS LAST can be specified to modify the sort ordering of the index. Since an
ordered index can be scanned either forward or backward, it is not normally useful to create a single-
column DESC index — that sort ordering is already available with a regular index. The value of these
options is that multicolumn indexes can be created that match the sort ordering requested by a mixed-
ordering query, such as SELECT ... ORDER BY x ASC, y DESC. The NULLS options are useful if you
need to support “nulls sort low” behavior, rather than the default “nulls sort high”, in queries that depend
on indexes to avoid sorting steps.

For most index methods, the speed of creating an index is dependent on the setting of
maintenance_work_mem. Larger values will reduce the time needed for index creation, so long as you
don’t make it larger than the amount of memory really available, which would drive the machine into
swapping. For hash indexes, the value of effective_cache_size is also relevant to index creation
time: PostgreSQL will use one of two different hash index creation methods depending on whether
the estimated index size is more or less than effective_cache_size. For best results, make sure
that this parameter is also set to something reflective of available memory, and be careful that the sum
of maintenance_work_mem and effective_cache_size is less than the machine’s RAM less
whatever space is needed by other programs.

1348

CREATE INDEX

Use DROP INDEX to remove an index.

Prior releases of PostgreSQL also had an R-tree index method. This method has been removed because it
had no significant advantages over the GiST method. If USING rtree is specified, CREATE INDEX will
interpret it as USING gist, to simplify conversion of old databases to GiST.

Examples
To create a B-tree index on the column title in the table films:

CREATE UNIQUE INDEX title_idx ON films (title);

To create an index on the expression lower(title), allowing efficient case-insensitive searches:

CREATE INDEX ON films ((lower(title)));

(In this example we have chosen to omit the index name, so the system will choose a name, typically
films_lower_idx.)

To create an index with non-default collation:

CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");

To create an index with non-default sort ordering of nulls:

CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);

To create an index with non-default fill factor:

CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);

To create a GIN index with fast updates disabled:

CREATE INDEX gin_idx ON documents_table USING gin (locations) WITH (fastupdate = off);

To create an index on the column code in the table films and have the index reside in the tablespace
indexspace:

CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;

To create a GiST index on a point attribute so that we can efficiently use box operators on the result of the
conversion function:

CREATE INDEX pointloc

1349

CREATE INDEX

ON points USING gist (box(location,location));
SELECT * FROM points

WHERE box(location,location) && ’(0,0),(1,1)’::box;

To create an index without locking out writes to the table:

CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table (quantity);

Compatibility
CREATE INDEX is a PostgreSQL language extension. There are no provisions for indexes in the SQL
standard.

See Also
ALTER INDEX, DROP INDEX

1350

CREATE LANGUAGE

Name
CREATE LANGUAGE — define a new procedural language

Synopsis
CREATE [OR REPLACE] [PROCEDURAL] LANGUAGE name

CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name

HANDLER call_handler [INLINE inline_handler] [VALIDATOR valfunction]

Description
CREATE LANGUAGE registers a new procedural language with a PostgreSQL database. Subsequently,
functions and trigger procedures can be defined in this new language.

Note: As of PostgreSQL 9.1, most procedural languages have been made into “extensions”, and
should therefore be installed with CREATE EXTENSION not CREATE LANGUAGE. Direct use of CREATE
LANGUAGE should now be confined to extension installation scripts. If you have a “bare” language in
your database, perhaps as a result of an upgrade, you can convert it to an extension using CREATE

EXTENSION langname FROM unpackaged.

CREATE LANGUAGE effectively associates the language name with handler function(s) that are responsible
for executing functions written in the language. Refer to Chapter 49 for more information about language
handlers.

There are two forms of the CREATE LANGUAGE command. In the first form, the user supplies just the name
of the desired language, and the PostgreSQL server consults the pg_pltemplate system catalog to deter-
mine the correct parameters. In the second form, the user supplies the language parameters along with the
language name. The second form can be used to create a language that is not defined in pg_pltemplate,
but this approach is considered obsolescent.

When the server finds an entry in the pg_pltemplate catalog for the given language name, it will use
the catalog data even if the command includes language parameters. This behavior simplifies loading of
old dump files, which are likely to contain out-of-date information about language support functions.

Ordinarily, the user must have the PostgreSQL superuser privilege to register a new language. However,
the owner of a database can register a new language within that database if the language is listed in the
pg_pltemplate catalog and is marked as allowed to be created by database owners (tmpldbacreate is
true). The default is that trusted languages can be created by database owners, but this can be adjusted by
superusers by modifying the contents of pg_pltemplate. The creator of a language becomes its owner
and can later drop it, rename it, or assign it to a new owner.

CREATE OR REPLACE LANGUAGE will either create a new language, or replace an existing definition. If
the language already exists, its parameters are updated according to the values specified or taken from
pg_pltemplate, but the language’s ownership and permissions settings do not change, and any existing

1351

CREATE LANGUAGE

functions written in the language are assumed to still be valid. In addition to the normal privilege require-
ments for creating a language, the user must be superuser or owner of the existing language. The REPLACE
case is mainly meant to be used to ensure that the language exists. If the language has a pg_pltemplate
entry then REPLACE will not actually change anything about an existing definition, except in the unusual
case where the pg_pltemplate entry has been modified since the language was created.

Parameters

TRUSTED

TRUSTED specifies that the language does not grant access to data that the user would not otherwise
have. If this key word is omitted when registering the language, only users with the PostgreSQL
superuser privilege can use this language to create new functions.

PROCEDURAL

This is a noise word.

name

The name of the new procedural language. The name must be unique among the languages in the
database.

For backward compatibility, the name can be enclosed by single quotes.

HANDLER call_handler

call_handler is the name of a previously registered function that will be called to execute the
procedural language’s functions. The call handler for a procedural language must be written in a
compiled language such as C with version 1 call convention and registered with PostgreSQL as a
function taking no arguments and returning the language_handler type, a placeholder type that is
simply used to identify the function as a call handler.

INLINE inline_handler

inline_handler is the name of a previously registered function that will be called to execute
an anonymous code block (DO command) in this language. If no inline_handler function is
specified, the language does not support anonymous code blocks. The handler function must take
one argument of type internal, which will be the DO command’s internal representation, and it
will typically return void. The return value of the handler is ignored.

VALIDATOR valfunction

valfunction is the name of a previously registered function that will be called when a new function
in the language is created, to validate the new function. If no validator function is specified, then a
new function will not be checked when it is created. The validator function must take one argument
of type oid, which will be the OID of the to-be-created function, and will typically return void.

A validator function would typically inspect the function body for syntactical correctness, but it
can also look at other properties of the function, for example if the language cannot handle certain
argument types. To signal an error, the validator function should use the ereport() function. The
return value of the function is ignored.

The TRUSTED option and the support function name(s) are ignored if the server has an entry for the
specified language name in pg_pltemplate.

1352

CREATE LANGUAGE

Notes
The createlang program is a simple wrapper around the CREATE LANGUAGE command. It eases installa-
tion of procedural languages from the shell command line.

Use DROP LANGUAGE, or better yet the droplang program, to drop procedural languages.

The system catalog pg_language (see Section 45.27) records information about the currently installed
languages. Also, createlang has an option to list the installed languages.

To create functions in a procedural language, a user must have the USAGE privilege for the language. By
default, USAGE is granted to PUBLIC (i.e., everyone) for trusted languages. This can be revoked if desired.

Procedural languages are local to individual databases. However, a language can be installed into the
template1 database, which will cause it to be available automatically in all subsequently-created
databases.

The call handler function, the inline handler function (if any), and the validator function (if any) must
already exist if the server does not have an entry for the language in pg_pltemplate. But when there
is an entry, the functions need not already exist; they will be automatically defined if not present in
the database. (This might result in CREATE LANGUAGE failing, if the shared library that implements the
language is not available in the installation.)

In PostgreSQL versions before 7.3, it was necessary to declare handler functions as returning the place-
holder type opaque, rather than language_handler. To support loading of old dump files, CREATE
LANGUAGE will accept a function declared as returning opaque, but it will issue a notice and change the
function’s declared return type to language_handler.

Examples
The preferred way of creating any of the standard procedural languages is just:

CREATE LANGUAGE plperl;

For a language not known in the pg_pltemplate catalog, a sequence such as this is needed:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
AS ’$libdir/plsample’
LANGUAGE C;

CREATE LANGUAGE plsample
HANDLER plsample_call_handler;

Compatibility
CREATE LANGUAGE is a PostgreSQL extension.

1353

CREATE LANGUAGE

See Also
ALTER LANGUAGE, CREATE FUNCTION, DROP LANGUAGE, GRANT, REVOKE, createlang,
droplang

1354

CREATE OPERATOR

Name
CREATE OPERATOR — define a new operator

Synopsis
CREATE OPERATOR name (

PROCEDURE = function_name

[, LEFTARG = left_type] [, RIGHTARG = right_type]
[, COMMUTATOR = com_op] [, NEGATOR = neg_op]
[, RESTRICT = res_proc] [, JOIN = join_proc]
[, HASHES] [, MERGES]

)

Description
CREATE OPERATOR defines a new operator, name. The user who defines an operator becomes its owner.
If a schema name is given then the operator is created in the specified schema. Otherwise it is created in
the current schema.

The operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ?

There are a few restrictions on your choice of name:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multicharacter operator name cannot end in + or -, unless the name also contains at least one of these
characters:

~ ! @ # % ^ & | ‘ ?

For example, @- is an allowed operator name, but *- is not. This restriction allows PostgreSQL to parse
SQL-compliant commands without requiring spaces between tokens.

• The use of => as an operator name is deprecated. It may be disallowed altogether in a future release.

The operator != is mapped to <> on input, so these two names are always equivalent.

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both must be defined. For
right unary operators, only LEFTARG should be defined, while for left unary operators only RIGHTARG

should be defined.

1355

CREATE OPERATOR

The function_name procedure must have been previously defined using CREATE FUNCTION and must
be defined to accept the correct number of arguments (either one or two) of the indicated types.

The other clauses specify optional operator optimization clauses. Their meaning is detailed in Section
35.13.

To be able to create an operator, you must have USAGE privilege on the argument types and the return type,
as well as EXECUTE privilege on the underlying function. If a commutator or negator operator is specified,
you must own these operators.

Parameters

name

The name of the operator to be defined. See above for allowable characters. The name can be schema-
qualified, for example CREATE OPERATOR myschema.+ (...). If not, then the operator is created
in the current schema. Two operators in the same schema can have the same name if they operate on
different data types. This is called overloading.

function_name

The function used to implement this operator.

left_type

The data type of the operator’s left operand, if any. This option would be omitted for a left-unary
operator.

right_type

The data type of the operator’s right operand, if any. This option would be omitted for a right-unary
operator.

com_op

The commutator of this operator.

neg_op

The negator of this operator.

res_proc

The restriction selectivity estimator function for this operator.

join_proc

The join selectivity estimator function for this operator.

HASHES

Indicates this operator can support a hash join.

MERGES

Indicates this operator can support a merge join.

To give a schema-qualified operator name in com_op or the other optional arguments, use the
OPERATOR() syntax, for example:

1356

CREATE OPERATOR

COMMUTATOR = OPERATOR(myschema.===) ,

Notes
Refer to Section 35.12 for further information.

It is not possible to specify an operator’s lexical precedence in CREATE OPERATOR, because the parser’s
precedence behavior is hard-wired. See Section 4.1.6 for precedence details.

The obsolete options SORT1, SORT2, LTCMP, and GTCMP were formerly used to specify the names of sort
operators associated with a merge-joinable operator. This is no longer necessary, since information about
associated operators is found by looking at B-tree operator families instead. If one of these options is
given, it is ignored except for implicitly setting MERGES true.

Use DROP OPERATOR to delete user-defined operators from a database. Use ALTER OPERATOR to
modify operators in a database.

Examples
The following command defines a new operator, area-equality, for the data type box:

CREATE OPERATOR === (
LEFTARG = box,
RIGHTARG = box,
PROCEDURE = area_equal_procedure,
COMMUTATOR = ===,
NEGATOR = !==,
RESTRICT = area_restriction_procedure,
JOIN = area_join_procedure,
HASHES, MERGES

);

Compatibility
CREATE OPERATOR is a PostgreSQL extension. There are no provisions for user-defined operators in the
SQL standard.

See Also
ALTER OPERATOR, CREATE OPERATOR CLASS, DROP OPERATOR

1357

CREATE OPERATOR CLASS

Name
CREATE OPERATOR CLASS — define a new operator class

Synopsis
CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type

USING index_method [FAMILY family_name] AS
{ OPERATOR strategy_number operator_name [(op_type, op_type)] [FOR SEARCH | FOR ORDER BY sort_family_name]
| FUNCTION support_number [(op_type [, op_type])] function_name (argument_type [, ...])
| STORAGE storage_type

} [, ...]

Description
CREATE OPERATOR CLASS creates a new operator class. An operator class defines how a particular data
type can be used with an index. The operator class specifies that certain operators will fill particular roles
or “strategies” for this data type and this index method. The operator class also specifies the support
procedures to be used by the index method when the operator class is selected for an index column. All
the operators and functions used by an operator class must be defined before the operator class can be
created.

If a schema name is given then the operator class is created in the specified schema. Otherwise it is created
in the current schema. Two operator classes in the same schema can have the same name only if they are
for different index methods.

The user who defines an operator class becomes its owner. Presently, the creating user must be a superuser.
(This restriction is made because an erroneous operator class definition could confuse or even crash the
server.)

CREATE OPERATOR CLASS does not presently check whether the operator class definition includes all
the operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user’s responsibility to define a valid operator class.

Related operator classes can be grouped into operator families. To add a new operator class to an existing
family, specify the FAMILY option in CREATE OPERATOR CLASS. Without this option, the new class is
placed into a family named the same as the new class (creating that family if it doesn’t already exist).

Refer to Section 35.14 for further information.

Parameters

name

The name of the operator class to be created. The name can be schema-qualified.

1358

CREATE OPERATOR CLASS

DEFAULT

If present, the operator class will become the default operator class for its data type. At most one
operator class can be the default for a specific data type and index method.

data_type

The column data type that this operator class is for.

index_method

The name of the index method this operator class is for.

family_name

The name of the existing operator family to add this operator class to. If not specified, a family named
the same as the operator class is used (creating it, if it doesn’t already exist).

strategy_number

The index method’s strategy number for an operator associated with the operator class.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator class.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a left-unary or
right-unary operator. The operand data types can be omitted in the normal case where they are the
same as the operator class’s data type.

In a FUNCTION clause, the operand data type(s) the function is intended to support, if different from
the input data type(s) of the function (for B-tree comparison functions and hash functions) or the
class’s data type (for B-tree sort support functions and all functions in GiST, SP-GiST and GIN
operator classes). These defaults are correct, and so op_type need not be specified in FUNCTION

clauses, except for the case of a B-tree sort support function that is meant to support cross-data-type
comparisons.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method’s support procedure number for a function associated with the operator class.

function_name

The name (optionally schema-qualified) of a function that is an index method support procedure for
the operator class.

argument_type

The parameter data type(s) of the function.

1359

CREATE OPERATOR CLASS

storage_type

The data type actually stored in the index. Normally this is the same as the column data type, but
some index methods (currently GiST and GIN) allow it to be different. The STORAGE clause must be
omitted unless the index method allows a different type to be used.

The OPERATOR, FUNCTION, and STORAGE clauses can appear in any order.

Notes
Because the index machinery does not check access permissions on functions before using them, including
a function or operator in an operator class is tantamount to granting public execute permission on it. This
is usually not an issue for the sorts of functions that are useful in an operator class.

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

Before PostgreSQL 8.4, the OPERATOR clause could include a RECHECK option. This is no longer sup-
ported because whether an index operator is “lossy” is now determined on-the-fly at run time. This allows
efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command defines a GiST index operator class for the data type _int4 (array of
int4). See the intarray module for the complete example.

CREATE OPERATOR CLASS gist__int_ops
DEFAULT FOR TYPE _int4 USING gist AS

OPERATOR 3 &&,
OPERATOR 6 = (anyarray, anyarray),
OPERATOR 7 @>,
OPERATOR 8 <@,
OPERATOR 20 @@ (_int4, query_int),
FUNCTION 1 g_int_consistent (internal, _int4, int, oid, internal),
FUNCTION 2 g_int_union (internal, internal),
FUNCTION 3 g_int_compress (internal),
FUNCTION 4 g_int_decompress (internal),
FUNCTION 5 g_int_penalty (internal, internal, internal),
FUNCTION 6 g_int_picksplit (internal, internal),
FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility
CREATE OPERATOR CLASS is a PostgreSQL extension. There is no CREATE OPERATOR CLASS state-
ment in the SQL standard.

1360

CREATE OPERATOR CLASS

See Also
ALTER OPERATOR CLASS, DROP OPERATOR CLASS, CREATE OPERATOR FAMILY, ALTER
OPERATOR FAMILY

1361

CREATE OPERATOR FAMILY

Name
CREATE OPERATOR FAMILY — define a new operator family

Synopsis
CREATE OPERATOR FAMILY name USING index_method

Description
CREATE OPERATOR FAMILY creates a new operator family. An operator family defines a collection of
related operator classes, and perhaps some additional operators and support functions that are compatible
with these operator classes but not essential for the functioning of any individual index. (Operators and
functions that are essential to indexes should be grouped within the relevant operator class, rather than
being “loose” in the operator family. Typically, single-data-type operators are bound to operator classes,
while cross-data-type operators can be loose in an operator family containing operator classes for both
data types.)

The new operator family is initially empty. It should be populated by issuing subsequent CREATE

OPERATOR CLASS commands to add contained operator classes, and optionally ALTER OPERATOR

FAMILY commands to add “loose” operators and their corresponding support functions.

If a schema name is given then the operator family is created in the specified schema. Otherwise it is
created in the current schema. Two operator families in the same schema can have the same name only if
they are for different index methods.

The user who defines an operator family becomes its owner. Presently, the creating user must be a su-
peruser. (This restriction is made because an erroneous operator family definition could confuse or even
crash the server.)

Refer to Section 35.14 for further information.

Parameters

name

The name of the operator family to be created. The name can be schema-qualified.

index_method

The name of the index method this operator family is for.

1362

CREATE OPERATOR FAMILY

Compatibility
CREATE OPERATOR FAMILY is a PostgreSQL extension. There is no CREATE OPERATOR FAMILY state-
ment in the SQL standard.

See Also
ALTER OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS, ALTER
OPERATOR CLASS, DROP OPERATOR CLASS

1363

CREATE ROLE

Name
CREATE ROLE — define a new database role

Synopsis
CREATE ROLE name [[WITH] option [...]]

where option can be:

SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| CREATEUSER | NOCREATEUSER
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| REPLICATION | NOREPLICATION
| CONNECTION LIMIT connlimit

| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password’
| VALID UNTIL ’timestamp’
| IN ROLE role_name [, ...]
| IN GROUP role_name [, ...]
| ROLE role_name [, ...]
| ADMIN role_name [, ...]
| USER role_name [, ...]
| SYSID uid

Description
CREATE ROLE adds a new role to a PostgreSQL database cluster. A role is an entity that can own database
objects and have database privileges; a role can be considered a “user”, a “group”, or both depending on
how it is used. Refer to Chapter 20 and Chapter 19 for information about managing users and authentica-
tion. You must have CREATEROLE privilege or be a database superuser to use this command.

Note that roles are defined at the database cluster level, and so are valid in all databases in the cluster.

Parameters

name

The name of the new role.

1364

CREATE ROLE

SUPERUSER

NOSUPERUSER

These clauses determine whether the new role is a “superuser”, who can override all access restric-
tions within the database. Superuser status is dangerous and should be used only when really needed.
You must yourself be a superuser to create a new superuser. If not specified, NOSUPERUSER is the
default.

CREATEDB

NOCREATEDB

These clauses define a role’s ability to create databases. If CREATEDB is specified, the role being
defined will be allowed to create new databases. Specifying NOCREATEDB will deny a role the ability
to create databases. If not specified, NOCREATEDB is the default.

CREATEROLE

NOCREATEROLE

These clauses determine whether a role will be permitted to create new roles (that is, execute CREATE
ROLE). A role with CREATEROLE privilege can also alter and drop other roles. If not specified,
NOCREATEROLE is the default.

CREATEUSER

NOCREATEUSER

These clauses are an obsolete, but still accepted, spelling of SUPERUSER and NOSUPERUSER. Note
that they are not equivalent to CREATEROLE as one might naively expect!

INHERIT

NOINHERIT

These clauses determine whether a role “inherits” the privileges of roles it is a member of. A role
with the INHERIT attribute can automatically use whatever database privileges have been granted to
all roles it is directly or indirectly a member of. Without INHERIT, membership in another role only
grants the ability to SET ROLE to that other role; the privileges of the other role are only available
after having done so. If not specified, INHERIT is the default.

LOGIN

NOLOGIN

These clauses determine whether a role is allowed to log in; that is, whether the role can be given
as the initial session authorization name during client connection. A role having the LOGIN attribute
can be thought of as a user. Roles without this attribute are useful for managing database privileges,
but are not users in the usual sense of the word. If not specified, NOLOGIN is the default, except when
CREATE ROLE is invoked through its alternative spelling CREATE USER.

REPLICATION

NOREPLICATION

These clauses determine whether a role is allowed to initiate streaming replication or put the system
in and out of backup mode. A role having the REPLICATION attribute is a very highly privileged role,
and should only be used on roles actually used for replication. If not specified, NOREPLICATION is
the default.

1365

CREATE ROLE

CONNECTION LIMIT connlimit

If role can log in, this specifies how many concurrent connections the role can make. -1 (the default)
means no limit.

PASSWORD password

Sets the role’s password. (A password is only of use for roles having the LOGIN attribute, but you
can nonetheless define one for roles without it.) If you do not plan to use password authentication
you can omit this option. If no password is specified, the password will be set to null and password
authentication will always fail for that user. A null password can optionally be written explicitly as
PASSWORD NULL.

ENCRYPTED

UNENCRYPTED

These key words control whether the password is stored encrypted in the system catalogs. (If neither
is specified, the default behavior is determined by the configuration parameter password_encryption.)
If the presented password string is already in MD5-encrypted format, then it is stored encrypted
as-is, regardless of whether ENCRYPTED or UNENCRYPTED is specified (since the system cannot de-
crypt the specified encrypted password string). This allows reloading of encrypted passwords during
dump/restore.

Note that older clients might lack support for the MD5 authentication mechanism that is needed to
work with passwords that are stored encrypted.

VALID UNTIL ’timestamp’

The VALID UNTIL clause sets a date and time after which the role’s password is no longer valid. If
this clause is omitted the password will be valid for all time.

IN ROLE role_name

The IN ROLE clause lists one or more existing roles to which the new role will be immediately added
as a new member. (Note that there is no option to add the new role as an administrator; use a separate
GRANT command to do that.)

IN GROUP role_name

IN GROUP is an obsolete spelling of IN ROLE.

ROLE role_name

The ROLE clause lists one or more existing roles which are automatically added as members of the
new role. (This in effect makes the new role a “group”.)

ADMIN role_name

The ADMIN clause is like ROLE, but the named roles are added to the new role WITH ADMIN OPTION,
giving them the right to grant membership in this role to others.

USER role_name

The USER clause is an obsolete spelling of the ROLE clause.

SYSID uid

The SYSID clause is ignored, but is accepted for backwards compatibility.

1366

CREATE ROLE

Notes
Use ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role. All the attributes
specified by CREATE ROLE can be modified by later ALTER ROLE commands.

The preferred way to add and remove members of roles that are being used as groups is to use GRANT
and REVOKE.

The VALID UNTIL clause defines an expiration time for a password only, not for the role per se. In
particular, the expiration time is not enforced when logging in using a non-password-based authentication
method.

The INHERIT attribute governs inheritance of grantable privileges (that is, access privileges for database
objects and role memberships). It does not apply to the special role attributes set by CREATE ROLE and
ALTER ROLE. For example, being a member of a role with CREATEDB privilege does not immediately
grant the ability to create databases, even if INHERIT is set; it would be necessary to become that role via
SET ROLE before creating a database.

The INHERIT attribute is the default for reasons of backwards compatibility: in prior releases of Post-
greSQL, users always had access to all privileges of groups they were members of. However, NOINHERIT
provides a closer match to the semantics specified in the SQL standard.

Be careful with the CREATEROLE privilege. There is no concept of inheritance for the privileges of a
CREATEROLE-role. That means that even if a role does not have a certain privilege but is allowed to create
other roles, it can easily create another role with different privileges than its own (except for creating
roles with superuser privileges). For example, if the role “user” has the CREATEROLE privilege but not the
CREATEDB privilege, nonetheless it can create a new role with the CREATEDB privilege. Therefore, regard
roles that have the CREATEROLE privilege as almost-superuser-roles.

PostgreSQL includes a program createuser that has the same functionality as CREATE ROLE (in fact, it
calls this command) but can be run from the command shell.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the role, it is possible that both will fail. Also, the
limit is never enforced for superusers.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client’s command history or
the server log. The command createuser, however, transmits the password encrypted. Also, psql contains
a command \password that can be used to safely change the password later.

Examples
Create a role that can log in, but don’t give it a password:

CREATE ROLE jonathan LOGIN;

Create a role with a password:

CREATE USER davide WITH PASSWORD ’jw8s0F4’;

(CREATE USER is the same as CREATE ROLE except that it implies LOGIN.)

1367

CREATE ROLE

Create a role with a password that is valid until the end of 2004. After one second has ticked in 2005, the
password is no longer valid.

CREATE ROLE miriam WITH LOGIN PASSWORD ’jw8s0F4’ VALID UNTIL ’2005-01-01’;

Create a role that can create databases and manage roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Compatibility
The CREATE ROLE statement is in the SQL standard, but the standard only requires the syntax

CREATE ROLE name [WITH ADMIN role_name]

Multiple initial administrators, and all the other options of CREATE ROLE, are PostgreSQL extensions.

The SQL standard defines the concepts of users and roles, but it regards them as distinct concepts and
leaves all commands defining users to be specified by each database implementation. In PostgreSQL we
have chosen to unify users and roles into a single kind of entity. Roles therefore have many more optional
attributes than they do in the standard.

The behavior specified by the SQL standard is most closely approximated by giving users the NOINHERIT
attribute, while roles are given the INHERIT attribute.

See Also
SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE, createuser

1368

CREATE RULE

Name
CREATE RULE — define a new rewrite rule

Synopsis
CREATE [OR REPLACE] RULE name AS ON event

TO table_name [WHERE condition]
DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

Description
CREATE RULE defines a new rule applying to a specified table or view. CREATE OR REPLACE RULE will
either create a new rule, or replace an existing rule of the same name for the same table.

The PostgreSQL rule system allows one to define an alternative action to be performed on insertions,
updates, or deletions in database tables. Roughly speaking, a rule causes additional commands to be
executed when a given command on a given table is executed. Alternatively, an INSTEAD rule can replace
a given command by another, or cause a command not to be executed at all. Rules are used to implement
table views as well. It is important to realize that a rule is really a command transformation mechanism, or
command macro. The transformation happens before the execution of the commands starts. If you actually
want an operation that fires independently for each physical row, you probably want to use a trigger, not a
rule. More information about the rules system is in Chapter 37.

Presently, ON SELECT rules must be unconditional INSTEAD rules and must have actions that consist of a
single SELECT command. Thus, an ON SELECT rule effectively turns the table into a view, whose visible
contents are the rows returned by the rule’s SELECT command rather than whatever had been stored in the
table (if anything). It is considered better style to write a CREATE VIEW command than to create a real
table and define an ON SELECT rule for it.

You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE, and ON DELETE

rules (or any subset of those that’s sufficient for your purposes) to replace update actions on the view
with appropriate updates on other tables. If you want to support INSERT RETURNING and so on, then be
sure to put a suitable RETURNING clause into each of these rules. Alternatively, an updatable view can be
implemented using INSTEAD OF triggers (see CREATE TRIGGER).

There is a catch if you try to use conditional rules for view updates: there must be an unconditional
INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or is not INSTEAD,
then the system will still reject attempts to perform the update action, because it thinks it might end up
trying to perform the action on the dummy table of the view in some cases. If you want to handle all
the useful cases in conditional rules, add an unconditional DO INSTEAD NOTHING rule to ensure that the
system understands it will never be called on to update the dummy table. Then make the conditional rules
non-INSTEAD; in the cases where they are applied, they add to the default INSTEAD NOTHING action.
(This method does not currently work to support RETURNING queries, however.)

1369

CREATE RULE

Parameters

name

The name of a rule to create. This must be distinct from the name of any other rule for the same table.
Multiple rules on the same table and same event type are applied in alphabetical name order.

event

The event is one of SELECT, INSERT, UPDATE, or DELETE.

table_name

The name (optionally schema-qualified) of the table or view the rule applies to.

condition

Any SQL conditional expression (returning boolean). The condition expression cannot refer to any
tables except NEW and OLD, and cannot contain aggregate functions.

INSTEAD

INSTEAD indicates that the commands should be executed instead of the original command.

ALSO

ALSO indicates that the commands should be executed in addition to the original command.

If neither ALSO nor INSTEAD is specified, ALSO is the default.

command

The command or commands that make up the rule action. Valid commands are SELECT, INSERT,
UPDATE, DELETE, or NOTIFY.

Within condition and command, the special table names NEW and OLD can be used to refer to values
in the referenced table. NEW is valid in ON INSERT and ON UPDATE rules to refer to the new row being
inserted or updated. OLD is valid in ON UPDATE and ON DELETE rules to refer to the existing row being
updated or deleted.

Notes
You must be the owner of a table to create or change rules for it.

In a rule for INSERT, UPDATE, or DELETE on a view, you can add a RETURNING clause that emits the
view’s columns. This clause will be used to compute the outputs if the rule is triggered by an INSERT

RETURNING, UPDATE RETURNING, or DELETE RETURNING command respectively. When the rule is trig-
gered by a command without RETURNING, the rule’s RETURNING clause will be ignored. The current im-
plementation allows only unconditional INSTEAD rules to contain RETURNING; furthermore there can be
at most one RETURNING clause among all the rules for the same event. (This ensures that there is only one
candidate RETURNING clause to be used to compute the results.) RETURNING queries on the view will be
rejected if there is no RETURNING clause in any available rule.

It is very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by PostgreSQL, the SELECT command would cause PostgreSQL to report an
error because of recursive expansion of a rule:

1370

CREATE RULE

CREATE RULE "_RETURN" AS
ON SELECT TO t1
DO INSTEAD

SELECT * FROM t2;

CREATE RULE "_RETURN" AS
ON SELECT TO t2
DO INSTEAD

SELECT * FROM t1;

SELECT * FROM t1;

Presently, if a rule action contains a NOTIFY command, the NOTIFY command will be executed uncondi-
tionally, that is, the NOTIFY will be issued even if there are not any rows that the rule should apply to. For
example, in:

CREATE RULE notify_me AS ON UPDATE TO mytable DO ALSO NOTIFY mytable;

UPDATE mytable SET name = ’foo’ WHERE id = 42;

one NOTIFY event will be sent during the UPDATE, whether or not there are any rows that match the
condition id = 42. This is an implementation restriction that might be fixed in future releases.

Compatibility
CREATE RULE is a PostgreSQL language extension, as is the entire query rewrite system.

1371

CREATE SCHEMA

Name
CREATE SCHEMA — define a new schema

Synopsis
CREATE SCHEMA schema_name [AUTHORIZATION user_name] [schema_element [...]]
CREATE SCHEMA AUTHORIZATION user_name [schema_element [...]]

Description
CREATE SCHEMA enters a new schema into the current database. The schema name must be distinct from
the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types, functions, and oper-
ators) whose names can duplicate those of other objects existing in other schemas. Named objects are
accessed either by “qualifying” their names with the schema name as a prefix, or by setting a search path
that includes the desired schema(s). A CREATE command specifying an unqualified object name creates
the object in the current schema (the one at the front of the search path, which can be determined with the
function current_schema).

Optionally, CREATE SCHEMA can include subcommands to create objects within the new schema. The
subcommands are treated essentially the same as separate commands issued after creating the schema,
except that if the AUTHORIZATION clause is used, all the created objects will be owned by that user.

Parameters

schema_name

The name of a schema to be created. If this is omitted, the user_name is used as the schema name.
The name cannot begin with pg_, as such names are reserved for system schemas.

user_name

The role name of the user who will own the new schema. If omitted, defaults to the user executing
the command. To create a schema owned by another role, you must be a direct or indirect member of
that role, or be a superuser.

schema_element

An SQL statement defining an object to be created within the schema. Currently, only CREATE

TABLE, CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE TRIGGER and GRANT are ac-
cepted as clauses within CREATE SCHEMA. Other kinds of objects may be created in separate com-
mands after the schema is created.

1372

CREATE SCHEMA

Notes
To create a schema, the invoking user must have the CREATE privilege for the current database. (Of course,
superusers bypass this check.)

Examples
Create a schema:

CREATE SCHEMA myschema;

Create a schema for user joe; the schema will also be named joe:

CREATE SCHEMA AUTHORIZATION joe;

Create a schema and create a table and view within it:

CREATE SCHEMA hollywood
CREATE TABLE films (title text, release date, awards text[])
CREATE VIEW winners AS

SELECT title, release FROM films WHERE awards IS NOT NULL;

Notice that the individual subcommands do not end with semicolons.

The following is an equivalent way of accomplishing the same result:

CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards text[]);
CREATE VIEW hollywood.winners AS

SELECT title, release FROM hollywood.films WHERE awards IS NOT NULL;

Compatibility
The SQL standard allows a DEFAULT CHARACTER SET clause in CREATE SCHEMA, as well as more sub-
command types than are presently accepted by PostgreSQL.

The SQL standard specifies that the subcommands in CREATE SCHEMA can appear in any order. The
present PostgreSQL implementation does not handle all cases of forward references in subcommands; it
might sometimes be necessary to reorder the subcommands in order to avoid forward references.

According to the SQL standard, the owner of a schema always owns all objects within it. PostgreSQL
allows schemas to contain objects owned by users other than the schema owner. This can happen only if
the schema owner grants the CREATE privilege on his schema to someone else, or a superuser chooses to
create objects in it.

1373

CREATE SCHEMA

See Also
ALTER SCHEMA, DROP SCHEMA

1374

CREATE SEQUENCE

Name
CREATE SEQUENCE — define a new sequence generator

Synopsis
CREATE [TEMPORARY | TEMP] SEQUENCE name [INCREMENT [BY] increment]

[MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache] [[NO] CYCLE]
[OWNED BY { table_name.column_name | NONE }]

Description
CREATE SEQUENCE creates a new sequence number generator. This involves creating and initializing a
new special single-row table with the name name. The generator will be owned by the user issuing the
command.

If a schema name is given then the sequence is created in the specified schema. Otherwise it is created in
the current schema. Temporary sequences exist in a special schema, so a schema name cannot be given
when creating a temporary sequence. The sequence name must be distinct from the name of any other
sequence, table, index, view, or foreign table in the same schema.

After a sequence is created, you use the functions nextval, currval, and setval to operate on the
sequence. These functions are documented in Section 9.16.

Although you cannot update a sequence directly, you can use a query like:

SELECT * FROM name;

to examine the parameters and current state of a sequence. In particular, the last_value field of the
sequence shows the last value allocated by any session. (Of course, this value might be obsolete by the
time it’s printed, if other sessions are actively doing nextval calls.)

Parameters

TEMPORARY or TEMP

If specified, the sequence object is created only for this session, and is automatically dropped on
session exit. Existing permanent sequences with the same name are not visible (in this session) while
the temporary sequence exists, unless they are referenced with schema-qualified names.

name

The name (optionally schema-qualified) of the sequence to be created.

1375

CREATE SEQUENCE

increment

The optional clause INCREMENT BY increment specifies which value is added to the current se-
quence value to create a new value. A positive value will make an ascending sequence, a negative
one a descending sequence. The default value is 1.

minvalue

NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate.
If this clause is not supplied or NO MINVALUE is specified, then defaults will be used. The defaults
are 1 and -263-1 for ascending and descending sequences, respectively.

maxvalue

NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If this
clause is not supplied or NO MAXVALUE is specified, then default values will be used. The defaults
are 263-1 and -1 for ascending and descending sequences, respectively.

start

The optional clause START WITH start allows the sequence to begin anywhere. The default start-
ing value is minvalue for ascending sequences and maxvalue for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers are to be preallocated and
stored in memory for faster access. The minimum value is 1 (only one value can be generated at a
time, i.e., no cache), and this is also the default.

CYCLE

NO CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue has been
reached by an ascending or descending sequence respectively. If the limit is reached, the next number
generated will be the minvalue or maxvalue, respectively.

If NO CYCLE is specified, any calls to nextval after the sequence has reached its maximum value
will return an error. If neither CYCLE or NO CYCLE are specified, NO CYCLE is the default.

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such that
if that column (or its whole table) is dropped, the sequence will be automatically dropped as well.
The specified table must have the same owner and be in the same schema as the sequence. OWNED
BY NONE, the default, specifies that there is no such association.

Notes
Use DROP SEQUENCE to remove a sequence.

Sequences are based on bigint arithmetic, so the range cannot exceed the range of an eight-byte in-
teger (-9223372036854775808 to 9223372036854775807). On some older platforms, there might be no

1376

CREATE SEQUENCE

compiler support for eight-byte integers, in which case sequences use regular integer arithmetic (range
-2147483648 to +2147483647).

Unexpected results might be obtained if a cache setting greater than one is used for a sequence object
that will be used concurrently by multiple sessions. Each session will allocate and cache successive se-
quence values during one access to the sequence object and increase the sequence object’s last_value
accordingly. Then, the next cache-1 uses of nextval within that session simply return the preallocated
values without touching the sequence object. So, any numbers allocated but not used within a session will
be lost when that session ends, resulting in “holes” in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values
might be generated out of sequence when all the sessions are considered. For example, with a cache

setting of 10, session A might reserve values 1..10 and return nextval=1, then session B might reserve
values 11..20 and return nextval=11 before session A has generated nextval=2. Thus, with a cache

setting of one it is safe to assume that nextval values are generated sequentially; with a cache setting
greater than one you should only assume that the nextval values are all distinct, not that they are gener-
ated purely sequentially. Also, last_value will reflect the latest value reserved by any session, whether
or not it has yet been returned by nextval.

Another consideration is that a setval executed on such a sequence will not be noticed by other sessions
until they have used up any preallocated values they have cached.

Examples
Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:

SELECT nextval(’serial’);

nextval

101

Select the next number from this sequence:

SELECT nextval(’serial’);

nextval

102

Use this sequence in an INSERT command:

INSERT INTO distributors VALUES (nextval(’serial’), ’nothing’);

1377

CREATE SEQUENCE

Update the sequence value after a COPY FROM:

BEGIN;
COPY distributors FROM ’input_file’;
SELECT setval(’serial’, max(id)) FROM distributors;
END;

Compatibility
CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:

• The standard’s AS <data type> expression is not supported.

• Obtaining the next value is done using the nextval() function instead of the standard’s NEXT VALUE

FOR expression.

• The OWNED BY clause is a PostgreSQL extension.

See Also
ALTER SEQUENCE, DROP SEQUENCE

1378

CREATE SERVER

Name
CREATE SERVER — define a new foreign server

Synopsis
CREATE SERVER server_name [TYPE ’server_type’] [VERSION ’server_version’]

FOREIGN DATA WRAPPER fdw_name

[OPTIONS (option ’value’ [, ...])]

Description
CREATE SERVER defines a new foreign server. The user who defines the server becomes its owner.

A foreign server typically encapsulates connection information that a foreign-data wrapper uses to access
an external data resource. Additional user-specific connection information may be specified by means of
user mappings.

The server name must be unique within the database.

Creating a server requires USAGE privilege on the foreign-data wrapper being used.

Parameters

server_name

The name of the foreign server to be created.

server_type

Optional server type.

server_version

Optional server version.

fdw_name

The name of the foreign-data wrapper that manages the server.

OPTIONS (option ’value’ [, ...])

This clause specifies the options for the server. The options typically define the connection details of
the server, but the actual names and values are dependent on the server’s foreign-data wrapper.

1379

CREATE SERVER

Notes
When using the dblink module (see dblink), the foreign server name can be used as an argument of the
dblink_connect function to indicate the connection parameters. See also there for more examples. It is
necessary to have the USAGE privilege on the foreign server to be able to use it in this way.

Examples
Create a server foo that uses the built-in foreign-data wrapper default:

CREATE SERVER foo FOREIGN DATA WRAPPER "default";

Create a server myserver that uses the foreign-data wrapper pgsql:

CREATE SERVER myserver FOREIGN DATA WRAPPER pgsql OPTIONS (host ’foo’, dbname ’foodb’, port ’5432’);

Compatibility
CREATE SERVER conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER SERVER, DROP SERVER, CREATE FOREIGN DATA WRAPPER, CREATE USER MAP-
PING

1380

CREATE TABLE

Name
CREATE TABLE — define a new table

Synopsis
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS] table_name ([
{ column_name data_type [COLLATE collation] [column_constraint [...]]

| table_constraint

| LIKE source_table [like_option ...] }
[, ...]

])
[INHERITS (parent_table [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS] table_name

OF type_name [(
{ column_name WITH OPTIONS [column_constraint [...]]

| table_constraint }
[, ...]

)]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
NULL |
CHECK (expression) [NO INHERIT] |
DEFAULT default_expr |
UNIQUE index_parameters |
PRIMARY KEY index_parameters |
REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE action] [ON UPDATE action] }

[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
UNIQUE (column_name [, ...]) index_parameters |
PRIMARY KEY (column_name [, ...]) index_parameters |
EXCLUDE [USING index_method] (exclude_element WITH operator [, ...]) index_parameters [WHERE (predicate)] |
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE action] }

1381

CREATE TABLE

[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and like_option is:

{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | ALL }

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST }]

Description
CREATE TABLE will create a new, initially empty table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then the table is
created in the specified schema. Otherwise it is created in the current schema. Temporary tables exist in
a special schema, so a schema name cannot be given when creating a temporary table. The name of the
table must be distinct from the name of any other table, sequence, index, view, or foreign table in the same
schema.

CREATE TABLE also automatically creates a data type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same name as any existing data type in the same
schema.

The optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an
insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid
values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A column constraint is
defined as part of a column definition. A table constraint definition is not tied to a particular column, and it
can encompass more than one column. Every column constraint can also be written as a table constraint;
a column constraint is only a notational convenience for use when the constraint only affects one column.

To be able to create a table, you must have USAGE privilege on all column types or the type in the OF

clause, respectively.

Parameters

TEMPORARY or TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped
at the end of a session, or optionally at the end of the current transaction (see ON COMMIT below).
Existing permanent tables with the same name are not visible to the current session while the tempo-

1382

CREATE TABLE

rary table exists, unless they are referenced with schema-qualified names. Any indexes created on a
temporary table are automatically temporary as well.

The autovacuum daemon cannot access and therefore cannot vacuum or analyze temporary tables.
For this reason, appropriate vacuum and analyze operations should be performed via session SQL
commands. For example, if a temporary table is going to be used in complex queries, it is wise to run
ANALYZE on the temporary table after it is populated.

Optionally, GLOBAL or LOCAL can be written before TEMPORARY or TEMP. This presently makes no
difference in PostgreSQL and is deprecated; see Compatibility.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables is not written
to the write-ahead log (see Chapter 29), which makes them considerably faster than ordinary tables.
However, they are not crash-safe: an unlogged table is automatically truncated after a crash or unclean
shutdown. The contents of an unlogged table are also not replicated to standby servers. Any indexes
created on an unlogged table are automatically unlogged as well; however, unlogged GiST indexes
are currently not supported and cannot be created on an unlogged table.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have been
created.

table_name

The name (optionally schema-qualified) of the table to be created.

OF type_name

Creates a typed table, which takes its structure from the specified composite type (name optionally
schema-qualified). A typed table is tied to its type; for example the table will be dropped if the type
is dropped (with DROP TYPE ... CASCADE).

When a typed table is created, then the data types of the columns are determined by the underlying
composite type and are not specified by the CREATE TABLE command. But the CREATE TABLE

command can add defaults and constraints to the table and can specify storage parameters.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data
types supported by PostgreSQL, refer to Chapter 8.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type). If
not specified, the column data type’s default collation is used.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new table automatically
inherits all columns.

1383

CREATE TABLE

Use of INHERITS creates a persistent relationship between the new child table and its parent table(s).
Schema modifications to the parent(s) normally propagate to children as well, and by default the data
of the child table is included in scans of the parent(s).

If the same column name exists in more than one parent table, an error is reported unless the data
types of the columns match in each of the parent tables. If there is no conflict, then the duplicate
columns are merged to form a single column in the new table. If the column name list of the new
table contains a column name that is also inherited, the data type must likewise match the inherited
column(s), and the column definitions are merged into one. If the new table explicitly specifies a
default value for the column, this default overrides any defaults from inherited declarations of the
column. Otherwise, any parents that specify default values for the column must all specify the same
default, or an error will be reported.

CHECK constraints are merged in essentially the same way as columns: if multiple parent tables
and/or the new table definition contain identically-named CHECK constraints, these constraints must
all have the same check expression, or an error will be reported. Constraints having the same name
and expression will be merged into one copy. A constraint marked NO INHERIT in a parent will not
be considered. Notice that an unnamed CHECK constraint in the new table will never be merged, since
a unique name will always be chosen for it.

Column STORAGE settings are also copied from parent tables.

LIKE source_table [like_option ...]

The LIKE clause specifies a table from which the new table automatically copies all column names,
their data types, and their not-null constraints.

Unlike INHERITS, the new table and original table are completely decoupled after creation is com-
plete. Changes to the original table will not be applied to the new table, and it is not possible to
include data of the new table in scans of the original table.

Default expressions for the copied column definitions will only be copied if INCLUDING DEFAULTS

is specified. The default behavior is to exclude default expressions, resulting in the copied columns
in the new table having null defaults.

Not-null constraints are always copied to the new table. CHECK constraints will only be copied if
INCLUDING CONSTRAINTS is specified; other types of constraints will never be copied. Also, no
distinction is made between column constraints and table constraints — when constraints are re-
quested, all check constraints are copied.

Any indexes on the original table will not be created on the new table, unless the INCLUDING

INDEXES clause is specified.

STORAGE settings for the copied column definitions will only be copied if INCLUDING STORAGE is
specified. The default behavior is to exclude STORAGE settings, resulting in the copied columns in
the new table having type-specific default settings. For more on STORAGE settings, see Section 56.2.

Comments for the copied columns, constraints, and indexes will only be copied if INCLUDING

COMMENTS is specified. The default behavior is to exclude comments, resulting in the copied columns
and constraints in the new table having no comments.

INCLUDING ALL is an abbreviated form of INCLUDING DEFAULTS INCLUDING CONSTRAINTS

INCLUDING INDEXES INCLUDING STORAGE INCLUDING COMMENTS.

Note also that unlike INHERITS, columns and constraints copied by LIKE are not merged with sim-
ilarly named columns and constraints. If the same name is specified explicitly or in another LIKE

1384

CREATE TABLE

clause, an error is signalled.

The LIKE clause can also be used to copy columns from views, foreign tables, or composite types.
Inapplicable options (e.g., INCLUDING INDEXES from a view) are ignored.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint name is
present in error messages, so constraint names like col must be positive can be used to com-
municate helpful constraint information to client applications. (Double-quotes are needed to specify
constraint names that contain spaces.) If a constraint name is not specified, the system generates a
name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discour-
aged in new applications.

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which new or updated rows
must satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE or UN-
KNOWN succeed. Should any row of an insert or update operation produce a FALSE result an error
exception is raised and the insert or update does not alter the database. A check constraint specified
as a column constraint should reference that column’s value only, while an expression appearing in a
table constraint can reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns of
the current row.

A constraint marked with NO INHERIT will not propagate to child tables.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (subqueries and cross-references to other columns
in the current table are not allowed). The data type of the default expression must match the data type
of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

UNIQUE (column constraint)
UNIQUE (column_name [, ...]) (table constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table can contain only
unique values. The behavior of the unique table constraint is the same as that for column constraints,
with the additional capability to span multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

1385

CREATE TABLE

Each unique table constraint must name a set of columns that is different from the set of columns
named by any other unique or primary key constraint defined for the table. (Otherwise it would just
be the same constraint listed twice.)

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...]) (table constraint)

The primary key constraint specifies that a column or columns of a table can contain only unique
(non-duplicate), nonnull values. Technically, PRIMARY KEY is merely a combination of UNIQUE and
NOT NULL, but identifying a set of columns as primary key also provides metadata about the design
of the schema, as a primary key implies that other tables can rely on this set of columns as a unique
identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint or a table constraint.

The primary key constraint should name a set of columns that is different from other sets of columns
named by any unique constraint defined for the same table.

EXCLUDE [USING index_method] (exclude_element WITH operator [, ...])

index_parameters [WHERE (predicate)]

The EXCLUDE clause defines an exclusion constraint, which guarantees that if any two rows are
compared on the specified column(s) or expression(s) using the specified operator(s), not all of these
comparisons will return TRUE. If all of the specified operators test for equality, this is equivalent
to a UNIQUE constraint, although an ordinary unique constraint will be faster. However, exclusion
constraints can specify constraints that are more general than simple equality. For example, you can
specify a constraint that no two rows in the table contain overlapping circles (see Section 8.8) by
using the && operator.

Exclusion constraints are implemented using an index, so each specified operator must be associated
with an appropriate operator class (see Section 11.9) for the index access method index_method.
The operators are required to be commutative. Each exclude_element can optionally specify an
operator class and/or ordering options; these are described fully under CREATE INDEX.

The access method must support amgettuple (see Chapter 52); at present this means GIN cannot
be used. Although it’s allowed, there is little point in using B-tree or hash indexes with an exclusion
constraint, because this does nothing that an ordinary unique constraint doesn’t do better. So in
practice the access method will always be GiST or SP-GiST.

The predicate allows you to specify an exclusion constraint on a subset of the table; internally this
creates a partial index. Note that parentheses are required around the predicate.

REFERENCES reftable [(refcolumn)] [MATCH matchtype] [ON DELETE action] [

ON UPDATE action] (column constraint)
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...]

)] [MATCH matchtype] [ON DELETE action] [ON UPDATE action] (table constraint)

These clauses specify a foreign key constraint, which requires that a group of one or more columns
of the new table must only contain values that match values in the referenced column(s) of some
row of the referenced table. If refcolumn is omitted, the primary key of the reftable is used. The
referenced columns must be the columns of a non-deferrable unique or primary key constraint in the
referenced table. Note that foreign key constraints cannot be defined between temporary tables and
permanent tables.

1386

CREATE TABLE

A value inserted into the referencing column(s) is matched against the values of the referenced table
and referenced columns using the given match type. There are three match types: MATCH FULL,
MATCH PARTIAL, and MATCH SIMPLE, which is also the default. MATCH FULL will not allow one
column of a multicolumn foreign key to be null unless all foreign key columns are null. MATCH
SIMPLE allows some foreign key columns to be null while other parts of the foreign key are not null.
MATCH PARTIAL is not yet implemented.

In addition, when the data in the referenced columns is changed, certain actions are performed on the
data in this table’s columns. The ON DELETE clause specifies the action to perform when a referenced
row in the referenced table is being deleted. Likewise, the ON UPDATE clause specifies the action to
perform when a referenced column in the referenced table is being updated to a new value. If the row
is updated, but the referenced column is not actually changed, no action is done. Referential actions
other than the NO ACTION check cannot be deferred, even if the constraint is declared deferrable.
There are the following possible actions for each clause:

NO ACTION

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. If the constraint is deferred, this error will be produced at constraint check time if
there still exist any referencing rows. This is the default action.

RESTRICT

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. This is the same as NO ACTION except that the check is not deferrable.

CASCADE

Delete any rows referencing the deleted row, or update the value of the referencing column to
the new value of the referenced column, respectively.

SET NULL

Set the referencing column(s) to null.

SET DEFAULT

Set the referencing column(s) to their default values.

If the referenced column(s) are changed frequently, it might be wise to add an index to the foreign
key column so that referential actions associated with the foreign key column can be performed more
efficiently.

DEFERRABLE

NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will be
checked immediately after every command. Checking of constraints that are deferrable can be
postponed until the end of the transaction (using the SET CONSTRAINTS command). NOT

DEFERRABLE is the default. Currently, only UNIQUE, PRIMARY KEY, EXCLUDE, and REFERENCES

(foreign key) constraints accept this clause. NOT NULL and CHECK constraints are not deferrable.

1387

CREATE TABLE

INITIALLY IMMEDIATE

INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint is INITIALLY IMMEDIATE, it is checked after each statement. This is the default. If the
constraint is INITIALLY DEFERRED, it is checked only at the end of the transaction. The constraint
check time can be altered with the SET CONSTRAINTS command.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for a table or index; see Storage Parameters for
more information. The WITH clause for a table can also include OIDS=TRUE (or just OIDS) to specify
that rows of the new table should have OIDs (object identifiers) assigned to them, or OIDS=FALSE
to specify that the rows should not have OIDs. If OIDS is not specified, the default setting depends
upon the default_with_oids configuration parameter. (If the new table inherits from any tables that
have OIDs, then OIDS=TRUE is forced even if the command says OIDS=FALSE.)

If OIDS=FALSE is specified or implied, the new table does not store OIDs and no OID will be as-
signed for a row inserted into it. This is generally considered worthwhile, since it will reduce OID
consumption and thereby postpone the wraparound of the 32-bit OID counter. Once the counter
wraps around, OIDs can no longer be assumed to be unique, which makes them considerably less
useful. In addition, excluding OIDs from a table reduces the space required to store the table on disk
by 4 bytes per row (on most machines), slightly improving performance.

To remove OIDs from a table after it has been created, use ALTER TABLE.

WITH OIDS

WITHOUT OIDS

These are obsolescent syntaxes equivalent to WITH (OIDS) and WITH (OIDS=FALSE), respec-
tively. If you wish to give both an OIDS setting and storage parameters, you must use the WITH

(...) syntax; see above.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON

COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If not
specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary.

1388

CREATE TABLE

USING INDEX TABLESPACE tablespace_name

This clause allows selection of the tablespace in which the index associated with a UNIQUE, PRIMARY
KEY, or EXCLUDE constraint will be created. If not specified, default_tablespace is consulted, or
temp_tablespaces if the table is temporary.

Storage Parameters

The WITH clause can specify storage parameters for tables, and for indexes associated with a UNIQUE,
PRIMARY KEY, or EXCLUDE constraint. Storage parameters for indexes are documented in CREATE IN-
DEX. The storage parameters currently available for tables are listed below. For each parameter, unless
noted, there is an additional parameter with the same name prefixed with toast., which can be used to
control the behavior of the table’s secondary TOAST table, if any (see Section 56.2 for more information
about TOAST). Note that the TOAST table inherits the autovacuum_* values from its parent table, if
there are no toast.autovacuum_* settings set.

fillfactor (integer)

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.
When a smaller fillfactor is specified, INSERT operations pack table pages only to the indicated
percentage; the remaining space on each page is reserved for updating rows on that page. This gives
UPDATE a chance to place the updated copy of a row on the same page as the original, which is more
efficient than placing it on a different page. For a table whose entries are never updated, complete
packing is the best choice, but in heavily updated tables smaller fillfactors are appropriate. This
parameter cannot be set for TOAST tables.

autovacuum_enabled, toast.autovacuum_enabled (boolean)

Enables or disables the autovacuum daemon on a particular table. If true, the autovacuum daemon
will initiate a VACUUM operation on a particular table when the number of updated or deleted tuples
exceeds autovacuum_vacuum_threshold plus autovacuum_vacuum_scale_factor

times the number of live tuples currently estimated to be in the relation. Similarly, it will
initiate an ANALYZE operation when the number of inserted, updated or deleted tuples exceeds
autovacuum_analyze_threshold plus autovacuum_analyze_scale_factor times the
number of live tuples currently estimated to be in the relation. If false, this table will not be
autovacuumed, except to prevent transaction Id wraparound. See Section 23.1.5 for more about
wraparound prevention. Observe that this variable inherits its value from the autovacuum setting.

autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold (integer)

Minimum number of updated or deleted tuples before initiate a VACUUM operation on a particular
table.

autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor (float4)

Multiplier for reltuples to add to autovacuum_vacuum_threshold.

autovacuum_analyze_threshold (integer)

Minimum number of inserted, updated, or deleted tuples before initiate an ANALYZE operation on a
particular table.

autovacuum_analyze_scale_factor (float4)

Multiplier for reltuples to add to autovacuum_analyze_threshold.

1389

CREATE TABLE

autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay (integer)

Custom autovacuum_vacuum_cost_delay parameter.

autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit (integer)

Custom autovacuum_vacuum_cost_limit parameter.

autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)

Custom vacuum_freeze_min_age parameter. Note that autovacuum will ignore attempts
to set a per-table autovacuum_freeze_min_age larger than the half system-wide
autovacuum_freeze_max_age setting.

autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)

Custom autovacuum_freeze_max_age parameter. Note that autovacuum will ignore attempts to set
a per-table autovacuum_freeze_max_age larger than the system-wide setting (it can only be set
smaller). Note that while you can set autovacuum_freeze_max_age very small, or even zero, this
is usually unwise since it will force frequent vacuuming.

autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age (integer)

Custom vacuum_freeze_table_age parameter.

Notes
Using OIDs in new applications is not recommended: where possible, using a SERIAL or other sequence
generator as the table’s primary key is preferred. However, if your application does make use of OIDs to
identify specific rows of a table, it is recommended to create a unique constraint on the oid column of that
table, to ensure that OIDs in the table will indeed uniquely identify rows even after counter wraparound.
Avoid assuming that OIDs are unique across tables; if you need a database-wide unique identifier, use the
combination of tableoid and row OID for the purpose.

Tip: The use of OIDS=FALSE is not recommended for tables with no primary key, since without either
an OID or a unique data key, it is difficult to identify specific rows.

PostgreSQL automatically creates an index for each unique constraint and primary key constraint to en-
force uniqueness. Thus, it is not necessary to create an index explicitly for primary key columns. (See
CREATE INDEX for more information.)

Unique constraints and primary keys are not inherited in the current implementation. This makes the
combination of inheritance and unique constraints rather dysfunctional.

A table cannot have more than 1600 columns. (In practice, the effective limit is usually lower because of
tuple-length constraints.)

1390

CREATE TABLE

Examples
Create table films and table distributors:

CREATE TABLE films (
code char(5) CONSTRAINT firstkey PRIMARY KEY,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute

);

CREATE TABLE distributors (
did integer PRIMARY KEY DEFAULT nextval(’serial’),
name varchar(40) NOT NULL CHECK (name <> ”)

);

Create a table with a 2-dimensional array:

CREATE TABLE array_int (
vector int[][]

);

Define a unique table constraint for the table films. Unique table constraints can be defined on one or
more columns of the table:

CREATE TABLE films (
code char(5),
title varchar(40),
did integer,
date_prod date,
kind varchar(10),
len interval hour to minute,
CONSTRAINT production UNIQUE(date_prod)

);

Define a check column constraint:

CREATE TABLE distributors (
did integer CHECK (did > 100),
name varchar(40)

);

Define a check table constraint:

CREATE TABLE distributors (
did integer,

1391

CREATE TABLE

name varchar(40)
CONSTRAINT con1 CHECK (did > 100 AND name <> ”)

);

Define a primary key table constraint for the table films:

CREATE TABLE films (
code char(5),
title varchar(40),
did integer,
date_prod date,
kind varchar(10),
len interval hour to minute,
CONSTRAINT code_title PRIMARY KEY(code,title)

);

Define a primary key constraint for table distributors. The following two examples are equivalent,
the first using the table constraint syntax, the second the column constraint syntax:

CREATE TABLE distributors (
did integer,
name varchar(40),
PRIMARY KEY(did)

);

CREATE TABLE distributors (
did integer PRIMARY KEY,
name varchar(40)

);

Assign a literal constant default value for the column name, arrange for the default value of column did

to be generated by selecting the next value of a sequence object, and make the default value of modtime
be the time at which the row is inserted:

CREATE TABLE distributors (
name varchar(40) DEFAULT ’Luso Films’,
did integer DEFAULT nextval(’distributors_serial’),
modtime timestamp DEFAULT current_timestamp

);

Define two NOT NULL column constraints on the table distributors, one of which is explicitly given
a name:

CREATE TABLE distributors (
did integer CONSTRAINT no_null NOT NULL,
name varchar(40) NOT NULL

);

1392

CREATE TABLE

Define a unique constraint for the name column:

CREATE TABLE distributors (
did integer,
name varchar(40) UNIQUE

);

The same, specified as a table constraint:

CREATE TABLE distributors (
did integer,
name varchar(40),
UNIQUE(name)

);

Create the same table, specifying 70% fill factor for both the table and its unique index:

CREATE TABLE distributors (
did integer,
name varchar(40),
UNIQUE(name) WITH (fillfactor=70)

)
WITH (fillfactor=70);

Create table circles with an exclusion constraint that prevents any two circles from overlapping:

CREATE TABLE circles (
c circle,
EXCLUDE USING gist (c WITH &&)

);

Create table cinemas in tablespace diskvol1:

CREATE TABLE cinemas (
id serial,
name text,
location text

) TABLESPACE diskvol1;

Create a composite type and a typed table:

CREATE TYPE employee_type AS (name text, salary numeric);

CREATE TABLE employees OF employee_type (
PRIMARY KEY (name),
salary WITH OPTIONS DEFAULT 1000

1393

CREATE TABLE

);

Compatibility
The CREATE TABLE command conforms to the SQL standard, with exceptions listed below.

Temporary Tables

Although the syntax of CREATE TEMPORARY TABLE resembles that of the SQL standard, the effect is not
the same. In the standard, temporary tables are defined just once and automatically exist (starting with
empty contents) in every session that needs them. PostgreSQL instead requires each session to issue its
own CREATE TEMPORARY TABLE command for each temporary table to be used. This allows different
sessions to use the same temporary table name for different purposes, whereas the standard’s approach
constrains all instances of a given temporary table name to have the same table structure.

The standard’s definition of the behavior of temporary tables is widely ignored. PostgreSQL’s behavior
on this point is similar to that of several other SQL databases.

The SQL standard also distinguishes between global and local temporary tables, where a local temporary
table has a separate set of contents for each SQL module within each session, though its definition is still
shared across sessions. Since PostgreSQL does not support SQL modules, this distinction is not relevant
in PostgreSQL.

For compatibility’s sake, PostgreSQL will accept the GLOBAL and LOCAL keywords in a temporary table
declaration, but they currently have no effect. Use of these keywords is discouraged, since future versions
of PostgreSQL might adopt a more standard-compliant interpretation of their meaning.

The ON COMMIT clause for temporary tables also resembles the SQL standard, but has some differences. If
the ON COMMIT clause is omitted, SQL specifies that the default behavior is ON COMMIT DELETE ROWS.
However, the default behavior in PostgreSQL is ON COMMIT PRESERVE ROWS. The ON COMMIT DROP

option does not exist in SQL.

Non-deferred Uniqueness Constraints

When a UNIQUE or PRIMARY KEY constraint is not deferrable, PostgreSQL checks for uniqueness imme-
diately whenever a row is inserted or modified. The SQL standard says that uniqueness should be enforced
only at the end of the statement; this makes a difference when, for example, a single command updates
multiple key values. To obtain standard-compliant behavior, declare the constraint as DEFERRABLE but not
deferred (i.e., INITIALLY IMMEDIATE). Be aware that this can be significantly slower than immediate
uniqueness checking.

Column Check Constraints

The SQL standard says that CHECK column constraints can only refer to the column they apply to; only
CHECK table constraints can refer to multiple columns. PostgreSQL does not enforce this restriction; it
treats column and table check constraints alike.

1394

CREATE TABLE

EXCLUDE Constraint

The EXCLUDE constraint type is a PostgreSQL extension.

NULL “Constraint”

The NULL “constraint” (actually a non-constraint) is a PostgreSQL extension to the SQL standard that
is included for compatibility with some other database systems (and for symmetry with the NOT NULL

constraint). Since it is the default for any column, its presence is simply noise.

Inheritance

Multiple inheritance via the INHERITS clause is a PostgreSQL language extension. SQL:1999 and later
define single inheritance using a different syntax and different semantics. SQL:1999-style inheritance is
not yet supported by PostgreSQL.

Zero-column Tables

PostgreSQL allows a table of no columns to be created (for example, CREATE TABLE foo();). This is
an extension from the SQL standard, which does not allow zero-column tables. Zero-column tables are
not in themselves very useful, but disallowing them creates odd special cases for ALTER TABLE DROP

COLUMN, so it seems cleaner to ignore this spec restriction.

WITH Clause

The WITH clause is a PostgreSQL extension; neither storage parameters nor OIDs are in the standard.

Tablespaces

The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clauses TABLESPACE and
USING INDEX TABLESPACE are extensions.

Typed Tables

Typed tables implement a subset of the SQL standard. According to the standard, a typed table has
columns corresponding to the underlying composite type as well as one other column that is the “self-
referencing column”. PostgreSQL does not support these self-referencing columns explicitly, but the same
effect can be had using the OID feature.

See Also
ALTER TABLE, DROP TABLE, CREATE TABLESPACE, CREATE TYPE

1395

CREATE TABLE AS

Name
CREATE TABLE AS — define a new table from the results of a query

Synopsis
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE table_name

[(column_name [, ...])]
[WITH (storage_parameter [= value] [, ...]) | WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]
AS query

[WITH [NO] DATA]

Description
CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table
columns have the names and data types associated with the output columns of the SELECT (except that
you can override the column names by giving an explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it creates
a new table and evaluates the query just once to fill the new table initially. The new table will not track
subsequent changes to the source tables of the query. In contrast, a view re-evaluates its defining SELECT

statement whenever it is queried.

Parameters

GLOBAL or LOCAL

Ignored for compatibility. Use of these keywords is deprecated; refer to CREATE TABLE for details.

TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column in the new table. If column names are not provided, they are taken from the
output column names of the query.

1396

CREATE TABLE AS

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the new table; see Storage Parameters for more
information. The WITH clause can also include OIDS=TRUE (or just OIDS) to specify that rows of the
new table should have OIDs (object identifiers) assigned to them, or OIDS=FALSE to specify that the
rows should not have OIDs. See CREATE TABLE for more information.

WITH OIDS

WITHOUT OIDS

These are obsolescent syntaxes equivalent to WITH (OIDS) and WITH (OIDS=FALSE), respec-
tively. If you wish to give both an OIDS setting and storage parameters, you must use the WITH

(...) syntax; see above.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON

COMMIT. The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If not
specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary.

query

A SELECT, TABLE, or VALUES command, or an EXECUTE command that runs a prepared
SELECT, TABLE, or VALUES query.

WITH [NO] DATA

This clause specifies whether or not the data produced by the query should be copied into the new
table. If not, only the table structure is copied. The default is to copy the data.

Notes
This command is functionally similar to SELECT INTO, but it is preferred since it is less likely to be
confused with other uses of the SELECT INTO syntax. Furthermore, CREATE TABLE AS offers a superset
of the functionality offered by SELECT INTO.

Prior to PostgreSQL 8.0, CREATE TABLE AS always included OIDs in the table it created. As of Post-
greSQL 8.0, the CREATE TABLE AS command allows the user to explicitly specify whether OIDs should

1397

CREATE TABLE AS

be included. If the presence of OIDs is not explicitly specified, the default_with_oids configuration vari-
able is used. As of PostgreSQL 8.1, this variable is false by default, so the default behavior is not identical
to pre-8.0 releases. Applications that require OIDs in the table created by CREATE TABLE AS should
explicitly specify WITH (OIDS) to ensure desired behavior.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

CREATE TABLE films_recent AS
SELECT * FROM films WHERE date_prod >= ’2002-01-01’;

To copy a table completely, the short form using the TABLE command can also be used:

CREATE TABLE films2 AS
TABLE films;

Create a new temporary table films_recent, consisting of only recent entries from the table films,
using a prepared statement. The new table has OIDs and will be dropped at commit:

PREPARE recentfilms(date) AS
SELECT * FROM films WHERE date_prod > $1;

CREATE TEMP TABLE films_recent WITH (OIDS) ON COMMIT DROP AS
EXECUTE recentfilms(’2002-01-01’);

Compatibility
CREATE TABLE AS conforms to the SQL standard. The following are nonstandard extensions:

• The standard requires parentheses around the subquery clause; in PostgreSQL, these parentheses are
optional.

• In the standard, the WITH [NO] DATA clause is required; in PostgreSQL it is optional.
• PostgreSQL handles temporary tables in a way rather different from the standard; see CREATE TABLE

for details.
• The WITH clause is a PostgreSQL extension; neither storage parameters nor OIDs are in the standard.
• The PostgreSQL concept of tablespaces is not part of the standard. Hence, the clause TABLESPACE is

an extension.

1398

CREATE TABLE AS

See Also
CREATE TABLE, EXECUTE, SELECT, SELECT INTO, VALUES

1399

CREATE TABLESPACE

Name
CREATE TABLESPACE — define a new tablespace

Synopsis
CREATE TABLESPACE tablespace_name [OWNER user_name] LOCATION ’directory’

Description
CREATE TABLESPACE registers a new cluster-wide tablespace. The tablespace name must be distinct from
the name of any existing tablespace in the database cluster.

A tablespace allows superusers to define an alternative location on the file system where the data files
containing database objects (such as tables and indexes) can reside.

A user with appropriate privileges can pass tablespace_name to CREATE DATABASE, CREATE TABLE,
CREATE INDEX or ADD CONSTRAINT to have the data files for these objects stored within the specified
tablespace.

Parameters

tablespace_name

The name of a tablespace to be created. The name cannot begin with pg_, as such names are reserved
for system tablespaces.

user_name

The name of the user who will own the tablespace. If omitted, defaults to the user executing the
command. Only superusers can create tablespaces, but they can assign ownership of tablespaces to
non-superusers.

directory

The directory that will be used for the tablespace. The directory should be empty and must be owned
by the PostgreSQL system user. The directory must be specified by an absolute path name.

Notes
Tablespaces are only supported on systems that support symbolic links.

CREATE TABLESPACE cannot be executed inside a transaction block.

1400

CREATE TABLESPACE

Examples
Create a tablespace dbspace at /data/dbs:

CREATE TABLESPACE dbspace LOCATION ’/data/dbs’;

Create a tablespace indexspace at /data/indexes owned by user genevieve:

CREATE TABLESPACE indexspace OWNER genevieve LOCATION ’/data/indexes’;

Compatibility
CREATE TABLESPACE is a PostgreSQL extension.

See Also
CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE, ALTER
TABLESPACE

1401

CREATE TEXT SEARCH CONFIGURATION

Name
CREATE TEXT SEARCH CONFIGURATION — define a new text search configuration

Synopsis
CREATE TEXT SEARCH CONFIGURATION name (

PARSER = parser_name |
COPY = source_config

)

Description
CREATE TEXT SEARCH CONFIGURATION creates a new text search configuration. A text search config-
uration specifies a text search parser that can divide a string into tokens, plus dictionaries that can be used
to determine which tokens are of interest for searching.

If only the parser is specified, then the new text search configuration initially has no mappings from
token types to dictionaries, and therefore will ignore all words. Subsequent ALTER TEXT SEARCH

CONFIGURATION commands must be used to create mappings to make the configuration useful.
Alternatively, an existing text search configuration can be copied.

If a schema name is given then the text search configuration is created in the specified schema. Otherwise
it is created in the current schema.

The user who defines a text search configuration becomes its owner.

Refer to Chapter 12 for further information.

Parameters

name

The name of the text search configuration to be created. The name can be schema-qualified.

parser_name

The name of the text search parser to use for this configuration.

source_config

The name of an existing text search configuration to copy.

1402

CREATE TEXT SEARCH CONFIGURATION

Notes
The PARSER and COPY options are mutually exclusive, because when an existing configuration is copied,
its parser selection is copied too.

Compatibility
There is no CREATE TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1403

CREATE TEXT SEARCH DICTIONARY

Name
CREATE TEXT SEARCH DICTIONARY — define a new text search dictionary

Synopsis
CREATE TEXT SEARCH DICTIONARY name (

TEMPLATE = template

[, option = value [, ...]]
)

Description
CREATE TEXT SEARCH DICTIONARY creates a new text search dictionary. A text search dictionary spec-
ifies a way of recognizing interesting or uninteresting words for searching. A dictionary depends on a text
search template, which specifies the functions that actually perform the work. Typically the dictionary
provides some options that control the detailed behavior of the template’s functions.

If a schema name is given then the text search dictionary is created in the specified schema. Otherwise it
is created in the current schema.

The user who defines a text search dictionary becomes its owner.

Refer to Chapter 12 for further information.

Parameters

name

The name of the text search dictionary to be created. The name can be schema-qualified.

template

The name of the text search template that will define the basic behavior of this dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The value to use for a template-specific option. If the value is not a simple identifier or number, it
must be quoted (but you can always quote it, if you wish).

The options can appear in any order.

1404

CREATE TEXT SEARCH DICTIONARY

Examples
The following example command creates a Snowball-based dictionary with a nonstandard list of stop
words.

CREATE TEXT SEARCH DICTIONARY my_russian (
template = snowball,
language = russian,
stopwords = myrussian

);

Compatibility
There is no CREATE TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1405

CREATE TEXT SEARCH PARSER

Name
CREATE TEXT SEARCH PARSER — define a new text search parser

Synopsis
CREATE TEXT SEARCH PARSER name (

START = start_function ,
GETTOKEN = gettoken_function ,
END = end_function ,
LEXTYPES = lextypes_function

[, HEADLINE = headline_function]
)

Description
CREATE TEXT SEARCH PARSER creates a new text search parser. A text search parser defines a method
for splitting a text string into tokens and assigning types (categories) to the tokens. A parser is not par-
ticularly useful by itself, but must be bound into a text search configuration along with some text search
dictionaries to be used for searching.

If a schema name is given then the text search parser is created in the specified schema. Otherwise it is
created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH PARSER. (This restriction is made because an
erroneous text search parser definition could confuse or even crash the server.)

Refer to Chapter 12 for further information.

Parameters

name

The name of the text search parser to be created. The name can be schema-qualified.

start_function

The name of the start function for the parser.

gettoken_function

The name of the get-next-token function for the parser.

end_function

The name of the end function for the parser.

1406

CREATE TEXT SEARCH PARSER

lextypes_function

The name of the lextypes function for the parser (a function that returns information about the set of
token types it produces).

headline_function

The name of the headline function for the parser (a function that summarizes a set of tokens).

The function names can be schema-qualified if necessary. Argument types are not given, since the argu-
ment list for each type of function is predetermined. All except the headline function are required.

The arguments can appear in any order, not only the one shown above.

Compatibility
There is no CREATE TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1407

CREATE TEXT SEARCH TEMPLATE

Name
CREATE TEXT SEARCH TEMPLATE — define a new text search template

Synopsis
CREATE TEXT SEARCH TEMPLATE name (

[INIT = init_function ,]
LEXIZE = lexize_function

)

Description
CREATE TEXT SEARCH TEMPLATE creates a new text search template. Text search templates define the
functions that implement text search dictionaries. A template is not useful by itself, but must be instanti-
ated as a dictionary to be used. The dictionary typically specifies parameters to be given to the template
functions.

If a schema name is given then the text search template is created in the specified schema. Otherwise it is
created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH TEMPLATE. This restriction is made because an
erroneous text search template definition could confuse or even crash the server. The reason for separating
templates from dictionaries is that a template encapsulates the “unsafe” aspects of defining a dictionary.
The parameters that can be set when defining a dictionary are safe for unprivileged users to set, and so
creating a dictionary need not be a privileged operation.

Refer to Chapter 12 for further information.

Parameters

name

The name of the text search template to be created. The name can be schema-qualified.

init_function

The name of the init function for the template.

lexize_function

The name of the lexize function for the template.

The function names can be schema-qualified if necessary. Argument types are not given, since the argu-
ment list for each type of function is predetermined. The lexize function is required, but the init function
is optional.

The arguments can appear in any order, not only the one shown above.

1408

CREATE TEXT SEARCH TEMPLATE

Compatibility
There is no CREATE TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1409

CREATE TRIGGER

Name
CREATE TRIGGER — define a new trigger

Synopsis
CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }

ON table_name

[FROM referenced_table_name]
{ NOT DEFERRABLE | [DEFERRABLE] { INITIALLY IMMEDIATE | INITIALLY DEFERRED } }
[FOR [EACH] { ROW | STATEMENT }]
[WHEN (condition)]
EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

INSERT
UPDATE [OF column_name [, ...]]
DELETE
TRUNCATE

Description
CREATE TRIGGER creates a new trigger. The trigger will be associated with the specified table or view
and will execute the specified function function_name when certain events occur.

The trigger can be specified to fire before the operation is attempted on a row (before constraints are
checked and the INSERT, UPDATE, or DELETE is attempted); or after the operation has completed (after
constraints are checked and the INSERT, UPDATE, or DELETE has completed); or instead of the operation
(in the case of inserts, updates or deletes on a view). If the trigger fires before or instead of the event,
the trigger can skip the operation for the current row, or change the row being inserted (for INSERT and
UPDATE operations only). If the trigger fires after the event, all changes, including the effects of other
triggers, are “visible” to the trigger.

A trigger that is marked FOR EACH ROW is called once for every row that the operation modifies. For
example, a DELETE that affects 10 rows will cause any ON DELETE triggers on the target relation to
be called 10 separate times, once for each deleted row. In contrast, a trigger that is marked FOR EACH

STATEMENT only executes once for any given operation, regardless of how many rows it modifies (in
particular, an operation that modifies zero rows will still result in the execution of any applicable FOR

EACH STATEMENT triggers).

Triggers that are specified to fire INSTEAD OF the trigger event must be marked FOR EACH ROW, and
can only be defined on views. BEFORE and AFTER triggers on a view must be marked as FOR EACH

STATEMENT.

In addition, triggers may be defined to fire for TRUNCATE, though only FOR EACH STATEMENT.

1410

CREATE TRIGGER

The following table summarizes which types of triggers may be used on tables and views:

When Event Row-level Statement-level
BEFORE

INSERT/UPDATE/DELETE
Tables Tables and views

TRUNCATE — Tables

AFTER

INSERT/UPDATE/DELETE
Tables Tables and views

TRUNCATE — Tables

INSTEAD OF

INSERT/UPDATE/DELETE
Views —

TRUNCATE — —

Also, a trigger definition can specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values of
columns of the row. Statement-level triggers can also have WHEN conditions, although the feature is not so
useful for them since the condition cannot refer to any values in the table.

If multiple triggers of the same kind are defined for the same event, they will be fired in alphabetical order
by name.

When the CONSTRAINT option is specified, this command creates a constraint trigger. This is the same as
a regular trigger except that the timing of the trigger firing can be adjusted using SET CONSTRAINTS.
Constraint triggers must be AFTER ROW triggers. They can be fired either at the end of the statement
causing the triggering event, or at the end of the containing transaction; in the latter case they are said
to be deferred. A pending deferred-trigger firing can also be forced to happen immediately by using SET

CONSTRAINTS. Constraint triggers are expected to raise an exception when the constraints they implement
are violated.

SELECT does not modify any rows so you cannot create SELECT triggers. Rules and views are more
appropriate in such cases.

Refer to Chapter 36 for more information about triggers.

Parameters

name

The name to give the new trigger. This must be distinct from the name of any other trigger for the
same table. The name cannot be schema-qualified — the trigger inherits the schema of its table. For
a constraint trigger, this is also the name to use when modifying the trigger’s behavior using SET

CONSTRAINTS.

1411

CREATE TRIGGER

BEFORE

AFTER

INSTEAD OF

Determines whether the function is called before, after, or instead of the event. A constraint trigger
can only be specified as AFTER.

event

One of INSERT, UPDATE, DELETE, or TRUNCATE; this specifies the event that will fire the trigger.
Multiple events can be specified using OR.

For UPDATE events, it is possible to specify a list of columns using this syntax:

UPDATE OF column_name1 [, column_name2 ...]

The trigger will only fire if at least one of the listed columns is mentioned as a target of the UPDATE
command.

INSTEAD OF UPDATE events do not support lists of columns.

table_name

The name (optionally schema-qualified) of the table or view the trigger is for.

referenced_table_name

The (possibly schema-qualified) name of another table referenced by the constraint. This option is
used for foreign-key constraints and is not recommended for general use. This can only be specified
for constraint triggers.

DEFERRABLE

NOT DEFERRABLE

INITIALLY IMMEDIATE

INITIALLY DEFERRED

The default timing of the trigger. See the CREATE TABLE documentation for details of these con-
straint options. This can only be specified for constraint triggers.

FOR EACH ROW

FOR EACH STATEMENT

This specifies whether the trigger procedure should be fired once for every row affected by the trigger
event, or just once per SQL statement. If neither is specified, FOR EACH STATEMENT is the default.
Constraint triggers can only be specified FOR EACH ROW.

condition

A Boolean expression that determines whether the trigger function will actually be executed. If WHEN
is specified, the function will only be called if the condition returns true. In FOR EACH ROW

triggers, the WHEN condition can refer to columns of the old and/or new row values by writing
OLD.column_name or NEW.column_name respectively. Of course, INSERT triggers cannot refer to
OLD and DELETE triggers cannot refer to NEW.

INSTEAD OF triggers do not support WHEN conditions.

Currently, WHEN expressions cannot contain subqueries.

Note that for constraint triggers, evaluation of the WHEN condition is not deferred, but occurs imme-
diately after the row update operation is performed. If the condition does not evaluate to true then the
trigger is not queued for deferred execution.

1412

CREATE TRIGGER

function_name

A user-supplied function that is declared as taking no arguments and returning type trigger, which
is executed when the trigger fires.

arguments

An optional comma-separated list of arguments to be provided to the function when the trigger
is executed. The arguments are literal string constants. Simple names and numeric constants can
be written here, too, but they will all be converted to strings. Please check the description of the
implementation language of the trigger function to find out how these arguments can be accessed
within the function; it might be different from normal function arguments.

Notes
To create a trigger on a table, the user must have the TRIGGER privilege on the table. The user must also
have EXECUTE privilege on the trigger function.

Use DROP TRIGGER to remove a trigger.

A column-specific trigger (one defined using the UPDATE OF column_name syntax) will fire when any of
its columns are listed as targets in the UPDATE command’s SET list. It is possible for a column’s value to
change even when the trigger is not fired, because changes made to the row’s contents by BEFORE UPDATE

triggers are not considered. Conversely, a command such as UPDATE ... SET x = x ... will fire a
trigger on column x, even though the column’s value did not change.

In a BEFORE trigger, the WHEN condition is evaluated just before the function is or would be executed, so
using WHEN is not materially different from testing the same condition at the beginning of the trigger func-
tion. Note in particular that the NEW row seen by the condition is the current value, as possibly modified by
earlier triggers. Also, a BEFORE trigger’s WHEN condition is not allowed to examine the system columns
of the NEW row (such as oid), because those won’t have been set yet.

In an AFTER trigger, the WHEN condition is evaluated just after the row update occurs, and it determines
whether an event is queued to fire the trigger at the end of statement. So when an AFTER trigger’s WHEN
condition does not return true, it is not necessary to queue an event nor to re-fetch the row at end of
statement. This can result in significant speedups in statements that modify many rows, if the trigger only
needs to be fired for a few of the rows.

In PostgreSQL versions before 7.3, it was necessary to declare trigger functions as returning the place-
holder type opaque, rather than trigger. To support loading of old dump files, CREATE TRIGGER will
accept a function declared as returning opaque, but it will issue a notice and change the function’s de-
clared return type to trigger.

Examples
Execute the function check_account_update whenever a row of the table accounts is about to be
updated:

CREATE TRIGGER check_update
BEFORE UPDATE ON accounts
FOR EACH ROW

1413

CREATE TRIGGER

EXECUTE PROCEDURE check_account_update();

The same, but only execute the function if column balance is specified as a target in the UPDATE com-
mand:

CREATE TRIGGER check_update
BEFORE UPDATE OF balance ON accounts
FOR EACH ROW
EXECUTE PROCEDURE check_account_update();

This form only executes the function if column balance has in fact changed value:

CREATE TRIGGER check_update
BEFORE UPDATE ON accounts
FOR EACH ROW
WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
EXECUTE PROCEDURE check_account_update();

Call a function to log updates of accounts, but only if something changed:

CREATE TRIGGER log_update
AFTER UPDATE ON accounts
FOR EACH ROW
WHEN (OLD.* IS DISTINCT FROM NEW.*)
EXECUTE PROCEDURE log_account_update();

Execute the function view_insert_row for each row to insert rows into the tables underlying a view:

CREATE TRIGGER view_insert
INSTEAD OF INSERT ON my_view
FOR EACH ROW
EXECUTE PROCEDURE view_insert_row();

Section 36.4 contains a complete example of a trigger function written in C.

Compatibility
The CREATE TRIGGER statement in PostgreSQL implements a subset of the SQL standard. The following
functionality is currently missing:

• SQL allows you to define aliases for the “old” and “new” rows or tables for use in the definition
of the triggered action (e.g., CREATE TRIGGER ... ON tablename REFERENCING OLD ROW AS

somename NEW ROW AS othername ...). Since PostgreSQL allows trigger procedures to be writ-
ten in any number of user-defined languages, access to the data is handled in a language-specific way.

• PostgreSQL only allows the execution of a user-defined function for the triggered action. The standard
allows the execution of a number of other SQL commands, such as CREATE TABLE, as the triggered
action. This limitation is not hard to work around by creating a user-defined function that executes the
desired commands.

1414

CREATE TRIGGER

SQL specifies that multiple triggers should be fired in time-of-creation order. PostgreSQL uses name
order, which was judged to be more convenient.

SQL specifies that BEFORE DELETE triggers on cascaded deletes fire after the cascaded DELETE com-
pletes. The PostgreSQL behavior is for BEFORE DELETE to always fire before the delete action, even a
cascading one. This is considered more consistent. There is also nonstandard behavior if BEFORE triggers
modify rows or prevent updates during an update that is caused by a referential action. This can lead to
constraint violations or stored data that does not honor the referential constraint.

The ability to specify multiple actions for a single trigger using OR is a PostgreSQL extension of the SQL
standard.

The ability to fire triggers for TRUNCATE is a PostgreSQL extension of the SQL standard, as is the ability
to define statement-level triggers on views.

CREATE CONSTRAINT TRIGGER is a PostgreSQL extension of the SQL standard.

See Also
CREATE FUNCTION, ALTER TRIGGER, DROP TRIGGER, SET CONSTRAINTS

1415

CREATE TYPE

Name
CREATE TYPE — define a new data type

Synopsis
CREATE TYPE name AS

([attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
([’label’ [, ...]])

CREATE TYPE name AS RANGE (
SUBTYPE = subtype

[, SUBTYPE_OPCLASS = subtype_operator_class]
[, COLLATION = collation]
[, CANONICAL = canonical_function]
[, SUBTYPE_DIFF = subtype_diff_function]

)

CREATE TYPE name (
INPUT = input_function,
OUTPUT = output_function

[, RECEIVE = receive_function]
[, SEND = send_function]
[, TYPMOD_IN = type_modifier_input_function]
[, TYPMOD_OUT = type_modifier_output_function]
[, ANALYZE = analyze_function]
[, INTERNALLENGTH = { internallength | VARIABLE }]
[, PASSEDBYVALUE]
[, ALIGNMENT = alignment]
[, STORAGE = storage]
[, LIKE = like_type]
[, CATEGORY = category]
[, PREFERRED = preferred]
[, DEFAULT = default]
[, ELEMENT = element]
[, DELIMITER = delimiter]
[, COLLATABLE = collatable]

)

CREATE TYPE name

1416

CREATE TYPE

Description
CREATE TYPE registers a new data type for use in the current database. The user who defines a type
becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise it is created in the
current schema. The type name must be distinct from the name of any existing type or domain in the same
schema. (Because tables have associated data types, the type name must also be distinct from the name of
any existing table in the same schema.)

There are five forms of CREATE TYPE, as shown in the syntax synopsis above. They respectively create a
composite type, an enum type, a range type, a base type, or a shell type. The first four of these are discussed
in turn below. A shell type is simply a placeholder for a type to be defined later; it is created by issuing
CREATE TYPE with no parameters except for the type name. Shell types are needed as forward references
when creating range types and base types, as discussed in those sections.

Composite Types

The first form of CREATE TYPE creates a composite type. The composite type is specified by a list of
attribute names and data types. An attribute’s collation can be specified too, if its data type is collatable.
A composite type is essentially the same as the row type of a table, but using CREATE TYPE avoids the
need to create an actual table when all that is wanted is to define a type. A stand-alone composite type is
useful, for example, as the argument or return type of a function.

To be able to create a composite type, you must have USAGE privilege on all attribute types.

Enumerated Types

The second form of CREATE TYPE creates an enumerated (enum) type, as described in Section 8.7. Enum
types take a list of one or more quoted labels, each of which must be less than NAMEDATALEN bytes long
(64 bytes in a standard PostgreSQL build).

Range Types

The third form of CREATE TYPE creates a new range type, as described in Section 8.17.

The range type’s subtype can be any type with an associated b-tree operator class (to determine the
ordering of values for the range type). Normally the subtype’s default b-tree operator class is used to
determine ordering; to use a non-default opclass, specify its name with subtype_opclass. If the subtype
is collatable, and you want to use a non-default collation in the range’s ordering, specify the desired
collation with the collation option.

The optional canonical function must take one argument of the range type being defined, and return
a value of the same type. This is used to convert range values to a canonical form, when applicable.
See Section 8.17.8 for more information. Creating a canonical function is a bit tricky, since it must
be defined before the range type can be declared. To do this, you must first create a shell type, which
is a placeholder type that has no properties except a name and an owner. This is done by issuing the
command CREATE TYPE name, with no additional parameters. Then the function can be declared using
the shell type as argument and result, and finally the range type can be declared using the same name.
This automatically replaces the shell type entry with a valid range type.

1417

CREATE TYPE

The optional subtype_diff function must take two values of the subtype type as argument, and return
a double precision value representing the difference between the two given values. While this is
optional, providing it allows much greater efficiency of GiST indexes on columns of the range type. See
Section 8.17.8 for more information.

Base Types

The fourth form of CREATE TYPE creates a new base type (scalar type). To create a new base type, you
must be a superuser. (This restriction is made because an erroneous type definition could confuse or even
crash the server.)

The parameters can appear in any order, not only that illustrated above, and most are optional.
You must register two or more functions (using CREATE FUNCTION) before defining the
type. The support functions input_function and output_function are required, while
the functions receive_function, send_function, type_modifier_input_function,
type_modifier_output_function and analyze_function are optional. Generally these functions
have to be coded in C or another low-level language.

The input_function converts the type’s external textual representation to the internal representation
used by the operators and functions defined for the type. output_function performs the reverse trans-
formation. The input function can be declared as taking one argument of type cstring, or as taking three
arguments of types cstring, oid, integer. The first argument is the input text as a C string, the second
argument is the type’s own OID (except for array types, which instead receive their element type’s OID),
and the third is the typmod of the destination column, if known (-1 will be passed if not). The input func-
tion must return a value of the data type itself. Usually, an input function should be declared STRICT; if it
is not, it will be called with a NULL first parameter when reading a NULL input value. The function must
still return NULL in this case, unless it raises an error. (This case is mainly meant to support domain input
functions, which might need to reject NULL inputs.) The output function must be declared as taking one
argument of the new data type. The output function must return type cstring. Output functions are not
invoked for NULL values.

The optional receive_function converts the type’s external binary representation to the internal rep-
resentation. If this function is not supplied, the type cannot participate in binary input. The binary rep-
resentation should be chosen to be cheap to convert to internal form, while being reasonably portable.
(For example, the standard integer data types use network byte order as the external binary representation,
while the internal representation is in the machine’s native byte order.) The receive function should per-
form adequate checking to ensure that the value is valid. The receive function can be declared as taking
one argument of type internal, or as taking three arguments of types internal, oid, integer. The
first argument is a pointer to a StringInfo buffer holding the received byte string; the optional arguments
are the same as for the text input function. The receive function must return a value of the data type itself.
Usually, a receive function should be declared STRICT; if it is not, it will be called with a NULL first
parameter when reading a NULL input value. The function must still return NULL in this case, unless it
raises an error. (This case is mainly meant to support domain receive functions, which might need to reject
NULL inputs.) Similarly, the optional send_function converts from the internal representation to the
external binary representation. If this function is not supplied, the type cannot participate in binary output.
The send function must be declared as taking one argument of the new data type. The send function must
return type bytea. Send functions are not invoked for NULL values.

You should at this point be wondering how the input and output functions can be declared to have results
or arguments of the new type, when they have to be created before the new type can be created. The

1418

CREATE TYPE

answer is that the type should first be defined as a shell type, which is a placeholder type that has no
properties except a name and an owner. This is done by issuing the command CREATE TYPE name, with
no additional parameters. Then the I/O functions can be defined referencing the shell type. Finally, CREATE
TYPE with a full definition replaces the shell entry with a complete, valid type definition, after which the
new type can be used normally.

The optional type_modifier_input_function and type_modifier_output_function are
needed if the type supports modifiers, that is optional constraints attached to a type declaration,
such as char(5) or numeric(30,2). PostgreSQL allows user-defined types to take one or
more simple constants or identifiers as modifiers. However, this information must be capable of
being packed into a single non-negative integer value for storage in the system catalogs. The
type_modifier_input_function is passed the declared modifier(s) in the form of a cstring

array. It must check the values for validity (throwing an error if they are wrong), and if they are
correct, return a single non-negative integer value that will be stored as the column “typmod”.
Type modifiers will be rejected if the type does not have a type_modifier_input_function.
The type_modifier_output_function converts the internal integer typmod value back to the
correct form for user display. It must return a cstring value that is the exact string to append to
the type name; for example numeric’s function might return (30,2). It is allowed to omit the
type_modifier_output_function, in which case the default display format is just the stored
typmod integer value enclosed in parentheses.

The optional analyze_function performs type-specific statistics collection for columns of the data
type. By default, ANALYZE will attempt to gather statistics using the type’s “equals” and “less-than” op-
erators, if there is a default b-tree operator class for the type. For non-scalar types this behavior is likely
to be unsuitable, so it can be overridden by specifying a custom analysis function. The analysis function
must be declared to take a single argument of type internal, and return a boolean result. The detailed
API for analysis functions appears in src/include/commands/vacuum.h.

While the details of the new type’s internal representation are only known to the I/O functions and other
functions you create to work with the type, there are several properties of the internal representation
that must be declared to PostgreSQL. Foremost of these is internallength. Base data types can be
fixed-length, in which case internallength is a positive integer, or variable length, indicated by setting
internallength to VARIABLE. (Internally, this is represented by setting typlen to -1.) The internal
representation of all variable-length types must start with a 4-byte integer giving the total length of this
value of the type.

The optional flag PASSEDBYVALUE indicates that values of this data type are passed by value, rather than
by reference. You cannot pass by value types whose internal representation is larger than the size of the
Datum type (4 bytes on most machines, 8 bytes on a few).

The alignment parameter specifies the storage alignment required for the data type. The allowed val-
ues equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have an
alignment of at least 4, since they necessarily contain an int4 as their first component.

The storage parameter allows selection of storage strategies for variable-length data types. (Only plain
is allowed for fixed-length types.) plain specifies that data of the type will always be stored in-line and
not compressed. extended specifies that the system will first try to compress a long data value, and will
move the value out of the main table row if it’s still too long. external allows the value to be moved out
of the main table, but the system will not try to compress it. main allows compression, but discourages
moving the value out of the main table. (Data items with this storage strategy might still be moved out
of the main table if there is no other way to make a row fit, but they will be kept in the main table

1419

CREATE TYPE

preferentially over extended and external items.)

The like_type parameter provides an alternative method for specifying the basic representation
properties of a data type: copy them from some existing type. The values of internallength,
passedbyvalue, alignment, and storage are copied from the named type. (It is possible, though
usually undesirable, to override some of these values by specifying them along with the LIKE clause.)
Specifying representation this way is especially useful when the low-level implementation of the new
type “piggybacks” on an existing type in some fashion.

The category and preferred parameters can be used to help control which implicit cast will be applied
in ambiguous situations. Each data type belongs to a category named by a single ASCII character, and
each type is either “preferred” or not within its category. The parser will prefer casting to preferred types
(but only from other types within the same category) when this rule is helpful in resolving overloaded
functions or operators. For more details see Chapter 10. For types that have no implicit casts to or from
any other types, it is sufficient to leave these settings at the defaults. However, for a group of related types
that have implicit casts, it is often helpful to mark them all as belonging to a category and select one
or two of the “most general” types as being preferred within the category. The category parameter is
especially useful when adding a user-defined type to an existing built-in category, such as the numeric or
string types. However, it is also possible to create new entirely-user-defined type categories. Select any
ASCII character other than an upper-case letter to name such a category.

A default value can be specified, in case a user wants columns of the data type to default to something other
than the null value. Specify the default with the DEFAULT key word. (Such a default can be overridden by
an explicit DEFAULT clause attached to a particular column.)

To indicate that a type is an array, specify the type of the array elements using the ELEMENT key word.
For example, to define an array of 4-byte integers (int4), specify ELEMENT = int4. More details about
array types appear below.

To indicate the delimiter to be used between values in the external representation of arrays of this type,
delimiter can be set to a specific character. The default delimiter is the comma (,). Note that the
delimiter is associated with the array element type, not the array type itself.

If the optional Boolean parameter collatable is true, column definitions and expressions of the type
may carry collation information through use of the COLLATE clause. It is up to the implementations of the
functions operating on the type to actually make use of the collation information; this does not happen
automatically merely by marking the type collatable.

Array Types

Whenever a user-defined type is created, PostgreSQL automatically creates an associated array type,
whose name consists of the element type’s name prepended with an underscore, and truncated if nec-
essary to keep it less than NAMEDATALEN bytes long. (If the name so generated collides with an existing
type name, the process is repeated until a non-colliding name is found.) This implicitly-created array type
is variable length and uses the built-in input and output functions array_in and array_out. The array
type tracks any changes in its element type’s owner or schema, and is dropped if the element type is.

You might reasonably ask why there is an ELEMENT option, if the system makes the correct array type
automatically. The only case where it’s useful to use ELEMENT is when you are making a fixed-length type
that happens to be internally an array of a number of identical things, and you want to allow these things to
be accessed directly by subscripting, in addition to whatever operations you plan to provide for the type as

1420

CREATE TYPE

a whole. For example, type point is represented as just two floating-point numbers, each can be accessed
using point[0] and point[1]. Note that this facility only works for fixed-length types whose internal
form is exactly a sequence of identical fixed-length fields. A subscriptable variable-length type must have
the generalized internal representation used by array_in and array_out. For historical reasons (i.e.,
this is clearly wrong but it’s far too late to change it), subscripting of fixed-length array types starts from
zero, rather than from one as for variable-length arrays.

Parameters

name

The name (optionally schema-qualified) of a type to be created.

attribute_name

The name of an attribute (column) for the composite type.

data_type

The name of an existing data type to become a column of the composite type.

collation

The name of an existing collation to be associated with a column of a composite type, or with a range
type.

label

A string literal representing the textual label associated with one value of an enum type.

subtype

The name of the element type that the range type will represent ranges of.

subtype_operator_class

The name of a b-tree operator class for the subtype.

canonical_function

The name of the canonicalization function for the range type.

subtype_diff_function

The name of a difference function for the subtype.

input_function

The name of a function that converts data from the type’s external textual form to its internal form.

output_function

The name of a function that converts data from the type’s internal form to its external textual form.

receive_function

The name of a function that converts data from the type’s external binary form to its internal form.

send_function

The name of a function that converts data from the type’s internal form to its external binary form.

1421

CREATE TYPE

type_modifier_input_function

The name of a function that converts an array of modifier(s) for the type into internal form.

type_modifier_output_function

The name of a function that converts the internal form of the type’s modifier(s) to external textual
form.

analyze_function

The name of a function that performs statistical analysis for the data type.

internallength

A numeric constant that specifies the length in bytes of the new type’s internal representation. The
default assumption is that it is variable-length.

alignment

The storage alignment requirement of the data type. If specified, it must be char, int2, int4, or
double; the default is int4.

storage

The storage strategy for the data type. If specified, must be plain, external, extended, or main;
the default is plain.

like_type

The name of an existing data type that the new type will have the same representation as. The val-
ues of internallength, passedbyvalue, alignment, and storage are copied from that type,
unless overridden by explicit specification elsewhere in this CREATE TYPE command.

category

The category code (a single ASCII character) for this type. The default is ’U’ for “user-defined
type”. Other standard category codes can be found in Table 45-51. You may also choose other ASCII
characters in order to create custom categories.

preferred

True if this type is a preferred type within its type category, else false. The default is false. Be very
careful about creating a new preferred type within an existing type category, as this could cause
surprising changes in behavior.

default

The default value for the data type. If this is omitted, the default is null.

element

The type being created is an array; this specifies the type of the array elements.

delimiter

The delimiter character to be used between values in arrays made of this type.

collatable

True if this type’s operations can use collation information. The default is false.

1422

CREATE TYPE

Notes
Because there are no restrictions on use of a data type once it’s been created, creating a base type or range
type is tantamount to granting public execute permission on the functions mentioned in the type definition.
This is usually not an issue for the sorts of functions that are useful in a type definition. But you might
want to think twice before designing a type in a way that would require “secret” information to be used
while converting it to or from external form.

Before PostgreSQL version 8.3, the name of a generated array type was always exactly the element type’s
name with one underscore character (_) prepended. (Type names were therefore restricted in length to one
less character than other names.) While this is still usually the case, the array type name may vary from
this in case of maximum-length names or collisions with user type names that begin with underscore.
Writing code that depends on this convention is therefore deprecated. Instead, use pg_type.typarray
to locate the array type associated with a given type.

It may be advisable to avoid using type and table names that begin with underscore. While the server will
change generated array type names to avoid collisions with user-given names, there is still risk of confu-
sion, particularly with old client software that may assume that type names beginning with underscores
always represent arrays.

Before PostgreSQL version 8.2, the shell-type creation syntax CREATE TYPE name did not exist. The
way to create a new base type was to create its input function first. In this approach, PostgreSQL will first
see the name of the new data type as the return type of the input function. The shell type is implicitly
created in this situation, and then it can be referenced in the definitions of the remaining I/O functions.
This approach still works, but is deprecated and might be disallowed in some future release. Also, to avoid
accidentally cluttering the catalogs with shell types as a result of simple typos in function definitions, a
shell type will only be made this way when the input function is written in C.

In PostgreSQL versions before 7.3, it was customary to avoid creating a shell type at all, by replacing the
functions’ forward references to the type name with the placeholder pseudotype opaque. The cstring
arguments and results also had to be declared as opaque before 7.3. To support loading of old dump files,
CREATE TYPE will accept I/O functions declared using opaque, but it will issue a notice and change the
function declarations to use the correct types.

Examples
This example creates a composite type and uses it in a function definition:

CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
SELECT fooid, fooname FROM foo

$$ LANGUAGE SQL;

This example creates an enumerated type and uses it in a table definition:

CREATE TYPE bug_status AS ENUM (’new’, ’open’, ’closed’);

CREATE TABLE bug (
id serial,

1423

CREATE TYPE

description text,
status bug_status

);

This example creates a range type:

CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff = float8mi);

This example creates the base data type box and then uses the type in a table definition:

CREATE TYPE box;

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS ... ;
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS ... ;

CREATE TYPE box (
INTERNALLENGTH = 16,
INPUT = my_box_in_function,
OUTPUT = my_box_out_function

);

CREATE TABLE myboxes (
id integer,
description box

);

If the internal structure of box were an array of four float4 elements, we might instead use:

CREATE TYPE box (
INTERNALLENGTH = 16,
INPUT = my_box_in_function,
OUTPUT = my_box_out_function,
ELEMENT = float4

);

which would allow a box value’s component numbers to be accessed by subscripting. Otherwise the type
behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (
INPUT = lo_filein, OUTPUT = lo_fileout,
INTERNALLENGTH = VARIABLE

);
CREATE TABLE big_objs (

id integer,
obj bigobj

);

1424

CREATE TYPE

More examples, including suitable input and output functions, are in Section 35.11.

Compatibility
The first form of the CREATE TYPE command, which creates a composite type, conforms to the SQL
standard. The other forms are PostgreSQL extensions. The CREATE TYPE statement in the SQL standard
also defines other forms that are not implemented in PostgreSQL.

The ability to create a composite type with zero attributes is a PostgreSQL-specific deviation from the
standard (analogous to the same case in CREATE TABLE).

See Also
ALTER TYPE, CREATE DOMAIN, CREATE FUNCTION, DROP TYPE

1425

CREATE USER

Name
CREATE USER — define a new database role

Synopsis
CREATE USER name [[WITH] option [...]]

where option can be:

SUPERUSER | NOSUPERUSER
| CREATEDB | NOCREATEDB
| CREATEROLE | NOCREATEROLE
| CREATEUSER | NOCREATEUSER
| INHERIT | NOINHERIT
| LOGIN | NOLOGIN
| REPLICATION | NOREPLICATION
| CONNECTION LIMIT connlimit

| [ENCRYPTED | UNENCRYPTED] PASSWORD ’password’
| VALID UNTIL ’timestamp’
| IN ROLE role_name [, ...]
| IN GROUP role_name [, ...]
| ROLE role_name [, ...]
| ADMIN role_name [, ...]
| USER role_name [, ...]
| SYSID uid

Description
CREATE USER is now an alias for CREATE ROLE. The only difference is that when the command is
spelled CREATE USER, LOGIN is assumed by default, whereas NOLOGIN is assumed when the command
is spelled CREATE ROLE.

Compatibility
The CREATE USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users
to the implementation.

See Also
CREATE ROLE

1426

CREATE USER MAPPING

Name
CREATE USER MAPPING — define a new mapping of a user to a foreign server

Synopsis
CREATE USER MAPPING FOR { user_name | USER | CURRENT_USER | PUBLIC }

SERVER server_name

[OPTIONS (option ’value’ [, ...])]

Description
CREATE USER MAPPING defines a mapping of a user to a foreign server. A user mapping typically en-
capsulates connection information that a foreign-data wrapper uses together with the information encap-
sulated by a foreign server to access an external data resource.

The owner of a foreign server can create user mappings for that server for any user. Also, a user can create
a user mapping for his own user name if USAGE privilege on the server has been granted to the user.

Parameters

user_name

The name of an existing user that is mapped to foreign server. CURRENT_USER and USER match the
name of the current user. When PUBLIC is specified, a so-called public mapping is created that is
used when no user-specific mapping is applicable.

server_name

The name of an existing server for which the user mapping is to be created.

OPTIONS (option ’value’ [, ...])

This clause specifies the options of the user mapping. The options typically define the actual user
name and password of the mapping. Option names must be unique. The allowed option names and
values are specific to the server’s foreign-data wrapper.

Examples
Create a user mapping for user bob, server foo:

CREATE USER MAPPING FOR bob SERVER foo OPTIONS (user ’bob’, password ’secret’);

1427

CREATE USER MAPPING

Compatibility
CREATE USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER USER MAPPING, DROP USER MAPPING, CREATE FOREIGN DATA WRAPPER, CREATE
SERVER

1428

CREATE VIEW

Name
CREATE VIEW — define a new view

Synopsis
CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW name [(column_name [, ...])]

[WITH (view_option_name [= view_option_value] [, ...])]
AS query

Description
CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is run
every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is replaced. The
new query must generate the same columns that were generated by the existing view query (that is, the
same column names in the same order and with the same data types), but it may add additional columns
to the end of the list. The calculations giving rise to the output columns may be completely different.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the view is cre-
ated in the specified schema. Otherwise it is created in the current schema. Temporary views exist in a
special schema, so a schema name cannot be given when creating a temporary view. The name of the
view must be distinct from the name of any other view, table, sequence, index or foreign table in the same
schema.

Parameters

TEMPORARY or TEMP

If specified, the view is created as a temporary view. Temporary views are automatically dropped at
the end of the current session. Existing permanent relations with the same name are not visible to the
current session while the temporary view exists, unless they are referenced with schema-qualified
names.

If any of the tables referenced by the view are temporary, the view is created as a temporary view
(whether TEMPORARY is specified or not).

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column names are
deduced from the query.

1429

CREATE VIEW

WITH (view_option_name [= view_option_value] [, ...])

This clause specifies optional parameters for a view; currently, the only supported parameter name
is security_barrier, which should be enabled when a view is intended to provide row-level
security. See Section 37.4 for full details.

query

A SELECT or VALUES command which will provide the columns and rows of the view.

Notes
Currently, views are read only: the system will not allow an insert, update, or delete on a view. You can get
the effect of an updatable view by creating INSTEAD triggers on the view, which must convert attempted
inserts, etc. on the view into appropriate actions on other tables. For more information see CREATE
TRIGGER. Another possibility is to create rules (see CREATE RULE), but in practice triggers are easier
to understand and use correctly.

Use the DROP VIEW statement to drop views.

Be careful that the names and types of the view’s columns will be assigned the way you want. For example:

CREATE VIEW vista AS SELECT ’Hello World’;

is bad form in two ways: the column name defaults to ?column?, and the column data type defaults to
unknown. If you want a string literal in a view’s result, use something like:

CREATE VIEW vista AS SELECT text ’Hello World’ AS hello;

Access to tables referenced in the view is determined by permissions of the view owner. In some cases,
this can be used to provide secure but restricted access to the underlying tables. However, not all views are
secure against tampering; see Section 37.4 for details. Functions called in the view are treated the same
as if they had been called directly from the query using the view. Therefore the user of a view must have
permissions to call all functions used by the view.

When CREATE OR REPLACE VIEW is used on an existing view, only the view’s defining SELECT rule
is changed. Other view properties, including ownership, permissions, and non-SELECT rules, remain
unchanged. You must own the view to replace it (this includes being a member of the owning role).

Examples
Create a view consisting of all comedy films:

CREATE VIEW comedies AS
SELECT *
FROM films
WHERE kind = ’Comedy’;

This will create a view containing the columns that are in the film table at the time of view creation.
Though * was used to create the view, columns added later to the table will not be part of the view.

1430

CREATE VIEW

Compatibility
The SQL standard specifies some additional capabilities for the CREATE VIEW statement:

CREATE VIEW name [(column_name [, ...])]
AS query

[WITH [CASCADED | LOCAL] CHECK OPTION]

The optional clauses for the full SQL command are:

CHECK OPTION

This option has to do with updatable views. All INSERT and UPDATE commands on the view will
be checked to ensure data satisfy the view-defining condition (that is, the new data would be visible
through the view). If they do not, the update will be rejected.

LOCAL

Check for integrity on this view.

CASCADED

Check for integrity on this view and on any dependent view. CASCADED is assumed if neither
CASCADED nor LOCAL is specified.

CREATE OR REPLACE VIEW is a PostgreSQL language extension. So is the concept of a temporary view.

See Also
ALTER VIEW, DROP VIEW

1431

DEALLOCATE

Name
DEALLOCATE — deallocate a prepared statement

Synopsis
DEALLOCATE [PREPARE] { name | ALL }

Description
DEALLOCATE is used to deallocate a previously prepared SQL statement. If you do not explicitly deallocate
a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, see PREPARE.

Parameters

PREPARE

This key word is ignored.

name

The name of the prepared statement to deallocate.

ALL

Deallocate all prepared statements.

Compatibility
The SQL standard includes a DEALLOCATE statement, but it is only for use in embedded SQL.

See Also
EXECUTE, PREPARE

1432

DECLARE

Name
DECLARE — define a cursor

Synopsis
DECLARE name [BINARY] [INSENSITIVE] [[NO] SCROLL]

CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description
DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at a time
out of a larger query. After the cursor is created, rows are fetched from it using FETCH.

Note: This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 39.7.

Parameters

name

The name of the cursor to be created.

BINARY

Causes the cursor to return data in binary rather than in text format.

INSENSITIVE

Indicates that data retrieved from the cursor should be unaffected by updates to the table(s) underlying
the cursor that occur after the cursor is created. In PostgreSQL, this is the default behavior; so this
key word has no effect and is only accepted for compatibility with the SQL standard.

SCROLL

NO SCROLL

SCROLL specifies that the cursor can be used to retrieve rows in a nonsequential fashion (e.g., back-
ward). Depending upon the complexity of the query’s execution plan, specifying SCROLL might
impose a performance penalty on the query’s execution time. NO SCROLL specifies that the cursor
cannot be used to retrieve rows in a nonsequential fashion. The default is to allow scrolling in some
cases; this is not the same as specifying SCROLL. See Notes for details.

1433

DECLARE

WITH HOLD

WITHOUT HOLD

WITH HOLD specifies that the cursor can continue to be used after the transaction that created it suc-
cessfully commits. WITHOUT HOLD specifies that the cursor cannot be used outside of the transaction
that created it. If neither WITHOUT HOLD nor WITH HOLD is specified, WITHOUT HOLD is the default.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

The key words BINARY, INSENSITIVE, and SCROLL can appear in any order.

Notes
Normal cursors return data in text format, the same as a SELECT would produce. The BINARY option
specifies that the cursor should return data in binary format. This reduces conversion effort for both the
server and client, at the cost of more programmer effort to deal with platform-dependent binary data
formats. As an example, if a query returns a value of one from an integer column, you would get a string
of 1 with a default cursor, whereas with a binary cursor you would get a 4-byte field containing the internal
representation of the value (in big-endian byte order).

Binary cursors should be used carefully. Many applications, including psql, are not prepared to handle
binary cursors and expect data to come back in the text format.

Note: When the client application uses the “extended query” protocol to issue a FETCH command, the
Bind protocol message specifies whether data is to be retrieved in text or binary format. This choice
overrides the way that the cursor is defined. The concept of a binary cursor as such is thus obsolete
when using extended query protocol — any cursor can be treated as either text or binary.

Unless WITH HOLD is specified, the cursor created by this command can only be used within the current
transaction. Thus, DECLARE without WITH HOLD is useless outside a transaction block: the cursor would
survive only to the completion of the statement. Therefore PostgreSQL reports an error if such a command
is used outside a transaction block. Use BEGIN and COMMIT (or ROLLBACK) to define a transaction
block.

If WITH HOLD is specified and the transaction that created the cursor successfully commits, the cursor can
continue to be accessed by subsequent transactions in the same session. (But if the creating transaction
is aborted, the cursor is removed.) A cursor created with WITH HOLD is closed when an explicit CLOSE
command is issued on it, or the session ends. In the current implementation, the rows represented by a
held cursor are copied into a temporary file or memory area so that they remain available for subsequent
transactions.

WITH HOLD may not be specified when the query includes FOR UPDATE or FOR SHARE.

The SCROLL option should be specified when defining a cursor that will be used to fetch backwards. This
is required by the SQL standard. However, for compatibility with earlier versions, PostgreSQL will allow
backward fetches without SCROLL, if the cursor’s query plan is simple enough that no extra overhead is
needed to support it. However, application developers are advised not to rely on using backward fetches
from a cursor that has not been created with SCROLL. If NO SCROLL is specified, then backward fetches
are disallowed in any case.

1434

DECLARE

Backward fetches are also disallowed when the query includes FOR UPDATE or FOR SHARE; therefore
SCROLL may not be specified in this case.

Caution
Scrollable and WITH HOLD cursors may give unexpected results if they invoke any
volatile functions (see Section 35.6). When a previously fetched row is re-fetched,
the functions might be re-executed, perhaps leading to results different from the first
time. One workaround for such cases is to declare the cursor WITH HOLD and com-
mit the transaction before reading any rows from it. This will force the entire output
of the cursor to be materialized in temporary storage, so that volatile functions are
executed exactly once for each row.

If the cursor’s query includes FOR UPDATE or FOR SHARE, then returned rows are locked at the time they
are first fetched, in the same way as for a regular SELECT command with these options. In addition, the
returned rows will be the most up-to-date versions; therefore these options provide the equivalent of what
the SQL standard calls a “sensitive cursor”. (Specifying INSENSITIVE together with FOR UPDATE or
FOR SHARE is an error.)

Caution
It is generally recommended to use FOR UPDATE if the cursor is intended to be used
with UPDATE ... WHERE CURRENT OF or DELETE ... WHERE CURRENT OF. Using
FOR UPDATE prevents other sessions from changing the rows between the time
they are fetched and the time they are updated. Without FOR UPDATE, a subsequent
WHERE CURRENT OF command will have no effect if the row was changed since the
cursor was created.

Another reason to use FOR UPDATE is that without it, a subsequent WHERE CURRENT

OF might fail if the cursor query does not meet the SQL standard’s rules for being
“simply updatable” (in particular, the cursor must reference just one table and not
use grouping or ORDER BY). Cursors that are not simply updatable might work, or
might not, depending on plan choice details; so in the worst case, an application
might work in testing and then fail in production.

The main reason not to use FOR UPDATE with WHERE CURRENT OF is if you need
the cursor to be scrollable, or to be insensitive to the subsequent updates (that
is, continue to show the old data). If this is a requirement, pay close heed to the
caveats shown above.

The SQL standard only makes provisions for cursors in embedded SQL. The PostgreSQL server does not
implement an OPEN statement for cursors; a cursor is considered to be open when it is declared. However,
ECPG, the embedded SQL preprocessor for PostgreSQL, supports the standard SQL cursor conventions,
including those involving DECLARE and OPEN statements.

You can see all available cursors by querying the pg_cursors system view.

1435

DECLARE

Examples
To declare a cursor:

DECLARE liahona CURSOR FOR SELECT * FROM films;

See FETCH for more examples of cursor usage.

Compatibility
The SQL standard says that it is implementation-dependent whether cursors are sensitive to concurrent
updates of the underlying data by default. In PostgreSQL, cursors are insensitive by default, and can be
made sensitive by specifying FOR UPDATE. Other products may work differently.

The SQL standard allows cursors only in embedded SQL and in modules. PostgreSQL permits cursors to
be used interactively.

Binary cursors are a PostgreSQL extension.

See Also
CLOSE, FETCH, MOVE

1436

DELETE

Name
DELETE — delete rows of a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table_name [*] [[AS] alias]

[USING using_list]
[WHERE condition | WHERE CURRENT OF cursor_name]
[RETURNING * | output_expression [[AS] output_name] [, ...]]

Description
DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is absent,
the effect is to delete all rows in the table. The result is a valid, but empty table.

Tip: TRUNCATE is a PostgreSQL extension that provides a faster mechanism to remove all rows from
a table.

There are two ways to delete rows in a table using information contained in other tables in the database:
using sub-selects, or specifying additional tables in the USING clause. Which technique is more appropri-
ate depends on the specific circumstances.

The optional RETURNING clause causes DELETE to compute and return value(s) based on each row actually
deleted. Any expression using the table’s columns, and/or columns of other tables mentioned in USING,
can be computed. The syntax of the RETURNING list is identical to that of the output list of SELECT.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT privilege for any
table in the USING clause or whose values are read in the condition.

Parameters

with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
DELETE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to delete rows from. If ONLY is specified before
the table name, matching rows are deleted from the named table only. If ONLY is not specified,
matching rows are also deleted from any tables inheriting from the named table. Optionally, * can be
specified after the table name to explicitly indicate that descendant tables are included.

1437

DELETE

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given DELETE FROM foo AS f, the remainder of the DELETE statement
must refer to this table as f not foo.

using_list

A list of table expressions, allowing columns from other tables to appear in the WHERE condition.
This is similar to the list of tables that can be specified in the FROM Clause of a SELECT state-
ment; for example, an alias for the table name can be specified. Do not repeat the target table in the
using_list, unless you wish to set up a self-join.

condition

An expression that returns a value of type boolean. Only rows for which this expression returns
true will be deleted.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be deleted is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the DELETE’s
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_expression

An expression to be computed and returned by the DELETE command after each row is deleted. The
expression can use any column names of the table named by table_name or table(s) listed in USING.
Write * to return all columns.

output_name

A name to use for a returned column.

Outputs
On successful completion, a DELETE command returns a command tag of the form

DELETE count

The count is the number of rows deleted. Note that the number may be less than the number of rows that
matched the condition when deletes were suppressed by a BEFORE DELETE trigger. If count is 0, no
rows were deleted by the query (this is not considered an error).

If the DELETE command contains a RETURNING clause, the result will be similar to that of a SELECT

statement containing the columns and values defined in the RETURNING list, computed over the row(s)
deleted by the command.

1438

DELETE

Notes
PostgreSQL lets you reference columns of other tables in the WHERE condition by specifying the other
tables in the USING clause. For example, to delete all films produced by a given producer, one can do:

DELETE FROM films USING producers
WHERE producer_id = producers.id AND producers.name = ’foo’;

What is essentially happening here is a join between films and producers, with all successfully joined
films rows being marked for deletion. This syntax is not standard. A more standard way to do it is:

DELETE FROM films
WHERE producer_id IN (SELECT id FROM producers WHERE name = ’foo’);

In some cases the join style is easier to write or faster to execute than the sub-select style.

Examples
Delete all films but musicals:

DELETE FROM films WHERE kind <> ’Musical’;

Clear the table films:

DELETE FROM films;

Delete completed tasks, returning full details of the deleted rows:

DELETE FROM tasks WHERE status = ’DONE’ RETURNING *;

Delete the row of tasks on which the cursor c_tasks is currently positioned:

DELETE FROM tasks WHERE CURRENT OF c_tasks;

Compatibility
This command conforms to the SQL standard, except that the USING and RETURNING clauses are Post-
greSQL extensions, as is the ability to use WITH with DELETE.

1439

DISCARD

Name
DISCARD — discard session state

Synopsis
DISCARD { ALL | PLANS | TEMPORARY | TEMP }

Description
DISCARD releases internal resources associated with a database session. These resources are normally
released at the end of the session.

DISCARD TEMP drops all temporary tables created in the current session. DISCARD PLANS releases all
internally cached query plans. DISCARD ALL resets a session to its original state, discarding temporary
resources and resetting session-local configuration changes.

Parameters

TEMPORARY or TEMP

Drops all temporary tables created in the current session.

PLANS

Releases all cached query plans.

ALL

Releases all temporary resources associated with the current session and resets the session to its
initial state. Currently, this has the same effect as executing the following sequence of statements:

SET SESSION AUTHORIZATION DEFAULT;
RESET ALL;
DEALLOCATE ALL;
CLOSE ALL;
UNLISTEN *;
SELECT pg_advisory_unlock_all();
DISCARD PLANS;
DISCARD TEMP;

Notes
DISCARD ALL cannot be executed inside a transaction block.

1440

DISCARD

Compatibility
DISCARD is a PostgreSQL extension.

1441

DO

Name
DO — execute an anonymous code block

Synopsis
DO [LANGUAGE lang_name] code

Description
DO executes an anonymous code block, or in other words a transient anonymous function in a procedural
language.

The code block is treated as though it were the body of a function with no parameters, returning void. It
is parsed and executed a single time.

The optional LANGUAGE clause can be written either before or after the code block.

Parameters

code

The procedural language code to be executed. This must be specified as a string literal, just as in
CREATE FUNCTION. Use of a dollar-quoted literal is recommended.

lang_name

The name of the procedural language the code is written in. If omitted, the default is plpgsql.

Notes
The procedural language to be used must already have been installed into the current database by means
of CREATE LANGUAGE. plpgsql is installed by default, but other languages are not.

The user must have USAGE privilege for the procedural language, or must be a superuser if the language
is untrusted. This is the same privilege requirement as for creating a function in the language.

Examples
Grant all privileges on all views in schema public to role webuser:

DO $$DECLARE r record;
BEGIN

FOR r IN SELECT table_schema, table_name FROM information_schema.tables

1442

DO

WHERE table_type = ’VIEW’ AND table_schema = ’public’
LOOP

EXECUTE ’GRANT ALL ON ’ || quote_ident(r.table_schema) || ’.’ || quote_ident(r.table_name) || ’ TO webuser’;
END LOOP;

END$$;

Compatibility
There is no DO statement in the SQL standard.

See Also
CREATE LANGUAGE

1443

DROP AGGREGATE

Name
DROP AGGREGATE — remove an aggregate function

Synopsis
DROP AGGREGATE [IF EXISTS] name (argtype [, ...]) [CASCADE | RESTRICT]

Description
DROP AGGREGATE removes an existing aggregate function. To execute this command the current user
must be the owner of the aggregate function.

Parameters

IF EXISTS

Do not throw an error if the aggregate does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing aggregate function.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument aggregate
function, write * in place of the list of input data types.

CASCADE

Automatically drop objects that depend on the aggregate function.

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Examples
To remove the aggregate function myavg for type integer:

DROP AGGREGATE myavg(integer);

1444

DROP AGGREGATE

Compatibility
There is no DROP AGGREGATE statement in the SQL standard.

See Also
ALTER AGGREGATE, CREATE AGGREGATE

1445

DROP CAST

Name
DROP CAST — remove a cast

Synopsis
DROP CAST [IF EXISTS] (source_type AS target_type) [CASCADE | RESTRICT]

Description
DROP CAST removes a previously defined cast.

To be able to drop a cast, you must own the source or the target data type. These are the same privileges
that are required to create a cast.

Parameters

IF EXISTS

Do not throw an error if the cast does not exist. A notice is issued in this case.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

CASCADE

RESTRICT

These key words do not have any effect, since there are no dependencies on casts.

Examples
To drop the cast from type text to type int:

DROP CAST (text AS int);

1446

DROP CAST

Compatibility
The DROP CAST command conforms to the SQL standard.

See Also
CREATE CAST

1447

DROP COLLATION

Name
DROP COLLATION — remove a collation

Synopsis
DROP COLLATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP COLLATION removes a previously defined collation. To be able to drop a collation, you must own
the collation.

Parameters

IF EXISTS

Do not throw an error if the collation does not exist. A notice is issued in this case.

name

The name of the collation. The collation name can be schema-qualified.

CASCADE

Automatically drop objects that depend on the collation.

RESTRICT

Refuse to drop the collation if any objects depend on it. This is the default.

Examples
To drop the collation named german:

DROP COLLATION german;

Compatibility
The DROP COLLATION command conforms to the SQL standard, apart from the IF EXISTS option,
which is a PostgreSQL extension.

1448

DROP COLLATION

See Also
ALTER COLLATION, CREATE COLLATION

1449

DROP CONVERSION

Name
DROP CONVERSION — remove a conversion

Synopsis
DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP CONVERSION removes a previously defined conversion. To be able to drop a conversion, you must
own the conversion.

Parameters

IF EXISTS

Do not throw an error if the conversion does not exist. A notice is issued in this case.

name

The name of the conversion. The conversion name can be schema-qualified.

CASCADE

RESTRICT

These key words do not have any effect, since there are no dependencies on conversions.

Examples
To drop the conversion named myname:

DROP CONVERSION myname;

Compatibility
There is no DROP CONVERSION statement in the SQL standard, but a DROP TRANSLATION statement
that goes along with the CREATE TRANSLATION statement that is similar to the CREATE CONVERSION

statement in PostgreSQL.

1450

DROP CONVERSION

See Also
ALTER CONVERSION, CREATE CONVERSION

1451

DROP DATABASE

Name
DROP DATABASE — remove a database

Synopsis
DROP DATABASE [IF EXISTS] name

Description
DROP DATABASE drops a database. It removes the catalog entries for the database and deletes the directory
containing the data. It can only be executed by the database owner. Also, it cannot be executed while you
or anyone else are connected to the target database. (Connect to postgres or any other database to issue
this command.)

DROP DATABASE cannot be undone. Use it with care!

Parameters

IF EXISTS

Do not throw an error if the database does not exist. A notice is issued in this case.

name

The name of the database to remove.

Notes
DROP DATABASE cannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it might be more conve-
nient to use the program dropdb instead, which is a wrapper around this command.

Compatibility
There is no DROP DATABASE statement in the SQL standard.

See Also
CREATE DATABASE

1452

DROP DOMAIN

Name
DROP DOMAIN — remove a domain

Synopsis
DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP DOMAIN removes a domain. Only the owner of a domain can remove it.

Parameters

IF EXISTS

Do not throw an error if the domain does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples
To remove the domain box:

DROP DOMAIN box;

Compatibility
This command conforms to the SQL standard, except for the IF EXISTS option, which is a PostgreSQL
extension.

1453

DROP DOMAIN

See Also
CREATE DOMAIN, ALTER DOMAIN

1454

DROP EXTENSION

Name
DROP EXTENSION — remove an extension

Synopsis
DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP EXTENSION removes extensions from the database. Dropping an extension causes its component
objects to be dropped as well.

You must own the extension to use DROP EXTENSION.

Parameters

IF EXISTS

Do not throw an error if the extension does not exist. A notice is issued in this case.

name

The name of an installed extension.

CASCADE

Automatically drop objects that depend on the extension.

RESTRICT

Refuse to drop the extension if any objects depend on it (other than its own member objects and other
extensions listed in the same DROP command). This is the default.

Examples
To remove the extension hstore from the current database:

DROP EXTENSION hstore;

This command will fail if any of hstore’s objects are in use in the database, for example if any tables
have columns of the hstore type. Add the CASCADE option to forcibly remove those dependent objects
as well.

1455

DROP EXTENSION

Compatibility
DROP EXTENSION is a PostgreSQL extension.

See Also
CREATE EXTENSION, ALTER EXTENSION

1456

DROP FOREIGN DATA WRAPPER

Name
DROP FOREIGN DATA WRAPPER — remove a foreign-data wrapper

Synopsis
DROP FOREIGN DATA WRAPPER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP FOREIGN DATA WRAPPER removes an existing foreign-data wrapper. To execute this command,
the current user must be the owner of the foreign-data wrapper.

Parameters

IF EXISTS

Do not throw an error if the foreign-data wrapper does not exist. A notice is issued in this case.

name

The name of an existing foreign-data wrapper.

CASCADE

Automatically drop objects that depend on the foreign-data wrapper (such as servers).

RESTRICT

Refuse to drop the foreign-data wrappers if any objects depend on it. This is the default.

Examples
Drop the foreign-data wrapper dbi:

DROP FOREIGN DATA WRAPPER dbi;

Compatibility
DROP FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is
a PostgreSQL extension.

1457

DROP FOREIGN DATA WRAPPER

See Also
CREATE FOREIGN DATA WRAPPER, ALTER FOREIGN DATA WRAPPER

1458

DROP FOREIGN TABLE

Name
DROP FOREIGN TABLE — remove a foreign table

Synopsis
DROP FOREIGN TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP FOREIGN TABLE removes a foreign table. Only the owner of a foreign table can remove it.

Parameters

IF EXISTS

Do not throw an error if the foreign table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the foreign table to drop.

CASCADE

Automatically drop objects that depend on the foreign table (such as views).

RESTRICT

Refuse to drop the foreign table if any objects depend on it. This is the default.

Examples
To destroy two foreign tables, films and distributors:

DROP FOREIGN TABLE films, distributors;

Compatibility
This command conforms to the ISO/IEC 9075-9 (SQL/MED), except that the standard only allows one
foreign table to be dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL
extension.

1459

DROP FOREIGN TABLE

See Also
ALTER FOREIGN TABLE, CREATE FOREIGN TABLE

1460

DROP FUNCTION

Name
DROP FUNCTION — remove a function

Synopsis
DROP FUNCTION [IF EXISTS] name ([[argmode] [argname] argtype [, ...]])

[CASCADE | RESTRICT]

Description
DROP FUNCTION removes the definition of an existing function. To execute this command the user must
be the owner of the function. The argument types to the function must be specified, since several different
functions can exist with the same name and different argument lists.

Parameters

IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note that
DROP FUNCTION does not actually pay any attention to OUT arguments, since only the input argu-
ments are needed to determine the function’s identity. So it is sufficient to list the IN, INOUT, and
VARIADIC arguments.

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any attention to argu-
ment names, since only the argument data types are needed to determine the function’s identity.

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the function (such as operators or triggers).

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

1461

DROP FUNCTION

Examples
This command removes the square root function:

DROP FUNCTION sqrt(integer);

Compatibility
A DROP FUNCTION statement is defined in the SQL standard, but it is not compatible with this command.

See Also
CREATE FUNCTION, ALTER FUNCTION

1462

DROP GROUP

Name
DROP GROUP — remove a database role

Synopsis
DROP GROUP [IF EXISTS] name [, ...]

Description
DROP GROUP is now an alias for DROP ROLE.

Compatibility
There is no DROP GROUP statement in the SQL standard.

See Also
DROP ROLE

1463

DROP INDEX

Name
DROP INDEX — remove an index

Synopsis
DROP INDEX [CONCURRENTLY] [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP INDEX drops an existing index from the database system. To execute this command you must be
the owner of the index.

Parameters

CONCURRENTLY

Drop the index without locking out concurrent selects, inserts, updates, and deletes on the index’s
table. A normal DROP INDEX acquires exclusive lock on the table, blocking other accesses until
the index drop can be completed. With this option, the command instead waits until conflicting
transactions have completed.

There are several caveats to be aware of when using this option. Only one index name can be speci-
fied, and the CASCADE option is not supported. (Thus, an index that supports a UNIQUE or PRIMARY
KEY constraint cannot be dropped this way.) Also, regular DROP INDEX commands can be performed
within a transaction block, but DROP INDEX CONCURRENTLY cannot.

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an index to remove.

CASCADE

Automatically drop objects that depend on the index.

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

1464

DROP INDEX

Examples
This command will remove the index title_idx:

DROP INDEX title_idx;

Compatibility
DROP INDEX is a PostgreSQL language extension. There are no provisions for indexes in the SQL stan-
dard.

See Also
CREATE INDEX

1465

DROP LANGUAGE

Name
DROP LANGUAGE — remove a procedural language

Synopsis
DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP LANGUAGE removes the definition of a previously registered procedural language. You must be a
superuser or the owner of the language to use DROP LANGUAGE.

Note: As of PostgreSQL 9.1, most procedural languages have been made into “extensions”, and
should therefore be removed with DROP EXTENSION not DROP LANGUAGE.

Parameters

IF EXISTS

Do not throw an error if the language does not exist. A notice is issued in this case.

name

The name of an existing procedural language. For backward compatibility, the name can be enclosed
by single quotes.

CASCADE

Automatically drop objects that depend on the language (such as functions in the language).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples
This command removes the procedural language plsample:

DROP LANGUAGE plsample;

1466

DROP LANGUAGE

Compatibility
There is no DROP LANGUAGE statement in the SQL standard.

See Also
ALTER LANGUAGE, CREATE LANGUAGE, droplang

1467

DROP OPERATOR

Name
DROP OPERATOR — remove an operator

Synopsis
DROP OPERATOR [IF EXISTS] name ({ left_type | NONE } , { right_type | NONE }) [CASCADE | RESTRICT]

Description
DROP OPERATOR drops an existing operator from the database system. To execute this command you
must be the owner of the operator.

Parameters

IF EXISTS

Do not throw an error if the operator does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator’s left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator’s right operand; write NONE if the operator has no right operand.

CASCADE

Automatically drop objects that depend on the operator.

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples
Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

Remove the left unary bitwise complement operator ~b for type bit:

1468

DROP OPERATOR

DROP OPERATOR ~ (none, bit);

Remove the right unary factorial operator x! for type bigint:

DROP OPERATOR ! (bigint, none);

Compatibility
There is no DROP OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, ALTER OPERATOR

1469

DROP OPERATOR CLASS

Name
DROP OPERATOR CLASS — remove an operator class

Synopsis
DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description
DROP OPERATOR CLASS drops an existing operator class. To execute this command you must be the
owner of the operator class.

DROP OPERATOR CLASS does not drop any of the operators or functions referenced by the class. If there
are any indexes depending on the operator class, you will need to specify CASCADE for the drop to com-
plete.

Parameters

IF EXISTS

Do not throw an error if the operator class does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class.

RESTRICT

Refuse to drop the operator class if any objects depend on it. This is the default.

Notes
DROP OPERATOR CLASS will not drop the operator family containing the class, even if there is noth-
ing else left in the family (in particular, in the case where the family was implicitly created by CREATE

OPERATOR CLASS). An empty operator family is harmless, but for the sake of tidiness you might wish to
remove the family with DROP OPERATOR FAMILY; or perhaps better, use DROP OPERATOR FAMILY in
the first place.

1470

DROP OPERATOR CLASS

Examples
Remove the B-tree operator class widget_ops:

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator class. Add CASCADE
to drop such indexes along with the operator class.

Compatibility
There is no DROP OPERATOR CLASS statement in the SQL standard.

See Also
ALTER OPERATOR CLASS, CREATE OPERATOR CLASS, DROP OPERATOR FAMILY

1471

DROP OPERATOR FAMILY

Name
DROP OPERATOR FAMILY — remove an operator family

Synopsis
DROP OPERATOR FAMILY [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description
DROP OPERATOR FAMILY drops an existing operator family. To execute this command you must be the
owner of the operator family.

DROP OPERATOR FAMILY includes dropping any operator classes contained in the family, but it does not
drop any of the operators or functions referenced by the family. If there are any indexes depending on
operator classes within the family, you will need to specify CASCADE for the drop to complete.

Parameters

IF EXISTS

Do not throw an error if the operator family does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator family.

index_method

The name of the index access method the operator family is for.

CASCADE

Automatically drop objects that depend on the operator family.

RESTRICT

Refuse to drop the operator family if any objects depend on it. This is the default.

Examples
Remove the B-tree operator family float_ops:

DROP OPERATOR FAMILY float_ops USING btree;

This command will not succeed if there are any existing indexes that use operator classes within the
family. Add CASCADE to drop such indexes along with the operator family.

1472

DROP OPERATOR FAMILY

Compatibility
There is no DROP OPERATOR FAMILY statement in the SQL standard.

See Also
ALTER OPERATOR FAMILY, CREATE OPERATOR FAMILY, ALTER OPERATOR CLASS, CRE-
ATE OPERATOR CLASS, DROP OPERATOR CLASS

1473

DROP OWNED

Name
DROP OWNED — remove database objects owned by a database role

Synopsis
DROP OWNED BY name [, ...] [CASCADE | RESTRICT]

Description
DROP OWNED drops all the objects within the current database that are owned by one of the specified
roles. Any privileges granted to the given roles on objects in the current database and on shared objects
(databases, tablespaces) will also be revoked.

Parameters

name

The name of a role whose objects will be dropped, and whose privileges will be revoked.

CASCADE

Automatically drop objects that depend on the affected objects.

RESTRICT

Refuse to drop the objects owned by a role if any other database objects depend on one of the affected
objects. This is the default.

Notes
DROP OWNED is often used to prepare for the removal of one or more roles. Because DROP OWNED only
affects the objects in the current database, it is usually necessary to execute this command in each database
that contains objects owned by a role that is to be removed.

Using the CASCADE option might make the command recurse to objects owned by other users.

The REASSIGN OWNED command is an alternative that reassigns the ownership of all the database
objects owned by one or more roles.

Databases and tablespaces owned by the role(s) will not be removed.

1474

DROP OWNED

Compatibility
The DROP OWNED statement is a PostgreSQL extension.

See Also
REASSIGN OWNED, DROP ROLE

1475

DROP ROLE

Name
DROP ROLE — remove a database role

Synopsis
DROP ROLE [IF EXISTS] name [, ...]

Description
DROP ROLE removes the specified role(s). To drop a superuser role, you must be a superuser yourself; to
drop non-superuser roles, you must have CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database of the cluster; an error will be raised if so.
Before dropping the role, you must drop all the objects it owns (or reassign their ownership) and revoke
any privileges the role has been granted. The REASSIGN OWNED and DROP OWNED commands can
be useful for this purpose.

However, it is not necessary to remove role memberships involving the role; DROP ROLE automatically
revokes any memberships of the target role in other roles, and of other roles in the target role. The other
roles are not dropped nor otherwise affected.

Parameters

IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of the role to remove.

Notes
PostgreSQL includes a program dropuser that has the same functionality as this command (in fact, it calls
this command) but can be run from the command shell.

Examples
To drop a role:

DROP ROLE jonathan;

1476

DROP ROLE

Compatibility
The SQL standard defines DROP ROLE, but it allows only one role to be dropped at a time, and it specifies
different privilege requirements than PostgreSQL uses.

See Also
CREATE ROLE, ALTER ROLE, SET ROLE

1477

DROP RULE

Name
DROP RULE — remove a rewrite rule

Synopsis
DROP RULE [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP RULE drops a rewrite rule.

Parameters

IF EXISTS

Do not throw an error if the rule does not exist. A notice is issued in this case.

name

The name of the rule to drop.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

CASCADE

Automatically drop objects that depend on the rule.

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples
To drop the rewrite rule newrule:

DROP RULE newrule ON mytable;

Compatibility
There is no DROP RULE statement in the SQL standard.

1478

DROP RULE

See Also
CREATE RULE

1479

DROP SCHEMA

Name
DROP SCHEMA — remove a schema

Synopsis
DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SCHEMA removes schemas from the database.

A schema can only be dropped by its owner or a superuser. Note that the owner can drop the schema (and
thereby all contained objects) even if he does not own some of the objects within the schema.

Parameters

IF EXISTS

Do not throw an error if the schema does not exist. A notice is issued in this case.

name

The name of a schema.

CASCADE

Automatically drop objects (tables, functions, etc.) that are contained in the schema.

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Examples
To remove schema mystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

1480

DROP SCHEMA

Compatibility
DROP SCHEMA is fully conforming with the SQL standard, except that the standard only allows one
schema to be dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL
extension.

See Also
ALTER SCHEMA, CREATE SCHEMA

1481

DROP SEQUENCE

Name
DROP SEQUENCE — remove a sequence

Synopsis
DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SEQUENCE removes sequence number generators. A sequence can only be dropped by its owner or
a superuser.

Parameters

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of a sequence.

CASCADE

Automatically drop objects that depend on the sequence.

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples
To remove the sequence serial:

DROP SEQUENCE serial;

Compatibility
DROP SEQUENCE conforms to the SQL standard, except that the standard only allows one sequence to be
dropped per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

1482

DROP SEQUENCE

See Also
CREATE SEQUENCE, ALTER SEQUENCE

1483

DROP SERVER

Name
DROP SERVER — remove a foreign server descriptor

Synopsis
DROP SERVER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP SERVER removes an existing foreign server descriptor. To execute this command, the current user
must be the owner of the server.

Parameters

IF EXISTS

Do not throw an error if the server does not exist. A notice is issued in this case.

name

The name of an existing server.

CASCADE

Automatically drop objects that depend on the server (such as user mappings).

RESTRICT

Refuse to drop the server if any objects depend on it. This is the default.

Examples
Drop a server foo if it exists:

DROP SERVER IF EXISTS foo;

Compatibility
DROP SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a PostgreSQL ex-
tension.

1484

DROP SERVER

See Also
CREATE SERVER, ALTER SERVER

1485

DROP TABLE

Name
DROP TABLE — remove a table

Synopsis
DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TABLE removes tables from the database. Only the table owner, the schema owner, and superuser
can drop a table. To empty a table of rows without destroying the table, use DELETE or TRUNCATE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for the target table.
However, to drop a table that is referenced by a view or a foreign-key constraint of another table, CASCADE
must be specified. (CASCADE will remove a dependent view entirely, but in the foreign-key case it will only
remove the foreign-key constraint, not the other table entirely.)

Parameters

IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the table to drop.

CASCADE

Automatically drop objects that depend on the table (such as views).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples
To destroy two tables, films and distributors:

DROP TABLE films, distributors;

1486

DROP TABLE

Compatibility
This command conforms to the SQL standard, except that the standard only allows one table to be dropped
per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

See Also
ALTER TABLE, CREATE TABLE

1487

DROP TABLESPACE

Name
DROP TABLESPACE — remove a tablespace

Synopsis
DROP TABLESPACE [IF EXISTS] name

Description
DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all
database objects before it can be dropped. It is possible that objects in other databases might still reside in
the tablespace even if no objects in the current database are using the tablespace. Also, if the tablespace
is listed in the temp_tablespaces setting of any active session, the DROP might fail due to temporary files
residing in the tablespace.

Parameters

IF EXISTS

Do not throw an error if the tablespace does not exist. A notice is issued in this case.

name

The name of a tablespace.

Notes
DROP TABLESPACE cannot be executed inside a transaction block.

Examples
To remove tablespace mystuff from the system:

DROP TABLESPACE mystuff;

1488

DROP TABLESPACE

Compatibility
DROP TABLESPACE is a PostgreSQL extension.

See Also
CREATE TABLESPACE, ALTER TABLESPACE

1489

DROP TEXT SEARCH CONFIGURATION

Name
DROP TEXT SEARCH CONFIGURATION — remove a text search configuration

Synopsis
DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH CONFIGURATION drops an existing text search configuration. To execute this com-
mand you must be the owner of the configuration.

Parameters

IF EXISTS

Do not throw an error if the text search configuration does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search configuration.

CASCADE

Automatically drop objects that depend on the text search configuration.

RESTRICT

Refuse to drop the text search configuration if any objects depend on it. This is the default.

Examples
Remove the text search configuration my_english:

DROP TEXT SEARCH CONFIGURATION my_english;

This command will not succeed if there are any existing indexes that reference the configuration in
to_tsvector calls. Add CASCADE to drop such indexes along with the text search configuration.

Compatibility
There is no DROP TEXT SEARCH CONFIGURATION statement in the SQL standard.

1490

DROP TEXT SEARCH CONFIGURATION

See Also
ALTER TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH CONFIGURATION

1491

DROP TEXT SEARCH DICTIONARY

Name
DROP TEXT SEARCH DICTIONARY — remove a text search dictionary

Synopsis
DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH DICTIONARY drops an existing text search dictionary. To execute this command
you must be the owner of the dictionary.

Parameters

IF EXISTS

Do not throw an error if the text search dictionary does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search dictionary.

CASCADE

Automatically drop objects that depend on the text search dictionary.

RESTRICT

Refuse to drop the text search dictionary if any objects depend on it. This is the default.

Examples
Remove the text search dictionary english:

DROP TEXT SEARCH DICTIONARY english;

This command will not succeed if there are any existing text search configurations that use the dictionary.
Add CASCADE to drop such configurations along with the dictionary.

Compatibility
There is no DROP TEXT SEARCH DICTIONARY statement in the SQL standard.

1492

DROP TEXT SEARCH DICTIONARY

See Also
ALTER TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY

1493

DROP TEXT SEARCH PARSER

Name
DROP TEXT SEARCH PARSER — remove a text search parser

Synopsis
DROP TEXT SEARCH PARSER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH PARSER drops an existing text search parser. You must be a superuser to use this
command.

Parameters

IF EXISTS

Do not throw an error if the text search parser does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search parser.

CASCADE

Automatically drop objects that depend on the text search parser.

RESTRICT

Refuse to drop the text search parser if any objects depend on it. This is the default.

Examples
Remove the text search parser my_parser:

DROP TEXT SEARCH PARSER my_parser;

This command will not succeed if there are any existing text search configurations that use the parser. Add
CASCADE to drop such configurations along with the parser.

Compatibility
There is no DROP TEXT SEARCH PARSER statement in the SQL standard.

1494

DROP TEXT SEARCH PARSER

See Also
ALTER TEXT SEARCH PARSER, CREATE TEXT SEARCH PARSER

1495

DROP TEXT SEARCH TEMPLATE

Name
DROP TEXT SEARCH TEMPLATE — remove a text search template

Synopsis
DROP TEXT SEARCH TEMPLATE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH TEMPLATE drops an existing text search template. You must be a superuser to use
this command.

Parameters

IF EXISTS

Do not throw an error if the text search template does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search template.

CASCADE

Automatically drop objects that depend on the text search template.

RESTRICT

Refuse to drop the text search template if any objects depend on it. This is the default.

Examples
Remove the text search template thesaurus:

DROP TEXT SEARCH TEMPLATE thesaurus;

This command will not succeed if there are any existing text search dictionaries that use the template. Add
CASCADE to drop such dictionaries along with the template.

Compatibility
There is no DROP TEXT SEARCH TEMPLATE statement in the SQL standard.

1496

DROP TEXT SEARCH TEMPLATE

See Also
ALTER TEXT SEARCH TEMPLATE, CREATE TEXT SEARCH TEMPLATE

1497

DROP TRIGGER

Name
DROP TRIGGER — remove a trigger

Synopsis
DROP TRIGGER [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP TRIGGER removes an existing trigger definition. To execute this command, the current user must
be the owner of the table for which the trigger is defined.

Parameters

IF EXISTS

Do not throw an error if the trigger does not exist. A notice is issued in this case.

name

The name of the trigger to remove.

table_name

The name (optionally schema-qualified) of the table for which the trigger is defined.

CASCADE

Automatically drop objects that depend on the trigger.

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples
Destroy the trigger if_dist_exists on the table films:

DROP TRIGGER if_dist_exists ON films;

1498

DROP TRIGGER

Compatibility
The DROP TRIGGER statement in PostgreSQL is incompatible with the SQL standard. In the SQL stan-
dard, trigger names are not local to tables, so the command is simply DROP TRIGGER name.

See Also
CREATE TRIGGER

1499

DROP TYPE

Name
DROP TYPE — remove a data type

Synopsis
DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TYPE removes a user-defined data type. Only the owner of a type can remove it.

Parameters

IF EXISTS

Do not throw an error if the type does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns, functions, operators).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Examples
To remove the data type box:

DROP TYPE box;

Compatibility
This command is similar to the corresponding command in the SQL standard, apart from the IF EXISTS

option, which is a PostgreSQL extension. But note that much of the CREATE TYPE command and the data
type extension mechanisms in PostgreSQL differ from the SQL standard.

1500

DROP TYPE

See Also
ALTER TYPE, CREATE TYPE

1501

DROP USER

Name
DROP USER — remove a database role

Synopsis
DROP USER [IF EXISTS] name [, ...]

Description
DROP USER is now an alias for DROP ROLE.

Compatibility
The DROP USER statement is a PostgreSQL extension. The SQL standard leaves the definition of users to
the implementation.

See Also
DROP ROLE

1502

DROP USER MAPPING

Name
DROP USER MAPPING — remove a user mapping for a foreign server

Synopsis
DROP USER MAPPING [IF EXISTS] FOR { user_name | USER | CURRENT_USER | PUBLIC } SERVER server_name

Description
DROP USER MAPPING removes an existing user mapping from foreign server.

The owner of a foreign server can drop user mappings for that server for any user. Also, a user can drop a
user mapping for his own user name if USAGE privilege on the server has been granted to the user.

Parameters

IF EXISTS

Do not throw an error if the user mapping does not exist. A notice is issued in this case.

user_name

User name of the mapping. CURRENT_USER and USER match the name of the current user. PUBLIC
is used to match all present and future user names in the system.

server_name

Server name of the user mapping.

Examples
Drop a user mapping bob, server foo if it exists:

DROP USER MAPPING IF EXISTS FOR bob SERVER foo;

Compatibility
DROP USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a Post-
greSQL extension.

1503

DROP USER MAPPING

See Also
CREATE USER MAPPING, ALTER USER MAPPING

1504

DROP VIEW

Name
DROP VIEW — remove a view

Synopsis
DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP VIEW drops an existing view. To execute this command you must be the owner of the view.

Parameters

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples
This command will remove the view called kinds:

DROP VIEW kinds;

Compatibility
This command conforms to the SQL standard, except that the standard only allows one view to be dropped
per command, and apart from the IF EXISTS option, which is a PostgreSQL extension.

1505

DROP VIEW

See Also
ALTER VIEW, CREATE VIEW

1506

END

Name
END — commit the current transaction

Synopsis
END [WORK | TRANSACTION]

Description
END commits the current transaction. All changes made by the transaction become visible to others and
are guaranteed to be durable if a crash occurs. This command is a PostgreSQL extension that is equivalent
to COMMIT.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes
Use ROLLBACK to abort a transaction.

Issuing END when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To commit the current transaction and make all changes permanent:

END;

Compatibility
END is a PostgreSQL extension that provides functionality equivalent to COMMIT, which is specified in
the SQL standard.

1507

END

See Also
BEGIN, COMMIT, ROLLBACK

1508

EXECUTE

Name
EXECUTE — execute a prepared statement

Synopsis
EXECUTE name [(parameter [, ...])]

Description
EXECUTE is used to execute a previously prepared statement. Since prepared statements only exist for the
duration of a session, the prepared statement must have been created by a PREPARE statement executed
earlier in the current session.

If the PREPARE statement that created the statement specified some parameters, a compatible set of pa-
rameters must be passed to the EXECUTE statement, or else an error is raised. Note that (unlike functions)
prepared statements are not overloaded based on the type or number of their parameters; the name of a
prepared statement must be unique within a database session.

For more information on the creation and usage of prepared statements, see PREPARE.

Parameters

name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an expression yielding a
value that is compatible with the data type of this parameter, as was determined when the prepared
statement was created.

Outputs
The command tag returned by EXECUTE is that of the prepared statement, and not EXECUTE.

Examples
Examples are given in the Examples section of the PREPARE documentation.

1509

EXECUTE

Compatibility
The SQL standard includes an EXECUTE statement, but it is only for use in embedded SQL. This version
of the EXECUTE statement also uses a somewhat different syntax.

See Also
DEALLOCATE, PREPARE

1510

EXPLAIN

Name
EXPLAIN — show the execution plan of a statement

Synopsis
EXPLAIN [(option [, ...])] statement

EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

ANALYZE [boolean]
VERBOSE [boolean]
COSTS [boolean]
BUFFERS [boolean]
TIMING [boolean]
FORMAT { TEXT | XML | JSON | YAML }

Description
This command displays the execution plan that the PostgreSQL planner generates for the supplied state-
ment. The execution plan shows how the table(s) referenced by the statement will be scanned — by plain
sequential scan, index scan, etc. — and if multiple tables are referenced, what join algorithms will be used
to bring together the required rows from each input table.

The most critical part of the display is the estimated statement execution cost, which is the planner’s guess
at how long it will take to run the statement (measured in cost units that are arbitrary, but conventionally
mean disk page fetches). Actually two numbers are shown: the start-up cost before the first row can be
returned, and the total cost to return all the rows. For most queries the total cost is what matters, but
in contexts such as a subquery in EXISTS, the planner will choose the smallest start-up cost instead of
the smallest total cost (since the executor will stop after getting one row, anyway). Also, if you limit the
number of rows to return with a LIMIT clause, the planner makes an appropriate interpolation between
the endpoint costs to estimate which plan is really the cheapest.

The ANALYZE option causes the statement to be actually executed, not only planned. Then actual runtime
statistics are added to the display, including the total elapsed time expended within each plan node (in
milliseconds) and the total number of rows it actually returned. This is useful for seeing whether the
planner’s estimates are close to reality.

Important: Keep in mind that the statement is actually executed when the ANALYZE option is used. Al-
though EXPLAIN will discard any output that a SELECT would return, other side effects of the statement
will happen as usual. If you wish to use EXPLAIN ANALYZE on an INSERT, UPDATE, DELETE, CREATE
TABLE AS, or EXECUTE statement without letting the command affect your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ...;

1511

EXPLAIN

ROLLBACK;

Only the ANALYZE and VERBOSE options can be specified, and only in that order, without surrounding
the option list in parentheses. Prior to PostgreSQL 9.0, the unparenthesized syntax was the only one
supported. It is expected that all new options will be supported only in the parenthesized syntax.

Parameters

ANALYZE

Carry out the command and show actual run times and other statistics. This parameter defaults to
FALSE.

VERBOSE

Display additional information regarding the plan. Specifically, include the output column list for
each node in the plan tree, schema-qualify table and function names, always label variables in ex-
pressions with their range table alias, and always print the name of each trigger for which statistics
are displayed. This parameter defaults to FALSE.

COSTS

Include information on the estimated startup and total cost of each plan node, as well as the estimated
number of rows and the estimated width of each row. This parameter defaults to TRUE.

BUFFERS

Include information on buffer usage. Specifically, include the number of shared blocks hit, read,
dirtied, and written, the number of local blocks hit, read, dirtied, and written, and the number of temp
blocks read and written. A hit means that a read was avoided because the block was found already in
cache when needed. Shared blocks contain data from regular tables and indexes; local blocks contain
data from temporary tables and indexes; while temp blocks contain short-term working data used
in sorts, hashes, Materialize plan nodes, and similar cases. The number of blocks dirtied indicates
the number of previously unmodified blocks that were changed by this query; while the number of
blocks written indicates the number of previously-dirtied blocks evicted from cache by this backend
during query processing. The number of blocks shown for an upper-level node includes those used
by all its child nodes. In text format, only non-zero values are printed. This parameter may only be
used when ANALYZE is also enabled. It defaults to FALSE.

TIMING

Include the actual startup time and time spent in the node in the output. The overhead of repeatedly
reading the system clock can slow down the query significantly on some systems, so it may be useful
to set this parameter to FALSE when only actual row counts, and not exact times, are needed. This
parameter may only be used when ANALYZE is also enabled. It defaults to TRUE.

FORMAT

Specify the output format, which can be TEXT, XML, JSON, or YAML. Non-text output contains
the same information as the text output format, but is easier for programs to parse. This parameter

1512

EXPLAIN

defaults to TEXT.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in
which case TRUE is assumed.

statement

Any SELECT, INSERT, UPDATE, DELETE, VALUES, EXECUTE, DECLARE, or CREATE TABLE AS

statement, whose execution plan you wish to see.

Outputs
The command’s result is a textual description of the plan selected for the statement, optionally annotated
with execution statistics. Section 14.1 describes the information provided.

Notes
In order to allow the PostgreSQL query planner to make reasonably informed decisions when optimizing
queries, the pg_statistic data should be up-to-date for all tables used in the query. Normally the
autovacuum daemon will take care of that automatically. But if a table has recently had substantial changes
in its contents, you might need to do a manual ANALYZE rather than wait for autovacuum to catch up
with the changes.

In order to measure the run-time cost of each node in the execution plan, the current implementation of
EXPLAIN ANALYZE adds profiling overhead to query execution. As a result, running EXPLAIN ANALYZE

on a query can sometimes take significantly longer than executing the query normally. The amount of
overhead depends on the nature of the query, as well as the platform being used. The worst case occurs for
plan nodes that in themselves require very little time per execution, and on machines that have relatively
slow operating system calls for obtaining the time of day.

Examples
To show the plan for a simple query on a table with a single integer column and 10000 rows:

EXPLAIN SELECT * FROM foo;

QUERY PLAN

Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)

(1 row)

Here is the same query, with JSON output formatting:

EXPLAIN (FORMAT JSON) SELECT * FROM foo;
QUERY PLAN

1513

EXPLAIN

[+
{ +
"Plan": { +
"Node Type": "Seq Scan",+
"Relation Name": "foo", +
"Alias": "foo", +
"Startup Cost": 0.00, +
"Total Cost": 155.00, +
"Plan Rows": 10000, +
"Plan Width": 4 +

} +
} +

]
(1 row)

If there is an index and we use a query with an indexable WHERE condition, EXPLAIN might show a
different plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;

QUERY PLAN
--
Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)
Index Cond: (i = 4)

(2 rows)

Here is the same query, but in YAML format:

EXPLAIN (FORMAT YAML) SELECT * FROM foo WHERE i=’4’;
QUERY PLAN

- Plan: +

Node Type: "Index Scan" +
Scan Direction: "Forward"+
Index Name: "fi" +
Relation Name: "foo" +
Alias: "foo" +
Startup Cost: 0.00 +
Total Cost: 5.98 +
Plan Rows: 1 +
Plan Width: 4 +
Index Cond: "(i = 4)"

(1 row)

XML format is left as an exercise for the reader.

Here is the same plan with cost estimates suppressed:

EXPLAIN (COSTS FALSE) SELECT * FROM foo WHERE i = 4;

1514

EXPLAIN

QUERY PLAN

Index Scan using fi on foo
Index Cond: (i = 4)

(2 rows)

Here is an example of a query plan for a query using an aggregate function:

EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

QUERY PLAN

Aggregate (cost=23.93..23.93 rows=1 width=4)
-> Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)

Index Cond: (i < 10)
(3 rows)

Here is an example of using EXPLAIN EXECUTE to display the execution plan for a prepared query:

PREPARE query(int, int) AS SELECT sum(bar) FROM test
WHERE id > $1 AND id < $2
GROUP BY foo;

EXPLAIN ANALYZE EXECUTE query(100, 200);

QUERY PLAN

HashAggregate (cost=39.53..39.53 rows=1 width=8) (actual time=0.661..0.672 rows=7 loops=1)
-> Index Scan using test_pkey on test (cost=0.00..32.97 rows=1311 width=8) (actual time=0.050..0.395 rows=99 loops=1)

Index Cond: ((id > $1) AND (id < $2))
Total runtime: 0.851 ms

(4 rows)

Of course, the specific numbers shown here depend on the actual contents of the tables involved. Also
note that the numbers, and even the selected query strategy, might vary between PostgreSQL releases
due to planner improvements. In addition, the ANALYZE command uses random sampling to estimate data
statistics; therefore, it is possible for cost estimates to change after a fresh run of ANALYZE, even if the
actual distribution of data in the table has not changed.

Compatibility
There is no EXPLAIN statement defined in the SQL standard.

1515

EXPLAIN

See Also
ANALYZE

1516

FETCH

Name
FETCH — retrieve rows from a query using a cursor

Synopsis
FETCH [direction [FROM | IN]] cursor_name

where direction can be empty or one of:

NEXT
PRIOR
FIRST
LAST
ABSOLUTE count

RELATIVE count

count

ALL
FORWARD
FORWARD count

FORWARD ALL
BACKWARD
BACKWARD count

BACKWARD ALL

Description
FETCH retrieves rows using a previously-created cursor.

A cursor has an associated position, which is used by FETCH. The cursor position can be before the first
row of the query result, on any particular row of the result, or after the last row of the result. When created,
a cursor is positioned before the first row. After fetching some rows, the cursor is positioned on the row
most recently retrieved. If FETCH runs off the end of the available rows then the cursor is left positioned
after the last row, or before the first row if fetching backward. FETCH ALL or FETCH BACKWARD ALL

will always leave the cursor positioned after the last row or before the first row.

The forms NEXT, PRIOR, FIRST, LAST, ABSOLUTE, RELATIVE fetch a single row after moving the cursor
appropriately. If there is no such row, an empty result is returned, and the cursor is left positioned before
the first row or after the last row as appropriate.

The forms using FORWARD and BACKWARD retrieve the indicated number of rows moving in the forward or
backward direction, leaving the cursor positioned on the last-returned row (or after/before all rows, if the
count exceeds the number of rows available).

RELATIVE 0, FORWARD 0, and BACKWARD 0 all request fetching the current row without moving the
cursor, that is, re-fetching the most recently fetched row. This will succeed unless the cursor is positioned
before the first row or after the last row; in which case, no row is returned.

1517

FETCH

Note: This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 39.7.

Parameters

direction

direction defines the fetch direction and number of rows to fetch. It can be one of the following:

NEXT

Fetch the next row. This is the default if direction is omitted.

PRIOR

Fetch the prior row.

FIRST

Fetch the first row of the query (same as ABSOLUTE 1).

LAST

Fetch the last row of the query (same as ABSOLUTE -1).

ABSOLUTE count

Fetch the count’th row of the query, or the abs(count)’th row from the end if count is nega-
tive. Position before first row or after last row if count is out of range; in particular, ABSOLUTE
0 positions before the first row.

RELATIVE count

Fetch the count’th succeeding row, or the abs(count)’th prior row if count is negative.
RELATIVE 0 re-fetches the current row, if any.

count

Fetch the next count rows (same as FORWARD count).

ALL

Fetch all remaining rows (same as FORWARD ALL).

FORWARD

Fetch the next row (same as NEXT).

FORWARD count

Fetch the next count rows. FORWARD 0 re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

BACKWARD

Fetch the prior row (same as PRIOR).

1518

FETCH

BACKWARD count

Fetch the prior count rows (scanning backwards). BACKWARD 0 re-fetches the current row.

BACKWARD ALL

Fetch all prior rows (scanning backwards).

count

count is a possibly-signed integer constant, determining the location or number of rows to fetch.
For FORWARD and BACKWARD cases, specifying a negative count is equivalent to changing the sense
of FORWARD and BACKWARD.

cursor_name

An open cursor’s name.

Outputs
On successful completion, a FETCH command returns a command tag of the form

FETCH count

The count is the number of rows fetched (possibly zero). Note that in psql, the command tag will not
actually be displayed, since psql displays the fetched rows instead.

Notes
The cursor should be declared with the SCROLL option if one intends to use any variants of FETCH other
than FETCH NEXT or FETCH FORWARD with a positive count. For simple queries PostgreSQL will allow
backwards fetch from cursors not declared with SCROLL, but this behavior is best not relied on. If the
cursor is declared with NO SCROLL, no backward fetches are allowed.

ABSOLUTE fetches are not any faster than navigating to the desired row with a relative move: the under-
lying implementation must traverse all the intermediate rows anyway. Negative absolute fetches are even
worse: the query must be read to the end to find the last row, and then traversed backward from there.
However, rewinding to the start of the query (as with FETCH ABSOLUTE 0) is fast.

DECLARE is used to define a cursor. Use MOVE to change cursor position without retrieving data.

Examples
The following example traverses a table using a cursor:

BEGIN WORK;

-- Set up a cursor:
DECLARE liahona SCROLL CURSOR FOR SELECT * FROM films;

1519

FETCH

-- Fetch the first 5 rows in the cursor liahona:
FETCH FORWARD 5 FROM liahona;

code | title | did | date_prod | kind | len
-------+-------------------------+-----+------------+----------+-------
BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch the previous row:
FETCH PRIOR FROM liahona;

code | title | did | date_prod | kind | len
-------+---------+-----+------------+--------+-------
P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- Close the cursor and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
The SQL standard defines FETCH for use in embedded SQL only. The variant of FETCH described here
returns the data as if it were a SELECT result rather than placing it in host variables. Other than this point,
FETCH is fully upward-compatible with the SQL standard.

The FETCH forms involving FORWARD and BACKWARD, as well as the forms FETCH count and FETCH

ALL, in which FORWARD is implicit, are PostgreSQL extensions.

The SQL standard allows only FROM preceding the cursor name; the option to use IN, or to leave them out
altogether, is an extension.

See Also
CLOSE, DECLARE, MOVE

1520

GRANT

Name
GRANT — define access privileges

Synopsis
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }

[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [, ...] }
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
[, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
ON [TABLE] table_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
[, ...] | ALL [PRIVILEGES] }
ON { SEQUENCE sequence_name [, ...]

| ALL SEQUENCES IN SCHEMA schema_name [, ...] }
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
ON DATABASE database_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON DOMAIN domain_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON FOREIGN DATA WRAPPER fdw_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON FOREIGN SERVER server_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON { FUNCTION function_name ([[argmode] [arg_name] arg_type [, ...]]) [, ...]

| ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON LANGUAGE lang_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }

1521

GRANT

ON LARGE OBJECT loid [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
ON SCHEMA schema_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
ON TABLESPACE tablespace_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON TYPE type_name [, ...]
TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT role_name [, ...] TO role_name [, ...] [WITH ADMIN OPTION]

Description
The GRANT command has two basic variants: one that grants privileges on a database object (table, col-
umn, view, foreign table, sequence, database, foreign-data wrapper, foreign server, function, procedural
language, schema, or tablespace), and one that grants membership in a role. These variants are similar in
many ways, but they are different enough to be described separately.

GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to one or more roles.
These privileges are added to those already granted, if any.

There is also an option to grant privileges on all objects of the same type within one or more schemas. This
functionality is currently supported only for tables, sequences, and functions (but note that ALL TABLES

is considered to include views and foreign tables).

The key word PUBLIC indicates that the privileges are to be granted to all roles, including those that might
be created later. PUBLIC can be thought of as an implicitly defined group that always includes all roles.
Any particular role will have the sum of privileges granted directly to it, privileges granted to any role it
is presently a member of, and privileges granted to PUBLIC.

If WITH GRANT OPTION is specified, the recipient of the privilege can in turn grant it to others. Without
a grant option, the recipient cannot do that. Grant options cannot be granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the user that created it), as the owner
has all privileges by default. (The owner could, however, choose to revoke some of his own privileges for
safety.)

The right to drop an object, or to alter its definition in any way, is not treated as a grantable privilege; it
is inherent in the owner, and cannot be granted or revoked. (However, a similar effect can be obtained by
granting or revoking membership in the role that owns the object; see below.) The owner implicitly has
all grant options for the object, too.

1522

GRANT

PostgreSQL grants default privileges on some types of objects to PUBLIC. No privileges are granted to
PUBLIC by default on tables, columns, schemas or tablespaces. For other types, the default privileges
granted to PUBLIC are as follows: CONNECT and CREATE TEMP TABLE for databases; EXECUTE privilege
for functions; and USAGE privilege for languages. The object owner can, of course, REVOKE both default
and expressly granted privileges. (For maximum security, issue the REVOKE in the same transaction that
creates the object; then there is no window in which another user can use the object.) Also, these initial
default privilege settings can be changed using the ALTER DEFAULT PRIVILEGES command.

The possible privileges are:

SELECT

Allows SELECT from any column, or the specific columns listed, of the specified table, view, or
sequence. Also allows the use of COPY TO. This privilege is also needed to reference existing
column values in UPDATE or DELETE. For sequences, this privilege also allows the use of the
currval function. For large objects, this privilege allows the object to be read.

INSERT

Allows INSERT of a new row into the specified table. If specific columns are listed, only those
columns may be assigned to in the INSERT command (other columns will therefore receive default
values). Also allows COPY FROM.

UPDATE

Allows UPDATE of any column, or the specific columns listed, of the specified table. (In practice,
any nontrivial UPDATE command will require SELECT privilege as well, since it must reference table
columns to determine which rows to update, and/or to compute new values for columns.) SELECT
... FOR UPDATE and SELECT ... FOR SHARE also require this privilege on at least one column,
in addition to the SELECT privilege. For sequences, this privilege allows the use of the nextval and
setval functions. For large objects, this privilege allows writing or truncating the object.

DELETE

Allows DELETE of a row from the specified table. (In practice, any nontrivial DELETE command
will require SELECT privilege as well, since it must reference table columns to determine which rows
to delete.)

TRUNCATE

Allows TRUNCATE on the specified table.

REFERENCES

To create a foreign key constraint, it is necessary to have this privilege on both the referencing and
referenced columns. The privilege may be granted for all columns of a table, or just specific columns.

TRIGGER

Allows the creation of a trigger on the specified table. (See the CREATE TRIGGER statement.)

CREATE

For databases, allows new schemas to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

1523

GRANT

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace. (Note that revoking
this privilege will not alter the placement of existing objects.)

CONNECT

Allows the user to connect to the specified database. This privilege is checked at connection startup
(in addition to checking any restrictions imposed by pg_hba.conf).

TEMPORARY
TEMP

Allows temporary tables to be created while using the specified database.

EXECUTE

Allows the use of the specified function and the use of any operators that are implemented on top of
the function. This is the only type of privilege that is applicable to functions. (This syntax works for
aggregate functions, as well.)

USAGE

For procedural languages, allows the use of the specified language for the creation of functions in
that language. This is the only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the specified schema (assuming that the objects’
own privilege requirements are also met). Essentially this allows the grantee to “look up” objects
within the schema. Without this permission, it is still possible to see the object names, e.g. by query-
ing the system tables. Also, after revoking this permission, existing backends might have statements
that have previously performed this lookup, so this is not a completely secure way to prevent object
access.

For sequences, this privilege allows the use of the currval and nextval functions.

For types and domains, this privilege allow the use of the type or domain in the creation of tables,
functions, and other schema objects. (Note that it does not control general “usage” of the type, such
as values of the type appearing in queries. It only prevents objects from being created that depend on
the type. The main purpose of the privilege is controlling which users create dependencies on a type,
which could prevent the owner from changing the type later.)

For foreign-data wrappers, this privilege enables the grantee to create new servers using that foreign-
data wrapper.

For servers, this privilege enables the grantee to create, alter, and drop his own user’s user map-
pings associated with that server. Also, it enables the grantee to query the options of the server and
associated user mappings.

ALL PRIVILEGES

Grant all of the available privileges at once. The PRIVILEGES key word is optional in PostgreSQL,
though it is required by strict SQL.

The privileges required by other commands are listed on the reference page of the respective command.

1524

GRANT

GRANT on Roles

This variant of the GRANT command grants membership in a role to one or more other roles. Membership
in a role is significant because it conveys the privileges granted to a role to each of its members.

If WITH ADMIN OPTION is specified, the member can in turn grant membership in the role to others, and
revoke membership in the role as well. Without the admin option, ordinary users cannot do that. A role
is not considered to hold WITH ADMIN OPTION on itself, but it may grant or revoke membership in itself
from a database session where the session user matches the role. Database superusers can grant or revoke
membership in any role to anyone. Roles having CREATEROLE privilege can grant or revoke membership
in any role that is not a superuser.

Unlike the case with privileges, membership in a role cannot be granted to PUBLIC. Note also that this
form of the command does not allow the noise word GROUP.

Notes
The REVOKE command is used to revoke access privileges.

Since PostgreSQL 8.1, the concepts of users and groups have been unified into a single kind of entity
called a role. It is therefore no longer necessary to use the keyword GROUP to identify whether a grantee
is a user or a group. GROUP is still allowed in the command, but it is a noise word.

A user may perform SELECT, INSERT, etc. on a column if he holds that privilege for either the specific
column or its whole table. Granting the privilege at the table level and then revoking it for one column
will not do what you might wish: the table-level grant is unaffected by a column-level operation.

When a non-owner of an object attempts to GRANT privileges on the object, the command will fail outright
if the user has no privileges whatsoever on the object. As long as some privilege is available, the command
will proceed, but it will grant only those privileges for which the user has grant options. The GRANT ALL

PRIVILEGES forms will issue a warning message if no grant options are held, while the other forms will
issue a warning if grant options for any of the privileges specifically named in the command are not held.
(In principle these statements apply to the object owner as well, but since the owner is always treated as
holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object privilege settings.
This is comparable to the rights of root in a Unix system. As with root, it’s unwise to operate as a
superuser except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. In particular, privileges granted via such a command will
appear to have been granted by the object owner. (For role membership, the membership appears to have
been granted by the containing role itself.)

GRANT and REVOKE can also be done by a role that is not the owner of the affected object, but is a member
of the role that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on
the object. In this case the privileges will be recorded as having been granted by the role that actually owns
the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1, of
which role u1 is a member, then u1 can grant privileges on t1 to u2, but those privileges will appear to
have been granted directly by g1. Any other member of role g1 could revoke them later.

1525

GRANT

If the role executing GRANT holds the required privileges indirectly via more than one role membership
path, it is unspecified which containing role will be recorded as having done the grant. In such cases it is
best practice to use SET ROLE to become the specific role you want to do the GRANT as.

Granting permission on a table does not automatically extend permissions to any sequences used by the
table, including sequences tied to SERIAL columns. Permissions on sequences must be set separately.

Use psql’s \dp command to obtain information about existing privileges for tables and columns. For
example:

=> \dp mytable
Access privileges

Schema | Name | Type | Access privileges | Column access privileges
--------+---------+-------+-----------------------+--------------------------
public | mytable | table | miriam=arwdDxt/miriam | col1:

: =r/miriam : miriam_rw=rw/miriam
: admin=arw/miriam

(1 row)

The entries shown by \dp are interpreted thus:

rolename=xxxx -- privileges granted to a role
=xxxx -- privileges granted to PUBLIC

r -- SELECT ("read")
w -- UPDATE ("write")
a -- INSERT ("append")
d -- DELETE
D -- TRUNCATE
x -- REFERENCES
t -- TRIGGER
X -- EXECUTE
U -- USAGE
C -- CREATE
c -- CONNECT
T -- TEMPORARY

arwdDxt -- ALL PRIVILEGES (for tables, varies for other objects)

* -- grant option for preceding privilege

/yyyy -- role that granted this privilege

The above example display would be seen by user miriam after creating table mytable and doing:

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (col1), UPDATE (col1) ON mytable TO miriam_rw;

For non-table objects there are other \d commands that can display their privileges.

If the “Access privileges” column is empty for a given object, it means the object has default priv-
ileges (that is, its privileges column is null). Default privileges always include all privileges for the
owner, and can include some privileges for PUBLIC depending on the object type, as explained above.

1526

GRANT

The first GRANT or REVOKE on an object will instantiate the default privileges (producing, for exam-
ple, {miriam=arwdDxt/miriam}) and then modify them per the specified request. Similarly, entries
are shown in “Column access privileges” only for columns with nondefault privileges. (Note: for this
purpose, “default privileges” always means the built-in default privileges for the object’s type. An ob-
ject whose privileges have been affected by an ALTER DEFAULT PRIVILEGES command will always be
shown with an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner’s implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

Examples
Grant insert privilege to all users on table films:

GRANT INSERT ON films TO PUBLIC;

Grant all available privileges to user manuel on view kinds:

GRANT ALL PRIVILEGES ON kinds TO manuel;

Note that while the above will indeed grant all privileges if executed by a superuser or the owner of kinds,
when executed by someone else it will only grant those permissions for which the someone else has grant
options.

Grant membership in role admins to user joe:

GRANT admins TO joe;

Compatibility
According to the SQL standard, the PRIVILEGES key word in ALL PRIVILEGES is required. The SQL
standard does not support setting the privileges on more than one object per command.

PostgreSQL allows an object owner to revoke his own ordinary privileges: for example, a table owner
can make the table read-only to himself by revoking his own INSERT, UPDATE, DELETE, and TRUNCATE

privileges. This is not possible according to the SQL standard. The reason is that PostgreSQL treats the
owner’s privileges as having been granted by the owner to himself; therefore he can revoke them too.
In the SQL standard, the owner’s privileges are granted by an assumed entity “_SYSTEM”. Not being
“_SYSTEM”, the owner cannot revoke these rights.

According to the SQL standard, grant options can be granted to PUBLIC; PostgreSQL only supports
granting grant options to roles.

The SQL standard provides for a USAGE privilege on other kinds of objects: character sets, collations,
translations.

In the SQL standard, sequences only have a USAGE privilege, which controls the use of the NEXT VALUE

FOR expression, which is equivalent to the function nextval in PostgreSQL. The sequence privileges

1527

GRANT

SELECT and UPDATE are PostgreSQL extensions. The application of the sequence USAGE privilege to the
currval function is also a PostgreSQL extension (as is the function itself).

Privileges on databases, tablespaces, schemas, and languages are PostgreSQL extensions.

See Also
REVOKE, ALTER DEFAULT PRIVILEGES

1528

INSERT

Name
INSERT — create new rows in a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table_name [(column_name [, ...])]

{ DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) [, ...] | query }
[RETURNING * | output_expression [[AS] output_name] [, ...]]

Description
INSERT inserts new rows into a table. One can insert one or more rows specified by value expressions, or
zero or more rows resulting from a query.

The target column names can be listed in any order. If no list of column names is given at all, the default
is all the columns of the table in their declared order; or the first N column names, if there are only N

columns supplied by the VALUES clause or query. The values supplied by the VALUES clause or query
are associated with the explicit or implicit column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a default value, either its
declared default value or null if there is none.

If the expression for any column is not of the correct data type, automatic type conversion will be at-
tempted.

The optional RETURNING clause causes INSERT to compute and return value(s) based on each row ac-
tually inserted. This is primarily useful for obtaining values that were supplied by defaults, such as a
serial sequence number. However, any expression using the table’s columns is allowed. The syntax of the
RETURNING list is identical to that of the output list of SELECT.

You must have INSERT privilege on a table in order to insert into it. If a column list is specified, you only
need INSERT privilege on the listed columns. Use of the RETURNING clause requires SELECT privilege
on all columns mentioned in RETURNING. If you use the query clause to insert rows from a query, you
of course need to have SELECT privilege on any table or column used in the query.

Parameters

with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
INSERT query. See Section 7.8 and SELECT for details.

1529

INSERT

It is possible for the query (SELECT statement) to also contain a WITH clause. In such a case both
sets of with_query can be referenced within the query, but the second one takes precedence since
it is more closely nested.

table_name

The name (optionally schema-qualified) of an existing table.

column_name

The name of a column in the table named by table_name. The column name can be qualified with
a subfield name or array subscript, if needed. (Inserting into only some fields of a composite column
leaves the other fields null.)

DEFAULT VALUES

All columns will be filled with their default values.

expression

An expression or value to assign to the corresponding column.

DEFAULT

The corresponding column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the SELECT statement
for a description of the syntax.

output_expression

An expression to be computed and returned by the INSERT command after each row is inserted. The
expression can use any column names of the table named by table_name. Write * to return all
columns of the inserted row(s).

output_name

A name to use for a returned column.

Outputs
On successful completion, an INSERT command returns a command tag of the form

INSERT oid count

The count is the number of rows inserted. If count is exactly one, and the target table has OIDs, then
oid is the OID assigned to the inserted row. Otherwise oid is zero.

If the INSERT command contains a RETURNING clause, the result will be similar to that of a SELECT

statement containing the columns and values defined in the RETURNING list, computed over the row(s)
inserted by the command.

1530

INSERT

Examples
Insert a single row into table films:

INSERT INTO films VALUES
(’UA502’, ’Bananas’, 105, ’1971-07-13’, ’Comedy’, ’82 minutes’);

In this example, the len column is omitted and therefore it will have the default value:

INSERT INTO films (code, title, did, date_prod, kind)
VALUES (’T_601’, ’Yojimbo’, 106, ’1961-06-16’, ’Drama’);

This example uses the DEFAULT clause for the date columns rather than specifying a value:

INSERT INTO films VALUES
(’UA502’, ’Bananas’, 105, DEFAULT, ’Comedy’, ’82 minutes’);

INSERT INTO films (code, title, did, date_prod, kind)
VALUES (’T_601’, ’Yojimbo’, 106, DEFAULT, ’Drama’);

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
(’B6717’, ’Tampopo’, 110, ’1985-02-10’, ’Comedy’),
(’HG120’, ’The Dinner Game’, 140, DEFAULT, ’Comedy’);

This example inserts some rows into table films from a table tmp_films with the same column layout
as films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod < ’2004-05-07’;

This example inserts into array columns:

-- Create an empty 3x3 gameboard for noughts-and-crosses
INSERT INTO tictactoe (game, board[1:3][1:3])

VALUES (1, ’{{" "," "," "},{" "," "," "},{" "," "," "}}’);
-- The subscripts in the above example aren’t really needed
INSERT INTO tictactoe (game, board)

VALUES (2, ’{{X," "," "},{" ",O," "},{" ",X," "}}’);

1531

INSERT

Insert a single row into table distributors, returning the sequence number generated by the DEFAULT
clause:

INSERT INTO distributors (did, dname) VALUES (DEFAULT, ’XYZ Widgets’)
RETURNING did;

Increment the sales count of the salesperson who manages the account for Acme Corporation, and record
the whole updated row along with current time in a log table:

WITH upd AS (
UPDATE employees SET sales_count = sales_count + 1 WHERE id =
(SELECT sales_person FROM accounts WHERE name = ’Acme Corporation’)
RETURNING *

)
INSERT INTO employees_log SELECT *, current_timestamp FROM upd;

Compatibility
INSERT conforms to the SQL standard, except that the RETURNING clause is a PostgreSQL extension, as
is the ability to use WITH with INSERT. Also, the case in which a column name list is omitted, but not all
the columns are filled from the VALUES clause or query, is disallowed by the standard.

Possible limitations of the query clause are documented under SELECT.

1532

LISTEN

Name
LISTEN — listen for a notification

Synopsis
LISTEN channel

Description
LISTEN registers the current session as a listener on the notification channel named channel. If the
current session is already registered as a listener for this notification channel, nothing is done.

Whenever the command NOTIFY channel is invoked, either by this session or another one connected to
the same database, all the sessions currently listening on that notification channel are notified, and each
will in turn notify its connected client application.

A session can be unregistered for a given notification channel with the UNLISTEN command. A session’s
listen registrations are automatically cleared when the session ends.

The method a client application must use to detect notification events depends on which PostgreSQL
application programming interface it uses. With the libpq library, the application issues LISTEN as an
ordinary SQL command, and then must periodically call the function PQnotifies to find out whether
any notification events have been received. Other interfaces such as libpgtcl provide higher-level methods
for handling notify events; indeed, with libpgtcl the application programmer should not even issue LISTEN
or UNLISTEN directly. See the documentation for the interface you are using for more details.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Parameters

channel

Name of a notification channel (any identifier).

Notes
LISTEN takes effect at transaction commit. If LISTEN or UNLISTEN is executed within a transaction that
later rolls back, the set of notification channels being listened to is unchanged.

A transaction that has executed LISTEN cannot be prepared for two-phase commit.

1533

LISTEN

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

Compatibility
There is no LISTEN statement in the SQL standard.

See Also
NOTIFY, UNLISTEN

1534

LOAD

Name
LOAD — load a shared library file

Synopsis
LOAD ’filename’

Description
This command loads a shared library file into the PostgreSQL server’s address space. If the file has been
loaded already, the command does nothing. Shared library files that contain C functions are automatically
loaded whenever one of their functions is called. Therefore, an explicit LOAD is usually only needed to
load a library that modifies the server’s behavior through “hooks” rather than providing a set of functions.

The file name is specified in the same way as for shared library names in CREATE FUNCTION; in
particular, one can rely on a search path and automatic addition of the system’s standard shared library
file name extension. See Section 35.9 for more information on this topic.

Non-superusers can only apply LOAD to library files located in $libdir/plugins/ — the specified
filename must begin with exactly that string. (It is the database administrator’s responsibility to ensure
that only “safe” libraries are installed there.)

Compatibility
LOAD is a PostgreSQL extension.

See Also
CREATE FUNCTION

1535

LOCK

Name
LOCK — lock a table

Synopsis
LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:

ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
| SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Description
LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If
NOWAIT is specified, LOCK TABLE does not wait to acquire the desired lock: if it cannot be acquired
immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for the
remainder of the current transaction. (There is no UNLOCK TABLE command; locks are always released at
transaction end.)

When acquiring locks automatically for commands that reference tables, PostgreSQL always uses the
least restrictive lock mode possible. LOCK TABLE provides for cases when you might need more restrictive
locking. For example, suppose an application runs a transaction at the Read Committed isolation level and
needs to ensure that data in a table remains stable for the duration of the transaction. To achieve this you
could obtain SHARE lock mode over the table before querying. This will prevent concurrent data changes
and ensure subsequent reads of the table see a stable view of committed data, because SHARE lock mode
conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN SHARE

MODE statement will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or roll
back. Thus, once you obtain the lock, there are no uncommitted writes outstanding; furthermore none can
begin until you release the lock.

To achieve a similar effect when running a transaction at the REPEATABLE READ or SERIALIZABLE iso-
lation level, you have to execute the LOCK TABLE statement before executing any SELECT or data mod-
ification statement. A REPEATABLE READ or SERIALIZABLE transaction’s view of data will be frozen
when its first SELECT or data modification statement begins. A LOCK TABLE later in the transaction will
still prevent concurrent writes — but it won’t ensure that what the transaction reads corresponds to the
latest committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW

EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one transaction of this type runs at
a time. Without this, a deadlock is possible: two transactions might both acquire SHARE mode, and then be
unable to also acquire ROW EXCLUSIVE mode to actually perform their updates. (Note that a transaction’s
own locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it holds SHARE mode
— but not if anyone else holds SHARE mode.) To avoid deadlocks, make sure all transactions acquire locks

1536

LOCK

on the same objects in the same order, and if multiple lock modes are involved for a single object, then
transactions should always acquire the most restrictive mode first.

More information about the lock modes and locking strategies can be found in Section 13.3.

Parameters

name

The name (optionally schema-qualified) of an existing table to lock. If ONLY is specified before the
table name, only that table is locked. If ONLY is not specified, the table and all its descendant tables
(if any) are locked. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK TABLE b;. The tables
are locked one-by-one in the order specified in the LOCK TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with. Lock modes are described in Section
13.3.

If no lock mode is specified, then ACCESS EXCLUSIVE, the most restrictive mode, is used.

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released: if the specified
lock(s) cannot be acquired immediately without waiting, the transaction is aborted.

Notes
LOCK TABLE ... IN ACCESS SHARE MODE requires SELECT privileges on the target table. All other
forms of LOCK require table-level UPDATE, DELETE, or TRUNCATE privileges.

LOCK TABLE is useless outside a transaction block: the lock would remain held only to the completion
of the statement. Therefore PostgreSQL reports an error if LOCK is used outside a transaction block. Use
BEGIN and COMMIT (or ROLLBACK) to define a transaction block.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are all misnomers.
These mode names should generally be read as indicating the intention of the user to acquire row-level
locks within the locked table. Also, ROW EXCLUSIVE mode is a sharable table lock. Keep in mind that all
the lock modes have identical semantics so far as LOCK TABLE is concerned, differing only in the rules
about which modes conflict with which. For information on how to acquire an actual row-level lock, see
Section 13.3.2 and the FOR UPDATE/FOR SHARE Clause in the SELECT reference documentation.

Examples
Obtain a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;

1537

LOCK

SELECT id FROM films
WHERE name = ’Star Wars: Episode I - The Phantom Menace’;

-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES

(_id_, ’GREAT! I was waiting for it for so long!’);
COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN

(SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

Compatibility
There is no LOCK TABLE in the SQL standard, which instead uses SET TRANSACTION to specify concur-
rency levels on transactions. PostgreSQL supports that too; see SET TRANSACTION for details.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE lock modes, the
PostgreSQL lock modes and the LOCK TABLE syntax are compatible with those present in Oracle.

1538

MOVE

Name
MOVE — position a cursor

Synopsis
MOVE [direction [FROM | IN]] cursor_name

where direction can be empty or one of:

NEXT
PRIOR
FIRST
LAST
ABSOLUTE count

RELATIVE count

count

ALL
FORWARD
FORWARD count

FORWARD ALL
BACKWARD
BACKWARD count

BACKWARD ALL

Description
MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only positions the cursor and does not return rows.

The parameters for the MOVE command are identical to those of the FETCH command; refer to FETCH for
details on syntax and usage.

Outputs
On successful completion, a MOVE command returns a command tag of the form

MOVE count

The count is the number of rows that a FETCH command with the same parameters would have returned
(possibly zero).

1539

MOVE

Examples
BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Skip the first 5 rows:
MOVE FORWARD 5 IN liahona;
MOVE 5

-- Fetch the 6th row from the cursor liahona:
FETCH 1 FROM liahona;
code | title | did | date_prod | kind | len

-------+--------+-----+------------+--------+-------
P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37

(1 row)

-- Close the cursor liahona and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
There is no MOVE statement in the SQL standard.

See Also
CLOSE, DECLARE, FETCH

1540

NOTIFY

Name
NOTIFY — generate a notification

Synopsis
NOTIFY channel [, payload]

Description
The NOTIFY command sends a notification event together with an optional “payload” string to each client
application that has previously executed LISTEN channel for the specified channel name in the current
database.

NOTIFY provides a simple interprocess communication mechanism for a collection of processes accessing
the same PostgreSQL database. A payload string can be sent along with the notification, and higher-level
mechanisms for passing structured data can be built by using tables in the database to pass additional data
from notifier to listener(s).

The information passed to the client for a notification event includes the notification channel name, the
notifying session’s server process PID, and the payload string, which is an empty string if it has not been
specified.

It is up to the database designer to define the channel names that will be used in a given database and what
each one means. Commonly, the channel name is the same as the name of some table in the database, and
the notify event essentially means, “I changed this table, take a look at it to see what’s new”. But no such
association is enforced by the NOTIFY and LISTEN commands. For example, a database designer could
use several different channel names to signal different sorts of changes to a single table. Alternatively, the
payload string could be used to differentiate various cases.

When NOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put the NOTIFY in a rule that is triggered by table updates. In this way, notification happens
automatically when the table is changed, and the application programmer cannot accidentally forget to do
it.

NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY is executed inside
a transaction, the notify events are not delivered until and unless the transaction is committed. This is
appropriate, since if the transaction is aborted, all the commands within it have had no effect, including
NOTIFY. But it can be disconcerting if one is expecting the notification events to be delivered immediately.
Secondly, if a listening session receives a notification signal while it is within a transaction, the notification
event will not be delivered to its connected client until just after the transaction is completed (either
committed or aborted). Again, the reasoning is that if a notification were delivered within a transaction
that was later aborted, one would want the notification to be undone somehow — but the server cannot
“take back” a notification once it has sent it to the client. So notification events are only delivered between
transactions. The upshot of this is that applications using NOTIFY for real-time signaling should try to
keep their transactions short.

1541

NOTIFY

If the same channel name is signaled multiple times from the same transaction with identical payload
strings, the database server can decide to deliver a single notification only. On the other hand, notifications
with distinct payload strings will always be delivered as distinct notifications. Similarly, notifications from
different transactions will never get folded into one notification. Except for dropping later instances of
duplicate notifications, NOTIFY guarantees that notifications from the same transaction get delivered in
the order they were sent. It is also guaranteed that messages from different transactions are delivered in
the order in which the transactions committed.

It is common for a client that executes NOTIFY to be listening on the same notification channel itself. In
that case it will get back a notification event, just like all the other listening sessions. Depending on the
application logic, this could result in useless work, for example, reading a database table to find the same
updates that that session just wrote out. It is possible to avoid such extra work by noticing whether the
notifying session’s server process PID (supplied in the notification event message) is the same as one’s
own session’s PID (available from libpq). When they are the same, the notification event is one’s own
work bouncing back, and can be ignored.

Parameters

channel

Name of the notification channel to be signaled (any identifier).

payload

The “payload” string to be communicated along with the notification. This must be specified as a
simple string literal. In the default configuration it must be shorter than 8000 bytes. (If binary data
or large amounts of information need to be communicated, it’s best to put it in a database table and
send the key of the record.)

Notes
There is a queue that holds notifications that have been sent but not yet processed by all listening sessions.
If this queue becomes full, transactions calling NOTIFY will fail at commit. The queue is quite large (8GB
in a standard installation) and should be sufficiently sized for almost every use case. However, no cleanup
can take place if a session executes LISTEN and then enters a transaction for a very long time. Once
the queue is half full you will see warnings in the log file pointing you to the session that is preventing
cleanup. In this case you should make sure that this session ends its current transaction so that cleanup
can proceed.

A transaction that has executed NOTIFY cannot be prepared for two-phase commit.

pg_notify

To send a notification you can also use the function pg_notify(text, text). The function takes the
channel name as the first argument and the payload as the second. The function is much easier to use than
the NOTIFY command if you need to work with non-constant channel names and payloads.

1542

NOTIFY

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.
NOTIFY virtual, ’This is the payload’;
Asynchronous notification "virtual" with payload "This is the payload" received from server process with PID 8448.

LISTEN foo;
SELECT pg_notify(’fo’ || ’o’, ’pay’ || ’load’);
Asynchronous notification "foo" with payload "payload" received from server process with PID 14728.

Compatibility
There is no NOTIFY statement in the SQL standard.

See Also
LISTEN, UNLISTEN

1543

PREPARE

Name
PREPARE — prepare a statement for execution

Synopsis
PREPARE name [(data_type [, ...])] AS statement

Description
PREPARE creates a prepared statement. A prepared statement is a server-side object that can be used
to optimize performance. When the PREPARE statement is executed, the specified statement is parsed,
analyzed, and rewritten. When an EXECUTE command is subsequently issued, the prepared statement is
planned and executed. This division of labor avoids repetitive parse analysis work, while allowing the
execution plan to depend on the specific parameter values supplied.

Prepared statements can take parameters: values that are substituted into the statement when it is executed.
When creating the prepared statement, refer to parameters by position, using $1, $2, etc. A corresponding
list of parameter data types can optionally be specified. When a parameter’s data type is not specified or
is declared as unknown, the type is inferred from the context in which the parameter is used (if possible).
When executing the statement, specify the actual values for these parameters in the EXECUTE statement.
Refer to EXECUTE for more information about that.

Prepared statements only last for the duration of the current database session. When the session ends, the
prepared statement is forgotten, so it must be recreated before being used again. This also means that a
single prepared statement cannot be used by multiple simultaneous database clients; however, each client
can create their own prepared statement to use. Prepared statements can be manually cleaned up using the
DEALLOCATE command.

Prepared statements have the largest performance advantage when a single session is being used to exe-
cute a large number of similar statements. The performance difference will be particularly significant if
the statements are complex to plan or rewrite, for example, if the query involves a join of many tables
or requires the application of several rules. If the statement is relatively simple to plan and rewrite but
relatively expensive to execute, the performance advantage of prepared statements will be less noticeable.

Parameters

name

An arbitrary name given to this particular prepared statement. It must be unique within a single
session and is subsequently used to execute or deallocate a previously prepared statement.

1544

PREPARE

data_type

The data type of a parameter to the prepared statement. If the data type of a particular parameter is
unspecified or is specified as unknown, it will be inferred from the context in which the parameter is
used. To refer to the parameters in the prepared statement itself, use $1, $2, etc.

statement

Any SELECT, INSERT, UPDATE, DELETE, or VALUES statement.

Notes
If a prepared statement is executed enough times, the server may eventually decide to save and re-use a
generic plan rather than re-planning each time. This will occur immediately if the prepared statement has
no parameters; otherwise it occurs only if the generic plan appears to be not much more expensive than
a plan that depends on specific parameter values. Typically, a generic plan will be selected only if the
query’s performance is estimated to be fairly insensitive to the specific parameter values supplied.

To examine the query plan PostgreSQL is using for a prepared statement, use EXPLAIN. If a generic plan
is in use, it will contain parameter symbols $n, while a custom plan will have the current actual parameter
values substituted into it.

For more information on query planning and the statistics collected by PostgreSQL for that purpose, see
the ANALYZE documentation.

You can see all prepared statements available in the session by querying the pg_prepared_statements
system view.

Examples
Create a prepared statement for an INSERT statement, and then execute it:

PREPARE fooplan (int, text, bool, numeric) AS
INSERT INTO foo VALUES($1, $2, $3, $4);

EXECUTE fooplan(1, ’Hunter Valley’, ’t’, 200.00);

Create a prepared statement for a SELECT statement, and then execute it:

PREPARE usrrptplan (int) AS
SELECT * FROM users u, logs l WHERE u.usrid=$1 AND u.usrid=l.usrid
AND l.date = $2;

EXECUTE usrrptplan(1, current_date);

Note that the data type of the second parameter is not specified, so it is inferred from the context in which
$2 is used.

1545

PREPARE

Compatibility
The SQL standard includes a PREPARE statement, but it is only for use in embedded SQL. This version of
the PREPARE statement also uses a somewhat different syntax.

See Also
DEALLOCATE, EXECUTE

1546

PREPARE TRANSACTION

Name
PREPARE TRANSACTION — prepare the current transaction for two-phase commit

Synopsis
PREPARE TRANSACTION transaction_id

Description
PREPARE TRANSACTION prepares the current transaction for two-phase commit. After this command,
the transaction is no longer associated with the current session; instead, its state is fully stored on disk,
and there is a very high probability that it can be committed successfully, even if a database crash occurs
before the commit is requested.

Once prepared, a transaction can later be committed or rolled back with COMMIT PREPARED or ROLL-
BACK PREPARED, respectively. Those commands can be issued from any session, not only the one that
executed the original transaction.

From the point of view of the issuing session, PREPARE TRANSACTION is not unlike a ROLLBACK com-
mand: after executing it, there is no active current transaction, and the effects of the prepared transaction
are no longer visible. (The effects will become visible again if the transaction is committed.)

If the PREPARE TRANSACTION command fails for any reason, it becomes a ROLLBACK: the current trans-
action is canceled.

Parameters

transaction_id

An arbitrary identifier that later identifies this transaction for COMMIT PREPARED or ROLLBACK

PREPARED. The identifier must be written as a string literal, and must be less than 200 bytes long. It
must not be the same as the identifier used for any currently prepared transaction.

Notes
PREPARE TRANSACTION is not intended for use in applications or interactive sessions. Its purpose is to
allow an external transaction manager to perform atomic global transactions across multiple databases
or other transactional resources. Unless you’re writing a transaction manager, you probably shouldn’t be
using PREPARE TRANSACTION.

This command must be used inside a transaction block. Use BEGIN to start one.

1547

PREPARE TRANSACTION

It is not currently allowed to PREPARE a transaction that has executed any operations involving temporary
tables, created any cursors WITH HOLD, or executed LISTEN or UNLISTEN. Those features are too tightly
tied to the current session to be useful in a transaction to be prepared.

If the transaction modified any run-time parameters with SET (without the LOCAL option), those ef-
fects persist after PREPARE TRANSACTION, and will not be affected by any later COMMIT PREPARED

or ROLLBACK PREPARED. Thus, in this one respect PREPARE TRANSACTION acts more like COMMIT than
ROLLBACK.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Caution
It is unwise to leave transactions in the prepared state for a long time. This will
interfere with the ability of VACUUM to reclaim storage, and in extreme cases could
cause the database to shut down to prevent transaction ID wraparound (see Sec-
tion 23.1.5). Keep in mind also that the transaction continues to hold whatever locks
it held. The intended usage of the feature is that a prepared transaction will normally
be committed or rolled back as soon as an external transaction manager has veri-
fied that other databases are also prepared to commit.

If you have not set up an external transaction manager to track prepared trans-
actions and ensure they get closed out promptly, it is best to keep the prepared-
transaction feature disabled by setting max_prepared_transactions to zero. This
will prevent accidental creation of prepared transactions that might then be forgot-
ten and eventually cause problems.

Examples
Prepare the current transaction for two-phase commit, using foobar as the transaction identifier:

PREPARE TRANSACTION ’foobar’;

Compatibility
PREPARE TRANSACTION is a PostgreSQL extension. It is intended for use by external transaction man-
agement systems, some of which are covered by standards (such as X/Open XA), but the SQL side of
those systems is not standardized.

See Also
COMMIT PREPARED, ROLLBACK PREPARED

1548

REASSIGN OWNED

Name
REASSIGN OWNED — change the ownership of database objects owned by a database role

Synopsis
REASSIGN OWNED BY old_role [, ...] TO new_role

Description
REASSIGN OWNED instructs the system to change the ownership of the database objects owned by one of
the old_roles, to new_role.

Parameters

old_role

The name of a role. The ownership of all the objects in the current database owned by this role will
be reassigned to new_role.

new_role

The name of the role that will be made the new owner of the affected objects.

Notes
REASSIGN OWNED is often used to prepare for the removal of one or more roles. Because REASSIGN

OWNED only affects the objects in the current database, it is usually necessary to execute this command in
each database that contains objects owned by a role that is to be removed.

REASSIGN OWNED requires privileges on both the source role(s) and the target role.

The DROP OWNED command is an alternative that drops all the database objects owned by one or more
roles. Note also that DROP OWNED requires privileges only on the source role(s).

The REASSIGN OWNED command does not affect the privileges granted to the old_roles in objects that are
not owned by them. Use DROP OWNED to revoke those privileges.

The REASSIGN OWNED command does not affect the ownership of any databases owned by the role. Use
ALTER DATABASE to reassign that ownership.

Compatibility
The REASSIGN OWNED statement is a PostgreSQL extension.

1549

REASSIGN OWNED

See Also
DROP OWNED, DROP ROLE, ALTER DATABASE

1550

REINDEX

Name
REINDEX — rebuild indexes

Synopsis
REINDEX { INDEX | TABLE | DATABASE | SYSTEM } name [FORCE]

Description
REINDEX rebuilds an index using the data stored in the index’s table, replacing the old copy of the index.
There are several scenarios in which to use REINDEX:

• An index has become corrupted, and no longer contains valid data. Although in theory this should never
happen, in practice indexes can become corrupted due to software bugs or hardware failures. REINDEX
provides a recovery method.

• An index has become “bloated”, that it is contains many empty or nearly-empty pages. This can occur
with B-tree indexes in PostgreSQL under certain uncommon access patterns. REINDEX provides a way
to reduce the space consumption of the index by writing a new version of the index without the dead
pages. See Section 23.2 for more information.

• You have altered a storage parameter (such as fillfactor) for an index, and wish to ensure that the change
has taken full effect.

• An index build with the CONCURRENTLY option failed, leaving an “invalid” index. Such indexes are
useless but it can be convenient to use REINDEX to rebuild them. Note that REINDEX will not perform a
concurrent build. To build the index without interfering with production you should drop the index and
reissue the CREATE INDEX CONCURRENTLY command.

Parameters

INDEX

Recreate the specified index.

TABLE

Recreate all indexes of the specified table. If the table has a secondary “TOAST” table, that is rein-
dexed as well.

1551

REINDEX

DATABASE

Recreate all indexes within the current database. Indexes on shared system catalogs are also pro-
cessed. This form of REINDEX cannot be executed inside a transaction block.

SYSTEM

Recreate all indexes on system catalogs within the current database. Indexes on shared system cata-
logs are included. Indexes on user tables are not processed. This form of REINDEX cannot be executed
inside a transaction block.

name

The name of the specific index, table, or database to be reindexed. Index and table names can be
schema-qualified. Presently, REINDEX DATABASE and REINDEX SYSTEM can only reindex the cur-
rent database, so their parameter must match the current database’s name.

FORCE

This is an obsolete option; it is ignored if specified.

Notes
If you suspect corruption of an index on a user table, you can simply rebuild that index, or all indexes on
the table, using REINDEX INDEX or REINDEX TABLE.

Things are more difficult if you need to recover from corruption of an index on a system table. In this
case it’s important for the system to not have used any of the suspect indexes itself. (Indeed, in this sort
of scenario you might find that server processes are crashing immediately at start-up, due to reliance on
the corrupted indexes.) To recover safely, the server must be started with the -P option, which prevents it
from using indexes for system catalog lookups.

One way to do this is to shut down the server and start a single-user PostgreSQL server with the -P

option included on its command line. Then, REINDEX DATABASE, REINDEX SYSTEM, REINDEX TABLE,
or REINDEX INDEX can be issued, depending on how much you want to reconstruct. If in doubt, use
REINDEX SYSTEM to select reconstruction of all system indexes in the database. Then quit the single-user
server session and restart the regular server. See the postgres reference page for more information about
how to interact with the single-user server interface.

Alternatively, a regular server session can be started with -P included in its command line options.
The method for doing this varies across clients, but in all libpq-based clients, it is possible to set the
PGOPTIONS environment variable to -P before starting the client. Note that while this method does not
require locking out other clients, it might still be wise to prevent other users from connecting to the dam-
aged database until repairs have been completed.

REINDEX is similar to a drop and recreate of the index in that the index contents are rebuilt from scratch.
However, the locking considerations are rather different. REINDEX locks out writes but not reads of the
index’s parent table. It also takes an exclusive lock on the specific index being processed, which will block
reads that attempt to use that index. In contrast, DROP INDEX momentarily takes exclusive lock on the
parent table, blocking both writes and reads. The subsequent CREATE INDEX locks out writes but not
reads; since the index is not there, no read will attempt to use it, meaning that there will be no blocking
but reads might be forced into expensive sequential scans.

1552

REINDEX

Reindexing a single index or table requires being the owner of that index or table. Reindexing a database
requires being the owner of the database (note that the owner can therefore rebuild indexes of tables owned
by other users). Of course, superusers can always reindex anything.

Prior to PostgreSQL 8.1, REINDEX DATABASE processed only system indexes, not all indexes as one
would expect from the name. This has been changed to reduce the surprise factor. The old behavior is
available as REINDEX SYSTEM.

Prior to PostgreSQL 7.4, REINDEX TABLE did not automatically process TOAST tables, and so those had
to be reindexed by separate commands. This is still possible, but redundant.

Examples
Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

Rebuild all indexes in a particular database, without trusting the system indexes to be valid already:

$ export PGOPTIONS="-P"

$ psql broken_db

...
broken_db=> REINDEX DATABASE broken_db;
broken_db=> \q

Compatibility
There is no REINDEX command in the SQL standard.

1553

RELEASE SAVEPOINT

Name
RELEASE SAVEPOINT — destroy a previously defined savepoint

Synopsis
RELEASE [SAVEPOINT] savepoint_name

Description
RELEASE SAVEPOINT destroys a savepoint previously defined in the current transaction.

Destroying a savepoint makes it unavailable as a rollback point, but it has no other user visible behavior.
It does not undo the effects of commands executed after the savepoint was established. (To do that, see
ROLLBACK TO SAVEPOINT.) Destroying a savepoint when it is no longer needed allows the system to
reclaim some resources earlier than transaction end.

RELEASE SAVEPOINT also destroys all savepoints that were established after the named savepoint was
established.

Parameters

savepoint_name

The name of the savepoint to destroy.

Notes
Specifying a savepoint name that was not previously defined is an error.

It is not possible to release a savepoint when the transaction is in an aborted state.

If multiple savepoints have the same name, only the one that was most recently defined is released.

Examples
To establish and later destroy a savepoint:

BEGIN;
INSERT INTO table1 VALUES (3);
SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (4);
RELEASE SAVEPOINT my_savepoint;

1554

RELEASE SAVEPOINT

COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
This command conforms to the SQL standard. The standard specifies that the key word SAVEPOINT is
mandatory, but PostgreSQL allows it to be omitted.

See Also
BEGIN, COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT, SAVEPOINT

1555

RESET

Name
RESET — restore the value of a run-time parameter to the default value

Synopsis
RESET configuration_parameter

RESET ALL

Description
RESET restores run-time parameters to their default values. RESET is an alternative spelling for

SET configuration_parameter TO DEFAULT

Refer to SET for details.

The default value is defined as the value that the parameter would have had, if no SET had ever been
issued for it in the current session. The actual source of this value might be a compiled-in default, the con-
figuration file, command-line options, or per-database or per-user default settings. This is subtly different
from defining it as “the value that the parameter had at session start”, because if the value came from the
configuration file, it will be reset to whatever is specified by the configuration file now. See Chapter 18 for
details.

The transactional behavior of RESET is the same as SET: its effects will be undone by transaction rollback.

Parameters

configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 18 and on
the SET reference page.

ALL

Resets all settable run-time parameters to default values.

Examples
Set the timezone configuration variable to its default value:

RESET timezone;

1556

RESET

Compatibility
RESET is a PostgreSQL extension.

See Also
SET, SHOW

1557

REVOKE

Name
REVOKE — remove access privileges

Synopsis
REVOKE [GRANT OPTION FOR]

{ { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
[, ...] | ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...]

| ALL TABLES IN SCHEMA schema_name [, ...] }
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
[, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
ON [TABLE] table_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { USAGE | SELECT | UPDATE }
[, ...] | ALL [PRIVILEGES] }
ON { SEQUENCE sequence_name [, ...]

| ALL SEQUENCES IN SCHEMA schema_name [, ...] }
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
ON DATABASE database_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }
ON DOMAIN domain_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }
ON FOREIGN DATA WRAPPER fdw_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }

1558

REVOKE

ON FOREIGN SERVER server_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ EXECUTE | ALL [PRIVILEGES] }
ON { FUNCTION function_name ([[argmode] [arg_name] arg_type [, ...]]) [, ...]

| ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }
ON LANGUAGE lang_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
ON LARGE OBJECT loid [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
ON SCHEMA schema_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ CREATE | ALL [PRIVILEGES] }
ON TABLESPACE tablespace_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }
ON TYPE type_name [, ...]
FROM { [GROUP] role_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR]
role_name [, ...] FROM role_name [, ...]
[CASCADE | RESTRICT]

Description
The REVOKE command revokes previously granted privileges from one or more roles. The key word
PUBLIC refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

1559

REVOKE

Note that any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC. Thus, for example, revoking SELECT

privilege from PUBLIC does not necessarily mean that all roles have lost SELECT privilege on the object:
those who have it granted directly or via another role will still have it. Similarly, revoking SELECT from
a user might not prevent that user from using SELECT if PUBLIC or another membership role still has
SELECT rights.

If GRANT OPTION FOR is specified, only the grant option for the privilege is revoked, not the privilege
itself. Otherwise, both the privilege and the grant option are revoked.

If a user holds a privilege with grant option and has granted it to other users then the privileges held by
those other users are called dependent privileges. If the privilege or the grant option held by the first user
is being revoked and dependent privileges exist, those dependent privileges are also revoked if CASCADE is
specified; if it is not, the revoke action will fail. This recursive revocation only affects privileges that were
granted through a chain of users that is traceable to the user that is the subject of this REVOKE command.
Thus, the affected users might effectively keep the privilege if it was also granted through other users.

When revoking privileges on a table, the corresponding column privileges (if any) are automatically re-
voked on each column of the table, as well. On the other hand, if a role has been granted privileges on a
table, then revoking the same privileges from individual columns will have no effect.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION, but the behavior
is similar. Note also that this form of the command does not allow the noise word GROUP.

Notes
Use psql’s \dp command to display the privileges granted on existing tables and columns. See GRANT
for information about the format. For non-table objects there are other \d commands that can display their
privileges.

A user can only revoke privileges that were granted directly by that user. If, for example, user A has
granted a privilege with grant option to user B, and user B has in turned granted it to user C, then user A
cannot revoke the privilege directly from C. Instead, user A could revoke the grant option from user B and
use the CASCADE option so that the privilege is in turn revoked from user C. For another example, if both
A and B have granted the same privilege to C, A can revoke his own grant but not B’s grant, so C will still
effectively have the privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the command will fail
outright if the user has no privileges whatsoever on the object. As long as some privilege is available,
the command will proceed, but it will revoke only those privileges for which the user has grant options.
The REVOKE ALL PRIVILEGES forms will issue a warning message if no grant options are held, while
the other forms will issue a warning if grant options for any of the privileges specifically named in the
command are not held. (In principle these statements apply to the object owner as well, but since the
owner is always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. Since all privileges ultimately come from the object owner
(possibly indirectly via chains of grant options), it is possible for a superuser to revoke all privileges, but
this might require use of CASCADE as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a member of the role
that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on the object.

1560

REVOKE

In this case the command is performed as though it were issued by the containing role that actually owns
the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1, of
which role u1 is a member, then u1 can revoke privileges on t1 that are recorded as being granted by g1.
This would include grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly via more than one role membership path, it is
unspecified which containing role will be used to perform the command. In such cases it is best practice
to use SET ROLE to become the specific role you want to do the REVOKE as. Failure to do so might lead
to revoking privileges other than the ones you intended, or not revoking anything at all.

Examples
Revoke insert privilege for the public on table films:

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from user manuel on view kinds:

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

Note that this actually means “revoke all privileges that I granted”.

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility
The compatibility notes of the GRANT command apply analogously to REVOKE. The keyword RESTRICT
or CASCADE is required according to the standard, but PostgreSQL assumes RESTRICT by default.

See Also
GRANT

1561

ROLLBACK

Name
ROLLBACK — abort the current transaction

Synopsis
ROLLBACK [WORK | TRANSACTION]

Description
ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters

WORK

TRANSACTION

Optional key words. They have no effect.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To abort all changes:

ROLLBACK;

Compatibility
The SQL standard only specifies the two forms ROLLBACK and ROLLBACK WORK. Otherwise, this com-
mand is fully conforming.

1562

ROLLBACK

See Also
BEGIN, COMMIT, ROLLBACK TO SAVEPOINT

1563

ROLLBACK PREPARED

Name
ROLLBACK PREPARED — cancel a transaction that was earlier prepared for two-phase commit

Synopsis
ROLLBACK PREPARED transaction_id

Description
ROLLBACK PREPARED rolls back a transaction that is in prepared state.

Parameters

transaction_id

The transaction identifier of the transaction that is to be rolled back.

Notes
To roll back a prepared transaction, you must be either the same user that executed the transaction origi-
nally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is rolled back
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Roll back the transaction identified by the transaction identifier foobar:

ROLLBACK PREPARED ’foobar’;

Compatibility
ROLLBACK PREPARED is a PostgreSQL extension. It is intended for use by external transaction manage-
ment systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those
systems is not standardized.

1564

ROLLBACK PREPARED

See Also
PREPARE TRANSACTION, COMMIT PREPARED

1565

ROLLBACK TO SAVEPOINT

Name
ROLLBACK TO SAVEPOINT — roll back to a savepoint

Synopsis
ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description
Roll back all commands that were executed after the savepoint was established. The savepoint remains
valid and can be rolled back to again later, if needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after the named save-
point.

Parameters

savepoint_name

The savepoint to roll back to.

Notes
Use RELEASE SAVEPOINT to destroy a savepoint without discarding the effects of commands executed
after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any cursor that is opened
inside a savepoint will be closed when the savepoint is rolled back. If a previously opened cursor is
affected by a FETCH or MOVE command inside a savepoint that is later rolled back, the cursor remains
at the position that FETCH left it pointing to (that is, the cursor motion caused by FETCH is not rolled
back). Closing a cursor is not undone by rolling back, either. However, other side-effects caused by the
cursor’s query (such as side-effects of volatile functions called by the query) are rolled back if they occur
during a savepoint that is later rolled back. A cursor whose execution causes a transaction to abort is put
in a cannot-execute state, so while the transaction can be restored using ROLLBACK TO SAVEPOINT, the
cursor can no longer be used.

1566

ROLLBACK TO SAVEPOINT

Examples
To undo the effects of the commands executed after my_savepoint was established:

ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by savepoint rollback:

BEGIN;

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;

SAVEPOINT foo;

FETCH 1 FROM foo;
?column?

1

ROLLBACK TO SAVEPOINT foo;

FETCH 1 FROM foo;
?column?

2

COMMIT;

Compatibility
The SQL standard specifies that the key word SAVEPOINT is mandatory, but PostgreSQL and Oracle allow
it to be omitted. SQL allows only WORK, not TRANSACTION, as a noise word after ROLLBACK. Also, SQL
has an optional clause AND [NO] CHAIN which is not currently supported by PostgreSQL. Otherwise,
this command conforms to the SQL standard.

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, SAVEPOINT

1567

SAVEPOINT

Name
SAVEPOINT — define a new savepoint within the current transaction

Synopsis
SAVEPOINT savepoint_name

Description
SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was
established to be rolled back, restoring the transaction state to what it was at the time of the savepoint.

Parameters

savepoint_name

The name to give to the new savepoint.

Notes
Use ROLLBACK TO SAVEPOINT to rollback to a savepoint. Use RELEASE SAVEPOINT to destroy a
savepoint, keeping the effects of commands executed after it was established.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints
defined within a transaction.

Examples
To establish a savepoint and later undo the effects of all commands executed after it was established:

BEGIN;
INSERT INTO table1 VALUES (1);
SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (2);
ROLLBACK TO SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (3);

COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

1568

SAVEPOINT

To establish and later destroy a savepoint:

BEGIN;
INSERT INTO table1 VALUES (3);
SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (4);
RELEASE SAVEPOINT my_savepoint;

COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
SQL requires a savepoint to be destroyed automatically when another savepoint with the same name is
established. In PostgreSQL, the old savepoint is kept, though only the more recent one will be used when
rolling back or releasing. (Releasing the newer savepoint with RELEASE SAVEPOINT will cause the older
one to again become accessible to ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.) Otherwise,
SAVEPOINT is fully SQL conforming.

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, ROLLBACK TO SAVEPOINT

1569

SECURITY LABEL

Name
SECURITY LABEL — define or change a security label applied to an object

Synopsis
SECURITY LABEL [FOR provider] ON
{
TABLE object_name |
COLUMN table_name.column_name |
AGGREGATE agg_name (agg_type [, ...]) |
DATABASE object_name |
DOMAIN object_name |
FOREIGN TABLE object_name

FUNCTION function_name ([[argmode] [argname] argtype [, ...]]) |
LARGE OBJECT large_object_oid |
[PROCEDURAL] LANGUAGE object_name |
ROLE object_name |
SCHEMA object_name |
SEQUENCE object_name |
TABLESPACE object_name |
TYPE object_name |
VIEW object_name

} IS ’label’

Description
SECURITY LABEL applies a security label to a database object. An arbitrary number of security labels, one
per label provider, can be associated with a given database object. Label providers are loadable modules
which register themselves by using the function register_label_provider.

Note: register_label_provider is not an SQL function; it can only be called from C code loaded
into the backend.

The label provider determines whether a given label is valid and whether it is permissible to assign that
label to a given object. The meaning of a given label is likewise at the discretion of the label provider.
PostgreSQL places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them. In practice, this facility is intended to allow integration
with label-based mandatory access control (MAC) systems such as SE-Linux. Such systems make all
access control decisions based on object labels, rather than traditional discretionary access control (DAC)
concepts such as users and groups.

1570

SECURITY LABEL

Parameters

object_name

table_name.column_name

agg_name

function_name

The name of the object to be labeled. Names of tables, aggregates, domains, foreign tables, functions,
sequences, types, and views can be schema-qualified.

provider

The name of the provider with which this label is to be associated. The named provider must be
loaded and must consent to the proposed labeling operation. If exactly one provider is loaded, the
provider name may be omitted for brevity.

arg_type

An input data type on which the aggregate function operates. To reference a zero-argument aggregate
function, write * in place of the list of input data types.

argmode

The mode of a function argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note
that SECURITY LABEL ON FUNCTION does not actually pay any attention to OUT arguments, since
only the input arguments are needed to determine the function’s identity. So it is sufficient to list the
IN, INOUT, and VARIADIC arguments.

argname

The name of a function argument. Note that SECURITY LABEL ON FUNCTION does not actually
pay any attention to argument names, since only the argument data types are needed to determine the
function’s identity.

argtype

The data type(s) of the function’s arguments (optionally schema-qualified), if any.

large_object_oid

The OID of the large object.

PROCEDURAL

This is a noise word.

label

The new security label, written as a string literal; or NULL to drop the security label.

Examples
The following example shows how the security label of a table might be changed.

SECURITY LABEL FOR selinux ON TABLE mytable IS ’system_u:object_r:sepgsql_table_t:s0’;

1571

SECURITY LABEL

Compatibility
There is no SECURITY LABEL command in the SQL standard.

See Also
sepgsql, dummy_seclabel

1572

SELECT

Name
SELECT, TABLE, WITH — retrieve rows from a table or view

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

* | expression [[AS] output_name] [, ...]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[WINDOW window_name AS (window_definition) [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start [ROW | ROWS]]
[FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
[FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

where from_item can be one of:

[ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
with_query_name [[AS] alias [(column_alias [, ...])]]
function_name ([argument [, ...]]) [AS] alias [(column_alias [, ...] | column_definition [, ...])]
function_name ([argument [, ...]]) AS (column_definition [, ...])
from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]

and with_query is:

with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)

TABLE [ONLY] table_name [*]

Description
SELECT retrieves rows from zero or more tables. The general processing of SELECT is as follows:

1. All queries in the WITH list are computed. These effectively serve as temporary tables that can be
referenced in the FROM list. A WITH query that is referenced more than once in FROM is computed
only once. (See WITH Clause below.)

1573

SELECT

2. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.)
If more than one element is specified in the FROM list, they are cross-joined together. (See FROM
Clause below.)

3. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the
output. (See WHERE Clause below.)

4. If the GROUP BY clause is specified, the output is combined into groups of rows that match on one
or more values. If the HAVING clause is present, it eliminates groups that do not satisfy the given
condition. (See GROUP BY Clause and HAVING Clause below.)

5. The actual output rows are computed using the SELECT output expressions for each selected row or
row group. (See SELECT List below.)

6. SELECT DISTINCT eliminates duplicate rows from the result. SELECT DISTINCT ON eliminates
rows that match on all the specified expressions. SELECT ALL (the default) will return all candidate
rows, including duplicates. (See DISTINCT Clause below.)

7. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one SELECT statement
can be combined to form a single result set. The UNION operator returns all rows that are in one or
both of the result sets. The INTERSECT operator returns all rows that are strictly in both result sets.
The EXCEPT operator returns the rows that are in the first result set but not in the second. In all three
cases, duplicate rows are eliminated unless ALL is specified. The noise word DISTINCT can be added
to explicitly specify eliminating duplicate rows. Notice that DISTINCT is the default behavior here,
even though ALL is the default for SELECT itself. (See UNION Clause, INTERSECT Clause, and
EXCEPT Clause below.)

8. If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER BY

is not given, the rows are returned in whatever order the system finds fastest to produce. (See ORDER
BY Clause below.)

9. If the LIMIT (or FETCH FIRST) or OFFSET clause is specified, the SELECT statement only returns a
subset of the result rows. (See LIMIT Clause below.)

10. If FOR UPDATE or FOR SHARE is specified, the SELECT statement locks the selected rows against
concurrent updates. (See FOR UPDATE/FOR SHARE Clause below.)

You must have SELECT privilege on each column used in a SELECT command. The use of FOR UPDATE

or FOR SHARE requires UPDATE privilege as well (for at least one column of each table so selected).

Parameters

WITH Clause

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
primary query. The subqueries effectively act as temporary tables or views for the duration of the primary
query. Each subquery can be a SELECT, VALUES, INSERT, UPDATE or DELETE statement. When writing
a data-modifying statement (INSERT, UPDATE or DELETE) in WITH, it is usual to include a RETURNING

clause. It is the output of RETURNING, not the underlying table that the statement modifies, that forms the

1574

SELECT

temporary table that is read by the primary query. If RETURNING is omitted, the statement is still executed,
but it produces no output so it cannot be referenced as a table by the primary query.

A name (without schema qualification) must be specified for each WITH query. Optionally, a list of column
names can be specified; if this is omitted, the column names are inferred from the subquery.

If RECURSIVE is specified, it allows a SELECT subquery to reference itself by name. Such a subquery
must have the form

non_recursive_term UNION [ALL | DISTINCT] recursive_term

where the recursive self-reference must appear on the right-hand side of the UNION. Only one recursive
self-reference is permitted per query. Recursive data-modifying statements are not supported, but you can
use the results of a recursive SELECT query in a data-modifying statement. See Section 7.8 for an example.

Another effect of RECURSIVE is that WITH queries need not be ordered: a query can reference another one
that is later in the list. (However, circular references, or mutual recursion, are not implemented.) Without
RECURSIVE, WITH queries can only reference sibling WITH queries that are earlier in the WITH list.

A key property of WITH queries is that they are evaluated only once per execution of the primary query,
even if the primary query refers to them more than once. In particular, data-modifying statements are
guaranteed to be executed once and only once, regardless of whether the primary query reads all or any
of their output.

The primary query and the WITH queries are all (notionally) executed at the same time. This implies that
the effects of a data-modifying statement in WITH cannot be seen from other parts of the query, other than
by reading its RETURNING output. If two such data-modifying statements attempt to modify the same row,
the results are unspecified.

See Section 7.8 for additional information.

FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple sources are specified,
the result is the Cartesian product (cross join) of all the sources. But usually qualification conditions are
added to restrict the returned rows to a small subset of the Cartesian product.

The FROM clause can contain the following elements:

table_name

The name (optionally schema-qualified) of an existing table or view. If ONLY is specified before the
table name, only that table is scanned. If ONLY is not specified, the table and all its descendant tables
(if any) are scanned. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or to eliminate
ambiguity for self-joins (where the same table is scanned multiple times). When an alias is provided,
it completely hides the actual name of the table or function; for example given FROM foo AS f, the
remainder of the SELECT must refer to this FROM item as f not foo. If an alias is written, a column
alias list can also be written to provide substitute names for one or more columns of the table.

1575

SELECT

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a
temporary table for the duration of this single SELECT command. Note that the sub-SELECT must be
surrounded by parentheses, and an alias must be provided for it. A VALUES command can also be
used here.

with_query_name

A WITH query is referenced by writing its name, just as though the query’s name were a table name.
(In fact, the WITH query hides any real table of the same name for the purposes of the primary query.
If necessary, you can refer to a real table of the same name by schema-qualifying the table’s name.)
An alias can be provided in the same way as for a table.

function_name

Function calls can appear in the FROM clause. (This is especially useful for functions that return result
sets, but any function can be used.) This acts as though its output were created as a temporary table
for the duration of this single SELECT command. An alias can also be used. If an alias is written,
a column alias list can also be written to provide substitute names for one or more attributes of the
function’s composite return type. If the function has been defined as returning the record data type,
then an alias or the key word AS must be present, followed by a column definition list in the form (

column_name data_type [, ...]). The column definition list must match the actual number
and types of columns returned by the function.

join_type

One of

• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely exactly one of
NATURAL, ON join_condition, or USING (join_column [, ...]). See below for the meaning.
For CROSS JOIN, none of these clauses can appear.

A JOIN clause combines two FROM items. Use parentheses if necessary to determine the order of
nesting. In the absence of parentheses, JOINs nest left-to-right. In any case JOIN binds more tightly
than the commas separating FROM items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result as you get from
listing the two items at the top level of FROM, but restricted by the join condition (if any). CROSS
JOIN is equivalent to INNER JOIN ON (TRUE), that is, no rows are removed by qualification. These
join types are just a notational convenience, since they do nothing you couldn’t do with plain FROM

and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that
pass its join condition), plus one copy of each row in the left-hand table for which there was no
right-hand row that passed the join condition. This left-hand row is extended to the full width of the
joined table by inserting null values for the right-hand columns. Note that only the JOIN clause’s

1576

SELECT

own condition is considered while deciding which rows have matches. Outer conditions are applied
afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched right-
hand row (extended with nulls on the left). This is just a notational convenience, since you could
convert it to a LEFT OUTER JOIN by switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended with
nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type boolean (similar to a WHERE clause)
that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a =

right_table.a AND left_table.b = right_table.b Also, USING implies that only
one of each pair of equivalent columns will be included in the join output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that have the same
names.

WHERE Clause

The optional WHERE clause has the general form

WHERE condition

where condition is any expression that evaluates to a result of type boolean. Any row that does not
satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns true
when the actual row values are substituted for any variable references.

GROUP BY Clause

The optional GROUP BY clause has the general form

GROUP BY expression [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the grouped ex-
pressions. expression can be an input column name, or the name or ordinal number of an output column
(SELECT list item), or an arbitrary expression formed from input-column values. In case of ambiguity, a
GROUP BY name will be interpreted as an input-column name rather than an output column name.

Aggregate functions, if any are used, are computed across all rows making up each group, producing a
separate value for each group (whereas without GROUP BY, an aggregate produces a single value computed

1577

SELECT

across all the selected rows). When GROUP BY is present, it is not valid for the SELECT list expressions to
refer to ungrouped columns except within aggregate functions or if the ungrouped column is functionally
dependent on the grouped columns, since there would otherwise be more than one possible value to return
for an ungrouped column. A functional dependency exists if the grouped columns (or a subset thereof) are
the primary key of the table containing the ungrouped column.

HAVING Clause

The optional HAVING clause has the general form

HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the condition. HAVING is different from WHERE: WHERE
filters individual rows before the application of GROUP BY, while HAVING filters group rows created by
GROUP BY. Each column referenced in condition must unambiguously reference a grouping column,
unless the reference appears within an aggregate function.

The presence of HAVING turns a query into a grouped query even if there is no GROUP BY clause. This
is the same as what happens when the query contains aggregate functions but no GROUP BY clause. All
the selected rows are considered to form a single group, and the SELECT list and HAVING clause can
only reference table columns from within aggregate functions. Such a query will emit a single row if the
HAVING condition is true, zero rows if it is not true.

WINDOW Clause

The optional WINDOW clause has the general form

WINDOW window_name AS (window_definition) [, ...]

where window_name is a name that can be referenced from OVER clauses or subsequent window defini-
tions, and window_definition is

[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[frame_clause]

If an existing_window_name is specified it must refer to an earlier entry in the WINDOW list; the new
window copies its partitioning clause from that entry, as well as its ordering clause if any. In this case
the new window cannot specify its own PARTITION BY clause, and it can specify ORDER BY only if the
copied window does not have one. The new window always uses its own frame clause; the copied window
must not specify a frame clause.

The elements of the PARTITION BY list are interpreted in much the same fashion as elements of a GROUP
BY Clause, except that they are always simple expressions and never the name or number of an output
column. Another difference is that these expressions can contain aggregate function calls, which are not

1578

SELECT

allowed in a regular GROUP BY clause. They are allowed here because windowing occurs after grouping
and aggregation.

Similarly, the elements of the ORDER BY list are interpreted in much the same fashion as elements of an
ORDER BY Clause, except that the expressions are always taken as simple expressions and never the
name or number of an output column.

The optional frame_clause defines the window frame for window functions that depend on the frame
(not all do). The window frame is a set of related rows for each row of the query (called the current row).
The frame_clause can be one of

[RANGE | ROWS] frame_start

[RANGE | ROWS] BETWEEN frame_start AND frame_end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW
value FOLLOWING
UNBOUNDED FOLLOWING

If frame_end is omitted it defaults to CURRENT ROW. Restrictions are that frame_start cannot be
UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED PRECEDING, and the frame_end choice
cannot appear earlier in the above list than the frame_start choice — for example RANGE BETWEEN

CURRENT ROW AND value PRECEDING is not allowed.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to be all rows from the partition start up
through the current row’s last peer in the ORDER BY ordering (which means all rows if there is no ORDER

BY). In general, UNBOUNDED PRECEDINGmeans that the frame starts with the first row of the partition, and
similarly UNBOUNDED FOLLOWING means that the frame ends with the last row of the partition (regardless
of RANGE or ROWS mode). In ROWS mode, CURRENT ROW means that the frame starts or ends with the
current row; but in RANGE mode it means that the frame starts or ends with the current row’s first or last
peer in the ORDER BY ordering. The value PRECEDING and value FOLLOWING cases are currently only
allowed in ROWS mode. They indicate that the frame starts or ends with the row that many rows before
or after the current row. value must be an integer expression not containing any variables, aggregate
functions, or window functions. The value must not be null or negative; but it can be zero, which selects
the current row itself.

Beware that the ROWS options can produce unpredictable results if the ORDER BY ordering does not order
the rows uniquely. The RANGE options are designed to ensure that rows that are peers in the ORDER BY

ordering are treated alike; any two peer rows will be both in or both not in the frame.

The purpose of a WINDOW clause is to specify the behavior of window functions appearing in the query’s
SELECT List or ORDER BY Clause. These functions can reference the WINDOW clause entries by name in
their OVER clauses. A WINDOW clause entry does not have to be referenced anywhere, however; if it is not
used in the query it is simply ignored. It is possible to use window functions without any WINDOW clause
at all, since a window function call can specify its window definition directly in its OVER clause. However,
the WINDOW clause saves typing when the same window definition is needed for more than one window
function.

Window functions are described in detail in Section 3.5, Section 4.2.8, and Section 7.2.4.

1579

SELECT

SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output
rows of the SELECT statement. The expressions can (and usually do) refer to columns computed in the
FROM clause.

Just as in a table, every output column of a SELECT has a name. In a simple SELECT this name is just
used to label the column for display, but when the SELECT is a sub-query of a larger query, the name is
seen by the larger query as the column name of the virtual table produced by the sub-query. To specify the
name to use for an output column, write AS output_name after the column’s expression. (You can omit
AS, but only if the desired output name does not match any PostgreSQL keyword (see Appendix C). For
protection against possible future keyword additions, it is recommended that you always either write AS
or double-quote the output name.) If you do not specify a column name, a name is chosen automatically
by PostgreSQL. If the column’s expression is a simple column reference then the chosen name is the same
as that column’s name. In more complex cases a function or type name may be used, or the system may
fall back on a generated name such as ?column?.

An output column’s name can be used to refer to the column’s value in ORDER BY and GROUP BY clauses,
but not in the WHERE or HAVING clauses; there you must write out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the columns of the
selected rows. Also, you can write table_name.* as a shorthand for the columns coming from just that
table. In these cases it is not possible to specify new names with AS; the output column names will be the
same as the table columns’ names.

DISTINCT Clause

If SELECT DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept
from each group of duplicates). SELECT ALL specifies the opposite: all rows are kept; that is the default.

SELECT DISTINCT ON (expression [, ...]) keeps only the first row of each set of rows where
the given expressions evaluate to equal. The DISTINCT ON expressions are interpreted using the same
rules as for ORDER BY (see above). Note that the “first row” of each set is unpredictable unless ORDER BY

is used to ensure that the desired row appears first. For example:

SELECT DISTINCT ON (location) location, time, report
FROM weather_reports
ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we’d have gotten a report from an unpredictable time
for each location.

The DISTINCT ON expression(s) must match the leftmost ORDER BY expression(s). The ORDER BY

clause will normally contain additional expression(s) that determine the desired precedence of rows
within each DISTINCT ON group.

1580

SELECT

UNION Clause

The UNION clause has this general form:

select_statement UNION [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR UPDATE, or FOR

SHARE clause. (ORDER BY and LIMIT can be attached to a subexpression if it is enclosed in parentheses.
Without parentheses, these clauses will be taken to apply to the result of the UNION, not to its right-hand
input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT statements. A
row is in the set union of two result sets if it appears in at least one of the result sets. The two SELECT

statements that represent the direct operands of the UNION must produce the same number of columns,
and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL prevents
elimination of duplicates. (Therefore, UNION ALL is usually significantly quicker than UNION; use ALL

when you can.) DISTINCT can be written to explicitly specify the default behavior of eliminating duplicate
rows.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR UPDATE and FOR SHARE cannot be specified either for a UNION result or for any input of
a UNION.

INTERSECT Clause

The INTERSECT clause has this general form:

select_statement INTERSECT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR UPDATE, or FOR

SHARE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT

statements. A row is in the intersection of two result sets if it appears in both result sets.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in the left table and n duplicates in the right table will appear min(m,n)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless parenthe-
ses dictate otherwise. INTERSECT binds more tightly than UNION. That is, A UNION B INTERSECT C

will be read as A UNION (B INTERSECT C).

Currently, FOR UPDATE and FOR SHARE cannot be specified either for an INTERSECT result or for any
input of an INTERSECT.

1581

SELECT

EXCEPT Clause

The EXCEPT clause has this general form:

select_statement EXCEPT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR UPDATE, or FOR

SHARE clause.

The EXCEPT operator computes the set of rows that are in the result of the left SELECT statement but not
in the result of the right one.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With ALL,
a row that has m duplicates in the left table and n duplicates in the right table will appear max(m-n,0)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless parentheses
dictate otherwise. EXCEPT binds at the same level as UNION.

Currently, FOR UPDATE and FOR SHARE cannot be specified either for an EXCEPT result or for any input
of an EXCEPT.

ORDER BY Clause

The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]

The ORDER BY clause causes the result rows to be sorted according to the specified expression(s). If two
rows are equal according to the leftmost expression, they are compared according to the next expression
and so on. If they are equal according to all specified expressions, they are returned in an implementation-
dependent order.

Each expression can be the name or ordinal number of an output column (SELECT list item), or it can
be an arbitrary expression formed from input-column values.

The ordinal number refers to the ordinal (left-to-right) position of the output column. This feature makes
it possible to define an ordering on the basis of a column that does not have a unique name. This is never
absolutely necessary because it is always possible to assign a name to an output column using the AS

clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not
appear in the SELECT output list. Thus the following statement is valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTERSECT, or
EXCEPT clause can only specify an output column name or number, not an expression.

If an ORDER BY expression is a simple name that matches both an output column name and an input
column name, ORDER BY will interpret it as the output column name. This is the opposite of the choice
that GROUP BY will make in the same situation. This inconsistency is made to be compatible with the SQL
standard.

1582

SELECT

Optionally one can add the key word ASC (ascending) or DESC (descending) after any expression in the
ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering operator
name can be specified in the USING clause. An ordering operator must be a less-than or greater-than
member of some B-tree operator family. ASC is usually equivalent to USING < and DESC is usually
equivalent to USING >. (But the creator of a user-defined data type can define exactly what the default
sort ordering is, and it might correspond to operators with other names.)

If NULLS LAST is specified, null values sort after all non-null values; if NULLS FIRST is specified, null
values sort before all non-null values. If neither is specified, the default behavior is NULLS LAST when
ASC is specified or implied, and NULLS FIRST when DESC is specified (thus, the default is to act as though
nulls are larger than non-nulls). When USING is specified, the default nulls ordering depends on whether
the operator is a less-than or greater-than operator.

Note that ordering options apply only to the expression they follow; for example ORDER BY x, y DESC

does not mean the same thing as ORDER BY x DESC, y DESC.

Character-string data is sorted according to the collation that applies to the column being sorted. That
can be overridden at need by including a COLLATE clause in the expression, for example ORDER BY

mycolumn COLLATE "en_US". For more information see Section 4.2.10 and Section 22.2.

LIMIT Clause

The LIMIT clause consists of two independent sub-clauses:

LIMIT { count | ALL }
OFFSET start

count specifies the maximum number of rows to return, while start specifies the number of rows to
skip before starting to return rows. When both are specified, start rows are skipped before starting to
count the count rows to be returned.

If the count expression evaluates to NULL, it is treated as LIMIT ALL, i.e., no limit. If start evaluates
to NULL, it is treated the same as OFFSET 0.

SQL:2008 introduced a different syntax to achieve the same result, which PostgreSQL also supports. It is:

OFFSET start { ROW | ROWS }
FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY

In this syntax, to write anything except a simple integer constant for start or count, you must write
parentheses around it. If count is omitted in a FETCH clause, it defaults to 1. ROW and ROWS as well
as FIRST and NEXT are noise words that don’t influence the effects of these clauses. According to the
standard, the OFFSET clause must come before the FETCH clause if both are present; but PostgreSQL is
laxer and allows either order.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows — you might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don’t know what
ordering unless you specify ORDER BY.

The query planner takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you use for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent

1583

SELECT

results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unless ORDER BY is used to constrain the order.

It is even possible for repeated executions of the same LIMIT query to return different subsets of the rows
of a table, if there is not an ORDER BY to enforce selection of a deterministic subset. Again, this is not a
bug; determinism of the results is simply not guaranteed in such a case.

FOR UPDATE/FOR SHARE Clause

The FOR UPDATE clause has this form:

FOR UPDATE [OF table_name [, ...]] [NOWAIT]

The closely related FOR SHARE clause has this form:

FOR SHARE [OF table_name [, ...]] [NOWAIT]

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though for update. This
prevents them from being modified or deleted by other transactions until the current transaction ends.
That is, other transactions that attempt UPDATE, DELETE, or SELECT FOR UPDATE of these rows will be
blocked until the current transaction ends. Also, if an UPDATE, DELETE, or SELECT FOR UPDATE from
another transaction has already locked a selected row or rows, SELECT FOR UPDATE will wait for the
other transaction to complete, and will then lock and return the updated row (or no row, if the row was
deleted). Within a REPEATABLE READ or SERIALIZABLE transaction, however, an error will be thrown
if a row to be locked has changed since the transaction started. For further discussion see Chapter 13.

FOR SHARE behaves similarly, except that it acquires a shared rather than exclusive lock on each retrieved
row. A shared lock blocks other transactions from performing UPDATE, DELETE, or SELECT FOR UPDATE

on these rows, but it does not prevent them from performing SELECT FOR SHARE.

To prevent the operation from waiting for other transactions to commit, use the NOWAIT option. With
NOWAIT, the statement reports an error, rather than waiting, if a selected row cannot be locked immedi-
ately. Note that NOWAIT applies only to the row-level lock(s) — the required ROW SHARE table-level lock
is still taken in the ordinary way (see Chapter 13). You can use LOCK with the NOWAIT option first, if you
need to acquire the table-level lock without waiting.

If specific tables are named in FOR UPDATE or FOR SHARE, then only rows coming from those tables
are locked; any other tables used in the SELECT are simply read as usual. A FOR UPDATE or FOR SHARE

clause without a table list affects all tables used in the statement. If FOR UPDATE or FOR SHARE is applied
to a view or sub-query, it affects all tables used in the view or sub-query. However, FOR UPDATE/FOR
SHARE do not apply to WITH queries referenced by the primary query. If you want row locking to occur
within a WITH query, specify FOR UPDATE or FOR SHARE within the WITH query.

Multiple FOR UPDATE and FOR SHARE clauses can be written if it is necessary to specify different locking
behavior for different tables. If the same table is mentioned (or implicitly affected) by both FOR UPDATE

and FOR SHARE clauses, then it is processed as FOR UPDATE. Similarly, a table is processed as NOWAIT
if that is specified in any of the clauses affecting it.

1584

SELECT

FOR UPDATE and FOR SHARE cannot be used in contexts where returned rows cannot be clearly identified
with individual table rows; for example they cannot be used with aggregation.

When FOR UPDATE or FOR SHARE appears at the top level of a SELECT query, the rows that are locked
are exactly those that are returned by the query; in the case of a join query, the rows locked are those
that contribute to returned join rows. In addition, rows that satisfied the query conditions as of the query
snapshot will be locked, although they will not be returned if they were updated after the snapshot and
no longer satisfy the query conditions. If a LIMIT is used, locking stops once enough rows have been
returned to satisfy the limit (but note that rows skipped over by OFFSET will get locked). Similarly, if
FOR UPDATE or FOR SHARE is used in a cursor’s query, only rows actually fetched or stepped past by the
cursor will be locked.

When FOR UPDATE or FOR SHARE appears in a sub-SELECT, the rows locked are those returned to the
outer query by the sub-query. This might involve fewer rows than inspection of the sub-query alone would
suggest, since conditions from the outer query might be used to optimize execution of the sub-query. For
example,

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;

will lock only rows having col1 = 5, even though that condition is not textually within the sub-query.

Caution
Avoid locking a row and then modifying it within a later savepoint or PL/pgSQL ex-
ception block. A subsequent rollback would cause the lock to be lost. For example:

BEGIN;
SELECT * FROM mytable WHERE key = 1 FOR UPDATE;
SAVEPOINT s;
UPDATE mytable SET ... WHERE key = 1;
ROLLBACK TO s;

After the ROLLBACK, the row is effectively unlocked, rather than returned to its pre-
savepoint state of being locked but not modified. This hazard occurs if a row locked
in the current transaction is updated or deleted, or if a shared lock is upgraded to
exclusive: in all these cases, the former lock state is forgotten. If the transaction is
then rolled back to a state between the original locking command and the subse-
quent change, the row will appear not to be locked at all. This is an implementation
deficiency which will be addressed in a future release of PostgreSQL.

1585

SELECT

Caution
It is possible for a SELECT command running at the READ COMMITTED transaction
isolation level and using ORDER BY and FOR UPDATE/SHARE to return rows out of
order. This is because ORDER BY is applied first. The command sorts the result, but
might then block trying to obtain a lock on one or more of the rows. Once the SELECT

unblocks, some of the ordering column values might have been modified, leading
to those rows appearing to be out of order (though they are in order in terms of
the original column values). This can be worked around at need by placing the FOR

UPDATE/SHARE clause in a sub-query, for example

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY column1;

Note that this will result in locking all rows of mytable, whereas FOR UPDATE at the
top level would lock only the actually returned rows. This can make for a significant
performance difference, particularly if the ORDER BY is combined with LIMIT or other
restrictions. So this technique is recommended only if concurrent updates of the
ordering columns are expected and a strictly sorted result is required.

At the REPEATABLE READ or SERIALIZABLE transaction isolation level this would
cause a serialization failure (with a SQLSTATE of ’40001’), so there is no possibility
of receiving rows out of order under these isolation levels.

TABLE Command

The command

TABLE name

is completely equivalent to

SELECT * FROM name

It can be used as a top-level command or as a space-saving syntax variant in parts of complex queries.

Examples
To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind
FROM distributors d, films f
WHERE f.did = d.did

title | did | name | date_prod | kind
-------------------+-----+--------------+------------+----------
The Third Man | 101 | British Lion | 1949-12-23 | Drama
The African Queen | 101 | British Lion | 1951-08-11 | Romantic
...

1586

SELECT

To sum the column len of all films and group the results by kind:

SELECT kind, sum(len) AS total FROM films GROUP BY kind;

kind | total
----------+-------
Action | 07:34
Comedy | 02:58
Drama | 14:28
Musical | 06:42
Romantic | 04:38

To sum the column len of all films, group the results by kind and show those group totals that are less
than 5 hours:

SELECT kind, sum(len) AS total
FROM films
GROUP BY kind
HAVING sum(len) < interval ’5 hours’;

kind | total
----------+-------
Comedy | 02:58
Romantic | 04:38

The following two examples are identical ways of sorting the individual results according to the contents
of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

did | name
-----+------------------
109 | 20th Century Fox
110 | Bavaria Atelier
101 | British Lion
107 | Columbia
102 | Jean Luc Godard
113 | Luso films
104 | Mosfilm
103 | Paramount
106 | Toho
105 | United Artists
111 | Walt Disney
112 | Warner Bros.
108 | Westward

1587

SELECT

The next example shows how to obtain the union of the tables distributors and actors, restricting
the results to those that begin with the letter W in each table. Only distinct rows are wanted, so the key
word ALL is omitted.

distributors: actors:
did | name id | name

-----+-------------- ----+----------------
108 | Westward 1 | Woody Allen
111 | Walt Disney 2 | Warren Beatty
112 | Warner Bros. 3 | Walter Matthau
... ...

SELECT distributors.name
FROM distributors
WHERE distributors.name LIKE ’W%’

UNION
SELECT actors.name

FROM actors
WHERE actors.name LIKE ’W%’;

name

Walt Disney
Walter Matthau
Warner Bros.
Warren Beatty
Westward
Woody Allen

This example shows how to use a function in the FROM clause, both with and without a column definition
list:

CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$
SELECT * FROM distributors WHERE did = $1;

$$ LANGUAGE SQL;

SELECT * FROM distributors(111);
did | name

-----+-------------
111 | Walt Disney

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
SELECT * FROM distributors WHERE did = $1;

$$ LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
f1 | f2

-----+-------------
111 | Walt Disney

1588

SELECT

This example shows how to use a simple WITH clause:

WITH t AS (
SELECT random() as x FROM generate_series(1, 3)

)
SELECT * FROM t
UNION ALL
SELECT * FROM t

x

0.534150459803641
0.520092216785997
0.0735620250925422
0.534150459803641
0.520092216785997
0.0735620250925422

Notice that the WITH query was evaluated only once, so that we got two sets of the same three random
values.

This example uses WITH RECURSIVE to find all subordinates (direct or indirect) of the employee Mary,
and their level of indirectness, from a table that shows only direct subordinates:

WITH RECURSIVE employee_recursive(distance, employee_name, manager_name) AS (
SELECT 1, employee_name, manager_name
FROM employee
WHERE manager_name = ’Mary’

UNION ALL
SELECT er.distance + 1, e.employee_name, e.manager_name
FROM employee_recursive er, employee e
WHERE er.employee_name = e.manager_name

)
SELECT distance, employee_name FROM employee_recursive;

Notice the typical form of recursive queries: an initial condition, followed by UNION, followed by the
recursive part of the query. Be sure that the recursive part of the query will eventually return no tuples, or
else the query will loop indefinitely. (See Section 7.8 for more examples.)

Compatibility
Of course, the SELECT statement is compatible with the SQL standard. But there are some extensions and
some missing features.

Omitted FROM Clauses

PostgreSQL allows one to omit the FROM clause. It has a straightforward use to compute the results of
simple expressions:

SELECT 2+2;

1589

SELECT

?column?

4

Some other SQL databases cannot do this except by introducing a dummy one-row table from which to
do the SELECT.

Note that if a FROM clause is not specified, the query cannot reference any database tables. For example,
the following query is invalid:

SELECT distributors.* WHERE distributors.name = ’Westward’;

PostgreSQL releases prior to 8.1 would accept queries of this form, and add an implicit entry to the query’s
FROM clause for each table referenced by the query. This is no longer allowed.

Omitting the AS Key Word

In the SQL standard, the optional key word AS can be omitted before an output column name whenever
the new column name is a valid column name (that is, not the same as any reserved keyword). PostgreSQL
is slightly more restrictive: AS is required if the new column name matches any keyword at all, reserved
or not. Recommended practice is to use AS or double-quote output column names, to prevent any possible
conflict against future keyword additions.

In FROM items, both the standard and PostgreSQL allow AS to be omitted before an alias that is an unre-
served keyword. But this is impractical for output column names, because of syntactic ambiguities.

ONLY and Inheritance

The SQL standard requires parentheses around the table name when writing ONLY, for example SELECT *
FROM ONLY (tab1), ONLY (tab2) WHERE PostgreSQL considers these parentheses to be op-
tional.

PostgreSQL allows a trailing * to be written to explicitly specify the non-ONLY behavior of including child
tables. The standard does not allow this.

(These points apply equally to all SQL commands supporting the ONLY option.)

Namespace Available to GROUP BY and ORDER BY

In the SQL-92 standard, an ORDER BY clause can only use output column names or numbers, while a
GROUP BY clause can only use expressions based on input column names. PostgreSQL extends each of
these clauses to allow the other choice as well (but it uses the standard’s interpretation if there is ambigu-
ity). PostgreSQL also allows both clauses to specify arbitrary expressions. Note that names appearing in
an expression will always be taken as input-column names, not as output-column names.

SQL:1999 and later use a slightly different definition which is not entirely upward compatible with SQL-
92. In most cases, however, PostgreSQL will interpret an ORDER BY or GROUP BY expression the same
way SQL:1999 does.

1590

SELECT

Functional Dependencies

PostgreSQL recognizes functional dependency (allowing columns to be omitted from GROUP BY) only
when a table’s primary key is included in the GROUP BY list. The SQL standard specifies additional con-
ditions that should be recognized.

WINDOW Clause Restrictions

The SQL standard provides additional options for the window frame_clause. PostgreSQL currently
supports only the options listed above.

LIMIT and OFFSET

The clauses LIMIT and OFFSET are PostgreSQL-specific syntax, also used by MySQL. The SQL:2008
standard has introduced the clauses OFFSET ... FETCH {FIRST|NEXT} ... for the same functional-
ity, as shown above in LIMIT Clause. This syntax is also used by IBM DB2. (Applications written for
Oracle frequently use a workaround involving the automatically generated rownum column, which is not
available in PostgreSQL, to implement the effects of these clauses.)

FOR UPDATE and FOR SHARE

Although FOR UPDATE appears in the SQL standard, the standard allows it only as an option of DECLARE
CURSOR. PostgreSQL allows it in any SELECT query as well as in sub-SELECTs, but this is an extension.
The FOR SHARE variant, and the NOWAIT option, do not appear in the standard.

Data-Modifying Statements in WITH

PostgreSQL allows INSERT, UPDATE, and DELETE to be used as WITH queries. This is not found in the
SQL standard.

Nonstandard Clauses

The clause DISTINCT ON is not defined in the SQL standard.

1591

SELECT INTO

Name
SELECT INTO — define a new table from the results of a query

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]

* | expression [[AS] output_name] [, ...]
INTO [TEMPORARY | TEMP | UNLOGGED] [TABLE] new_table

[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[WINDOW window_name AS (window_definition) [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start [ROW | ROWS]]
[FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
[FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

Description
SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normal SELECT. The new table’s columns have the names and data types
associated with the output columns of the SELECT.

Parameters

TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

new_table

The name (optionally schema-qualified) of the table to be created.

All other parameters are described in detail under SELECT.

1592

SELECT INTO

Notes
CREATE TABLE AS is functionally similar to SELECT INTO. CREATE TABLE AS is the recommended
syntax, since this form of SELECT INTO is not available in ECPG or PL/pgSQL, because they interpret the
INTO clause differently. Furthermore, CREATE TABLE AS offers a superset of the functionality provided
by SELECT INTO.

Prior to PostgreSQL 8.1, the table created by SELECT INTO included OIDs by default. In PostgreSQL
8.1, this is not the case — to include OIDs in the new table, the default_with_oids configuration variable
must be enabled. Alternatively, CREATE TABLE AS can be used with the WITH OIDS clause.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

SELECT * INTO films_recent FROM films WHERE date_prod >= ’2002-01-01’;

Compatibility
The SQL standard uses SELECT INTO to represent selecting values into scalar variables of a host program,
rather than creating a new table. This indeed is the usage found in ECPG (see Chapter 33) and PL/pgSQL
(see Chapter 39). The PostgreSQL usage of SELECT INTO to represent table creation is historical. It is
best to use CREATE TABLE AS for this purpose in new code.

See Also
CREATE TABLE AS

1593

SET

Name
SET — change a run-time parameter

Synopsis
SET [SESSION | LOCAL] configuration_parameter { TO | = } { value | ’value’ | DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { timezone | LOCAL | DEFAULT }

Description
The SET command changes run-time configuration parameters. Many of the run-time parameters listed in
Chapter 18 can be changed on-the-fly with SET. (But some require superuser privileges to change, and
others cannot be changed after server or session start.) SET only affects the value used by the current
session.

If SET (or equivalently SET SESSION) is issued within a transaction that is later aborted, the effects of
the SET command disappear when the transaction is rolled back. Once the surrounding transaction is
committed, the effects will persist until the end of the session, unless overridden by another SET.

The effects of SET LOCAL last only till the end of the current transaction, whether committed or not. A
special case is SET followed by SET LOCAL within a single transaction: the SET LOCAL value will be
seen until the end of the transaction, but afterwards (if the transaction is committed) the SET value will
take effect.

The effects of SET or SET LOCAL are also canceled by rolling back to a savepoint that is earlier than the
command.

If SET LOCAL is used within a function that has a SET option for the same variable (see CREATE FUNC-
TION), the effects of the SET LOCAL command disappear at function exit; that is, the value in effect when
the function was called is restored anyway. This allows SET LOCAL to be used for dynamic or repeated
changes of a parameter within a function, while still having the convenience of using the SET option to
save and restore the caller’s value. However, a regular SET command overrides any surrounding function’s
SET option; its effects will persist unless rolled back.

Note: In PostgreSQL versions 8.0 through 8.2, the effects of a SET LOCAL would be canceled by
releasing an earlier savepoint, or by successful exit from a PL/pgSQL exception block. This behavior
has been changed because it was deemed unintuitive.

1594

SET

Parameters

SESSION

Specifies that the command takes effect for the current session. (This is the default if neither SESSION
nor LOCAL appears.)

LOCAL

Specifies that the command takes effect for only the current transaction. After COMMIT or ROLLBACK,
the session-level setting takes effect again. Note that SET LOCAL will appear to have no effect if it is
executed outside a BEGIN block, since the transaction will end immediately.

configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 18 and
below.

value

New value of parameter. Values can be specified as string constants, identifiers, numbers, or comma-
separated lists of these, as appropriate for the particular parameter. DEFAULT can be written to specify
resetting the parameter to its default value (that is, whatever value it would have had if no SET had
been executed in the current session).

Besides the configuration parameters documented in Chapter 18, there are a few that can only be adjusted
using the SET command or that have a special syntax:

SCHEMA

SET SCHEMA ’value’ is an alias for SET search_path TO value. Only one schema can be spec-
ified using this syntax.

NAMES

SET NAMES value is an alias for SET client_encoding TO value.

SEED

Sets the internal seed for the random number generator (the function random). Allowed values are
floating-point numbers between -1 and 1, which are then multiplied by 231-1.

The seed can also be set by invoking the function setseed:

SELECT setseed(value);

TIME ZONE

SET TIME ZONE value is an alias for SET timezone TO value. The syntax SET TIME ZONE

allows special syntax for the time zone specification. Here are examples of valid values:

’PST8PDT’

The time zone for Berkeley, California.

’Europe/Rome’

The time zone for Italy.

-7

The time zone 7 hours west from UTC (equivalent to PDT). Positive values are east from UTC.

1595

SET

INTERVAL ’-08:00’ HOUR TO MINUTE

The time zone 8 hours west from UTC (equivalent to PST).

LOCAL

DEFAULT

Set the time zone to your local time zone (that is, the server’s default value of timezone).

See Section 8.5.3 for more information about time zones.

Notes
The function set_config provides equivalent functionality; see Section 9.26. Also, it is possible to
UPDATE the pg_settings system view to perform the equivalent of SET.

Examples
Set the schema search path:

SET search_path TO my_schema, public;

Set the style of date to traditional POSTGRES with “day before month” input convention:

SET datestyle TO postgres, dmy;

Set the time zone for Berkeley, California:

SET TIME ZONE ’PST8PDT’;

Set the time zone for Italy:

SET TIME ZONE ’Europe/Rome’;

Compatibility
SET TIME ZONE extends syntax defined in the SQL standard. The standard allows only numeric time
zone offsets while PostgreSQL allows more flexible time-zone specifications. All other SET features are
PostgreSQL extensions.

1596

SET

See Also
RESET, SHOW

1597

SET CONSTRAINTS

Name
SET CONSTRAINTS — set constraint check timing for the current transaction

Synopsis
SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description
SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE
constraints are checked at the end of each statement. DEFERRED constraints are not checked until transac-
tion commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY DEFERRED,
DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is always IMMEDIATE and
is not affected by the SET CONSTRAINTS command. The first two classes start every transaction in the
indicated mode, but their behavior can be changed within a transaction by SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which
must all be deferrable). Each constraint name can be schema-qualified. The current schema search path
is used to find the first matching name if no schema name is specified. SET CONSTRAINTS ALL changes
the mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE, the new
mode takes effect retroactively: any outstanding data modifications that would have been checked at the
end of the transaction are instead checked during the execution of the SET CONSTRAINTS command. If
any such constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode).
Thus, SET CONSTRAINTS can be used to force checking of constraints to occur at a specific point in a
transaction.

Currently, only UNIQUE, PRIMARY KEY, REFERENCES (foreign key), and EXCLUDE constraints are af-
fected by this setting. NOT NULL and CHECK constraints are always checked immediately when a row is
inserted or modified (not at the end of the statement). Uniqueness and exclusion constraints that have not
been declared DEFERRABLE are also checked immediately.

The firing of triggers that are declared as “constraint triggers” is also controlled by this setting — they fire
at the same time that the associated constraint should be checked.

Notes
Because PostgreSQL does not require constraint names to be unique within a schema (but only per-
table), it is possible that there is more than one match for a specified constraint name. In this case SET

CONSTRAINTS will act on all matches. For a non-schema-qualified name, once a match or matches have
been found in some schema in the search path, schemas appearing later in the path are not searched.

1598

SET CONSTRAINTS

This command only alters the behavior of constraints within the current transaction. Thus, if you execute
this command outside of a transaction block (BEGIN/COMMIT pair), it will not appear to have any effect.

Compatibility
This command complies with the behavior defined in the SQL standard, except for the limitation that,
in PostgreSQL, it does not apply to NOT NULL and CHECK constraints. Also, PostgreSQL checks non-
deferrable uniqueness constraints immediately, not at end of statement as the standard would suggest.

1599

SET ROLE

Name
SET ROLE — set the current user identifier of the current session

Synopsis
SET [SESSION | LOCAL] ROLE role_name

SET [SESSION | LOCAL] ROLE NONE
RESET ROLE

Description
This command sets the current user identifier of the current SQL session to be role_name. The role name
can be written as either an identifier or a string literal. After SET ROLE, permissions checking for SQL
commands is carried out as though the named role were the one that had logged in originally.

The specified role_name must be a role that the current session user is a member of. (If the session user
is a superuser, any role can be selected.)

The SESSION and LOCAL modifiers act the same as for the regular SET command.

The NONE and RESET forms reset the current user identifier to be the current session user identifier. These
forms can be executed by any user.

Notes
Using this command, it is possible to either add privileges or restrict one’s privileges. If the session user
role has the INHERITS attribute, then it automatically has all the privileges of every role that it could SET

ROLE to; in this case SET ROLE effectively drops all the privileges assigned directly to the session user
and to the other roles it is a member of, leaving only the privileges available to the named role. On the
other hand, if the session user role has the NOINHERITS attribute, SET ROLE drops the privileges assigned
directly to the session user and instead acquires the privileges available to the named role.

In particular, when a superuser chooses to SET ROLE to a non-superuser role, she loses her superuser
privileges.

SET ROLE has effects comparable to SET SESSION AUTHORIZATION, but the privilege checks in-
volved are quite different. Also, SET SESSION AUTHORIZATION determines which roles are allowable
for later SET ROLE commands, whereas changing roles with SET ROLE does not change the set of roles
allowed to a later SET ROLE.

SET ROLE does not process session variables as specified by the role’s ALTER ROLE settings; this only
happens during login.

SET ROLE cannot be used within a SECURITY DEFINER function.

1600

SET ROLE

Examples
SELECT SESSION_USER, CURRENT_USER;

session_user | current_user
--------------+--------------
peter | peter

SET ROLE ’paul’;

SELECT SESSION_USER, CURRENT_USER;

session_user | current_user
--------------+--------------
peter | paul

Compatibility
PostgreSQL allows identifier syntax ("rolename"), while the SQL standard requires the role name to be
written as a string literal. SQL does not allow this command during a transaction; PostgreSQL does not
make this restriction because there is no reason to. The SESSION and LOCAL modifiers are a PostgreSQL
extension, as is the RESET syntax.

See Also
SET SESSION AUTHORIZATION

1601

SET SESSION AUTHORIZATION

Name
SET SESSION AUTHORIZATION — set the session user identifier and the current user identifier of
the current session

Synopsis
SET [SESSION | LOCAL] SESSION AUTHORIZATION user_name

SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

Description
This command sets the session user identifier and the current user identifier of the current SQL session to
be user_name. The user name can be written as either an identifier or a string literal. Using this command,
it is possible, for example, to temporarily become an unprivileged user and later switch back to being a
superuser.

The session user identifier is initially set to be the (possibly authenticated) user name provided by the
client. The current user identifier is normally equal to the session user identifier, but might change tem-
porarily in the context of SECURITY DEFINER functions and similar mechanisms; it can also be changed
by SET ROLE. The current user identifier is relevant for permission checking.

The session user identifier can be changed only if the initial session user (the authenticated user) had the
superuser privilege. Otherwise, the command is accepted only if it specifies the authenticated user name.

The SESSION and LOCAL modifiers act the same as for the regular SET command.

The DEFAULT and RESET forms reset the session and current user identifiers to be the originally authenti-
cated user name. These forms can be executed by any user.

Notes
SET SESSION AUTHORIZATION cannot be used within a SECURITY DEFINER function.

Examples
SELECT SESSION_USER, CURRENT_USER;

session_user | current_user
--------------+--------------
peter | peter

SET SESSION AUTHORIZATION ’paul’;

1602

SET SESSION AUTHORIZATION

SELECT SESSION_USER, CURRENT_USER;

session_user | current_user
--------------+--------------
paul | paul

Compatibility
The SQL standard allows some other expressions to appear in place of the literal user_name, but these
options are not important in practice. PostgreSQL allows identifier syntax ("username"), which SQL
does not. SQL does not allow this command during a transaction; PostgreSQL does not make this restric-
tion because there is no reason to. The SESSION and LOCAL modifiers are a PostgreSQL extension, as is
the RESET syntax.

The privileges necessary to execute this command are left implementation-defined by the standard.

See Also
SET ROLE

1603

SET TRANSACTION

Name
SET TRANSACTION — set the characteristics of the current transaction

Synopsis
SET TRANSACTION transaction_mode [, ...]
SET TRANSACTION SNAPSHOT snapshot_id

SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
READ WRITE | READ ONLY
[NOT] DEFERRABLE

Description
The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on
any subsequent transactions. SET SESSION CHARACTERISTICS sets the default transaction characteris-
tics for subsequent transactions of a session. These defaults can be overridden by SET TRANSACTION for
an individual transaction.

The available transaction characteristics are the transaction isolation level, the transaction access mode
(read/write or read-only), and the deferrable mode. In addition, a snapshot can be selected, though only
for the current transaction, not as a session default.

The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently:

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

REPEATABLE READ

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction. If a pattern of reads and writes among
concurrent serializable transactions would create a situation which could not have occurred for
any serial (one-at-a-time) execution of those transactions, one of them will be rolled back with a
serialization_failure error.

The SQL standard defines one additional level, READ UNCOMMITTED. In PostgreSQL READ

UNCOMMITTED is treated as READ COMMITTED.

1604

SET TRANSACTION

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a transaction has been executed. See Chapter
13 for more information about transaction isolation and concurrency control.

The transaction access mode determines whether the transaction is read/write or read-only. Read/write is
the default. When a transaction is read-only, the following SQL commands are disallowed: INSERT,
UPDATE, DELETE, and COPY FROM if the table they would write to is not a temporary table; all CREATE,
ALTER, and DROP commands; COMMENT, GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE and
EXECUTE if the command they would execute is among those listed. This is a high-level notion of
read-only that does not prevent all writes to disk.

The DEFERRABLE transaction property has no effect unless the transaction is also SERIALIZABLE and
READ ONLY. When all three of these properties are selected for a transaction, the transaction may
block when first acquiring its snapshot, after which it is able to run without the normal overhead of a
SERIALIZABLE transaction and without any risk of contributing to or being canceled by a serialization
failure. This mode is well suited for long-running reports or backups.

The SET TRANSACTION SNAPSHOT command allows a new transaction to run with the same snap-
shot as an existing transaction. The pre-existing transaction must have exported its snapshot with the
pg_export_snapshot function (see Section 9.26.5). That function returns a snapshot identifier, which
must be given to SET TRANSACTION SNAPSHOT to specify which snapshot is to be imported. The identi-
fier must be written as a string literal in this command, for example ’000003A1-1’. SET TRANSACTION

SNAPSHOT can only be executed at the start of a transaction, before the first query or data-modification
statement (SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of the transaction. Furthermore, the
transaction must already be set to SERIALIZABLE or REPEATABLE READ isolation level (otherwise, the
snapshot would be discarded immediately, since READ COMMITTED mode takes a new snapshot for each
command). If the importing transaction uses SERIALIZABLE isolation level, then the transaction that ex-
ported the snapshot must also use that isolation level. Also, a non-read-only serializable transaction cannot
import a snapshot from a read-only transaction.

Notes
If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, it will appear to have
no effect, since the transaction will immediately end.

It is possible to dispense with SET TRANSACTION by instead specifying the desired
transaction_modes in BEGIN or START TRANSACTION. But that option is not available for SET

TRANSACTION SNAPSHOT.

The session default transaction modes can also be set by setting the configuration parameters
default_transaction_isolation, default_transaction_read_only, and default_transaction_deferrable. (In
fact SET SESSION CHARACTERISTICS is just a verbose equivalent for setting these variables with
SET.) This means the defaults can be set in the configuration file, via ALTER DATABASE, etc. Consult
Chapter 18 for more information.

Examples
To begin a new transaction with the same snapshot as an already existing transaction, first export the

1605

SET TRANSACTION

snapshot from the existing transaction. That will return the snapshot identifier, for example:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT pg_export_snapshot();
pg_export_snapshot

000003A1-1

(1 row)

Then give the snapshot identifier in a SET TRANSACTION SNAPSHOT command at the beginning of the
newly opened transaction:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT ’000003A1-1’;

Compatibility
These commands are defined in the SQL standard, except for the DEFERRABLE transaction mode and the
SET TRANSACTION SNAPSHOT form, which are PostgreSQL extensions.

SERIALIZABLE is the default transaction isolation level in the standard. In PostgreSQL the default is
ordinarily READ COMMITTED, but you can change it as mentioned above.

In the SQL standard, there is one other transaction characteristic that can be set with these commands: the
size of the diagnostics area. This concept is specific to embedded SQL, and therefore is not implemented
in the PostgreSQL server.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
PostgreSQL allows the commas to be omitted.

1606

SHOW

Name
SHOW — show the value of a run-time parameter

Synopsis
SHOW name

SHOW ALL

Description
SHOW will display the current setting of run-time parameters. These variables can be set using the SET

statement, by editing the postgresql.conf configuration file, through the PGOPTIONS environmental
variable (when using libpq or a libpq-based application), or through command-line flags when starting the
postgres server. See Chapter 18 for details.

Parameters

name

The name of a run-time parameter. Available parameters are documented in Chapter 18 and on the
SET reference page. In addition, there are a few parameters that can be shown but not set:

SERVER_VERSION

Shows the server’s version number.

SERVER_ENCODING

Shows the server-side character set encoding. At present, this parameter can be shown but not
set, because the encoding is determined at database creation time.

LC_COLLATE

Shows the database’s locale setting for collation (text ordering). At present, this parameter can
be shown but not set, because the setting is determined at database creation time.

LC_CTYPE

Shows the database’s locale setting for character classification. At present, this parameter can
be shown but not set, because the setting is determined at database creation time.

IS_SUPERUSER

True if the current role has superuser privileges.

1607

SHOW

ALL

Show the values of all configuration parameters, with descriptions.

Notes
The function current_setting produces equivalent output; see Section 9.26. Also, the pg_settings
system view produces the same information.

Examples
Show the current setting of the parameter DateStyle:

SHOW DateStyle;
DateStyle

ISO, MDY

(1 row)

Show the current setting of the parameter geqo:

SHOW geqo;
geqo

on

(1 row)

Show all settings:

SHOW ALL;
name | setting | description

-------------------------+---------+---
allow_system_table_mods | off | Allows modifications of the structure of ...

.

.

.
xmloption | content | Sets whether XML data in implicit parsing ...
zero_damaged_pages | off | Continues processing past damaged page headers.

(196 rows)

Compatibility
The SHOW command is a PostgreSQL extension.

1608

SHOW

See Also
SET, RESET

1609

START TRANSACTION

Name
START TRANSACTION — start a transaction block

Synopsis
START TRANSACTION [transaction_mode [, ...]]

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
READ WRITE | READ ONLY
[NOT] DEFERRABLE

Description
This command begins a new transaction block. If the isolation level, read/write mode, or deferrable mode
is specified, the new transaction has those characteristics, as if SET TRANSACTION was executed. This
is the same as the BEGIN command.

Parameters
Refer to SET TRANSACTION for information on the meaning of the parameters to this statement.

Compatibility
In the standard, it is not necessary to issue START TRANSACTION to start a transaction block: any SQL
command implicitly begins a block. PostgreSQL’s behavior can be seen as implicitly issuing a COMMIT af-
ter each command that does not follow START TRANSACTION (or BEGIN), and it is therefore often called
“autocommit”. Other relational database systems might offer an autocommit feature as a convenience.

The DEFERRABLE transaction_mode is a PostgreSQL language extension.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
PostgreSQL allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

See Also
BEGIN, COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION

1610

TRUNCATE

Name
TRUNCATE — empty a table or set of tables

Synopsis
TRUNCATE [TABLE] [ONLY] name [*] [, ...]

[RESTART IDENTITY | CONTINUE IDENTITY] [CASCADE | RESTRICT]

Description
TRUNCATE quickly removes all rows from a set of tables. It has the same effect as an unqualified DELETE

on each table, but since it does not actually scan the tables it is faster. Furthermore, it reclaims disk space
immediately, rather than requiring a subsequent VACUUM operation. This is most useful on large tables.

Parameters

name

The name (optionally schema-qualified) of a table to truncate. If ONLY is specified before the table
name, only that table is truncated. If ONLY is not specified, the table and all its descendant tables
(if any) are truncated. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

RESTART IDENTITY

Automatically restart sequences owned by columns of the truncated table(s).

CONTINUE IDENTITY

Do not change the values of sequences. This is the default.

CASCADE

Automatically truncate all tables that have foreign-key references to any of the named tables, or to
any tables added to the group due to CASCADE.

RESTRICT

Refuse to truncate if any of the tables have foreign-key references from tables that are not listed in
the command. This is the default.

Notes
You must have the TRUNCATE privilege on a table to truncate it.

1611

TRUNCATE

TRUNCATE acquires an ACCESS EXCLUSIVE lock on each table it operates on, which blocks all other
concurrent operations on the table. When RESTART IDENTITY is specified, any sequences that are to
be restarted are likewise locked exclusively. If concurrent access to a table is required, then the DELETE
command should be used instead.

TRUNCATE cannot be used on a table that has foreign-key references from other tables, unless all such
tables are also truncated in the same command. Checking validity in such cases would require table scans,
and the whole point is not to do one. The CASCADE option can be used to automatically include all
dependent tables — but be very careful when using this option, or else you might lose data you did not
intend to!

TRUNCATE will not fire any ON DELETE triggers that might exist for the tables. But it will fire ON

TRUNCATE triggers. If ON TRUNCATE triggers are defined for any of the tables, then all BEFORE

TRUNCATE triggers are fired before any truncation happens, and all AFTER TRUNCATE triggers are fired
after the last truncation is performed and any sequences are reset. The triggers will fire in the order that
the tables are to be processed (first those listed in the command, and then any that were added due to
cascading).

Warning
TRUNCATE is not MVCC-safe (see Chapter 13 for general information about MVCC).
After truncation, the table will appear empty to all concurrent transactions, even if
they are using a snapshot taken before the truncation occurred. This will only be an
issue for a transaction that did not access the truncated table before the truncation
happened — any transaction that has done so would hold at least an ACCESS SHARE

lock, which would block TRUNCATE until that transaction completes. So truncation will
not cause any apparent inconsistency in the table contents for successive queries
on the same table, but it could cause visible inconsistency between the contents of
the truncated table and other tables in the database.

TRUNCATE is transaction-safe with respect to the data in the tables: the truncation will be safely rolled
back if the surrounding transaction does not commit.

When RESTART IDENTITY is specified, the implied ALTER SEQUENCE RESTART operations are also
done transactionally; that is, they will be rolled back if the surrounding transaction does not commit.
This is unlike the normal behavior of ALTER SEQUENCE RESTART. Be aware that if any additional se-
quence operations are done on the restarted sequences before the transaction rolls back, the effects of
these operations on the sequences will be rolled back, but not their effects on currval(); that is, after
the transaction currval() will continue to reflect the last sequence value obtained inside the failed trans-
action, even though the sequence itself may no longer be consistent with that. This is similar to the usual
behavior of currval() after a failed transaction.

Examples
Truncate the tables bigtable and fattable:

TRUNCATE bigtable, fattable;

The same, and also reset any associated sequence generators:

1612

TRUNCATE

TRUNCATE bigtable, fattable RESTART IDENTITY;

Truncate the table othertable, and cascade to any tables that reference othertable via foreign-key
constraints:

TRUNCATE othertable CASCADE;

Compatibility
The SQL:2008 standard includes a TRUNCATE command with the syntax TRUNCATE TABLE tablename.
The clauses CONTINUE IDENTITY/RESTART IDENTITY also appear in that standard, but have
slightly different though related meanings. Some of the concurrency behavior of this command is left
implementation-defined by the standard, so the above notes should be considered and compared with
other implementations if necessary.

1613

UNLISTEN

Name
UNLISTEN — stop listening for a notification

Synopsis
UNLISTEN { channel | * }

Description
UNLISTEN is used to remove an existing registration for NOTIFY events. UNLISTEN cancels any existing
registration of the current PostgreSQL session as a listener on the notification channel named channel.
The special wildcard * cancels all listener registrations for the current session.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Parameters

channel

Name of a notification channel (any identifier).

*

All current listen registrations for this session are cleared.

Notes
You can unlisten something you were not listening for; no warning or error will appear.

At the end of each session, UNLISTEN * is automatically executed.

A transaction that has executed UNLISTEN cannot be prepared for two-phase commit.

Examples
To make a registration:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

Once UNLISTEN has been executed, further NOTIFY messages will be ignored:

1614

UNLISTEN

UNLISTEN virtual;
NOTIFY virtual;
-- no NOTIFY event is received

Compatibility
There is no UNLISTEN command in the SQL standard.

See Also
LISTEN, NOTIFY

1615

UPDATE

Name
UPDATE — update rows of a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]

SET { column_name = { expression | DEFAULT } |
(column_name [, ...]) = ({ expression | DEFAULT } [, ...]) } [, ...]

[FROM from_list]
[WHERE condition | WHERE CURRENT OF cursor_name]
[RETURNING * | output_expression [[AS] output_name] [, ...]]

Description
UPDATE changes the values of the specified columns in all rows that satisfy the condition. Only the
columns to be modified need be mentioned in the SET clause; columns not explicitly modified retain
their previous values.

There are two ways to modify a table using information contained in other tables in the database: us-
ing sub-selects, or specifying additional tables in the FROM clause. Which technique is more appropriate
depends on the specific circumstances.

The optional RETURNING clause causes UPDATE to compute and return value(s) based on each row actually
updated. Any expression using the table’s columns, and/or columns of other tables mentioned in FROM, can
be computed. The new (post-update) values of the table’s columns are used. The syntax of the RETURNING
list is identical to that of the output list of SELECT.

You must have the UPDATE privilege on the table, or at least on the column(s) that are listed to be updated.
You must also have the SELECT privilege on any column whose values are read in the expressions or
condition.

Parameters

with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
UPDATE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to update. If ONLY is specified before the table
name, matching rows are updated in the named table only. If ONLY is not specified, matching rows
are also updated in any tables inheriting from the named table. Optionally, * can be specified after
the table name to explicitly indicate that descendant tables are included.

1616

UPDATE

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given UPDATE foo AS f, the remainder of the UPDATE statement must
refer to this table as f not foo.

column_name

The name of a column in the table named by table_name. The column name can be qualified with
a subfield name or array subscript, if needed. Do not include the table’s name in the specification of
a target column — for example, UPDATE tab SET tab.col = 1 is invalid.

expression

An expression to assign to the column. The expression can use the old values of this and other
columns in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default expression has been
assigned to it).

from_list

A list of table expressions, allowing columns from other tables to appear in the WHERE condition and
the update expressions. This is similar to the list of tables that can be specified in the FROM Clause
of a SELECT statement. Note that the target table must not appear in the from_list, unless you
intend a self-join (in which case it must appear with an alias in the from_list).

condition

An expression that returns a value of type boolean. Only rows for which this expression returns
true will be updated.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be updated is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the UPDATE’s
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_expression

An expression to be computed and returned by the UPDATE command after each row is updated. The
expression can use any column names of the table named by table_name or table(s) listed in FROM.
Write * to return all columns.

output_name

A name to use for a returned column.

Outputs
On successful completion, an UPDATE command returns a command tag of the form

UPDATE count

1617

UPDATE

The count is the number of rows updated, including matched rows whose values did not change. Note
that the number may be less than the number of rows that matched the condition when updates were
suppressed by a BEFORE UPDATE trigger. If count is 0, no rows were updated by the query (this is not
considered an error).

If the UPDATE command contains a RETURNING clause, the result will be similar to that of a SELECT

statement containing the columns and values defined in the RETURNING list, computed over the row(s)
updated by the command.

Notes
When a FROM clause is present, what essentially happens is that the target table is joined to the tables
mentioned in the from_list, and each output row of the join represents an update operation for the
target table. When using FROM you should ensure that the join produces at most one output row for each
row to be modified. In other words, a target row shouldn’t join to more than one row from the other
table(s). If it does, then only one of the join rows will be used to update the target row, but which one will
be used is not readily predictable.

Because of this indeterminacy, referencing other tables only within sub-selects is safer, though often
harder to read and slower than using a join.

Examples
Change the word Drama to Dramatic in the column kind of the table films:

UPDATE films SET kind = ’Dramatic’ WHERE kind = ’Drama’;

Adjust temperature entries and reset precipitation to its default value in one row of the table weather:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
WHERE city = ’San Francisco’ AND date = ’2003-07-03’;

Perform the same operation and return the updated entries:

UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
WHERE city = ’San Francisco’ AND date = ’2003-07-03’
RETURNING temp_lo, temp_hi, prcp;

Use the alternative column-list syntax to do the same update:

UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1, temp_lo+15, DEFAULT)
WHERE city = ’San Francisco’ AND date = ’2003-07-03’;

1618

UPDATE

Increment the sales count of the salesperson who manages the account for Acme Corporation, using the
FROM clause syntax:

UPDATE employees SET sales_count = sales_count + 1 FROM accounts
WHERE accounts.name = ’Acme Corporation’
AND employees.id = accounts.sales_person;

Perform the same operation, using a sub-select in the WHERE clause:

UPDATE employees SET sales_count = sales_count + 1 WHERE id =
(SELECT sales_person FROM accounts WHERE name = ’Acme Corporation’);

Attempt to insert a new stock item along with the quantity of stock. If the item already exists, instead
update the stock count of the existing item. To do this without failing the entire transaction, use savepoints:

BEGIN;
-- other operations
SAVEPOINT sp1;
INSERT INTO wines VALUES(’Chateau Lafite 2003’, ’24’);
-- Assume the above fails because of a unique key violation,
-- so now we issue these commands:
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = ’Chateau Lafite 2003’;
-- continue with other operations, and eventually
COMMIT;

Change the kind column of the table films in the row on which the cursor c_films is currently posi-
tioned:

UPDATE films SET kind = ’Dramatic’ WHERE CURRENT OF c_films;

Compatibility
This command conforms to the SQL standard, except that the FROM and RETURNING clauses are Post-
greSQL extensions, as is the ability to use WITH with UPDATE.

According to the standard, the column-list syntax should allow a list of columns to be assigned from a
single row-valued expression, such as a sub-select:

UPDATE accounts SET (contact_last_name, contact_first_name) =
(SELECT last_name, first_name FROM salesmen
WHERE salesmen.id = accounts.sales_id);

This is not currently implemented — the source must be a list of independent expressions.

1619

UPDATE

Some other database systems offer a FROM option in which the target table is supposed to be listed again
within FROM. That is not how PostgreSQL interprets FROM. Be careful when porting applications that use
this extension.

1620

VACUUM

Name
VACUUM — garbage-collect and optionally analyze a database

Synopsis
VACUUM [({ FULL | FREEZE | VERBOSE | ANALYZE } [, ...])] [table_name [(column_name [, ...])]]
VACUUM [FULL] [FREEZE] [VERBOSE] [table_name]
VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE [table_name [(column_name [, ...])]]

Description
VACUUM reclaims storage occupied by dead tuples. In normal PostgreSQL operation, tuples that are deleted
or obsoleted by an update are not physically removed from their table; they remain present until a VACUUM
is done. Therefore it’s necessary to do VACUUM periodically, especially on frequently-updated tables.

With no parameter, VACUUM processes every table in the current database that the current user has permis-
sion to vacuum. With a parameter, VACUUM processes only that table.

VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each selected table. This is a handy
combination form for routine maintenance scripts. See ANALYZE for more details about its processing.

Plain VACUUM (without FULL) simply reclaims space and makes it available for re-use. This form of the
command can operate in parallel with normal reading and writing of the table, as an exclusive lock is
not obtained. However, extra space is not returned to the operating system (in most cases); it’s just kept
available for re-use within the same table. VACUUM FULL rewrites the entire contents of the table into a
new disk file with no extra space, allowing unused space to be returned to the operating system. This form
is much slower and requires an exclusive lock on each table while it is being processed.

When the option list is surrounded by parentheses, the options can be written in any order. Without paren-
theses, options must be specified in exactly the order shown above. The parenthesized syntax was added
in PostgreSQL 9.0; the unparenthesized syntax is deprecated.

Parameters

FULL

Selects “full” vacuum, which can reclaim more space, but takes much longer and exclusively locks
the table. This method also requires extra disk space, since it writes a new copy of the table and
doesn’t release the old copy until the operation is complete. Usually this should only be used when a
significant amount of space needs to be reclaimed from within the table.

FREEZE

Selects aggressive “freezing” of tuples. Specifying FREEZE is equivalent to performing VACUUM with
the vacuum_freeze_min_age parameter set to zero.

1621

VACUUM

VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute a query.

table_name

The name (optionally schema-qualified) of a specific table to vacuum. Defaults to all tables in the
current database.

column_name

The name of a specific column to analyze. Defaults to all columns. If a column list is specified,
ANALYZE is implied.

Outputs
When VERBOSE is specified, VACUUM emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Notes
To vacuum a table, one must ordinarily be the table’s owner or a superuser. However, database owners are
allowed to vacuum all tables in their databases, except shared catalogs. (The restriction for shared catalogs
means that a true database-wide VACUUM can only be performed by a superuser.) VACUUM will skip over
any tables that the calling user does not have permission to vacuum.

VACUUM cannot be executed inside a transaction block.

For tables with GIN indexes, VACUUM (in any form) also completes any pending index insertions, by
moving pending index entries to the appropriate places in the main GIN index structure. See Section
55.3.1 for details.

We recommend that active production databases be vacuumed frequently (at least nightly), in order to
remove dead rows. After adding or deleting a large number of rows, it might be a good idea to issue a
VACUUM ANALYZE command for the affected table. This will update the system catalogs with the results
of all recent changes, and allow the PostgreSQL query planner to make better choices in planning queries.

The FULL option is not recommended for routine use, but might be useful in special cases. An example is
when you have deleted or updated most of the rows in a table and would like the table to physically shrink
to occupy less disk space and allow faster table scans. VACUUM FULL will usually shrink the table more
than a plain VACUUM would.

VACUUM causes a substantial increase in I/O traffic, which might cause poor performance for other active
sessions. Therefore, it is sometimes advisable to use the cost-based vacuum delay feature. See Section
18.4.4 for details.

PostgreSQL includes an “autovacuum” facility which can automate routine vacuum maintenance. For
more information about automatic and manual vacuuming, see Section 23.1.

1622

VACUUM

Examples
The following is an example from running VACUUM on a table in the regression database:

regression=# VACUUM (VERBOSE, ANALYZE) onek;
INFO: vacuuming "public.onek"
INFO: index "onek_unique1" now contains 1000 tuples in 14 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.01s/0.08u sec elapsed 0.18 sec.
INFO: index "onek_unique2" now contains 1000 tuples in 16 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.00s/0.07u sec elapsed 0.23 sec.
INFO: index "onek_hundred" now contains 1000 tuples in 13 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.01s/0.08u sec elapsed 0.17 sec.
INFO: index "onek_stringu1" now contains 1000 tuples in 48 pages
DETAIL: 3000 index tuples were removed.
0 index pages have been deleted, 0 are currently reusable.
CPU 0.01s/0.09u sec elapsed 0.59 sec.
INFO: "onek": removed 3000 tuples in 108 pages
DETAIL: CPU 0.01s/0.06u sec elapsed 0.07 sec.
INFO: "onek": found 3000 removable, 1000 nonremovable tuples in 143 pages
DETAIL: 0 dead tuples cannot be removed yet.
There were 0 unused item pointers.
0 pages are entirely empty.
CPU 0.07s/0.39u sec elapsed 1.56 sec.
INFO: analyzing "public.onek"
INFO: "onek": 36 pages, 1000 rows sampled, 1000 estimated total rows
VACUUM

Compatibility
There is no VACUUM statement in the SQL standard.

See Also
vacuumdb, Section 18.4.4, Section 23.1.6

1623

VALUES

Name
VALUES — compute a set of rows

Synopsis
VALUES (expression [, ...]) [, ...]

[ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start [ROW | ROWS]]
[FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

Description
VALUES computes a row value or set of row values specified by value expressions. It is most commonly
used to generate a “constant table” within a larger command, but it can be used on its own.

When more than one row is specified, all the rows must have the same number of elements. The data
types of the resulting table’s columns are determined by combining the explicit or inferred types of the
expressions appearing in that column, using the same rules as for UNION (see Section 10.5).

Within larger commands, VALUES is syntactically allowed anywhere that SELECT is. Because it is treated
like a SELECT by the grammar, it is possible to use the ORDER BY, LIMIT (or equivalently FETCH FIRST),
and OFFSET clauses with a VALUES command.

Parameters

expression

A constant or expression to compute and insert at the indicated place in the resulting table (set of
rows). In a VALUES list appearing at the top level of an INSERT, an expression can be replaced by
DEFAULT to indicate that the destination column’s default value should be inserted. DEFAULT cannot
be used when VALUES appears in other contexts.

sort_expression

An expression or integer constant indicating how to sort the result rows. This expression can refer
to the columns of the VALUES result as column1, column2, etc. For more details see ORDER BY
Clause.

operator

A sorting operator. For details see ORDER BY Clause.

count

The maximum number of rows to return. For details see LIMIT Clause.

1624

VALUES

start

The number of rows to skip before starting to return rows. For details see LIMIT Clause.

Notes
VALUES lists with very large numbers of rows should be avoided, as you might encounter out-of-memory
failures or poor performance. VALUES appearing within INSERT is a special case (because the desired
column types are known from the INSERT’s target table, and need not be inferred by scanning the VALUES
list), so it can handle larger lists than are practical in other contexts.

Examples
A bare VALUES command:

VALUES (1, ’one’), (2, ’two’), (3, ’three’);

This will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS column1, ’one’ AS column2
UNION ALL
SELECT 2, ’two’
UNION ALL
SELECT 3, ’three’;

More usually, VALUES is used within a larger SQL command. The most common use is in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)
VALUES (’T_601’, ’Yojimbo’, 106, ’1961-06-16’, ’Drama’);

In the context of INSERT, entries of a VALUES list can be DEFAULT to indicate that the column default
should be used here instead of specifying a value:

INSERT INTO films VALUES
(’UA502’, ’Bananas’, 105, DEFAULT, ’Comedy’, ’82 minutes’),
(’T_601’, ’Yojimbo’, 106, DEFAULT, ’Drama’, DEFAULT);

VALUES can also be used where a sub-SELECT might be written, for example in a FROM clause:

SELECT f.*
FROM films f, (VALUES(’MGM’, ’Horror’), (’UA’, ’Sci-Fi’)) AS t (studio, kind)
WHERE f.studio = t.studio AND f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase
FROM (VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno, target, increase)
WHERE employees.depno = v.depno AND employees.sales >= v.target;

1625

VALUES

Note that an AS clause is required when VALUES is used in a FROM clause, just as is true for SELECT. It
is not required that the AS clause specify names for all the columns, but it’s good practice to do so. (The
default column names for VALUES are column1, column2, etc in PostgreSQL, but these names might be
different in other database systems.)

When VALUES is used in INSERT, the values are all automatically coerced to the data type of the cor-
responding destination column. When it’s used in other contexts, it might be necessary to specify the
correct data type. If the entries are all quoted literal constants, coercing the first is sufficient to determine
the assumed type for all:

SELECT * FROM machines
WHERE ip_address IN (VALUES(’192.168.0.1’::inet), (’192.168.0.10’), (’192.168.1.43’));

Tip: For simple IN tests, it’s better to rely on the list-of-scalars form of IN than to write a VALUES query
as shown above. The list of scalars method requires less writing and is often more efficient.

Compatibility
VALUES conforms to the SQL standard. LIMIT and OFFSET are PostgreSQL extensions; see also under
SELECT.

See Also
INSERT, SELECT

1626

II. PostgreSQL Client Applications
This part contains reference information for PostgreSQL client applications and utilities. Not all of these
commands are of general utility; some might require special privileges. The common feature of these
applications is that they can be run on any host, independent of where the database server resides.

When specified on the command line, user and database names have their case preserved — the presence
of spaces or special characters might require quoting. Table names and other identifiers do not have their
case preserved, except where documented, and might require quoting.

1627

clusterdb

Name
clusterdb — cluster a PostgreSQL database

Synopsis

clusterdb [connection-option...] [--verbose | -v] [--table | -t table] [dbname]

clusterdb [connection-option...] [--verbose | -v] --all | -a

Description
clusterdb is a utility for reclustering tables in a PostgreSQL database. It finds tables that have previously
been clustered, and clusters them again on the same index that was last used. Tables that have never been
clustered are not affected.

clusterdb is a wrapper around the SQL command CLUSTER. There is no effective difference between
clustering databases via this utility and via other methods for accessing the server.

Options
clusterdb accepts the following command-line arguments:

-a

--all

Cluster all databases.

[-d] dbname

[--dbname=]dbname

Specifies the name of the database to be clustered. If this is not specified and -a (or --all) is not
used, the database name is read from the environment variable PGDATABASE. If that is not set, the
user name specified for the connection is used.

-e

--echo

Echo the commands that clusterdb generates and sends to the server.

1628

clusterdb

-q

--quiet

Do not display progress messages.

-t table

--table=table

Cluster table only.

-v

--verbose

Print detailed information during processing.

-V

--version

Print the clusterdb version and exit.

-?

--help

Show help about clusterdb command line arguments, and exit.

clusterdb also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force clusterdb to prompt for a password before connecting to a database.

This option is never essential, since clusterdb will automatically prompt for a password if the server
demands password authentication. However, clusterdb will waste a connection attempt finding out

1629

clusterdb

that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be clustered.
If not specified, the postgres database will be used, and if that does not exist, template1 will be
used.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see CLUSTER and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and envi-
ronment variables used by the libpq front-end library will apply.

Examples
To cluster the database test:

$ clusterdb test

To cluster a single table foo in a database named xyzzy:

$ clusterdb --table foo xyzzy

See Also
CLUSTER

1630

createdb

Name
createdb — create a new PostgreSQL database

Synopsis

createdb [connection-option...] [option...] [dbname [description]]

Description
createdb creates a new PostgreSQL database.

Normally, the database user who executes this command becomes the owner of the new database. How-
ever, a different owner can be specified via the -O option, if the executing user has appropriate privileges.

createdb is a wrapper around the SQL command CREATE DATABASE. There is no effective difference
between creating databases via this utility and via other methods for accessing the server.

Options
createdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be created. The name must be unique among all PostgreSQL
databases in this cluster. The default is to create a database with the same name as the current system
user.

description

Specifies a comment to be associated with the newly created database.

-D tablespace

--tablespace=tablespace

Specifies the default tablespace for the database. (This name is processed as a double-quoted identi-
fier.)

-e

--echo

Echo the commands that createdb generates and sends to the server.

-E encoding

--encoding=encoding

Specifies the character encoding scheme to be used in this database. The character sets supported by
the PostgreSQL server are described in Section 22.3.1.

1631

createdb

-l locale

--locale=locale

Specifies the locale to be used in this database. This is equivalent to specifying both --lc-collate
and --lc-ctype.

--lc-collate=locale

Specifies the LC_COLLATE setting to be used in this database.

--lc-ctype=locale

Specifies the LC_CTYPE setting to be used in this database.

-O owner

--owner=owner

Specifies the database user who will own the new database. (This name is processed as a double-
quoted identifier.)

-T template

--template=template

Specifies the template database from which to build this database. (This name is processed as a
double-quoted identifier.)

-V

--version

Print the createdb version and exit.

-?

--help

Show help about createdb command line arguments, and exit.

The options -D, -l, -E, -O, and -T correspond to options of the underlying SQL command CREATE
DATABASE; see there for more information about them.

createdb also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or the local Unix domain socket file extension on which the server is listening
for connections.

-U username

--username=username

User name to connect as.

1632

createdb

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force createdb to prompt for a password before connecting to a database.

This option is never essential, since createdb will automatically prompt for a password if the server
demands password authentication. However, createdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to when creating the new database. If not specified, the
postgres database will be used; if that does not exist (or if it is the name of the new database being
created), template1 will be used.

Environment

PGDATABASE

If set, the name of the database to create, unless overridden on the command line.

PGHOST

PGPORT

PGUSER

Default connection parameters. PGUSER also determines the name of the database to create, if it is
not specified on the command line or by PGDATABASE.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see CREATE DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

1633

createdb

Examples
To create the database demo using the default database server:

$ createdb demo

To create the database demo using the server on host eden, port 5000, using the LATIN1 encoding scheme
with a look at the underlying command:

$ createdb -p 5000 -h eden -E LATIN1 -e demo

CREATE DATABASE demo ENCODING ’LATIN1’;

See Also
dropdb, CREATE DATABASE

1634

createlang

Name
createlang — install a PostgreSQL procedural language

Synopsis

createlang [connection-option...] langname [dbname]

createlang [connection-option...] --list | -l [dbname]

Description
createlang is a utility for adding a procedural language to a PostgreSQL database.

createlang is just a wrapper around the CREATE EXTENSION SQL command.

Caution
createlang is deprecated and may be removed in a future PostgreSQL release.
Direct use of the CREATE EXTENSION command is recommended instead.

Options
createlang accepts the following command-line arguments:

langname

Specifies the name of the procedural language to be installed. (This name is lower-cased.)

[-d] dbname

[--dbname=]dbname

Specifies the database to which the language should be added. The default is to use the database with
the same name as the current system user.

-e

--echo

Display SQL commands as they are executed.

-l

--list

Show a list of already installed languages in the target database.

1635

createlang

-V

--version

Print the createlang version and exit.

-?

--help

Show help about createlang command line arguments, and exit.

createlang also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force createlang to prompt for a password before connecting to a database.

This option is never essential, since createlang will automatically prompt for a password if the server
demands password authentication. However, createlang will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

1636

createlang

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
Most error messages are self-explanatory. If not, run createlang with the --echo option and see the
respective SQL command for details. Also, any default connection settings and environment variables
used by the libpq front-end library will apply.

Notes
Use droplang to remove a language.

Examples
To install the language pltcl into the database template1:

$ createlang pltcl template1

Note that installing the language into template1 will cause it to be automatically installed into
subsequently-created databases as well.

See Also
droplang, CREATE EXTENSION, CREATE LANGUAGE

1637

createuser

Name
createuser — define a new PostgreSQL user account

Synopsis

createuser [connection-option...] [option...] [username]

Description
createuser creates a new PostgreSQL user (or more precisely, a role). Only superusers and users with
CREATEROLE privilege can create new users, so createuser must be invoked by someone who can connect
as a superuser or a user with CREATEROLE privilege.

If you wish to create a new superuser, you must connect as a superuser, not merely with CREATEROLE

privilege. Being a superuser implies the ability to bypass all access permission checks within the database,
so superuserdom should not be granted lightly.

createuser is a wrapper around the SQL command CREATE ROLE. There is no effective difference be-
tween creating users via this utility and via other methods for accessing the server.

Options
createuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be created. This name must be different from all
existing roles in this PostgreSQL installation.

-c number

--connection-limit=number

Set a maximum number of connections for the new user. The default is to set no limit.

-d

--createdb

The new user will be allowed to create databases.

-D

--no-createdb

The new user will not be allowed to create databases. This is the default.

1638

createuser

-e

--echo

Echo the commands that createuser generates and sends to the server.

-E

--encrypted

Encrypts the user’s password stored in the database. If not specified, the default password behavior
is used.

-i

--inherit

The new role will automatically inherit privileges of roles it is a member of. This is the default.

-I

--no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

--interactive

Prompt for the user name if none is specified on the command line, and also prompt for whichever of
the options -d/-D, -r/-R, -s/-S is not specified on the command line. (This was the default behavior
up to PostgreSQL 9.1.)

-l

--login

The new user will be allowed to log in (that is, the user name can be used as the initial session user
identifier). This is the default.

-L

--no-login

The new user will not be allowed to log in. (A role without login privilege is still useful as a means
of managing database permissions.)

-N

--unencrypted

Does not encrypt the user’s password stored in the database. If not specified, the default password
behavior is used.

-P

--pwprompt

If given, createuser will issue a prompt for the password of the new user. This is not necessary if you
do not plan on using password authentication.

-r

--createrole

The new user will be allowed to create new roles (that is, this user will have CREATEROLE privilege).

-R

--no-createrole

The new user will not be allowed to create new roles. This is the default.

1639

createuser

-s

--superuser

The new user will be a superuser.

-S

--no-superuser

The new user will not be a superuser. This is the default.

-V

--version

Print the createuser version and exit.

--replication

The new user will have the REPLICATION privilege, which is described more fully in the documen-
tation for CREATE ROLE.

--no-replication

The new user will not have the REPLICATION privilege, which is described more fully in the docu-
mentation for CREATE ROLE.

-?

--help

Show help about createuser command line arguments, and exit.

createuser also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

-U username

--username=username

User name to connect as (not the user name to create).

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

1640

createuser

-W

--password

Force createuser to prompt for a password (for connecting to the server, not for the password of the
new user).

This option is never essential, since createuser will automatically prompt for a password if the server
demands password authentication. However, createuser will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see CREATE ROLE and psql for discussions of potential problems and error mes-
sages. The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To create a user joe on the default database server:

$ createuser joe

To create a user joe on the default database server with prompting for some additional attributes:

$ createuser --interactive joe

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) n

Shall the new role be allowed to create more new roles? (y/n) n

To create the same user joe using the server on host eden, port 5000, with attributes explicitly specified,
taking a look at the underlying command:

1641

createuser

$ createuser -h eden -p 5000 -S -D -R -e joe

CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;

To create the user joe as a superuser, and assign a password immediately:

$ createuser -P -s -e joe

Enter password for new role: xyzzy

Enter it again: xyzzy

CREATE ROLE joe PASSWORD ’md5b5f5ba1a423792b526f799ae4eb3d59e’ SUPERUSER CREATEDB CREATEROLE INHERIT LOGIN;

In the above example, the new password isn’t actually echoed when typed, but we show what was typed for
clarity. As you see, the password is encrypted before it is sent to the client. If the option --unencrypted
is used, the password will appear in the echoed command (and possibly also in the server log and else-
where), so you don’t want to use -e in that case, if anyone else can see your screen.

See Also
dropuser, CREATE ROLE

1642

dropdb

Name
dropdb — remove a PostgreSQL database

Synopsis

dropdb [connection-option...] [option...] dbname

Description
dropdb destroys an existing PostgreSQL database. The user who executes this command must be a
database superuser or the owner of the database.

dropdb is a wrapper around the SQL command DROP DATABASE. There is no effective difference
between dropping databases via this utility and via other methods for accessing the server.

Options
dropdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be removed.

-e

--echo

Echo the commands that dropdb generates and sends to the server.

-i

--interactive

Issues a verification prompt before doing anything destructive.

-V

--version

Print the dropdb version and exit.

--if-exists

Do not throw an error if the database does not exist. A notice is issued in this case.

-?

--help

Show help about dropdb command line arguments, and exit.

1643

dropdb

dropdb also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force dropdb to prompt for a password before connecting to a database.

This option is never essential, since dropdb will automatically prompt for a password if the server
demands password authentication. However, dropdb will waste a connection attempt finding out that
the server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to in order to drop the target database. If not speci-
fied, the postgres database will be used; if that does not exist (or is the database being dropped),
template1 will be used.

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

1644

dropdb

Diagnostics
In case of difficulty, see DROP DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection settings
and environment variables used by the libpq front-end library will apply.

Examples
To destroy the database demo on the default database server:

$ dropdb demo

To destroy the database demo using the server on host eden, port 5000, with verification and a peek at the
underlying command:

$ dropdb -p 5000 -h eden -i -e demo

Database "demo" will be permanently deleted.

Are you sure? (y/n) y

DROP DATABASE demo;

See Also
createdb, DROP DATABASE

1645

droplang

Name
droplang — remove a PostgreSQL procedural language

Synopsis

droplang [connection-option...] langname [dbname]

droplang [connection-option...] --list | -l [dbname]

Description
droplang is a utility for removing an existing procedural language from a PostgreSQL database.

droplang is just a wrapper around the DROP EXTENSION SQL command.

Caution
droplang is deprecated and may be removed in a future PostgreSQL release. Direct
use of the DROP EXTENSION command is recommended instead.

Options
droplang accepts the following command line arguments:

langname

Specifies the name of the procedural language to be removed. (This name is lower-cased.)

[-d] dbname

[--dbname=]dbname

Specifies from which database the language should be removed. The default is to use the database
with the same name as the current system user.

-e

--echo

Display SQL commands as they are executed.

-l

--list

Show a list of already installed languages in the target database.

1646

droplang

-V

--version

Print the droplang version and exit.

-?

--help

Show help about droplang command line arguments, and exit.

droplang also accepts the following command line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If host begins with a slash, it
is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server is
listening for connections.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force droplang to prompt for a password before connecting to a database.

This option is never essential, since droplang will automatically prompt for a password if the server
demands password authentication. However, droplang will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

1647

droplang

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
Most error messages are self-explanatory. If not, run droplang with the --echo option and see under the
respective SQL command for details. Also, any default connection settings and environment variables
used by the libpq front-end library will apply.

Notes
Use createlang to add a language.

Examples
To remove the language pltcl:

$ droplang pltcl dbname

See Also
createlang, DROP EXTENSION, DROP LANGUAGE

1648

dropuser

Name
dropuser — remove a PostgreSQL user account

Synopsis

dropuser [connection-option...] [option...] [username]

Description
dropuser removes an existing PostgreSQL user. Only superusers and users with the CREATEROLE privilege
can remove PostgreSQL users. (To remove a superuser, you must yourself be a superuser.)

dropuser is a wrapper around the SQL command DROP ROLE. There is no effective difference between
dropping users via this utility and via other methods for accessing the server.

Options
dropuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be removed. You will be prompted for a name if none
is specified on the command line and the -i/--interactive option is used.

-e

--echo

Echo the commands that dropuser generates and sends to the server.

-i

--interactive

Prompt for confirmation before actually removing the user, and prompt for the user name if none is
specified on the command line.

-V

--version

Print the dropuser version and exit.

--if-exists

Do not throw an error if the user does not exist. A notice is issued in this case.

1649

dropuser

-?

--help

Show help about dropuser command line arguments, and exit.

dropuser also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

-U username

--username=username

User name to connect as (not the user name to drop).

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force dropuser to prompt for a password before connecting to a database.

This option is never essential, since dropuser will automatically prompt for a password if the server
demands password authentication. However, dropuser will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

1650

dropuser

Diagnostics
In case of difficulty, see DROP ROLE and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and envi-
ronment variables used by the libpq front-end library will apply.

Examples
To remove user joe from the default database server:

$ dropuser joe

To remove user joe using the server on host eden, port 5000, with verification and a peek at the underly-
ing command:

$ dropuser -p 5000 -h eden -i -e joe

Role "joe" will be permanently removed.

Are you sure? (y/n) y

DROP ROLE joe;

See Also
createuser, DROP ROLE

1651

ecpg

Name
ecpg — embedded SQL C preprocessor

Synopsis

ecpg [option...] file...

Description
ecpg is the embedded SQL preprocessor for C programs. It converts C programs with embedded SQL
statements to normal C code by replacing the SQL invocations with special function calls. The output files
can then be processed with any C compiler tool chain.

ecpg will convert each input file given on the command line to the corresponding C output file. Input files
preferably have the extension .pgc, in which case the extension will be replaced by .c to determine the
output file name. If the extension of the input file is not .pgc, then the output file name is computed by
appending .c to the full file name. The output file name can also be overridden using the -o option.

This reference page does not describe the embedded SQL language. See Chapter 33 for more information
on that topic.

Options
ecpg accepts the following command-line arguments:

-c

Automatically generate certain C code from SQL code. Currently, this works for EXEC SQL TYPE.

-C mode

Set a compatibility mode. mode can be INFORMIX or INFORMIX_SE.

-D symbol

Define a C preprocessor symbol.

-i

Parse system include files as well.

-I directory

Specify an additional include path, used to find files included via EXEC SQL INCLUDE. Defaults are
. (current directory), /usr/local/include, the PostgreSQL include directory which is defined at
compile time (default: /usr/local/pgsql/include), and /usr/include, in that order.

1652

ecpg

-o filename

Specifies that ecpg should write all its output to the given filename.

-r option

Selects run-time behavior. Option can be one of the following:

no_indicator

Do not use indicators but instead use special values to represent null values. Historically there
have been databases using this approach.

prepare

Prepare all statements before using them. Libecpg will keep a cache of prepared statements and
reuse a statement if it gets executed again. If the cache runs full, libecpg will free the least used
statement.

questionmarks

Allow question mark as placeholder for compatibility reasons. This used to be the default long
ago.

-t

Turn on autocommit of transactions. In this mode, each SQL command is automatically committed
unless it is inside an explicit transaction block. In the default mode, commands are committed only
when EXEC SQL COMMIT is issued.

-v

Print additional information including the version and the "include" path.

--version

Print the ecpg version and exit.

-?

--help

Show help about ecpg command line arguments, and exit.

Notes
When compiling the preprocessed C code files, the compiler needs to be able to find the ECPG header
files in the PostgreSQL include directory. Therefore, you might have to use the -I option when invoking
the compiler (e.g., -I/usr/local/pgsql/include).

Programs using C code with embedded SQL have to be linked against the libecpg library, for example
using the linker options -L/usr/local/pgsql/lib -lecpg.

The value of either of these directories that is appropriate for the installation can be found out using
pg_config.

1653

ecpg

Examples
If you have an embedded SQL C source file named prog1.pgc, you can create an executable program
using the following sequence of commands:

ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg

1654

pg_basebackup

Name
pg_basebackup — take a base backup of a PostgreSQL cluster

Synopsis

pg_basebackup [option...]

Description
pg_basebackup is used to take base backups of a running PostgreSQL database cluster. These are taken
without affecting other clients to the database, and can be used both for point-in-time recovery (see Section
24.3) and as the starting point for a log shipping or streaming replication standby servers (see Section
25.2).

pg_basebackup makes a binary copy of the database cluster files, while making sure the system is auto-
matically put in and out of backup mode automatically. Backups are always taken of the entire database
cluster, it is not possible to back up individual databases or database objects. For individual database
backups, a tool such as pg_dump must be used.

The backup is made over a regular PostgreSQL connection, and uses the replication protocol. The con-
nection must be made with a superuser or a user having REPLICATION permissions (see Section 20.2),
and pg_hba.conf must explicitly permit the replication connection. The server must also be configured
with max_wal_senders set high enough to leave at least one session available for the backup.

There can be multiple pg_basebackups running at the same time, but it is better from a performance
point of view to take only one backup, and copy the result.

pg_basebackup can make a base backup from not only the master but also the standby. To take a
backup from the standby, set up the standby so that it can accept replication connections (that is, set
max_wal_senders and hot_standby, and configure host-based authentication). You will also need to
enable full_page_writes on the master.

Note that there are some limitations in an online backup from the standby:

• The backup history file is not created in the database cluster backed up.

• There is no guarantee that all WAL files required for the backup are archived at the end of backup. If
you are planning to use the backup for an archive recovery and want to ensure that all required files are
available at that moment, you need to include them into the backup by using -x option.

• If the standby is promoted to the master during online backup, the backup fails.

• All WAL records required for the backup must contain sufficient full-page writes, which requires
you to enable full_page_writes on the master and not to use a tool like pg_compresslog as
archive_command to remove full-page writes from WAL files.

1655

pg_basebackup

Options
The following command-line options control the location and format of the output.

-D directory

--pgdata=directory

Directory to write the output to. pg_basebackup will create the directory and any parent directories
if necessary. The directory may already exist, but it is an error if the directory already exists and is
not empty.

When the backup is in tar mode, and the directory is specified as - (dash), the tar file will be written
to stdout.

This option is required.

-F format

--format=format

Selects the format for the output. format can be one of the following:

p

plain

Write the output as plain files, with the same layout as the current data directory and tablespaces.
When the cluster has no additional tablespaces, the whole database will be placed in the target
directory. If the cluster contains additional tablespaces, the main data directory will be placed
in the target directory, but all other tablespaces will be placed in the same absolute path as they
have on the server.

This is the default format.

t

tar

Write the output as tar files in the target directory. The main data directory will be written to a
file named base.tar, and all other tablespaces will be named after the tablespace OID.

If the value - (dash) is specified as target directory, the tar contents will be written to stan-
dard output, suitable for piping to for example gzip. This is only possible if the cluster has no
additional tablespaces.

-x

--xlog

Using this option is equivalent of using -X with method fetch.

-X method

--xlog-method=method

Includes the required transaction log files (WAL files) in the backup. This will include all transaction
logs generated during the backup. If this option is specified, it is possible to start a postmaster directly
in the extracted directory without the need to consult the log archive, thus making this a completely
standalone backup.

The following methods for collecting the transaction logs are supported:

1656

pg_basebackup

f

fetch

The transaction log files are collected at the end of the backup. Therefore, it is necessary for the
wal_keep_segments parameter to be set high enough that the log is not removed before the end
of the backup. If the log has been rotated when it’s time to transfer it, the backup will fail and
be unusable.

s

stream

Stream the transaction log while the backup is created. This will open a second connection to the
server and start streaming the transaction log in parallel while running the backup. Therefore, it
will use up two slots configured by the max_wal_senders parameter. As long as the client can
keep up with transaction log received, using this mode requires no extra transaction logs to be
saved on the master.

-z

--gzip

Enables gzip compression of tar file output, with the default compression level. Compression is only
available when using the tar format.

-Z level

--compress=level

Enables gzip compression of tar file output, and specifies the compression level (1 through 9, 9 being
best compression). Compression is only available when using the tar format.

The following command-line options control the generation of the backup and the running of the program.

-c fast|spread

--checkpoint=fast|spread

Sets checkpoint mode to fast or spread (default).

-l label

--label=label

Sets the label for the backup. If none is specified, a default value of “pg_basebackup base

backup” will be used.

-P

--progress

Enables progress reporting. Turning this on will deliver an approximate progress report during the
backup. Since the database may change during the backup, this is only an approximation and may
not end at exactly 100%. In particular, when WAL log is included in the backup, the total amount of
data cannot be estimated in advance, and in this case the estimated target size will increase once it
passes the total estimate without WAL.

1657

pg_basebackup

When this is enabled, the backup will start by enumerating the size of the entire database, and then go
back and send the actual contents. This may make the backup take slightly longer, and in particular
it will take longer before the first data is sent.

-v

--verbose

Enables verbose mode. Will output some extra steps during startup and shutdown, as well as show
the exact file name that is currently being processed if progress reporting is also enabled.

The following command-line options control the database connection parameters.

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST

environment variable, if set, else a Unix domain socket connection is attempted.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-s interval

--status-interval=interval

Specifies the number of seconds between status packets sent back to the server. This is required
when streaming the transaction log (using --xlog=stream) if replication timeout is configured on
the server, and allows for easier monitoring. A value of zero disables the status updates completely.
The default value is 10 seconds.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force pg_basebackup to prompt for a password before connecting to a database.

This option is never essential, since pg_basebackup will automatically prompt for a password if the
server demands password authentication. However, pg_basebackup will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

1658

pg_basebackup

Other options are also available:

-V

--version

Print the pg_basebackup version and exit.

-?

--help

Show help about pg_basebackup command line arguments, and exit.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 31.14).

Notes
The backup will include all files in the data directory and tablespaces, including the configuration files and
any additional files placed in the directory by third parties. Only regular files and directories are allowed
in the data directory, no symbolic links or special device files.

The way PostgreSQL manages tablespaces, the path for all additional tablespaces must be identical when-
ever a backup is restored. The main data directory, however, is relocatable to any location.

Examples
To create a base backup of the server at mydbserver and store it in the local directory
/usr/local/pgsql/data:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data

To create a backup of the local server with one compressed tar file for each tablespace, and store it in the
directory backup, showing a progress report while running:

$ pg_basebackup -D backup -Ft -z -P

To create a backup of a single-tablespace local database and compress this with bzip2:

$ pg_basebackup -D - -Ft | bzip2 > backup.tar.bz2

(This command will fail if there are multiple tablespaces in the database.)

1659

pg_basebackup

See Also
pg_dump

1660

pg_config

Name
pg_config — retrieve information about the installed version of PostgreSQL

Synopsis

pg_config [option...]

Description
The pg_config utility prints configuration parameters of the currently installed version of PostgreSQL. It
is intended, for example, to be used by software packages that want to interface to PostgreSQL to facilitate
finding the required header files and libraries.

Options
To use pg_config, supply one or more of the following options:

--bindir

Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where the pg_config program resides.

--docdir

Print the location of documentation files.

--htmldir

Print the location of HTML documentation files.

--includedir

Print the location of C header files of the client interfaces.

--pkgincludedir

Print the location of other C header files.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

1661

pg_config

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them.
(Other architecture-dependent data files might also be installed in this directory.)

--localedir

Print the location of locale support files. (This will be an empty string if locale support was not
configured when PostgreSQL was built.)

--mandir

Print the location of manual pages.

--sharedir

Print the location of architecture-independent support files.

--sysconfdir

Print the location of system-wide configuration files.

--pgxs

Print the location of extension makefiles.

--configure

Print the options that were given to the configure script when PostgreSQL was configured for
building. This can be used to reproduce the identical configuration, or to find out with what options a
binary package was built. (Note however that binary packages often contain vendor-specific custom
patches.) See also the examples below.

--cc

Print the value of the CC variable that was used for building PostgreSQL. This shows the C compiler
used.

--cppflags

Print the value of the CPPFLAGS variable that was used for building PostgreSQL. This shows C
compiler switches needed at preprocessing time (typically, -I switches).

--cflags

Print the value of the CFLAGS variable that was used for building PostgreSQL. This shows C compiler
switches.

--cflags_sl

Print the value of the CFLAGS_SL variable that was used for building PostgreSQL. This shows extra
C compiler switches used for building shared libraries.

--ldflags

Print the value of the LDFLAGS variable that was used for building PostgreSQL. This shows linker
switches.

--ldflags_ex

Print the value of the LDFLAGS_EX variable that was used for building PostgreSQL. This shows
linker switches used for building executables only.

1662

pg_config

--ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building PostgreSQL. This shows
linker switches used for building shared libraries only.

--libs

Print the value of the LIBS variable that was used for building PostgreSQL. This normally contains
-l switches for external libraries linked into PostgreSQL.

--version

Print the version of PostgreSQL.

-?

--help

Show help about pg_config command line arguments, and exit.

If more than one option is given, the information is printed in that order, one item per line. If no options
are given, all available information is printed, with labels.

Notes
The option --includedir-server was added in PostgreSQL 7.2. In prior releases, the server include
files were installed in the same location as the client headers, which could be queried with the option
--includedir. To make your package handle both cases, try the newer option first and test the exit
status to see whether it succeeded.

The options --docdir, --pkgincludedir, --localedir, --mandir, --sharedir, --sysconfdir,
--cc, --cppflags, --cflags, --cflags_sl, --ldflags, --ldflags_sl, and --libs were added
in PostgreSQL 8.1. The option --htmldir was added in PostgreSQL 8.4. The option --ldflags_ex

was added in PostgreSQL 9.0.

In releases prior to PostgreSQL 7.1, before pg_config came to be, a method for finding the equivalent
configuration information did not exist.

Example
To reproduce the build configuration of the current PostgreSQL installation, run the following command:

eval ./configure ‘pg_config --configure‘

The output of pg_config --configure contains shell quotation marks so arguments with spaces are
represented correctly. Therefore, using eval is required for proper results.

1663

pg_dump

Name
pg_dump — extract a PostgreSQL database into a script file or other archive file

Synopsis

pg_dump [connection-option...] [option...] [dbname]

Description
pg_dump is a utility for backing up a PostgreSQL database. It makes consistent backups even if the
database is being used concurrently. pg_dump does not block other users accessing the database (readers
or writers).

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the
SQL commands required to reconstruct the database to the state it was in at the time it was saved. To
restore from such a script, feed it to psql. Script files can be used to reconstruct the database even on other
machines and other architectures; with some modifications, even on other SQL database products.

The alternative archive file formats must be used with pg_restore to rebuild the database. They allow
pg_restore to be selective about what is restored, or even to reorder the items prior to being restored. The
archive file formats are designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a flexi-
ble archival and transfer mechanism. pg_dump can be used to backup an entire database, then pg_restore
can be used to examine the archive and/or select which parts of the database are to be restored. The
most flexible output file format is the “custom” format (-Fc). It allows for selection and reordering of all
archived items, and is compressed by default.

While running pg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

Options
The following command-line options control the content and format of the output.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable
PGDATABASE is used. If that is not set, the user name specified for the connection is used.

-a

--data-only

Dump only the data, not the schema (data definitions). Table data, large objects, and sequence values
are dumped.

1664

pg_dump

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-b

--blobs

Include large objects in the dump. This is the default behavior except when --schema, --table, or
--schema-only is specified, so the -b switch is only useful to add large objects to selective dumps.

-c

--clean

Output commands to clean (drop) database objects prior to outputting the commands for creating
them. (Restore might generate some harmless error messages, if any objects were not present in the
destination database.)

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

-C

--create

Begin the output with a command to create the database itself and reconnect to the created database.
(With a script of this form, it doesn’t matter which database in the destination installation you connect
to before running the script.) If --clean is also specified, the script drops and recreates the target
database before reconnecting to it.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

-E encoding

--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the
database encoding. (Another way to get the same result is to set the PGCLIENTENCODING envi-
ronment variable to the desired dump encoding.)

-f file

--file=file

Send output to the specified file. This parameter can be omitted for file based output formats, in which
case the standard output is used. It must be given for the directory output format however, where it
specifies the target directory instead of a file. In this case the directory is created by pg_dump and
must not exist before.

-F format

--format=format

Selects the format of the output. format can be one of the following:

p

plain

Output a plain-text SQL script file (the default).

1665

pg_dump

c

custom

Output a custom-format archive suitable for input into pg_restore. Together with the directory
output format, this is the most flexible output format in that it allows manual selection and
reordering of archived items during restore. This format is also compressed by default.

d

directory

Output a directory-format archive suitable for input into pg_restore. This will create a directory
with one file for each table and blob being dumped, plus a so-called Table of Contents file de-
scribing the dumped objects in a machine-readable format that pg_restore can read. A directory
format archive can be manipulated with standard Unix tools; for example, files in an uncom-
pressed archive can be compressed with the gzip tool. This format is compressed by default.

t

tar

Output a tar-format archive suitable for input into pg_restore. The tar-format is compatible
with the directory-format; extracting a tar-format archive produces a valid directory-format
archive. However, the tar-format does not support compression and has a limit of 8 GB on the
size of individual tables. Also, the relative order of table data items cannot be changed during
restore.

-i

--ignore-version

A deprecated option that is now ignored.

-n schema

--schema=schema

Dump only schemas matching schema; this selects both the schema itself, and all its contained ob-
jects. When this option is not specified, all non-system schemas in the target database will be dumped.
Multiple schemas can be selected by writing multiple -n switches. Also, the schema parameter is
interpreted as a pattern according to the same rules used by psql’s \d commands (see Patterns),
so multiple schemas can also be selected by writing wildcard characters in the pattern. When using
wildcards, be careful to quote the pattern if needed to prevent the shell from expanding the wildcards;
see Examples.

Note: When -n is specified, pg_dump makes no attempt to dump any other database objects
that the selected schema(s) might depend upon. Therefore, there is no guarantee that the results
of a specific-schema dump can be successfully restored by themselves into a clean database.

Note: Non-schema objects such as blobs are not dumped when -n is specified. You can add
blobs back to the dump with the --blobs switch.

1666

pg_dump

-N schema

--exclude-schema=schema

Do not dump any schemas matching the schema pattern. The pattern is interpreted according to the
same rules as for -n. -N can be given more than once to exclude schemas matching any of several
patterns.

When both -n and -N are given, the behavior is to dump just the schemas that match at least one -n
switch but no -N switches. If -N appears without -n, then schemas matching -N are excluded from
what is otherwise a normal dump.

-o

--oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your application
references the OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option
should not be used.

-O

--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of
created database objects. These statements will fail when the script is run unless it is started by a
superuser (or the same user that owns all of the objects in the script). To make a script that can be
restored by any user, but will give that user ownership of all the objects, specify -O.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

-R

--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s

--schema-only

Dump only the object definitions (schema), not data.

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to,
specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different mean-
ing.)

To exclude table data for only a subset of tables in the database, see --exclude-table-data.

-S username

--superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant if
--disable-triggers is used. (Usually, it’s better to leave this out, and instead start the resulting
script as superuser.)

1667

pg_dump

-t table

--table=table

Dump only tables (or views or sequences or foreign tables) matching table. Multiple tables can
be selected by writing multiple -t switches. Also, the table parameter is interpreted as a pattern
according to the same rules used by psql’s \d commands (see Patterns), so multiple tables can also
be selected by writing wildcard characters in the pattern. When using wildcards, be careful to quote
the pattern if needed to prevent the shell from expanding the wildcards; see Examples.

The -n and -N switches have no effect when -t is used, because tables selected by -t will be dumped
regardless of those switches, and non-table objects will not be dumped.

Note: When -t is specified, pg_dump makes no attempt to dump any other database objects
that the selected table(s) might depend upon. Therefore, there is no guarantee that the results of
a specific-table dump can be successfully restored by themselves into a clean database.

Note: The behavior of the -t switch is not entirely upward compatible with pre-8.2 PostgreSQL
versions. Formerly, writing -t tab would dump all tables named tab, but now it just dumps
whichever one is visible in your default search path. To get the old behavior you can write -t

’*.tab’. Also, you must write something like -t sch.tab to select a table in a particular schema,
rather than the old locution of -n sch -t tab.

-T table

--exclude-table=table

Do not dump any tables matching the table pattern. The pattern is interpreted according to the same
rules as for -t. -T can be given more than once to exclude tables matching any of several patterns.

When both -t and -T are given, the behavior is to dump just the tables that match at least one -t

switch but no -T switches. If -T appears without -t, then tables matching -T are excluded from what
is otherwise a normal dump.

-v

--verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and start/stop
times to the dump file, and progress messages to standard error.

-V

--version

Print the pg_dump version and exit.

-x

--no-privileges

--no-acl

Prevent dumping of access privileges (grant/revoke commands).

1668

pg_dump

-Z 0..9

--compress=0..9

Specify the compression level to use. Zero means no compression. For the custom archive format,
this specifies compression of individual table-data segments, and the default is to compress at a
moderate level. For plain text output, setting a nonzero compression level causes the entire output
file to be compressed, as though it had been fed through gzip; but the default is not to compress. The
tar archive format currently does not support compression at all.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

--column-inserts

--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column,

...) VALUES ...). This will make restoration very slow; it is mainly useful for making dumps
that can be loaded into non-PostgreSQL databases. However, since this option generates a separate
command for each row, an error in reloading a row causes only that row to be lost rather than the
entire table contents.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dump to include com-
mands to temporarily disable triggers on the target tables while the data is reloaded. Use this if you
have referential integrity checks or other triggers on the tables that you do not want to invoke during
data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you
should also specify a superuser name with -S, or preferably be careful to start the resulting script as
a superuser.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

--exclude-table-data=table

Do not dump data for any tables matching the table pattern. The pattern is interpreted according to
the same rules as for -t. --exclude-table-data can be given more than once to exclude tables
matching any of several patterns. This option is useful when you need the definition of a particular
table even though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL databases. However, since
this option generates a separate command for each row, an error in reloading a row causes only
that row to be lost rather than the entire table contents. Note that the restore might fail altogether

1669

pg_dump

if you have rearranged column order. The --column-inserts option is safe against column order
changes, though even slower.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout. (Allowed values vary depending on the server version you
are dumping from, but an integer number of milliseconds is accepted by all versions since 7.3. This
option is ignored when dumping from a pre-7.3 server.)

--no-security-labels

Do not dump security labels.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in
whichever tablespace is the default during restore.

This option is only meaningful for the plain-text format. For the archive formats, you can specify the
option when you call pg_restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data. Data in unlogged tables
is always excluded when dumping from a standby server.

--quote-all-identifiers

Force quoting of all identifiers. This may be useful when dumping a database for migration to a
future version that may have introduced additional keywords.

--section=sectionname

Only dump the named section. The section name can be pre-data, data, or post-data. This
option can be specified more than once to select multiple sections. The default is to dump all sections.

The data section contains actual table data, large-object contents, and sequence values. Post-data
items include definitions of indexes, triggers, rules, and constraints other than validated check con-
straints. Pre-data items include all other data definition items.

--serializable-deferrable

Use a serializable transaction for the dump, to ensure that the snapshot used is consistent with
later database states; but do this by waiting for a point in the transaction stream at which no anomalies
can be present, so that there isn’t a risk of the dump failing or causing other transactions to roll back
with a serialization_failure. See Chapter 13 for more information about transaction isolation
and concurrency control.

This option is not beneficial for a dump which is intended only for disaster recovery. It could be
useful for a dump used to load a copy of the database for reporting or other read-only load sharing
while the original database continues to be updated. Without it the dump may reflect a state which
is not consistent with any serial execution of the transactions eventually committed. For example,
if batch processing techniques are used, a batch may show as closed in the dump without all of the
items which are in the batch appearing.

1670

pg_dump

This option will make no difference if there are no read-write transactions active when pg_dump is
started. If read-write transactions are active, the start of the dump may be delayed for an indeterminate
length of time. Once running, performance with or without the switch is the same.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER com-
mands to determine object ownership. This makes the dump more standards-compatible, but depend-
ing on the history of the objects in the dump, might not restore properly. Also, a dump using SET

SESSION AUTHORIZATION will certainly require superuser privileges to restore correctly, whereas
ALTER OWNER requires lesser privileges.

-?

--help

Show help about pg_dump command line arguments, and exit.

The following command-line options control the database connection parameters.

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST

environment variable, if set, else a Unix domain socket connection is attempted.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force pg_dump to prompt for a password before connecting to a database.

This option is never essential, since pg_dump will automatically prompt for a password if the server
demands password authentication. However, pg_dump will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

1671

pg_dump

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to issue a SET

ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dump, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment

PGDATABASE

PGHOST

PGOPTIONS

PGPORT

PGUSER

Default connection parameters.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure you
are able to select information from the database using, for example, psql. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

The database activity of pg_dump is normally collected by the statistics collector. If this is undesirable,
you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Notes
If your database cluster has any local additions to the template1 database, be careful to restore the output
of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits com-
mands to disable triggers on user tables before inserting the data, and then commands to re-enable them
after the data has been inserted. If the restore is stopped in the middle, the system catalogs might be left
in the wrong state.

1672

pg_dump

Members of tar archives are limited to a size less than 8 GB. (This is an inherent limitation of the tar file
format.) Therefore this format cannot be used if the textual representation of any one table exceeds that
size. The total size of a tar archive and any of the other output formats is not limited, except possibly by
the operating system.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query
planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure optimal
performance; see Section 23.1.3 and Section 23.1.6 for more information. The dump file also does not
contain any ALTER DATABASE ... SET commands; these settings are dumped by pg_dumpall, along
with database users and other installation-wide settings.

Because pg_dump is used to transfer data to newer versions of PostgreSQL, the output of pg_dump can
be expected to load into PostgreSQL server versions newer than pg_dump’s version. pg_dump can also
dump from PostgreSQL servers older than its own version. (Currently, servers back to version 7.0 are
supported.) However, pg_dump cannot dump from PostgreSQL servers newer than its own major version;
it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed that pg_dump’s
output can be loaded into a server of an older major version — not even if the dump was taken from a
server of that version. Loading a dump file into an older server may require manual editing of the dump
file to remove syntax not understood by the older server.

Examples
To dump a database called mydb into a SQL-script file:

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To dump a single table named mytab:

1673

pg_dump

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named
employee_log:

$ pg_dump -t ’detroit.emp*’ -T detroit.employee_log mydb > db.sql

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas whose
names contain the word test:

$ pg_dump -n ’east*gsm’ -n ’west*gsm’ -N ’*test*’ mydb > db.sql

The same, using regular expression notation to consolidate the switches:

$ pg_dump -n ’(east|west)*gsm’ -N ’*test*’ mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T ’ts_*’ mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the
name; else it will be folded to lower case (see Patterns). But double quotes are special to the shell, so in
turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need something like

$ pg_dump -t ’"MixedCaseName"’ mydb > mytab.sql

See Also
pg_dumpall, pg_restore, psql

1674

pg_dumpall

Name
pg_dumpall — extract a PostgreSQL database cluster into a script file

Synopsis

pg_dumpall [connection-option...] [option...]

Description
pg_dumpall is a utility for writing out (“dumping”) all PostgreSQL databases of a cluster into one script
file. The script file contains SQL commands that can be used as input to psql to restore the databases. It
does this by calling pg_dump for each database in a cluster. pg_dumpall also dumps global objects that
are common to all databases. (pg_dump does not save these objects.) This currently includes information
about database users and groups, tablespaces, and properties such as access permissions that apply to
databases as a whole.

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add users and groups, and to create databases.

The SQL script will be written to the standard output. Use the [-f|file] option or shell operators to redirect
it into a file.

pg_dumpall needs to connect several times to the PostgreSQL server (once per database). If you use
password authentication it will ask for a password each time. It is convenient to have a ~/.pgpass file in
such cases. See Section 31.15 for more information.

Options
The following command-line options control the content and format of the output.

-a

--data-only

Dump only the data, not the schema (data definitions).

-c

--clean

Include SQL commands to clean (drop) databases before recreating them. DROP commands for roles
and tablespaces are added as well.

1675

pg_dumpall

-f filename

--file=filename

Send output to the specified file. If this is omitted, the standard output is used.

-g

--globals-only

Dump only global objects (roles and tablespaces), no databases.

-i

--ignore-version

A deprecated option that is now ignored.

-o

--oids

Dump object identifiers (OIDs) as part of the data for every table. Use this option if your application
references the OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option
should not be used.

-O

--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dumpall issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership
of created schema elements. These statements will fail when the script is run unless it is started by
a superuser (or the same user that owns all of the objects in the script). To make a script that can be
restored by any user, but will give that user ownership of all the objects, specify -O.

-r

--roles-only

Dump only roles, no databases or tablespaces.

-s

--schema-only

Dump only the object definitions (schema), not data.

-S username

--superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant if
--disable-triggers is used. (Usually, it’s better to leave this out, and instead start the resulting
script as superuser.)

-t

--tablespaces-only

Dump only tablespaces, no databases or roles.

-v

--verbose

Specifies verbose mode. This will cause pg_dumpall to output start/stop times to the dump file, and
progress messages to standard error. It will also enable verbose output in pg_dump.

1676

pg_dumpall

-V

--version

Print the pg_dumpall version and exit.

-x

--no-privileges

--no-acl

Prevent dumping of access privileges (grant/revoke commands).

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

--column-inserts

--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column,

...) VALUES ...). This will make restoration very slow; it is mainly useful for making dumps
that can be loaded into non-PostgreSQL databases.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dumpall to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you
should also specify a superuser name with -S, or preferably be careful to start the resulting script as
a superuser.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is
mainly useful for making dumps that can be loaded into non-PostgreSQL databases. Note that the
restore might fail altogether if you have rearranged column order. The --column-inserts option
is safer, though even slower.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead, fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout. Allowed values vary depending on the server version you
are dumping from, but an integer number of milliseconds is accepted by all versions since 7.3. This
option is ignored when dumping from a pre-7.3 server.

--no-security-labels

Do not dump security labels.

1677

pg_dumpall

--no-tablespaces

Do not output commands to create tablespaces nor select tablespaces for objects. With this option,
all objects will be created in whichever tablespace is the default during restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data.

--quote-all-identifiers

Force quoting of all identifiers. This may be useful when dumping a database for migration to a
future version that may have introduced additional keywords.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER com-
mands to determine object ownership. This makes the dump more standards compatible, but depend-
ing on the history of the objects in the dump, might not restore properly.

-?

--help

Show help about pg_dumpall command line arguments, and exit.

The following command-line options control the database connection parameters.

-h host

--host=host

Specifies the host name of the machine on which the database server is running. If the value begins
with a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-l dbname

--database=dbname

Specifies the name of the database to connect to to dump global objects and discover what other
databases should be dumped. If not specified, the postgres database will be used, and if that does
not exist, template1 will be used.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username

--username=username

User name to connect as.

1678

pg_dumpall

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force pg_dumpall to prompt for a password before connecting to a database.

This option is never essential, since pg_dumpall will automatically prompt for a password if the
server demands password authentication. However, pg_dumpall will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the ex-
tra connection attempt.

Note that the password prompt will occur again for each database to be dumped. Usually, it’s better
to set up a ~/.pgpass file than to rely on manual password entry.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dumpall to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dumpall, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment

PGHOST

PGOPTIONS

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

Once restored, it is wise to run ANALYZE on each database so the optimizer has useful statistics. You can
also run vacuumdb -a -z to analyze all databases.

pg_dumpall requires all needed tablespace directories to exist before the restore; otherwise, database
creation will fail for databases in non-default locations.

1679

pg_dumpall

Examples
To dump all databases:

$ pg_dumpall > db.out

To reload database(s) from this file, you can use:

$ psql -f db.out postgres

(It is not important to which database you connect here since the script file created by pg_dumpall will
contain the appropriate commands to create and connect to the saved databases.)

See Also
Check pg_dump for details on possible error conditions.

1680

pg_receivexlog

Name
pg_receivexlog — streams transaction logs from a PostgreSQL cluster

Synopsis

pg_receivexlog [option...]

Description
pg_receivexlog is used to stream transaction log from a running PostgreSQL cluster. The transaction log is
streamed using the streaming replication protocol, and is written to a local directory of files. This directory
can be used as the archive location for doing a restore using point-in-time recovery (see Section 24.3).

pg_receivexlog streams the transaction log in real time as it’s being generated on the server, and does
not wait for segments to complete like archive_command does. For this reason, it is not necessary to set
archive_timeout when using pg_receivexlog.

The transaction log is streamed over a regular PostgreSQL connection, and uses the replication protocol.
The connection must be made with a superuser or a user having REPLICATION permissions (see Sec-
tion 20.2), and pg_hba.conf must explicitly permit the replication connection. The server must also be
configured with max_wal_senders set high enough to leave at least one session available for the stream.

If the connection is lost, or if it cannot be initially established, with a non-fatal error, pg_receivexlog will
retry the connection indefinitely, and reestablish streaming as soon as possible. To avoid this behavior, use
the -n parameter.

Options
The following command-line options control the location and format of the output.

-D directory

--directory=directory

Directory to write the output to.

This parameter is required.

The following command-line options control the running of the program.

-n

--no-loop

Don’t loop on connection errors. Instead, exit right away with an error.

1681

pg_receivexlog

-v

--verbose

Enables verbose mode.

The following command-line options control the database connection parameters.

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST

environment variable, if set, else a Unix domain socket connection is attempted.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-s interval

--status-interval=interval

Specifies the number of seconds between status packets sent back to the server. This is required if
replication timeout is configured on the server, and allows for easier monitoring. A value of zero
disables the status updates completely. The default value is 10 seconds.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force pg_receivexlog to prompt for a password before connecting to a database.

This option is never essential, since pg_receivexlog will automatically prompt for a password if the
server demands password authentication. However, pg_receivexlog will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

Other options are also available:

-V

--version

Print the pg_receivexlog version and exit.

1682

pg_receivexlog

-?

--help

Show help about pg_receivexlog command line arguments, and exit.

Environment
This utility, like most other PostgreSQL utilities, uses the environment variables supported by libpq (see
Section 31.14).

Notes
When using pg_receivexlog instead of archive_command, the server will continue to recycle transaction
log files even if the backups are not properly archived, since there is no command that fails. This can be
worked around by having an archive_command that fails when the file has not been properly archived yet,
for example:

archive_command = ’sleep 5 && test -f /mnt/server/archivedir/%f’

The initial timeout is necessary because pg_receivexlog works using asynchronous replication and can
therefore be slightly behind the master.

Examples
To stream the transaction log from the server at mydbserver and store it in the local directory
/usr/local/pgsql/archive:

$ pg_receivexlog -h mydbserver -D /usr/local/pgsql/archive

See Also
pg_basebackup

1683

pg_restore

Name
pg_restore — restore a PostgreSQL database from an archive file created by pg_dump

Synopsis

pg_restore [connection-option...] [option...] [filename]

Description
pg_restore is a utility for restoring a PostgreSQL database from an archive created by pg_dump in one of
the non-plain-text formats. It will issue the commands necessary to reconstruct the database to the state
it was in at the time it was saved. The archive files also allow pg_restore to be selective about what is
restored, or even to reorder the items prior to being restored. The archive files are designed to be portable
across architectures.

pg_restore can operate in two modes. If a database name is specified, pg_restore connects to that database
and restores archive contents directly into the database. Otherwise, a script containing the SQL commands
necessary to rebuild the database is created and written to a file or standard output. This script output is
equivalent to the plain text output format of pg_dump. Some of the options controlling the output are
therefore analogous to pg_dump options.

Obviously, pg_restore cannot restore information that is not present in the archive file. For instance, if the
archive was made using the “dump data as INSERT commands” option, pg_restore will not be able to load
the data using COPY statements.

Options
pg_restore accepts the following command line arguments.

filename

Specifies the location of the archive file (or directory, for a directory-format archive) to be restored.
If not specified, the standard input is used.

-a

--data-only

Restore only the data, not the schema (data definitions). Table data, large objects, and sequence
values are restored, if present in the archive.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

1684

pg_restore

-c

--clean

Clean (drop) database objects before recreating them. (This might generate some harmless error
messages, if any objects were not present in the destination database.)

-C

--create

Create the database before restoring into it. If --clean is also specified, drop and recreate the target
database before connecting to it.

When this option is used, the database named with -d is used only to issue the initial DROP

DATABASE and CREATE DATABASE commands. All data is restored into the database name that
appears in the archive.

-d dbname

--dbname=dbname

Connect to database dbname and restore directly into the database.

-e

--exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default is to
continue and to display a count of errors at the end of the restoration.

-f filename

--file=filename

Specify output file for generated script, or for the listing when used with -l. Default is the standard
output.

-F format

--format=format

Specify format of the archive. It is not necessary to specify the format, since pg_restore will deter-
mine the format automatically. If specified, it can be one of the following:

c

custom

The archive is in the custom format of pg_dump.

d

directory

The archive is a directory archive.

t

tar

The archive is a tar archive.

-i

--ignore-version

A deprecated option that is now ignored.

1685

pg_restore

-I index

--index=index

Restore definition of named index only.

-j number-of-jobs

--jobs=number-of-jobs

Run the most time-consuming parts of pg_restore — those which load data, create indexes, or create
constraints — using multiple concurrent jobs. This option can dramatically reduce the time to restore
a large database to a server running on a multiprocessor machine.

Each job is one process or one thread, depending on the operating system, and uses a separate con-
nection to the server.

The optimal value for this option depends on the hardware setup of the server, of the client, and of
the network. Factors include the number of CPU cores and the disk setup. A good place to start is the
number of CPU cores on the server, but values larger than that can also lead to faster restore times
in many cases. Of course, values that are too high will lead to decreased performance because of
thrashing.

Only the custom archive format is supported with this option. The input file must be a regular file
(not, for example, a pipe). This option is ignored when emitting a script rather than connecting
directly to a database server. Also, multiple jobs cannot be used together with the option
--single-transaction.

-l

--list

List the contents of the archive. The output of this operation can be used as input to the -L option.
Note that if filtering switches such as -n or -t are used with -l, they will restrict the items listed.

-L list-file

--use-list=list-file

Restore only those archive elements that are listed in list-file, and restore them in the order they
appear in the file. Note that if filtering switches such as -n or -t are used with -L, they will further
restrict the items restored.

list-file is normally created by editing the output of a previous -l operation. Lines can be moved
or removed, and can also be commented out by placing a semicolon (;) at the start of the line. See
below for examples.

-n namespace

--schema=schema

Restore only objects that are in the named schema. This can be combined with the -t option to
restore just a specific table.

-O

--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_restore issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of
created schema elements. These statements will fail unless the initial connection to the database is
made by a superuser (or the same user that owns all of the objects in the script). With -O, any user
name can be used for the initial connection, and this user will own all the created objects.

1686

pg_restore

-P function-name(argtype [, ...])

--function=function-name(argtype [, ...])

Restore the named function only. Be careful to spell the function name and arguments exactly as they
appear in the dump file’s table of contents.

-R

--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s

--schema-only

Restore only the schema (data definitions), not data, to the extent that schema entries are present in
the archive.

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to,
specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different mean-
ing.)

-S username

--superuser=username

Specify the superuser user name to use when disabling triggers. This is only relevant if
--disable-triggers is used.

-t table

--table=table

Restore definition and/or data of named table only. This can be combined with the -n option to
specify a schema.

-T trigger

--trigger=trigger

Restore named trigger only.

-v

--verbose

Specifies verbose mode.

-V

--version

Print the pg_restore version and exit.

-x

--no-privileges

--no-acl

Prevent restoration of access privileges (grant/revoke commands).

1687

pg_restore

-1

--single-transaction

Execute the restore as a single transaction (that is, wrap the emitted commands in BEGIN/COMMIT).
This ensures that either all the commands complete successfully, or no changes are applied. This
option implies --exit-on-error.

--disable-triggers

This option is only relevant when performing a data-only restore. It instructs pg_restore to execute
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you
should also specify a superuser name with -S, or preferably run pg_restore as a PostgreSQL supe-
ruser.

--no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed (e.g., because it
already exists). With this option, data for such a table is skipped. This behavior is useful if the target
database already contains the desired table contents. For example, auxiliary tables for PostgreSQL
extensions such as PostGIS might already be loaded in the target database; specifying this option
prevents duplicate or obsolete data from being loaded into them.

This option is effective only when restoring directly into a database, not when producing SQL script
output.

--no-security-labels

Do not output commands to restore security labels, even if the archive contains them.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in
whichever tablespace is the default during restore.

--section=sectionname

Only restore the named section. The section name can be pre-data, data, or post-data. This op-
tion can be specified more than once to select multiple sections. The default is to restore all sections.

The data section contains actual table data as well as large-object definitions. Post-data items consist
of definitions of indexes, triggers, rules and constraints other than validated check constraints. Pre-
data items consist of all other data definition items.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER com-
mands to determine object ownership. This makes the dump more standards-compatible, but depend-
ing on the history of the objects in the dump, might not restore properly.

-?

--help

Show help about pg_restore command line arguments, and exit.

1688

pg_restore

pg_restore also accepts the following command line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST

environment variable, if set, else a Unix domain socket connection is attempted.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force pg_restore to prompt for a password before connecting to a database.

This option is never essential, since pg_restore will automatically prompt for a password if the server
demands password authentication. However, pg_restore will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--role=rolename

Specifies a role name to be used to perform the restore. This option causes pg_restore to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_restore, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows restores to be performed without violating the policy.

Environment

PGHOST

PGOPTIONS

PGPORT

PGUSER

Default connection parameters

1689

pg_restore

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
When a direct database connection is specified using the -d option, pg_restore internally executes SQL
statements. If you have problems running pg_restore, make sure you are able to select information from
the database using, for example, psql. Also, any default connection settings and environment variables
used by the libpq front-end library will apply.

Notes
If your installation has any local additions to the template1 database, be careful to load the output of
pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

The limitations of pg_restore are detailed below.

• When restoring data to a pre-existing table and the option --disable-triggers is used, pg_restore
emits commands to disable triggers on user tables before inserting the data, then emits commands to re-
enable them after the data has been inserted. If the restore is stopped in the middle, the system catalogs
might be left in the wrong state.

• pg_restore cannot restore large objects selectively; for instance, only those for a specific table. If an
archive contains large objects, then all large objects will be restored, or none of them if they are excluded
via -L, -t, or other options.

See also the pg_dump documentation for details on limitations of pg_dump.

Once restored, it is wise to run ANALYZE on each restored table so the optimizer has useful statistics; see
Section 23.1.3 and Section 23.1.6 for more information.

Examples
Assume we have dumped a database called mydb into a custom-format dump file:

$ pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:

$ dropdb mydb

1690

pg_restore

$ pg_restore -C -d postgres db.dump

The database named in the -d switch can be any database existing in the cluster; pg_restore only uses it
to issue the CREATE DATABASE command for mydb. With -C, data is always restored into the database
name that appears in the dump file.

To reload the dump into a new database called newdb:

$ createdb -T template0 newdb

$ pg_restore -d newdb db.dump

Notice we don’t use -C, and instead connect directly to the database to be restored into. Also note that we
clone the new database from template0 not template1, to ensure it is initially empty.

To reorder database items, it is first necessary to dump the table of contents of the archive:

$ pg_restore -l db.dump > db.list

The listing file consists of a header and one line for each item, e.g.:

;
; Archive created at Mon Sep 14 13:55:39 2009
; dbname: DBDEMOS
; TOC Entries: 81
; Compression: 9
; Dump Version: 1.10-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.3.5
; Dumped by pg_dump version: 8.3.8
;
;
; Selected TOC Entries:
;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID assigned
to each item.

Lines in the file can be commented out, deleted, and reordered. For example:

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input to pg_restore and would only restore items 10 and 6, in that order:

$ pg_restore -L db.list db.dump

1691

pg_restore

See Also
pg_dump, pg_dumpall, psql

1692

psql

Name
psql — PostgreSQL interactive terminal

Synopsis

psql [option...] [dbname [username]]

Description
psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue them
to PostgreSQL, and see the query results. Alternatively, input can be from a file. In addition, it provides
a number of meta-commands and various shell-like features to facilitate writing scripts and automating a
wide variety of tasks.

Options

-a

--echo-all

Print all input lines to standard output as they are read. This is more useful for script processing than
interactive mode. This is equivalent to setting the variable ECHO to all.

-A

--no-align

Switches to unaligned output mode. (The default output mode is otherwise aligned.)

-c command

--command=command

Specifies that psql is to execute one command string, command, and then exit. This is useful in shell
scripts. Start-up files (psqlrc and ~/.psqlrc) are ignored with this option.

command must be either a command string that is completely parsable by the server (i.e., it contains
no psql-specific features), or a single backslash command. Thus you cannot mix SQL and psql meta-
commands with this option. To achieve that, you could pipe the string into psql, for example: echo
’\x \\ SELECT * FROM foo;’ | psql. (\\ is the separator meta-command.)

If the command string contains multiple SQL commands, they are processed in a single transaction,
unless there are explicit BEGIN/COMMIT commands included in the string to divide it into multiple
transactions. This is different from the behavior when the same string is fed to psql’s standard input.
Also, only the result of the last SQL command is returned.

1693

psql

Because of these legacy behaviors, putting more than one command in the -c string often has un-
expected results. It’s better to feed multiple commands to psql’s standard input, either using echo as
illustrated above, or via a shell here-document, for example:

psql <<EOF
\x
SELECT * FROM foo;
EOF

-d dbname

--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first
non-option argument on the command line.

If this parameter contains an = sign or starts with a valid URI prefix (postgresql:// or
postgres://), it is treated as a conninfo string. See Section 31.1 for more information.

-e

--echo-queries

Copy all SQL commands sent to the server to standard output as well. This is equivalent to setting
the variable ECHO to queries.

-E

--echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this to study
psql’s internal operations. This is equivalent to setting the variable ECHO_HIDDEN from within psql.

-f filename

--file=filename

Use the file filename as the source of commands instead of reading commands interactively. After
the file is processed, psql terminates. This is in many ways equivalent to the meta-command \i.

If filename is - (hyphen), then standard input is read.

Using this option is subtly different from writing psql < filename. In general, both will do what
you expect, but using -f enables some nice features such as error messages with line numbers. There
is also a slight chance that using this option will reduce the start-up overhead. On the other hand, the
variant using the shell’s input redirection is (in theory) guaranteed to yield exactly the same output
you would have received had you entered everything by hand.

-F separator

--field-separator=separator

Use separator as the field separator for unaligned output. This is equivalent to \pset fieldsep

or \f.

-h hostname

--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix-domain socket.

1694

psql

-H

--html

Turn on HTML tabular output. This is equivalent to \pset format html or the \H command.

-l

--list

List all available databases, then exit. Other non-connection options are ignored. This is similar to
the meta-command \list.

-L filename

--log-file=filename

Write all query output into file filename, in addition to the normal output destination.

-n

--no-readline

Do not use readline for line editing and do not use the history. This can be useful to turn off tab
expansion when cutting and pasting.

-o filename

--output=filename

Put all query output into file filename. This is equivalent to the command \o.

-p port

--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening
for connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port
specified at compile time, usually 5432.

-P assignment

--pset=assignment

Specifies printing options, in the style of \pset. Note that here you have to separate name and value
with an equal sign instead of a space. For example, to set the output format to LaTeX, you could
write -P format=latex.

-q

--quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the -c option.
Within psql you can also set the QUIET variable to achieve the same effect.

-R separator

--record-separator=separator

Use separator as the record separator for unaligned output. This is equivalent to the \pset

recordsep command.

-s

--single-step

Run in single-step mode. That means the user is prompted before each command is sent to the server,
with the option to cancel execution as well. Use this to debug scripts.

1695

psql

-S

--single-line

Runs in single-line mode where a newline terminates an SQL command, as a semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encouraged
to use it. In particular, if you mix SQL and meta-commands on a line the order of execution might
not always be clear to the inexperienced user.

-t

--tuples-only

Turn off printing of column names and result row count footers, etc. This is equivalent to the \t

command.

-T table_options

--table-attr=table_options

Specifies options to be placed within the HTML table tag. See \pset for details.

-U username

--username=username

Connect to the database as the user username instead of the default. (You must have permission to
do so, of course.)

-v assignment

--set=assignment

--variable=assignment

Perform a variable assignment, like the \set meta-command. Note that you must separate name and
value, if any, by an equal sign on the command line. To unset a variable, leave off the equal sign.
To set a variable with an empty value, use the equal sign but leave off the value. These assignments
are done during a very early stage of start-up, so variables reserved for internal purposes might get
overwritten later.

-V

--version

Print the psql version and exit.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-W

--password

Force psql to prompt for a password before connecting to a database.

1696

psql

This option is never essential, since psql will automatically prompt for a password if the server
demands password authentication. However, psql will waste a connection attempt finding out that the
server wants a password. In some cases it is worth typing -W to avoid the extra connection attempt.

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-x

--expanded

Turn on the expanded table formatting mode. This is equivalent to the \x command.

-X,

--no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user’s ~/.psqlrc file).

-z

--field-separator-zero

Set the field separator for unaligned output to a zero byte.

-0

--record-separator-zero

Set the record separator for unaligned output to a zero byte. This is useful for interfacing, for example,
with xargs -0.

-1

--single-transaction

When psql executes a script with the -f option, adding this option wraps BEGIN/COMMIT around
the script to execute it as a single transaction. This ensures that either all the commands complete
successfully, or no changes are applied.

If the script itself uses BEGIN, COMMIT, or ROLLBACK, this option will not have the desired effects.
Also, if the script contains any command that cannot be executed inside a transaction block, specify-
ing this option will cause that command (and hence the whole transaction) to fail.

-?

--help

Show help about psql command line arguments, and exit.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own occurs (e.g. out of memory,
file not found), 2 if the connection to the server went bad and the session was not interactive, and 3 if an
error occurred in a script and the variable ON_ERROR_STOP was set.

1697

psql

Usage

Connecting to a Database

psql is a regular PostgreSQL client application. In order to connect to a database you need to know the
name of your target database, the host name and port number of the server, and what user name you want
to connect as. psql can be told about those parameters via command line options, namely -d, -h, -p,
and -U respectively. If an argument is found that does not belong to any option it will be interpreted as
the database name (or the user name, if the database name is already given). Not all of these options are
required; there are useful defaults. If you omit the host name, psql will connect via a Unix-domain socket
to a server on the local host, or via TCP/IP to localhost on machines that don’t have Unix-domain
sockets. The default port number is determined at compile time. Since the database server uses the same
default, you will not have to specify the port in most cases. The default user name is your Unix user name,
as is the default database name. Note that you cannot just connect to any database under any user name.
Your database administrator should have informed you about your access rights.

When the defaults aren’t quite right, you can save yourself some typing by setting the environment vari-
ables PGDATABASE, PGHOST, PGPORT and/or PGUSER to appropriate values. (For additional environment
variables, see Section 31.14.) It is also convenient to have a ~/.pgpass file to avoid regularly having to
type in passwords. See Section 31.15 for more information.

An alternative way to specify connection parameters is in a conninfo string or a URI, which is used
instead of a database name. This mechanism give you very wide control over the connection. For example:

$ psql "service=myservice sslmode=require"

$ psql postgresql://dbmaster:5433/mydb?sslmode=require

This way you can also use LDAP for connection parameter lookup as described in Section 31.17. See
Section 31.1 for more information on all the available connection options.

If the connection could not be made for any reason (e.g., insufficient privileges, server is not running on
the targeted host, etc.), psql will return an error and terminate.

If at least one of standard input or standard output are a terminal, then psql sets the client encoding to
“auto”, which will detect the appropriate client encoding from the locale settings (LC_CTYPE environment
variable on Unix systems). If this doesn’t work out as expected, the client encoding can be overridden
using the environment variable PGCLIENTENCODING.

Entering SQL Commands

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string =>. For example:

$ psql testdb

psql (9.2.7)
Type "help" for help.

testdb=>

1698

psql

At the prompt, the user can type in SQL commands. Ordinarily, input lines are sent to the server when a
command-terminating semicolon is reached. An end of line does not terminate a command. Thus com-
mands can be spread over several lines for clarity. If the command was sent and executed without error,
the results of the command are displayed on the screen.

Whenever a command is executed, psql also polls for asynchronous notification events generated by LIS-
TEN and NOTIFY.

Meta-Commands

Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is pro-
cessed by psql itself. These commands make psql more useful for administration or scripting. Meta-
commands are often called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any argu-
ments. The arguments are separated from the command verb and each other by any number of whitespace
characters.

To include whitespace in an argument you can quote it with single quotes. To include a single quote
in an argument, write two single quotes within single-quoted text. Anything contained in single quotes
is furthermore subject to C-like substitutions for \n (new line), \t (tab), \b (backspace), \r (carriage
return), \f (form feed), \digits (octal), and \xdigits (hexadecimal). A backslash preceding any other
character within single-quoted text quotes that single character, whatever it is.

Within an argument, text that is enclosed in backquotes (‘) is taken as a command line that is passed to
the shell. The output of the command (with any trailing newline removed) replaces the backquoted text.

If an unquoted colon (:) followed by a psql variable name appears within an argument, it is replaced by
the variable’s value, as described in SQL Interpolation.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow the
syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect letters
from case conversion and allow incorporation of whitespace into the identifier. Within double quotes,
paired double quotes reduce to a single double quote in the resulting name. For example, FOO"BAR"BAZ
is interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops at the end of the line, or when another unquoted backslash is found. An
unquoted backslash is taken as the beginning of a new meta-command. The special sequence \\ (two
backslashes) marks the end of arguments and continues parsing SQL commands, if any. That way SQL
and psql commands can be freely mixed on a line. But in any case, the arguments of a meta-command
cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it is
set to unaligned. This command is kept for backwards compatibility. See \pset for a more general
solution.

\c or \connect [dbname [username] [host] [port]]

Establishes a new connection to a PostgreSQL server. If the new connection is successfully made, the
previous connection is closed. If any of dbname, username, host or port are omitted or specified as

1699

psql

-, the value of that parameter from the previous connection is used. If there is no previous connection,
the libpq default for the parameter’s value is used.

If the connection attempt failed (wrong user name, access denied, etc.), the previous connection will
only be kept if psql is in interactive mode. When executing a non-interactive script, processing will
immediately stop with an error. This distinction was chosen as a user convenience against typos on
the one hand, and a safety mechanism that scripts are not accidentally acting on the wrong database
on the other hand.

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This command
is equivalent to \pset title title. (The name of this command derives from “caption”, as it was
previously only used to set the caption in an HTML table.)

\cd [directory]

Changes the current working directory to directory. Without argument, changes to the current
user’s home directory.

Tip: To print your current working directory, use \! pwd.

\conninfo

Outputs information about the current database connection.

\copy { table [(column_list)] | (query) } { from | to } { filename | stdin

| stdout | pstdin | pstdout } [with] [binary] [oids] [delimiter [

as] ’character’] [null [as] ’string’] [csv [header] [quote [as]

’character’] [escape [as] ’character’] [force quote column_list | *] [

force not null column_list]]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but instead
of the server reading or writing the specified file, psql reads or writes the file and routes the data
between the server and the local file system. This means that file accessibility and privileges are
those of the local user, not the server, and no SQL superuser privileges are required.

The syntax of the command is similar to that of the SQL COPY command. Note that, because of
this, special parsing rules apply to the \copy command. In particular, the variable substitution rules
and backslash escapes do not apply.

\copy ... from stdin | to stdout reads/writes based on the command input and output re-
spectively. All rows are read from the same source that issued the command, continuing until \. is
read or the stream reaches EOF. Output is sent to the same place as command output. To read/write
from psql’s standard input or output, use pstdin or pstdout. This option is useful for populating
tables in-line within a SQL script file.

Tip: This operation is not as efficient as the SQL COPY command because all data must pass
through the client/server connection. For large amounts of data the SQL command might be
preferable.

1700

psql

\copyright

Shows the copyright and distribution terms of PostgreSQL.

\d[S+] [pattern]

For each relation (table, view, index, sequence, or foreign table) or composite type matching the
pattern, show all columns, their types, the tablespace (if not the default) and any special attributes
such as NOT NULL or defaults. Associated indexes, constraints, rules, and triggers are also shown.
For foreign tables, the associated foreign server is shown as well. (“Matching the pattern” is defined
in Patterns below.)

For some types of relation, \d shows additional information for each column: column values for
sequences, indexed expression for indexes and foreign data wrapper options for foreign tables.

The command form \d+ is identical, except that more information is displayed: any comments as-
sociated with the columns of the table are shown, as is the presence of OIDs in the table, the view
definition if the relation is a view.

By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects.

Note: If \d is used without a pattern argument, it is equivalent to \dtvsE which will show a list
of all visible tables, views, sequences and foreign tables. This is purely a convenience measure.

\da[S] [pattern]

Lists aggregate functions, together with their return type and the data types they operate on. If
pattern is specified, only aggregates whose names match the pattern are shown. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system objects.

\db[+] [pattern]

Lists tablespaces. If pattern is specified, only tablespaces whose names match the pattern are
shown. If + is appended to the command name, each object is listed with its associated permissions.

\dc[S+] [pattern]

Lists conversions between character-set encodings. If pattern is specified, only conversions whose
names match the pattern are listed. By default, only user-created objects are shown; supply a pattern
or the S modifier to include system objects. If + is appended to the command name, each object is
listed with its associated description.

\dC[+] [pattern]

Lists type casts. If pattern is specified, only casts whose source or target types match the pattern
are listed. If + is appended to the command name, each object is listed with its associated description.

\dd[S] [pattern]

Shows the descriptions of objects of type constraint, operator class, operator family,
rule, and trigger. All other comments may be viewed by the respective backslash commands for
those object types.

\dd displays descriptions for objects matching the pattern, or of visible objects of the appropriate
type if no argument is given. But in either case, only objects that have a description are listed. By

1701

psql

default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects.

Descriptions for objects can be created with the COMMENT SQL command.

\ddp [pattern]

Lists default access privilege settings. An entry is shown for each role (and schema, if applicable)
for which the default privilege settings have been changed from the built-in defaults. If pattern is
specified, only entries whose role name or schema name matches the pattern are listed.

The ALTER DEFAULT PRIVILEGES command is used to set default access privileges. The mean-
ing of the privilege display is explained under GRANT.

\dD[S+] [pattern]

Lists domains. If pattern is specified, only domains whose names match the pattern are shown.
By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If + is appended to the command name, each object is listed with its associated permissions
and description.

\dE[S+] [pattern]

\di[S+] [pattern]

\ds[S+] [pattern]

\dt[S+] [pattern]

\dv[S+] [pattern]

In this group of commands, the letters E, i, s, t, and v stand for foreign table, index, sequence,
table, and view, respectively. You can specify any or all of these letters, in any order, to obtain a
listing of objects of these types. For example, \dit lists indexes and tables. If + is appended to the
command name, each object is listed with its physical size on disk and its associated description, if
any. If pattern is specified, only objects whose names match the pattern are listed. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system objects.

\des[+] [pattern]

Lists foreign servers (mnemonic: “external servers”). If pattern is specified, only those servers
whose name matches the pattern are listed. If the form \des+ is used, a full description of each
server is shown, including the server’s ACL, type, version, options, and description.

\det[+] [pattern]

Lists foreign tables (mnemonic: “external tables”). If pattern is specified, only entries whose table
name or schema name matches the pattern are listed. If the form \det+ is used, generic options and
the foreign table description are also displayed.

\deu[+] [pattern]

Lists user mappings (mnemonic: “external users”). If pattern is specified, only those mappings
whose user names match the pattern are listed. If the form \deu+ is used, additional information
about each mapping is shown.

Caution
\deu+ might also display the user name and password of the remote user,
so care should be taken not to disclose them.

1702

psql

\dew[+] [pattern]

Lists foreign-data wrappers (mnemonic: “external wrappers”). If pattern is specified, only those
foreign-data wrappers whose name matches the pattern are listed. If the form \dew+ is used, the
ACL, options, and description of the foreign-data wrapper are also shown.

\df[antwS+] [pattern]

Lists functions, together with their arguments, return types, and function types, which are classified
as “agg” (aggregate), “normal”, “trigger”, or “window”. To display only functions of specific type(s),
add the corresponding letters a, n, t, or w to the command. If pattern is specified, only functions
whose names match the pattern are shown. If the form \df+ is used, additional information about
each function, including volatility, language, source code and description, is shown. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system objects.

Tip: To look up functions taking arguments or returning values of a specific type, use your pager’s
search capability to scroll through the \df output.

\dF[+] [pattern]

Lists text search configurations. If pattern is specified, only configurations whose names match
the pattern are shown. If the form \dF+ is used, a full description of each configuration is shown,
including the underlying text search parser and the dictionary list for each parser token type.

\dFd[+] [pattern]

Lists text search dictionaries. If pattern is specified, only dictionaries whose names match the
pattern are shown. If the form \dFd+ is used, additional information is shown about each selected
dictionary, including the underlying text search template and the option values.

\dFp[+] [pattern]

Lists text search parsers. If pattern is specified, only parsers whose names match the pattern are
shown. If the form \dFp+ is used, a full description of each parser is shown, including the underlying
functions and the list of recognized token types.

\dFt[+] [pattern]

Lists text search templates. If pattern is specified, only templates whose names match the pattern
are shown. If the form \dFt+ is used, additional information is shown about each template, including
the underlying function names.

\dg[+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”, this
command is now equivalent to \du.) If pattern is specified, only those roles whose names match
the pattern are listed. If the form \dg+ is used, additional information is shown about each role;
currently this adds the comment for each role.

\dl

This is an alias for \lo_list, which shows a list of large objects.

1703

psql

\dL[S+] [pattern]

Lists procedural languages. If pattern is specified, only languages whose names match the pattern
are listed. By default, only user-created languages are shown; supply the S modifier to include system
objects. If + is appended to the command name, each language is listed with its call handler, validator,
access privileges, and whether it is a system object.

\dn[S+] [pattern]

Lists schemas (namespaces). If pattern is specified, only schemas whose names match the pattern
are listed. By default, only user-created objects are shown; supply a pattern or the S modifier to in-
clude system objects. If + is appended to the command name, each object is listed with its associated
permissions and description, if any.

\do[S] [pattern]

Lists operators with their operand and return types. If pattern is specified, only operators whose
names match the pattern are listed. By default, only user-created objects are shown; supply a pattern
or the S modifier to include system objects.

\dO[S+] [pattern]

Lists collations. If pattern is specified, only collations whose names match the pattern are listed.
By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If + is appended to the command name, each collation is listed with its associated description,
if any. Note that only collations usable with the current database’s encoding are shown, so the results
may vary in different databases of the same installation.

\dp [pattern]

Lists tables, views and sequences with their associated access privileges. If pattern is specified,
only tables, views and sequences whose names match the pattern are listed.

The GRANT and REVOKE commands are used to set access privileges. The meaning of the privilege
display is explained under GRANT.

\drds [role-pattern [database-pattern]]

Lists defined configuration settings. These settings can be role-specific, database-specific, or both.
role-pattern and database-pattern are used to select specific roles and databases to list,
respectively. If omitted, or if * is specified, all settings are listed, including those not role-specific or
database-specific, respectively.

The ALTER ROLE and ALTER DATABASE commands are used to define per-role and per-database
configuration settings.

\dT[S+] [pattern]

Lists data types. If pattern is specified, only types whose names match the pattern are listed. If +
is appended to the command name, each type is listed with its internal name and size, its allowed
values if it is an enum type, and its associated permissions. By default, only user-created objects are
shown; supply a pattern or the S modifier to include system objects.

\du[+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”, this
command is now equivalent to \dg.) If pattern is specified, only those roles whose names match

1704

psql

the pattern are listed. If the form \du+ is used, additional information is shown about each role;
currently this adds the comment for each role.

\dx[+] [pattern]

Lists installed extensions. If pattern is specified, only those extensions whose names match the
pattern are listed. If the form \dx+ is used, all the objects belonging to each matching extension are
listed.

\e or \edit [filename] [line_number]

If filename is specified, the file is edited; after the editor exits, its content is copied back to the
query buffer. If no filename is given, the current query buffer is copied to a temporary file which is
then edited in the same fashion.

The new query buffer is then re-parsed according to the normal rules of psql, where the whole buffer
is treated as a single line. (Thus you cannot make scripts this way. Use \i for that.) This means that
if the query ends with (or contains) a semicolon, it is immediately executed. Otherwise it will merely
wait in the query buffer; type semicolon or \g to send it, or \r to cancel.

If a line number is specified, psql will position the cursor on the specified line of the file or query
buffer. Note that if a single all-digits argument is given, psql assumes it is a line number, not a file
name.

Tip: See under Environment for how to configure and customize your editor.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by a newline. This
can be useful to intersperse information in the output of scripts. For example:

=> \echo ‘date‘

Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted -n the trailing newline is not written.

Tip: If you use the \o command to redirect your query output you might wish to use \qecho

instead of this command.

\ef [function_description [line_number]]

This command fetches and edits the definition of the named function, in the form of a CREATE OR

REPLACE FUNCTION command. Editing is done in the same way as for \edit. After the editor exits,
the updated command waits in the query buffer; type semicolon or \g to send it, or \r to cancel.

The target function can be specified by name alone, or by name and arguments, for example
foo(integer, text). The argument types must be given if there is more than one function of the
same name.

If no function is specified, a blank CREATE FUNCTION template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the function body.
(Note that the function body typically does not begin on the first line of the file.)

1705

psql

Tip: See under Environment for how to configure and customize your editor.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the current encod-
ing.

\f [string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). See also \pset
for a generic way of setting output options.

\g [{ filename | |command }]

Sends the current query input buffer to the server and optionally stores the query’s output in
filename or pipes the output into a separate Unix shell executing command. A bare \g is virtually
equivalent to a semicolon. A \g with argument is a “one-shot” alternative to the \o command.

\h or \help [command]

Gives syntax help on the specified SQL command. If command is not specified, then psql will list all
the commands for which syntax help is available. If command is an asterisk (*), then syntax help on
all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to be quoted.
Thus it is fine to type \help alter table.

\H

Turns on HTML query output format. If the HTML format is already on, it is switched back to the
default aligned text format. This command is for compatibility and convenience, but see \pset about
setting other output options.

\i filename

Reads input from the file filename and executes it as though it had been typed on the keyboard.

Note: If you want to see the lines on the screen as they are read you must set the variable ECHO

to all.

\ir filename

The \ir command is similar to \i, but resolves relative file names differently. When executing in
interactive mode, the two commands behave identically. However, when invoked from a script, \ir
interprets file names relative to the directory in which the script is located, rather than the current
working directory.

\l (or \list)
\l+ (or \list+)

List the names, owners, character set encodings, and access privileges of all the databases in the
server. If + is appended to the command name, database sizes, default tablespaces, and descriptions

1706

psql

are also displayed. (Size information is only available for databases that the current user can connect
to.)

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note that this
is subtly different from the server function lo_export, which acts with the permissions of the user
that the database server runs as and on the server’s file system.

Tip: Use \lo_list to find out the large object’s OID.

\lo_import filename [comment]

Stores the file into a PostgreSQL large object. Optionally, it associates the given comment with the
object. Example:

foo=> \lo_import ’/home/peter/pictures/photo.xcf’ ’a picture of me’

lo_import 152801

The response indicates that the large object received object ID 152801, which can be used to access
the newly-created large object in the future. For the sake of readability, it is recommended to always
associate a human-readable comment with every object. Both OIDs and comments can be viewed
with the \lo_list command.

Note that this command is subtly different from the server-side lo_import because it acts as the
local user on the local file system, rather than the server’s user and file system.

\lo_list

Shows a list of all PostgreSQL large objects currently stored in the database, along with any com-
ments provided for them.

\lo_unlink loid

Deletes the large object with OID loid from the database.

Tip: Use \lo_list to find out the large object’s OID.

\o [{filename | |command}]

Saves future query results to the file filename or pipes future results into a separate Unix shell to
execute command. If no arguments are specified, the query output will be reset to the standard output.

“Query results” includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database (such as \d), but not
error messages.

Tip: To intersperse text output in between query results, use \qecho.

\p

Print the current query buffer to the standard output.

1707

psql

\password [username]

Changes the password of the specified user (by default, the current user). This command prompts for
the new password, encrypts it, and sends it to the server as an ALTER ROLE command. This makes
sure that the new password does not appear in cleartext in the command history, the server log, or
elsewhere.

\prompt [text] name

Prompts the user to supply text, which is assigned to the variable name. An optional prompt string,
text, can be specified. (For multiword prompts, surround the text with single quotes.)

By default, \prompt uses the terminal for input and output. However, if the -f command line switch
was used, \prompt uses standard input and standard output.

\pset option [value]

This command sets options affecting the output of query result tables. option indicates which option
is to be set. The semantics of value vary depending on the selected option. For some options,
omitting value causes the option to be toggled or unset, as described under the particular option. If
no such behavior is mentioned, then omitting value just results in the current setting being displayed.

Adjustable printing options are:

border

The value must be a number. In general, the higher the number the more borders and lines
the tables will have, but this depends on the particular format. In HTML format, this will trans-
late directly into the border=... attribute; in the other formats only values 0 (no border), 1
(internal dividing lines), and 2 (table frame) make sense.

columns

Sets the target width for the wrapped format, and also the width limit for determining whether
output is wide enough to require the pager or switch to the vertical display in expanded auto
mode. Zero (the default) causes the target width to be controlled by the environment variable
COLUMNS, or the detected screen width if COLUMNS is not set. In addition, if columns is zero
then the wrapped format only affects screen output. If columns is nonzero then file and pipe
output is wrapped to that width as well.

expanded (or x)

If value is specified it must be either on or off, which will enable or disable expanded mode,
or auto. If value is omitted the command toggles between the on and off settings. When
expanded mode is enabled, query results are displayed in two columns, with the column name
on the left and the data on the right. This mode is useful if the data wouldn’t fit on the screen
in the normal “horizontal” mode. In the auto setting, the expanded mode is used whenever the
query output is wider than the screen, otherwise the regular mode is used. The auto setting is
only effective in the aligned and wrapped formats. In other formats, it always behaves as if the
expanded mode is off.

fieldsep

Specifies the field separator to be used in unaligned output format. That way one can create,
for example, tab- or comma-separated output, which other programs might prefer. To set a tab
as field separator, type \pset fieldsep ’\t’. The default field separator is ’|’ (a vertical
bar).

1708

psql

fieldsep_zero

Sets the field separator to use in unaligned output format to a zero byte.

footer

If value is specified it must be either on or off which will enable or disable display of the
table footer (the (n rows) count). If value is omitted the command toggles footer display on
or off.

format

Sets the output format to one of unaligned, aligned, wrapped, html, latex, or troff-ms.
Unique abbreviations are allowed. (That would mean one letter is enough.)

unaligned format writes all columns of a row on one line, separated by the currently active
field separator. This is useful for creating output that might be intended to be read in by other
programs (for example, tab-separated or comma-separated format).

aligned format is the standard, human-readable, nicely formatted text output; this is the de-
fault.

wrapped format is like aligned but wraps wide data values across lines to make the output
fit in the target column width. The target width is determined as described under the columns
option. Note that psql will not attempt to wrap column header titles; therefore, wrapped format
behaves the same as aligned if the total width needed for column headers exceeds the target.

The html, latex, and troff-ms formats put out tables that are intended to be included in
documents using the respective mark-up language. They are not complete documents! (This
might not be so dramatic in HTML, but in LaTeX you must have a complete document wrapper.)

linestyle

Sets the border line drawing style to one of ascii, old-ascii or unicode. Unique abbrevi-
ations are allowed. (That would mean one letter is enough.) The default setting is ascii. This
option only affects the aligned and wrapped output formats.

ascii style uses plain ASCII characters. Newlines in data are shown using a + symbol in the
right-hand margin. When the wrapped format wraps data from one line to the next without a
newline character, a dot (.) is shown in the right-hand margin of the first line, and again in the
left-hand margin of the following line.

old-ascii style uses plain ASCII characters, using the formatting style used in PostgreSQL
8.4 and earlier. Newlines in data are shown using a : symbol in place of the left-hand column
separator. When the data is wrapped from one line to the next without a newline character, a ;
symbol is used in place of the left-hand column separator.

unicode style uses Unicode box-drawing characters. Newlines in data are shown using a car-
riage return symbol in the right-hand margin. When the data is wrapped from one line to the
next without a newline character, an ellipsis symbol is shown in the right-hand margin of the
first line, and again in the left-hand margin of the following line.

When the border setting is greater than zero, this option also determines the characters with
which the border lines are drawn. Plain ASCII characters work everywhere, but Unicode char-
acters look nicer on displays that recognize them.

1709

psql

null

Sets the string to be printed in place of a null value. The default is to print nothing, which can
easily be mistaken for an empty string. For example, one might prefer \pset null ’(null)’.

numericlocale

If value is specified it must be either on or off which will enable or disable display of a
locale-specific character to separate groups of digits to the left of the decimal marker. If value
is omitted the command toggles between regular and locale-specific numeric output.

pager

Controls use of a pager program for query and psql help output. If the environment variable
PAGER is set, the output is piped to the specified program. Otherwise a platform-dependent
default (such as more) is used.

When the pager option is off, the pager program is not used. When the pager option is on,
the pager is used when appropriate, i.e., when the output is to a terminal and will not fit on the
screen. The pager option can also be set to always, which causes the pager to be used for
all terminal output regardless of whether it fits on the screen. \pset pager without a value
toggles pager use on and off.

recordsep

Specifies the record (line) separator to use in unaligned output format. The default is a newline
character.

recordsep_zero

Sets the record separator to use in unaligned output format to a zero byte.

tableattr (or T)

Specifies attributes to be placed inside the HTML table tag in html output format. This
could for example be cellpadding or bgcolor. Note that you probably don’t want to specify
border here, as that is already taken care of by \pset border. If no value is given, the table
attributes are unset.

title

Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no value is given, the title is unset.

tuples_only (or t)

If value is specified it must be either on or off which will enable or disable tuples-only mode.
If value is omitted the command toggles between regular and tuples-only output. Regular out-
put includes extra information such as column headers, titles, and various footers. In tuples-only
mode, only actual table data is shown.

Illustrations of how these different formats look can be seen in the Examples section.

Tip: There are various shortcut commands for \pset. See \a, \C, \H, \t, \T, and \x.

1710

psql

Note: It is an error to call \pset without any arguments. In the future this case might show the
current status of all printing options.

\q or \quit

Quits the psql program. In a script file, only execution of that script is terminated.

\qecho text [...]

This command is identical to \echo except that the output will be written to the query output channel,
as set by \o.

\r

Resets (clears) the query buffer.

\s [filename]

Print or save the command line history to filename. If filename is omitted, the history is written
to the standard output. This option is only available if psql is configured to use the GNU Readline
library.

\set [name [value [...]]]

Sets the psql variable name to value, or if more than one value is given, to the concatenation of all
of them. If only one argument is given, the variable is set with an empty value. To unset a variable,
use the \unset command.

\set without any arguments displays the names and values of all currently-set psql variables.

Valid variable names can contain letters, digits, and underscores. See the section Variables below for
details. Variable names are case-sensitive.

Although you are welcome to set any variable to anything you want, psql treats several variables as
special. They are documented in the section about variables.

Note: This command is unrelated to the SQL command SET.

\setenv [name [value]]

Sets the environment variable name to value, or if the value is not supplied, unsets the environment
variable. Example:

testdb=> \setenv PAGER less

testdb=> \setenv LESS -imx4F

\sf[+] function_description

This command fetches and shows the definition of the named function, in the form of a CREATE OR

REPLACE FUNCTION command. The definition is printed to the current query output channel, as set
by \o.

The target function can be specified by name alone, or by name and arguments, for example
foo(integer, text). The argument types must be given if there is more than one function of the
same name.

1711

psql

If + is appended to the command name, then the output lines are numbered, with the first line of the
function body being line 1.

\t

Toggles the display of output column name headings and row count footer. This command is equiv-
alent to \pset tuples_only and is provided for convenience.

\T table_options

Specifies attributes to be placed within the table tag in HTML output format. This command is
equivalent to \pset tableattr table_options.

\timing [on | off]

Without parameter, toggles a display of how long each SQL statement takes, in milliseconds. With
parameter, sets same.

\unset name

Unsets (deletes) the psql variable name.

\w filename

\w |command

Outputs the current query buffer to the file filename or pipes it to the Unix command command.

\x [on | off | auto]

Sets or toggles expanded table formatting mode. As such it is equivalent to \pset expanded.

\z [pattern]

Lists tables, views and sequences with their associated access privileges. If a pattern is specified,
only tables, views and sequences whose names match the pattern are listed.

This is an alias for \dp (“display privileges”).

\! [command]

Escapes to a separate Unix shell or executes the Unix command command. The arguments are not
further interpreted; the shell will see them as-is.

\?

Shows help information about the backslash commands.

Patterns

The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.
In the simplest case, a pattern is just the exact name of the object. The characters within a pattern are
normally folded to lower case, just as in SQL names; for example, \dt FOO will display the table named
foo. As in SQL names, placing double quotes around a pattern stops folding to lower case. Should you
need to include an actual double quote character in a pattern, write it as a pair of double quotes within
a double-quote sequence; again this is in accord with the rules for SQL quoted identifiers. For example,
\dt "FOO""BAR" will display the table named FOO"BAR (not foo"bar). Unlike the normal rules for
SQL names, you can put double quotes around just part of a pattern, for instance \dt FOO"FOO"BAR will
display the table named fooFOObar.

1712

psql

Whenever the pattern parameter is omitted completely, the \d commands display all objects that are
visible in the current schema search path — this is equivalent to using * as the pattern. (An object is said
to be visible if its containing schema is in the search path and no object of the same kind and name appears
earlier in the search path. This is equivalent to the statement that the object can be referenced by name
without explicit schema qualification.) To see all objects in the database regardless of visibility, use *.*
as the pattern.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches any single
character. (This notation is comparable to Unix shell file name patterns.) For example, \dt int* displays
tables whose names begin with int. But within double quotes, * and ? lose these special meanings and
are just matched literally.

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by an object name
pattern. For example, \dt foo*.*bar* displays all tables whose table name includes bar that are in
schemas whose schema name starts with foo. When no dot appears, then the pattern matches only objects
that are visible in the current schema search path. Again, a dot within double quotes loses its special
meaning and is matched literally.

Advanced users can use regular-expression notations such as character classes, for example [0-9] to
match any digit. All regular expression special characters work as specified in Section 9.7.3, except for .
which is taken as a separator as mentioned above, * which is translated to the regular-expression notation
.*, ? which is translated to ., and $ which is matched literally. You can emulate these pattern characters
at need by writing ? for ., (R+|) for R*, or (R|) for R?. $ is not needed as a regular-expression character
since the pattern must match the whole name, unlike the usual interpretation of regular expressions (in
other words, $ is automatically appended to your pattern). Write * at the beginning and/or end if you don’t
wish the pattern to be anchored. Note that within double quotes, all regular expression special characters
lose their special meanings and are matched literally. Also, the regular expression special characters are
matched literally in operator name patterns (i.e., the argument of \do).

Advanced Features

Variables

psql provides variable substitution features similar to common Unix command shells. Variables are simply
name/value pairs, where the value can be any string of any length. The name must consist of letters
(including non-Latin letters), digits, and underscores.

To set a variable, use the psql meta-command \set. For example,

testdb=> \set foo bar

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name with a
colon, for example:

testdb=> \echo :foo

bar

This works in both regular SQL commands and meta-commands; there is more detail in SQL Interpola-
tion, below.

1713

psql

If you call \set without a second argument, the variable is set, with an empty string as value. To unset
(i.e., delete) a variable, use the command \unset. To show the values of all variables, call \set without
any argument.

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo ’something’ and get “soft links”
or “variable variables” of Perl or PHP fame, respectively. Unfortunately (or fortunately?), there is no
way to do anything useful with these constructs. On the other hand, \set bar :foo is a perfectly
valid way to copy a variable.

A number of these variables are treated specially by psql. They represent certain option settings that
can be changed at run time by altering the value of the variable, or in some cases represent changeable
state of psql. Although you can use these variables for other purposes, this is not recommended, as the
program behavior might grow really strange really quickly. By convention, all specially treated variables’
names consist of all upper-case ASCII letters (and possibly digits and underscores). To ensure maximum
compatibility in the future, avoid using such variable names for your own purposes. A list of all specially
treated variables follows.

AUTOCOMMIT

When on (the default), each SQL command is automatically committed upon successful completion.
To postpone commit in this mode, you must enter a BEGIN or START TRANSACTION SQL command.
When off or unset, SQL commands are not committed until you explicitly issue COMMIT or END.
The autocommit-off mode works by issuing an implicit BEGIN for you, just before any command that
is not already in a transaction block and is not itself a BEGIN or other transaction-control command,
nor a command that cannot be executed inside a transaction block (such as VACUUM).

Note: In autocommit-off mode, you must explicitly abandon any failed transaction by entering
ABORT or ROLLBACK. Also keep in mind that if you exit the session without committing, your work
will be lost.

Note: The autocommit-on mode is PostgreSQL’s traditional behavior, but autocommit-off is closer
to the SQL spec. If you prefer autocommit-off, you might wish to set it in the system-wide psqlrc

file or your ~/.psqlrc file.

COMP_KEYWORD_CASE

Determines which letter case to use when completing an SQL key word. If set to lower or upper,
the completed word will be in lower or upper case, respectively. If set to preserve-lower or
preserve-upper (the default), the completed word will be in the case of the word already entered,
but words being completed without anything entered will be in lower or upper case, respectively.

DBNAME

The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

1714

psql

ECHO

If set to all, all lines entered from the keyboard or from a script are written to the standard output
before they are parsed or executed. To select this behavior on program start-up, use the switch -a. If
set to queries, psql merely prints all queries as they are sent to the server. The switch for this is -e.

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is first shown.
This way you can study the PostgreSQL internals and provide similar functionality in your own
programs. (To select this behavior on program start-up, use the switch -E.) If you set the variable to
the value noexec, the queries are just shown but are not actually sent to the server and executed.

ENCODING

The current client character set encoding.

FETCH_COUNT

If this variable is set to an integer value > 0, the results of SELECT queries are fetched and displayed
in groups of that many rows, rather than the default behavior of collecting the entire result set before
display. Therefore only a limited amount of memory is used, regardless of the size of the result set.
Settings of 100 to 1000 are commonly used when enabling this feature. Keep in mind that when
using this feature, a query might fail after having already displayed some rows.

Tip: Although you can use any output format with this feature, the default aligned format tends
to look bad because each group of FETCH_COUNT rows will be formatted separately, leading to
varying column widths across the row groups. The other output formats work better.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered into the history
list. If set to a value of ignoredups, lines matching the previous history line are not entered. A value
of ignoreboth combines the two options. If unset, or if set to any other value than those above, all
lines read in interactive mode are saved on the history list.

Note: This feature was shamelessly plagiarized from Bash.

HISTFILE

The file name that will be used to store the history list. The default value is ~/.psql_history. For
example, putting:

\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

Note: This feature was shamelessly plagiarized from Bash.

1715

psql

HISTSIZE

The number of commands to store in the command history. The default value is 500.

Note: This feature was shamelessly plagiarized from Bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usually Control+D) to an interactive session of psql will ter-
minate the application. If set to a numeric value, that many EOF characters are ignored before the
application terminates. If the variable is set but has no numeric value, the default is 10.

Note: This feature was shamelessly plagiarized from Bash.

LASTOID

The value of the last affected OID, as returned from an INSERT or \lo_import command. This
variable is only guaranteed to be valid until after the result of the next SQL command has been
displayed.

ON_ERROR_ROLLBACK

When on, if a statement in a transaction block generates an error, the error is ignored and the trans-
action continues. When interactive, such errors are only ignored in interactive sessions, and not
when reading script files. When off (the default), a statement in a transaction block that generates
an error aborts the entire transaction. The on_error_rollback-on mode works by issuing an implicit
SAVEPOINT for you, just before each command that is in a transaction block, and rolls back to the
savepoint on error.

ON_ERROR_STOP

By default, command processing continues after an error. When this variable is set, it will instead
stop immediately. In interactive mode, psql will return to the command prompt; otherwise, psql will
exit, returning error code 3 to distinguish this case from fatal error conditions, which are reported
using error code 1. In either case, any currently running scripts (the top-level script, if any, and any
other scripts which it may have in invoked) will be terminated immediately. If the top-level command
string contained multiple SQL commands, processing will stop with the current command.

PORT

The database server port to which you are currently connected. This is set every time you connect to
a database (including program start-up), but can be unset.

PROMPT1

PROMPT2

PROMPT3

These specify what the prompts psql issues should look like. See Prompting below.

1716

psql

QUIET

This variable is equivalent to the command line option -q. It is probably not too useful in interactive
mode.

SINGLELINE

This variable is equivalent to the command line option -S.

SINGLESTEP

This variable is equivalent to the command line option -s.

USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be unset.

VERBOSITY

This variable can be set to the values default, verbose, or terse to control the verbosity of error
reports.

SQL Interpolation

A key feature of psql variables is that you can substitute (“interpolate”) them into regular SQL statements,
as well as the arguments of meta-commands. Furthermore, psql provides facilities for ensuring that vari-
able values used as SQL literals and identifiers are properly quoted. The syntax for interpolating a value
without any quoting is to prepend the variable name with a colon (:). For example,

testdb=> \set foo ’my_table’

testdb=> SELECT * FROM :foo;

would query the table my_table. Note that this may be unsafe: the value of the variable is copied literally,
so it can contain unbalanced quotes, or even backslash commands. You must make sure that it makes sense
where you put it.

When a value is to be used as an SQL literal or identifier, it is safest to arrange for it to be quoted. To quote
the value of a variable as an SQL literal, write a colon followed by the variable name in single quotes. To
quote the value as an SQL identifier, write a colon followed by the variable name in double quotes. These
constructs deal correctly with quotes and other special characters embedded within the variable value. The
previous example would be more safely written this way:

testdb=> \set foo ’my_table’

testdb=> SELECT * FROM :"foo";

Variable interpolation will not be performed within quoted SQL literals and identifiers. Therefore, a con-
struction such as ’:foo’ doesn’t work to produce a quoted literal from a variable’s value (and it would
be unsafe if it did work, since it wouldn’t correctly handle quotes embedded in the value).

One example use of this mechanism is to copy the contents of a file into a table column. First load the file
into a variable and then interpolate the variable’s value as a quoted string:

testdb=> \set content ‘cat my_file.txt‘

testdb=> INSERT INTO my_table VALUES (:’content’);

1717

psql

(Note that this still won’t work if my_file.txt contains NUL bytes. psql does not support embedded
NUL bytes in variable values.)

Since colons can legally appear in SQL commands, an apparent attempt at interpolation (that is, :name,
:’name’, or :"name") is not replaced unless the named variable is currently set. In any case, you can
escape a colon with a backslash to protect it from substitution.

The colon syntax for variables is standard SQL for embedded query languages, such as ECPG. The colon
syntaxes for array slices and type casts are PostgreSQL extensions, which can sometimes conflict with the
standard usage. The colon-quote syntax for escaping a variable’s value as an SQL literal or identifier is a
psql extension.

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1, PROMPT2,
and PROMPT3 contain strings and special escape sequences that describe the appearance of the prompt.
Prompt 1 is the normal prompt that is issued when psql requests a new command. Prompt 2 is issued when
more input is expected during command input because the command was not terminated with a semicolon
or a quote was not closed. Prompt 3 is issued when you run an SQL COPY command and you are expected
to type in the row values on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is encoun-
tered. Depending on the next character, certain other text is substituted instead. Defined substitutions are:

%M

The full host name (with domain name) of the database server, or [local] if the connection is over
a Unix domain socket, or [local:/dir/name], if the Unix domain socket is not at the compiled in
default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the connection is over
a Unix domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a database session
as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of this value might
change during a database session as the result of the command SET SESSION AUTHORIZATION.)

1718

psql

%R

In prompt 1 normally =, but ^ if in single-line mode, and ! if the session is disconnected from the
database (which can happen if \connect fails). In prompt 2 the sequence is replaced by -, *, a
single quote, a double quote, or a dollar sign, depending on whether psql expects more input because
the command wasn’t terminated yet, because you are inside a /* ... */ comment, or because you
are inside a quoted or dollar-escaped string. In prompt 3 the sequence doesn’t produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a transaction block,
or ! when in a failed transaction block, or ? when the transaction state is indeterminate (for example,
because there is no connection).

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See the section Variables for details.

%‘command‘

The output of command, similar to ordinary “back-tick” substitution.

%[... %]

Prompts can contain terminal control characters which, for example, change the color, background,
or style of the prompt text, or change the title of the terminal window. In order for the line editing
features of Readline to work properly, these non-printing control characters must be designated as
invisible by surrounding them with %[and %]. Multiple pairs of these can occur within the prompt.
For example:

testdb=> \set PROMPT1 ’%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%# ’

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible, color-capable
terminals.

To insert a percent sign into your prompt, write %%. The default prompts are ’%/%R%# ’ for prompts 1
and 2, and ’>> ’ for prompt 3.

Note: This feature was shamelessly plagiarized from tcsh.

Command-Line Editing

psql supports the Readline library for convenient line editing and retrieval. The command history is au-
tomatically saved when psql exits and is reloaded when psql starts up. Tab-completion is also supported,
although the completion logic makes no claim to be an SQL parser. If for some reason you do not like the
tab completion, you can turn it off by putting this in a file named .inputrc in your home directory:

$if psql
set disable-completion on
$endif

1719

psql

(This is not a psql but a Readline feature. Read its documentation for further details.)

Environment

COLUMNS

If \pset columns is zero, controls the width for the wrapped format and width for determining if
wide output requires the pager or should be switched to the vertical format in expanded auto mode.

PAGER

If the query results do not fit on the screen, they are piped through this command. Typical values are
more or less. The default is platform-dependent. The use of the pager can be disabled by using the
\pset command.

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters (see Section 31.14).

PSQL_EDITOR

EDITOR

VISUAL

Editor used by the \e and \ef commands. The variables are examined in the order listed; the first
that is set is used.

The built-in default editors are vi on Unix systems and notepad.exe on Windows systems.

PSQL_EDITOR_LINENUMBER_ARG

When \e or \ef is used with a line number argument, this variable specifies the command-line
argument used to pass the starting line number to the user’s editor. For editors such as Emacs or
vi, this is a plus sign. Include a trailing space in the value of the variable if there needs to be space
between the option name and the line number. Examples:

PSQL_EDITOR_LINENUMBER_ARG=’+’
PSQL_EDITOR_LINENUMBER_ARG=’--line ’

The default is + on Unix systems (corresponding to the default editor vi, and useful for many other
common editors); but there is no default on Windows systems.

PSQL_HISTORY

Alternative location for the command history file. Tilde (~) expansion is performed.

PSQLRC

Alternative location of the user’s .psqlrc file. Tilde (~) expansion is performed.

SHELL

Command executed by the \! command.

1720

psql

TMPDIR

Directory for storing temporary files. The default is /tmp.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Files

psqlrc and ~/.psqlrc

Unless it is passed an -X or -c option, psql attempts to read and execute commands from the system-
wide startup file (psqlrc) and then the user’s personal startup file (~/.psqlrc), after connecting
to the database but before accepting normal commands. These files can be used to set up the client
and/or the server to taste, typically with \set and SET commands.

The system-wide startup file is named psqlrc and is sought in the installation’s “system configura-
tion” directory, which is most reliably identified by running pg_config --sysconfdir. By default
this directory will be ../etc/ relative to the directory containing the PostgreSQL executables. The
name of this directory can be set explicitly via the PGSYSCONFDIR environment variable.

The user’s personal startup file is named .psqlrc and is sought in the invoking user’s home
directory. On Windows, which lacks such a concept, the personal startup file is named
%APPDATA%\postgresql\psqlrc.conf. The location of the user’s startup file can be set
explicitly via the PSQLRC environment variable.

Both the system-wide startup file and the user’s personal startup file can be made psql-version-
specific by appending a dash and the PostgreSQL major or minor release number to the file name,
for example ~/.psqlrc-9.2 or ~/.psqlrc-9.2.5. The most specific version-matching file will
be read in preference to a non-version-specific file.

.psql_history

The command-line history is stored in the file ~/.psql_history, or
%APPDATA%\postgresql\psql_history on Windows.

The location of the history file can be set explicitly via the PSQL_HISTORY environment variable.

Notes

• In an earlier life psql allowed the first argument of a single-letter backslash command to start directly
after the command, without intervening whitespace. As of PostgreSQL 8.4 this is no longer allowed.

• psql is only guaranteed to work smoothly with servers of the same version. That does not mean other
combinations will fail outright, but subtle and not-so-subtle problems might come up. Backslash com-
mands are particularly likely to fail if the server is of a newer version than psql itself. However, back-
slash commands of the \d family should work with servers of versions back to 7.4, though not neces-
sarily with servers newer than psql itself.

1721

psql

Notes for Windows Users
psql is built as a “console application”. Since the Windows console windows use a different encoding than
the rest of the system, you must take special care when using 8-bit characters within psql. If psql detects
a problematic console code page, it will warn you at startup. To change the console code page, two things
are necessary:

• Set the code page by entering cmd.exe /c chcp 1252. (1252 is a code page that is appropriate
for German; replace it with your value.) If you are using Cygwin, you can put this command in
/etc/profile.

• Set the console font to Lucida Console, because the raster font does not work with the ANSI code
page.

Examples
The first example shows how to spread a command over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (

testdb(> first integer not null default 0,

testdb(> second text)

testdb-> ;

CREATE TABLE

Now look at the table definition again:

testdb=> \d my_table

Table "my_table"
Attribute | Type | Modifier

-----------+---------+--------------------
first | integer | not null default 0
second | text |

Now we change the prompt to something more interesting:

testdb=> \set PROMPT1 ’%n@%m %~%R%# ’

peter@localhost testdb=>

Let’s assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;
first | second

-------+--------
1 | one
2 | two
3 | three
4 | four

(4 rows)

You can display tables in different ways by using the \pset command:

1722

psql

peter@localhost testdb=> \pset border 2

Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;

+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0

Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;

first second
----- ------

1 one
2 two
3 three
4 four

(4 rows)

peter@localhost testdb=> \pset border 1

Border style is 1.
peter@localhost testdb=> \pset format unaligned

Output format is unaligned.
peter@localhost testdb=> \pset fieldsep ","

Field separator is ",".
peter@localhost testdb=> \pset tuples_only

Showing only tuples.
peter@localhost testdb=> SELECT second, first FROM my_table;

one,1
two,2
three,3
four,4

Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x

Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;

-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3

1723

psql

second | three
-[RECORD 4]-
first | 4
second | four

1724

reindexdb

Name
reindexdb — reindex a PostgreSQL database

Synopsis

reindexdb [connection-option...] [--table | -t table] [--index | -i index] [dbname]

reindexdb [connection-option...] --all | -a

reindexdb [connection-option...] --system | -s [dbname]

Description
reindexdb is a utility for rebuilding indexes in a PostgreSQL database.

reindexdb is a wrapper around the SQL command REINDEX. There is no effective difference between
reindexing databases via this utility and via other methods for accessing the server.

Options
reindexdb accepts the following command-line arguments:

-a

--all

Reindex all databases.

[-d] dbname

[--dbname=]dbname

Specifies the name of the database to be reindexed. If this is not specified and -a (or --all) is not
used, the database name is read from the environment variable PGDATABASE. If that is not set, the
user name specified for the connection is used.

-e

--echo

Echo the commands that reindexdb generates and sends to the server.

-i index

--index=index

Recreate index only.

1725

reindexdb

-q

--quiet

Do not display progress messages.

-s

--system

Reindex database’s system catalogs.

-t table

--table=table

Reindex table only.

-V

--version

Print the reindexdb version and exit.

-?

--help

Show help about reindexdb command line arguments, and exit.

reindexdb also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force reindexdb to prompt for a password before connecting to a database.

This option is never essential, since reindexdb will automatically prompt for a password if the server
demands password authentication. However, reindexdb will waste a connection attempt finding out

1726

reindexdb

that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be reindexed.
If not specified, the postgres database will be used, and if that does not exist, template1 will be
used.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see REINDEX and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and envi-
ronment variables used by the libpq front-end library will apply.

Notes
reindexdb might need to connect several times to the PostgreSQL server, asking for a password each time.
It is convenient to have a ~/.pgpass file in such cases. See Section 31.15 for more information.

Examples
To reindex the database test:

$ reindexdb test

To reindex the table foo and the index bar in a database named abcd:

$ reindexdb --table foo --index bar abcd

1727

reindexdb

See Also
REINDEX

1728

vacuumdb

Name
vacuumdb — garbage-collect and analyze a PostgreSQL database

Synopsis

vacuumdb [connection-option...] [option...] [--table | -t table [(column [,...])]] [dbname]

vacuumdb [connection-option...] [option...] --all | -a

Description
vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also generate internal statistics
used by the PostgreSQL query optimizer.

vacuumdb is a wrapper around the SQL command VACUUM. There is no effective difference between
vacuuming and analyzing databases via this utility and via other methods for accessing the server.

Options
vacuumdb accepts the following command-line arguments:

-a

--all

Vacuum all databases.

[-d] dbname

[--dbname=]dbname

Specifies the name of the database to be cleaned or analyzed. If this is not specified and -a (or
--all) is not used, the database name is read from the environment variable PGDATABASE. If that is
not set, the user name specified for the connection is used.

-e

--echo

Echo the commands that vacuumdb generates and sends to the server.

-f

--full

Perform “full” vacuuming.

1729

vacuumdb

-F

--freeze

Aggressively “freeze” tuples.

-q

--quiet

Do not display progress messages.

-t table [(column [,...])]

--table=table [(column [,...])]

Clean or analyze table only. Column names can be specified only in conjunction with the
--analyze or --analyze-only options.

Tip: If you specify columns, you probably have to escape the parentheses from the shell. (See
examples below.)

-v

--verbose

Print detailed information during processing.

-V

--version

Print the vacuumdb version and exit.

-z

--analyze

Also calculate statistics for use by the optimizer.

-Z

--analyze-only

Only calculate statistics for use by the optimizer (no vacuum).

-?

--help

Show help about vacuumdb command line arguments, and exit.

vacuumdb also accepts the following command-line arguments for connection parameters:

-h host

--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port

--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections.

1730

vacuumdb

-U username

--username=username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

--password

Force vacuumdb to prompt for a password before connecting to a database.

This option is never essential, since vacuumdb will automatically prompt for a password if the server
demands password authentication. However, vacuumdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to discover what other databases should be vacuumed.
If not specified, the postgres database will be used, and if that does not exist, template1 will be
used.

Environment

PGDATABASE

PGHOST

PGPORT

PGUSER

Default connection parameters

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see VACUUM and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and envi-
ronment variables used by the libpq front-end library will apply.

1731

vacuumdb

Notes
vacuumdb might need to connect several times to the PostgreSQL server, asking for a password each time.
It is convenient to have a ~/.pgpass file in such cases. See Section 31.15 for more information.

Examples
To clean the database test:

$ vacuumdb test

To clean and analyze for the optimizer a database named bigdb:

$ vacuumdb --analyze bigdb

To clean a single table foo in a database named xyzzy, and analyze a single column bar of the table for
the optimizer:

$ vacuumdb --analyze --verbose --table ’foo(bar)’ xyzzy

See Also
VACUUM

1732

III. PostgreSQL Server Applications
This part contains reference information for PostgreSQL server applications and support utilities. These
commands can only be run usefully on the host where the database server resides. Other utility programs
are listed in Reference II, PostgreSQL Client Applications.

1733

initdb

Name
initdb — create a new PostgreSQL database cluster

Synopsis

initdb [option...] [--pgdata | -D] directory

Description
initdb creates a new PostgreSQL database cluster. A database cluster is a collection of databases that
are managed by a single server instance.

Creating a database cluster consists of creating the directories in which the database data will live, gen-
erating the shared catalog tables (tables that belong to the whole cluster rather than to any particular
database), and creating the template1 and postgres databases. When you later create a new database,
everything in the template1 database is copied. (Therefore, anything installed in template1 is auto-
matically copied into each database created later.) The postgres database is a default database meant for
use by users, utilities and third party applications.

Although initdb will attempt to create the specified data directory, it might not have permission if the
parent directory of the desired data directory is root-owned. To initialize in such a setup, create an empty
data directory as root, then use chown to assign ownership of that directory to the database user account,
then su to become the database user to run initdb.

initdb must be run as the user that will own the server process, because the server needs to have access
to the files and directories that initdb creates. Since the server cannot be run as root, you must not run
initdb as root either. (It will in fact refuse to do so.)

initdb initializes the database cluster’s default locale and character set encoding. The character set en-
coding, collation order (LC_COLLATE) and character set classes (LC_CTYPE, e.g. upper, lower, digit) can
be set separately for a database when it is created. initdb determines those settings for the template1
database, which will serve as the default for all other databases.

To alter the default collation order or character set classes, use the --lc-collate and --lc-ctype

options. Collation orders other than C or POSIX also have a performance penalty. For these reasons it is
important to choose the right locale when running initdb.

The remaining locale categories can be changed later when the server is started. You can also use
--locale to set the default for all locale categories, including collation order and character set classes.
All server locale values (lc_*) can be displayed via SHOW ALL. More details can be found in Section
22.1.

To alter the default encoding, use the --encoding. More details can be found in Section 22.3.

1734

initdb

Options

-A authmethod

--auth=authmethod

This option specifies the authentication method for local users used in pg_hba.conf (host and
local lines). Do not use trust unless you trust all local users on your system. trust is the default
for ease of installation.

--auth-host=authmethod

This option specifies the authentication method for local users via TCP/IP connections used in
pg_hba.conf (host lines).

--auth-local=authmethod

This option specifies the authentication method for local users via Unix-domain socket connections
used in pg_hba.conf (local lines).

-D directory

--pgdata=directory

This option specifies the directory where the database cluster should be stored. This is the only infor-
mation required by initdb, but you can avoid writing it by setting the PGDATA environment variable,
which can be convenient since the database server (postgres) can find the database directory later
by the same variable.

-E encoding

--encoding=encoding

Selects the encoding of the template database. This will also be the default encoding of any database
you create later, unless you override it there. The default is derived from the locale, or SQL_ASCII if
that does not work. The character sets supported by the PostgreSQL server are described in Section
22.3.1.

--locale=locale

Sets the default locale for the database cluster. If this option is not specified, the locale is inherited
from the environment that initdb runs in. Locale support is described in Section 22.1.

--lc-collate=locale

--lc-ctype=locale

--lc-messages=locale

--lc-monetary=locale

--lc-numeric=locale

--lc-time=locale

Like --locale, but only sets the locale in the specified category.

--no-locale

Equivalent to --locale=C.

--pwfile=filename

Makes initdb read the database superuser’s password from a file. The first line of the file is taken
as the password.

1735

initdb

-T CFG

--text-search-config=CFG

Sets the default text search configuration. See default_text_search_config for further information.

-U username

--username=username

Selects the user name of the database superuser. This defaults to the name of the effective user
running initdb. It is really not important what the superuser’s name is, but one might choose to
keep the customary name postgres, even if the operating system user’s name is different.

-W

--pwprompt

Makes initdb prompt for a password to give the database superuser. If you don’t plan on using
password authentication, this is not important. Otherwise you won’t be able to use password authen-
tication until you have a password set up.

-X directory

--xlogdir=directory

This option specifies the directory where the transaction log should be stored.

Other, less commonly used, options are also available:

-d

--debug

Print debugging output from the bootstrap backend and a few other messages of lesser interest for
the general public. The bootstrap backend is the program initdb uses to create the catalog tables.
This option generates a tremendous amount of extremely boring output.

-L directory

Specifies where initdb should find its input files to initialize the database cluster. This is normally
not necessary. You will be told if you need to specify their location explicitly.

-n

--noclean

By default, when initdb determines that an error prevented it from completely creating the database
cluster, it removes any files it might have created before discovering that it cannot finish the job. This
option inhibits tidying-up and is thus useful for debugging.

Other options:

-V

--version

Print the initdb version and exit.

1736

initdb

-?

--help

Show help about initdb command line arguments, and exit.

Environment

PGDATA

Specifies the directory where the database cluster is to be stored; can be overridden using the -D

option.

This utility, like most other PostgreSQL utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Notes
initdb can also be invoked via pg_ctl initdb.

See Also
pg_ctl, postgres

1737

pg_controldata

Name
pg_controldata — display control information of a PostgreSQL database cluster

Synopsis

pg_controldata [option] [datadir]

Description
pg_controldata prints information initialized during initdb, such as the catalog version. It also shows
information about write-ahead logging and checkpoint processing. This information is cluster-wide, and
not specific to any one database.

This utility can only be run by the user who initialized the cluster because it requires read access to the
data directory. You can specify the data directory on the command line, or use the environment variable
PGDATA. This utility supports the options -V and --version, which print the pg_controldata version and
exit. It also supports options -? and --help, which output the supported arguments.

Environment

PGDATA

Default data directory location

1738

pg_ctl

Name
pg_ctl — initialize, start, stop, or control a PostgreSQL server

Synopsis

pg_ctl init[db] [-s] [-D datadir] [-o initdb-options]

pg_ctl start [-w] [-t seconds] [-s] [-D datadir] [-l filename] [-o options] [-p path] [-c]

pg_ctl stop [-W] [-t seconds] [-s] [-D datadir] [-m s[mart] | f[ast] | i[mmediate]]

pg_ctl restart [-w] [-t seconds] [-s] [-D datadir] [-c] [-m s[mart] | f[ast] | i[mmediate]
] [-o options]

pg_ctl reload [-s] [-D datadir]

pg_ctl status [-D datadir]

pg_ctl promote [-s] [-D datadir]

pg_ctl kill signal_name process_id

pg_ctl register [-N servicename] [-U username] [-P password] [-D datadir] [-S a[uto] |
d[emand]] [-w] [-t seconds] [-s] [-o options]

pg_ctl unregister [-N servicename]

Description
pg_ctl is a utility for initializing a PostgreSQL database cluster, starting, stopping, or restarting the Post-
greSQL database server (postgres), or displaying the status of a running server. Although the server can
be started manually, pg_ctl encapsulates tasks such as redirecting log output and properly detaching from
the terminal and process group. It also provides convenient options for controlled shutdown.

The init or initdb mode creates a new PostgreSQL database cluster. A database cluster is a collection
of databases that are managed by a single server instance. This mode invokes the initdb command. See
initdb for details.

1739

pg_ctl

In start mode, a new server is launched. The server is started in the background, and its standard input
is attached to /dev/null (or nul on Windows). On Unix-like systems, by default, the server’s standard
output and standard error are sent to pg_ctl’s standard output (not standard error). The standard output of
pg_ctl should then be redirected to a file or piped to another process such as a log rotating program like
rotatelogs; otherwise postgres will write its output to the controlling terminal (from the background)
and will not leave the shell’s process group. On Windows, by default the server’s standard output and
standard error are sent to the terminal. These default behaviors can be changed by using -l to append the
server’s output to a log file. Use of either -l or output redirection is recommended.

In stop mode, the server that is running in the specified data directory is shut down. Three different
shutdown methods can be selected with the -m option. “Smart” mode (the default) waits for all active
clients to disconnect and any online backup to finish. If the server is in hot standby, recovery and streaming
replication will be terminated once all clients have disconnected. “Fast” mode does not wait for clients
to disconnect and will terminate an online backup in progress. All active transactions are rolled back and
clients are forcibly disconnected, then the server is shut down. “Immediate” mode will abort all server
processes immediately, without a clean shutdown. This will lead to a crash-recovery run on the next
restart.

restart mode effectively executes a stop followed by a start. This allows changing the postgres

command-line options.

reload mode simply sends the postgres process a SIGHUP signal, causing it to reread its configuration
files (postgresql.conf, pg_hba.conf, etc.). This allows changing of configuration-file options that
do not require a complete restart to take effect.

status mode checks whether a server is running in the specified data directory. If it is, the PID and the
command line options that were used to invoke it are displayed. If the server is not running, the process
returns an exit status of 3.

In promote mode, the standby server that is running in the specified data directory is commanded to exit
recovery and begin read-write operations.

kill mode allows you to send a signal to a specified process. This is particularly valuable for Microsoft
Windows which does not have a kill command. Use --help to see a list of supported signal names.

register mode allows you to register a system service on Microsoft Windows. The -S option allows
selection of service start type, either “auto” (start service automatically on system startup) or “demand”
(start service on demand).

unregister mode allows you to unregister a system service on Microsoft Windows. This undoes the
effects of the register command.

Options

-c

--core-file

Attempt to allow server crashes to produce core files, on platforms where this is possible, by lifting
any soft resource limit placed on core files. This is useful in debugging or diagnosing problems by
allowing a stack trace to be obtained from a failed server process.

1740

pg_ctl

-D datadir

--pgdata datadir

Specifies the file system location of the database files. If this is omitted, the environment variable
PGDATA is used.

-l filename

--log filename

Append the server log output to filename. If the file does not exist, it is created. The umask is set
to 077, so access to the log file is disallowed to other users by default.

-m mode

--mode mode

Specifies the shutdown mode. mode can be smart, fast, or immediate, or the first letter of one of
these three. If this is omitted, smart is used.

-o options

Specifies options to be passed directly to the postgres command.

The options should usually be surrounded by single or double quotes to ensure that they are passed
through as a group.

-o initdb-options

Specifies options to be passed directly to the initdb command.

The options should usually be surrounded by single or double quotes to ensure that they are passed
through as a group.

-p path

Specifies the location of the postgres executable. By default the postgres executable is taken
from the same directory as pg_ctl, or failing that, the hard-wired installation directory. It is not
necessary to use this option unless you are doing something unusual and get errors that the postgres
executable was not found.

In init mode, this option analogously specifies the location of the initdb executable.

-s

--silent

Print only errors, no informational messages.

-t

--timeout

The maximum number of seconds to wait when waiting for startup or shutdown to complete. The
default is 60 seconds.

-V

--version

Print the pg_ctl version and exit.

-w

Wait for the startup or shutdown to complete. Waiting is the default option for shutdowns, but not
startups. When waiting for startup, pg_ctl repeatedly attempts to connect to the server. When wait-

1741

pg_ctl

ing for shutdown, pg_ctl waits for the server to remove its PID file. pg_ctl returns an exit code
based on the success of the startup or shutdown.

-W

Do not wait for startup or shutdown to complete. This is the default for start and restart modes.

-?

--help

Show help about pg_ctl command line arguments, and exit.

Options for Windows

-N servicename

Name of the system service to register. The name will be used as both the service name and the
display name.

-P password

Password for the user to start the service.

-S start-type

Start type of the system service to register. start-type can be auto, or demand, or the first letter of
one of these two. If this is omitted, auto is used.

-U username

User name for the user to start the service. For domain users, use the format DOMAIN\username.

Environment

PGDATA

Default data directory location.

pg_ctl, like most other PostgreSQL utilities, also uses the environment variables supported by libpq (see
Section 31.14). For additional server variables, see postgres.

Files

postmaster.pid

The existence of this file in the data directory is used to help pg_ctl determine if the server is currently
running.

postmaster.opts

If this file exists in the data directory, pg_ctl (in restart mode) will pass the contents of the file as
options to postgres, unless overridden by the -o option. The contents of this file are also displayed
in status mode.

1742

pg_ctl

Examples

Starting the Server

To start the server:

$ pg_ctl start

To start the server, waiting until the server is accepting connections:

$ pg_ctl -w start

To start the server using port 5433, and running without fsync, use:

$ pg_ctl -o "-F -p 5433" start

Stopping the Server

To stop the server, use:

$ pg_ctl stop

The -m option allows control over how the server shuts down:

$ pg_ctl stop -m fast

Restarting the Server

Restarting the server is almost equivalent to stopping the server and starting it again, except that pg_ctl
saves and reuses the command line options that were passed to the previously running instance. To restart
the server in the simplest form, use:

$ pg_ctl restart

To restart the server, waiting for it to shut down and restart:

$ pg_ctl -w restart

To restart using port 5433, disabling fsync upon restart:

$ pg_ctl -o "-F -p 5433" restart

1743

pg_ctl

Showing the Server Status

Here is sample status output from pg_ctl:

$ pg_ctl status

pg_ctl: server is running (PID: 13718)

/usr/local/pgsql/bin/postgres "-D" "/usr/local/pgsql/data" "-p" "5433" "-B" "128"

This is the command line that would be invoked in restart mode.

See Also
initdb, postgres

1744

pg_resetxlog

Name
pg_resetxlog — reset the write-ahead log and other control information of a PostgreSQL database
cluster

Synopsis

pg_resetxlog [-f] [-n] [-o oid] [-x xid] [-e xid_epoch] [-m mxid] [-O mxoff] [-l
timelineid,fileid,seg] datadir

Description
pg_resetxlog clears the write-ahead log (WAL) and optionally resets some other control information
stored in the pg_control file. This function is sometimes needed if these files have become corrupted. It
should be used only as a last resort, when the server will not start due to such corruption.

After running this command, it should be possible to start the server, but bear in mind that the database
might contain inconsistent data due to partially-committed transactions. You should immediately dump
your data, run initdb, and reload. After reload, check for inconsistencies and repair as needed.

This utility can only be run by the user who installed the server, because it requires read/write access
to the data directory. For safety reasons, you must specify the data directory on the command line.
pg_resetxlog does not use the environment variable PGDATA.

If pg_resetxlog complains that it cannot determine valid data for pg_control, you can force it to
proceed anyway by specifying the -f (force) option. In this case plausible values will be substituted for
the missing data. Most of the fields can be expected to match, but manual assistance might be needed
for the next OID, next transaction ID and epoch, next multitransaction ID and offset, and WAL starting
address fields. These fields can be set using the options discussed below. If you are not able to determine
correct values for all these fields, -f can still be used, but the recovered database must be treated with
even more suspicion than usual: an immediate dump and reload is imperative. Do not execute any data-
modifying operations in the database before you dump, as any such action is likely to make the corruption
worse.

The -o, -x, -e, -m, -O, and -l options allow the next OID, next transaction ID, next transaction ID’s
epoch, next multitransaction ID, next multitransaction offset, and WAL starting address values to be set
manually. These are only needed when pg_resetxlog is unable to determine appropriate values by
reading pg_control. Safe values can be determined as follows:

• A safe value for the next transaction ID (-x) can be determined by looking for the numerically largest
file name in the directory pg_clog under the data directory, adding one, and then multiplying by
1048576. Note that the file names are in hexadecimal. It is usually easiest to specify the option value
in hexadecimal too. For example, if 0011 is the largest entry in pg_clog, -x 0x1200000 will work
(five trailing zeroes provide the proper multiplier).

1745

pg_resetxlog

• A safe value for the next multitransaction ID (-m) can be determined by looking for the numerically
largest file name in the directory pg_multixact/offsets under the data directory, adding one, and
then multiplying by 65536. As above, the file names are in hexadecimal, so the easiest way to do this is
to specify the option value in hexadecimal and add four zeroes.

• A safe value for the next multitransaction offset (-O) can be determined by looking for the numerically
largest file name in the directory pg_multixact/members under the data directory, adding one, and
then multiplying by 65536. As above, the file names are in hexadecimal, so the easiest way to do this is
to specify the option value in hexadecimal and add four zeroes.

• The WAL starting address (-l) should be larger than any WAL segment file name currently existing in
the directory pg_xlog under the data directory. These names are also in hexadecimal and have three
parts. The first part is the “timeline ID” and should usually be kept the same. Do not choose a value
larger than 255 (0xFF) for the third part; instead increment the second part and reset the third part to 0.
For example, if 00000001000000320000004A is the largest entry in pg_xlog, -l 0x1,0x32,0x4B

will work; but if the largest entry is 000000010000003A000000FF, choose -l 0x1,0x3B,0x0 or
more.

Note: pg_resetxlog itself looks at the files in pg_xlog and chooses a default -l setting beyond
the last existing file name. Therefore, manual adjustment of -l should only be needed if you are
aware of WAL segment files that are not currently present in pg_xlog, such as entries in an offline
archive; or if the contents of pg_xlog have been lost entirely.

• There is no comparably easy way to determine a next OID that’s beyond the largest one in the database,
but fortunately it is not critical to get the next-OID setting right.

• The transaction ID epoch is not actually stored anywhere in the database except in the field that is
set by pg_resetxlog, so any value will work so far as the database itself is concerned. You might
need to adjust this value to ensure that replication systems such as Slony-I work correctly — if so, an
appropriate value should be obtainable from the state of the downstream replicated database.

The -n (no operation) option instructs pg_resetxlog to print the values reconstructed from
pg_control and then exit without modifying anything. This is mainly a debugging tool, but can be
useful as a sanity check before allowing pg_resetxlog to proceed for real.

The -V and --version options print the pg_resetxlog version and exit. The options -? and --help show
supported arguments, and exit.

Notes
This command must not be used when the server is running. pg_resetxlog will refuse to start up if it
finds a server lock file in the data directory. If the server crashed then a lock file might have been left
behind; in that case you can remove the lock file to allow pg_resetxlog to run. But before you do so,
make doubly certain that there is no server process still alive.

1746

postgres

Name
postgres — PostgreSQL database server

Synopsis

postgres [option...]

Description
postgres is the PostgreSQL database server. In order for a client application to access a database it
connects (over a network or locally) to a running postgres instance. The postgres instance then starts
a separate server process to handle the connection.

One postgres instance always manages the data of exactly one database cluster. A database cluster is a
collection of databases that is stored at a common file system location (the “data area”). More than one
postgres instance can run on a system at one time, so long as they use different data areas and different
communication ports (see below). When postgres starts it needs to know the location of the data area.
The location must be specified by the -D option or the PGDATA environment variable; there is no default.
Typically, -D or PGDATA points directly to the data area directory created by initdb. Other possible file
layouts are discussed in Section 18.2.

By default postgres starts in the foreground and prints log messages to the standard error stream. In
practical applications postgres should be started as a background process, perhaps at boot time.

The postgres command can also be called in single-user mode. The primary use for this mode is dur-
ing bootstrapping by initdb. Sometimes it is used for debugging or disaster recovery; note that running
a single-user server is not truly suitable for debugging the server, since no realistic interprocess commu-
nication and locking will happen. When invoked in single-user mode from the shell, the user can enter
queries and the results will be printed to the screen, but in a form that is more useful for developers than
end users. In the single-user mode, the session user will be set to the user with ID 1, and implicit superuser
powers are granted to this user. This user does not actually have to exist, so the single-user mode can be
used to manually recover from certain kinds of accidental damage to the system catalogs.

Options
postgres accepts the following command-line arguments. For a detailed discussion of the options con-
sult Chapter 18. You can save typing most of these options by setting up a configuration file. Some (safe)
options can also be set from the connecting client in an application-dependent way to apply only for that
session. For example, if the environment variable PGOPTIONS is set, then libpq-based clients will pass
that string to the server, which will interpret it as postgres command-line options.

1747

postgres

General Purpose

-A 0|1

Enables run-time assertion checks, which is a debugging aid to detect programming mistakes. This
option is only available if assertions were enabled when PostgreSQL was compiled. If so, the default
is on.

-B nbuffers

Sets the number of shared buffers for use by the server processes. The default value of this parameter
is chosen automatically by initdb. Specifying this option is equivalent to setting the shared_buffers
configuration parameter.

-c name=value

Sets a named run-time parameter. The configuration parameters supported by PostgreSQL are de-
scribed in Chapter 18. Most of the other command line options are in fact short forms of such a
parameter assignment. -c can appear multiple times to set multiple parameters.

-C name

Prints the value of the named run-time parameter, and exits. (See the -c option above for details.)
This can be used on a running server, and returns values from postgresql.conf, modified by any
parameters supplied in this invocation. It does not reflect parameters supplied when the cluster was
started.

This option is meant for other programs that interact with a server instance, such as pg_ctl, to
query configuration parameter values. User-facing applications should instead use SHOW or the
pg_settings view.

-d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the server
log. Values are from 1 to 5. It is also possible to pass -d 0 for a specific session, which will prevent
the server log level of the parent postgres process from being propagated to this session.

-D datadir

Specifies the file system location of the data directory or configuration file(s). See Section 18.2 for
details.

-e

Sets the default date style to “European”, that is DMY ordering of input date fields. This also causes
the day to be printed before the month in certain date output formats. See Section 8.5 for more
information.

-F

Disables fsync calls for improved performance, at the risk of data corruption in the event of a system
crash. Specifying this option is equivalent to disabling the fsync configuration parameter. Read the
detailed documentation before using this!

-h hostname

Specifies the IP host name or address on which postgres is to listen for TCP/IP connections from
client applications. The value can also be a comma-separated list of addresses, or * to specify listen-
ing on all available interfaces. An empty value specifies not listening on any IP addresses, in which

1748

postgres

case only Unix-domain sockets can be used to connect to the server. Defaults to listening only on
localhost. Specifying this option is equivalent to setting the listen_addresses configuration parameter.

-i

Allows remote clients to connect via TCP/IP (Internet domain) connections. Without this option,
only local connections are accepted. This option is equivalent to setting listen_addresses to * in
postgresql.conf or via -h.

This option is deprecated since it does not allow access to the full functionality of listen_addresses.
It’s usually better to set listen_addresses directly.

-k directory

Specifies the directory of the Unix-domain socket on which postgres is to listen for connections
from client applications. The value can also be a comma-separated list of directories. An empty value
specifies not listening on any Unix-domain sockets, in which case only TCP/IP sockets can be used
to connect to the server. The default value is normally /tmp, but that can be changed at build time.
Specifying this option is equivalent to setting the unix_socket_directories configuration parameter.

-l

Enables secure connections using SSL. PostgreSQL must have been compiled with support for SSL
for this option to be available. For more information on using SSL, refer to Section 17.9.

-N max-connections

Sets the maximum number of client connections that this server will accept. The default value of
this parameter is chosen automatically by initdb. Specifying this option is equivalent to setting the
max_connections configuration parameter.

-o extra-options

The command-line-style options specified in extra-options are passed to all server processes
started by this postgres process. If the option string contains any spaces, the entire string must be
quoted.

The use of this option is obsolete; all command-line options for server processes can be specified
directly on the postgres command line.

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which postgres is to listen
for connections from client applications. Defaults to the value of the PGPORT environment variable,
or if PGPORT is not set, then defaults to the value established during compilation (normally 5432). If
you specify a port other than the default port, then all client applications must specify the same port
using either command-line options or PGPORT.

-s

Print time information and other statistics at the end of each command. This is useful for benchmark-
ing or for use in tuning the number of buffers.

-S work-mem

Specifies the amount of memory to be used by internal sorts and hashes before resorting to temporary
disk files. See the description of the work_mem configuration parameter in Section 18.4.1.

1749

postgres

-V

--version

Print the postgres version and exit.

--name=value

Sets a named run-time parameter; a shorter form of -c.

--describe-config

This option dumps out the server’s internal configuration variables, descriptions, and defaults in tab-
delimited COPY format. It is designed primarily for use by administration tools.

-?

--help

Show help about postgres command line arguments, and exit.

Semi-internal Options

The options described here are used mainly for debugging purposes, and in some cases to assist with
recovery of severely damaged databases. There should be no reason to use them in a production database
setup. They are listed here only for use by PostgreSQL system developers. Furthermore, these options
might change or be removed in a future release without notice.

-f { s | i | o | b | t | n | m | h }

Forbids the use of particular scan and join methods: s and i disable sequential and index scans
respectively, o, b and t disable index-only scans, bitmap index scans, and TID scans respectively,
while n, m, and h disable nested-loop, merge and hash joins respectively.

Neither sequential scans nor nested-loop joins can be disabled completely; the -fs and -fn options
simply discourage the optimizer from using those plan types if it has any other alternative.

-n

This option is for debugging problems that cause a server process to die abnormally. The ordinary
strategy in this situation is to notify all other server processes that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant server process could have
corrupted some shared state before terminating. This option specifies that postgres will not reini-
tialize shared data structures. A knowledgeable system programmer can then use a debugger to ex-
amine shared memory and semaphore state.

-O

Allows the structure of system tables to be modified. This is used by initdb.

-P

Ignore system indexes when reading system tables, but still update the indexes when modifying the
tables. This is useful when recovering from damaged system indexes.

-t pa[rser] | pl[anner] | e[xecutor]

Print timing statistics for each query relating to each of the major system modules. This option cannot
be used together with the -s option.

1750

postgres

-T

This option is for debugging problems that cause a server process to die abnormally. The ordinary
strategy in this situation is to notify all other server processes that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant server process could have
corrupted some shared state before terminating. This option specifies that postgres will stop all
other server processes by sending the signal SIGSTOP, but will not cause them to terminate. This
permits system programmers to collect core dumps from all server processes by hand.

-v protocol

Specifies the version number of the frontend/backend protocol to be used for a particular session.
This option is for internal use only.

-W seconds

A delay of this many seconds occurs when a new server process is started, after it conducts the
authentication procedure. This is intended to give an opportunity to attach to the server process with
a debugger.

Options for Single-User Mode

The following options only apply to the single-user mode.

--single

Selects the single-user mode. This must be the first argument on the command line.

database

Specifies the name of the database to be accessed. This must be the last argument on the command
line. If it is omitted it defaults to the user name.

-E

Echo all commands.

-j

Disables use of newline as a statement delimiter.

-r filename

Send all server log output to filename. In normal multiuser mode, this option is ignored, and stderr
is used by all processes.

Environment

PGCLIENTENCODING

Default character encoding used by clients. (The clients can override this individually.) This value
can also be set in the configuration file.

PGDATA

Default data directory location

1751

postgres

PGDATESTYLE

Default value of the DateStyle run-time parameter. (The use of this environment variable is depre-
cated.)

PGPORT

Default port number (preferably set in the configuration file)

TZ

Server time zone

Diagnostics
A failure message mentioning semget or shmget probably indicates you need to configure your kernel
to provide adequate shared memory and semaphores. For more discussion see Section 17.4. You might
be able to postpone reconfiguring your kernel by decreasing shared_buffers to reduce the shared memory
consumption of PostgreSQL, and/or by reducing max_connections to reduce the semaphore consumption.

A failure message suggesting that another server is already running should be checked carefully, for
example by using the command

$ ps ax | grep postgres

or

$ ps -ef | grep postgres

depending on your system. If you are certain that no conflicting server is running, you can remove the
lock file mentioned in the message and try again.

A failure message indicating inability to bind to a port might indicate that that port is already in use by
some non-PostgreSQL process. You might also get this error if you terminate postgres and immediately
restart it using the same port; in this case, you must simply wait a few seconds until the operating system
closes the port before trying again. Finally, you might get this error if you specify a port number that your
operating system considers to be reserved. For example, many versions of Unix consider port numbers
under 1024 to be “trusted” and only permit the Unix superuser to access them.

Notes
The utility command pg_ctl can be used to start and shut down the postgres server safely and comfort-
ably.

If at all possible, do not use SIGKILL to kill the main postgres server. Doing so will prevent postgres
from freeing the system resources (e.g., shared memory and semaphores) that it holds before terminating.
This might cause problems for starting a fresh postgres run.

To terminate the postgres server normally, the signals SIGTERM, SIGINT, or SIGQUIT can be used. The
first will wait for all clients to terminate before quitting, the second will forcefully disconnect all clients,
and the third will quit immediately without proper shutdown, resulting in a recovery run during restart.

1752

postgres

The SIGHUP signal will reload the server configuration files. It is also possible to send SIGHUP to an
individual server process, but that is usually not sensible.

To cancel a running query, send the SIGINT signal to the process running that command.

The postgres server uses SIGTERM to tell subordinate server processes to quit normally and SIGQUIT

to terminate without the normal cleanup. These signals should not be used by users. It is also unwise to
send SIGKILL to a server process — the main postgres process will interpret this as a crash and will
force all the sibling processes to quit as part of its standard crash-recovery procedure.

Bugs
The -- options will not work on FreeBSD or OpenBSD. Use -c instead. This is a bug in the affected
operating systems; a future release of PostgreSQL will provide a workaround if this is not fixed.

Usage
To start a single-user mode server, use a command like

postgres --single -D /usr/local/pgsql/data other-options my_database

Provide the correct path to the database directory with -D, or make sure that the environment variable
PGDATA is set. Also specify the name of the particular database you want to work in.

Normally, the single-user mode server treats newline as the command entry terminator; there is no intelli-
gence about semicolons, as there is in psql. To continue a command across multiple lines, you must type
backslash just before each newline except the last one.

But if you use the -j command line switch, then newline does not terminate command entry. In this case,
the server will read the standard input until the end-of-file (EOF) marker, then process the input as a single
command string. Backslash-newline is not treated specially in this case.

To quit the session, type EOF (Control+D, usually). If you’ve used -j, two consecutive EOFs are needed
to exit.

Note that the single-user mode server does not provide sophisticated line-editing features (no command
history, for example). Single-User mode also does not do any background processing, like automatic
checkpoints.

Examples
To start postgres in the background using default values, type:

$ nohup postgres >logfile 2>&1 </dev/null &

To start postgres with a specific port, e.g. 1234:

$ postgres -p 1234

1753

postgres

To connect to this server using psql, specify this port with the -p option:

$ psql -p 1234

or set the environment variable PGPORT:

$ export PGPORT=1234

$ psql

Named run-time parameters can be set in either of these styles:

$ postgres -c work_mem=1234

$ postgres --work-mem=1234

Either form overrides whatever setting might exist for work_mem in postgresql.conf. Notice that
underscores in parameter names can be written as either underscore or dash on the command line. Except
for short-term experiments, it’s probably better practice to edit the setting in postgresql.conf than to
rely on a command-line switch to set a parameter.

See Also
initdb, pg_ctl

1754

postmaster

Name
postmaster — PostgreSQL database server

Synopsis

postmaster [option...]

Description
postmaster is a deprecated alias of postgres.

See Also
postgres

1755

VII. Internals
This part contains assorted information that might be of use to PostgreSQL developers.

1756

postmaster

1757

Chapter 44. Overview of PostgreSQL Internals

Author: This chapter originated as part of Enhancement of the ANSI SQL Implementation of Post-
greSQL, Stefan Simkovics’ Master’s Thesis prepared at Vienna University of Technology under the
direction of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag. Katrin Seyr.

This chapter gives an overview of the internal structure of the backend of PostgreSQL. After having read
the following sections you should have an idea of how a query is processed. This chapter does not aim to
provide a detailed description of the internal operation of PostgreSQL, as such a document would be very
extensive. Rather, this chapter is intended to help the reader understand the general sequence of operations
that occur within the backend from the point at which a query is received, to the point at which the results
are returned to the client.

44.1. The Path of a Query
Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the PostgreSQL server has to be established. The
application program transmits a query to the server and waits to receive the results sent back by the
server.

2. The parser stage checks the query transmitted by the application program for correct syntax and
creates a query tree.

3. The rewrite system takes the query tree created by the parser stage and looks for any rules (stored
in the system catalogs) to apply to the query tree. It performs the transformations given in the rule
bodies.

One application of the rewrite system is in the realization of views. Whenever a query against a view
(i.e., a virtual table) is made, the rewrite system rewrites the user’s query to a query that accesses the
base tables given in the view definition instead.

4. The planner/optimizer takes the (rewritten) query tree and creates a query plan that will be the input
to the executor.

It does so by first creating all possible paths leading to the same result. For example if there is an index
on a relation to be scanned, there are two paths for the scan. One possibility is a simple sequential
scan and the other possibility is to use the index. Next the cost for the execution of each path is
estimated and the cheapest path is chosen. The cheapest path is expanded into a complete plan that
the executor can use.

5. The executor recursively steps through the plan tree and retrieves rows in the way represented by
the plan. The executor makes use of the storage system while scanning relations, performs sorts and
joins, evaluates qualifications and finally hands back the rows derived.

In the following sections we will cover each of the above listed items in more detail to give a better
understanding of PostgreSQL’s internal control and data structures.

1758

Chapter 44. Overview of PostgreSQL Internals

44.2. How Connections are Established
PostgreSQL is implemented using a simple “process per user” client/server model. In this model there is
one client process connected to exactly one server process. As we do not know ahead of time how many
connections will be made, we have to use a master process that spawns a new server process every time a
connection is requested. This master process is called postgres and listens at a specified TCP/IP port for
incoming connections. Whenever a request for a connection is detected the postgres process spawns a
new server process. The server tasks communicate with each other using semaphores and shared memory
to ensure data integrity throughout concurrent data access.

The client process can be any program that understands the PostgreSQL protocol described in Chapter 46.
Many clients are based on the C-language library libpq, but several independent implementations of the
protocol exist, such as the Java JDBC driver.

Once a connection is established the client process can send a query to the backend (server). The query
is transmitted using plain text, i.e., there is no parsing done in the frontend (client). The server parses
the query, creates an execution plan, executes the plan and returns the retrieved rows to the client by
transmitting them over the established connection.

44.3. The Parser Stage
The parser stage consists of two parts:

• The parser defined in gram.y and scan.l is built using the Unix tools bison and flex.

• The transformation process does modifications and augmentations to the data structures returned by
the parser.

44.3.1. Parser
The parser has to check the query string (which arrives as plain ASCII text) for valid syntax. If the syntax
is correct a parse tree is built up and handed back; otherwise an error is returned. The parser and lexer are
implemented using the well-known Unix tools bison and flex.

The lexer is defined in the file scan.l and is responsible for recognizing identifiers, the SQL key words
etc. For every key word or identifier that is found, a token is generated and handed to the parser.

The parser is defined in the file gram.y and consists of a set of grammar rules and actions that are
executed whenever a rule is fired. The code of the actions (which is actually C code) is used to build up
the parse tree.

The file scan.l is transformed to the C source file scan.c using the program flex and gram.y is trans-
formed to gram.c using bison. After these transformations have taken place a normal C compiler can be
used to create the parser. Never make any changes to the generated C files as they will be overwritten the
next time flex or bison is called.

1759

Chapter 44. Overview of PostgreSQL Internals

Note: The mentioned transformations and compilations are normally done automatically using the
makefiles shipped with the PostgreSQL source distribution.

A detailed description of bison or the grammar rules given in gram.y would be beyond the scope of
this paper. There are many books and documents dealing with flex and bison. You should be familiar
with bison before you start to study the grammar given in gram.y otherwise you won’t understand what
happens there.

44.3.2. Transformation Process
The parser stage creates a parse tree using only fixed rules about the syntactic structure of SQL. It does not
make any lookups in the system catalogs, so there is no possibility to understand the detailed semantics of
the requested operations. After the parser completes, the transformation process takes the tree handed back
by the parser as input and does the semantic interpretation needed to understand which tables, functions,
and operators are referenced by the query. The data structure that is built to represent this information is
called the query tree.

The reason for separating raw parsing from semantic analysis is that system catalog lookups can only
be done within a transaction, and we do not wish to start a transaction immediately upon receiving a
query string. The raw parsing stage is sufficient to identify the transaction control commands (BEGIN,
ROLLBACK, etc), and these can then be correctly executed without any further analysis. Once we know
that we are dealing with an actual query (such as SELECT or UPDATE), it is okay to start a transaction if
we’re not already in one. Only then can the transformation process be invoked.

The query tree created by the transformation process is structurally similar to the raw parse tree in most
places, but it has many differences in detail. For example, a FuncCall node in the parse tree represents
something that looks syntactically like a function call. This might be transformed to either a FuncExpr

or Aggref node depending on whether the referenced name turns out to be an ordinary function or an
aggregate function. Also, information about the actual data types of columns and expression results is
added to the query tree.

44.4. The PostgreSQL Rule System
PostgreSQL supports a powerful rule system for the specification of views and ambiguous view updates.
Originally the PostgreSQL rule system consisted of two implementations:

• The first one worked using row level processing and was implemented deep in the executor. The rule
system was called whenever an individual row had been accessed. This implementation was removed
in 1995 when the last official release of the Berkeley Postgres project was transformed into Postgres95.

• The second implementation of the rule system is a technique called query rewriting. The rewrite system
is a module that exists between the parser stage and the planner/optimizer. This technique is still
implemented.

1760

Chapter 44. Overview of PostgreSQL Internals

The query rewriter is discussed in some detail in Chapter 37, so there is no need to cover it here. We will
only point out that both the input and the output of the rewriter are query trees, that is, there is no change
in the representation or level of semantic detail in the trees. Rewriting can be thought of as a form of
macro expansion.

44.5. Planner/Optimizer
The task of the planner/optimizer is to create an optimal execution plan. A given SQL query (and hence,
a query tree) can be actually executed in a wide variety of different ways, each of which will produce
the same set of results. If it is computationally feasible, the query optimizer will examine each of these
possible execution plans, ultimately selecting the execution plan that is expected to run the fastest.

Note: In some situations, examining each possible way in which a query can be executed would take
an excessive amount of time and memory space. In particular, this occurs when executing queries
involving large numbers of join operations. In order to determine a reasonable (not necessarily opti-
mal) query plan in a reasonable amount of time, PostgreSQL uses a Genetic Query Optimizer (see
Chapter 51) when the number of joins exceeds a threshold (see geqo_threshold).

The planner’s search procedure actually works with data structures called paths, which are simply cut-
down representations of plans containing only as much information as the planner needs to make its
decisions. After the cheapest path is determined, a full-fledged plan tree is built to pass to the executor.
This represents the desired execution plan in sufficient detail for the executor to run it. In the rest of this
section we’ll ignore the distinction between paths and plans.

44.5.1. Generating Possible Plans
The planner/optimizer starts by generating plans for scanning each individual relation (table) used in the
query. The possible plans are determined by the available indexes on each relation. There is always the
possibility of performing a sequential scan on a relation, so a sequential scan plan is always created.
Assume an index is defined on a relation (for example a B-tree index) and a query contains the restriction
relation.attribute OPR constant. If relation.attribute happens to match the key of the B-
tree index and OPR is one of the operators listed in the index’s operator class, another plan is created using
the B-tree index to scan the relation. If there are further indexes present and the restrictions in the query
happen to match a key of an index, further plans will be considered. Index scan plans are also generated for
indexes that have a sort ordering that can match the query’s ORDER BY clause (if any), or a sort ordering
that might be useful for merge joining (see below).

If the query requires joining two or more relations, plans for joining relations are considered after all
feasible plans have been found for scanning single relations. The three available join strategies are:

• nested loop join: The right relation is scanned once for every row found in the left relation. This strategy
is easy to implement but can be very time consuming. (However, if the right relation can be scanned
with an index scan, this can be a good strategy. It is possible to use values from the current row of the
left relation as keys for the index scan of the right.)

1761

Chapter 44. Overview of PostgreSQL Internals

• merge join: Each relation is sorted on the join attributes before the join starts. Then the two relations
are scanned in parallel, and matching rows are combined to form join rows. This kind of join is more
attractive because each relation has to be scanned only once. The required sorting might be achieved
either by an explicit sort step, or by scanning the relation in the proper order using an index on the join
key.

• hash join: the right relation is first scanned and loaded into a hash table, using its join attributes as hash
keys. Next the left relation is scanned and the appropriate values of every row found are used as hash
keys to locate the matching rows in the table.

When the query involves more than two relations, the final result must be built up by a tree of join steps,
each with two inputs. The planner examines different possible join sequences to find the cheapest one.

If the query uses fewer than geqo_threshold relations, a near-exhaustive search is conducted to find the
best join sequence. The planner preferentially considers joins between any two relations for which there
exist a corresponding join clause in the WHERE qualification (i.e., for which a restriction like where

rel1.attr1=rel2.attr2 exists). Join pairs with no join clause are considered only when there is no
other choice, that is, a particular relation has no available join clauses to any other relation. All possible
plans are generated for every join pair considered by the planner, and the one that is (estimated to be) the
cheapest is chosen.

When geqo_threshold is exceeded, the join sequences considered are determined by heuristics, as
described in Chapter 51. Otherwise the process is the same.

The finished plan tree consists of sequential or index scans of the base relations, plus nested-loop, merge,
or hash join nodes as needed, plus any auxiliary steps needed, such as sort nodes or aggregate-function
calculation nodes. Most of these plan node types have the additional ability to do selection (discarding
rows that do not meet a specified Boolean condition) and projection (computation of a derived column
set based on given column values, that is, evaluation of scalar expressions where needed). One of the
responsibilities of the planner is to attach selection conditions from the WHERE clause and computation of
required output expressions to the most appropriate nodes of the plan tree.

44.6. Executor
The executor takes the plan created by the planner/optimizer and recursively processes it to extract the
required set of rows. This is essentially a demand-pull pipeline mechanism. Each time a plan node is
called, it must deliver one more row, or report that it is done delivering rows.

To provide a concrete example, assume that the top node is a MergeJoin node. Before any merge can
be done two rows have to be fetched (one from each subplan). So the executor recursively calls itself to
process the subplans (it starts with the subplan attached to lefttree). The new top node (the top node of
the left subplan) is, let’s say, a Sort node and again recursion is needed to obtain an input row. The child
node of the Sort might be a SeqScan node, representing actual reading of a table. Execution of this node
causes the executor to fetch a row from the table and return it up to the calling node. The Sort node will
repeatedly call its child to obtain all the rows to be sorted. When the input is exhausted (as indicated by
the child node returning a NULL instead of a row), the Sort code performs the sort, and finally is able to
return its first output row, namely the first one in sorted order. It keeps the remaining rows stored so that
it can deliver them in sorted order in response to later demands.

1762

Chapter 44. Overview of PostgreSQL Internals

The MergeJoin node similarly demands the first row from its right subplan. Then it compares the two
rows to see if they can be joined; if so, it returns a join row to its caller. On the next call, or immediately
if it cannot join the current pair of inputs, it advances to the next row of one table or the other (depending
on how the comparison came out), and again checks for a match. Eventually, one subplan or the other is
exhausted, and the MergeJoin node returns NULL to indicate that no more join rows can be formed.

Complex queries can involve many levels of plan nodes, but the general approach is the same: each node
computes and returns its next output row each time it is called. Each node is also responsible for applying
any selection or projection expressions that were assigned to it by the planner.

The executor mechanism is used to evaluate all four basic SQL query types: SELECT, INSERT, UPDATE,
and DELETE. For SELECT, the top-level executor code only needs to send each row returned by the query
plan tree off to the client. For INSERT, each returned row is inserted into the target table specified for
the INSERT. This is done in a special top-level plan node called ModifyTable. (A simple INSERT ...

VALUES command creates a trivial plan tree consisting of a single Result node, which computes just one
result row, and ModifyTable above it to perform the insertion. But INSERT ... SELECT can demand
the full power of the executor mechanism.) For UPDATE, the planner arranges that each computed row
includes all the updated column values, plus the TID (tuple ID, or row ID) of the original target row; this
data is fed into a ModifyTable node, which uses the information to create a new updated row and mark
the old row deleted. For DELETE, the only column that is actually returned by the plan is the TID, and the
ModifyTable node simply uses the TID to visit each target row and mark it deleted.

1763

Chapter 45. System Catalogs
The system catalogs are the place where a relational database management system stores schema meta-
data, such as information about tables and columns, and internal bookkeeping information. PostgreSQL’s
system catalogs are regular tables. You can drop and recreate the tables, add columns, insert and update
values, and severely mess up your system that way. Normally, one should not change the system catalogs
by hand, there are always SQL commands to do that. (For example, CREATE DATABASE inserts a row into
the pg_database catalog — and actually creates the database on disk.) There are some exceptions for
particularly esoteric operations, such as adding index access methods.

45.1. Overview
Table 45-1 lists the system catalogs. More detailed documentation of each catalog follows below.

Most system catalogs are copied from the template database during database creation and are thereafter
database-specific. A few catalogs are physically shared across all databases in a cluster; these are noted in
the descriptions of the individual catalogs.

Table 45-1. System Catalogs

Catalog Name Purpose
pg_aggregate aggregate functions

pg_am index access methods

pg_amop access method operators

pg_amproc access method support procedures

pg_attrdef column default values

pg_attribute table columns (“attributes”)

pg_authid authorization identifiers (roles)

pg_auth_members authorization identifier membership relationships

pg_cast casts (data type conversions)

pg_class tables, indexes, sequences, views (“relations”)

pg_constraint check constraints, unique constraints, primary key
constraints, foreign key constraints

pg_collation collations (locale information)

pg_conversion encoding conversion information

pg_database databases within this database cluster

pg_db_role_setting per-role and per-database settings

pg_default_acl default privileges for object types

pg_depend dependencies between database objects

pg_description descriptions or comments on database objects

1764

Chapter 45. System Catalogs

Catalog Name Purpose
pg_enum enum label and value definitions

pg_extension installed extensions

pg_foreign_data_wrapper foreign-data wrapper definitions

pg_foreign_server foreign server definitions

pg_foreign_table additional foreign table information

pg_index additional index information

pg_inherits table inheritance hierarchy

pg_language languages for writing functions

pg_largeobject data pages for large objects

pg_largeobject_metadata metadata for large objects

pg_namespace schemas

pg_opclass access method operator classes

pg_operator operators

pg_opfamily access method operator families

pg_pltemplate template data for procedural languages

pg_proc functions and procedures

pg_range information about range types

pg_rewrite query rewrite rules

pg_seclabel security labels on database objects

pg_shdepend dependencies on shared objects

pg_shdescription comments on shared objects

pg_shseclabel security labels on shared database objects

pg_statistic planner statistics

pg_tablespace tablespaces within this database cluster

pg_trigger triggers

pg_ts_config text search configurations

pg_ts_config_map text search configurations’ token mappings

pg_ts_dict text search dictionaries

pg_ts_parser text search parsers

pg_ts_template text search templates

pg_type data types

pg_user_mapping mappings of users to foreign servers

45.2. pg_aggregate
The catalog pg_aggregate stores information about aggregate functions. An aggregate function is a
function that operates on a set of values (typically one column from each row that matches a query con-
dition) and returns a single value computed from all these values. Typical aggregate functions are sum,

1765

Chapter 45. System Catalogs

count, and max. Each entry in pg_aggregate is an extension of an entry in pg_proc. The pg_proc

entry carries the aggregate’s name, input and output data types, and other information that is similar to
ordinary functions.

Table 45-2. pg_aggregate Columns

Name Type References Description
aggfnoid regproc pg_proc.oid pg_proc OID of the

aggregate function

aggtransfn regproc pg_proc.oid Transition function

aggfinalfn regproc pg_proc.oid Final function (zero if
none)

aggsortop oid pg_operator.oid Associated sort operator
(zero if none)

aggtranstype oid pg_type.oid Data type of the
aggregate function’s
internal transition (state)
data

agginitval text The initial value of the
transition state. This is a
text field containing the
initial value in its
external string
representation. If this
field is null, the
transition state value
starts out null.

New aggregate functions are registered with the CREATE AGGREGATE command. See Section 35.10
for more information about writing aggregate functions and the meaning of the transition functions, etc.

45.3. pg_am
The catalog pg_am stores information about index access methods. There is one row for each index access
method supported by the system. The contents of this catalog are discussed in detail in Chapter 52.

Table 45-3. pg_am Columns

Name Type References Description
amname name Name of the access

method

1766

Chapter 45. System Catalogs

Name Type References Description
amstrategies int2 Number of operator

strategies for this access
method, or zero if
access method does not
have a fixed set of
operator strategies

amsupport int2 Number of support
routines for this access
method

amcanorder bool Does the access method
support ordered scans
sorted by the indexed
column’s value?

amcanorderbyop bool Does the access method
support ordered scans
sorted by the result of an
operator on the indexed
column?

amcanbackward bool Does the access method
support backward
scanning?

amcanunique bool Does the access method
support unique indexes?

amcanmulticol bool Does the access method
support multicolumn
indexes?

amoptionalkey bool Does the access method
support a scan without
any constraint for the
first index column?

amsearcharray bool Does the access method
support
ScalarArrayOpExpr

searches?

amsearchnulls bool Does the access method
support IS NULL/NOT
NULL searches?

amstorage bool Can index storage data
type differ from column
data type?

amclusterable bool Can an index of this
type be clustered on?

1767

Chapter 45. System Catalogs

Name Type References Description
ampredlocks bool Does an index of this

type manage
fine-grained predicate
locks?

amkeytype oid pg_type.oid Type of data stored in
index, or zero if not a
fixed type

aminsert regproc pg_proc.oid “Insert this tuple”
function

ambeginscan regproc pg_proc.oid “Prepare for index scan”
function

amgettuple regproc pg_proc.oid “Next valid tuple”
function, or zero if none

amgetbitmap regproc pg_proc.oid “Fetch all valid tuples”
function, or zero if none

amrescan regproc pg_proc.oid “(Re)start index scan”
function

amendscan regproc pg_proc.oid “Clean up after index
scan” function

ammarkpos regproc pg_proc.oid “Mark current scan
position” function

amrestrpos regproc pg_proc.oid “Restore marked scan
position” function

ambuild regproc pg_proc.oid “Build new index”
function

ambuildempty regproc pg_proc.oid “Build empty index”
function

ambulkdelete regproc pg_proc.oid Bulk-delete function

amvacuumcleanup regproc pg_proc.oid Post-VACUUM cleanup
function

amcanreturn regproc pg_proc.oid Function to check
whether index supports
index-only scans, or
zero if none

amcostestimate regproc pg_proc.oid Function to estimate
cost of an index scan

amoptions regproc pg_proc.oid Function to parse and
validate reloptions
for an index

1768

Chapter 45. System Catalogs

45.4. pg_amop
The catalog pg_amop stores information about operators associated with access method operator families.
There is one row for each operator that is a member of an operator family. A family member can be either
a search operator or an ordering operator. An operator can appear in more than one family, but cannot
appear in more than one search position nor more than one ordering position within a family. (It is allowed,
though unlikely, for an operator to be used for both search and ordering purposes.)

Table 45-4. pg_amop Columns

Name Type References Description
amopfamily oid pg_opfamily.oid The operator family this

entry is for

amoplefttype oid pg_type.oid Left-hand input data
type of operator

amoprighttype oid pg_type.oid Right-hand input data
type of operator

amopstrategy int2 Operator strategy
number

amoppurpose char Operator purpose, either
s for search or o for
ordering

amopopr oid pg_operator.oid OID of the operator

amopmethod oid pg_am.oid Index access method
operator family is for

amopsortfamily oid pg_opfamily.oid The btree operator
family this entry sorts
according to, if an
ordering operator; zero
if a search operator

A “search” operator entry indicates that an index of this operator family can be searched to find all
rows satisfying WHERE indexed_column operator constant. Obviously, such an operator must return
boolean, and its left-hand input type must match the index’s column data type.

An “ordering” operator entry indicates that an index of this operator family can be scanned to return rows
in the order represented by ORDER BY indexed_column operator constant. Such an operator could
return any sortable data type, though again its left-hand input type must match the index’s column data
type. The exact semantics of the ORDER BY are specified by the amopsortfamily column, which must
reference a btree operator family for the operator’s result type.

Note: At present, it’s assumed that the sort order for an ordering operator is the default for the refer-
enced opfamily, i.e., ASC NULLS LAST. This might someday be relaxed by adding additional columns
to specify sort options explicitly.

An entry’s amopmethod must match the opfmethod of its containing operator family (including

1769

Chapter 45. System Catalogs

amopmethod here is an intentional denormalization of the catalog structure for performance reasons).
Also, amoplefttype and amoprighttype must match the oprleft and oprright fields of the
referenced pg_operator entry.

45.5. pg_amproc
The catalog pg_amproc stores information about support procedures associated with access method op-
erator families. There is one row for each support procedure belonging to an operator family.

Table 45-5. pg_amproc Columns

Name Type References Description
amprocfamily oid pg_opfamily.oid The operator family this

entry is for

amproclefttype oid pg_type.oid Left-hand input data
type of associated
operator

amprocrighttype oid pg_type.oid Right-hand input data
type of associated
operator

amprocnum int2 Support procedure
number

amproc regproc pg_proc.oid OID of the procedure

The usual interpretation of the amproclefttype and amprocrighttype fields is that they identify
the left and right input types of the operator(s) that a particular support procedure supports. For some
access methods these match the input data type(s) of the support procedure itself, for others not. There
is a notion of “default” support procedures for an index, which are those with amproclefttype and
amprocrighttype both equal to the index opclass’s opcintype.

45.6. pg_attrdef
The catalog pg_attrdef stores column default values. The main information about columns is stored
in pg_attribute (see below). Only columns that explicitly specify a default value (when the table is
created or the column is added) will have an entry here.

Table 45-6. pg_attrdef Columns

Name Type References Description
adrelid oid pg_class.oid The table this column

belongs to

adnum int2 pg_attribute.attnum The number of the
column

1770

Chapter 45. System Catalogs

Name Type References Description
adbin pg_node_tree The internal

representation of the
column default value

adsrc text A human-readable
representation of the
default value

The adsrc field is historical, and is best not used, because it does not track outside changes that might
affect the representation of the default value. Reverse-compiling the adbin field (with pg_get_expr for
example) is a better way to display the default value.

45.7. pg_attribute
The catalog pg_attribute stores information about table columns. There will be exactly one
pg_attribute row for every column in every table in the database. (There will also be attribute entries
for indexes, and indeed all objects that have pg_class entries.)

The term attribute is equivalent to column and is used for historical reasons.

Table 45-7. pg_attribute Columns

Name Type References Description
attrelid oid pg_class.oid The table this column

belongs to

attname name The column name

atttypid oid pg_type.oid The data type of this
column

1771

Chapter 45. System Catalogs

Name Type References Description
attstattarget int4 attstattarget

controls the level of
detail of statistics
accumulated for this
column by ANALYZE.
A zero value indicates
that no statistics should
be collected. A negative
value says to use the
system default statistics
target. The exact
meaning of positive
values is data
type-dependent. For
scalar data types,
attstattarget is
both the target number
of “most common
values” to collect, and
the target number of
histogram bins to create.

attlen int2 A copy of
pg_type.typlen of
this column’s type

attnum int2 The number of the
column. Ordinary
columns are numbered
from 1 up. System
columns, such as oid,
have (arbitrary) negative
numbers.

attndims int4 Number of dimensions,
if the column is an array
type; otherwise 0.
(Presently, the number
of dimensions of an
array is not enforced, so
any nonzero value
effectively means “it’s
an array”.)

1772

Chapter 45. System Catalogs

Name Type References Description
attcacheoff int4 Always -1 in storage,

but when loaded into a
row descriptor in
memory this might be
updated to cache the
offset of the attribute
within the row

atttypmod int4 atttypmod records
type-specific data
supplied at table
creation time (for
example, the maximum
length of a varchar
column). It is passed to
type-specific input
functions and length
coercion functions. The
value will generally be
-1 for types that do not
need atttypmod.

attbyval bool A copy of
pg_type.typbyval of
this column’s type

attstorage char Normally a copy of
pg_type.typstorage

of this column’s type.
For TOAST-able data
types, this can be altered
after column creation to
control storage policy.

attalign char A copy of
pg_type.typalign of
this column’s type

attnotnull bool This represents a
not-null constraint. It is
possible to change this
column to enable or
disable the constraint.

atthasdef bool This column has a
default value, in which
case there will be a
corresponding entry in
the pg_attrdef
catalog that actually
defines the value.

1773

Chapter 45. System Catalogs

Name Type References Description
attisdropped bool This column has been

dropped and is no
longer valid. A dropped
column is still
physically present in the
table, but is ignored by
the parser and so cannot
be accessed via SQL.

attislocal bool This column is defined
locally in the relation.
Note that a column can
be locally defined and
inherited
simultaneously.

attinhcount int4 The number of direct
ancestors this column
has. A column with a
nonzero number of
ancestors cannot be
dropped nor renamed.

attcollation oid pg_collation.oid The defined collation of
the column, or zero if
the column is not of a
collatable data type.

attacl aclitem[] Column-level access
privileges, if any have
been granted specifically
on this column

attoptions text[] Attribute-level options,
as “keyword=value”
strings

attfdwoptions text[] Attribute-level foreign
data wrapper options, as
“keyword=value”
strings

In a dropped column’s pg_attribute entry, atttypid is reset to zero, but attlen and the other fields
copied from pg_type are still valid. This arrangement is needed to cope with the situation where the
dropped column’s data type was later dropped, and so there is no pg_type row anymore. attlen and the
other fields can be used to interpret the contents of a row of the table.

45.8. pg_authid
The catalog pg_authid contains information about database authorization identifiers (roles). A role sub-

1774

Chapter 45. System Catalogs

sumes the concepts of “users” and “groups”. A user is essentially just a role with the rolcanlogin flag
set. Any role (with or without rolcanlogin) can have other roles as members; see pg_auth_members.

Since this catalog contains passwords, it must not be publicly readable. pg_roles is a publicly readable
view on pg_authid that blanks out the password field.

Chapter 20 contains detailed information about user and privilege management.

Because user identities are cluster-wide, pg_authid is shared across all databases of a cluster: there is
only one copy of pg_authid per cluster, not one per database.

Table 45-8. pg_authid Columns

Name Type Description
rolname name Role name

rolsuper bool Role has superuser privileges

rolinherit bool Role automatically inherits
privileges of roles it is a member
of

rolcreaterole bool Role can create more roles

rolcreatedb bool Role can create databases

rolcatupdate bool Role can update system catalogs
directly. (Even a superuser
cannot do this unless this column
is true)

rolcanlogin bool Role can log in. That is, this role
can be given as the initial session
authorization identifier

rolreplication bool Role is a replication role. That
is, this role can initiate streaming
replication (see Section 25.2.5)
and set/unset the system backup
mode using pg_start_backup

and pg_stop_backup

rolconnlimit int4 For roles that can log in, this sets
maximum number of concurrent
connections this role can make.
-1 means no limit.

1775

Chapter 45. System Catalogs

Name Type Description
rolpassword text Password (possibly encrypted);

null if none. If the password is
encrypted, this column will begin
with the string md5 followed by a
32-character hexadecimal MD5
hash. The MD5 hash will be of
the user’s password concatenated
to their user name. For example,
if user joe has password xyzzy,
PostgreSQL will store the md5
hash of xyzzyjoe. A password
that does not follow that format
is assumed to be unencrypted.

rolvaliduntil timestamptz Password expiry time (only used
for password authentication);
null if no expiration

45.9. pg_auth_members
The catalog pg_auth_members shows the membership relations between roles. Any non-circular set of
relationships is allowed.

Because user identities are cluster-wide, pg_auth_members is shared across all databases of a cluster:
there is only one copy of pg_auth_members per cluster, not one per database.

Table 45-9. pg_auth_members Columns

Name Type References Description
roleid oid pg_authid.oid ID of a role that has a

member

member oid pg_authid.oid ID of a role that is a
member of roleid

grantor oid pg_authid.oid ID of the role that
granted this membership

admin_option bool True if member can
grant membership in
roleid to others

45.10. pg_cast
The catalog pg_cast stores data type conversion paths, both built-in and user-defined.

1776

Chapter 45. System Catalogs

It should be noted that pg_cast does not represent every type conversion that the system knows how
to perform; only those that cannot be deduced from some generic rule. For example, casting between a
domain and its base type is not explicitly represented in pg_cast. Another important exception is that
“automatic I/O conversion casts”, those performed using a data type’s own I/O functions to convert to or
from text or other string types, are not explicitly represented in pg_cast.

Table 45-10. pg_cast Columns

Name Type References Description
castsource oid pg_type.oid OID of the source data

type

casttarget oid pg_type.oid OID of the target data
type

castfunc oid pg_proc.oid The OID of the function
to use to perform this
cast. Zero is stored if the
cast method doesn’t
require a function.

castcontext char Indicates what contexts
the cast can be invoked
in. e means only as an
explicit cast (using CAST
or :: syntax). a means
implicitly in assignment
to a target column, as
well as explicitly. i
means implicitly in
expressions, as well as
the other cases.

castmethod char Indicates how the cast is
performed. f means that
the function specified in
the castfunc field is
used. i means that the
input/output functions
are used. b means that
the types are
binary-coercible, thus
no conversion is
required.

The cast functions listed in pg_cast must always take the cast source type as their first argument type,
and return the cast destination type as their result type. A cast function can have up to three arguments.
The second argument, if present, must be type integer; it receives the type modifier associated with the
destination type, or -1 if there is none. The third argument, if present, must be type boolean; it receives
true if the cast is an explicit cast, false otherwise.

It is legitimate to create a pg_cast entry in which the source and target types are the same, if the as-

1777

Chapter 45. System Catalogs

sociated function takes more than one argument. Such entries represent “length coercion functions” that
coerce values of the type to be legal for a particular type modifier value.

When a pg_cast entry has different source and target types and a function that takes more than one
argument, it represents converting from one type to another and applying a length coercion in a single
step. When no such entry is available, coercion to a type that uses a type modifier involves two steps, one
to convert between data types and a second to apply the modifier.

45.11. pg_class
The catalog pg_class catalogs tables and most everything else that has columns or is otherwise similar
to a table. This includes indexes (but see also pg_index), sequences, views, composite types, and TOAST
tables; see relkind. Below, when we mean all of these kinds of objects we speak of “relations”. Not all
columns are meaningful for all relation types.

Table 45-11. pg_class Columns

Name Type References Description
relname name Name of the table,

index, view, etc.

relnamespace oid pg_namespace.oid The OID of the
namespace that contains
this relation

reltype oid pg_type.oid The OID of the data
type that corresponds to
this table’s row type, if
any (zero for indexes,
which have no pg_type

entry)

reloftype oid pg_type.oid For typed tables, the
OID of the underlying
composite type, zero for
all other relations

relowner oid pg_authid.oid Owner of the relation

relam oid pg_am.oid If this is an index, the
access method used
(B-tree, hash, etc.)

relfilenode oid Name of the on-disk file
of this relation; zero
means this is a
“mapped” relation
whose disk file name is
determined by low-level
state

1778

Chapter 45. System Catalogs

Name Type References Description
reltablespace oid pg_tablespace.oid The tablespace in

which this relation is
stored. If zero, the
database’s default
tablespace is implied.
(Not meaningful if the
relation has no on-disk
file.)

relpages int4 Size of the on-disk
representation of this
table in pages (of size
BLCKSZ). This is only
an estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
a few DDL commands
such as CREATE INDEX.

reltuples float4 Number of rows in the
table. This is only an
estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
a few DDL commands
such as CREATE INDEX.

relallvisible int4 Number of pages that
are marked all-visible in
the table’s visibility
map. This is only an
estimate used by the
planner. It is updated by
VACUUM, ANALYZE, and
a few DDL commands
such as CREATE INDEX.

reltoastrelid oid pg_class.oid OID of the TOAST
table associated with
this table, 0 if none. The
TOAST table stores
large attributes “out of
line” in a secondary
table.

1779

Chapter 45. System Catalogs

Name Type References Description
reltoastidxid oid pg_class.oid For a TOAST table, the

OID of its index. 0 if not
a TOAST table.

relhasindex bool True if this is a table
and it has (or recently
had) any indexes

relisshared bool True if this table is
shared across all
databases in the cluster.
Only certain system
catalogs (such as
pg_database) are
shared.

relpersistence char p = permanent table, u
= unlogged table, t =
temporary table

relkind char r = ordinary table, i =
index, S = sequence, v =
view, c = composite
type, t = TOAST table,
f = foreign table

relnatts int2 Number of user
columns in the relation
(system columns not
counted). There must be
this many corresponding
entries in
pg_attribute. See
also
pg_attribute.attnum.

relchecks int2 Number of CHECK
constraints on the table;
see pg_constraint
catalog

relhasoids bool True if we generate an
OID for each row of the
relation

relhaspkey bool True if the table has (or
once had) a primary key

relhasrules bool True if table has (or
once had) rules; see
pg_rewrite catalog

1780

Chapter 45. System Catalogs

Name Type References Description
relhastriggers bool True if table has (or

once had) triggers; see
pg_trigger catalog

relhassubclass bool True if table has (or
once had) any
inheritance children

relfrozenxid xid All transaction IDs
before this one have
been replaced with a
permanent (“frozen”)
transaction ID in this
table. This is used to
track whether the table
needs to be vacuumed in
order to prevent
transaction ID
wraparound or to allow
pg_clog to be shrunk.
Zero
(InvalidTransactionId)
if the relation is not a
table.

relacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

reloptions text[] Access-method-specific
options, as
“keyword=value”
strings

Several of the Boolean flags in pg_class are maintained lazily: they are guaranteed to be true if that’s the
correct state, but may not be reset to false immediately when the condition is no longer true. For example,
relhasindex is set by CREATE INDEX, but it is never cleared by DROP INDEX. Instead, VACUUM clears
relhasindex if it finds the table has no indexes. This arrangement avoids race conditions and improves
concurrency.

45.12. pg_constraint
The catalog pg_constraint stores check, primary key, unique, foreign key, and exclusion constraints
on tables. (Column constraints are not treated specially. Every column constraint is equivalent to some
table constraint.) Not-null constraints are represented in the pg_attribute catalog, not here.

User-defined constraint triggers (created with CREATE CONSTRAINT TRIGGER) also give rise to an entry
in this table.

1781

Chapter 45. System Catalogs

Check constraints on domains are stored here, too.

Table 45-12. pg_constraint Columns

Name Type References Description
conname name Constraint name (not

necessarily unique!)

connamespace oid pg_namespace.oid The OID of the
namespace that contains
this constraint

contype char c = check constraint, f
= foreign key constraint,
p = primary key
constraint, u = unique
constraint, t =
constraint trigger, x =
exclusion constraint

condeferrable bool Is the constraint
deferrable?

condeferred bool Is the constraint
deferred by default?

convalidated bool Has the constraint been
validated? Currently,
can only be false for
foreign keys and
CHECK constraints

conrelid oid pg_class.oid The table this constraint
is on; 0 if not a table
constraint

contypid oid pg_type.oid The domain this
constraint is on; 0 if not
a domain constraint

conindid oid pg_class.oid The index supporting
this constraint, if it’s a
unique, primary key,
foreign key, or exclusion
constraint; else 0

confrelid oid pg_class.oid If a foreign key, the
referenced table; else 0

confupdtype char Foreign key update
action code: a = no
action, r = restrict, c =
cascade, n = set null, d
= set default

1782

Chapter 45. System Catalogs

Name Type References Description
confdeltype char Foreign key deletion

action code: a = no
action, r = restrict, c =
cascade, n = set null, d
= set default

confmatchtype char Foreign key match type:
f = full, p = partial, u =
simple (unspecified)

conislocal bool This constraint is
defined locally for the
relation. Note that a
constraint can be locally
defined and inherited
simultaneously.

coninhcount int4 The number of direct
inheritance ancestors
this constraint has. A
constraint with a
nonzero number of
ancestors cannot be
dropped nor renamed.

connoinherit bool This constraint is
defined locally for the
relation. It is a
non-inheritable
constraint.

conkey int2[] pg_attribute.attnum If a table constraint
(including foreign keys,
but not constraint
triggers), list of the
constrained columns

confkey int2[] pg_attribute.attnum If a foreign key, list of
the referenced columns

conpfeqop oid[] pg_operator.oid If a foreign key, list of
the equality operators
for PK = FK
comparisons

conppeqop oid[] pg_operator.oid If a foreign key, list of
the equality operators
for PK = PK
comparisons

1783

Chapter 45. System Catalogs

Name Type References Description
conffeqop oid[] pg_operator.oid If a foreign key, list of

the equality operators
for FK = FK
comparisons

conexclop oid[] pg_operator.oid If an exclusion
constraint, list of the
per-column exclusion
operators

conbin pg_node_tree If a check constraint, an
internal representation
of the expression

consrc text If a check constraint, a
human-readable
representation of the
expression

In the case of an exclusion constraint, conkey is only useful for constraint elements that are simple
column references. For other cases, a zero appears in conkey and the associated index must be consulted
to discover the expression that is constrained. (conkey thus has the same contents as pg_index.indkey
for the index.)

Note: consrc is not updated when referenced objects change; for example, it won’t track renaming
of columns. Rather than relying on this field, it’s best to use pg_get_constraintdef() to extract the
definition of a check constraint.

Note: pg_class.relchecks needs to agree with the number of check-constraint entries found in this
table for each relation.

45.13. pg_collation
The catalog pg_collation describes the available collations, which are essentially mappings from an
SQL name to operating system locale categories. See Section 22.2 for more information.

Table 45-13. pg_collation Columns

Name Type References Description
collname name Collation name (unique

per namespace and
encoding)

1784

Chapter 45. System Catalogs

Name Type References Description
collnamespace oid pg_namespace.oid The OID of the

namespace that contains
this collation

collowner oid pg_authid.oid Owner of the collation

collencoding int4 Encoding in which the
collation is applicable,
or -1 if it works for any
encoding

collcollate name LC_COLLATE for this
collation object

collctype name LC_CTYPE for this
collation object

Note that the unique key on this catalog is (collname, collencoding, collnamespace) not
just (collname, collnamespace). PostgreSQL generally ignores all collations that do not have
collencoding equal to either the current database’s encoding or -1, and creation of new entries with
the same name as an entry with collencoding = -1 is forbidden. Therefore it is sufficient to use a
qualified SQL name (schema.name) to identify a collation, even though this is not unique according to
the catalog definition. The reason for defining the catalog this way is that initdb fills it in at cluster
initialization time with entries for all locales available on the system, so it must be able to hold entries for
all encodings that might ever be used in the cluster.

In the template0 database, it could be useful to create collations whose encoding does not match the
database encoding, since they could match the encodings of databases later cloned from template0. This
would currently have to be done manually.

45.14. pg_conversion
The catalog pg_conversion describes encoding conversion procedures. See CREATE CONVERSION
for more information.

Table 45-14. pg_conversion Columns

Name Type References Description
conname name Conversion name

(unique within a
namespace)

connamespace oid pg_namespace.oid The OID of the
namespace that contains
this conversion

conowner oid pg_authid.oid Owner of the conversion

conforencoding int4 Source encoding ID

1785

Chapter 45. System Catalogs

Name Type References Description
contoencoding int4 Destination encoding ID

conproc regproc pg_proc.oid Conversion procedure

condefault bool True if this is the default
conversion

45.15. pg_database
The catalog pg_database stores information about the available databases. Databases are created with
the CREATE DATABASE command. Consult Chapter 21 for details about the meaning of some of the
parameters.

Unlike most system catalogs, pg_database is shared across all databases of a cluster: there is only one
copy of pg_database per cluster, not one per database.

Table 45-15. pg_database Columns

Name Type References Description
datname name Database name

datdba oid pg_authid.oid Owner of the database,
usually the user who
created it

encoding int4 Character encoding for
this database
(pg_encoding_to_char()
can translate this
number to the encoding
name)

datcollate name LC_COLLATE for this
database

datctype name LC_CTYPE for this
database

datistemplate bool If true then this
database can be used in
the TEMPLATE clause of
CREATE DATABASE to
create a new database as
a clone of this one

1786

Chapter 45. System Catalogs

Name Type References Description
datallowconn bool If false then no one can

connect to this database.
This is used to protect
the template0
database from being
altered.

datconnlimit int4 Sets maximum number
of concurrent
connections that can be
made to this database. -1
means no limit.

datlastsysoid oid Last system OID in the
database; useful
particularly to pg_dump

datfrozenxid xid All transaction IDs
before this one have
been replaced with a
permanent (“frozen”)
transaction ID in this
database. This is used to
track whether the
database needs to be
vacuumed in order to
prevent transaction ID
wraparound or to allow
pg_clog to be shrunk.
It is the minimum of the
per-table
pg_class.relfrozenxid
values.

dattablespace oid pg_tablespace.oid The default tablespace
for the database. Within
this database, all tables
for which
pg_class.reltablespace
is zero will be stored in
this tablespace; in
particular, all the
non-shared system
catalogs will be there.

datacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

1787

Chapter 45. System Catalogs

45.16. pg_db_role_setting
The catalog pg_db_role_setting records the default values that have been set for run-time configura-
tion variables, for each role and database combination.

Unlike most system catalogs, pg_db_role_setting is shared across all databases of a cluster: there is
only one copy of pg_db_role_setting per cluster, not one per database.

Table 45-16. pg_db_role_setting Columns

Name Type References Description
setdatabase oid pg_database.oid The OID of the database

the setting is applicable
to, or zero if not
database-specific

setrole oid pg_authid.oid The OID of the role the
setting is applicable to,
or zero if not
role-specific

setconfig text[] Defaults for run-time
configuration variables

45.17. pg_default_acl
The catalog pg_default_acl stores initial privileges to be assigned to newly created objects.

Table 45-17. pg_default_acl Columns

Name Type References Description
defaclrole oid pg_authid.oid The OID of the role

associated with this
entry

defaclnamespace oid pg_namespace.oid The OID of the
namespace associated
with this entry, or 0 if
none

defaclobjtype char Type of object this
entry is for: r = relation
(table, view), S =
sequence, f = function,
T = type

defaclacl aclitem[] Access privileges that
this type of object
should have on creation

1788

Chapter 45. System Catalogs

A pg_default_acl entry shows the initial privileges to be assigned to an object belonging to the in-
dicated user. There are currently two types of entry: “global” entries with defaclnamespace = 0, and
“per-schema” entries that reference a particular schema. If a global entry is present then it overrides the
normal hard-wired default privileges for the object type. A per-schema entry, if present, represents privi-
leges to be added to the global or hard-wired default privileges.

Note that when an ACL entry in another catalog is null, it is taken to represent the hard-wired default
privileges for its object, not whatever might be in pg_default_acl at the moment. pg_default_acl
is only consulted during object creation.

45.18. pg_depend
The catalog pg_depend records the dependency relationships between database objects. This informa-
tion allows DROP commands to find which other objects must be dropped by DROP CASCADE or prevent
dropping in the DROP RESTRICT case.

See also pg_shdepend, which performs a similar function for dependencies involving objects that are
shared across a database cluster.

Table 45-18. pg_depend Columns

Name Type References Description
classid oid pg_class.oid The OID of the system

catalog the dependent
object is in

objid oid any OID column The OID of the specific
dependent object

objsubid int4 For a table column, this
is the column number
(the objid and
classid refer to the
table itself). For all
other object types, this
column is zero.

refclassid oid pg_class.oid The OID of the system
catalog the referenced
object is in

refobjid oid any OID column The OID of the specific
referenced object

refobjsubid int4 For a table column, this
is the column number
(the refobjid and
refclassid refer to
the table itself). For all
other object types, this
column is zero.

1789

Chapter 45. System Catalogs

Name Type References Description
deptype char A code defining the

specific semantics of
this dependency
relationship; see text

In all cases, a pg_depend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

DEPENDENCY_NORMAL (n)

A normal relationship between separately-created objects. The dependent object can be dropped
without affecting the referenced object. The referenced object can only be dropped by specifying
CASCADE, in which case the dependent object is dropped, too. Example: a table column has a normal
dependency on its data type.

DEPENDENCY_AUTO (a)

The dependent object can be dropped separately from the referenced object, and should be auto-
matically dropped (regardless of RESTRICT or CASCADE mode) if the referenced object is dropped.
Example: a named constraint on a table is made autodependent on the table, so that it will go away
if the table is dropped.

DEPENDENCY_INTERNAL (i)

The dependent object was created as part of creation of the referenced object, and is really just
a part of its internal implementation. A DROP of the dependent object will be disallowed outright
(we’ll tell the user to issue a DROP against the referenced object, instead). A DROP of the referenced
object will be propagated through to drop the dependent object whether CASCADE is specified or not.
Example: a trigger that’s created to enforce a foreign-key constraint is made internally dependent on
the constraint’s pg_constraint entry.

DEPENDENCY_EXTENSION (e)

The dependent object is a member of the extension that is the referenced object (see pg_extension).
The dependent object can be dropped only via DROP EXTENSION on the referenced object. Function-
ally this dependency type acts the same as an internal dependency, but it’s kept separate for clarity
and to simplify pg_dump.

DEPENDENCY_PIN (p)

There is no dependent object; this type of entry is a signal that the system itself depends on the
referenced object, and so that object must never be deleted. Entries of this type are created only by
initdb. The columns for the dependent object contain zeroes.

Other dependency flavors might be needed in future.

45.19. pg_description
The catalog pg_description stores optional descriptions (comments) for each database object. De-
scriptions can be manipulated with the COMMENT command and viewed with psql’s \d commands.
Descriptions of many built-in system objects are provided in the initial contents of pg_description.

1790

Chapter 45. System Catalogs

See also pg_shdescription, which performs a similar function for descriptions involving objects that
are shared across a database cluster.

Table 45-19. pg_description Columns

Name Type References Description
objoid oid any OID column The OID of the object

this description pertains
to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

objsubid int4 For a comment on a
table column, this is the
column number (the
objoid and classoid

refer to the table itself).
For all other object
types, this column is
zero.

description text Arbitrary text that
serves as the description
of this object

45.20. pg_enum
The pg_enum catalog contains entries showing the values and labels for each enum type. The internal
representation of a given enum value is actually the OID of its associated row in pg_enum.

Table 45-20. pg_enum Columns

Name Type References Description
enumtypid oid pg_type.oid The OID of the

pg_type entry owning
this enum value

enumsortorder float4 The sort position of this
enum value within its
enum type

enumlabel name The textual label for this
enum value

The OIDs for pg_enum rows follow a special rule: even-numbered OIDs are guaranteed to be ordered
in the same way as the sort ordering of their enum type. That is, if two even OIDs belong to the same
enum type, the smaller OID must have the smaller enumsortorder value. Odd-numbered OID values
need bear no relationship to the sort order. This rule allows the enum comparison routines to avoid catalog

1791

Chapter 45. System Catalogs

lookups in many common cases. The routines that create and alter enum types attempt to assign even
OIDs to enum values whenever possible.

When an enum type is created, its members are assigned sort-order positions 1..n. But members added
later might be given negative or fractional values of enumsortorder. The only requirement on these
values is that they be correctly ordered and unique within each enum type.

45.21. pg_extension
The catalog pg_extension stores information about the installed extensions. See Section 35.15 for de-
tails about extensions.

Table 45-21. pg_extension Columns

Name Type References Description
extname name Name of the extension

extowner oid pg_authid.oid Owner of the extension

extnamespace oid pg_namespace.oid Schema containing the
extension’s exported
objects

extrelocatable bool True if extension can be
relocated to another
schema

extversion text Version name for the
extension

extconfig oid[] pg_class.oid Array of regclass
OIDs for the extension’s
configuration table(s), or
NULL if none

extcondition text[] Array of WHERE-clause
filter conditions for the
extension’s
configuration table(s), or
NULL if none

Note that unlike most catalogs with a “namespace” column, extnamespace is not meant to imply that the
extension belongs to that schema. Extension names are never schema-qualified. Rather, extnamespace
indicates the schema that contains most or all of the extension’s objects. If extrelocatable is true, then
this schema must in fact contain all schema-qualifiable objects belonging to the extension.

45.22. pg_foreign_data_wrapper
The catalog pg_foreign_data_wrapper stores foreign-data wrapper definitions. A foreign-data wrap-
per is the mechanism by which external data, residing on foreign servers, is accessed.

1792

Chapter 45. System Catalogs

Table 45-22. pg_foreign_data_wrapper Columns

Name Type References Description
fdwname name Name of the

foreign-data wrapper

fdwowner oid pg_authid.oid Owner of the
foreign-data wrapper

fdwhandler oid pg_proc.oid References a handler
function that is
responsible for
supplying execution
routines for the
foreign-data wrapper.
Zero if no handler is
provided

fdwvalidator oid pg_proc.oid References a validator
function that is
responsible for checking
the validity of the
options given to the
foreign-data wrapper, as
well as options for
foreign servers and user
mappings using the
foreign-data wrapper.
Zero if no validator is
provided

fdwacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

fdwoptions text[] Foreign-data wrapper
specific options, as
“keyword=value”
strings

45.23. pg_foreign_server
The catalog pg_foreign_server stores foreign server definitions. A foreign server describes a source
of external data, such as a remote server. Foreign servers are accessed via foreign-data wrappers.

Table 45-23. pg_foreign_server Columns

Name Type References Description

1793

Chapter 45. System Catalogs

Name Type References Description
srvname name Name of the foreign

server

srvowner oid pg_authid.oid Owner of the foreign
server

srvfdw oid pg_foreign_data_wrapper.oidOID of the foreign-data
wrapper of this foreign
server

srvtype text Type of the server
(optional)

srvversion text Version of the server
(optional)

srvacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

srvoptions text[] Foreign server specific
options, as
“keyword=value”
strings

45.24. pg_foreign_table
The catalog pg_foreign_table contains auxiliary information about foreign tables. A foreign table
is primarily represented by a pg_class entry, just like a regular table. Its pg_foreign_table entry
contains the information that is pertinent only to foreign tables and not any other kind of relation.

Table 45-24. pg_foreign_table Columns

Name Type References Description
ftrelid oid pg_class.oid OID of the pg_class

entry for this foreign
table

ftserver oid pg_foreign_server.oidOID of the foreign
server for this foreign
table

ftoptions text[] Foreign table options,
as “keyword=value”
strings

45.25. pg_index
The catalog pg_index contains part of the information about indexes. The rest is mostly in pg_class.

1794

Chapter 45. System Catalogs

Table 45-25. pg_index Columns

Name Type References Description
indexrelid oid pg_class.oid The OID of the

pg_class entry for this
index

indrelid oid pg_class.oid The OID of the
pg_class entry for the
table this index is for

indnatts int2 The number of columns
in the index (duplicates
pg_class.relnatts)

indisunique bool If true, this is a unique
index

indisprimary bool If true, this index
represents the primary
key of the table
(indisunique should
always be true when this
is true)

indisexclusion bool If true, this index
supports an exclusion
constraint

indimmediate bool If true, the uniqueness
check is enforced
immediately on
insertion (irrelevant if
indisunique is not
true)

indisclustered bool If true, the table was last
clustered on this index

indisvalid bool If both this flag and
indisready are true,
the index is currently
valid for queries. False
means the index is
possibly incomplete: it
must still be modified
by INSERT/UPDATE
operations, but it cannot
safely be used for
queries. If it is unique,
the uniqueness property
is not guaranteed true
either.

1795

Chapter 45. System Catalogs

Name Type References Description
indcheckxmin bool If true, queries must not

use the index until the
xmin of this pg_index
row is below their
TransactionXmin

event horizon, because
the table may contain
broken HOT chains with
incompatible rows that
they can see

indisready bool If true, the index is
currently ready for
inserts. False means the
index must be ignored
by INSERT/UPDATE
operations.

indkey int2vector pg_attribute.attnum This is an array of
indnatts values that
indicate which table
columns this index
indexes. For example a
value of 1 3 would
mean that the first and
the third table columns
make up the index key.
A zero in this array
indicates that the
corresponding index
attribute is an expression
over the table columns,
rather than a simple
column reference.

indcollation oidvector pg_collation.oid For each column in the
index key, this contains
the OID of the collation
to use for the index.

indclass oidvector pg_opclass.oid For each column in the
index key, this contains
the OID of the operator
class to use. See
pg_opclass for
details.

1796

Chapter 45. System Catalogs

Name Type References Description
indoption int2vector This is an array of

indnatts values that
store per-column flag
bits. The meaning of the
bits is defined by the
index’s access method.

indexprs pg_node_tree Expression trees (in
nodeToString()

representation) for index
attributes that are not
simple column
references. This is a list
with one element for
each zero entry in
indkey. Null if all
index attributes are
simple references.

indpred pg_node_tree Expression tree (in
nodeToString()

representation) for
partial index predicate.
Null if not a partial
index.

45.26. pg_inherits
The catalog pg_inherits records information about table inheritance hierarchies. There is one entry
for each direct child table in the database. (Indirect inheritance can be determined by following chains of
entries.)

Table 45-26. pg_inherits Columns

Name Type References Description
inhrelid oid pg_class.oid The OID of the child

table

inhparent oid pg_class.oid The OID of the parent
table

1797

Chapter 45. System Catalogs

Name Type References Description
inhseqno int4 If there is more than

one direct parent for a
child table (multiple
inheritance), this
number tells the order in
which the inherited
columns are to be
arranged. The count
starts at 1.

45.27. pg_language
The catalog pg_language registers languages in which you can write functions or stored procedures. See
CREATE LANGUAGE and Chapter 38 for more information about language handlers.

Table 45-27. pg_language Columns

Name Type References Description
lanname name Name of the language

lanowner oid pg_authid.oid Owner of the language

lanispl bool This is false for internal
languages (such as
SQL) and true for
user-defined languages.
Currently, pg_dump still
uses this to determine
which languages need to
be dumped, but this
might be replaced by a
different mechanism in
the future.

lanpltrusted bool True if this is a trusted
language, which means
that it is believed not to
grant access to anything
outside the normal SQL
execution environment.
Only superusers can
create functions in
untrusted languages.

1798

Chapter 45. System Catalogs

Name Type References Description
lanplcallfoid oid pg_proc.oid For noninternal

languages this
references the language
handler, which is a
special function that is
responsible for
executing all functions
that are written in the
particular language

laninline oid pg_proc.oid This references a
function that is
responsible for
executing “inline”
anonymous code blocks
(DO blocks). Zero if
inline blocks are not
supported.

lanvalidator oid pg_proc.oid This references a
language validator
function that is
responsible for checking
the syntax and validity
of new functions when
they are created. Zero if
no validator is provided.

lanacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

45.28. pg_largeobject
The catalog pg_largeobject holds the data making up “large objects”. A large object is identified by
an OID assigned when it is created. Each large object is broken into segments or “pages” small enough
to be conveniently stored as rows in pg_largeobject. The amount of data per page is defined to be
LOBLKSIZE (which is currently BLCKSZ/4, or typically 2 kB).

Prior to PostgreSQL 9.0, there was no permission structure associated with large objects. As a result,
pg_largeobject was publicly readable and could be used to obtain the OIDs (and contents) of all large
objects in the system. This is no longer the case; use pg_largeobject_metadata to obtain a list of
large object OIDs.

Table 45-28. pg_largeobject Columns

1799

Chapter 45. System Catalogs

Name Type References Description
loid oid pg_largeobject_metadata.oidIdentifier of the large

object that includes this
page

pageno int4 Page number of this
page within its large
object (counting from
zero)

data bytea Actual data stored in
the large object. This
will never be more than
LOBLKSIZE bytes and
might be less.

Each row of pg_largeobject holds data for one page of a large object, beginning at byte offset (pageno
* LOBLKSIZE) within the object. The implementation allows sparse storage: pages might be missing, and
might be shorter than LOBLKSIZE bytes even if they are not the last page of the object. Missing regions
within a large object read as zeroes.

45.29. pg_largeobject_metadata
The catalog pg_largeobject_metadata holds metadata associated with large objects. The actual large
object data is stored in pg_largeobject.

Table 45-29. pg_largeobject_metadata Columns

Name Type References Description
lomowner oid pg_authid.oid Owner of the large

object

lomacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

45.30. pg_namespace
The catalog pg_namespace stores namespaces. A namespace is the structure underlying SQL schemas:
each namespace can have a separate collection of relations, types, etc. without name conflicts.

Table 45-30. pg_namespace Columns

Name Type References Description
nspname name Name of the namespace

1800

Chapter 45. System Catalogs

Name Type References Description
nspowner oid pg_authid.oid Owner of the namespace

nspacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

45.31. pg_opclass
The catalog pg_opclass defines index access method operator classes. Each operator class defines se-
mantics for index columns of a particular data type and a particular index access method. An operator class
essentially specifies that a particular operator family is applicable to a particular indexable column data
type. The set of operators from the family that are actually usable with the indexed column are whichever
ones accept the column’s data type as their left-hand input.

Operator classes are described at length in Section 35.14.

Table 45-31. pg_opclass Columns

Name Type References Description
opcmethod oid pg_am.oid Index access method

operator class is for

opcname name Name of this operator
class

opcnamespace oid pg_namespace.oid Namespace of this
operator class

opcowner oid pg_authid.oid Owner of the operator
class

opcfamily oid pg_opfamily.oid Operator family
containing the operator
class

opcintype oid pg_type.oid Data type that the
operator class indexes

opcdefault bool True if this operator
class is the default for
opcintype

opckeytype oid pg_type.oid Type of data stored in
index, or zero if same as
opcintype

An operator class’s opcmethod must match the opfmethod of its containing operator family. Also, there
must be no more than one pg_opclass row having opcdefault true for any given combination of
opcmethod and opcintype.

1801

Chapter 45. System Catalogs

45.32. pg_operator
The catalog pg_operator stores information about operators. See CREATE OPERATOR and Section
35.12 for more information.

Table 45-32. pg_operator Columns

Name Type References Description
oprname name Name of the operator

oprnamespace oid pg_namespace.oid The OID of the
namespace that contains
this operator

oprowner oid pg_authid.oid Owner of the operator

oprkind char b = infix (“both”), l =
prefix (“left”), r =
postfix (“right”)

oprcanmerge bool This operator supports
merge joins

oprcanhash bool This operator supports
hash joins

oprleft oid pg_type.oid Type of the left operand

oprright oid pg_type.oid Type of the right
operand

oprresult oid pg_type.oid Type of the result

oprcom oid pg_operator.oid Commutator of this
operator, if any

oprnegate oid pg_operator.oid Negator of this operator,
if any

oprcode regproc pg_proc.oid Function that
implements this
operator

oprrest regproc pg_proc.oid Restriction selectivity
estimation function for
this operator

oprjoin regproc pg_proc.oid Join selectivity
estimation function for
this operator

Unused column contain zeroes. For example, oprleft is zero for a prefix operator.

45.33. pg_opfamily
The catalog pg_opfamily defines operator families. Each operator family is a collection of operators and
associated support routines that implement the semantics specified for a particular index access method.

1802

Chapter 45. System Catalogs

Furthermore, the operators in a family are all “compatible”, in a way that is specified by the access method.
The operator family concept allows cross-data-type operators to be used with indexes and to be reasoned
about using knowledge of access method semantics.

Operator families are described at length in Section 35.14.

Table 45-33. pg_opfamily Columns

Name Type References Description
opfmethod oid pg_am.oid Index access method

operator family is for

opfname name Name of this operator
family

opfnamespace oid pg_namespace.oid Namespace of this
operator family

opfowner oid pg_authid.oid Owner of the operator
family

The majority of the information defining an operator family is not in its pg_opfamily row, but in the
associated rows in pg_amop, pg_amproc, and pg_opclass.

45.34. pg_pltemplate
The catalog pg_pltemplate stores “template” information for procedural languages. A template for
a language allows the language to be created in a particular database by a simple CREATE LANGUAGE

command, with no need to specify implementation details.

Unlike most system catalogs, pg_pltemplate is shared across all databases of a cluster: there is only one
copy of pg_pltemplate per cluster, not one per database. This allows the information to be accessible
in each database as it is needed.

Table 45-34. pg_pltemplate Columns

Name Type Description
tmplname name Name of the language this

template is for

tmpltrusted boolean True if language is considered
trusted

tmpldbacreate boolean True if language may be created
by a database owner

tmplhandler text Name of call handler function

tmplinline text Name of anonymous-block
handler function, or null if none

tmplvalidator text Name of validator function, or
null if none

1803

Chapter 45. System Catalogs

Name Type Description
tmpllibrary text Path of shared library that

implements language

tmplacl aclitem[] Access privileges for template
(not actually used)

There are not currently any commands that manipulate procedural language templates; to change the built-
in information, a superuser must modify the table using ordinary INSERT, DELETE, or UPDATE commands.

Note: It is likely that pg_pltemplate will be removed in some future release of PostgreSQL, in favor of
keeping this knowledge about procedural languages in their respective extension installation scripts.

45.35. pg_proc
The catalog pg_proc stores information about functions (or procedures). See CREATE FUNCTION and
Section 35.3 for more information.

The table contains data for aggregate functions as well as plain functions. If proisagg is true, there
should be a matching row in pg_aggregate.

Table 45-35. pg_proc Columns

Name Type References Description
proname name Name of the function

pronamespace oid pg_namespace.oid The OID of the
namespace that contains
this function

proowner oid pg_authid.oid Owner of the function

prolang oid pg_language.oid Implementation
language or call
interface of this function

procost float4 Estimated execution
cost (in units of
cpu_operator_cost); if
proretset, this is cost
per row returned

prorows float4 Estimated number of
result rows (zero if not
proretset)

1804

Chapter 45. System Catalogs

Name Type References Description
provariadic oid pg_type.oid Data type of the variadic

array parameter’s
elements, or zero if the
function does not have a
variadic parameter

protransform regproc pg_proc.oid Calls to this function
can be simplified by this
other function (see
Section 35.9.11)

proisagg bool Function is an aggregate
function

proiswindow bool Function is a window
function

prosecdef bool Function is a security
definer (i.e., a “setuid”
function)

proleakproof bool The function has no
side effects. No
information about the
arguments is conveyed
except via the return
value. Any function that
might throw an error
depending on the values
of its arguments is not
leak-proof.

proisstrict bool Function returns null if
any call argument is
null. In that case the
function won’t actually
be called at all.
Functions that are not
“strict” must be
prepared to handle null
inputs.

proretset bool Function returns a set
(i.e., multiple values of
the specified data type)

1805

Chapter 45. System Catalogs

Name Type References Description
provolatile char provolatile tells

whether the function’s
result depends only on
its input arguments, or is
affected by outside
factors. It is i for
“immutable” functions,
which always deliver the
same result for the same
inputs. It is s for
“stable” functions,
whose results (for fixed
inputs) do not change
within a scan. It is v for
“volatile” functions,
whose results might
change at any time. (Use
v also for functions with
side-effects, so that calls
to them cannot get
optimized away.)

pronargs int2 Number of input
arguments

pronargdefaults int2 Number of arguments
that have defaults

prorettype oid pg_type.oid Data type of the return
value

proargtypes oidvector pg_type.oid An array with the data
types of the function
arguments. This
includes only input
arguments (including
INOUT and VARIADIC

arguments), and thus
represents the call
signature of the
function.

1806

Chapter 45. System Catalogs

Name Type References Description
proallargtypes oid[] pg_type.oid An array with the data

types of the function
arguments. This
includes all arguments
(including OUT and
INOUT arguments);
however, if all the
arguments are IN
arguments, this field will
be null. Note that
subscripting is 1-based,
whereas for historical
reasons proargtypes
is subscripted from 0.

proargmodes char[] An array with the
modes of the function
arguments, encoded as i
for IN arguments, o for
OUT arguments, b for
INOUT arguments, v for
VARIADIC arguments, t
for TABLE arguments. If
all the arguments are IN
arguments, this field will
be null. Note that
subscripts correspond to
positions of
proallargtypes not
proargtypes.

proargnames text[] An array with the
names of the function
arguments. Arguments
without a name are set
to empty strings in the
array. If none of the
arguments have a name,
this field will be null.
Note that subscripts
correspond to positions
of proallargtypes
not proargtypes.

1807

Chapter 45. System Catalogs

Name Type References Description
proargdefaults pg_node_tree Expression trees (in

nodeToString()

representation) for
default values. This is a
list with
pronargdefaults

elements, corresponding
to the last N input
arguments (i.e., the last
N proargtypes

positions). If none of the
arguments have defaults,
this field will be null.

prosrc text This tells the function
handler how to invoke
the function. It might be
the actual source code of
the function for
interpreted languages, a
link symbol, a file name,
or just about anything
else, depending on the
implementation
language/call
convention.

probin text Additional information
about how to invoke the
function. Again, the
interpretation is
language-specific.

proconfig text[] Function’s local settings
for run-time
configuration variables

proacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

For compiled functions, both built-in and dynamically loaded, prosrc contains the function’s C-language
name (link symbol). For all other currently-known language types, prosrc contains the function’s source
text. probin is unused except for dynamically-loaded C functions, for which it gives the name of the
shared library file containing the function.

1808

Chapter 45. System Catalogs

45.36. pg_range
The catalog pg_range stores information about range types. This is in addition to the types’ entries in
pg_type.

Table 45-36. pg_range Columns

Name Type References Description
rngtypid oid pg_type.oid OID of the range type

rngsubtype oid pg_type.oid OID of the element type
(subtype) of this range
type

rngcollation oid pg_collation.oid OID of the collation
used for range
comparisons, or 0 if
none

rngsubopc oid pg_opclass.oid OID of the subtype’s
operator class used for
range comparisons

rngcanonical regproc pg_proc.oid OID of the function to
convert a range value
into canonical form, or 0
if none

rngsubdiff regproc pg_proc.oid OID of the function to
return the difference
between two element
values as double
precision, or 0 if
none

rngsubopc (plus rngcollation, if the element type is collatable) determines the sort ordering used by
the range type. rngcanonical is used when the element type is discrete. rngsubdiff is optional but
should be supplied to improve performance of GiST indexes on the range type.

45.37. pg_rewrite
The catalog pg_rewrite stores rewrite rules for tables and views.

Table 45-37. pg_rewrite Columns

Name Type References Description
rulename name Rule name

ev_class oid pg_class.oid The table this rule is for

1809

Chapter 45. System Catalogs

Name Type References Description
ev_attr int2 The column this rule is

for (currently, always -1
to indicate the whole
table)

ev_type char Event type that the rule
is for: 1 = SELECT, 2 =
UPDATE, 3 = INSERT, 4
= DELETE

ev_enabled char Controls in which
session_replication_role
modes the rule fires. O =
rule fires in “origin” and
“local” modes, D = rule
is disabled, R = rule fires
in “replica” mode, A =
rule fires always.

is_instead bool True if the rule is an
INSTEAD rule

ev_qual pg_node_tree Expression tree (in the
form of a
nodeToString()

representation) for the
rule’s qualifying
condition

ev_action pg_node_tree Query tree (in the form
of a nodeToString()
representation) for the
rule’s action

Note: pg_class.relhasrules must be true if a table has any rules in this catalog.

45.38. pg_seclabel
The catalog pg_seclabel stores security labels on database objects. Security labels can be manipulated
with the SECURITY LABEL command. For an easier way to view security labels, see Section 45.63.

See also pg_shseclabel, which performs a similar function for security labels of database objects that
are shared across a database cluster.

Table 45-38. pg_seclabel Columns

Name Type References Description

1810

Chapter 45. System Catalogs

Name Type References Description
objoid oid any OID column The OID of the object

this security label
pertains to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

objsubid int4 For a security label on a
table column, this is the
column number (the
objoid and classoid

refer to the table itself).
For all other object
types, this column is
zero.

provider text The label provider
associated with this
label.

label text The security label
applied to this object.

45.39. pg_shdepend
The catalog pg_shdepend records the dependency relationships between database objects and shared
objects, such as roles. This information allows PostgreSQL to ensure that those objects are unreferenced
before attempting to delete them.

See also pg_depend, which performs a similar function for dependencies involving objects within a
single database.

Unlike most system catalogs, pg_shdepend is shared across all databases of a cluster: there is only one
copy of pg_shdepend per cluster, not one per database.

Table 45-39. pg_shdepend Columns

Name Type References Description
dbid oid pg_database.oid The OID of the database

the dependent object is
in, or zero for a shared
object

classid oid pg_class.oid The OID of the system
catalog the dependent
object is in

objid oid any OID column The OID of the specific
dependent object

1811

Chapter 45. System Catalogs

Name Type References Description
objsubid int4 For a table column, this

is the column number
(the objid and
classid refer to the
table itself). For all
other object types, this
column is zero.

refclassid oid pg_class.oid The OID of the system
catalog the referenced
object is in (must be a
shared catalog)

refobjid oid any OID column The OID of the specific
referenced object

deptype char A code defining the
specific semantics of
this dependency
relationship; see text

In all cases, a pg_shdepend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

SHARED_DEPENDENCY_OWNER (o)

The referenced object (which must be a role) is the owner of the dependent object.

SHARED_DEPENDENCY_ACL (a)

The referenced object (which must be a role) is mentioned in the ACL (access control list, i.e.,
privileges list) of the dependent object. (A SHARED_DEPENDENCY_ACL entry is not made for the
owner of the object, since the owner will have a SHARED_DEPENDENCY_OWNER entry anyway.)

SHARED_DEPENDENCY_PIN (p)

There is no dependent object; this type of entry is a signal that the system itself depends on the
referenced object, and so that object must never be deleted. Entries of this type are created only by
initdb. The columns for the dependent object contain zeroes.

Other dependency flavors might be needed in future. Note in particular that the current definition only
supports roles as referenced objects.

45.40. pg_shdescription
The catalog pg_shdescription stores optional descriptions (comments) for shared database objects.
Descriptions can be manipulated with the COMMENT command and viewed with psql’s \d commands.

See also pg_description, which performs a similar function for descriptions involving objects within
a single database.

1812

Chapter 45. System Catalogs

Unlike most system catalogs, pg_shdescription is shared across all databases of a cluster: there is
only one copy of pg_shdescription per cluster, not one per database.

Table 45-40. pg_shdescription Columns

Name Type References Description
objoid oid any OID column The OID of the object

this description pertains
to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

description text Arbitrary text that
serves as the description
of this object

45.41. pg_shseclabel
The catalog pg_shseclabel stores security labels on shared database objects. Security labels can be ma-
nipulated with the SECURITY LABEL command. For an easier way to view security labels, see Section
45.63.

See also pg_seclabel, which performs a similar function for security labels involving objects within a
single database.

Unlike most system catalogs, pg_shseclabel is shared across all databases of a cluster: there is only
one copy of pg_shseclabel per cluster, not one per database.

Table 45-41. pg_shseclabel Columns

Name Type References Description
objoid oid any OID column The OID of the object

this security label
pertains to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

provider text The label provider
associated with this
label.

label text The security label
applied to this object.

1813

Chapter 45. System Catalogs

45.42. pg_statistic
The catalog pg_statistic stores statistical data about the contents of the database. Entries are created
by ANALYZE and subsequently used by the query planner. Note that all the statistical data is inherently
approximate, even assuming that it is up-to-date.

Normally there is one entry, with stainherit = false, for each table column that has been analyzed. If
the table has inheritance children, a second entry with stainherit = true is also created. This row rep-
resents the column’s statistics over the inheritance tree, i.e., statistics for the data you’d see with SELECT

column FROM table*, whereas the stainherit = false row represents the results of SELECT column

FROM ONLY table.

pg_statistic also stores statistical data about the values of index expressions. These are described as
if they were actual data columns; in particular, starelid references the index. No entry is made for
an ordinary non-expression index column, however, since it would be redundant with the entry for the
underlying table column. Currently, entries for index expressions always have stainherit = false.

Since different kinds of statistics might be appropriate for different kinds of data, pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general statistics
(such as nullness) are given dedicated columns in pg_statistic. Everything else is stored in “slots”,
which are groups of associated columns whose content is identified by a code number in one of the slot’s
columns. For more information see src/include/catalog/pg_statistic.h.

pg_statistic should not be readable by the public, since even statistical information about a table’s
contents might be considered sensitive. (Example: minimum and maximum values of a salary column
might be quite interesting.) pg_stats is a publicly readable view on pg_statistic that only exposes
information about those tables that are readable by the current user.

Table 45-42. pg_statistic Columns

Name Type References Description
starelid oid pg_class.oid The table or index that

the described column
belongs to

staattnum int2 pg_attribute.attnum The number of the
described column

stainherit bool If true, the stats include
inheritance child
columns, not just the
values in the specified
relation

stanullfrac float4 The fraction of the
column’s entries that are
null

stawidth int4 The average stored
width, in bytes, of
nonnull entries

1814

Chapter 45. System Catalogs

Name Type References Description
stadistinct float4 The number of distinct

nonnull data values in
the column. A value
greater than zero is the
actual number of
distinct values. A value
less than zero is the
negative of a multiplier
for the number of rows
in the table; for
example, a column in
which values appear
about twice on the
average could be
represented by
stadistinct = -0.5. A
zero value means the
number of distinct
values is unknown.

stakindN int2 A code number
indicating the kind of
statistics stored in the
N th “slot” of the
pg_statistic row.

staopN oid pg_operator.oid An operator used to
derive the statistics
stored in the N th “slot”.
For example, a
histogram slot would
show the < operator that
defines the sort order of
the data.

stanumbersN float4[] Numerical statistics of
the appropriate kind for
the N th “slot”, or null if
the slot kind does not
involve numerical
values

1815

Chapter 45. System Catalogs

Name Type References Description
stavaluesN anyarray Column data values of

the appropriate kind for
the N th “slot”, or null if
the slot kind does not
store any data values.
Each array’s element
values are actually of
the specific column’s
data type, or a related
type such as an array’s
element type, so there is
no way to define these
columns’ type more
specifically than
anyarray.

45.43. pg_tablespace
The catalog pg_tablespace stores information about the available tablespaces. Tables can be placed in
particular tablespaces to aid administration of disk layout.

Unlike most system catalogs, pg_tablespace is shared across all databases of a cluster: there is only
one copy of pg_tablespace per cluster, not one per database.

Table 45-43. pg_tablespace Columns

Name Type References Description
spcname name Tablespace name

spcowner oid pg_authid.oid Owner of the
tablespace, usually the
user who created it

spcacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

spcoptions text[] Tablespace-level
options, as
“keyword=value”
strings

45.44. pg_trigger
The catalog pg_trigger stores triggers on tables and views. See CREATE TRIGGER for more informa-

1816

Chapter 45. System Catalogs

tion.

Table 45-44. pg_trigger Columns

Name Type References Description
tgrelid oid pg_class.oid The table this trigger is

on

tgname name Trigger name (must be
unique among triggers
of same table)

tgfoid oid pg_proc.oid The function to be
called

tgtype int2 Bit mask identifying
trigger firing conditions

tgenabled char Controls in which
session_replication_role
modes the trigger fires.
O = trigger fires in
“origin” and “local”
modes, D = trigger is
disabled, R = trigger
fires in “replica” mode,
A = trigger fires always.

tgisinternal bool True if trigger is
internally generated
(usually, to enforce the
constraint identified by
tgconstraint)

tgconstrrelid oid pg_class.oid The table referenced by
a referential integrity
constraint

tgconstrindid oid pg_class.oid The index supporting a
unique, primary key, or
referential integrity
constraint

tgconstraint oid pg_constraint.oid The pg_constraint
entry associated with the
trigger, if any

tgdeferrable bool True if constraint trigger
is deferrable

tginitdeferred bool True if constraint trigger
is initially deferred

tgnargs int2 Number of argument
strings passed to trigger
function

1817

Chapter 45. System Catalogs

Name Type References Description
tgattr int2vector pg_attribute.attnum Column numbers, if

trigger is
column-specific;
otherwise an empty
array

tgargs bytea Argument strings to
pass to trigger, each
NULL-terminated

tgqual pg_node_tree Expression tree (in
nodeToString()

representation) for the
trigger’s WHEN
condition, or null if
none

Currently, column-specific triggering is supported only for UPDATE events, and so tgattr is relevant only
for that event type. tgtype might contain bits for other event types as well, but those are presumed to be
table-wide regardless of what is in tgattr.

Note: When tgconstraint is nonzero, tgconstrrelid, tgconstrindid, tgdeferrable, and
tginitdeferred are largely redundant with the referenced pg_constraint entry. However, it is
possible for a non-deferrable trigger to be associated with a deferrable constraint: foreign key
constraints can have some deferrable and some non-deferrable triggers.

Note: pg_class.relhastriggers must be true if a relation has any triggers in this catalog.

45.45. pg_ts_config
The pg_ts_config catalog contains entries representing text search configurations. A configuration
specifies a particular text search parser and a list of dictionaries to use for each of the parser’s output
token types. The parser is shown in the pg_ts_config entry, but the token-to-dictionary mapping is
defined by subsidiary entries in pg_ts_config_map.

PostgreSQL’s text search features are described at length in Chapter 12.

Table 45-45. pg_ts_config Columns

Name Type References Description
cfgname name Text search

configuration name

1818

Chapter 45. System Catalogs

Name Type References Description
cfgnamespace oid pg_namespace.oid The OID of the

namespace that contains
this configuration

cfgowner oid pg_authid.oid Owner of the
configuration

cfgparser oid pg_ts_parser.oid The OID of the text
search parser for this
configuration

45.46. pg_ts_config_map
The pg_ts_config_map catalog contains entries showing which text search dictionaries should be con-
sulted, and in what order, for each output token type of each text search configuration’s parser.

PostgreSQL’s text search features are described at length in Chapter 12.

Table 45-46. pg_ts_config_map Columns

Name Type References Description
mapcfg oid pg_ts_config.oid The OID of the

pg_ts_config entry
owning this map entry

maptokentype integer A token type emitted by
the configuration’s
parser

mapseqno integer Order in which to
consult this entry (lower
mapseqnos first)

mapdict oid pg_ts_dict.oid The OID of the text
search dictionary to
consult

45.47. pg_ts_dict
The pg_ts_dict catalog contains entries defining text search dictionaries. A dictionary depends on a text
search template, which specifies all the implementation functions needed; the dictionary itself provides
values for the user-settable parameters supported by the template. This division of labor allows dictionaries
to be created by unprivileged users. The parameters are specified by a text string dictinitoption,
whose format and meaning vary depending on the template.

PostgreSQL’s text search features are described at length in Chapter 12.

1819

Chapter 45. System Catalogs

Table 45-47. pg_ts_dict Columns

Name Type References Description
dictname name Text search dictionary

name

dictnamespace oid pg_namespace.oid The OID of the
namespace that contains
this dictionary

dictowner oid pg_authid.oid Owner of the dictionary

dicttemplate oid pg_ts_template.oid The OID of the text
search template for this
dictionary

dictinitoption text Initialization option
string for the template

45.48. pg_ts_parser
The pg_ts_parser catalog contains entries defining text search parsers. A parser is responsible for split-
ting input text into lexemes and assigning a token type to each lexeme. Since a parser must be implemented
by C-language-level functions, creation of new parsers is restricted to database superusers.

PostgreSQL’s text search features are described at length in Chapter 12.

Table 45-48. pg_ts_parser Columns

Name Type References Description
prsname name Text search parser name

prsnamespace oid pg_namespace.oid The OID of the
namespace that contains
this parser

prsstart regproc pg_proc.oid OID of the parser’s
startup function

prstoken regproc pg_proc.oid OID of the parser’s
next-token function

prsend regproc pg_proc.oid OID of the parser’s
shutdown function

prsheadline regproc pg_proc.oid OID of the parser’s
headline function

prslextype regproc pg_proc.oid OID of the parser’s
lextype function

1820

Chapter 45. System Catalogs

45.49. pg_ts_template
The pg_ts_template catalog contains entries defining text search templates. A template is the im-
plementation skeleton for a class of text search dictionaries. Since a template must be implemented by
C-language-level functions, creation of new templates is restricted to database superusers.

PostgreSQL’s text search features are described at length in Chapter 12.

Table 45-49. pg_ts_template Columns

Name Type References Description
tmplname name Text search template

name

tmplnamespace oid pg_namespace.oid The OID of the
namespace that contains
this template

tmplinit regproc pg_proc.oid OID of the template’s
initialization function

tmpllexize regproc pg_proc.oid OID of the template’s
lexize function

45.50. pg_type
The catalog pg_type stores information about data types. Base types and enum types (scalar types) are
created with CREATE TYPE, and domains with CREATE DOMAIN. A composite type is automatically
created for each table in the database, to represent the row structure of the table. It is also possible to
create composite types with CREATE TYPE AS.

Table 45-50. pg_type Columns

Name Type References Description
typname name Data type name

typnamespace oid pg_namespace.oid The OID of the
namespace that contains
this type

typowner oid pg_authid.oid Owner of the type

1821

Chapter 45. System Catalogs

Name Type References Description
typlen int2 For a fixed-size type,

typlen is the number
of bytes in the internal
representation of the
type. But for a
variable-length type,
typlen is negative. -1
indicates a “varlena”
type (one that has a
length word), -2
indicates a
null-terminated C string.

typbyval bool typbyval determines
whether internal
routines pass a value of
this type by value or by
reference. typbyval
had better be false if
typlen is not 1, 2, or 4
(or 8 on machines where
Datum is 8 bytes).
Variable-length types
are always passed by
reference. Note that
typbyval can be false
even if the length would
allow pass-by-value.

typtype char typtype is b for a base
type, c for a composite
type (e.g., a table’s row
type), d for a domain, e
for an enum type, p for a
pseudo-type, or r for a
range type. See also
typrelid and
typbasetype.

typcategory char typcategory is an
arbitrary classification
of data types that is used
by the parser to
determine which
implicit casts should be
“preferred”. See Table
45-51.

1822

Chapter 45. System Catalogs

Name Type References Description
typispreferred bool True if the type is a

preferred cast target
within its
typcategory

typisdefined bool True if the type is
defined, false if this is a
placeholder entry for a
not-yet-defined type.
When typisdefined

is false, nothing except
the type name,
namespace, and OID
can be relied on.

typdelim char Character that separates
two values of this type
when parsing array
input. Note that the
delimiter is associated
with the array element
data type, not the array
data type.

typrelid oid pg_class.oid If this is a composite
type (see typtype),
then this column points
to the pg_class entry
that defines the
corresponding table.
(For a free-standing
composite type, the
pg_class entry doesn’t
really represent a table,
but it is needed anyway
for the type’s
pg_attribute entries
to link to.) Zero for
non-composite types.

1823

Chapter 45. System Catalogs

Name Type References Description
typelem oid pg_type.oid If typelem is not 0

then it identifies another
row in pg_type. The
current type can then be
subscripted like an array
yielding values of type
typelem. A “true”
array type is variable
length (typlen = -1),
but some fixed-length
(typlen > 0) types also
have nonzero typelem,
for example name and
point. If a fixed-length
type has a typelem
then its internal
representation must be
some number of values
of the typelem data
type with no other data.
Variable-length array
types have a header
defined by the array
subroutines.

typarray oid pg_type.oid If typarray is not 0
then it identifies another
row in pg_type, which
is the “true” array type
having this type as
element

typinput regproc pg_proc.oid Input conversion
function (text format)

typoutput regproc pg_proc.oid Output conversion
function (text format)

typreceive regproc pg_proc.oid Input conversion
function (binary
format), or 0 if none

typsend regproc pg_proc.oid Output conversion
function (binary
format), or 0 if none

typmodin regproc pg_proc.oid Type modifier input
function, or 0 if type
does not support
modifiers

1824

Chapter 45. System Catalogs

Name Type References Description
typmodout regproc pg_proc.oid Type modifier output

function, or 0 to use the
standard format

typanalyze regproc pg_proc.oid Custom ANALYZE

function, or 0 to use the
standard function

1825

Chapter 45. System Catalogs

Name Type References Description
typalign char typalign is the

alignment required
when storing a value of
this type. It applies to
storage on disk as well
as most representations
of the value inside
PostgreSQL. When
multiple values are
stored consecutively,
such as in the
representation of a
complete row on disk,
padding is inserted
before a datum of this
type so that it begins on
the specified boundary.
The alignment
reference is the
beginning of the first
datum in the sequence.
Possible values are:
• c = char alignment,

i.e., no alignment
needed.

• s = short align-
ment (2 bytes on
most machines).

• i = int alignment
(4 bytes on most ma-
chines).

• d = double align-
ment (8 bytes on
many machines, but
by no means all).

Note: For types
used in system
tables, it is critical
that the size and
alignment defined
in pg_type agree
with the way that
the compiler will
lay out the column
in a structure
representing a
table row. 1826

Chapter 45. System Catalogs

Name Type References Description
typstorage char typstorage tells for

varlena types (those
with typlen = -1) if
the type is prepared
for toasting and what
the default strategy for
attributes of this type
should be. Possible
values are • p: Value
must always be stored
plain.

• e: Value can be
stored in a “sec-
ondary” relation (if
relation has one, see
pg_class.reltoastrelid).

• m: Value can be
stored compressed
inline.

• x: Value can be
stored compressed
inline or stored in
“secondary” storage.

Note that m columns
can also be moved out
to secondary storage,
but only as a last resort
(e and x columns are
moved first).

typnotnull bool typnotnull represents
a not-null constraint on
a type. Used for
domains only.

typbasetype oid pg_type.oid If this is a domain (see
typtype), then
typbasetype identifies
the type that this one is
based on. Zero if this
type is not a domain.

1827

Chapter 45. System Catalogs

Name Type References Description
typtypmod int4 Domains use

typtypmod to record
the typmod to be
applied to their base
type (-1 if base type
does not use a typmod).
-1 if this type is not a
domain.

typndims int4 typndims is the
number of array
dimensions for a domain
over an array (that is,
typbasetype is an
array type). Zero for
types other than
domains over array
types.

typcollation oid pg_collation.oid typcollation

specifies the collation of
the type. If the type does
not support collations,
this will be zero. A base
type that sup-
ports collations will have
DEFAULT_COLLATION_OID

here. A domain over a
collatable type can have
some other collation
OID, if one was
specified for the
domain.

typdefaultbin pg_node_tree If typdefaultbin is
not null, it is the
nodeToString()

representation of a
default expression for
the type. This is only
used for domains.

1828

Chapter 45. System Catalogs

Name Type References Description
typdefault text typdefault is null if

the type has no
associated default value.
If typdefaultbin is
not null, typdefault
must contain a
human-readable version
of the default expression
represented by
typdefaultbin. If
typdefaultbin is null
and typdefault is not,
then typdefault is the
external representation
of the type’s default
value, which can be fed
to the type’s input
converter to produce a
constant.

typacl aclitem[] Access privileges; see
GRANT and REVOKE
for details

Table 45-51 lists the system-defined values of typcategory. Any future additions to this list will also be
upper-case ASCII letters. All other ASCII characters are reserved for user-defined categories.

Table 45-51. typcategory Codes

Code Category
A Array types

B Boolean types

C Composite types

D Date/time types

E Enum types

G Geometric types

I Network address types

N Numeric types

P Pseudo-types

R Range types

S String types

T Timespan types

U User-defined types

V Bit-string types

1829

Chapter 45. System Catalogs

Code Category
X unknown type

45.51. pg_user_mapping
The catalog pg_user_mapping stores the mappings from local user to remote. Access to this catalog is
restricted from normal users, use the view pg_user_mappings instead.

Table 45-52. pg_user_mapping Columns

Name Type References Description
umuser oid pg_authid.oid OID of the local role

being mapped, 0 if the
user mapping is public

umserver oid pg_foreign_server.oid The OID of the foreign
server that contains this
mapping

umoptions text[] User mapping specific
options, as
“keyword=value”
strings

45.52. System Views
In addition to the system catalogs, PostgreSQL provides a number of built-in views. Some system views
provide convenient access to some commonly used queries on the system catalogs. Other views provide
access to internal server state.

The information schema (Chapter 34) provides an alternative set of views which overlap the functionality
of the system views. Since the information schema is SQL-standard whereas the views described here are
PostgreSQL-specific, it’s usually better to use the information schema if it provides all the information
you need.

Table 45-53 lists the system views described here. More detailed documentation of each view follows
below. There are some additional views that provide access to the results of the statistics collector; they
are described in Table 27-1.

Except where noted, all the views described here are read-only.

Table 45-53. System Views

View Name Purpose
pg_available_extensions available extensions

pg_available_extension_versions available versions of extensions

1830

Chapter 45. System Catalogs

View Name Purpose
pg_cursors open cursors

pg_group groups of database users

pg_indexes indexes

pg_locks currently held locks

pg_prepared_statements prepared statements

pg_prepared_xacts prepared transactions

pg_roles database roles

pg_rules rules

pg_seclabels security labels

pg_settings parameter settings

pg_shadow database users

pg_stats planner statistics

pg_tables tables

pg_timezone_abbrevs time zone abbreviations

pg_timezone_names time zone names

pg_user database users

pg_user_mappings user mappings

pg_views views

45.53. pg_available_extensions
The pg_available_extensions view lists the extensions that are available for installation. See also
the pg_extension catalog, which shows the extensions currently installed.

Table 45-54. pg_available_extensions Columns

Name Type Description
name name Extension name

default_version text Name of default version, or NULL
if none is specified

installed_version text Currently installed version of the
extension, or NULL if not
installed

comment text Comment string from the
extension’s control file

The pg_available_extensions view is read only.

1831

Chapter 45. System Catalogs

45.54. pg_available_extension_versions
The pg_available_extension_versions view lists the specific extension versions that are available
for installation. See also the pg_extension catalog, which shows the extensions currently installed.

Table 45-55. pg_available_extension_versions Columns

Name Type Description
name name Extension name

version text Version name

installed bool True if this version of this
extension is currently installed

superuser bool True if only superusers are
allowed to install this extension

relocatable bool True if extension can be
relocated to another schema

schema name Name of the schema that the
extension must be installed into,
or NULL if partially or fully
relocatable

requires name[] Names of prerequisite
extensions, or NULL if none

comment text Comment string from the
extension’s control file

The pg_available_extension_versions view is read only.

45.55. pg_cursors
The pg_cursors view lists the cursors that are currently available. Cursors can be defined in several
ways:

• via the DECLARE statement in SQL

• via the Bind message in the frontend/backend protocol, as described in Section 46.2.3

• via the Server Programming Interface (SPI), as described in Section 43.1

The pg_cursors view displays cursors created by any of these means. Cursors only exist for the duration
of the transaction that defines them, unless they have been declared WITH HOLD. Therefore non-holdable
cursors are only present in the view until the end of their creating transaction.

Note: Cursors are used internally to implement some of the components of PostgreSQL, such as
procedural languages. Therefore, the pg_cursors view might include cursors that have not been
explicitly created by the user.

1832

Chapter 45. System Catalogs

Table 45-56. pg_cursors Columns

Name Type Description
name text The name of the cursor

statement text The verbatim query string
submitted to declare this cursor

is_holdable boolean true if the cursor is holdable
(that is, it can be accessed after
the transaction that declared the
cursor has committed); false
otherwise

is_binary boolean true if the cursor was declared
BINARY; false otherwise

is_scrollable boolean true if the cursor is scrollable
(that is, it allows rows to be
retrieved in a nonsequential
manner); false otherwise

creation_time timestamptz The time at which the cursor was
declared

The pg_cursors view is read only.

45.56. pg_group
The view pg_group exists for backwards compatibility: it emulates a catalog that existed in PostgreSQL
before version 8.1. It shows the names and members of all roles that are marked as not rolcanlogin,
which is an approximation to the set of roles that are being used as groups.

Table 45-57. pg_group Columns

Name Type References Description
groname name pg_authid.rolname Name of the group

grosysid oid pg_authid.oid ID of this group

grolist oid[] pg_authid.oid An array containing the
IDs of the roles in this
group

45.57. pg_indexes
The view pg_indexes provides access to useful information about each index in the database.

1833

Chapter 45. System Catalogs

Table 45-58. pg_indexes Columns

Name Type References Description
schemaname name pg_namespace.nspname Name of schema

containing table and
index

tablename name pg_class.relname Name of table the index
is for

indexname name pg_class.relname Name of index

tablespace name pg_tablespace.spcnameName of tablespace
containing index (null if
default for database)

indexdef text Index definition (a
reconstructed CREATE

INDEX command)

45.58. pg_locks
The view pg_locks provides access to information about the locks held by open transactions within the
database server. See Chapter 13 for more discussion of locking.

pg_locks contains one row per active lockable object, requested lock mode, and relevant transaction.
Thus, the same lockable object might appear many times, if multiple transactions are holding or waiting
for locks on it. However, an object that currently has no locks on it will not appear at all.

There are several distinct types of lockable objects: whole relations (e.g., tables), individual pages of rela-
tions, individual tuples of relations, transaction IDs (both virtual and permanent IDs), and general database
objects (identified by class OID and object OID, in the same way as in pg_description or pg_depend).
Also, the right to extend a relation is represented as a separate lockable object. Also, “advisory” locks can
be taken on numbers that have user-defined meanings.

Table 45-59. pg_locks Columns

Name Type References Description
locktype text Type of the lockable

object: relation,
extend, page, tuple,
transactionid,
virtualxid, object,
userlock, or
advisory

1834

Chapter 45. System Catalogs

Name Type References Description
database oid pg_database.oid OID of the database in

which the lock target
exists, or zero if the
target is a shared object,
or null if the target is a
transaction ID

relation oid pg_class.oid OID of the relation
targeted by the lock, or
null if the target is not a
relation or part of a
relation

page integer Page number targeted
by the lock within the
relation, or null if the
target is not a relation
page or tuple

tuple smallint Tuple number targeted
by the lock within the
page, or null if the target
is not a tuple

virtualxid text Virtual ID of the
transaction targeted by
the lock, or null if the
target is not a virtual
transaction ID

transactionid xid ID of the transaction
targeted by the lock, or
null if the target is not a
transaction ID

classid oid pg_class.oid OID of the system
catalog containing the
lock target, or null if the
target is not a general
database object

objid oid any OID column OID of the lock target
within its system
catalog, or null if the
target is not a general
database object

1835

Chapter 45. System Catalogs

Name Type References Description
objsubid smallint Column number

targeted by the lock (the
classid and objid

refer to the table itself),
or zero if the target is
some other general
database object, or null
if the target is not a
general database object

virtualtransaction text Virtual ID of the
transaction that is
holding or awaiting this
lock

pid integer Process ID of the server
process holding or
awaiting this lock, or
null if the lock is held by
a prepared transaction

mode text Name of the lock mode
held or desired by this
process (see Section
13.3.1 and Section
13.2.3)

granted boolean True if lock is held,
false if lock is awaited

fastpath boolean True if lock was taken
via fast path, false if
taken via main lock
table

granted is true in a row representing a lock held by the indicated transaction. False indicates that this
transaction is currently waiting to acquire this lock, which implies that some other transaction is holding a
conflicting lock mode on the same lockable object. The waiting transaction will sleep until the other lock
is released (or a deadlock situation is detected). A single transaction can be waiting to acquire at most one
lock at a time.

Every transaction holds an exclusive lock on its virtual transaction ID for its entire duration. If a permanent
ID is assigned to the transaction (which normally happens only if the transaction changes the state of
the database), it also holds an exclusive lock on its permanent transaction ID until it ends. When one
transaction finds it necessary to wait specifically for another transaction, it does so by attempting to acquire
share lock on the other transaction ID (either virtual or permanent ID depending on the situation). That
will succeed only when the other transaction terminates and releases its locks.

Although tuples are a lockable type of object, information about row-level locks is stored on disk, not
in memory, and therefore row-level locks normally do not appear in this view. If a transaction is waiting
for a row-level lock, it will usually appear in the view as waiting for the permanent transaction ID of the
current holder of that row lock.

1836

Chapter 45. System Catalogs

Advisory locks can be acquired on keys consisting of either a single bigint value or two integer values.
A bigint key is displayed with its high-order half in the classid column, its low-order half in the
objid column, and objsubid equal to 1. Integer keys are displayed with the first key in the classid

column, the second key in the objid column, and objsubid equal to 2. The actual meaning of the keys
is up to the user. Advisory locks are local to each database, so the database column is meaningful for an
advisory lock.

pg_locks provides a global view of all locks in the database cluster, not only those relevant to the
current database. Although its relation column can be joined against pg_class.oid to identify locked
relations, this will only work correctly for relations in the current database (those for which the database
column is either the current database’s OID or zero).

The pid column can be joined to the pid column of the pg_stat_activity view to get more infor-
mation on the session holding or waiting to hold each lock. Also, if you are using prepared transactions,
the transaction column can be joined to the transaction column of the pg_prepared_xacts view
to get more information on prepared transactions that hold locks. (A prepared transaction can never be
waiting for a lock, but it continues to hold the locks it acquired while running.)

The pg_locks view displays data from both the regular lock manager and the predicate lock manager,
which are separate systems; in addition, the regular lock manager subdivides its locks into regular and
fast-path locks. This data is not guaranteed to be entirely consistent. When the view is queried, data on
fast-path locks (with fastpath = true) is gathered from each backend one at a time, without freezing
the state of the entire lock manager, so it is possible for locks to be taken or released while information is
gathered. Note, however, that these locks are known not to conflict with any other lock currently in place.
After all backends have been queried for fast-path locks, the remainder of the regular lock manager is
locked as a unit, and a consistent snapshot of all remaining locks is collected as an atomic action. After
unlocking the regular lock manager, the predicate lock manager is similarly locked and all predicate locks
are collected as an atomic action. Thus, with the exception of fast-path locks, each lock manager will
deliver a consistent set of results, but as we do not lock both lock managers simultaneously, it is possible
for locks to be taken or released after we interrogate the regular lock manager and before we interrogate
the predicate lock manager.

Locking the regular and/or predicate lock manager could have some impact on database performance if
this view is very frequently accessed. The locks are held only for the minimum amount of time neces-
sary to obtain data from the lock managers, but this does not completely eliminate the possibility of a
performance impact.

45.59. pg_prepared_statements
The pg_prepared_statements view displays all the prepared statements that are available in the cur-
rent session. See PREPARE for more information about prepared statements.

pg_prepared_statements contains one row for each prepared statement. Rows are added to the view
when a new prepared statement is created and removed when a prepared statement is released (for exam-
ple, via the DEALLOCATE command).

Table 45-60. pg_prepared_statements Columns

Name Type Description

1837

Chapter 45. System Catalogs

Name Type Description
name text The identifier of the prepared

statement

statement text The query string submitted by
the client to create this prepared
statement. For prepared
statements created via SQL, this
is the PREPARE statement
submitted by the client. For
prepared statements created via
the frontend/backend protocol,
this is the text of the prepared
statement itself.

prepare_time timestamptz The time at which the prepared
statement was created

parameter_types regtype[] The expected parameter types
for the prepared statement in the
form of an array of regtype.
The OID corresponding to an
element of this array can be
obtained by casting the regtype
value to oid.

from_sql boolean true if the prepared statement
was created via the PREPARE
SQL statement; false if the
statement was prepared via the
frontend/backend protocol

The pg_prepared_statements view is read only.

45.60. pg_prepared_xacts
The view pg_prepared_xacts displays information about transactions that are currently prepared for
two-phase commit (see PREPARE TRANSACTION for details).

pg_prepared_xacts contains one row per prepared transaction. An entry is removed when the transac-
tion is committed or rolled back.

Table 45-61. pg_prepared_xacts Columns

Name Type References Description
transaction xid Numeric transaction

identifier of the prepared
transaction

1838

Chapter 45. System Catalogs

Name Type References Description
gid text Global transaction

identifier that was
assigned to the
transaction

prepared timestamp with

time zone

Time at which the
transaction was
prepared for commit

owner name pg_authid.rolname Name of the user that
executed the transaction

database name pg_database.datname Name of the database in
which the transaction
was executed

When the pg_prepared_xacts view is accessed, the internal transaction manager data structures are
momentarily locked, and a copy is made for the view to display. This ensures that the view produces a
consistent set of results, while not blocking normal operations longer than necessary. Nonetheless there
could be some impact on database performance if this view is frequently accessed.

45.61. pg_roles
The view pg_roles provides access to information about database roles. This is simply a publicly read-
able view of pg_authid that blanks out the password field.

This view explicitly exposes the OID column of the underlying table, since that is needed to do joins to
other catalogs.

Table 45-62. pg_roles Columns

Name Type References Description
rolname name Role name

rolsuper bool Role has superuser
privileges

rolinherit bool Role automatically
inherits privileges of
roles it is a member of

rolcreaterole bool Role can create more
roles

rolcreatedb bool Role can create
databases

1839

Chapter 45. System Catalogs

Name Type References Description
rolcatupdate bool Role can update system

catalogs directly. (Even
a superuser cannot do
this unless this column
is true)

rolcanlogin bool Role can log in. That is,
this role can be given as
the initial session
authorization identifier

rolreplication bool Role is a replication
role. That is, this role
can initiate streaming
replication (see Section
25.2.5) and set/unset the
system backup mode
using
pg_start_backup and
pg_stop_backup

rolconnlimit int4 For roles that can log
in, this sets maximum
number of concurrent
connections this role can
make. -1 means no limit.

rolpassword text Not the password
(always reads as
********)

rolvaliduntil timestamptz Password expiry time
(only used for password
authentication); null if
no expiration

rolconfig text[] Role-specific defaults
for run-time
configuration variables

oid oid pg_authid.oid ID of role

45.62. pg_rules
The view pg_rules provides access to useful information about query rewrite rules.

Table 45-63. pg_rules Columns

Name Type References Description

1840

Chapter 45. System Catalogs

Name Type References Description
schemaname name pg_namespace.nspname Name of schema

containing table

tablename name pg_class.relname Name of table the rule is
for

rulename name pg_rewrite.rulename Name of rule

definition text Rule definition (a
reconstructed creation
command)

The pg_rules view excludes the ON SELECT rules of views; those can be seen in pg_views.

45.63. pg_seclabels
The view pg_seclabels provides information about security labels. It as an easier-to-query version of
the pg_seclabel catalog.

Table 45-64. pg_seclabels Columns

Name Type References Description
objoid oid any OID column The OID of the object

this security label
pertains to

classoid oid pg_class.oid The OID of the system
catalog this object
appears in

objsubid int4 For a security label on a
table column, this is the
column number (the
objoid and classoid

refer to the table itself).
For all other object
types, this column is
zero.

objtype text The type of object to
which this label applies,
as text.

objnamespace oid pg_namespace.oid The OID of the
namespace for this
object, if applicable;
otherwise NULL.

1841

Chapter 45. System Catalogs

Name Type References Description
objname text The name of the object

to which this label
applies, as text.

provider text pg_seclabel.provider The label provider
associated with this
label.

label text pg_seclabel.label The security label
applied to this object.

45.64. pg_settings
The view pg_settings provides access to run-time parameters of the server. It is essentially an alterna-
tive interface to the SHOW and SET commands. It also provides access to some facts about each parameter
that are not directly available from SHOW, such as minimum and maximum values.

Table 45-65. pg_settings Columns

Name Type Description
name text Run-time configuration

parameter name

setting text Current value of the parameter

unit text Implicit unit of the parameter

category text Logical group of the parameter

short_desc text A brief description of the
parameter

extra_desc text Additional, more detailed,
description of the parameter

context text Context required to set the
parameter’s value (see below)

vartype text Parameter type (bool, enum,
integer, real, or string)

source text Source of the current parameter
value

min_val text Minimum allowed value of the
parameter (null for non-numeric
values)

max_val text Maximum allowed value of the
parameter (null for non-numeric
values)

1842

Chapter 45. System Catalogs

Name Type Description
enumvals text[] Allowed values of an enum

parameter (null for non-enum
values)

boot_val text Parameter value assumed at
server startup if the parameter is
not otherwise set

reset_val text Value that RESET would reset the
parameter to in the current
session

sourcefile text Configuration file the current
value was set in (null for values
set from sources other than
configuration files, or when
examined by a non-superuser);
helpful when using include

directives in configuration files

sourceline integer Line number within the
configuration file the current
value was set at (null for values
set from sources other than
configuration files, or when
examined by a non-superuser)

There are several possible values of context. In order of decreasing difficulty of changing the setting,
they are:

internal

These settings cannot be changed directly; they reflect internally determined values. Some of them
may be adjustable by rebuilding the server with different configuration options, or by changing op-
tions supplied to initdb.

postmaster

These settings can only be applied when the server starts, so any change requires restarting the
server. Values for these settings are typically stored in the postgresql.conf file, or passed on the
command line when starting the server. Of course, settings with any of the lower context types can
also be set at server start time.

sighup

Changes to these settings can be made in postgresql.conf without restarting the server. Send a
SIGHUP signal to the postmaster to cause it to re-read postgresql.conf and apply the changes.
The postmaster will also forward the SIGHUP signal to its child processes so that they all pick up
the new value.

backend

Changes to these settings can be made in postgresql.conf without restarting the server; they
can also be set for a particular session in the connection request packet (for example, via libpq’s

1843

Chapter 45. System Catalogs

PGOPTIONS environment variable). However, these settings never change in a session after it is
started. If you change them in postgresql.conf, send a SIGHUP signal to the postmaster to cause
it to re-read postgresql.conf. The new values will only affect subsequently-launched sessions.

superuser

These settings can be set from postgresql.conf, or within a session via the SET command; but
only superusers can change them via SET. Changes in postgresql.conf will affect existing ses-
sions only if no session-local value has been established with SET.

user

These settings can be set from postgresql.conf, or within a session via the SET command. Any
user is allowed to change his session-local value. Changes in postgresql.conf will affect existing
sessions only if no session-local value has been established with SET.

See Section 18.1 for more information about the various ways to change these parameters.

The pg_settings view cannot be inserted into or deleted from, but it can be updated. An UPDATE applied
to a row of pg_settings is equivalent to executing the SET command on that named parameter. The
change only affects the value used by the current session. If an UPDATE is issued within a transaction
that is later aborted, the effects of the UPDATE command disappear when the transaction is rolled back.
Once the surrounding transaction is committed, the effects will persist until the end of the session, unless
overridden by another UPDATE or SET.

45.65. pg_shadow
The view pg_shadow exists for backwards compatibility: it emulates a catalog that existed in PostgreSQL
before version 8.1. It shows properties of all roles that are marked as rolcanlogin in pg_authid.

The name stems from the fact that this table should not be readable by the public since it contains pass-
words. pg_user is a publicly readable view on pg_shadow that blanks out the password field.

Table 45-66. pg_shadow Columns

Name Type References Description
usename name pg_authid.rolname User name

usesysid oid pg_authid.oid ID of this user

usecreatedb bool User can create
databases

usesuper bool User is a superuser

usecatupd bool User can update system
catalogs. (Even a
superuser cannot do this
unless this column is
true.)

1844

Chapter 45. System Catalogs

Name Type References Description
userepl bool User can initiate

streaming replication
and put the system in
and out of backup mode.

passwd text Password (possibly
encrypted); null if none.
See pg_authid for
details of how encrypted
passwords are stored.

valuntil abstime Password expiry time
(only used for password
authentication)

useconfig text[] Session defaults for
run-time configuration
variables

45.66. pg_stats
The view pg_stats provides access to the information stored in the pg_statistic catalog. This view
allows access only to rows of pg_statistic that correspond to tables the user has permission to read,
and therefore it is safe to allow public read access to this view.

pg_stats is also designed to present the information in a more readable format than the underly-
ing catalog — at the cost that its schema must be extended whenever new slot types are defined for
pg_statistic.

Table 45-67. pg_stats Columns

Name Type References Description
schemaname name pg_namespace.nspname Name of schema

containing table

tablename name pg_class.relname Name of table

attname name pg_attribute.attname Name of the column
described by this row

inherited bool If true, this row includes
inheritance child
columns, not just the
values in the specified
table

null_frac real Fraction of column
entries that are null

1845

Chapter 45. System Catalogs

Name Type References Description
avg_width integer Average width in bytes

of column’s entries

n_distinct real If greater than zero, the
estimated number of
distinct values in the
column. If less than
zero, the negative of the
number of distinct
values divided by the
number of rows. (The
negated form is used
when ANALYZE believes
that the number of
distinct values is likely
to increase as the table
grows; the positive form
is used when the column
seems to have a fixed
number of possible
values.) For example, -1
indicates a unique
column in which the
number of distinct
values is the same as the
number of rows.

most_common_vals anyarray A list of the most
common values in the
column. (Null if no
values seem to be more
common than any
others.)

most_common_freqs real[] A list of the frequencies
of the most common
values, i.e., number of
occurrences of each
divided by total number
of rows. (Null when
most_common_vals

is.)

1846

Chapter 45. System Catalogs

Name Type References Description
histogram_bounds anyarray A list of values that

divide the column’s
values into groups of
approximately equal
population. The values
in most_common_vals,
if present, are omitted
from this histogram
calculation. (This
column is null if the
column data type does
not have a < operator or
if the
most_common_vals

list accounts for the
entire population.)

correlation real Statistical correlation
between physical row
ordering and logical
ordering of the column
values. This ranges from
-1 to +1. When the value
is near -1 or +1, an index
scan on the column will
be estimated to be
cheaper than when it is
near zero, due to
reduction of random
access to the disk. (This
column is null if the
column data type does
not have a < operator.)

most_common_elems anyarray A list of non-null
element values most
often appearing within
values of the column.
(Null for scalar types.)

1847

Chapter 45. System Catalogs

Name Type References Description
most_common_elem_freqsreal[] A list of the frequencies

of the most common
element values, i.e., the
fraction of rows
containing at least one
instance of the given
value. Two or three
additional values follow
the per-element
frequencies; these are
the minimum and
maximum of the
preceding per-element
frequencies, and
optionally the frequency
of null elements. (Null
when
most_common_elems

is.)

elem_count_histogramreal[] A histogram of the
counts of distinct
non-null element values
within the values of the
column, followed by the
average number of
distinct non-null
elements. (Null for
scalar types.)

The maximum number of entries in the array fields can be controlled on a column-by-column basis using
the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target run-
time parameter.

45.67. pg_tables
The view pg_tables provides access to useful information about each table in the database.

Table 45-68. pg_tables Columns

Name Type References Description
schemaname name pg_namespace.nspname Name of schema

containing table

tablename name pg_class.relname Name of table

tableowner name pg_authid.rolname Name of table’s owner

1848

Chapter 45. System Catalogs

Name Type References Description
tablespace name pg_tablespace.spcnameName of tablespace

containing table (null if
default for database)

hasindexes boolean pg_class.relhasindexTrue if table has (or
recently had) any
indexes

hasrules boolean pg_class.relhasrulesTrue if table has (or
once had) rules

hastriggers boolean pg_class.relhastriggersTrue if table has (or
once had) triggers

45.68. pg_timezone_abbrevs
The view pg_timezone_abbrevs provides a list of time zone abbreviations that are currently recognized
by the datetime input routines. The contents of this view change when the timezone_abbreviations run-
time parameter is modified.

Table 45-69. pg_timezone_abbrevs Columns

Name Type Description
abbrev text Time zone abbreviation

utc_offset interval Offset from UTC (positive means
east of Greenwich)

is_dst boolean True if this is a daylight-savings
abbreviation

45.69. pg_timezone_names
The view pg_timezone_names provides a list of time zone names that are recognized by SET

TIMEZONE, along with their associated abbreviations, UTC offsets, and daylight-savings status.
(Technically, PostgreSQL uses UT1 rather than UTC because leap seconds are not handled.) Unlike the
abbreviations shown in pg_timezone_abbrevs, many of these names imply a set of daylight-savings
transition date rules. Therefore, the associated information changes across local DST boundaries. The
displayed information is computed based on the current value of CURRENT_TIMESTAMP.

Table 45-70. pg_timezone_names Columns

Name Type Description
name text Time zone name

abbrev text Time zone abbreviation

1849

Chapter 45. System Catalogs

Name Type Description
utc_offset interval Offset from UTC (positive means

east of Greenwich)

is_dst boolean True if currently observing
daylight savings

45.70. pg_user
The view pg_user provides access to information about database users. This is simply a publicly readable
view of pg_shadow that blanks out the password field.

Table 45-71. pg_user Columns

Name Type Description
usename name User name

usesysid oid ID of this user

usecreatedb bool User can create databases

usesuper bool User is a superuser

usecatupd bool User can update system catalogs.
(Even a superuser cannot do this
unless this column is true.)

userepl bool User can initiate streaming
replication and put the system in
and out of backup mode.

passwd text Not the password (always reads
as ********)

valuntil abstime Password expiry time (only used
for password authentication)

useconfig text[] Session defaults for run-time
configuration variables

45.71. pg_user_mappings
The view pg_user_mappings provides access to information about user mappings. This is essentially a
publicly readable view of pg_user_mapping that leaves out the options field if the user has no rights to
use it.

Table 45-72. pg_user_mappings Columns

Name Type References Description

1850

Chapter 45. System Catalogs

Name Type References Description
umid oid pg_user_mapping.oid OID of the user

mapping

srvid oid pg_foreign_server.oid The OID of the foreign
server that contains this
mapping

srvname name pg_foreign_server.srvnameName of the foreign
server

umuser oid pg_authid.oid OID of the local role
being mapped, 0 if the
user mapping is public

usename name Name of the local user
to be mapped

umoptions text[] User mapping specific
options, as
“keyword=value”
strings, if the current
user is the owner of the
foreign server, else null

45.72. pg_views
The view pg_views provides access to useful information about each view in the database.

Table 45-73. pg_views Columns

Name Type References Description
schemaname name pg_namespace.nspname Name of schema

containing view

viewname name pg_class.relname Name of view

viewowner name pg_authid.rolname Name of view’s owner

definition text View definition (a
reconstructed SELECT

query)

1851

Chapter 46. Frontend/Backend Protocol
PostgreSQL uses a message-based protocol for communication between frontends and backends (clients
and servers). The protocol is supported over TCP/IP and also over Unix-domain sockets. Port number 5432
has been registered with IANA as the customary TCP port number for servers supporting this protocol,
but in practice any non-privileged port number can be used.

This document describes version 3.0 of the protocol, implemented in PostgreSQL 7.4 and later. For de-
scriptions of the earlier protocol versions, see previous releases of the PostgreSQL documentation. A
single server can support multiple protocol versions. The initial startup-request message tells the server
which protocol version the client is attempting to use, and then the server follows that protocol if it is able.

In order to serve multiple clients efficiently, the server launches a new “backend” process for each client.
In the current implementation, a new child process is created immediately after an incoming connection is
detected. This is transparent to the protocol, however. For purposes of the protocol, the terms “backend”
and “server” are interchangeable; likewise “frontend” and “client” are interchangeable.

46.1. Overview
The protocol has separate phases for startup and normal operation. In the startup phase, the frontend opens
a connection to the server and authenticates itself to the satisfaction of the server. (This might involve a
single message, or multiple messages depending on the authentication method being used.) If all goes
well, the server then sends status information to the frontend, and finally enters normal operation. Except
for the initial startup-request message, this part of the protocol is driven by the server.

During normal operation, the frontend sends queries and other commands to the backend, and the backend
sends back query results and other responses. There are a few cases (such as NOTIFY) wherein the backend
will send unsolicited messages, but for the most part this portion of a session is driven by frontend requests.

Termination of the session is normally by frontend choice, but can be forced by the backend in certain
cases. In any case, when the backend closes the connection, it will roll back any open (incomplete) trans-
action before exiting.

Within normal operation, SQL commands can be executed through either of two sub-protocols. In the
“simple query” protocol, the frontend just sends a textual query string, which is parsed and immediately
executed by the backend. In the “extended query” protocol, processing of queries is separated into multiple
steps: parsing, binding of parameter values, and execution. This offers flexibility and performance benefits,
at the cost of extra complexity.

Normal operation has additional sub-protocols for special operations such as COPY.

46.1.1. Messaging Overview
All communication is through a stream of messages. The first byte of a message identifies the message
type, and the next four bytes specify the length of the rest of the message (this length count includes itself,
but not the message-type byte). The remaining contents of the message are determined by the message

1852

Chapter 46. Frontend/Backend Protocol

type. For historical reasons, the very first message sent by the client (the startup message) has no initial
message-type byte.

To avoid losing synchronization with the message stream, both servers and clients typically read an entire
message into a buffer (using the byte count) before attempting to process its contents. This allows easy
recovery if an error is detected while processing the contents. In extreme situations (such as not having
enough memory to buffer the message), the receiver can use the byte count to determine how much input
to skip before it resumes reading messages.

Conversely, both servers and clients must take care never to send an incomplete message. This is com-
monly done by marshaling the entire message in a buffer before beginning to send it. If a communications
failure occurs partway through sending or receiving a message, the only sensible response is to abandon
the connection, since there is little hope of recovering message-boundary synchronization.

46.1.2. Extended Query Overview
In the extended-query protocol, execution of SQL commands is divided into multiple steps. The state
retained between steps is represented by two types of objects: prepared statements and portals. A prepared
statement represents the result of parsing and semantic analysis of a textual query string. A prepared
statement is not in itself ready to execute, because it might lack specific values for parameters. A portal
represents a ready-to-execute or already-partially-executed statement, with any missing parameter values
filled in. (For SELECT statements, a portal is equivalent to an open cursor, but we choose to use a different
term since cursors don’t handle non-SELECT statements.)

The overall execution cycle consists of a parse step, which creates a prepared statement from a textual
query string; a bind step, which creates a portal given a prepared statement and values for any needed
parameters; and an execute step that runs a portal’s query. In the case of a query that returns rows (SELECT,
SHOW, etc), the execute step can be told to fetch only a limited number of rows, so that multiple execute
steps might be needed to complete the operation.

The backend can keep track of multiple prepared statements and portals (but note that these exist only
within a session, and are never shared across sessions). Existing prepared statements and portals are
referenced by names assigned when they were created. In addition, an “unnamed” prepared statement and
portal exist. Although these behave largely the same as named objects, operations on them are optimized
for the case of executing a query only once and then discarding it, whereas operations on named objects
are optimized on the expectation of multiple uses.

46.1.3. Formats and Format Codes
Data of a particular data type might be transmitted in any of several different formats. As of PostgreSQL
7.4 the only supported formats are “text” and “binary”, but the protocol makes provision for future exten-
sions. The desired format for any value is specified by a format code. Clients can specify a format code
for each transmitted parameter value and for each column of a query result. Text has format code zero,
binary has format code one, and all other format codes are reserved for future definition.

The text representation of values is whatever strings are produced and accepted by the input/output con-
version functions for the particular data type. In the transmitted representation, there is no trailing null
character; the frontend must add one to received values if it wants to process them as C strings. (The text
format does not allow embedded nulls, by the way.)

1853

Chapter 46. Frontend/Backend Protocol

Binary representations for integers use network byte order (most significant byte first). For other data
types consult the documentation or source code to learn about the binary representation. Keep in mind
that binary representations for complex data types might change across server versions; the text format is
usually the more portable choice.

46.2. Message Flow
This section describes the message flow and the semantics of each message type. (Details of the exact rep-
resentation of each message appear in Section 46.5.) There are several different sub-protocols depending
on the state of the connection: start-up, query, function call, COPY, and termination. There are also spe-
cial provisions for asynchronous operations (including notification responses and command cancellation),
which can occur at any time after the start-up phase.

46.2.1. Start-up
To begin a session, a frontend opens a connection to the server and sends a startup message. This message
includes the names of the user and of the database the user wants to connect to; it also identifies the
particular protocol version to be used. (Optionally, the startup message can include additional settings for
run-time parameters.) The server then uses this information and the contents of its configuration files (such
as pg_hba.conf) to determine whether the connection is provisionally acceptable, and what additional
authentication is required (if any).

The server then sends an appropriate authentication request message, to which the frontend must reply
with an appropriate authentication response message (such as a password). For all authentication methods
except GSSAPI and SSPI, there is at most one request and one response. In some methods, no response at
all is needed from the frontend, and so no authentication request occurs. For GSSAPI and SSPI, multiple
exchanges of packets may be needed to complete the authentication.

The authentication cycle ends with the server either rejecting the connection attempt (ErrorResponse), or
sending AuthenticationOk.

The possible messages from the server in this phase are:

ErrorResponse

The connection attempt has been rejected. The server then immediately closes the connection.

AuthenticationOk

The authentication exchange is successfully completed.

AuthenticationKerberosV5

The frontend must now take part in a Kerberos V5 authentication dialog (not described here, part of
the Kerberos specification) with the server. If this is successful, the server responds with an Authen-
ticationOk, otherwise it responds with an ErrorResponse.

AuthenticationCleartextPassword

The frontend must now send a PasswordMessage containing the password in clear-text form. If this
is the correct password, the server responds with an AuthenticationOk, otherwise it responds with an

1854

Chapter 46. Frontend/Backend Protocol

ErrorResponse.

AuthenticationMD5Password

The frontend must now send a PasswordMessage containing the password (with username)
encrypted via MD5, then encrypted again using the 4-byte random salt specified in the
AuthenticationMD5Password message. If this is the correct password, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse. The actual PasswordMessage
can be computed in SQL as concat(’md5’, md5(concat(md5(concat(password,

username)), random-salt))). (Keep in mind the md5() function returns its result as a hex
string.)

AuthenticationSCMCredential

This response is only possible for local Unix-domain connections on platforms that support SCM
credential messages. The frontend must issue an SCM credential message and then send a single data
byte. (The contents of the data byte are uninteresting; it’s only used to ensure that the server waits
long enough to receive the credential message.) If the credential is acceptable, the server responds
with an AuthenticationOk, otherwise it responds with an ErrorResponse. (This message type is only
issued by pre-9.1 servers. It may eventually be removed from the protocol specification.)

AuthenticationGSS

The frontend must now initiate a GSSAPI negotiation. The frontend will send a PasswordMessage
with the first part of the GSSAPI data stream in response to this. If further messages are needed, the
server will respond with AuthenticationGSSContinue.

AuthenticationSSPI

The frontend must now initiate a SSPI negotiation. The frontend will send a PasswordMessage with
the first part of the SSPI data stream in response to this. If further messages are needed, the server
will respond with AuthenticationGSSContinue.

AuthenticationGSSContinue

This message contains the response data from the previous step of GSSAPI or SSPI negotiation (Au-
thenticationGSS, AuthenticationSSPI or a previous AuthenticationGSSContinue). If the GSSAPI or
SSPI data in this message indicates more data is needed to complete the authentication, the frontend
must send that data as another PasswordMessage. If GSSAPI or SSPI authentication is completed
by this message, the server will next send AuthenticationOk to indicate successful authentication or
ErrorResponse to indicate failure.

If the frontend does not support the authentication method requested by the server, then it should imme-
diately close the connection.

After having received AuthenticationOk, the frontend must wait for further messages from the server. In
this phase a backend process is being started, and the frontend is just an interested bystander. It is still
possible for the startup attempt to fail (ErrorResponse), but in the normal case the backend will send some
ParameterStatus messages, BackendKeyData, and finally ReadyForQuery.

During this phase the backend will attempt to apply any additional run-time parameter settings that were
given in the startup message. If successful, these values become session defaults. An error causes Error-
Response and exit.

The possible messages from the backend in this phase are:

1855

Chapter 46. Frontend/Backend Protocol

BackendKeyData

This message provides secret-key data that the frontend must save if it wants to be able to issue
cancel requests later. The frontend should not respond to this message, but should continue listening
for a ReadyForQuery message.

ParameterStatus

This message informs the frontend about the current (initial) setting of backend parameters, such as
client_encoding or DateStyle. The frontend can ignore this message, or record the settings for its
future use; see Section 46.2.6 for more details. The frontend should not respond to this message, but
should continue listening for a ReadyForQuery message.

ReadyForQuery

Start-up is completed. The frontend can now issue commands.

ErrorResponse

Start-up failed. The connection is closed after sending this message.

NoticeResponse

A warning message has been issued. The frontend should display the message but continue listening
for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each command cycle. De-
pending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting a
command cycle, or to consider ReadyForQuery as ending the start-up phase and each subsequent com-
mand cycle.

46.2.2. Simple Query
A simple query cycle is initiated by the frontend sending a Query message to the backend. The message
includes an SQL command (or commands) expressed as a text string. The backend then sends one or more
response messages depending on the contents of the query command string, and finally a ReadyForQuery
response message. ReadyForQuery informs the frontend that it can safely send a new command. (It is
not actually necessary for the frontend to wait for ReadyForQuery before issuing another command, but
the frontend must then take responsibility for figuring out what happens if the earlier command fails and
already-issued later commands succeed.)

The possible response messages from the backend are:

CommandComplete

An SQL command completed normally.

CopyInResponse

The backend is ready to copy data from the frontend to a table; see Section 46.2.5.

CopyOutResponse

The backend is ready to copy data from a table to the frontend; see Section 46.2.5.

1856

Chapter 46. Frontend/Backend Protocol

RowDescription

Indicates that rows are about to be returned in response to a SELECT, FETCH, etc query. The contents
of this message describe the column layout of the rows. This will be followed by a DataRow message
for each row being returned to the frontend.

DataRow

One of the set of rows returned by a SELECT, FETCH, etc query.

EmptyQueryResponse

An empty query string was recognized.

ErrorResponse

An error has occurred.

ReadyForQuery

Processing of the query string is complete. A separate message is sent to indicate this because the
query string might contain multiple SQL commands. (CommandComplete marks the end of pro-
cessing one SQL command, not the whole string.) ReadyForQuery will always be sent, whether
processing terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the query. Notices are in addition to other responses,
i.e., the backend will continue processing the command.

The response to a SELECT query (or other queries that return row sets, such as EXPLAIN or SHOW) normally
consists of RowDescription, zero or more DataRow messages, and then CommandComplete. COPY to or
from the frontend invokes special protocol as described in Section 46.2.5. All other query types normally
produce only a CommandComplete message.

Since a query string could contain several queries (separated by semicolons), there might be several such
response sequences before the backend finishes processing the query string. ReadyForQuery is issued
when the entire string has been processed and the backend is ready to accept a new query string.

If a completely empty (no contents other than whitespace) query string is received, the response is Emp-
tyQueryResponse followed by ReadyForQuery.

In the event of an error, ErrorResponse is issued followed by ReadyForQuery. All further processing of
the query string is aborted by ErrorResponse (even if more queries remained in it). Note that this might
occur partway through the sequence of messages generated by an individual query.

In simple Query mode, the format of retrieved values is always text, except when the given command is
a FETCH from a cursor declared with the BINARY option. In that case, the retrieved values are in binary
format. The format codes given in the RowDescription message tell which format is being used.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is ex-
pecting any other type of message. See also Section 46.2.6 concerning messages that the backend might
generate due to outside events.

Recommended practice is to code frontends in a state-machine style that will accept any message type at
any time that it could make sense, rather than wiring in assumptions about the exact sequence of messages.

1857

Chapter 46. Frontend/Backend Protocol

46.2.3. Extended Query
The extended query protocol breaks down the above-described simple query protocol into multiple steps.
The results of preparatory steps can be re-used multiple times for improved efficiency. Furthermore, addi-
tional features are available, such as the possibility of supplying data values as separate parameters instead
of having to insert them directly into a query string.

In the extended protocol, the frontend first sends a Parse message, which contains a textual query string,
optionally some information about data types of parameter placeholders, and the name of a destination
prepared-statement object (an empty string selects the unnamed prepared statement). The response is
either ParseComplete or ErrorResponse. Parameter data types can be specified by OID; if not given, the
parser attempts to infer the data types in the same way as it would do for untyped literal string constants.

Note: A parameter data type can be left unspecified by setting it to zero, or by making the array of
parameter type OIDs shorter than the number of parameter symbols ($n) used in the query string.
Another special case is that a parameter’s type can be specified as void (that is, the OID of the void

pseudotype). This is meant to allow parameter symbols to be used for function parameters that are
actually OUT parameters. Ordinarily there is no context in which a void parameter could be used,
but if such a parameter symbol appears in a function’s parameter list, it is effectively ignored. For
example, a function call such as foo($1,$2,$3,$4) could match a function with two IN and two OUT
arguments, if $3 and $4 are specified as having type void.

Note: The query string contained in a Parse message cannot include more than one SQL statement;
else a syntax error is reported. This restriction does not exist in the simple-query protocol, but it does
exist in the extended protocol, because allowing prepared statements or portals to contain multiple
commands would complicate the protocol unduly.

If successfully created, a named prepared-statement object lasts till the end of the current session, unless
explicitly destroyed. An unnamed prepared statement lasts only until the next Parse statement specifying
the unnamed statement as destination is issued. (Note that a simple Query message also destroys the
unnamed statement.) Named prepared statements must be explicitly closed before they can be redefined
by another Parse message, but this is not required for the unnamed statement. Named prepared statements
can also be created and accessed at the SQL command level, using PREPARE and EXECUTE.

Once a prepared statement exists, it can be readied for execution using a Bind message. The Bind message
gives the name of the source prepared statement (empty string denotes the unnamed prepared statement),
the name of the destination portal (empty string denotes the unnamed portal), and the values to use for
any parameter placeholders present in the prepared statement. The supplied parameter set must match
those needed by the prepared statement. (If you declared any void parameters in the Parse message, pass
NULL values for them in the Bind message.) Bind also specifies the format to use for any data returned
by the query; the format can be specified overall, or per-column. The response is either BindComplete or
ErrorResponse.

Note: The choice between text and binary output is determined by the format codes given in Bind,
regardless of the SQL command involved. The BINARY attribute in cursor declarations is irrelevant
when using extended query protocol.

1858

Chapter 46. Frontend/Backend Protocol

Query planning typically occurs when the Bind message is processed. If the prepared statement has no
parameters, or is executed repeatedly, the server might save the created plan and re-use it during subse-
quent Bind messages for the same prepared statement. However, it will do so only if it finds that a generic
plan can be created that is not much less efficient than a plan that depends on the specific parameter values
supplied. This happens transparently so far as the protocol is concerned.

If successfully created, a named portal object lasts till the end of the current transaction, unless explicitly
destroyed. An unnamed portal is destroyed at the end of the transaction, or as soon as the next Bind
statement specifying the unnamed portal as destination is issued. (Note that a simple Query message also
destroys the unnamed portal.) Named portals must be explicitly closed before they can be redefined by
another Bind message, but this is not required for the unnamed portal. Named portals can also be created
and accessed at the SQL command level, using DECLARE CURSOR and FETCH.

Once a portal exists, it can be executed using an Execute message. The Execute message specifies the
portal name (empty string denotes the unnamed portal) and a maximum result-row count (zero meaning
“fetch all rows”). The result-row count is only meaningful for portals containing commands that return
row sets; in other cases the command is always executed to completion, and the row count is ignored. The
possible responses to Execute are the same as those described above for queries issued via simple query
protocol, except that Execute doesn’t cause ReadyForQuery or RowDescription to be issued.

If Execute terminates before completing the execution of a portal (due to reaching a nonzero result-row
count), it will send a PortalSuspended message; the appearance of this message tells the frontend that
another Execute should be issued against the same portal to complete the operation. The CommandCom-
plete message indicating completion of the source SQL command is not sent until the portal’s execution
is completed. Therefore, an Execute phase is always terminated by the appearance of exactly one of these
messages: CommandComplete, EmptyQueryResponse (if the portal was created from an empty query
string), ErrorResponse, or PortalSuspended.

At completion of each series of extended-query messages, the frontend should issue a Sync message.
This parameterless message causes the backend to close the current transaction if it’s not inside a
BEGIN/COMMIT transaction block (“close” meaning to commit if no error, or roll back if error). Then a
ReadyForQuery response is issued. The purpose of Sync is to provide a resynchronization point for error
recovery. When an error is detected while processing any extended-query message, the backend issues
ErrorResponse, then reads and discards messages until a Sync is reached, then issues ReadyForQuery
and returns to normal message processing. (But note that no skipping occurs if an error is detected while
processing Sync — this ensures that there is one and only one ReadyForQuery sent for each Sync.)

Note: Sync does not cause a transaction block opened with BEGIN to be closed. It is possible to detect
this situation since the ReadyForQuery message includes transaction status information.

In addition to these fundamental, required operations, there are several optional operations that can be
used with extended-query protocol.

The Describe message (portal variant) specifies the name of an existing portal (or an empty string for the
unnamed portal). The response is a RowDescription message describing the rows that will be returned by
executing the portal; or a NoData message if the portal does not contain a query that will return rows; or
ErrorResponse if there is no such portal.

The Describe message (statement variant) specifies the name of an existing prepared statement (or an
empty string for the unnamed prepared statement). The response is a ParameterDescription message de-

1859

Chapter 46. Frontend/Backend Protocol

scribing the parameters needed by the statement, followed by a RowDescription message describing the
rows that will be returned when the statement is eventually executed (or a NoData message if the statement
will not return rows). ErrorResponse is issued if there is no such prepared statement. Note that since Bind
has not yet been issued, the formats to be used for returned columns are not yet known to the backend; the
format code fields in the RowDescription message will be zeroes in this case.

Tip: In most scenarios the frontend should issue one or the other variant of Describe before issuing
Execute, to ensure that it knows how to interpret the results it will get back.

The Close message closes an existing prepared statement or portal and releases resources. It is not an error
to issue Close against a nonexistent statement or portal name. The response is normally CloseComplete,
but could be ErrorResponse if some difficulty is encountered while releasing resources. Note that closing
a prepared statement implicitly closes any open portals that were constructed from that statement.

The Flush message does not cause any specific output to be generated, but forces the backend to deliver
any data pending in its output buffers. A Flush must be sent after any extended-query command except
Sync, if the frontend wishes to examine the results of that command before issuing more commands.
Without Flush, messages returned by the backend will be combined into the minimum possible number
of packets to minimize network overhead.

Note: The simple Query message is approximately equivalent to the series Parse, Bind, portal De-
scribe, Execute, Close, Sync, using the unnamed prepared statement and portal objects and no pa-
rameters. One difference is that it will accept multiple SQL statements in the query string, automati-
cally performing the bind/describe/execute sequence for each one in succession. Another difference
is that it will not return ParseComplete, BindComplete, CloseComplete, or NoData messages.

46.2.4. Function Call
The Function Call sub-protocol allows the client to request a direct call of any function that exists in the
database’s pg_proc system catalog. The client must have execute permission for the function.

Note: The Function Call sub-protocol is a legacy feature that is probably best avoided in new
code. Similar results can be accomplished by setting up a prepared statement that does SELECT

function($1, ...). The Function Call cycle can then be replaced with Bind/Execute.

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The
backend then sends one or more response messages depending on the results of the function call, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it can safely send
a new query or function call.

The possible response messages from the backend are:

ErrorResponse

An error has occurred.

1860

Chapter 46. Frontend/Backend Protocol

FunctionCallResponse

The function call was completed and returned the result given in the message. (Note that the Function
Call protocol can only handle a single scalar result, not a row type or set of results.)

ReadyForQuery

Processing of the function call is complete. ReadyForQuery will always be sent, whether processing
terminates successfully or with an error.

NoticeResponse

A warning message has been issued in relation to the function call. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

46.2.5. COPY Operations
The COPY command allows high-speed bulk data transfer to or from the server. Copy-in and copy-out
operations each switch the connection into a distinct sub-protocol, which lasts until the operation is com-
pleted.

Copy-in mode (data transfer to the server) is initiated when the backend executes a COPY FROM STDIN

SQL statement. The backend sends a CopyInResponse message to the frontend. The frontend should then
send zero or more CopyData messages, forming a stream of input data. (The message boundaries are not
required to have anything to do with row boundaries, although that is often a reasonable choice.) The
frontend can terminate the copy-in mode by sending either a CopyDone message (allowing successful
termination) or a CopyFail message (which will cause the COPY SQL statement to fail with an error). The
backend then reverts to the command-processing mode it was in before the COPY started, which will be
either simple or extended query protocol. It will next send either CommandComplete (if successful) or
ErrorResponse (if not).

In the event of a backend-detected error during copy-in mode (including receipt of a CopyFail message),
the backend will issue an ErrorResponse message. If the COPY command was issued via an extended-
query message, the backend will now discard frontend messages until a Sync message is received, then it
will issue ReadyForQuery and return to normal processing. If the COPY command was issued in a simple
Query message, the rest of that message is discarded and ReadyForQuery is issued. In either case, any
subsequent CopyData, CopyDone, or CopyFail messages issued by the frontend will simply be dropped.

The backend will ignore Flush and Sync messages received during copy-in mode. Receipt of any other
non-copy message type constitutes an error that will abort the copy-in state as described above. (The
exception for Flush and Sync is for the convenience of client libraries that always send Flush or Sync after
an Execute message, without checking whether the command to be executed is a COPY FROM STDIN.)

Copy-out mode (data transfer from the server) is initiated when the backend executes a COPY TO STDOUT

SQL statement. The backend sends a CopyOutResponse message to the frontend, followed by zero or
more CopyData messages (always one per row), followed by CopyDone. The backend then reverts to the
command-processing mode it was in before the COPY started, and sends CommandComplete. The frontend
cannot abort the transfer (except by closing the connection or issuing a Cancel request), but it can discard
unwanted CopyData and CopyDone messages.

1861

Chapter 46. Frontend/Backend Protocol

In the event of a backend-detected error during copy-out mode, the backend will issue an ErrorResponse
message and revert to normal processing. The frontend should treat receipt of ErrorResponse as terminat-
ing the copy-out mode.

It is possible for NoticeResponse and ParameterStatus messages to be interspersed between CopyData
messages; frontends must handle these cases, and should be prepared for other asynchronous message
types as well (see Section 46.2.6). Otherwise, any message type other than CopyData or CopyDone may
be treated as terminating copy-out mode.

There is another Copy-related mode called Copy-both, which allows high-speed bulk data transfer
to and from the server. Copy-both mode is initiated when a backend in walsender mode executes a
START_REPLICATION statement. The backend sends a CopyBothResponse message to the frontend.
Both the backend and the frontend may then send CopyData messages until the connection is terminated.
See Section 46.3.

The CopyInResponse, CopyOutResponse and CopyBothResponse messages include fields that inform the
frontend of the number of columns per row and the format codes being used for each column. (As of the
present implementation, all columns in a given COPY operation will use the same format, but the message
design does not assume this.)

46.2.6. Asynchronous Operations
There are several cases in which the backend will send messages that are not specifically prompted by the
frontend’s command stream. Frontends must be prepared to deal with these messages at any time, even
when not engaged in a query. At minimum, one should check for these cases before beginning to read a
query response.

It is possible for NoticeResponse messages to be generated due to outside activity; for example, if the
database administrator commands a “fast” database shutdown, the backend will send a NoticeResponse
indicating this fact before closing the connection. Accordingly, frontends should always be prepared to
accept and display NoticeResponse messages, even when the connection is nominally idle.

ParameterStatus messages will be generated whenever the active value changes for any of the parameters
the backend believes the frontend should know about. Most commonly this occurs in response to a SET

SQL command executed by the frontend, and this case is effectively synchronous — but it is also possible
for parameter status changes to occur because the administrator changed a configuration file and then sent
the SIGHUP signal to the server. Also, if a SET command is rolled back, an appropriate ParameterStatus
message will be generated to report the current effective value.

At present there is a hard-wired set of parameters for which ParameterStatus will be generated: they are
server_version, server_encoding, client_encoding, application_name, is_superuser,
session_authorization, DateStyle, IntervalStyle, TimeZone, integer_datetimes, and
standard_conforming_strings. (server_encoding, TimeZone, and integer_datetimes

were not reported by releases before 8.0; standard_conforming_strings was not reported by
releases before 8.1; IntervalStyle was not reported by releases before 8.4; application_name
was not reported by releases before 9.0.) Note that server_version, server_encoding and
integer_datetimes are pseudo-parameters that cannot change after startup. This set might change in
the future, or even become configurable. Accordingly, a frontend should simply ignore ParameterStatus
for parameters that it does not understand or care about.

1862

Chapter 46. Frontend/Backend Protocol

If a frontend issues a LISTEN command, then the backend will send a NotificationResponse message (not
to be confused with NoticeResponse!) whenever a NOTIFY command is executed for the same channel
name.

Note: At present, NotificationResponse can only be sent outside a transaction, and thus it will not
occur in the middle of a command-response series, though it might occur just before ReadyForQuery.
It is unwise to design frontend logic that assumes that, however. Good practice is to be able to accept
NotificationResponse at any point in the protocol.

46.2.7. Canceling Requests in Progress
During the processing of a query, the frontend might request cancellation of the query. The cancel request
is not sent directly on the open connection to the backend for reasons of implementation efficiency: we
don’t want to have the backend constantly checking for new input from the frontend during query pro-
cessing. Cancel requests should be relatively infrequent, so we make them slightly cumbersome in order
to avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the server and sends a CancelRequest
message, rather than the StartupMessage message that would ordinarily be sent across a new connection.
The server will process this request and then close the connection. For security reasons, no direct reply is
made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key) passed
to the frontend during connection start-up. If the request matches the PID and secret key for a currently
executing backend, the processing of the current query is aborted. (In the existing implementation, this is
done by sending a special signal to the backend process that is processing the query.)

The cancellation signal might or might not have any effect — for example, if it arrives after the backend
has finished processing the query, then it will have no effect. If the cancellation is effective, it results in
the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way
to tell whether a cancel request has succeeded. It must continue to wait for the backend to respond to the
query. Issuing a cancel simply improves the odds that the current query will finish soon, and improves the
odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent across a new connection to the server and not across the regular fron-
tend/backend communication link, it is possible for the cancel request to be issued by any process, not
just the frontend whose query is to be canceled. This might provide additional flexibility when building
multiple-process applications. It also introduces a security risk, in that unauthorized persons might try
to cancel queries. The security risk is addressed by requiring a dynamically generated secret key to be
supplied in cancel requests.

46.2.8. Termination
The normal, graceful termination procedure is that the frontend sends a Terminate message and immedi-
ately closes the connection. On receipt of this message, the backend closes the connection and terminates.

1863

Chapter 46. Frontend/Backend Protocol

In rare cases (such as an administrator-commanded database shutdown) the backend might disconnect
without any frontend request to do so. In such cases the backend will attempt to send an error or notice
message giving the reason for the disconnection before it closes the connection.

Other termination scenarios arise from various failure cases, such as core dump at one end or the other,
loss of the communications link, loss of message-boundary synchronization, etc. If either frontend or
backend sees an unexpected closure of the connection, it should clean up and terminate. The frontend
has the option of launching a new backend by recontacting the server if it doesn’t want to terminate itself.
Closing the connection is also advisable if an unrecognizable message type is received, since this probably
indicates loss of message-boundary sync.

For either normal or abnormal termination, any open transaction is rolled back, not committed. One should
note however that if a frontend disconnects while a non-SELECT query is being processed, the backend will
probably finish the query before noticing the disconnection. If the query is outside any transaction block
(BEGIN ... COMMIT sequence) then its results might be committed before the disconnection is recognized.

46.2.9. SSL Session Encryption
If PostgreSQL was built with SSL support, frontend/backend communications can be encrypted using
SSL. This provides communication security in environments where attackers might be able to capture the
session traffic. For more information on encrypting PostgreSQL sessions with SSL, see Section 17.9.

To initiate an SSL-encrypted connection, the frontend initially sends an SSLRequest message rather than
a StartupMessage. The server then responds with a single byte containing S or N, indicating that it is will-
ing or unwilling to perform SSL, respectively. The frontend might close the connection at this point if it is
dissatisfied with the response. To continue after S, perform an SSL startup handshake (not described here,
part of the SSL specification) with the server. If this is successful, continue with sending the usual Star-
tupMessage. In this case the StartupMessage and all subsequent data will be SSL-encrypted. To continue
after N, send the usual StartupMessage and proceed without encryption.

The frontend should also be prepared to handle an ErrorMessage response to SSLRequest from the server.
This would only occur if the server predates the addition of SSL support to PostgreSQL. (Such servers are
now very ancient, and likely do not exist in the wild anymore.) In this case the connection must be closed,
but the frontend might choose to open a fresh connection and proceed without requesting SSL.

An initial SSLRequest can also be used in a connection that is being opened to send a CancelRequest
message.

While the protocol itself does not provide a way for the server to force SSL encryption, the administrator
can configure the server to reject unencrypted sessions as a byproduct of authentication checking.

46.3. Streaming Replication Protocol
To initiate streaming replication, the frontend sends the replication parameter in the startup message.
This tells the backend to go into walsender mode, wherein a small set of replication commands can be
issued instead of SQL statements. Only the simple query protocol can be used in walsender mode. The

1864

Chapter 46. Frontend/Backend Protocol

commands accepted in walsender mode are:

IDENTIFY_SYSTEM

Requests the server to identify itself. Server replies with a result set of a single row, containing three
fields:

systemid

The unique system identifier identifying the cluster. This can be used to check that the base
backup used to initialize the standby came from the same cluster.

timeline

Current TimelineID. Also useful to check that the standby is consistent with the master.

xlogpos

Current xlog write location. Useful to get a known location in the transaction log where stream-
ing can start.

START_REPLICATION XXX/XXX

Instructs server to start streaming WAL, starting at WAL position XXX/XXX. The server can reply
with an error, e.g. if the requested section of WAL has already been recycled. On success, server
responds with a CopyBothResponse message, and then starts to stream WAL to the frontend. WAL
will continue to be streamed until the connection is broken; no further commands will be accepted.

WAL data is sent as a series of CopyData messages. (This allows other information to be intermixed;
in particular the server can send an ErrorResponse message if it encounters a failure after beginning
to stream.) The payload in each CopyData message follows this format:

XLogData (B)

Byte1(’w’)

Identifies the message as WAL data.

Byte8

The starting point of the WAL data in this message, given in XLogRecPtr format.

Byte8

The current end of WAL on the server, given in XLogRecPtr format.

Byte8

The server’s system clock at the time of transmission, given in TimestampTz format.

Byten

A section of the WAL data stream.

1865

Chapter 46. Frontend/Backend Protocol

A single WAL record is never split across two CopyData messages. When a WAL record crosses a
WAL page boundary, and is therefore already split using continuation records, it can be split at the
page boundary. In other words, the first main WAL record and its continuation records can be sent in
different CopyData messages.

Note that all fields within the WAL data and the above-described header will be in the sending
server’s native format. Endianness, and the format for the timestamp, are unpredictable unless the
receiver has verified that the sender’s system identifier matches its own pg_control contents.

If the WAL sender process is terminated normally (during postmaster shutdown), it will send a Com-
mandComplete message before exiting. This might not happen during an abnormal shutdown, of
course.

The receiving process can send replies back to the sender at any time, using one of the following
message formats (also in the payload of a CopyData message):

Primary keepalive message (B)

Byte1(’k’)

Identifies the message as a sender keepalive.

Byte8

The current end of WAL on the server, given in XLogRecPtr format.

Byte8

The server’s system clock at the time of transmission, given in TimestampTz format.

Standby status update (F)

Byte1(’r’)

Identifies the message as a receiver status update.

Byte8

The location of the last WAL byte + 1 received and written to disk in the standby, in
XLogRecPtr format.

Byte8

The location of the last WAL byte + 1 flushed to disk in the standby, in XLogRecPtr format.

Byte8

The location of the last WAL byte + 1 applied in the standby, in XLogRecPtr format.

Byte8

The server’s system clock at the time of transmission, given in TimestampTz format.

1866

Chapter 46. Frontend/Backend Protocol

Hot Standby feedback message (F)

Byte1(’h’)

Identifies the message as a Hot Standby feedback message.

Byte8

The server’s system clock at the time of transmission, given in TimestampTz format.

Byte4

The standby’s current xmin.

Byte4

The standby’s current epoch.

BASE_BACKUP [LABEL ’label’] [PROGRESS] [FAST] [WAL] [NOWAIT]

Instructs the server to start streaming a base backup. The system will automatically be put in backup
mode before the backup is started, and taken out of it when the backup is complete. The following
options are accepted:

LABEL ’label’

Sets the label of the backup. If none is specified, a backup label of base backup will
be used. The quoting rules for the label are the same as a standard SQL string with
standard_conforming_strings turned on.

PROGRESS

Request information required to generate a progress report. This will send back an approximate
size in the header of each tablespace, which can be used to calculate how far along the stream is
done. This is calculated by enumerating all the file sizes once before the transfer is even started,
and may as such have a negative impact on the performance - in particular it may take longer
before the first data is streamed. Since the database files can change during the backup, the size
is only approximate and may both grow and shrink between the time of approximation and the
sending of the actual files.

FAST

Request a fast checkpoint.

WAL

Include the necessary WAL segments in the backup. This will include all the files between start
and stop backup in the pg_xlog directory of the base directory tar file.

NOWAIT

By default, the backup will wait until the last required xlog segment has been archived, or emit
a warning if log archiving is not enabled. Specifying NOWAIT disables both the waiting and the
warning, leaving the client responsible for ensuring the required log is available.

1867

Chapter 46. Frontend/Backend Protocol

When the backup is started, the server will first send two ordinary result sets, followed by one or
more CopyResponse results.

The first ordinary result set contains the starting position of the backup, given in XLogRecPtr format
as a single column in a single row.

The second ordinary result set has one row for each tablespace. The fields in this row are:

spcoid

The oid of the tablespace, or NULL if it’s the base directory.

spclocation

The full path of the tablespace directory, or NULL if it’s the base directory.

size

The approximate size of the tablespace, if progress report has been requested; otherwise it’s
NULL.

After the second regular result set, one or more CopyResponse results will be sent, one for PGDATA
and one for each additional tablespace other than pg_default and pg_global. The data in the
CopyResponse results will be a tar format (following the “ustar interchange format” specified in the
POSIX 1003.1-2008 standard) dump of the tablespace contents, except that the two trailing blocks
of zeroes specified in the standard are omitted. After the tar data is complete, a final ordinary result
set will be sent.

The tar archive for the data directory and each tablespace will contain all files in the directories,
regardless of whether they are PostgreSQL files or other files added to the same directory. The only
excluded files are:
• postmaster.pid

• postmaster.opts

• pg_xlog, including subdirectories. If the backup is run with WAL files included, a synthesized
version of pg_xlog will be included, but it will only contain the files necessary for the backup to
work, not the rest of the contents.

Owner, group and file mode are set if the underlying file system on the server supports it.

Once all tablespaces have been sent, a final regular result set will be sent. This result set contains the
end position of the backup, given in XLogRecPtr format as a single column in a single row.

46.4. Message Data Types
This section describes the base data types used in messages.

Intn(i)

An n-bit integer in network byte order (most significant byte first). If i is specified it is the exact
value that will appear, otherwise the value is variable. Eg. Int16, Int32(42).

1868

Chapter 46. Frontend/Backend Protocol

Intn[k]

An array of k n-bit integers, each in network byte order. The array length k is always determined by
an earlier field in the message. Eg. Int16[M].

String(s)

A null-terminated string (C-style string). There is no specific length limitation on strings. If s is spec-
ified it is the exact value that will appear, otherwise the value is variable. Eg. String, String("user").

Note: There is no predefined limit on the length of a string that can be returned by the backend.
Good coding strategy for a frontend is to use an expandable buffer so that anything that fits in
memory can be accepted. If that’s not feasible, read the full string and discard trailing characters
that don’t fit into your fixed-size buffer.

Byten(c)

Exactly n bytes. If the field width n is not a constant, it is always determinable from an earlier field
in the message. If c is specified it is the exact value. Eg. Byte2, Byte1(’\n’).

46.5. Message Formats
This section describes the detailed format of each message. Each is marked to indicate that it can be sent
by a frontend (F), a backend (B), or both (F & B). Notice that although each message includes a byte count
at the beginning, the message format is defined so that the message end can be found without reference to
the byte count. This aids validity checking. (The CopyData message is an exception, because it forms part
of a data stream; the contents of any individual CopyData message cannot be interpretable on their own.)

AuthenticationOk (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(0)

Specifies that the authentication was successful.

AuthenticationKerberosV5 (B)

Byte1(’R’)

Identifies the message as an authentication request.

1869

Chapter 46. Frontend/Backend Protocol

Int32(8)

Length of message contents in bytes, including self.

Int32(2)

Specifies that Kerberos V5 authentication is required.

AuthenticationCleartextPassword (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(3)

Specifies that a clear-text password is required.

AuthenticationMD5Password (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(12)

Length of message contents in bytes, including self.

Int32(5)

Specifies that an MD5-encrypted password is required.

Byte4

The salt to use when encrypting the password.

AuthenticationSCMCredential (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(6)

Specifies that an SCM credentials message is required.

1870

Chapter 46. Frontend/Backend Protocol

AuthenticationGSS (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(7)

Specifies that GSSAPI authentication is required.

AuthenticationSSPI (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(9)

Specifies that SSPI authentication is required.

AuthenticationGSSContinue (B)

Byte1(’R’)

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(8)

Specifies that this message contains GSSAPI or SSPI data.

Byten

GSSAPI or SSPI authentication data.

BackendKeyData (B)

Byte1(’K’)

Identifies the message as cancellation key data. The frontend must save these values if it wishes
to be able to issue CancelRequest messages later.

Int32(12)

Length of message contents in bytes, including self.

1871

Chapter 46. Frontend/Backend Protocol

Int32

The process ID of this backend.

Int32

The secret key of this backend.

Bind (F)

Byte1(’B’)

Identifies the message as a Bind command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination portal (an empty string selects the unnamed portal).

String

The name of the source prepared statement (an empty string selects the unnamed prepared
statement).

Int16

The number of parameter format codes that follow (denoted C below). This can be zero to
indicate that there are no parameters or that the parameters all use the default format (text); or
one, in which case the specified format code is applied to all parameters; or it can equal the
actual number of parameters.

Int16[C]

The parameter format codes. Each must presently be zero (text) or one (binary).

Int16

The number of parameter values that follow (possibly zero). This must match the number of
parameters needed by the query.

Next, the following pair of fields appear for each parameter:

Int32

The length of the parameter value, in bytes (this count does not include itself). Can be zero. As
a special case, -1 indicates a NULL parameter value. No value bytes follow in the NULL case.

Byten

The value of the parameter, in the format indicated by the associated format code. n is the above
length.

After the last parameter, the following fields appear:

1872

Chapter 46. Frontend/Backend Protocol

Int16

The number of result-column format codes that follow (denoted R below). This can be zero to
indicate that there are no result columns or that the result columns should all use the default
format (text); or one, in which case the specified format code is applied to all result columns (if
any); or it can equal the actual number of result columns of the query.

Int16[R]

The result-column format codes. Each must presently be zero (text) or one (binary).

BindComplete (B)

Byte1(’2’)

Identifies the message as a Bind-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CancelRequest (F)

Int32(16)

Length of message contents in bytes, including self.

Int32(80877102)

The cancel request code. The value is chosen to contain 1234 in the most significant 16 bits,
and 5678 in the least 16 significant bits. (To avoid confusion, this code must not be the same as
any protocol version number.)

Int32

The process ID of the target backend.

Int32

The secret key for the target backend.

Close (F)

Byte1(’C’)

Identifies the message as a Close command.

Int32

Length of message contents in bytes, including self.

Byte1

’S’ to close a prepared statement; or ’P’ to close a portal.

1873

Chapter 46. Frontend/Backend Protocol

String

The name of the prepared statement or portal to close (an empty string selects the unnamed
prepared statement or portal).

CloseComplete (B)

Byte1(’3’)

Identifies the message as a Close-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CommandComplete (B)

Byte1(’C’)

Identifies the message as a command-completed response.

Int32

Length of message contents in bytes, including self.

String

The command tag. This is usually a single word that identifies which SQL command was com-
pleted.

For an INSERT command, the tag is INSERT oid rows, where rows is the number of rows
inserted. oid is the object ID of the inserted row if rows is 1 and the target table has OIDs;
otherwise oid is 0.

For a DELETE command, the tag is DELETE rows where rows is the number of rows deleted.

For an UPDATE command, the tag is UPDATE rows where rows is the number of rows updated.

For a SELECT or CREATE TABLE AS command, the tag is SELECT rows where rows is the
number of rows retrieved.

For a MOVE command, the tag is MOVE rows where rows is the number of rows the cursor’s
position has been changed by.

For a FETCH command, the tag is FETCH rows where rows is the number of rows that have
been retrieved from the cursor.

For a COPY command, the tag is COPY rows where rows is the number of rows copied. (Note:
the row count appears only in PostgreSQL 8.2 and later.)

CopyData (F & B)

Byte1(’d’)

Identifies the message as COPY data.

1874

Chapter 46. Frontend/Backend Protocol

Int32

Length of message contents in bytes, including self.

Byten

Data that forms part of a COPY data stream. Messages sent from the backend will always corre-
spond to single data rows, but messages sent by frontends might divide the data stream arbitrar-
ily.

CopyDone (F & B)

Byte1(’c’)

Identifies the message as a COPY-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CopyFail (F)

Byte1(’f’)

Identifies the message as a COPY-failure indicator.

Int32

Length of message contents in bytes, including self.

String

An error message to report as the cause of failure.

CopyInResponse (B)

Byte1(’G’)

Identifies the message as a Start Copy In response. The frontend must now send copy-in data (if
not prepared to do so, send a CopyFail message).

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16

The number of columns in the data to be copied (denoted N below).

1875

Chapter 46. Frontend/Backend Protocol

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

CopyOutResponse (B)

Byte1(’H’)

Identifies the message as a Start Copy Out response. This message will be followed by copy-out
data.

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16

The number of columns in the data to be copied (denoted N below).

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

CopyBothResponse (B)

Byte1(’W’)

Identifies the message as a Start Copy Both response. This message is used only for Streaming
Replication.

Int32

Length of message contents in bytes, including self.

Int8

0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16

The number of columns in the data to be copied (denoted N below).

Int16[N]

The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

1876

Chapter 46. Frontend/Backend Protocol

DataRow (B)

Byte1(’D’)

Identifies the message as a data row.

Int32

Length of message contents in bytes, including self.

Int16

The number of column values that follow (possibly zero).

Next, the following pair of fields appear for each column:

Int32

The length of the column value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL column value. No value bytes follow in the NULL case.

Byten

The value of the column, in the format indicated by the associated format code. n is the above
length.

Describe (F)

Byte1(’D’)

Identifies the message as a Describe command.

Int32

Length of message contents in bytes, including self.

Byte1

’S’ to describe a prepared statement; or ’P’ to describe a portal.

String

The name of the prepared statement or portal to describe (an empty string selects the unnamed
prepared statement or portal).

EmptyQueryResponse (B)

Byte1(’I’)

Identifies the message as a response to an empty query string. (This substitutes for Command-
Complete.)

Int32(4)

Length of message contents in bytes, including self.

1877

Chapter 46. Frontend/Backend Protocol

ErrorResponse (B)

Byte1(’E’)

Identifies the message as an error.

Int32

Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string follows.
The presently defined field types are listed in Section 46.6. Since more field types might be
added in future, frontends should silently ignore fields of unrecognized type.

String

The field value.

Execute (F)

Byte1(’E’)

Identifies the message as an Execute command.

Int32

Length of message contents in bytes, including self.

String

The name of the portal to execute (an empty string selects the unnamed portal).

Int32

Maximum number of rows to return, if portal contains a query that returns rows (ignored other-
wise). Zero denotes “no limit”.

Flush (F)

Byte1(’H’)

Identifies the message as a Flush command.

Int32(4)

Length of message contents in bytes, including self.

1878

Chapter 46. Frontend/Backend Protocol

FunctionCall (F)

Byte1(’F’)

Identifies the message as a function call.

Int32

Length of message contents in bytes, including self.

Int32

Specifies the object ID of the function to call.

Int16

The number of argument format codes that follow (denoted C below). This can be zero to indi-
cate that there are no arguments or that the arguments all use the default format (text); or one,
in which case the specified format code is applied to all arguments; or it can equal the actual
number of arguments.

Int16[C]

The argument format codes. Each must presently be zero (text) or one (binary).

Int16

Specifies the number of arguments being supplied to the function.

Next, the following pair of fields appear for each argument:

Int32

The length of the argument value, in bytes (this count does not include itself). Can be zero. As
a special case, -1 indicates a NULL argument value. No value bytes follow in the NULL case.

Byten

The value of the argument, in the format indicated by the associated format code. n is the above
length.

After the last argument, the following field appears:

Int16

The format code for the function result. Must presently be zero (text) or one (binary).

FunctionCallResponse (B)

Byte1(’V’)

Identifies the message as a function call result.

Int32

Length of message contents in bytes, including self.

Int32

The length of the function result value, in bytes (this count does not include itself). Can be zero.
As a special case, -1 indicates a NULL function result. No value bytes follow in the NULL case.

1879

Chapter 46. Frontend/Backend Protocol

Byten

The value of the function result, in the format indicated by the associated format code. n is the
above length.

NoData (B)

Byte1(’n’)

Identifies the message as a no-data indicator.

Int32(4)

Length of message contents in bytes, including self.

NoticeResponse (B)

Byte1(’N’)

Identifies the message as a notice.

Int32

Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string follows.
The presently defined field types are listed in Section 46.6. Since more field types might be
added in future, frontends should silently ignore fields of unrecognized type.

String

The field value.

NotificationResponse (B)

Byte1(’A’)

Identifies the message as a notification response.

Int32

Length of message contents in bytes, including self.

Int32

The process ID of the notifying backend process.

String

The name of the channel that the notify has been raised on.

1880

Chapter 46. Frontend/Backend Protocol

String

The “payload” string passed from the notifying process.

ParameterDescription (B)

Byte1(’t’)

Identifies the message as a parameter description.

Int32

Length of message contents in bytes, including self.

Int16

The number of parameters used by the statement (can be zero).

Then, for each parameter, there is the following:

Int32

Specifies the object ID of the parameter data type.

ParameterStatus (B)

Byte1(’S’)

Identifies the message as a run-time parameter status report.

Int32

Length of message contents in bytes, including self.

String

The name of the run-time parameter being reported.

String

The current value of the parameter.

Parse (F)

Byte1(’P’)

Identifies the message as a Parse command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination prepared statement (an empty string selects the unnamed prepared
statement).

1881

Chapter 46. Frontend/Backend Protocol

String

The query string to be parsed.

Int16

The number of parameter data types specified (can be zero). Note that this is not an indication
of the number of parameters that might appear in the query string, only the number that the
frontend wants to prespecify types for.

Then, for each parameter, there is the following:

Int32

Specifies the object ID of the parameter data type. Placing a zero here is equivalent to leaving
the type unspecified.

ParseComplete (B)

Byte1(’1’)

Identifies the message as a Parse-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

PasswordMessage (F)

Byte1(’p’)

Identifies the message as a password response. Note that this is also used for GSSAPI and
SSPI response messages (which is really a design error, since the contained data is not a null-
terminated string in that case, but can be arbitrary binary data).

Int32

Length of message contents in bytes, including self.

String

The password (encrypted, if requested).

PortalSuspended (B)

Byte1(’s’)

Identifies the message as a portal-suspended indicator. Note this only appears if an Execute
message’s row-count limit was reached.

Int32(4)

Length of message contents in bytes, including self.

1882

Chapter 46. Frontend/Backend Protocol

Query (F)

Byte1(’Q’)

Identifies the message as a simple query.

Int32

Length of message contents in bytes, including self.

String

The query string itself.

ReadyForQuery (B)

Byte1(’Z’)

Identifies the message type. ReadyForQuery is sent whenever the backend is ready for a new
query cycle.

Int32(5)

Length of message contents in bytes, including self.

Byte1

Current backend transaction status indicator. Possible values are ’I’ if idle (not in a transaction
block); ’T’ if in a transaction block; or ’E’ if in a failed transaction block (queries will be rejected
until block is ended).

RowDescription (B)

Byte1(’T’)

Identifies the message as a row description.

Int32

Length of message contents in bytes, including self.

Int16

Specifies the number of fields in a row (can be zero).

Then, for each field, there is the following:

String

The field name.

Int32

If the field can be identified as a column of a specific table, the object ID of the table; otherwise
zero.

1883

Chapter 46. Frontend/Backend Protocol

Int16

If the field can be identified as a column of a specific table, the attribute number of the column;
otherwise zero.

Int32

The object ID of the field’s data type.

Int16

The data type size (see pg_type.typlen). Note that negative values denote variable-width
types.

Int32

The type modifier (see pg_attribute.atttypmod). The meaning of the modifier is type-
specific.

Int16

The format code being used for the field. Currently will be zero (text) or one (binary). In a
RowDescription returned from the statement variant of Describe, the format code is not yet
known and will always be zero.

SSLRequest (F)

Int32(8)

Length of message contents in bytes, including self.

Int32(80877103)

The SSL request code. The value is chosen to contain 1234 in the most significant 16 bits, and
5679 in the least 16 significant bits. (To avoid confusion, this code must not be the same as any
protocol version number.)

StartupMessage (F)

Int32

Length of message contents in bytes, including self.

Int32(196608)

The protocol version number. The most significant 16 bits are the major version number (3 for
the protocol described here). The least significant 16 bits are the minor version number (0 for
the protocol described here).

The protocol version number is followed by one or more pairs of parameter name and value strings.
A zero byte is required as a terminator after the last name/value pair. Parameters can appear in any
order. user is required, others are optional. Each parameter is specified as:

1884

Chapter 46. Frontend/Backend Protocol

String

The parameter name. Currently recognized names are:

user

The database user name to connect as. Required; there is no default.

database

The database to connect to. Defaults to the user name.

options

Command-line arguments for the backend. (This is deprecated in favor of setting individual
run-time parameters.)

In addition to the above, any run-time parameter that can be set at backend start time might
be listed. Such settings will be applied during backend start (after parsing the command-line
options if any). The values will act as session defaults.

String

The parameter value.

Sync (F)

Byte1(’S’)

Identifies the message as a Sync command.

Int32(4)

Length of message contents in bytes, including self.

Terminate (F)

Byte1(’X’)

Identifies the message as a termination.

Int32(4)

Length of message contents in bytes, including self.

46.6. Error and Notice Message Fields
This section describes the fields that can appear in ErrorResponse and NoticeResponse messages. Each
field type has a single-byte identification token. Note that any given field type should appear at most once
per message.

1885

Chapter 46. Frontend/Backend Protocol

S

Severity: the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING, NOTICE,
DEBUG, INFO, or LOG (in a notice message), or a localized translation of one of these. Always present.

C

Code: the SQLSTATE code for the error (see Appendix A). Not localizable. Always present.

M

Message: the primary human-readable error message. This should be accurate but terse (typically
one line). Always present.

D

Detail: an optional secondary error message carrying more detail about the problem. Might run to
multiple lines.

H

Hint: an optional suggestion what to do about the problem. This is intended to differ from Detail in
that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple lines.

P

Position: the field value is a decimal ASCII integer, indicating an error cursor position as an index
into the original query string. The first character has index 1, and positions are measured in characters
not bytes.

p

Internal position: this is defined the same as the P field, but it is used when the cursor position refers
to an internally generated command rather than the one submitted by the client. The q field will
always appear when this field appears.

q

Internal query: the text of a failed internally-generated command. This could be, for example, a SQL
query issued by a PL/pgSQL function.

W

Where: an indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is one
entry per line, most recent first.

F

File: the file name of the source-code location where the error was reported.

L

Line: the line number of the source-code location where the error was reported.

R

Routine: the name of the source-code routine reporting the error.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be treated as
paragraph breaks, not line breaks.

1886

Chapter 46. Frontend/Backend Protocol

46.7. Summary of Changes since Protocol 2.0
This section provides a quick checklist of changes, for the benefit of developers trying to update existing
client libraries to protocol 3.0.

The initial startup packet uses a flexible list-of-strings format instead of a fixed format. Notice that session
default values for run-time parameters can now be specified directly in the startup packet. (Actually, you
could do that before using the options field, but given the limited width of options and the lack of any
way to quote whitespace in the values, it wasn’t a very safe technique.)

All messages now have a length count immediately following the message type byte (except for startup
packets, which have no type byte). Also note that PasswordMessage now has a type byte.

ErrorResponse and NoticeResponse (’E’ and ’N’) messages now contain multiple fields, from which the
client code can assemble an error message of the desired level of verbosity. Note that individual fields will
typically not end with a newline, whereas the single string sent in the older protocol always did.

The ReadyForQuery (’Z’) message includes a transaction status indicator.

The distinction between BinaryRow and DataRow message types is gone; the single DataRow message
type serves for returning data in all formats. Note that the layout of DataRow has changed to make it
easier to parse. Also, the representation of binary values has changed: it is no longer directly tied to the
server’s internal representation.

There is a new “extended query” sub-protocol, which adds the frontend message types Parse, Bind, Ex-
ecute, Describe, Close, Flush, and Sync, and the backend message types ParseComplete, BindComplete,
PortalSuspended, ParameterDescription, NoData, and CloseComplete. Existing clients do not have to con-
cern themselves with this sub-protocol, but making use of it might allow improvements in performance or
functionality.

COPY data is now encapsulated into CopyData and CopyDone messages. There is a well-defined way
to recover from errors during COPY. The special “\.” last line is not needed anymore, and is not sent
during COPY OUT. (It is still recognized as a terminator during COPY IN, but its use is deprecated and
will eventually be removed.) Binary COPY is supported. The CopyInResponse and CopyOutResponse
messages include fields indicating the number of columns and the format of each column.

The layout of FunctionCall and FunctionCallResponse messages has changed. FunctionCall can now
support passing NULL arguments to functions. It also can handle passing parameters and retrieving results
in either text or binary format. There is no longer any reason to consider FunctionCall a potential security
hole, since it does not offer direct access to internal server data representations.

The backend sends ParameterStatus (’S’) messages during connection startup for all parameters it consid-
ers interesting to the client library. Subsequently, a ParameterStatus message is sent whenever the active
value changes for any of these parameters.

The RowDescription (’T’) message carries new table OID and column number fields for each column of
the described row. It also shows the format code for each column.

The CursorResponse (’P’) message is no longer generated by the backend.

The NotificationResponse (’A’) message has an additional string field, which can carry a “payload” string
passed from the NOTIFY event sender.

The EmptyQueryResponse (’I’) message used to include an empty string parameter; this has been re-
moved.

1887

Chapter 47. PostgreSQL Coding Conventions

47.1. Formatting
Source code formatting uses 4 column tab spacing, with tabs preserved (i.e., tabs are not expanded to
spaces). Each logical indentation level is one additional tab stop.

Layout rules (brace positioning, etc) follow BSD conventions. In particular, curly braces for the controlled
blocks of if, while, switch, etc go on their own lines.

Limit line lengths so that the code is readable in an 80-column window. (This doesn’t mean that you must
never go past 80 columns. For instance, breaking a long error message string in arbitrary places just to
keep the code within 80 columns is probably not a net gain in readability.)

Do not use C++ style comments (// comments). Strict ANSI C compilers do not accept them. For the
same reason, do not use C++ extensions such as declaring new variables mid-block.

The preferred style for multi-line comment blocks is

/*
* comment text begins here

* and continues here

*/

Note that comment blocks that begin in column 1 will be preserved as-is by pgindent, but it will re-flow
indented comment blocks as though they were plain text. If you want to preserve the line breaks in an
indented block, add dashes like this:

/*----------

* comment text begins here

* and continues here

*----------

*/

While submitted patches do not absolutely have to follow these formatting rules, it’s a good idea to do so.
Your code will get run through pgindent before the next release, so there’s no point in making it look nice
under some other set of formatting conventions. A good rule of thumb for patches is “make the new code
look like the existing code around it”.

The src/tools directory contains sample settings files that can be used with the emacs, xemacs or vim
editors to help ensure that they format code according to these conventions.

The text browsing tools more and less can be invoked as:

more -x4
less -x4

to make them show tabs appropriately.

1888

Chapter 47. PostgreSQL Coding Conventions

47.2. Reporting Errors Within the Server
Error, warning, and log messages generated within the server code should be created using ereport, or
its older cousin elog. The use of this function is complex enough to require some explanation.

There are two required elements for every message: a severity level (ranging from DEBUG to PANIC) and
a primary message text. In addition there are optional elements, the most common of which is an error
identifier code that follows the SQL spec’s SQLSTATE conventions. ereport itself is just a shell func-
tion, that exists mainly for the syntactic convenience of making message generation look like a function
call in the C source code. The only parameter accepted directly by ereport is the severity level. The
primary message text and any optional message elements are generated by calling auxiliary functions,
such as errmsg, within the ereport call.

A typical call to ereport might look like this:

ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));

This specifies error severity level ERROR (a run-of-the-mill error). The errcode call specifies the SQL-
STATE error code using a macro defined in src/include/utils/errcodes.h. The errmsg call pro-
vides the primary message text. Notice the extra set of parentheses surrounding the auxiliary function
calls — these are annoying but syntactically necessary.

Here is a more complex example:

ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_FUNCTION),
errmsg("function %s is not unique",

func_signature_string(funcname, nargs,
NIL, actual_arg_types)),

errhint("Unable to choose a best candidate function. "
"You might need to add explicit typecasts.")));

This illustrates the use of format codes to embed run-time values into a message text. Also, an optional
“hint” message is provided.

The available auxiliary routines for ereport are:

• errcode(sqlerrcode) specifies the SQLSTATE error identifier code for the condition. If this routine
is not called, the error identifier defaults to ERRCODE_INTERNAL_ERROR when the error severity level
is ERROR or higher, ERRCODE_WARNING when the error level is WARNING, otherwise (for NOTICE and
below) ERRCODE_SUCCESSFUL_COMPLETION. While these defaults are often convenient, always think
whether they are appropriate before omitting the errcode() call.

• errmsg(const char *msg, ...) specifies the primary error message text, and possibly run-time
values to insert into it. Insertions are specified by sprintf-style format codes. In addition to the stan-
dard format codes accepted by sprintf, the format code %m can be used to insert the error message
returned by strerror for the current value of errno. 1 %m does not require any corresponding entry in

1. That is, the value that was current when the ereport call was reached; changes of errno within the auxiliary reporting
routines will not affect it. That would not be true if you were to write strerror(errno) explicitly in errmsg’s parameter list;
accordingly, do not do so.

1889

Chapter 47. PostgreSQL Coding Conventions

the parameter list for errmsg. Note that the message string will be run through gettext for possible
localization before format codes are processed.

• errmsg_internal(const char *msg, ...) is the same as errmsg, except that the message
string will not be translated nor included in the internationalization message dictionary. This should be
used for “cannot happen” cases that are probably not worth expending translation effort on.

• errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned

long n, ...) is like errmsg, but with support for various plural forms of the message.
fmt_singular is the English singular format, fmt_plural is the English plural format, n is the
integer value that determines which plural form is needed, and the remaining arguments are formatted
according to the selected format string. For more information see Section 48.2.2.

• errdetail(const char *msg, ...) supplies an optional “detail” message; this is to be used when
there is additional information that seems inappropriate to put in the primary message. The message
string is processed in just the same way as for errmsg.

• errdetail_internal(const char *msg, ...) is the same as errdetail, except that the mes-
sage string will not be translated nor included in the internationalization message dictionary. This
should be used for detail messages that are not worth expending translation effort on, for instance
because they are too technical to be useful to most users.

• errdetail_plural(const char *fmt_singular, const char *fmt_plural, unsigned

long n, ...) is like errdetail, but with support for various plural forms of the message. For
more information see Section 48.2.2.

• errdetail_log(const char *msg, ...) is the same as errdetail except that this string goes
only to the server log, never to the client. If both errdetail (or one of its equivalents above) and
errdetail_log are used then one string goes to the client and the other to the log. This is useful for
error details that are too security-sensitive or too bulky to include in the report sent to the client.

• errhint(const char *msg, ...) supplies an optional “hint” message; this is to be used when
offering suggestions about how to fix the problem, as opposed to factual details about what went wrong.
The message string is processed in just the same way as for errmsg.

• errcontext(const char *msg, ...) is not normally called directly from an ereport message
site; rather it is used in error_context_stack callback functions to provide information about the
context in which an error occurred, such as the current location in a PL function. The message string is
processed in just the same way as for errmsg. Unlike the other auxiliary functions, this can be called
more than once per ereport call; the successive strings thus supplied are concatenated with separating
newlines.

• errposition(int cursorpos) specifies the textual location of an error within a query string. Cur-
rently it is only useful for errors detected in the lexical and syntactic analysis phases of query process-
ing.

• errcode_for_file_access() is a convenience function that selects an appropriate SQLSTATE er-
ror identifier for a failure in a file-access-related system call. It uses the saved errno to determine
which error code to generate. Usually this should be used in combination with %m in the primary error
message text.

• errcode_for_socket_access() is a convenience function that selects an appropriate SQLSTATE
error identifier for a failure in a socket-related system call.

1890

Chapter 47. PostgreSQL Coding Conventions

• errhidestmt(bool hide_stmt) can be called to specify suppression of the STATEMENT: portion
of a message in the postmaster log. Generally this is appropriate if the message text includes the current
statement already.

There is an older function elog that is still heavily used. An elog call:

elog(level, "format string", ...);

is exactly equivalent to:

ereport(level, (errmsg_internal("format string", ...)));

Notice that the SQLSTATE error code is always defaulted, and the message string is not subject to trans-
lation. Therefore, elog should be used only for internal errors and low-level debug logging. Any message
that is likely to be of interest to ordinary users should go through ereport. Nonetheless, there are enough
internal “cannot happen” error checks in the system that elog is still widely used; it is preferred for those
messages for its notational simplicity.

Advice about writing good error messages can be found in Section 47.3.

47.3. Error Message Style Guide
This style guide is offered in the hope of maintaining a consistent, user-friendly style throughout all the
messages generated by PostgreSQL.

47.3.1. What Goes Where
The primary message should be short, factual, and avoid reference to implementation details such as
specific function names. “Short” means “should fit on one line under normal conditions”. Use a detail
message if needed to keep the primary message short, or if you feel a need to mention implementation
details such as the particular system call that failed. Both primary and detail messages should be factual.
Use a hint message for suggestions about what to do to fix the problem, especially if the suggestion might
not always be applicable.

For example, instead of:

IpcMemoryCreate: shmget(key=%d, size=%u, 0%o) failed: %m
(plus a long addendum that is basically a hint)

write:

Primary: could not create shared memory segment: %m
Detail: Failed syscall was shmget(key=%d, size=%u, 0%o).
Hint: the addendum

Rationale: keeping the primary message short helps keep it to the point, and lets clients lay out screen
space on the assumption that one line is enough for error messages. Detail and hint messages can be

1891

Chapter 47. PostgreSQL Coding Conventions

relegated to a verbose mode, or perhaps a pop-up error-details window. Also, details and hints would
normally be suppressed from the server log to save space. Reference to implementation details is best
avoided since users don’t know the details anyway.

47.3.2. Formatting
Don’t put any specific assumptions about formatting into the message texts. Expect clients and the server
log to wrap lines to fit their own needs. In long messages, newline characters (\n) can be used to indicate
suggested paragraph breaks. Don’t end a message with a newline. Don’t use tabs or other formatting
characters. (In error context displays, newlines are automatically added to separate levels of context such
as function calls.)

Rationale: Messages are not necessarily displayed on terminal-type displays. In GUI displays or browsers
these formatting instructions are at best ignored.

47.3.3. Quotation Marks
English text should use double quotes when quoting is appropriate. Text in other languages should con-
sistently use one kind of quotes that is consistent with publishing customs and computer output of other
programs.

Rationale: The choice of double quotes over single quotes is somewhat arbitrary, but tends to be the
preferred use. Some have suggested choosing the kind of quotes depending on the type of object according
to SQL conventions (namely, strings single quoted, identifiers double quoted). But this is a language-
internal technical issue that many users aren’t even familiar with, it won’t scale to other kinds of quoted
terms, it doesn’t translate to other languages, and it’s pretty pointless, too.

47.3.4. Use of Quotes
Use quotes always to delimit file names, user-supplied identifiers, and other variables that might contain
words. Do not use them to mark up variables that will not contain words (for example, operator names).

There are functions in the backend that will double-quote their own output at need (for example,
format_type_be()). Do not put additional quotes around the output of such functions.

Rationale: Objects can have names that create ambiguity when embedded in a message. Be consistent
about denoting where a plugged-in name starts and ends. But don’t clutter messages with unnecessary or
duplicate quote marks.

47.3.5. Grammar and Punctuation
The rules are different for primary error messages and for detail/hint messages:

Primary error messages: Do not capitalize the first letter. Do not end a message with a period. Do not even
think about ending a message with an exclamation point.

1892

Chapter 47. PostgreSQL Coding Conventions

Detail and hint messages: Use complete sentences, and end each with a period. Capitalize the first word
of sentences. Put two spaces after the period if another sentence follows (for English text; might be inap-
propriate in other languages).

Error context strings: Do not capitalize the first letter and do not end the string with a period. Context
strings should normally not be complete sentences.

Rationale: Avoiding punctuation makes it easier for client applications to embed the message into a variety
of grammatical contexts. Often, primary messages are not grammatically complete sentences anyway.
(And if they’re long enough to be more than one sentence, they should be split into primary and detail
parts.) However, detail and hint messages are longer and might need to include multiple sentences. For
consistency, they should follow complete-sentence style even when there’s only one sentence.

47.3.6. Upper Case vs. Lower Case
Use lower case for message wording, including the first letter of a primary error message. Use upper case
for SQL commands and key words if they appear in the message.

Rationale: It’s easier to make everything look more consistent this way, since some messages are complete
sentences and some not.

47.3.7. Avoid Passive Voice
Use the active voice. Use complete sentences when there is an acting subject (“A could not do B”). Use
telegram style without subject if the subject would be the program itself; do not use “I” for the program.

Rationale: The program is not human. Don’t pretend otherwise.

47.3.8. Present vs. Past Tense
Use past tense if an attempt to do something failed, but could perhaps succeed next time (perhaps after
fixing some problem). Use present tense if the failure is certainly permanent.

There is a nontrivial semantic difference between sentences of the form:

could not open file "%s": %m

and:

cannot open file "%s"

The first one means that the attempt to open the file failed. The message should give a reason, such as
“disk full” or “file doesn’t exist”. The past tense is appropriate because next time the disk might not be
full anymore or the file in question might exist.

The second form indicates that the functionality of opening the named file does not exist at all in the
program, or that it’s conceptually impossible. The present tense is appropriate because the condition will
persist indefinitely.

1893

Chapter 47. PostgreSQL Coding Conventions

Rationale: Granted, the average user will not be able to draw great conclusions merely from the tense of
the message, but since the language provides us with a grammar we should use it correctly.

47.3.9. Type of the Object
When citing the name of an object, state what kind of object it is.

Rationale: Otherwise no one will know what “foo.bar.baz” refers to.

47.3.10. Brackets
Square brackets are only to be used (1) in command synopses to denote optional arguments, or (2) to
denote an array subscript.

Rationale: Anything else does not correspond to widely-known customary usage and will confuse people.

47.3.11. Assembling Error Messages
When a message includes text that is generated elsewhere, embed it in this style:

could not open file %s: %m

Rationale: It would be difficult to account for all possible error codes to paste this into a single smooth
sentence, so some sort of punctuation is needed. Putting the embedded text in parentheses has also been
suggested, but it’s unnatural if the embedded text is likely to be the most important part of the message,
as is often the case.

47.3.12. Reasons for Errors
Messages should always state the reason why an error occurred. For example:

BAD: could not open file %s
BETTER: could not open file %s (I/O failure)

If no reason is known you better fix the code.

47.3.13. Function Names
Don’t include the name of the reporting routine in the error text. We have other mechanisms for finding
that out when needed, and for most users it’s not helpful information. If the error text doesn’t make as
much sense without the function name, reword it.

BAD: pg_atoi: error in "z": cannot parse "z"
BETTER: invalid input syntax for integer: "z"

1894

Chapter 47. PostgreSQL Coding Conventions

Avoid mentioning called function names, either; instead say what the code was trying to do:

BAD: open() failed: %m
BETTER: could not open file %s: %m

If it really seems necessary, mention the system call in the detail message. (In some cases, providing the
actual values passed to the system call might be appropriate information for the detail message.)

Rationale: Users don’t know what all those functions do.

47.3.14. Tricky Words to Avoid
Unable. “Unable” is nearly the passive voice. Better use “cannot” or “could not”, as appropriate.

Bad. Error messages like “bad result” are really hard to interpret intelligently. It’s better to write why the
result is “bad”, e.g., “invalid format”.

Illegal. “Illegal” stands for a violation of the law, the rest is “invalid”. Better yet, say why it’s invalid.

Unknown. Try to avoid “unknown”. Consider “error: unknown response”. If you don’t know what the
response is, how do you know it’s erroneous? “Unrecognized” is often a better choice. Also, be sure to
include the value being complained of.

BAD: unknown node type
BETTER: unrecognized node type: 42

Find vs. Exists. If the program uses a nontrivial algorithm to locate a resource (e.g., a path search) and
that algorithm fails, it is fair to say that the program couldn’t “find” the resource. If, on the other hand,
the expected location of the resource is known but the program cannot access it there then say that the
resource doesn’t “exist”. Using “find” in this case sounds weak and confuses the issue.

May vs. Can vs. Might. “May” suggests permission (e.g., "You may borrow my rake."), and has little
use in documentation or error messages. “Can” suggests ability (e.g., "I can lift that log."), and “might”
suggests possibility (e.g., "It might rain today."). Using the proper word clarifies meaning and assists
translation.

Contractions. Avoid contractions, like “can’t”; use “cannot” instead.

47.3.15. Proper Spelling
Spell out words in full. For instance, avoid:

• spec

• stats

• parens

• auth

• xact

1895

Chapter 47. PostgreSQL Coding Conventions

Rationale: This will improve consistency.

47.3.16. Localization
Keep in mind that error message texts need to be translated into other languages. Follow the guidelines in
Section 48.2.2 to avoid making life difficult for translators.

1896

Chapter 48. Native Language Support

48.1. For the Translator
PostgreSQL programs (server and client) can issue their messages in your favorite language — if the
messages have been translated. Creating and maintaining translated message sets needs the help of people
who speak their own language well and want to contribute to the PostgreSQL effort. You do not have to
be a programmer at all to do this. This section explains how to help.

48.1.1. Requirements
We won’t judge your language skills — this section is about software tools. Theoretically, you only need
a text editor. But this is only in the unlikely event that you do not want to try out your translated messages.
When you configure your source tree, be sure to use the --enable-nls option. This will also check for
the libintl library and the msgfmt program, which all end users will need anyway. To try out your work,
follow the applicable portions of the installation instructions.

If you want to start a new translation effort or want to do a message catalog merge (described later), you
will need the programs xgettext and msgmerge, respectively, in a GNU-compatible implementation.
Later, we will try to arrange it so that if you use a packaged source distribution, you won’t need xgettext.
(If working from Git, you will still need it.) GNU Gettext 0.10.36 or later is currently recommended.

Your local gettext implementation should come with its own documentation. Some of that is probably
duplicated in what follows, but for additional details you should look there.

48.1.2. Concepts
The pairs of original (English) messages and their (possibly) translated equivalents are kept in message
catalogs, one for each program (although related programs can share a message catalog) and for each
target language. There are two file formats for message catalogs: The first is the “PO” file (for Portable
Object), which is a plain text file with special syntax that translators edit. The second is the “MO” file
(for Machine Object), which is a binary file generated from the respective PO file and is used while the
internationalized program is run. Translators do not deal with MO files; in fact hardly anyone does.

The extension of the message catalog file is to no surprise either .po or .mo. The base name is either the
name of the program it accompanies, or the language the file is for, depending on the situation. This is a
bit confusing. Examples are psql.po (PO file for psql) or fr.mo (MO file in French).

The file format of the PO files is illustrated here:

comment

msgid "original string"
msgstr "translated string"

1897

Chapter 48. Native Language Support

msgid "more original"
msgstr "another translated"
"string can be broken up like this"

...

The msgid’s are extracted from the program source. (They need not be, but this is the most common way.)
The msgstr lines are initially empty and are filled in with useful strings by the translator. The strings can
contain C-style escape characters and can be continued across lines as illustrated. (The next line must start
at the beginning of the line.)

The # character introduces a comment. If whitespace immediately follows the # character, then this is
a comment maintained by the translator. There can also be automatic comments, which have a non-
whitespace character immediately following the #. These are maintained by the various tools that operate
on the PO files and are intended to aid the translator.

#. automatic comment
#: filename.c:1023
#, flags, flags

The #. style comments are extracted from the source file where the message is used. Possibly the pro-
grammer has inserted information for the translator, such as about expected alignment. The #: comment
indicates the exact location(s) where the message is used in the source. The translator need not look at
the program source, but he can if there is doubt about the correct translation. The #, comments contain
flags that describe the message in some way. There are currently two flags: fuzzy is set if the message
has possibly been outdated because of changes in the program source. The translator can then verify this
and possibly remove the fuzzy flag. Note that fuzzy messages are not made available to the end user. The
other flag is c-format, which indicates that the message is a printf-style format template. This means
that the translation should also be a format string with the same number and type of placeholders. There
are tools that can verify this, which key off the c-format flag.

48.1.3. Creating and Maintaining Message Catalogs
OK, so how does one create a “blank” message catalog? First, go into the directory that contains the
program whose messages you want to translate. If there is a file nls.mk, then this program has been
prepared for translation.

If there are already some .po files, then someone has already done some translation work. The files are
named language.po, where language is the ISO 639-1 two-letter language code (in lower case)1, e.g.,
fr.po for French. If there is really a need for more than one translation effort per language then the files
can also be named language_region.po where region is the ISO 3166-1 two-letter country code (in
upper case)2, e.g., pt_BR.po for Portuguese in Brazil. If you find the language you wanted you can just
start working on that file.

If you need to start a new translation effort, then first run the command:

gmake init-po

1. http://www.loc.gov/standards/iso639-2/php/English_list.php
2. http://www.iso.org/iso/country_names_and_code_elements

1898

Chapter 48. Native Language Support

This will create a file progname.pot. (.pot to distinguish it from PO files that are “in production”. The T
stands for “template”.) Copy this file to language.po and edit it. To make it known that the new language
is available, also edit the file nls.mk and add the language (or language and country) code to the line that
looks like:

AVAIL_LANGUAGES := de fr

(Other languages can appear, of course.)

As the underlying program or library changes, messages might be changed or added by the programmers.
In this case you do not need to start from scratch. Instead, run the command:

gmake update-po

which will create a new blank message catalog file (the pot file you started with) and will merge it with
the existing PO files. If the merge algorithm is not sure about a particular message it marks it “fuzzy” as
explained above. The new PO file is saved with a .po.new extension.

48.1.4. Editing the PO Files
The PO files can be edited with a regular text editor. The translator should only change the area between
the quotes after the msgstr directive, add comments, and alter the fuzzy flag. There is (unsurprisingly) a
PO mode for Emacs, which I find quite useful.

The PO files need not be completely filled in. The software will automatically fall back to the original
string if no translation (or an empty translation) is available. It is no problem to submit incomplete trans-
lations for inclusions in the source tree; that gives room for other people to pick up your work. However,
you are encouraged to give priority to removing fuzzy entries after doing a merge. Remember that fuzzy
entries will not be installed; they only serve as reference for what might be the right translation.

Here are some things to keep in mind while editing the translations:

• Make sure that if the original ends with a newline, the translation does, too. Similarly for tabs, etc.

• If the original is a printf format string, the translation also needs to be. The translation also needs to
have the same format specifiers in the same order. Sometimes the natural rules of the language make
this impossible or at least awkward. In that case you can modify the format specifiers like this:

msgstr "Die Datei %2$s hat %1$u Zeichen."

Then the first placeholder will actually use the second argument from the list. The digits$ needs
to follow the % immediately, before any other format manipulators. (This feature really exists in the
printf family of functions. You might not have heard of it before because there is little use for it
outside of message internationalization.)

• If the original string contains a linguistic mistake, report that (or fix it yourself in the program source)
and translate normally. The corrected string can be merged in when the program sources have been
updated. If the original string contains a factual mistake, report that (or fix it yourself) and do not
translate it. Instead, you can mark the string with a comment in the PO file.

• Maintain the style and tone of the original string. Specifically, messages that are not sentences (cannot
open file %s) should probably not start with a capital letter (if your language distinguishes letter

1899

Chapter 48. Native Language Support

case) or end with a period (if your language uses punctuation marks). It might help to read Section
47.3.

• If you don’t know what a message means, or if it is ambiguous, ask on the developers’ mailing list.
Chances are that English speaking end users might also not understand it or find it ambiguous, so it’s
best to improve the message.

48.2. For the Programmer

48.2.1. Mechanics
This section describes how to implement native language support in a program or library that is part of
the PostgreSQL distribution. Currently, it only applies to C programs.

Adding NLS Support to a Program

1. Insert this code into the start-up sequence of the program:

#ifdef ENABLE_NLS
#include <locale.h>
#endif

...

#ifdef ENABLE_NLS
setlocale(LC_ALL, "");
bindtextdomain("progname", LOCALEDIR);
textdomain("progname");
#endif

(The progname can actually be chosen freely.)

2. Wherever a message that is a candidate for translation is found, a call to gettext() needs to be
inserted. E.g.:

fprintf(stderr, "panic level %d\n", lvl);

would be changed to:

fprintf(stderr, gettext("panic level %d\n"), lvl);

(gettext is defined as a no-op if NLS support is not configured.)

This tends to add a lot of clutter. One common shortcut is to use:

#define _(x) gettext(x)

Another solution is feasible if the program does much of its communication through one or a few
functions, such as ereport() in the backend. Then you make this function call gettext internally
on all input strings.

3. Add a file nls.mk in the directory with the program sources. This file will be read as a makefile. The
following variable assignments need to be made here:

1900

Chapter 48. Native Language Support

CATALOG_NAME

The program name, as provided in the textdomain() call.

AVAIL_LANGUAGES

List of provided translations — initially empty.

GETTEXT_FILES

List of files that contain translatable strings, i.e., those marked with gettext or an alternative
solution. Eventually, this will include nearly all source files of the program. If this list gets too
long you can make the first “file” be a + and the second word be a file that contains one file name
per line.

GETTEXT_TRIGGERS

The tools that generate message catalogs for the translators to work on need to know what
function calls contain translatable strings. By default, only gettext() calls are known. If you
used _ or other identifiers you need to list them here. If the translatable string is not the first
argument, the item needs to be of the form func:2 (for the second argument). If you have a
function that supports pluralized messages, the item should look like func:1,2 (identifying the
singular and plural message arguments).

The build system will automatically take care of building and installing the message catalogs.

48.2.2. Message-writing Guidelines
Here are some guidelines for writing messages that are easily translatable.

• Do not construct sentences at run-time, like:

printf("Files were %s.\n", flag ? "copied" : "removed");

The word order within the sentence might be different in other languages. Also, even if you remember
to call gettext() on each fragment, the fragments might not translate well separately. It’s better to
duplicate a little code so that each message to be translated is a coherent whole. Only numbers, file
names, and such-like run-time variables should be inserted at run time into a message text.

• For similar reasons, this won’t work:

printf("copied %d file%s", n, n!=1 ? "s" : "");

because it assumes how the plural is formed. If you figured you could solve it like this:

if (n==1)
printf("copied 1 file");

else
printf("copied %d files", n):

then be disappointed. Some languages have more than two forms, with some peculiar rules. It’s often
best to design the message to avoid the issue altogether, for instance like this:

printf("number of copied files: %d", n);

1901

Chapter 48. Native Language Support

If you really want to construct a properly pluralized message, there is support for this, but it’s a bit
awkward. When generating a primary or detail error message in ereport(), you can write something
like this:

errmsg_plural("copied %d file",
"copied %d files",
n,
n)

The first argument is the format string appropriate for English singular form, the second is the format
string appropriate for English plural form, and the third is the integer control value that determines
which plural form to use. Subsequent arguments are formatted per the format string as usual. (Normally,
the pluralization control value will also be one of the values to be formatted, so it has to be written
twice.) In English it only matters whether n is 1 or not 1, but in other languages there can be many
different plural forms. The translator sees the two English forms as a group and has the opportunity to
supply multiple substitute strings, with the appropriate one being selected based on the run-time value
of n.

If you need to pluralize a message that isn’t going directly to an errmsg or errdetail report, you
have to use the underlying function ngettext. See the gettext documentation.

• If you want to communicate something to the translator, such as about how a message is intended to line
up with other output, precede the occurrence of the string with a comment that starts with translator,
e.g.:

/* translator: This message is not what it seems to be. */

These comments are copied to the message catalog files so that the translators can see them.

1902

Chapter 49. Writing A Procedural Language
Handler

All calls to functions that are written in a language other than the current “version 1” interface for compiled
languages (this includes functions in user-defined procedural languages, functions written in SQL, and
functions using the version 0 compiled language interface) go through a call handler function for the
specific language. It is the responsibility of the call handler to execute the function in a meaningful way,
such as by interpreting the supplied source text. This chapter outlines how a new procedural language’s
call handler can be written.

The call handler for a procedural language is a “normal” function that must be written in a compiled
language such as C, using the version-1 interface, and registered with PostgreSQL as taking no arguments
and returning the type language_handler. This special pseudotype identifies the function as a call
handler and prevents it from being called directly in SQL commands. For more details on C language
calling conventions and dynamic loading, see Section 35.9.

The call handler is called in the same way as any other function: It receives a pointer to a
FunctionCallInfoData struct containing argument values and information about the called
function, and it is expected to return a Datum result (and possibly set the isnull field of the
FunctionCallInfoData structure, if it wishes to return an SQL null result). The difference
between a call handler and an ordinary callee function is that the flinfo->fn_oid field of the
FunctionCallInfoData structure will contain the OID of the actual function to be called, not of the
call handler itself. The call handler must use this field to determine which function to execute. Also, the
passed argument list has been set up according to the declaration of the target function, not of the call
handler.

It’s up to the call handler to fetch the entry of the function from the pg_proc system catalog and to
analyze the argument and return types of the called function. The AS clause from the CREATE FUNCTION

command for the function will be found in the prosrc column of the pg_proc row. This is commonly
source text in the procedural language, but in theory it could be something else, such as a path name to a
file, or anything else that tells the call handler what to do in detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using the flinfo->fn_extra field. This will ini-
tially be NULL, but can be set by the call handler to point at information about the called function. On
subsequent calls, if flinfo->fn_extra is already non-NULL then it can be used and the information
lookup step skipped. The call handler must make sure that flinfo->fn_extra is made to point at
memory that will live at least until the end of the current query, since an FmgrInfo data structure could
be kept that long. One way to do this is to allocate the extra data in the memory context specified by
flinfo->fn_mcxt; such data will normally have the same lifespan as the FmgrInfo itself. But the
handler could also choose to use a longer-lived memory context so that it can cache function definition
information across queries.

When a procedural-language function is invoked as a trigger, no arguments are passed in the usual way,
but the FunctionCallInfoData’s context field points at a TriggerData structure, rather than being
NULL as it is in a plain function call. A language handler should provide mechanisms for procedural-

1903

Chapter 49. Writing A Procedural Language Handler

language functions to get at the trigger information.

This is a template for a procedural-language handler written in C:

#include "postgres.h"
#include "executor/spi.h"
#include "commands/trigger.h"
#include "fmgr.h"
#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{

Datum retval;

if (CALLED_AS_TRIGGER(fcinfo))
{

/*
* Called as a trigger procedure

*/
TriggerData *trigdata = (TriggerData *) fcinfo->context;

retval = ...
}
else
{

/*
* Called as a function

*/

retval = ...
}

return retval;
}

Only a few thousand lines of code have to be added instead of the dots to complete the call handler.

After having compiled the handler function into a loadable module (see Section 35.9.6), the following
commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
AS ’filename’
LANGUAGE C;

CREATE LANGUAGE plsample

1904

Chapter 49. Writing A Procedural Language Handler

HANDLER plsample_call_handler;

Although providing a call handler is sufficient to create a minimal procedural language, there are two
other functions that can optionally be provided to make the language more convenient to use. These are
a validator and an inline handler. A validator can be provided to allow language-specific checking to be
done during CREATE FUNCTION. An inline handler can be provided to allow the language to support
anonymous code blocks executed via the DO command.

If a validator is provided by a procedural language, it must be declared as a function taking a single
parameter of type oid. The validator’s result is ignored, so it is customarily declared to return void.
The validator will be called at the end of a CREATE FUNCTION command that has created or updated a
function written in the procedural language. The passed-in OID is the OID of the function’s pg_proc row.
The validator must fetch this row in the usual way, and do whatever checking is appropriate. First, call
CheckFunctionValidatorAccess() to diagnose explicit calls to the validator that the user could not
achieve through CREATE FUNCTION. Typical checks then include verifying that the function’s argument
and result types are supported by the language, and that the function’s body is syntactically correct in
the language. If the validator finds the function to be okay, it should just return. If it finds an error, it
should report that via the normal ereport() error reporting mechanism. Throwing an error will force a
transaction rollback and thus prevent the incorrect function definition from being committed.

Validator functions should typically honor the check_function_bodies parameter: if it is turned off then
any expensive or context-sensitive checking should be skipped. If the language provides for code ex-
ecution at compilation time, the validator must suppress checks that would induce such execution. In
particular, this parameter is turned off by pg_dump so that it can load procedural language functions
without worrying about side effects or dependencies of the function bodies on other database objects.
(Because of this requirement, the call handler should avoid assuming that the validator has fully checked
the function. The point of having a validator is not to let the call handler omit checks, but to notify the
user immediately if there are obvious errors in a CREATE FUNCTION command.) While the choice of
exactly what to check is mostly left to the discretion of the validator function, note that the core CREATE
FUNCTION code only executes SET clauses attached to a function when check_function_bodies is
on. Therefore, checks whose results might be affected by GUC parameters definitely should be skipped
when check_function_bodies is off, to avoid false failures when reloading a dump.

If an inline handler is provided by a procedural language, it must be declared as a function taking a
single parameter of type internal. The inline handler’s result is ignored, so it is customarily declared to
return void. The inline handler will be called when a DO statement is executed specifying the procedural
language. The parameter actually passed is a pointer to an InlineCodeBlock struct, which contains
information about the DO statement’s parameters, in particular the text of the anonymous code block to be
executed. The inline handler should execute this code and return.

It’s recommended that you wrap all these function declarations, as well as the CREATE LANGUAGE com-
mand itself, into an extension so that a simple CREATE EXTENSION command is sufficient to install the
language. See Section 35.15 for information about writing extensions.

The procedural languages included in the standard distribution are good references when trying to write
your own language handler. Look into the src/pl subdirectory of the source tree. The CREATE LAN-
GUAGE reference page also has some useful details.

1905

Chapter 50. Writing A Foreign Data Wrapper
All operations on a foreign table are handled through its foreign data wrapper, which consists of a set
of functions that the core server calls. The foreign data wrapper is responsible for fetching data from the
remote data source and returning it to the PostgreSQL executor. This chapter outlines how to write a new
foreign data wrapper.

The foreign data wrappers included in the standard distribution are good references when trying to write
your own. Look into the contrib/file_fdw subdirectory of the source tree. The CREATE FOREIGN
DATA WRAPPER reference page also has some useful details.

Note: The SQL standard specifies an interface for writing foreign data wrappers. However, Post-
greSQL does not implement that API, because the effort to accommodate it into PostgreSQL would
be large, and the standard API hasn’t gained wide adoption anyway.

50.1. Foreign Data Wrapper Functions
The FDW author needs to implement a handler function, and optionally a validator function. Both func-
tions must be written in a compiled language such as C, using the version-1 interface. For details on C
language calling conventions and dynamic loading, see Section 35.9.

The handler function simply returns a struct of function pointers to callback functions that will be called
by the planner, executor, and various maintenance commands. Most of the effort in writing an FDW is
in implementing these callback functions. The handler function must be registered with PostgreSQL as
taking no arguments and returning the special pseudo-type fdw_handler. The callback functions are
plain C functions and are not visible or callable at the SQL level. The callback functions are described in
Section 50.2.

The validator function is responsible for validating options given in CREATE and ALTER commands for
its foreign data wrapper, as well as foreign servers, user mappings, and foreign tables using the wrapper.
The validator function must be registered as taking two arguments, a text array containing the options to
be validated, and an OID representing the type of object the options are associated with (in the form of
the OID of the system catalog the object would be stored in, either ForeignDataWrapperRelationId,
ForeignServerRelationId, UserMappingRelationId, or ForeignTableRelationId). If no val-
idator function is supplied, options are not checked at object creation time or object alteration time.

50.2. Foreign Data Wrapper Callback Routines
The FDW handler function returns a palloc’d FdwRoutine struct containing pointers to the following
callback functions:

void

1906

Chapter 50. Writing A Foreign Data Wrapper

GetForeignRelSize (PlannerInfo *root,
RelOptInfo *baserel,
Oid foreigntableid);

Obtain relation size estimates for a foreign table. This is called at the beginning of planning for a query
involving a foreign table. root is the planner’s global information about the query; baserel is the plan-
ner’s information about this table; and foreigntableid is the pg_class OID of the foreign table.
(foreigntableid could be obtained from the planner data structures, but it’s passed explicitly to save
effort.)

This function should update baserel->rows to be the expected number of rows returned by the table
scan, after accounting for the filtering done by the restriction quals. The initial value of baserel->rows
is just a constant default estimate, which should be replaced if at all possible. The function may also
choose to update baserel->width if it can compute a better estimate of the average result row width.

See Section 50.4 for additional information.

void
GetForeignPaths (PlannerInfo *root,

RelOptInfo *baserel,
Oid foreigntableid);

Create possible access paths for a scan on a foreign table. This is called during query planning. The
parameters are the same as for GetForeignRelSize, which has already been called.

This function must generate at least one access path (ForeignPath node) for a scan on the foreign
table and must call add_path to add each such path to baserel->pathlist. It’s recommended to
use create_foreignscan_path to build the ForeignPath nodes. The function can generate multiple
access paths, e.g., a path which has valid pathkeys to represent a pre-sorted result. Each access path
must contain cost estimates, and can contain any FDW-private information that is needed to identify the
specific scan method intended.

See Section 50.4 for additional information.

ForeignScan *
GetForeignPlan (PlannerInfo *root,

RelOptInfo *baserel,
Oid foreigntableid,
ForeignPath *best_path,
List *tlist,
List *scan_clauses);

Create a ForeignScan plan node from the selected foreign access path. This is called at the end of query
planning. The parameters are as for GetForeignRelSize, plus the selected ForeignPath (previously
produced by GetForeignPaths), the target list to be emitted by the plan node, and the restriction clauses
to be enforced by the plan node.

This function must create and return a ForeignScan plan node; it’s recommended to use
make_foreignscan to build the ForeignScan node.

See Section 50.4 for additional information.

void

1907

Chapter 50. Writing A Foreign Data Wrapper

ExplainForeignScan (ForeignScanState *node,
ExplainState *es);

Print additional EXPLAIN output for a foreign table scan. This can just return if there is no need to print
anything. Otherwise, it should call ExplainPropertyText and related functions to add fields to the
EXPLAIN output. The flag fields in es can be used to determine what to print, and the state of the
ForeignScanState node can be inspected to provide run-time statistics in the EXPLAIN ANALYZE case.

void
BeginForeignScan (ForeignScanState *node,

int eflags);

Begin executing a foreign scan. This is called during executor startup. It should perform any initial-
ization needed before the scan can start, but not start executing the actual scan (that should be done
upon the first call to IterateForeignScan). The ForeignScanState node has already been created,
but its fdw_state field is still NULL. Information about the table to scan is accessible through the
ForeignScanState node (in particular, from the underlying ForeignScan plan node, which contains
any FDW-private information provided by GetForeignPlan).

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform
any externally-visible actions; it should only do the minimum required to make the node state valid for
ExplainForeignScan and EndForeignScan.

TupleTableSlot *
IterateForeignScan (ForeignScanState *node);

Fetch one row from the foreign source, returning it in a tuple table slot (the node’s ScanTupleSlot

should be used for this purpose). Return NULL if no more rows are available. The tuple table slot infras-
tructure allows either a physical or virtual tuple to be returned; in most cases the latter choice is preferable
from a performance standpoint. Note that this is called in a short-lived memory context that will be reset
between invocations. Create a memory context in BeginForeignScan if you need longer-lived storage,
or use the es_query_cxt of the node’s EState.

The rows returned must match the column signature of the foreign table being scanned. If you choose to
optimize away fetching columns that are not needed, you should insert nulls in those column positions.

Note that PostgreSQL’s executor doesn’t care whether the rows returned violate the NOT NULL constraints
which were defined on the foreign table columns - but the planner does care, and may optimize queries
incorrectly if NULL values are present in a column declared not to contain them. If a NULL value is en-
countered when the user has declared that none should be present, it may be appropriate to raise an error
(just as you would need to do in the case of a data type mismatch).

void
ReScanForeignScan (ForeignScanState *node);

Restart the scan from the beginning. Note that any parameters the scan depends on may have changed
value, so the new scan does not necessarily return exactly the same rows.

void
EndForeignScan (ForeignScanState *node);

1908

Chapter 50. Writing A Foreign Data Wrapper

End the scan and release resources. It is normally not important to release palloc’d memory, but for
example open files and connections to remote servers should be cleaned up.

bool
AnalyzeForeignTable (Relation relation,

AcquireSampleRowsFunc *func,
BlockNumber *totalpages);

This function is called when ANALYZE is executed on a foreign table. If the FDW can collect statistics for
this foreign table, it should return true, and provide a pointer to a function that will collect sample rows
from the table in func, plus the estimated size of the table in pages in totalpages. Otherwise, return
false. If the FDW does not support collecting statistics for any tables, the AnalyzeForeignTable

pointer can be set to NULL.

If provided, the sample collection function must have the signature

int
AcquireSampleRowsFunc (Relation relation, int elevel,

HeapTuple *rows, int targrows,
double *totalrows,
double *totaldeadrows);

A random sample of up to targrows rows should be collected from the table and stored into the caller-
provided rows array. The actual number of rows collected must be returned. In addition, store estimates
of the total numbers of live and dead rows in the table into the output parameters totalrows and
totaldeadrows. (Set totaldeadrows to zero if the FDW does not have any concept of dead rows.)

The FdwRoutine struct type is declared in src/include/foreign/fdwapi.h, which see for addi-
tional details.

50.3. Foreign Data Wrapper Helper Functions
Several helper functions are exported from the core server so that authors of foreign data wrappers can
get easy access to attributes of FDW-related objects, such as FDW options. To use any of these functions,
you need to include the header file foreign/foreign.h in your source file. That header also defines the
struct types that are returned by these functions.

ForeignDataWrapper *
GetForeignDataWrapper(Oid fdwid);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given OID.
A ForeignDataWrapper object contains properties of the FDW (see foreign/foreign.h for details).

ForeignServer *
GetForeignServer(Oid serverid);

This function returns a ForeignServer object for the foreign server with the given OID. A
ForeignServer object contains properties of the server (see foreign/foreign.h for details).

1909

Chapter 50. Writing A Foreign Data Wrapper

UserMapping *
GetUserMapping(Oid userid, Oid serverid);

This function returns a UserMapping object for the user mapping of the given role on the given server.
(If there is no mapping for the specific user, it will return the mapping for PUBLIC, or throw error if there
is none.) A UserMapping object contains properties of the user mapping (see foreign/foreign.h for
details).

ForeignTable *
GetForeignTable(Oid relid);

This function returns a ForeignTable object for the foreign table with the given OID. A ForeignTable

object contains properties of the foreign table (see foreign/foreign.h for details).

List *
GetForeignColumnOptions(Oid relid, AttrNumber attnum);

This function returns the per-column FDW options for the column with the given foreign table OID and
attribute number, in the form of a list of DefElem. NIL is returned if the column has no options.

Some object types have name-based lookup functions in addition to the OID-based ones:

ForeignDataWrapper *
GetForeignDataWrapperByName(const char *name, bool missing_ok);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given name.
If the wrapper is not found, return NULL if missing_ok is true, otherwise raise an error.

ForeignServer *
GetForeignServerByName(const char *name, bool missing_ok);

This function returns a ForeignServer object for the foreign server with the given name. If the server
is not found, return NULL if missing_ok is true, otherwise raise an error.

50.4. Foreign Data Wrapper Query Planning
The FDW callback functions GetForeignRelSize, GetForeignPaths, and GetForeignPlan must
fit into the workings of the PostgreSQL planner. Here are some notes about what they must do.

The information in root and baserel can be used to reduce the amount of information that has to
be fetched from the foreign table (and therefore reduce the cost). baserel->baserestrictinfo is
particularly interesting, as it contains restriction quals (WHERE clauses) that should be used to filter the
rows to be fetched. (The FDW itself is not required to enforce these quals, as the core executor can check
them instead.) baserel->reltargetlist can be used to determine which columns need to be fetched;
but note that it only lists columns that have to be emitted by the ForeignScan plan node, not columns
that are used in qual evaluation but not output by the query.

1910

Chapter 50. Writing A Foreign Data Wrapper

Various private fields are available for the FDW planning functions to keep information in. Generally,
whatever you store in FDW private fields should be palloc’d, so that it will be reclaimed at the end of
planning.

baserel->fdw_private is a void pointer that is available for FDW planning functions to store in-
formation relevant to the particular foreign table. The core planner does not touch it except to initial-
ize it to NULL when the baserel node is created. It is useful for passing information forward from
GetForeignRelSize to GetForeignPaths and/or GetForeignPaths to GetForeignPlan, thereby
avoiding recalculation.

GetForeignPaths can identify the meaning of different access paths by storing private information
in the fdw_private field of ForeignPath nodes. fdw_private is declared as a List pointer, but
could actually contain anything since the core planner does not touch it. However, best practice is to
use a representation that’s dumpable by nodeToString, for use with debugging support available in the
backend.

GetForeignPlan can examine the fdw_private field of the selected ForeignPath node, and can
generate fdw_exprs and fdw_private lists to be placed in the ForeignScan plan node, where they
will be available at execution time. Both of these lists must be represented in a form that copyObject
knows how to copy. The fdw_private list has no other restrictions and is not interpreted by the core
backend in any way. The fdw_exprs list, if not NIL, is expected to contain expression trees that are
intended to be executed at run time. These trees will undergo post-processing by the planner to make
them fully executable.

In GetForeignPlan, generally the passed-in target list can be copied into the plan node as-is. The passed
scan_clauses list contains the same clauses as baserel->baserestrictinfo, but may be re-ordered
for better execution efficiency. In simple cases the FDW can just strip RestrictInfo nodes from the
scan_clauses list (using extract_actual_clauses) and put all the clauses into the plan node’s qual
list, which means that all the clauses will be checked by the executor at run time. More complex FDWs
may be able to check some of the clauses internally, in which case those clauses can be removed from the
plan node’s qual list so that the executor doesn’t waste time rechecking them.

As an example, the FDW might identify some restriction clauses of the form foreign_variable =

sub_expression, which it determines can be executed on the remote server given the locally-evaluated
value of the sub_expression. The actual identification of such a clause should happen during
GetForeignPaths, since it would affect the cost estimate for the path. The path’s fdw_private

field would probably include a pointer to the identified clause’s RestrictInfo node. Then
GetForeignPlan would remove that clause from scan_clauses, but add the sub_expression

to fdw_exprs to ensure that it gets massaged into executable form. It would probably also put
control information into the plan node’s fdw_private field to tell the execution functions what to
do at run time. The query transmitted to the remote server would involve something like WHERE

foreign_variable = $1, with the parameter value obtained at run time from evaluation of the
fdw_exprs expression tree.

The FDW should always construct at least one path that depends only on the table’s restriction
clauses. In join queries, it might also choose to construct path(s) that depend on join clauses,
for example foreign_variable = local_variable. Such clauses will not be found in
baserel->baserestrictinfo but must be sought in the relation’s join lists. A path using such a
clause is called a “parameterized path”. It must identify the other relations used in the selected join
clause(s) with a suitable value of param_info; use get_baserel_parampathinfo to compute that
value. In GetForeignPlan, the local_variable portion of the join clause would be added to

1911

Chapter 50. Writing A Foreign Data Wrapper

fdw_exprs, and then at run time the case works the same as for an ordinary restriction clause.

1912

Chapter 51. Genetic Query Optimizer

Author: Written by Martin Utesch (<utesch@aut.tu-freiberg.de>) for the Institute of Automatic
Control at the University of Mining and Technology in Freiberg, Germany.

51.1. Query Handling as a Complex Optimization
Problem

Among all relational operators the most difficult one to process and optimize is the join. The number
of possible query plans grows exponentially with the number of joins in the query. Further optimization
effort is caused by the support of a variety of join methods (e.g., nested loop, hash join, merge join in
PostgreSQL) to process individual joins and a diversity of indexes (e.g., B-tree, hash, GiST and GIN in
PostgreSQL) as access paths for relations.

The normal PostgreSQL query optimizer performs a near-exhaustive search over the space of alternative
strategies. This algorithm, first introduced in IBM’s System R database, produces a near-optimal join
order, but can take an enormous amount of time and memory space when the number of joins in the query
grows large. This makes the ordinary PostgreSQL query optimizer inappropriate for queries that join a
large number of tables.

The Institute of Automatic Control at the University of Mining and Technology, in Freiberg, Germany,
encountered some problems when it wanted to use PostgreSQL as the backend for a decision support
knowledge based system for the maintenance of an electrical power grid. The DBMS needed to handle
large join queries for the inference machine of the knowledge based system. The number of joins in these
queries made using the normal query optimizer infeasible.

In the following we describe the implementation of a genetic algorithm to solve the join ordering problem
in a manner that is efficient for queries involving large numbers of joins.

51.2. Genetic Algorithms
The genetic algorithm (GA) is a heuristic optimization method which operates through randomized search.
The set of possible solutions for the optimization problem is considered as a population of individuals.
The degree of adaptation of an individual to its environment is specified by its fitness.

The coordinates of an individual in the search space are represented by chromosomes, in essence a set of
character strings. A gene is a subsection of a chromosome which encodes the value of a single parameter
being optimized. Typical encodings for a gene could be binary or integer.

1913

Chapter 51. Genetic Query Optimizer

Through simulation of the evolutionary operations recombination, mutation, and selection new genera-
tions of search points are found that show a higher average fitness than their ancestors.

According to the comp.ai.genetic FAQ it cannot be stressed too strongly that a GA is not a pure random
search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly non-random
(better than random).

Figure 51-1. Structured Diagram of a Genetic Algorithm

P(t) generation of ancestors at a time t
P”(t) generation of descendants at a time t

+===+
|>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<|
+===+
| INITIALIZE t := 0 |
+===+
| INITIALIZE P(t) |
+===+
| evaluate FITNESS of P(t) |
+===+
| while not STOPPING CRITERION do |
| +-------------------------------------+
| | P’(t) := RECOMBINATION{P(t)} |
| +-------------------------------------+
| | P”(t) := MUTATION{P’(t)} |
| +-------------------------------------+
| | P(t+1) := SELECTION{P”(t) + P(t)} |
| +-------------------------------------+
| | evaluate FITNESS of P”(t) |
| +-------------------------------------+
| | t := t + 1 |
+===+=====================================+

51.3. Genetic Query Optimization (GEQO) in PostgreSQL
The GEQO module approaches the query optimization problem as though it were the well-known traveling
salesman problem (TSP). Possible query plans are encoded as integer strings. Each string represents the
join order from one relation of the query to the next. For example, the join tree

/\
/\ 2
/\ 3

4 1

is encoded by the integer string ’4-1-3-2’, which means, first join relation ’4’ and ’1’, then ’3’, and then
’2’, where 1, 2, 3, 4 are relation IDs within the PostgreSQL optimizer.

Specific characteristics of the GEQO implementation in PostgreSQL are:

1914

Chapter 51. Genetic Query Optimizer

• Usage of a steady state GA (replacement of the least fit individuals in a population, not
whole-generational replacement) allows fast convergence towards improved query plans. This is
essential for query handling with reasonable time;

• Usage of edge recombination crossover which is especially suited to keep edge losses low for the
solution of the TSP by means of a GA;

• Mutation as genetic operator is deprecated so that no repair mechanisms are needed to generate legal
TSP tours.

Parts of the GEQO module are adapted from D. Whitley’s Genitor algorithm.

The GEQO module allows the PostgreSQL query optimizer to support large join queries effectively
through non-exhaustive search.

51.3.1. Generating Possible Plans with GEQO
The GEQO planning process uses the standard planner code to generate plans for scans of individual
relations. Then join plans are developed using the genetic approach. As shown above, each candidate
join plan is represented by a sequence in which to join the base relations. In the initial stage, the GEQO
code simply generates some possible join sequences at random. For each join sequence considered, the
standard planner code is invoked to estimate the cost of performing the query using that join sequence.
(For each step of the join sequence, all three possible join strategies are considered; and all the initially-
determined relation scan plans are available. The estimated cost is the cheapest of these possibilities.) Join
sequences with lower estimated cost are considered “more fit” than those with higher cost. The genetic
algorithm discards the least fit candidates. Then new candidates are generated by combining genes of
more-fit candidates — that is, by using randomly-chosen portions of known low-cost join sequences to
create new sequences for consideration. This process is repeated until a preset number of join sequences
have been considered; then the best one found at any time during the search is used to generate the finished
plan.

This process is inherently nondeterministic, because of the randomized choices made during both the
initial population selection and subsequent “mutation” of the best candidates. To avoid surprising changes
of the selected plan, each run of the GEQO algorithm restarts its random number generator with the
current geqo_seed parameter setting. As long as geqo_seed and the other GEQO parameters are kept
fixed, the same plan will be generated for a given query (and other planner inputs such as statistics). To
experiment with different search paths, try changing geqo_seed.

51.3.2. Future Implementation Tasks for PostgreSQL GEQO
Work is still needed to improve the genetic algorithm parameter settings. In file
src/backend/optimizer/geqo/geqo_main.c, routines gimme_pool_size and
gimme_number_generations, we have to find a compromise for the parameter settings to satisfy two
competing demands:

• Optimality of the query plan
• Computing time

1915

Chapter 51. Genetic Query Optimizer

In the current implementation, the fitness of each candidate join sequence is estimated by running the stan-
dard planner’s join selection and cost estimation code from scratch. To the extent that different candidates
use similar sub-sequences of joins, a great deal of work will be repeated. This could be made significantly
faster by retaining cost estimates for sub-joins. The problem is to avoid expending unreasonable amounts
of memory on retaining that state.

At a more basic level, it is not clear that solving query optimization with a GA algorithm designed for
TSP is appropriate. In the TSP case, the cost associated with any substring (partial tour) is independent
of the rest of the tour, but this is certainly not true for query optimization. Thus it is questionable whether
edge recombination crossover is the most effective mutation procedure.

51.4. Further Reading
The following resources contain additional information about genetic algorithms:

• The Hitch-Hiker’s Guide to Evolutionary Computation1, (FAQ for news://comp.ai.genetic)

• Evolutionary Computation and its application to art and design2, by Craig Reynolds

• Fundamentals of Database Systems

• The design and implementation of the POSTGRES query optimizer

1. http://www.aip.de/~ast/EvolCompFAQ/
2. http://www.red3d.com/cwr/evolve.html

1916

Chapter 52. Index Access Method Interface
Definition

This chapter defines the interface between the core PostgreSQL system and index access methods, which
manage individual index types. The core system knows nothing about indexes beyond what is specified
here, so it is possible to develop entirely new index types by writing add-on code.

All indexes in PostgreSQL are what are known technically as secondary indexes; that is, the index is
physically separate from the table file that it describes. Each index is stored as its own physical relation
and so is described by an entry in the pg_class catalog. The contents of an index are entirely under the
control of its index access method. In practice, all index access methods divide indexes into standard-size
pages so that they can use the regular storage manager and buffer manager to access the index contents.
(All the existing index access methods furthermore use the standard page layout described in Section 56.6,
and they all use the same format for index tuple headers; but these decisions are not forced on an access
method.)

An index is effectively a mapping from some data key values to tuple identifiers, or TIDs, of row versions
(tuples) in the index’s parent table. A TID consists of a block number and an item number within that
block (see Section 56.6). This is sufficient information to fetch a particular row version from the table.
Indexes are not directly aware that under MVCC, there might be multiple extant versions of the same
logical row; to an index, each tuple is an independent object that needs its own index entry. Thus, an
update of a row always creates all-new index entries for the row, even if the key values did not change.
(HOT tuples are an exception to this statement; but indexes do not deal with those, either.) Index entries
for dead tuples are reclaimed (by vacuuming) when the dead tuples themselves are reclaimed.

52.1. Catalog Entries for Indexes
Each index access method is described by a row in the pg_am system catalog (see Section 45.3). The prin-
cipal contents of a pg_am row are references to pg_proc entries that identify the index access functions
supplied by the access method. The APIs for these functions are defined later in this chapter. In addition,
the pg_am row specifies a few fixed properties of the access method, such as whether it can support multi-
column indexes. There is not currently any special support for creating or deleting pg_am entries; anyone
able to write a new access method is expected to be competent to insert an appropriate row for themselves.

To be useful, an index access method must also have one or more operator families and operator classes
defined in pg_opfamily, pg_opclass, pg_amop, and pg_amproc. These entries allow the planner to
determine what kinds of query qualifications can be used with indexes of this access method. Operator
families and classes are described in Section 35.14, which is prerequisite material for reading this chapter.

An individual index is defined by a pg_class entry that describes it as a physical relation, plus a
pg_index entry that shows the logical content of the index — that is, the set of index columns it has
and the semantics of those columns, as captured by the associated operator classes. The index columns
(key values) can be either simple columns of the underlying table or expressions over the table rows.
The index access method normally has no interest in where the index key values come from (it is al-

1917

Chapter 52. Index Access Method Interface Definition

ways handed precomputed key values) but it will be very interested in the operator class information in
pg_index. Both of these catalog entries can be accessed as part of the Relation data structure that is
passed to all operations on the index.

Some of the flag columns of pg_am have nonobvious implications. The requirements of amcanunique are
discussed in Section 52.5. The amcanmulticol flag asserts that the access method supports multicolumn
indexes, while amoptionalkey asserts that it allows scans where no indexable restriction clause is given
for the first index column. When amcanmulticol is false, amoptionalkey essentially says whether
the access method supports full-index scans without any restriction clause. Access methods that support
multiple index columns must support scans that omit restrictions on any or all of the columns after the
first; however they are permitted to require some restriction to appear for the first index column, and this is
signaled by setting amoptionalkey false. One reason that an index AM might set amoptionalkey false
is if it doesn’t index NULLs. Since most indexable operators are strict and hence cannot return TRUE for
NULL inputs, it is at first sight attractive to not store index entries for null values: they could never be
returned by an index scan anyway. However, this argument fails when an index scan has no restriction
clause for a given index column. In practice this means that indexes that have amoptionalkey true
must index nulls, since the planner might decide to use such an index with no scan keys at all. A related
restriction is that an index access method that supports multiple index columns must support indexing null
values in columns after the first, because the planner will assume the index can be used for queries that do
not restrict these columns. For example, consider an index on (a,b) and a query with WHERE a = 4. The
system will assume the index can be used to scan for rows with a = 4, which is wrong if the index omits
rows where b is null. It is, however, OK to omit rows where the first indexed column is null. An index
access method that does index nulls may also set amsearchnulls, indicating that it supports IS NULL

and IS NOT NULL clauses as search conditions.

52.2. Index Access Method Functions
The index construction and maintenance functions that an index access method must provide are:

IndexBuildResult *
ambuild (Relation heapRelation,

Relation indexRelation,
IndexInfo *indexInfo);

Build a new index. The index relation has been physically created, but is empty. It must be filled in with
whatever fixed data the access method requires, plus entries for all tuples already existing in the table.
Ordinarily the ambuild function will call IndexBuildHeapScan() to scan the table for existing tuples
and compute the keys that need to be inserted into the index. The function must return a palloc’d struct
containing statistics about the new index.

void
ambuildempty (Relation indexRelation);

Build an empty index, and write it to the initialization fork (INIT_FORKNUM) of the given relation. This
method is called only for unlogged tables; the empty index written to the initialization fork will be copied
over the main relation fork on each server restart.

bool

1918

Chapter 52. Index Access Method Interface Definition

aminsert (Relation indexRelation,
Datum *values,
bool *isnull,
ItemPointer heap_tid,
Relation heapRelation,
IndexUniqueCheck checkUnique);

Insert a new tuple into an existing index. The values and isnull arrays give the key values to be
indexed, and heap_tid is the TID to be indexed. If the access method supports unique indexes (its
pg_am.amcanunique flag is true) then checkUnique indicates the type of uniqueness check to perform.
This varies depending on whether the unique constraint is deferrable; see Section 52.5 for details. Nor-
mally the access method only needs the heapRelation parameter when performing uniqueness checking
(since then it will have to look into the heap to verify tuple liveness).

The function’s Boolean result value is significant only when checkUnique is UNIQUE_CHECK_PARTIAL.
In this case a TRUE result means the new entry is known unique, whereas FALSE means it might be non-
unique (and a deferred uniqueness check must be scheduled). For other cases a constant FALSE result is
recommended.

Some indexes might not index all tuples. If the tuple is not to be indexed, aminsert should just return
without doing anything.

IndexBulkDeleteResult *
ambulkdelete (IndexVacuumInfo *info,

IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback,
void *callback_state);

Delete tuple(s) from the index. This is a “bulk delete” operation that is intended to be implemented by
scanning the whole index and checking each entry to see if it should be deleted. The passed-in callback
function must be called, in the style callback(TID, callback_state) returns bool, to deter-
mine whether any particular index entry, as identified by its referenced TID, is to be deleted. Must return
either NULL or a palloc’d struct containing statistics about the effects of the deletion operation. It is OK
to return NULL if no information needs to be passed on to amvacuumcleanup.

Because of limited maintenance_work_mem, ambulkdelete might need to be called more than once
when many tuples are to be deleted. The stats argument is the result of the previous call for this index (it
is NULL for the first call within a VACUUM operation). This allows the AM to accumulate statistics across
the whole operation. Typically, ambulkdeletewill modify and return the same struct if the passed stats
is not null.

IndexBulkDeleteResult *
amvacuumcleanup (IndexVacuumInfo *info,

IndexBulkDeleteResult *stats);

Clean up after a VACUUM operation (zero or more ambulkdelete calls). This does not have to do anything
beyond returning index statistics, but it might perform bulk cleanup such as reclaiming empty index pages.
stats is whatever the last ambulkdelete call returned, or NULL if ambulkdelete was not called
because no tuples needed to be deleted. If the result is not NULL it must be a palloc’d struct. The statistics
it contains will be used to update pg_class, and will be reported by VACUUM if VERBOSE is given. It is

1919

Chapter 52. Index Access Method Interface Definition

OK to return NULL if the index was not changed at all during the VACUUM operation, but otherwise correct
stats should be returned.

As of PostgreSQL 8.4, amvacuumcleanup will also be called at completion of an ANALYZE operation.
In this case stats is always NULL and any return value will be ignored. This case can be distinguished
by checking info->analyze_only. It is recommended that the access method do nothing except post-
insert cleanup in such a call, and that only in an autovacuum worker process.

bool
amcanreturn (Relation indexRelation);

Check whether the index can support index-only scans by returning the indexed column values for an
index entry in the form of an IndexTuple. Return TRUE if so, else FALSE. If the index AM can never
support index-only scans (an example is hash, which stores only the hash values not the original data), it
is sufficient to set its amcanreturn field to zero in pg_am.

void
amcostestimate (PlannerInfo *root,

IndexPath *path,
double loop_count,
Cost *indexStartupCost,
Cost *indexTotalCost,
Selectivity *indexSelectivity,
double *indexCorrelation);

Estimate the costs of an index scan. This function is described fully in Section 52.6, below.

bytea *
amoptions (ArrayType *reloptions,

bool validate);

Parse and validate the reloptions array for an index. This is called only when a non-null reloptions ar-
ray exists for the index. reloptions is a text array containing entries of the form name=value. The
function should construct a bytea value, which will be copied into the rd_options field of the index’s
relcache entry. The data contents of the bytea value are open for the access method to define; most of the
standard access methods use struct StdRdOptions. When validate is true, the function should report
a suitable error message if any of the options are unrecognized or have invalid values; when validate is
false, invalid entries should be silently ignored. (validate is false when loading options already stored in
pg_catalog; an invalid entry could only be found if the access method has changed its rules for options,
and in that case ignoring obsolete entries is appropriate.) It is OK to return NULL if default behavior is
wanted.

The purpose of an index, of course, is to support scans for tuples matching an indexable WHERE condition,
often called a qualifier or scan key. The semantics of index scanning are described more fully in Section
52.3, below. An index access method can support “plain” index scans, “bitmap” index scans, or both. The
scan-related functions that an index access method must or may provide are:

IndexScanDesc
ambeginscan (Relation indexRelation,

int nkeys,
int norderbys);

1920

Chapter 52. Index Access Method Interface Definition

Prepare for an index scan. The nkeys and norderbys parameters indicate the number of quals and order-
ing operators that will be used in the scan; these may be useful for space allocation purposes. Note that the
actual values of the scan keys aren’t provided yet. The result must be a palloc’d struct. For implementation
reasons the index access method must create this struct by calling RelationGetIndexScan(). In most
cases ambeginscan does little beyond making that call and perhaps acquiring locks; the interesting parts
of index-scan startup are in amrescan.

void
amrescan (IndexScanDesc scan,

ScanKey keys,
int nkeys,
ScanKey orderbys,
int norderbys);

Start or restart an index scan, possibly with new scan keys. (To restart using previously-passed keys,
NULL is passed for keys and/or orderbys.) Note that it is not allowed for the number of keys or order-
by operators to be larger than what was passed to ambeginscan. In practice the restart feature is used
when a new outer tuple is selected by a nested-loop join and so a new key comparison value is needed,
but the scan key structure remains the same.

boolean
amgettuple (IndexScanDesc scan,

ScanDirection direction);

Fetch the next tuple in the given scan, moving in the given direction (forward or backward in the index).
Returns TRUE if a tuple was obtained, FALSE if no matching tuples remain. In the TRUE case the tuple
TID is stored into the scan structure. Note that “success” means only that the index contains an entry
that matches the scan keys, not that the tuple necessarily still exists in the heap or will pass the caller’s
snapshot test. On success, amgettuple must also set scan->xs_recheck to TRUE or FALSE. FALSE
means it is certain that the index entry matches the scan keys. TRUE means this is not certain, and the
conditions represented by the scan keys must be rechecked against the heap tuple after fetching it. This
provision supports “lossy” index operators. Note that rechecking will extend only to the scan conditions;
a partial index predicate (if any) is never rechecked by amgettuple callers.

If the index supports index-only scans (i.e., amcanreturn returns TRUE for it), then on success the AM
must also check scan->xs_want_itup, and if that is true it must return the original indexed data for
the index entry, in the form of an IndexTuple pointer stored at scan->xs_itup, with tuple descriptor
scan->xs_itupdesc. (Management of the data referenced by the pointer is the access method’s respon-
sibility. The data must remain good at least until the next amgettuple, amrescan, or amendscan call
for the scan.)

The amgettuple function need only be provided if the access method supports “plain” index scans. If it
doesn’t, the amgettuple field in its pg_am row must be set to zero.

int64
amgetbitmap (IndexScanDesc scan,

TIDBitmap *tbm);

Fetch all tuples in the given scan and add them to the caller-supplied TIDBitmap (that is, OR the set of
tuple IDs into whatever set is already in the bitmap). The number of tuples fetched is returned (this might

1921

Chapter 52. Index Access Method Interface Definition

be just an approximate count, for instance some AMs do not detect duplicates). While inserting tuple IDs
into the bitmap, amgetbitmap can indicate that rechecking of the scan conditions is required for specific
tuple IDs. This is analogous to the xs_recheck output parameter of amgettuple. Note: in the current
implementation, support for this feature is conflated with support for lossy storage of the bitmap itself, and
therefore callers recheck both the scan conditions and the partial index predicate (if any) for recheckable
tuples. That might not always be true, however. amgetbitmap and amgettuple cannot be used in the
same index scan; there are other restrictions too when using amgetbitmap, as explained in Section 52.3.

The amgetbitmap function need only be provided if the access method supports “bitmap” index scans.
If it doesn’t, the amgetbitmap field in its pg_am row must be set to zero.

void
amendscan (IndexScanDesc scan);

End a scan and release resources. The scan struct itself should not be freed, but any locks or pins taken
internally by the access method must be released.

void
ammarkpos (IndexScanDesc scan);

Mark current scan position. The access method need only support one remembered scan position per scan.

void
amrestrpos (IndexScanDesc scan);

Restore the scan to the most recently marked position.

By convention, the pg_proc entry for an index access method function should show the correct number
of arguments, but declare them all as type internal (since most of the arguments have types that are not
known to SQL, and we don’t want users calling the functions directly anyway). The return type is declared
as void, internal, or boolean as appropriate. The only exception is amoptions, which should be
correctly declared as taking text[] and bool and returning bytea. This provision allows client code to
execute amoptions to test validity of options settings.

52.3. Index Scanning
In an index scan, the index access method is responsible for regurgitating the TIDs of all the tuples it has
been told about that match the scan keys. The access method is not involved in actually fetching those
tuples from the index’s parent table, nor in determining whether they pass the scan’s time qualification
test or other conditions.

A scan key is the internal representation of a WHERE clause of the form index_key operator constant,
where the index key is one of the columns of the index and the operator is one of the members of the
operator family associated with that index column. An index scan has zero or more scan keys, which are
implicitly ANDed — the returned tuples are expected to satisfy all the indicated conditions.

The access method can report that the index is lossy, or requires rechecks, for a particular query. This
implies that the index scan will return all the entries that pass the scan key, plus possibly additional entries
that do not. The core system’s index-scan machinery will then apply the index conditions again to the

1922

Chapter 52. Index Access Method Interface Definition

heap tuple to verify whether or not it really should be selected. If the recheck option is not specified, the
index scan must return exactly the set of matching entries.

Note that it is entirely up to the access method to ensure that it correctly finds all and only the entries
passing all the given scan keys. Also, the core system will simply hand off all the WHERE clauses that
match the index keys and operator families, without any semantic analysis to determine whether they
are redundant or contradictory. As an example, given WHERE x > 4 AND x > 14 where x is a b-tree
indexed column, it is left to the b-tree amrescan function to realize that the first scan key is redundant
and can be discarded. The extent of preprocessing needed during amrescan will depend on the extent to
which the index access method needs to reduce the scan keys to a “normalized” form.

Some access methods return index entries in a well-defined order, others do not. There are actually two
different ways that an access method can support sorted output:

• Access methods that always return entries in the natural ordering of their data (such as btree) should
set pg_am.amcanorder to true. Currently, such access methods must use btree-compatible strategy
numbers for their equality and ordering operators.

• Access methods that support ordering operators should set pg_am.amcanorderbyop to true. This in-
dicates that the index is capable of returning entries in an order satisfying ORDER BY index_key

operator constant. Scan modifiers of that form can be passed to amrescan as described previ-
ously.

The amgettuple function has a direction argument, which can be either ForwardScanDirection
(the normal case) or BackwardScanDirection. If the first call after amrescan specifies
BackwardScanDirection, then the set of matching index entries is to be scanned back-to-front rather
than in the normal front-to-back direction, so amgettuple must return the last matching tuple in the
index, rather than the first one as it normally would. (This will only occur for access methods that set
amcanorder to true.) After the first call, amgettuple must be prepared to advance the scan in either
direction from the most recently returned entry. (But if pg_am.amcanbackward is false, all subsequent
calls will have the same direction as the first one.)

Access methods that support ordered scans must support “marking” a position in a scan and later returning
to the marked position. The same position might be restored multiple times. However, only one position
need be remembered per scan; a new ammarkpos call overrides the previously marked position. An access
method that does not support ordered scans should still provide mark and restore functions in pg_am, but
it is sufficient to have them throw errors if called.

Both the scan position and the mark position (if any) must be maintained consistently in the face of
concurrent insertions or deletions in the index. It is OK if a freshly-inserted entry is not returned by a
scan that would have found the entry if it had existed when the scan started, or for the scan to return
such an entry upon rescanning or backing up even though it had not been returned the first time through.
Similarly, a concurrent delete might or might not be reflected in the results of a scan. What is important is
that insertions or deletions not cause the scan to miss or multiply return entries that were not themselves
being inserted or deleted.

If the index stores the original indexed data values (and not some lossy representation of them), it is useful
to support index-only scans, in which the index returns the actual data not just the TID of the heap tuple.
This will only work if the visibility map shows that the TID is on an all-visible page; else the heap tuple
must be visited anyway to check MVCC visibility. But that is no concern of the access method’s.

1923

Chapter 52. Index Access Method Interface Definition

Instead of using amgettuple, an index scan can be done with amgetbitmap to fetch all tuples in one
call. This can be noticeably more efficient than amgettuple because it allows avoiding lock/unlock
cycles within the access method. In principle amgetbitmap should have the same effects as repeated
amgettuple calls, but we impose several restrictions to simplify matters. First of all, amgetbitmap
returns all tuples at once and marking or restoring scan positions isn’t supported. Secondly, the tuples are
returned in a bitmap which doesn’t have any specific ordering, which is why amgetbitmap doesn’t take a
direction argument. (Ordering operators will never be supplied for such a scan, either.) Also, there is no
provision for index-only scans with amgetbitmap, since there is no way to return the contents of index
tuples. Finally, amgetbitmap does not guarantee any locking of the returned tuples, with implications
spelled out in Section 52.4.

Note that it is permitted for an access method to implement only amgetbitmap and not amgettuple, or
vice versa, if its internal implementation is unsuited to one API or the other.

52.4. Index Locking Considerations
Index access methods must handle concurrent updates of the index by multiple processes. The core Post-
greSQL system obtains AccessShareLock on the index during an index scan, and RowExclusiveLock
when updating the index (including plain VACUUM). Since these lock types do not conflict, the access
method is responsible for handling any fine-grained locking it might need. An exclusive lock on the index
as a whole will be taken only during index creation, destruction, or REINDEX.

Building an index type that supports concurrent updates usually requires extensive and subtle analysis
of the required behavior. For the b-tree and hash index types, you can read about the design decisions
involved in src/backend/access/nbtree/README and src/backend/access/hash/README.

Aside from the index’s own internal consistency requirements, concurrent updates create issues about
consistency between the parent table (the heap) and the index. Because PostgreSQL separates accesses and
updates of the heap from those of the index, there are windows in which the index might be inconsistent
with the heap. We handle this problem with the following rules:

• A new heap entry is made before making its index entries. (Therefore a concurrent index scan is likely to
fail to see the heap entry. This is okay because the index reader would be uninterested in an uncommitted
row anyway. But see Section 52.5.)

• When a heap entry is to be deleted (by VACUUM), all its index entries must be removed first.

• An index scan must maintain a pin on the index page holding the item last returned by amgettuple,
and ambulkdelete cannot delete entries from pages that are pinned by other backends. The need for
this rule is explained below.

Without the third rule, it is possible for an index reader to see an index entry just before it is removed
by VACUUM, and then to arrive at the corresponding heap entry after that was removed by VACUUM. This
creates no serious problems if that item number is still unused when the reader reaches it, since an empty
item slot will be ignored by heap_fetch(). But what if a third backend has already re-used the item
slot for something else? When using an MVCC-compliant snapshot, there is no problem because the
new occupant of the slot is certain to be too new to pass the snapshot test. However, with a non-MVCC-
compliant snapshot (such as SnapshotNow), it would be possible to accept and return a row that does
not in fact match the scan keys. We could defend against this scenario by requiring the scan keys to be
rechecked against the heap row in all cases, but that is too expensive. Instead, we use a pin on an index

1924

Chapter 52. Index Access Method Interface Definition

page as a proxy to indicate that the reader might still be “in flight” from the index entry to the matching
heap entry. Making ambulkdelete block on such a pin ensures that VACUUM cannot delete the heap entry
before the reader is done with it. This solution costs little in run time, and adds blocking overhead only in
the rare cases where there actually is a conflict.

This solution requires that index scans be “synchronous”: we have to fetch each heap tuple immediately af-
ter scanning the corresponding index entry. This is expensive for a number of reasons. An “asynchronous”
scan in which we collect many TIDs from the index, and only visit the heap tuples sometime later, requires
much less index locking overhead and can allow a more efficient heap access pattern. Per the above anal-
ysis, we must use the synchronous approach for non-MVCC-compliant snapshots, but an asynchronous
scan is workable for a query using an MVCC snapshot.

In an amgetbitmap index scan, the access method does not keep an index pin on any of the returned
tuples. Therefore it is only safe to use such scans with MVCC-compliant snapshots.

When the ampredlocks flag is not set, any scan using that index access method within a serializable
transaction will acquire a non-blocking predicate lock on the full index. This will generate a read-write
conflict with the insert of any tuple into that index by a concurrent serializable transaction. If certain
patterns of read-write conflicts are detected among a set of concurrent serializable transactions, one of
those transactions may be canceled to protect data integrity. When the flag is set, it indicates that the index
access method implements finer-grained predicate locking, which will tend to reduce the frequency of
such transaction cancellations.

52.5. Index Uniqueness Checks
PostgreSQL enforces SQL uniqueness constraints using unique indexes, which are indexes that
disallow multiple entries with identical keys. An access method that supports this feature sets
pg_am.amcanunique true. (At present, only b-tree supports it.)

Because of MVCC, it is always necessary to allow duplicate entries to exist physically in an index: the
entries might refer to successive versions of a single logical row. The behavior we actually want to enforce
is that no MVCC snapshot could include two rows with equal index keys. This breaks down into the
following cases that must be checked when inserting a new row into a unique index:

• If a conflicting valid row has been deleted by the current transaction, it’s okay. (In particular, since
an UPDATE always deletes the old row version before inserting the new version, this will allow an
UPDATE on a row without changing the key.)

• If a conflicting row has been inserted by an as-yet-uncommitted transaction, the would-be inserter must
wait to see if that transaction commits. If it rolls back then there is no conflict. If it commits without
deleting the conflicting row again, there is a uniqueness violation. (In practice we just wait for the other
transaction to end and then redo the visibility check in toto.)

• Similarly, if a conflicting valid row has been deleted by an as-yet-uncommitted transaction, the would-
be inserter must wait for that transaction to commit or abort, and then repeat the test.

Furthermore, immediately before reporting a uniqueness violation according to the above rules, the access
method must recheck the liveness of the row being inserted. If it is committed dead then no violation
should be reported. (This case cannot occur during the ordinary scenario of inserting a row that’s just

1925

Chapter 52. Index Access Method Interface Definition

been created by the current transaction. It can happen during CREATE UNIQUE INDEX CONCURRENTLY,
however.)

We require the index access method to apply these tests itself, which means that it must reach into the
heap to check the commit status of any row that is shown to have a duplicate key according to the index
contents. This is without a doubt ugly and non-modular, but it saves redundant work: if we did a separate
probe then the index lookup for a conflicting row would be essentially repeated while finding the place to
insert the new row’s index entry. What’s more, there is no obvious way to avoid race conditions unless the
conflict check is an integral part of insertion of the new index entry.

If the unique constraint is deferrable, there is additional complexity: we need to be able to insert an index
entry for a new row, but defer any uniqueness-violation error until end of statement or even later. To avoid
unnecessary repeat searches of the index, the index access method should do a preliminary uniqueness
check during the initial insertion. If this shows that there is definitely no conflicting live tuple, we are
done. Otherwise, we schedule a recheck to occur when it is time to enforce the constraint. If, at the time
of the recheck, both the inserted tuple and some other tuple with the same key are live, then the error must
be reported. (Note that for this purpose, “live” actually means “any tuple in the index entry’s HOT chain
is live”.) To implement this, the aminsert function is passed a checkUnique parameter having one of
the following values:

• UNIQUE_CHECK_NO indicates that no uniqueness checking should be done (this is not a unique index).

• UNIQUE_CHECK_YES indicates that this is a non-deferrable unique index, and the uniqueness check
must be done immediately, as described above.

• UNIQUE_CHECK_PARTIAL indicates that the unique constraint is deferrable. PostgreSQL will use this
mode to insert each row’s index entry. The access method must allow duplicate entries into the in-
dex, and report any potential duplicates by returning FALSE from aminsert. For each row for which
FALSE is returned, a deferred recheck will be scheduled.

The access method must identify any rows which might violate the unique constraint, but it is not
an error for it to report false positives. This allows the check to be done without waiting for other
transactions to finish; conflicts reported here are not treated as errors and will be rechecked later, by
which time they may no longer be conflicts.

• UNIQUE_CHECK_EXISTING indicates that this is a deferred recheck of a row that was reported as a
potential uniqueness violation. Although this is implemented by calling aminsert, the access method
must not insert a new index entry in this case. The index entry is already present. Rather, the access
method must check to see if there is another live index entry. If so, and if the target row is also still live,
report error.

It is recommended that in a UNIQUE_CHECK_EXISTING call, the access method further verify that the
target row actually does have an existing entry in the index, and report error if not. This is a good idea
because the index tuple values passed to aminsert will have been recomputed. If the index definition
involves functions that are not really immutable, we might be checking the wrong area of the index.
Checking that the target row is found in the recheck verifies that we are scanning for the same tuple
values as were used in the original insertion.

1926

Chapter 52. Index Access Method Interface Definition

52.6. Index Cost Estimation Functions
The amcostestimate function is given information describing a possible index scan, including lists of
WHERE and ORDER BY clauses that have been determined to be usable with the index. It must return
estimates of the cost of accessing the index and the selectivity of the WHERE clauses (that is, the fraction
of parent-table rows that will be retrieved during the index scan). For simple cases, nearly all the work
of the cost estimator can be done by calling standard routines in the optimizer; the point of having an
amcostestimate function is to allow index access methods to provide index-type-specific knowledge,
in case it is possible to improve on the standard estimates.

Each amcostestimate function must have the signature:

void
amcostestimate (PlannerInfo *root,

IndexPath *path,
double loop_count,
Cost *indexStartupCost,
Cost *indexTotalCost,
Selectivity *indexSelectivity,
double *indexCorrelation);

The first three parameters are inputs:

root

The planner’s information about the query being processed.

path

The index access path being considered. All fields except cost and selectivity values are valid.

loop_count

The number of repetitions of the index scan that should be factored into the cost estimates. This
will typically be greater than one when considering a parameterized scan for use in the inside of a
nestloop join. Note that the cost estimates should still be for just one scan; a larger loop_count
means that it may be appropriate to allow for some caching effects across multiple scans.

The last four parameters are pass-by-reference outputs:

*indexStartupCost

Set to cost of index start-up processing

*indexTotalCost

Set to total cost of index processing

*indexSelectivity

Set to index selectivity

*indexCorrelation

Set to correlation coefficient between index scan order and underlying table’s order

1927

Chapter 52. Index Access Method Interface Definition

Note that cost estimate functions must be written in C, not in SQL or any available procedural language,
because they must access internal data structures of the planner/optimizer.

The index access costs should be computed using the parameters used by
src/backend/optimizer/path/costsize.c: a sequential disk block fetch has cost
seq_page_cost, a nonsequential fetch has cost random_page_cost, and the cost of processing one
index row should usually be taken as cpu_index_tuple_cost. In addition, an appropriate multiple of
cpu_operator_cost should be charged for any comparison operators invoked during index processing
(especially evaluation of the indexquals themselves).

The access costs should include all disk and CPU costs associated with scanning the index itself, but not
the costs of retrieving or processing the parent-table rows that are identified by the index.

The “start-up cost” is the part of the total scan cost that must be expended before we can begin to fetch
the first row. For most indexes this can be taken as zero, but an index type with a high start-up cost might
want to set it nonzero.

The indexSelectivity should be set to the estimated fraction of the parent table rows that will be
retrieved during the index scan. In the case of a lossy query, this will typically be higher than the fraction
of rows that actually pass the given qual conditions.

The indexCorrelation should be set to the correlation (ranging between -1.0 and 1.0) between the
index order and the table order. This is used to adjust the estimate for the cost of fetching rows from the
parent table.

When loop_count is greater than one, the returned numbers should be averages expected for any one
scan of the index.

Cost Estimation

A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of parent-table rows that will be visited based on the given qual
conditions. In the absence of any index-type-specific knowledge, use the standard optimizer function
clauselist_selectivity():

*indexSelectivity = clauselist_selectivity(root, path->indexquals,
path->indexinfo->rel->relid,
JOIN_INNER, NULL);

2. Estimate the number of index rows that will be visited during the scan. For many index types this is
the same as indexSelectivity times the number of rows in the index, but it might be more. (Note
that the index’s size in pages and rows is available from the path->indexinfo struct.)

3. Estimate the number of index pages that will be retrieved during the scan. This might be just
indexSelectivity times the index’s size in pages.

4. Compute the index access cost. A generic estimator might do this:

/*
* Our generic assumption is that the index pages will be read

* sequentially, so they cost seq_page_cost each, not random_page_cost.

* Also, we charge for evaluation of the indexquals at each index row.

* All the costs are assumed to be paid incrementally during the scan.

*/
cost_qual_eval(&index_qual_cost, path->indexquals, root);

1928

Chapter 52. Index Access Method Interface Definition

*indexStartupCost = index_qual_cost.startup;

*indexTotalCost = seq_page_cost * numIndexPages +
(cpu_index_tuple_cost + index_qual_cost.per_tuple) * numIndexTuples;

However, the above does not account for amortization of index reads across repeated index scans.

5. Estimate the index correlation. For a simple ordered index on a single field, this can be retrieved from
pg_statistic. If the correlation is not known, the conservative estimate is zero (no correlation).

Examples of cost estimator functions can be found in src/backend/utils/adt/selfuncs.c.

1929

Chapter 53. GiST Indexes

53.1. Introduction
GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method, that acts as a
base template in which to implement arbitrary indexing schemes. B-trees, R-trees and many other indexing
schemes can be implemented in GiST.

One advantage of GiST is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from the University of California at Berkeley’s GiST Index-
ing Project web site1 and Marcel Kornacker’s thesis, Access Methods for Next-Generation Database
Systems2. The GiST implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg
Bartunov, and there is more information on their web site3.

53.2. Extensibility
Traditionally, implementing a new index access method meant a lot of difficult work. It was necessary to
understand the inner workings of the database, such as the lock manager and Write-Ahead Log. The GiST
interface has a high level of abstraction, requiring the access method implementer only to implement the
semantics of the data type being accessed. The GiST layer itself takes care of concurrency, logging and
searching the tree structure.

This extensibility should not be confused with the extensibility of the other standard search trees in terms
of the data they can handle. For example, PostgreSQL supports extensible B-trees and hash indexes. That
means that you can use PostgreSQL to build a B-tree or hash over any data type you want. But B-trees
only support range predicates (<, =, >), and hash indexes only support equality queries.

So if you index, say, an image collection with a PostgreSQL B-tree, you can only issue queries such as “is
imagex equal to imagey”, “is imagex less than imagey” and “is imagex greater than imagey”. Depending
on how you define “equals”, “less than” and “greater than” in this context, this could be useful. However,
by using a GiST based index, you could create ways to ask domain-specific questions, perhaps “find all
images of horses” or “find all over-exposed images”.

All it takes to get a GiST access method up and running is to implement several user-defined methods,
which define the behavior of keys in the tree. Of course these methods have to be pretty fancy to support
fancy queries, but for all the standard queries (B-trees, R-trees, etc.) they’re relatively straightforward. In
short, GiST combines extensibility along with generality, code reuse, and a clean interface.

There are seven methods that an index operator class for GiST must provide, and an eighth that is optional.
Correctness of the index is ensured by proper implementation of the same, consistent and union

1. http://gist.cs.berkeley.edu/
2. http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz
3. http://www.sai.msu.su/~megera/postgres/gist/

1930

Chapter 53. GiST Indexes

methods, while efficiency (size and speed) of the index will depend on the penalty and picksplit

methods. The remaining two basic methods are compress and decompress, which allow an index to
have internal tree data of a different type than the data it indexes. The leaves are to be of the indexed
data type, while the other tree nodes can be of any C struct (but you still have to follow PostgreSQL
data type rules here, see about varlena for variable sized data). If the tree’s internal data type exists
at the SQL level, the STORAGE option of the CREATE OPERATOR CLASS command can be used. The
optional eighth method is distance, which is needed if the operator class wishes to support ordered
scans (nearest-neighbor searches).

consistent

Given an index entry p and a query value q, this function determines whether the index entry is
“consistent” with the query; that is, could the predicate “indexed_column indexable_operator
q” be true for any row represented by the index entry? For a leaf index entry this is equivalent to
testing the indexable condition, while for an internal tree node this determines whether it is necessary
to scan the subtree of the index represented by the tree node. When the result is true, a recheck

flag must also be returned. This indicates whether the predicate is certainly true or only possibly true.
If recheck = false then the index has tested the predicate condition exactly, whereas if recheck
= true the row is only a candidate match. In that case the system will automatically evaluate the
indexable_operator against the actual row value to see if it is really a match. This convention
allows GiST to support both lossless and lossy index structures.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid, internal)
RETURNS bool
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

Datum my_consistent(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{

GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
data_type *query = PG_GETARG_DATA_TYPE_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
data_type *key = DatumGetDataType(entry->key);
bool retval;

/*
* determine return value as a function of strategy, key and query.

*
* Use GIST_LEAF(entry) to know where you’re called in the index tree,

* which comes handy when supporting the = operator for example (you could

* check for non empty union() in non-leaf nodes and equality in leaf

* nodes).

*/

1931

Chapter 53. GiST Indexes

recheck = true; / or false if check is exact */

PG_RETURN_BOOL(retval);
}

Here, key is an element in the index and query the value being looked up in the index. The
StrategyNumber parameter indicates which operator of your operator class is being applied —
it matches one of the operator numbers in the CREATE OPERATOR CLASS command. Depending on
what operators you have included in the class, the data type of query could vary with the operator,
but the above skeleton assumes it doesn’t.

union

This method consolidates information in the tree. Given a set of entries, this function generates a new
index entry that represents all the given entries.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

Datum my_union(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{

GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
GISTENTRY *ent = entryvec->vector;
data_type *out,

*tmp,

*old;
int numranges,

i = 0;

numranges = entryvec->n;
tmp = DatumGetDataType(ent[0].key);
out = tmp;

if (numranges == 1)
{

out = data_type_deep_copy(tmp);

PG_RETURN_DATA_TYPE_P(out);
}

for (i = 1; i < numranges; i++)
{

old = out;
tmp = DatumGetDataType(ent[i].key);
out = my_union_implementation(out, tmp);

}

1932

Chapter 53. GiST Indexes

PG_RETURN_DATA_TYPE_P(out);
}

As you can see, in this skeleton we’re dealing with a data type where union(X, Y, Z) =

union(union(X, Y), Z). It’s easy enough to support data types where this is not the case, by
implementing the proper union algorithm in this GiST support method.

The union implementation function should return a pointer to newly palloc()ed memory. You
can’t just return whatever the input is.

compress

Converts the data item into a format suitable for physical storage in an index page.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

Datum my_compress(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{

GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;

if (entry->leafkey)
{

/* replace entry->key with a compressed version */
compressed_data_type *compressed_data = palloc(sizeof(compressed_data_type));

/* fill *compressed_data from entry->key ... */

retval = palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(compressed_data),

entry->rel, entry->page, entry->offset, FALSE);
}
else
{

/* typically we needn’t do anything with non-leaf entries */
retval = entry;

}

PG_RETURN_POINTER(retval);
}

You have to adapt compressed_data_type to the specific type you’re converting to in order to
compress your leaf nodes, of course.

Depending on your needs, you could also need to care about compressing NULL values in there,
storing for example (Datum) 0 like gist_circle_compress does.

1933

Chapter 53. GiST Indexes

decompress

The reverse of the compressmethod. Converts the index representation of the data item into a format
that can be manipulated by the database.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

Datum my_decompress(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{

PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}

The above skeleton is suitable for the case where no decompression is needed.

penalty

Returns a value indicating the “cost” of inserting the new entry into a particular branch of the tree.
Items will be inserted down the path of least penalty in the tree. Values returned by penalty

should be non-negative. If a negative value is returned, it will be treated as zero.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT; -- in some cases penalty functions need not be strict

And the matching code in the C module could then follow this skeleton:

Datum my_penalty(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{

GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
float *penalty = (float *) PG_GETARG_POINTER(2);
data_type *orig = DatumGetDataType(origentry->key);
data_type *new = DatumGetDataType(newentry->key);

*penalty = my_penalty_implementation(orig, new);
PG_RETURN_POINTER(penalty);

}

The penalty function is crucial to good performance of the index. It’ll get used at insertion time to
determine which branch to follow when choosing where to add the new entry in the tree. At query
time, the more balanced the index, the quicker the lookup.

1934

Chapter 53. GiST Indexes

picksplit

When an index page split is necessary, this function decides which entries on the page are to stay on
the old page, and which are to move to the new page.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

Datum my_picksplit(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{

GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
OffsetNumber maxoff = entryvec->n - 1;
GISTENTRY *ent = entryvec->vector;
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
int i,

nbytes;
OffsetNumber *left,

*right;
data_type *tmp_union;
data_type *unionL;
data_type *unionR;
GISTENTRY **raw_entryvec;

maxoff = entryvec->n - 1;
nbytes = (maxoff + 1) * sizeof(OffsetNumber);

v->spl_left = (OffsetNumber *) palloc(nbytes);
left = v->spl_left;
v->spl_nleft = 0;

v->spl_right = (OffsetNumber *) palloc(nbytes);
right = v->spl_right;
v->spl_nright = 0;

unionL = NULL;
unionR = NULL;

/* Initialize the raw entry vector. */
raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))

raw_entryvec[i] = &(entryvec->vector[i]);

for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{

int real_index = raw_entryvec[i] - entryvec->vector;

1935

Chapter 53. GiST Indexes

tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
Assert(tmp_union != NULL);

/*
* Choose where to put the index entries and update unionL and unionR

* accordingly. Append the entries to either v_spl_left or

* v_spl_right, and care about the counters.

*/

if (my_choice_is_left(unionL, curl, unionR, curr))
{

if (unionL == NULL)
unionL = tmp_union;

else
unionL = my_union_implementation(unionL, tmp_union);

*left = real_index;
++left;
++(v->spl_nleft);

}
else
{

/*
* Same on the right

*/
}

}

v->spl_ldatum = DataTypeGetDatum(unionL);
v->spl_rdatum = DataTypeGetDatum(unionR);
PG_RETURN_POINTER(v);

}

Like penalty, the picksplit function is crucial to good performance of the index. Designing
suitable penalty and picksplit implementations is where the challenge of implementing well-
performing GiST indexes lies.

same

Returns true if two index entries are identical, false otherwise.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_same(internal, internal, internal)
RETURNS internal
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

Datum my_same(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)
{

prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);

1936

Chapter 53. GiST Indexes

prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
bool *result = (bool *) PG_GETARG_POINTER(2);

*result = my_eq(v1, v2);
PG_RETURN_POINTER(result);

}

For historical reasons, the same function doesn’t just return a Boolean result; instead it has to store
the flag at the location indicated by the third argument.

distance

Given an index entry p and a query value q, this function determines the index entry’s “distance”
from the query value. This function must be supplied if the operator class contains any ordering
operators. A query using the ordering operator will be implemented by returning index entries with
the smallest “distance” values first, so the results must be consistent with the operator’s semantics.
For a leaf index entry the result just represents the distance to the index entry; for an internal tree
node, the result must be the smallest distance that any child entry could have.

The SQL declaration of the function must look like this:

CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid)
RETURNS float8
AS ’MODULE_PATHNAME’
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:

Datum my_distance(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{

GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
data_type *query = PG_GETARG_DATA_TYPE_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
data_type *key = DatumGetDataType(entry->key);
double retval;

/*
* determine return value as a function of strategy, key and query.

*/

PG_RETURN_FLOAT8(retval);
}

The arguments to the distance function are identical to the arguments of the consistent function,
except that no recheck flag is used. The distance to a leaf index entry must always be determined
exactly, since there is no way to re-order the tuples once they are returned. Some approximation is
allowed when determining the distance to an internal tree node, so long as the result is never greater
than any child’s actual distance. Thus, for example, distance to a bounding box is usually sufficient in
geometric applications. The result value can be any finite float8 value. (Infinity and minus infinity
are used internally to handle cases such as nulls, so it is not recommended that distance functions
return these values.)

1937

Chapter 53. GiST Indexes

All the GiST support methods are normally called in short-lived memory contexts; that is,
CurrentMemoryContext will get reset after each tuple is processed. It is therefore not very
important to worry about pfree’ing everything you palloc. However, in some cases it’s useful for
a support method to cache data across repeated calls. To do that, allocate the longer-lived data in
fcinfo->flinfo->fn_mcxt, and keep a pointer to it in fcinfo->flinfo->fn_extra. Such data
will survive for the life of the index operation (e.g., a single GiST index scan, index build, or index tuple
insertion). Be careful to pfree the previous value when replacing a fn_extra value, or the leak will
accumulate for the duration of the operation.

53.3. Implementation

53.3.1. GiST buffering build
Building large GiST indexes by simply inserting all the tuples tends to be slow, because if the index tuples
are scattered across the index and the index is large enough to not fit in cache, the insertions need to
perform a lot of random I/O. Beginning in version 9.2, PostgreSQL supports a more efficient method to
build GiST indexes based on buffering, which can dramatically reduce the number of random I/Os needed
for non-ordered data sets. For well-ordered data sets the benefit is smaller or non-existent, because only a
small number of pages receive new tuples at a time, and those pages fit in cache even if the index as whole
does not.

However, buffering index build needs to call the penalty function more often, which consumes some
extra CPU resources. Also, the buffers used in the buffering build need temporary disk space, up to the
size of the resulting index. Buffering can also influence the quality of the resulting index, in both positive
and negative directions. That influence depends on various factors, like the distribution of the input data
and the operator class implementation.

By default, a GiST index build switches to the buffering method when the index size reaches effec-
tive_cache_size. It can be manually turned on or off by the BUFFERING parameter to the CREATE INDEX
command. The default behavior is good for most cases, but turning buffering off might speed up the build
somewhat if the input data is ordered.

53.4. Examples
The PostgreSQL source distribution includes several examples of index methods implemented
using GiST. The core system currently provides text search support (indexing for tsvector and
tsquery) as well as R-Tree equivalent functionality for some of the built-in geometric data types (see
src/backend/access/gist/gistproc.c). The following contrib modules also contain GiST
operator classes:

btree_gist

B-tree equivalent functionality for several data types

1938

Chapter 53. GiST Indexes

cube

Indexing for multidimensional cubes

hstore

Module for storing (key, value) pairs

intarray

RD-Tree for one-dimensional array of int4 values

ltree

Indexing for tree-like structures

pg_trgm

Text similarity using trigram matching

seg

Indexing for “float ranges”

1939

Chapter 54. SP-GiST Indexes

54.1. Introduction
SP-GiST is an abbreviation for space-partitioned GiST. SP-GiST supports partitioned search trees, which
facilitate development of a wide range of different non-balanced data structures, such as quad-trees, k-
d trees, and suffix trees (tries). The common feature of these structures is that they repeatedly divide
the search space into partitions that need not be of equal size. Searches that are well matched to the
partitioning rule can be very fast.

These popular data structures were originally developed for in-memory usage. In main memory, they are
usually designed as a set of dynamically allocated nodes linked by pointers. This is not suitable for direct
storing on disk, since these chains of pointers can be rather long which would require too many disk
accesses. In contrast, disk-based data structures should have a high fanout to minimize I/O. The challenge
addressed by SP-GiST is to map search tree nodes to disk pages in such a way that a search need access
only a few disk pages, even if it traverses many nodes.

Like GiST, SP-GiST is meant to allow the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from Purdue University’s SP-GiST Indexing Project web site1.
The SP-GiST implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bar-
tunov, and there is more information on their web site2.

54.2. Extensibility
SP-GiST offers an interface with a high level of abstraction, requiring the access method developer to
implement only methods specific to a given data type. The SP-GiST core is responsible for efficient disk
mapping and searching the tree structure. It also takes care of concurrency and logging considerations.

Leaf tuples of an SP-GiST tree contain values of the same data type as the indexed column. Leaf tuples
at the root level will always contain the original indexed data value, but leaf tuples at lower levels might
contain only a compressed representation, such as a suffix. In that case the operator class support functions
must be able to reconstruct the original value using information accumulated from the inner tuples that
are passed through to reach the leaf level.

Inner tuples are more complex, since they are branching points in the search tree. Each inner tuple contains
a set of one or more nodes, which represent groups of similar leaf values. A node contains a downlink
that leads to either another, lower-level inner tuple, or a short list of leaf tuples that all lie on the same
index page. Each node has a label that describes it; for example, in a suffix tree the node label could be
the next character of the string value. Optionally, an inner tuple can have a prefix value that describes
all its members. In a suffix tree this could be the common prefix of the represented strings. The prefix

1. http://www.cs.purdue.edu/spgist/
2. http://www.sai.msu.su/~megera/wiki/spgist_dev

1940

Chapter 54. SP-GiST Indexes

value is not necessarily really a prefix, but can be any data needed by the operator class; for example, in a
quad-tree it can store the central point that the four quadrants are measured with respect to. A quad-tree
inner tuple would then also contain four nodes corresponding to the quadrants around this central point.

Some tree algorithms require knowledge of level (or depth) of the current tuple, so the SP-GiST core
provides the possibility for operator classes to manage level counting while descending the tree. There is
also support for incrementally reconstructing the represented value when that is needed.

Note: The SP-GiST core code takes care of null entries. Although SP-GiST indexes do store entries
for nulls in indexed columns, this is hidden from the index operator class code: no null index entries
or search conditions will ever be passed to the operator class methods. (It is assumed that SP-GiST
operators are strict and so cannot succeed for null values.) Null values are therefore not discussed
further here.

There are five user-defined methods that an index operator class for SP-GiST must provide. All five
follow the convention of accepting two internal arguments, the first of which is a pointer to a C struct
containing input values for the support method, while the second argument is a pointer to a C struct
where output values must be placed. Four of the methods just return void, since all their results appear in
the output struct; but leaf_consistent additionally returns a boolean result. The methods must not
modify any fields of their input structs. In all cases, the output struct is initialized to zeroes before calling
the user-defined method.

The five user-defined methods are:

config

Returns static information about the index implementation, including the data type OIDs of the prefix
and node label data types.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_config(internal, internal) RETURNS void ...

The first argument is a pointer to a spgConfigIn C struct, containing input data for the function.
The second argument is a pointer to a spgConfigOut C struct, which the function must fill with
result data.

typedef struct spgConfigIn
{

Oid attType; /* Data type to be indexed */
} spgConfigIn;

typedef struct spgConfigOut
{

Oid prefixType; /* Data type of inner-tuple prefixes */
Oid labelType; /* Data type of inner-tuple node labels */
bool canReturnData; /* Opclass can reconstruct original data */
bool longValuesOK; /* Opclass can cope with values > 1 page */

} spgConfigOut;

attType is passed in order to support polymorphic index operator classes; for ordinary fixed-data-
type operator classes, it will always have the same value and so can be ignored.

For operator classes that do not use prefixes, prefixType can be set to VOIDOID. Likewise, for
operator classes that do not use node labels, labelType can be set to VOIDOID. canReturnData

1941

Chapter 54. SP-GiST Indexes

should be set true if the operator class is capable of reconstructing the originally-supplied index value.
longValuesOK should be set true only when the attType is of variable length and the operator class
is capable of segmenting long values by repeated suffixing (see Section 54.3.1).

choose

Chooses a method for inserting a new value into an inner tuple.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_choose(internal, internal) RETURNS void ...

The first argument is a pointer to a spgChooseIn C struct, containing input data for the function.
The second argument is a pointer to a spgChooseOut C struct, which the function must fill with
result data.

typedef struct spgChooseIn
{

Datum datum; /* original datum to be indexed */
Datum leafDatum; /* current datum to be stored at leaf */
int level; /* current level (counting from zero) */

/* Data from current inner tuple */
bool allTheSame; /* tuple is marked all-the-same? */
bool hasPrefix; /* tuple has a prefix? */
Datum prefixDatum; /* if so, the prefix value */
int nNodes; /* number of nodes in the inner tuple */
Datum *nodeLabels; /* node label values (NULL if none) */

} spgChooseIn;

typedef enum spgChooseResultType
{

spgMatchNode = 1, /* descend into existing node */
spgAddNode, /* add a node to the inner tuple */
spgSplitTuple /* split inner tuple (change its prefix) */

} spgChooseResultType;

typedef struct spgChooseOut
{

spgChooseResultType resultType; /* action code, see above */
union
{

struct /* results for spgMatchNode */
{

int nodeN; /* descend to this node (index from 0) */
int levelAdd; /* increment level by this much */
Datum restDatum; /* new leaf datum */

} matchNode;
struct /* results for spgAddNode */
{

Datum nodeLabel; /* new node’s label */
int nodeN; /* where to insert it (index from 0) */

} addNode;
struct /* results for spgSplitTuple */
{

/* Info to form new inner tuple with one node */

1942

Chapter 54. SP-GiST Indexes

bool prefixHasPrefix; /* tuple should have a prefix? */
Datum prefixPrefixDatum; /* if so, its value */
Datum nodeLabel; /* node’s label */

/* Info to form new lower-level inner tuple with all old nodes */
bool postfixHasPrefix; /* tuple should have a prefix? */
Datum postfixPrefixDatum; /* if so, its value */

} splitTuple;
} result;

} spgChooseOut;

datum is the original datum that was to be inserted into the index. leafDatum is initially the same
as datum, but can change at lower levels of the tree if the choose or picksplit methods change
it. When the insertion search reaches a leaf page, the current value of leafDatum is what will be
stored in the newly created leaf tuple. level is the current inner tuple’s level, starting at zero for the
root level. allTheSame is true if the current inner tuple is marked as containing multiple equivalent
nodes (see Section 54.3.3). hasPrefix is true if the current inner tuple contains a prefix; if so,
prefixDatum is its value. nNodes is the number of child nodes contained in the inner tuple, and
nodeLabels is an array of their label values, or NULL if there are no labels.

The choose function can determine either that the new value matches one of the existing child nodes,
or that a new child node must be added, or that the new value is inconsistent with the tuple prefix and
so the inner tuple must be split to create a less restrictive prefix.

If the new value matches one of the existing child nodes, set resultType to spgMatchNode. Set
nodeN to the index (from zero) of that node in the node array. Set levelAdd to the increment in
level caused by descending through that node, or leave it as zero if the operator class does not use
levels. Set restDatum to equal datum if the operator class does not modify datums from one level
to the next, or otherwise set it to the modified value to be used as leafDatum at the next level.

If a new child node must be added, set resultType to spgAddNode. Set nodeLabel to the label
to be used for the new node, and set nodeN to the index (from zero) at which to insert the node in
the node array. After the node has been added, the choose function will be called again with the
modified inner tuple; that call should result in an spgMatchNode result.

If the new value is inconsistent with the tuple prefix, set resultType to spgSplitTuple. This
action moves all the existing nodes into a new lower-level inner tuple, and replaces the existing
inner tuple with a tuple having a single node that links to the new lower-level inner tuple. Set
prefixHasPrefix to indicate whether the new upper tuple should have a prefix, and if so set
prefixPrefixDatum to the prefix value. This new prefix value must be sufficiently less restrictive
than the original to accept the new value to be indexed, and it should be no longer than the original
prefix. Set nodeLabel to the label to be used for the node that will point to the new lower-level in-
ner tuple. Set postfixHasPrefix to indicate whether the new lower-level inner tuple should have
a prefix, and if so set postfixPrefixDatum to the prefix value. The combination of these two pre-
fixes and the additional label must have the same meaning as the original prefix, because there is no
opportunity to alter the node labels that are moved to the new lower-level tuple, nor to change any
child index entries. After the node has been split, the choose function will be called again with the
replacement inner tuple. That call will usually result in an spgAddNode result, since presumably the
node label added in the split step will not match the new value; so after that, there will be a third call
that finally returns spgMatchNode and allows the insertion to descend to the leaf level.

1943

Chapter 54. SP-GiST Indexes

picksplit

Decides how to create a new inner tuple over a set of leaf tuples.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...

The first argument is a pointer to a spgPickSplitIn C struct, containing input data for the function.
The second argument is a pointer to a spgPickSplitOut C struct, which the function must fill with
result data.

typedef struct spgPickSplitIn
{

int nTuples; /* number of leaf tuples */
Datum *datums; /* their datums (array of length nTuples) */
int level; /* current level (counting from zero) */

} spgPickSplitIn;

typedef struct spgPickSplitOut
{

bool hasPrefix; /* new inner tuple should have a prefix? */
Datum prefixDatum; /* if so, its value */

int nNodes; /* number of nodes for new inner tuple */
Datum *nodeLabels; /* their labels (or NULL for no labels) */

int *mapTuplesToNodes; /* node index for each leaf tuple */
Datum *leafTupleDatums; /* datum to store in each new leaf tuple */

} spgPickSplitOut;

nTuples is the number of leaf tuples provided. datums is an array of their datum values. level is
the current level that all the leaf tuples share, which will become the level of the new inner tuple.

Set hasPrefix to indicate whether the new inner tuple should have a prefix, and if so set
prefixDatum to the prefix value. Set nNodes to indicate the number of nodes that the new inner
tuple will contain, and set nodeLabels to an array of their label values. (If the nodes do not require
labels, set nodeLabels to NULL; see Section 54.3.2 for details.) Set mapTuplesToNodes to
an array that gives the index (from zero) of the node that each leaf tuple should be assigned to.
Set leafTupleDatums to an array of the values to be stored in the new leaf tuples (these will
be the same as the input datums if the operator class does not modify datums from one level
to the next). Note that the picksplit function is responsible for palloc’ing the nodeLabels,
mapTuplesToNodes and leafTupleDatums arrays.

If more than one leaf tuple is supplied, it is expected that the picksplit function will classify
them into more than one node; otherwise it is not possible to split the leaf tuples across multiple
pages, which is the ultimate purpose of this operation. Therefore, if the picksplit function ends
up placing all the leaf tuples in the same node, the core SP-GiST code will override that decision and
generate an inner tuple in which the leaf tuples are assigned at random to several identically-labeled
nodes. Such a tuple is marked allTheSame to signify that this has happened. The choose and
inner_consistent functions must take suitable care with such inner tuples. See Section 54.3.3
for more information.

picksplit can be applied to a single leaf tuple only in the case that the config function set
longValuesOK to true and a larger-than-a-page input value has been supplied. In this case the point
of the operation is to strip off a prefix and produce a new, shorter leaf datum value. The call will be

1944

Chapter 54. SP-GiST Indexes

repeated until a leaf datum short enough to fit on a page has been produced. See Section 54.3.1 for
more information.

inner_consistent

Returns set of nodes (branches) to follow during tree search.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS void ...

The first argument is a pointer to a spgInnerConsistentIn C struct, containing input data for
the function. The second argument is a pointer to a spgInnerConsistentOut C struct, which the
function must fill with result data.

typedef struct spgInnerConsistentIn
{

ScanKey scankeys; /* array of operators and comparison values */
int nkeys; /* length of array */

Datum reconstructedValue; /* value reconstructed at parent */
int level; /* current level (counting from zero) */
bool returnData; /* original data must be returned? */

/* Data from current inner tuple */
bool allTheSame; /* tuple is marked all-the-same? */
bool hasPrefix; /* tuple has a prefix? */
Datum prefixDatum; /* if so, the prefix value */
int nNodes; /* number of nodes in the inner tuple */
Datum *nodeLabels; /* node label values (NULL if none) */

} spgInnerConsistentIn;

typedef struct spgInnerConsistentOut
{

int nNodes; /* number of child nodes to be visited */
int *nodeNumbers; /* their indexes in the node array */
int *levelAdds; /* increment level by this much for each */
Datum *reconstructedValues; /* associated reconstructed values */

} spgInnerConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions
are combined with AND — only index entries that satisfy all of them are interesting. (Note that
nkeys = 0 implies that all index entries satisfy the query.) Usually the consistent function only cares
about the sk_strategy and sk_argument fields of each array entry, which respectively give the
indexable operator and comparison value. In particular it is not necessary to check sk_flags to see
if the comparison value is NULL, because the SP-GiST core code will filter out such conditions.
reconstructedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the root
level or if the inner_consistent function did not provide a value at the parent level. level is the
current inner tuple’s level, starting at zero for the root level. returnData is true if reconstructed
data is required for this query; this will only be so if the config function asserted canReturnData.
allTheSame is true if the current inner tuple is marked “all-the-same”; in this case all the nodes
have the same label (if any) and so either all or none of them match the query (see Section 54.3.3).
hasPrefix is true if the current inner tuple contains a prefix; if so, prefixDatum is its value.
nNodes is the number of child nodes contained in the inner tuple, and nodeLabels is an array of
their label values, or NULL if the nodes do not have labels.

1945

Chapter 54. SP-GiST Indexes

nNodes must be set to the number of child nodes that need to be visited by the search, and
nodeNumbers must be set to an array of their indexes. If the operator class keeps track of levels,
set levelAdds to an array of the level increments required when descending to each node to be
visited. (Often these increments will be the same for all the nodes, but that’s not necessarily so, so
an array is used.) If value reconstruction is needed, set reconstructedValues to an array of the
values reconstructed for each child node to be visited; otherwise, leave reconstructedValues as
NULL. Note that the inner_consistent function is responsible for palloc’ing the nodeNumbers,
levelAdds and reconstructedValues arrays.

leaf_consistent

Returns true if a leaf tuple satisfies a query.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS bool ...

The first argument is a pointer to a spgLeafConsistentIn C struct, containing input data for
the function. The second argument is a pointer to a spgLeafConsistentOut C struct, which the
function must fill with result data.

typedef struct spgLeafConsistentIn
{

ScanKey scankeys; /* array of operators and comparison values */
int nkeys; /* length of array */

Datum reconstructedValue; /* value reconstructed at parent */
int level; /* current level (counting from zero) */
bool returnData; /* original data must be returned? */

Datum leafDatum; /* datum in leaf tuple */
} spgLeafConsistentIn;

typedef struct spgLeafConsistentOut
{

Datum leafValue; /* reconstructed original data, if any */
bool recheck; /* set true if operator must be rechecked */

} spgLeafConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions
are combined with AND — only index entries that satisfy all of them satisfy the query. (Note that
nkeys = 0 implies that all index entries satisfy the query.) Usually the consistent function only cares
about the sk_strategy and sk_argument fields of each array entry, which respectively give the
indexable operator and comparison value. In particular it is not necessary to check sk_flags to see
if the comparison value is NULL, because the SP-GiST core code will filter out such conditions.
reconstructedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the root
level or if the inner_consistent function did not provide a value at the parent level. level is
the current leaf tuple’s level, starting at zero for the root level. returnData is true if reconstructed
data is required for this query; this will only be so if the config function asserted canReturnData.
leafDatum is the key value stored in the current leaf tuple.

The function must return true if the leaf tuple matches the query, or false if not. In the true case,
if returnData is true then leafValue must be set to the value originally supplied to be indexed
for this leaf tuple. Also, recheck may be set to true if the match is uncertain and so the operator(s)
must be re-applied to the actual heap tuple to verify the match.

1946

Chapter 54. SP-GiST Indexes

All the SP-GiST support methods are normally called in a short-lived memory context; that is,
CurrentMemoryContext will be reset after processing of each tuple. It is therefore not very important
to worry about pfree’ing everything you palloc. (The config method is an exception: it should try to
avoid leaking memory. But usually the config method need do nothing but assign constants into the
passed parameter struct.)

If the indexed column is of a collatable data type, the index collation will be passed to all the support
methods, using the standard PG_GET_COLLATION() mechanism.

54.3. Implementation
This section covers implementation details and other tricks that are useful for implementers of SP-GiST
operator classes to know.

54.3.1. SP-GiST Limits
Individual leaf tuples and inner tuples must fit on a single index page (8KB by default). Therefore, when
indexing values of variable-length data types, long values can only be supported by methods such as suffix
trees, in which each level of the tree includes a prefix that is short enough to fit on a page, and the final leaf
level includes a suffix also short enough to fit on a page. The operator class should set longValuesOK
to TRUE only if it is prepared to arrange for this to happen. Otherwise, the SP-GiST core will reject any
request to index a value that is too large to fit on an index page.

Likewise, it is the operator class’s responsibility that inner tuples do not grow too large to fit on an index
page; this limits the number of child nodes that can be used in one inner tuple, as well as the maximum
size of a prefix value.

Another limitation is that when an inner tuple’s node points to a set of leaf tuples, those tuples must all
be in the same index page. (This is a design decision to reduce seeking and save space in the links that
chain such tuples together.) If the set of leaf tuples grows too large for a page, a split is performed and an
intermediate inner tuple is inserted. For this to fix the problem, the new inner tuple must divide the set of
leaf values into more than one node group. If the operator class’s picksplit function fails to do that, the
SP-GiST core resorts to extraordinary measures described in Section 54.3.3.

54.3.2. SP-GiST Without Node Labels
Some tree algorithms use a fixed set of nodes for each inner tuple; for example, in a quad-tree there are
always exactly four nodes corresponding to the four quadrants around the inner tuple’s centroid point. In
such a case the code typically works with the nodes by number, and there is no need for explicit node
labels. To suppress node labels (and thereby save some space), the picksplit function can return NULL
for the nodeLabels array. This will in turn result in nodeLabels being NULL during subsequent calls
to choose and inner_consistent. In principle, node labels could be used for some inner tuples and
omitted for others in the same index.

When working with an inner tuple having unlabeled nodes, it is an error for choose to return
spgAddNode, since the set of nodes is supposed to be fixed in such cases. Also, there is no provision for

1947

Chapter 54. SP-GiST Indexes

generating an unlabeled node in spgSplitTuple actions, since it is expected that an spgAddNode

action will be needed as well.

54.3.3. “All-the-same” Inner Tuples
The SP-GiST core can override the results of the operator class’s picksplit function when picksplit

fails to divide the supplied leaf values into at least two node categories. When this happens, the new inner
tuple is created with multiple nodes that each have the same label (if any) that picksplit gave to the one
node it did use, and the leaf values are divided at random among these equivalent nodes. The allTheSame
flag is set on the inner tuple to warn the choose and inner_consistent functions that the tuple does
not have the node set that they might otherwise expect.

When dealing with an allTheSame tuple, a choose result of spgMatchNode is interpreted to mean
that the new value can be assigned to any of the equivalent nodes; the core code will ignore the supplied
nodeN value and descend into one of the nodes at random (so as to keep the tree balanced). It is an error for
choose to return spgAddNode, since that would make the nodes not all equivalent; the spgSplitTuple
action must be used if the value to be inserted doesn’t match the existing nodes.

When dealing with an allTheSame tuple, the inner_consistent function should return either all or
none of the nodes as targets for continuing the index search, since they are all equivalent. This may or may
not require any special-case code, depending on how much the inner_consistent function normally
assumes about the meaning of the nodes.

54.4. Examples
The PostgreSQL source distribution includes several examples of index operator classes for SP-GiST. The
core system currently provides suffix trees over text columns and two types of trees over points: quad-tree
and k-d tree. Look into src/backend/access/spgist/ to see the code.

1948

Chapter 55. GIN Indexes

55.1. Introduction
GIN stands for Generalized Inverted Index. GIN is designed for handling cases where the items to be
indexed are composite values, and the queries to be handled by the index need to search for element values
that appear within the composite items. For example, the items could be documents, and the queries could
be searches for documents containing specific words.

We use the word item to refer to a composite value that is to be indexed, and the word key to refer to an
element value. GIN always stores and searches for keys, not item values per se.

A GIN index stores a set of (key, posting list) pairs, where a posting list is a set of row IDs in which the
key occurs. The same row ID can appear in multiple posting lists, since an item can contain more than
one key. Each key value is stored only once, so a GIN index is very compact for cases where the same key
appears many times.

GIN is generalized in the sense that the GIN access method code does not need to know the specific
operations that it accelerates. Instead, it uses custom strategies defined for particular data types. The
strategy defines how keys are extracted from indexed items and query conditions, and how to determine
whether a row that contains some of the key values in a query actually satisfies the query.

One advantage of GIN is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert. This is much the same
advantage as using GiST.

The GIN implementation in PostgreSQL is primarily maintained by Teodor Sigaev and Oleg Bartunov.
There is more information about GIN on their website1.

55.2. Extensibility
The GIN interface has a high level of abstraction, requiring the access method implementer only to im-
plement the semantics of the data type being accessed. The GIN layer itself takes care of concurrency,
logging and searching the tree structure.

All it takes to get a GIN access method working is to implement four (or five) user-defined methods, which
define the behavior of keys in the tree and the relationships between keys, indexed items, and indexable
queries. In short, GIN combines extensibility with generality, code reuse, and a clean interface.

The four methods that an operator class for GIN must provide are:

1. http://www.sai.msu.su/~megera/wiki/Gin

1949

Chapter 55. GIN Indexes

int compare(Datum a, Datum b)

Compares two keys (not indexed items!) and returns an integer less than zero, zero, or greater than
zero, indicating whether the first key is less than, equal to, or greater than the second. Null keys are
never passed to this function.

Datum *extractValue(Datum itemValue, int32 *nkeys, bool **nullFlags)

Returns a palloc’d array of keys given an item to be indexed. The number of returned keys must be
stored into *nkeys. If any of the keys can be null, also palloc an array of *nkeys booleans, store its
address at *nullFlags, and set these null flags as needed. *nullFlags can be left NULL (its initial
value) if all keys are non-null. The return value can be NULL if the item contains no keys.

Datum *extractQuery(Datum query, int32 *nkeys, StrategyNumber n, bool

**pmatch, Pointer **extra_data, bool **nullFlags, int32 *searchMode)

Returns a palloc’d array of keys given a value to be queried; that is, query is the value on the right-
hand side of an indexable operator whose left-hand side is the indexed column. n is the strategy
number of the operator within the operator class (see Section 35.14.2). Often, extractQuery will
need to consult n to determine the data type of query and the method it should use to extract key
values. The number of returned keys must be stored into *nkeys. If any of the keys can be null,
also palloc an array of *nkeys booleans, store its address at *nullFlags, and set these null flags as
needed. *nullFlags can be left NULL (its initial value) if all keys are non-null. The return value
can be NULL if the query contains no keys.

searchMode is an output argument that allows extractQuery to specify details about how the
search will be done. If *searchMode is set to GIN_SEARCH_MODE_DEFAULT (which is the value it
is initialized to before call), only items that match at least one of the returned keys are considered
candidate matches. If *searchMode is set to GIN_SEARCH_MODE_INCLUDE_EMPTY, then in addi-
tion to items containing at least one matching key, items that contain no keys at all are considered
candidate matches. (This mode is useful for implementing is-subset-of operators, for example.) If
*searchMode is set to GIN_SEARCH_MODE_ALL, then all non-null items in the index are considered
candidate matches, whether they match any of the returned keys or not. (This mode is much slower
than the other two choices, since it requires scanning essentially the entire index, but it may be neces-
sary to implement corner cases correctly. An operator that needs this mode in most cases is probably
not a good candidate for a GIN operator class.) The symbols to use for setting this mode are defined
in access/gin.h.

pmatch is an output argument for use when partial match is supported. To use it, extractQuery
must allocate an array of *nkeys booleans and store its address at *pmatch. Each element of the ar-
ray should be set to TRUE if the corresponding key requires partial match, FALSE if not. If *pmatch
is set to NULL then GIN assumes partial match is not required. The variable is initialized to NULL
before call, so this argument can simply be ignored by operator classes that do not support partial
match.

extra_data is an output argument that allows extractQuery to pass additional data to the
consistent and comparePartial methods. To use it, extractQuery must allocate an array of
*nkeys Pointers and store its address at *extra_data, then store whatever it wants to into the
individual pointers. The variable is initialized to NULL before call, so this argument can simply be
ignored by operator classes that do not require extra data. If *extra_data is set, the whole array is
passed to the consistent method, and the appropriate element to the comparePartial method.

1950

Chapter 55. GIN Indexes

bool consistent(bool check[], StrategyNumber n, Datum query, int32 nkeys,

Pointer extra_data[], bool *recheck, Datum queryKeys[], bool nullFlags[])

Returns TRUE if an indexed item satisfies the query operator with strategy number n (or might satisfy
it, if the recheck indication is returned). This function does not have direct access to the indexed
item’s value, since GIN does not store items explicitly. Rather, what is available is knowledge about
which key values extracted from the query appear in a given indexed item. The check array has
length nkeys, which is the same as the number of keys previously returned by extractQuery

for this query datum. Each element of the check array is TRUE if the indexed item contains the
corresponding query key, ie, if (check[i] == TRUE) the i-th key of the extractQuery result array
is present in the indexed item. The original query datum is passed in case the consistent method
needs to consult it, and so are the queryKeys[] and nullFlags[] arrays previously returned by
extractQuery. extra_data is the extra-data array returned by extractQuery, or NULL if none.

When extractQuery returns a null key in queryKeys[], the corresponding check[] element
is TRUE if the indexed item contains a null key; that is, the semantics of check[] are like IS

NOT DISTINCT FROM. The consistent function can examine the corresponding nullFlags[]

element if it needs to tell the difference between a regular value match and a null match.

On success, *recheck should be set to TRUE if the heap tuple needs to be rechecked against the
query operator, or FALSE if the index test is exact. That is, a FALSE return value guarantees that
the heap tuple does not match the query; a TRUE return value with *recheck set to FALSE guar-
antees that the heap tuple does match the query; and a TRUE return value with *recheck set to
TRUE means that the heap tuple might match the query, so it needs to be fetched and rechecked by
evaluating the query operator directly against the originally indexed item.

Optionally, an operator class for GIN can supply a fifth method:

int comparePartial(Datum partial_key, Datum key, StrategyNumber n, Pointer

extra_data)

Compare a partial-match query key to an index key. Returns an integer whose sign indicates the
result: less than zero means the index key does not match the query, but the index scan should
continue; zero means that the index key does match the query; greater than zero indicates that the
index scan should stop because no more matches are possible. The strategy number n of the operator
that generated the partial match query is provided, in case its semantics are needed to determine
when to end the scan. Also, extra_data is the corresponding element of the extra-data array made
by extractQuery, or NULL if none. Null keys are never passed to this function.

To support “partial match” queries, an operator class must provide the comparePartial method, and its
extractQuery method must set the pmatch parameter when a partial-match query is encountered. See
Section 55.3.2 for details.

The actual data types of the various Datum values mentioned above vary depending on the operator class.
The item values passed to extractValue are always of the operator class’s input type, and all key values
must be of the class’s STORAGE type. The type of the query argument passed to extractQuery and
consistent is whatever is specified as the right-hand input type of the class member operator identified
by the strategy number. This need not be the same as the item type, so long as key values of the correct
type can be extracted from it.

1951

Chapter 55. GIN Indexes

55.3. Implementation
Internally, a GIN index contains a B-tree index constructed over keys, where each key is an element of one
or more indexed items (a member of an array, for example) and where each tuple in a leaf page contains
either a pointer to a B-tree of heap pointers (a “posting tree”), or a simple list of heap pointers (a “posting
list”) when the list is small enough to fit into a single index tuple along with the key value.

As of PostgreSQL 9.1, NULL key values can be included in the index. Also, placeholder NULLs are
included in the index for indexed items that are NULL or contain no keys according to extractValue.
This allows searches that should find empty items to do so.

Multicolumn GIN indexes are implemented by building a single B-tree over composite values (column
number, key value). The key values for different columns can be of different types.

55.3.1. GIN Fast Update Technique
Updating a GIN index tends to be slow because of the intrinsic nature of inverted indexes: inserting or
updating one heap row can cause many inserts into the index (one for each key extracted from the indexed
item). As of PostgreSQL 8.4, GIN is capable of postponing much of this work by inserting new tuples into
a temporary, unsorted list of pending entries. When the table is vacuumed, or if the pending list becomes
too large (larger than work_mem), the entries are moved to the main GIN data structure using the same
bulk insert techniques used during initial index creation. This greatly improves GIN index update speed,
even counting the additional vacuum overhead. Moreover the overhead work can be done by a background
process instead of in foreground query processing.

The main disadvantage of this approach is that searches must scan the list of pending entries in addition to
searching the regular index, and so a large list of pending entries will slow searches significantly. Another
disadvantage is that, while most updates are fast, an update that causes the pending list to become “too
large” will incur an immediate cleanup cycle and thus be much slower than other updates. Proper use of
autovacuum can minimize both of these problems.

If consistent response time is more important than update speed, use of pending entries can be disabled
by turning off the FASTUPDATE storage parameter for a GIN index. See CREATE INDEX for details.

55.3.2. Partial Match Algorithm
GIN can support “partial match” queries, in which the query does not determine an exact match for one
or more keys, but the possible matches fall within a reasonably narrow range of key values (within the
key sorting order determined by the compare support method). The extractQuery method, instead of
returning a key value to be matched exactly, returns a key value that is the lower bound of the range to
be searched, and sets the pmatch flag true. The key range is then scanned using the comparePartial

method. comparePartial must return zero for a matching index key, less than zero for a non-match that
is still within the range to be searched, or greater than zero if the index key is past the range that could
match.

1952

Chapter 55. GIN Indexes

55.4. GIN Tips and Tricks

Create vs. insert

Insertion into a GIN index can be slow due to the likelihood of many keys being inserted for each
item. So, for bulk insertions into a table it is advisable to drop the GIN index and recreate it after
finishing bulk insertion.

As of PostgreSQL 8.4, this advice is less necessary since delayed indexing is used (see Section 55.3.1
for details). But for very large updates it may still be best to drop and recreate the index.

maintenance_work_mem

Build time for a GIN index is very sensitive to the maintenance_work_mem setting; it doesn’t pay
to skimp on work memory during index creation.

work_mem

During a series of insertions into an existing GIN index that has FASTUPDATE enabled, the system
will clean up the pending-entry list whenever the list grows larger than work_mem. To avoid fluctua-
tions in observed response time, it’s desirable to have pending-list cleanup occur in the background
(i.e., via autovacuum). Foreground cleanup operations can be avoided by increasing work_mem or
making autovacuum more aggressive. However, enlarging work_mem means that if a foreground
cleanup does occur, it will take even longer.

gin_fuzzy_search_limit

The primary goal of developing GIN indexes was to create support for highly scalable full-text search
in PostgreSQL, and there are often situations when a full-text search returns a very large set of results.
Moreover, this often happens when the query contains very frequent words, so that the large result
set is not even useful. Since reading many tuples from the disk and sorting them could take a lot of
time, this is unacceptable for production. (Note that the index search itself is very fast.)

To facilitate controlled execution of such queries, GIN has a configurable soft upper limit on the
number of rows returned: the gin_fuzzy_search_limit configuration parameter. It is set to 0
(meaning no limit) by default. If a non-zero limit is set, then the returned set is a subset of the whole
result set, chosen at random.

“Soft” means that the actual number of returned results could differ somewhat from the specified
limit, depending on the query and the quality of the system’s random number generator.

From experience, values in the thousands (e.g., 5000 — 20000) work well.

55.5. Limitations
GIN assumes that indexable operators are strict. This means that extractValue will not be called at all
on a NULL item value (instead, a placeholder index entry is created automatically), and extractQuery

will not be called on a NULL query value either (instead, the query is presumed to be unsatisfiable). Note
however that NULL key values contained within a non-null composite item or query value are supported.

1953

Chapter 55. GIN Indexes

55.6. Examples
The PostgreSQL source distribution includes GIN operator classes for tsvector and for one-dimensional
arrays of all internal types. Prefix searching in tsvector is implemented using the GIN partial match
feature. The following contrib modules also contain GIN operator classes:

btree_gin

B-tree equivalent functionality for several data types

hstore

Module for storing (key, value) pairs

intarray

Enhanced support for int[]

pg_trgm

Text similarity using trigram matching

1954

Chapter 56. Database Physical Storage
This chapter provides an overview of the physical storage format used by PostgreSQL databases.

56.1. Database File Layout
This section describes the storage format at the level of files and directories.

All the data needed for a database cluster is stored within the cluster’s data directory, commonly referred to
as PGDATA (after the name of the environment variable that can be used to define it). A common location
for PGDATA is /var/lib/pgsql/data. Multiple clusters, managed by different server instances, can
exist on the same machine.

The PGDATA directory contains several subdirectories and control files, as shown in Table 56-1. In ad-
dition to these required items, the cluster configuration files postgresql.conf, pg_hba.conf, and
pg_ident.conf are traditionally stored in PGDATA (although in PostgreSQL 8.0 and later, it is possible
to keep them elsewhere).

Table 56-1. Contents of PGDATA

Item Description
PG_VERSION A file containing the major version number of

PostgreSQL

base Subdirectory containing per-database
subdirectories

global Subdirectory containing cluster-wide tables, such
as pg_database

pg_clog Subdirectory containing transaction commit status
data

pg_multixact Subdirectory containing multitransaction status
data (used for shared row locks)

pg_notify Subdirectory containing LISTEN/NOTIFY status
data

pg_serial Subdirectory containing information about
committed serializable transactions

pg_snapshots Subdirectory containing exported snapshots

pg_stat_tmp Subdirectory containing temporary files for the
statistics subsystem

pg_subtrans Subdirectory containing subtransaction status data

pg_tblspc Subdirectory containing symbolic links to
tablespaces

1955

Chapter 56. Database Physical Storage

Item Description
pg_twophase Subdirectory containing state files for prepared

transactions

pg_xlog Subdirectory containing WAL (Write Ahead Log)
files

postmaster.opts A file recording the command-line options the
server was last started with

postmaster.pid A lock file recording the current postmaster
process ID (PID), cluster data directory path,
postmaster start timestamp, port number,
Unix-domain socket directory path (empty on
Windows), first valid listen_address (IP address or
*, or empty if not listening on TCP), and shared
memory segment ID (this file is not present after
server shutdown)

For each database in the cluster there is a subdirectory within PGDATA/base, named after the database’s
OID in pg_database. This subdirectory is the default location for the database’s files; in particular, its
system catalogs are stored there.

Each table and index is stored in a separate file. For ordinary relations, these files are named after the table
or index’s filenode number, which can be found in pg_class.relfilenode. But for temporary relations,
the file name is of the form tBBB_FFF, where BBB is the backend ID of the backend which created the file,
and FFF is the filenode number. In either case, in addition to the main file (a/k/a main fork), each table
and index has a free space map (see Section 56.3), which stores information about free space available in
the relation. The free space map is stored in a file named with the filenode number plus the suffix _fsm.
Tables also have a visibility map, stored in a fork with the suffix _vm, to track which pages are known to
have no dead tuples. The visibility map is described further in Section 56.4. Unlogged tables and indexes
have a third fork, known as the initialization fork, which is stored in a fork with the suffix _init (see
Section 56.5).

Caution
Note that while a table’s filenode often matches its OID, this is not necessarily
the case; some operations, like TRUNCATE, REINDEX, CLUSTER and some forms of
ALTER TABLE, can change the filenode while preserving the OID. Avoid assuming
that filenode and table OID are the same. Also, for certain system catalogs including
pg_class itself, pg_class.relfilenode contains zero. The actual filenode number
of these catalogs is stored in a lower-level data structure, and can be obtained using
the pg_relation_filenode() function.

When a table or index exceeds 1 GB, it is divided into gigabyte-sized segments. The first segment’s
file name is the same as the filenode; subsequent segments are named filenode.1, filenode.2, etc. This
arrangement avoids problems on platforms that have file size limitations. (Actually, 1 GB is just the
default segment size. The segment size can be adjusted using the configuration option --with-segsize

when building PostgreSQL.) In principle, free space map and visibility map forks could require multiple
segments as well, though this is unlikely to happen in practice.

A table that has columns with potentially large entries will have an associated TOAST table, which

1956

Chapter 56. Database Physical Storage

is used for out-of-line storage of field values that are too large to keep in the table rows proper.
pg_class.reltoastrelid links from a table to its TOAST table, if any. See Section 56.2 for more
information.

The contents of tables and indexes are discussed further in Section 56.6.

Tablespaces make the scenario more complicated. Each user-defined tablespace has a symbolic link inside
the PGDATA/pg_tblspc directory, which points to the physical tablespace directory (i.e., the location
specified in the tablespace’s CREATE TABLESPACE command). This symbolic link is named after the
tablespace’s OID. Inside the physical tablespace directory there is a subdirectory with a name that depends
on the PostgreSQL server version, such as PG_9.0_201008051. (The reason for using this subdirectory
is so that successive versions of the database can use the same CREATE TABLESPACE location value
without conflicts.) Within the version-specific subdirectory, there is a subdirectory for each database that
has elements in the tablespace, named after the database’s OID. Tables and indexes are stored within
that directory, using the filenode naming scheme. The pg_default tablespace is not accessed through
pg_tblspc, but corresponds to PGDATA/base. Similarly, the pg_global tablespace is not accessed
through pg_tblspc, but corresponds to PGDATA/global.

The pg_relation_filepath() function shows the entire path (relative to PGDATA) of any relation. It is
often useful as a substitute for remembering many of the above rules. But keep in mind that this function
just gives the name of the first segment of the main fork of the relation — you may need to append a
segment number and/or _fsm or _vm to find all the files associated with the relation.

Temporary files (for operations such as sorting more data than can fit in memory) are created within
PGDATA/base/pgsql_tmp, or within a pgsql_tmp subdirectory of a tablespace directory if a
tablespace other than pg_default is specified for them. The name of a temporary file has the form
pgsql_tmpPPP.NNN , where PPP is the PID of the owning backend and NNN distinguishes different
temporary files of that backend.

56.2. TOAST
This section provides an overview of TOAST (The Oversized-Attribute Storage Technique).

PostgreSQL uses a fixed page size (commonly 8 kB), and does not allow tuples to span multiple pages.
Therefore, it is not possible to store very large field values directly. To overcome this limitation, large
field values are compressed and/or broken up into multiple physical rows. This happens transparently to
the user, with only small impact on most of the backend code. The technique is affectionately known as
TOAST (or “the best thing since sliced bread”).

Only certain data types support TOAST — there is no need to impose the overhead on data types that
cannot produce large field values. To support TOAST, a data type must have a variable-length (varlena)
representation, in which the first 32-bit word of any stored value contains the total length of the value in
bytes (including itself). TOAST does not constrain the rest of the representation. All the C-level functions
supporting a TOAST-able data type must be careful to handle TOASTed input values. (This is normally
done by invoking PG_DETOAST_DATUM before doing anything with an input value, but in some cases more
efficient approaches are possible.)

TOAST usurps two bits of the varlena length word (the high-order bits on big-endian machines, the low-
order bits on little-endian machines), thereby limiting the logical size of any value of a TOAST-able data
type to 1 GB (230 - 1 bytes). When both bits are zero, the value is an ordinary un-TOASTed value of the

1957

Chapter 56. Database Physical Storage

data type, and the remaining bits of the length word give the total datum size (including length word) in
bytes. When the highest-order or lowest-order bit is set, the value has only a single-byte header instead
of the normal four-byte header, and the remaining bits give the total datum size (including length byte) in
bytes. As a special case, if the remaining bits are all zero (which would be impossible for a self-inclusive
length), the value is a pointer to out-of-line data stored in a separate TOAST table. (The size of a TOAST
pointer is given in the second byte of the datum.) Values with single-byte headers aren’t aligned on any
particular boundary, either. Lastly, when the highest-order or lowest-order bit is clear but the adjacent bit
is set, the content of the datum has been compressed and must be decompressed before use. In this case
the remaining bits of the length word give the total size of the compressed datum, not the original data.
Note that compression is also possible for out-of-line data but the varlena header does not tell whether it
has occurred — the content of the TOAST pointer tells that, instead.

If any of the columns of a table are TOAST-able, the table will have an associated TOAST table, whose
OID is stored in the table’s pg_class.reltoastrelid entry. Out-of-line TOASTed values are kept in
the TOAST table, as described in more detail below.

The compression technique used is a fairly simple and very fast member of the LZ family of compression
techniques. See src/backend/utils/adt/pg_lzcompress.c for the details.

Out-of-line values are divided (after compression if used) into chunks of at most
TOAST_MAX_CHUNK_SIZE bytes (by default this value is chosen so that four chunk rows will fit on
a page, making it about 2000 bytes). Each chunk is stored as a separate row in the TOAST table for
the owning table. Every TOAST table has the columns chunk_id (an OID identifying the particular
TOASTed value), chunk_seq (a sequence number for the chunk within its value), and chunk_data

(the actual data of the chunk). A unique index on chunk_id and chunk_seq provides fast retrieval of
the values. A pointer datum representing an out-of-line TOASTed value therefore needs to store the OID
of the TOAST table in which to look and the OID of the specific value (its chunk_id). For convenience,
pointer datums also store the logical datum size (original uncompressed data length) and actual stored
size (different if compression was applied). Allowing for the varlena header bytes, the total size of a
TOAST pointer datum is therefore 18 bytes regardless of the actual size of the represented value.

The TOAST code is triggered only when a row value to be stored in a table is wider than
TOAST_TUPLE_THRESHOLD bytes (normally 2 kB). The TOAST code will compress and/or move field
values out-of-line until the row value is shorter than TOAST_TUPLE_TARGET bytes (also normally 2 kB)
or no more gains can be had. During an UPDATE operation, values of unchanged fields are normally
preserved as-is; so an UPDATE of a row with out-of-line values incurs no TOAST costs if none of the
out-of-line values change.

The TOAST code recognizes four different strategies for storing TOAST-able columns:

• PLAIN prevents either compression or out-of-line storage; furthermore it disables use of single-byte
headers for varlena types. This is the only possible strategy for columns of non-TOAST-able data types.

• EXTENDED allows both compression and out-of-line storage. This is the default for most TOAST-able
data types. Compression will be attempted first, then out-of-line storage if the row is still too big.

• EXTERNAL allows out-of-line storage but not compression. Use of EXTERNAL will make substring op-
erations on wide text and bytea columns faster (at the penalty of increased storage space) because
these operations are optimized to fetch only the required parts of the out-of-line value when it is not
compressed.

• MAIN allows compression but not out-of-line storage. (Actually, out-of-line storage will still be per-
formed for such columns, but only as a last resort when there is no other way to make the row small

1958

Chapter 56. Database Physical Storage

enough to fit on a page.)

Each TOAST-able data type specifies a default strategy for columns of that data type, but the strategy for
a given table column can be altered with ALTER TABLE SET STORAGE.

This scheme has a number of advantages compared to a more straightforward approach such as allowing
row values to span pages. Assuming that queries are usually qualified by comparisons against relatively
small key values, most of the work of the executor will be done using the main row entry. The big values
of TOASTed attributes will only be pulled out (if selected at all) at the time the result set is sent to the
client. Thus, the main table is much smaller and more of its rows fit in the shared buffer cache than would
be the case without any out-of-line storage. Sort sets shrink also, and sorts will more often be done entirely
in memory. A little test showed that a table containing typical HTML pages and their URLs was stored
in about half of the raw data size including the TOAST table, and that the main table contained only
about 10% of the entire data (the URLs and some small HTML pages). There was no run time difference
compared to an un-TOASTed comparison table, in which all the HTML pages were cut down to 7 kB to
fit.

56.3. Free Space Map
Each heap and index relation, except for hash indexes, has a Free Space Map (FSM) to keep track of
available space in the relation. It’s stored alongside the main relation data in a separate relation fork,
named after the filenode number of the relation, plus a _fsm suffix. For example, if the filenode of a
relation is 12345, the FSM is stored in a file called 12345_fsm, in the same directory as the main relation
file.

The Free Space Map is organized as a tree of FSM pages. The bottom level FSM pages store the free
space available on each heap (or index) page, using one byte to represent each such page. The upper
levels aggregate information from the lower levels.

Within each FSM page is a binary tree, stored in an array with one byte per node. Each leaf node represents
a heap page, or a lower level FSM page. In each non-leaf node, the higher of its children’s values is stored.
The maximum value in the leaf nodes is therefore stored at the root.

See src/backend/storage/freespace/README for more details on how the FSM is structured, and
how it’s updated and searched. The pg_freespacemap module can be used to examine the information
stored in free space maps.

56.4. Visibility Map
Each heap relation has a Visibility Map (VM) to keep track of which pages contain only tuples that are
known to be visible to all active transactions. It’s stored alongside the main relation data in a separate
relation fork, named after the filenode number of the relation, plus a _vm suffix. For example, if the
filenode of a relation is 12345, the VM is stored in a file called 12345_vm, in the same directory as the
main relation file. Note that indexes do not have VMs.

The visibility map simply stores one bit per heap page. A set bit means that all tuples on the page are
known to be visible to all transactions. This means that the page does not contain any tuples that need

1959

Chapter 56. Database Physical Storage

to be vacuumed. This information can also be used by index-only scans to answer queries using only the
index tuple.

The map is conservative in the sense that we make sure that whenever a bit is set, we know the condition
is true, but if a bit is not set, it might or might not be true. Visibility map bits are only set by vacuum, but
are cleared by any data-modifying operations on a page.

56.5. The Initialization Fork
Each unlogged table, and each index on an unlogged table, has an initialization fork. The initialization
fork is an empty table or index of the appropriate type. When an unlogged table must be reset to empty
due to a crash, the initialization fork is copied over the main fork, and any other forks are erased (they will
be recreated automatically as needed).

56.6. Database Page Layout
This section provides an overview of the page format used within PostgreSQL tables and indexes.1 Se-
quences and TOAST tables are formatted just like a regular table.

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item refers to an
individual data value that is stored on a page. In a table, an item is a row; in an index, an item is an index
entry.

Every table and index is stored as an array of pages of a fixed size (usually 8 kB, although a different
page size can be selected when compiling the server). In a table, all the pages are logically equivalent,
so a particular item (row) can be stored in any page. In indexes, the first page is generally reserved
as a metapage holding control information, and there can be different types of pages within the index,
depending on the index access method.

Table 56-2 shows the overall layout of a page. There are five parts to each page.

Table 56-2. Overall Page Layout

Item Description
PageHeaderData 24 bytes long. Contains general information about

the page, including free space pointers.

ItemIdData Array of (offset,length) pairs pointing to the actual
items. 4 bytes per item.

Free space The unallocated space. New item pointers are
allocated from the start of this area, new items
from the end.

Items The actual items themselves.

1. Actually, index access methods need not use this page format. All the existing index methods do use this basic format, but the
data kept on index metapages usually doesn’t follow the item layout rules.

1960

Chapter 56. Database Physical Storage

Item Description
Special space Index access method specific data. Different

methods store different data. Empty in ordinary
tables.

The first 24 bytes of each page consists of a page header (PageHeaderData). Its format is detailed in
Table 56-3. The first two fields track the most recent WAL entry related to this page. Next is a 2-byte
field containing flag bits. This is followed by three 2-byte integer fields (pd_lower, pd_upper, and
pd_special). These contain byte offsets from the page start to the start of unallocated space, to the
end of unallocated space, and to the start of the special space. The next 2 bytes of the page header,
pd_pagesize_version, store both the page size and a version indicator. Beginning with PostgreSQL
8.3 the version number is 4; PostgreSQL 8.1 and 8.2 used version number 3; PostgreSQL 8.0 used version
number 2; PostgreSQL 7.3 and 7.4 used version number 1; prior releases used version number 0. (The
basic page layout and header format has not changed in most of these versions, but the layout of heap row
headers has.) The page size is basically only present as a cross-check; there is no support for having more
than one page size in an installation. The last field is a hint that shows whether pruning the page is likely
to be profitable: it tracks the oldest un-pruned XMAX on the page.

Table 56-3. PageHeaderData Layout

Field Type Length Description
pd_lsn XLogRecPtr 8 bytes LSN: next byte after last

byte of xlog record for
last change to this page

pd_tli uint16 2 bytes TimeLineID of last
change (only its lowest
16 bits)

pd_flags uint16 2 bytes Flag bits

pd_lower LocationIndex 2 bytes Offset to start of free
space

pd_upper LocationIndex 2 bytes Offset to end of free
space

pd_special LocationIndex 2 bytes Offset to start of special
space

pd_pagesize_version uint16 2 bytes Page size and layout
version number
information

pd_prune_xid TransactionId 4 bytes Oldest unpruned
XMAX on page, or zero
if none

All the details can be found in src/include/storage/bufpage.h.

Following the page header are item identifiers (ItemIdData), each requiring four bytes. An item identifier
contains a byte-offset to the start of an item, its length in bytes, and a few attribute bits which affect its
interpretation. New item identifiers are allocated as needed from the beginning of the unallocated space.
The number of item identifiers present can be determined by looking at pd_lower, which is increased

1961

Chapter 56. Database Physical Storage

to allocate a new identifier. Because an item identifier is never moved until it is freed, its index can be
used on a long-term basis to reference an item, even when the item itself is moved around on the page
to compact free space. In fact, every pointer to an item (ItemPointer, also known as CTID) created by
PostgreSQL consists of a page number and the index of an item identifier.

The items themselves are stored in space allocated backwards from the end of unallocated space. The
exact structure varies depending on what the table is to contain. Tables and sequences both use a structure
named HeapTupleHeaderData, described below.

The final section is the “special section” which can contain anything the access method wishes to store.
For example, b-tree indexes store links to the page’s left and right siblings, as well as some other data
relevant to the index structure. Ordinary tables do not use a special section at all (indicated by setting
pd_special to equal the page size).

All table rows are structured in the same way. There is a fixed-size header (occupying 23 bytes on most
machines), followed by an optional null bitmap, an optional object ID field, and the user data. The header
is detailed in Table 56-4. The actual user data (columns of the row) begins at the offset indicated by
t_hoff, which must always be a multiple of the MAXALIGN distance for the platform. The null bitmap
is only present if the HEAP_HASNULL bit is set in t_infomask. If it is present it begins just after the
fixed header and occupies enough bytes to have one bit per data column (that is, t_natts bits altogether).
In this list of bits, a 1 bit indicates not-null, a 0 bit is a null. When the bitmap is not present, all columns
are assumed not-null. The object ID is only present if the HEAP_HASOID bit is set in t_infomask. If
present, it appears just before the t_hoff boundary. Any padding needed to make t_hoff a MAXALIGN
multiple will appear between the null bitmap and the object ID. (This in turn ensures that the object ID is
suitably aligned.)

Table 56-4. HeapTupleHeaderData Layout

Field Type Length Description
t_xmin TransactionId 4 bytes insert XID stamp

t_xmax TransactionId 4 bytes delete XID stamp

t_cid CommandId 4 bytes insert and/or delete CID
stamp (overlays with
t_xvac)

t_xvac TransactionId 4 bytes XID for VACUUM
operation moving a row
version

t_ctid ItemPointerData 6 bytes current TID of this or
newer row version

t_infomask2 uint16 2 bytes number of attributes,
plus various flag bits

t_infomask uint16 2 bytes various flag bits

t_hoff uint8 1 byte offset to user data

All the details can be found in src/include/access/htup.h.

Interpreting the actual data can only be done with information obtained from other tables, mostly
pg_attribute. The key values needed to identify field locations are attlen and attalign. There is
no way to directly get a particular attribute, except when there are only fixed width fields and no null

1962

Chapter 56. Database Physical Storage

values. All this trickery is wrapped up in the functions heap_getattr, fastgetattr and heap_getsysattr.

To read the data you need to examine each attribute in turn. First check whether the field is NULL accord-
ing to the null bitmap. If it is, go to the next. Then make sure you have the right alignment. If the field
is a fixed width field, then all the bytes are simply placed. If it’s a variable length field (attlen = -1) then
it’s a bit more complicated. All variable-length data types share the common header structure struct

varlena, which includes the total length of the stored value and some flag bits. Depending on the flags,
the data can be either inline or in a TOAST table; it might be compressed, too (see Section 56.2).

1963

Chapter 57. BKI Backend Interface
Backend Interface (BKI) files are scripts in a special language that is understood by the PostgreSQL
backend when running in the “bootstrap” mode. The bootstrap mode allows system catalogs to be created
and filled from scratch, whereas ordinary SQL commands require the catalogs to exist already. BKI files
can therefore be used to create the database system in the first place. (And they are probably not useful
for anything else.)

initdb uses a BKI file to do part of its job when creating a new database cluster. The input file used by
initdb is created as part of building and installing PostgreSQL by a program named genbki.pl, which
reads some specially formatted C header files in the src/include/catalog/ directory of the source
tree. The created BKI file is called postgres.bki and is normally installed in the share subdirectory
of the installation tree.

Related information can be found in the documentation for initdb.

57.1. BKI File Format
This section describes how the PostgreSQL backend interprets BKI files. This description will be easier
to understand if the postgres.bki file is at hand as an example.

BKI input consists of a sequence of commands. Commands are made up of a number of tokens, depending
on the syntax of the command. Tokens are usually separated by whitespace, but need not be if there is
no ambiguity. There is no special command separator; the next token that syntactically cannot belong to
the preceding command starts a new one. (Usually you would put a new command on a new line, for
clarity.) Tokens can be certain key words, special characters (parentheses, commas, etc.), numbers, or
double-quoted strings. Everything is case sensitive.

Lines starting with # are ignored.

57.2. BKI Commands

create tablename tableoid [bootstrap] [shared_relation] [without_oids] [rowtype_oid
oid] (name1 = type1 [, name2 = type2, ...])

Create a table named tablename, and having the OID tableoid, with the columns given in paren-
theses.

The following column types are supported directly by bootstrap.c: bool, bytea, char (1 byte),
name, int2, int4, regproc, regclass, regtype, text, oid, tid, xid, cid, int2vector,
oidvector, _int4 (array), _text (array), _oid (array), _char (array), _aclitem (array). Al-
though it is possible to create tables containing columns of other types, this cannot be done until
after pg_type has been created and filled with appropriate entries. (That effectively means that only

1964

Chapter 57. BKI Backend Interface

these column types can be used in bootstrapped tables, but non-bootstrap catalogs can contain any
built-in type.)

When bootstrap is specified, the table will only be created on disk; nothing is entered into
pg_class, pg_attribute, etc, for it. Thus the table will not be accessible by ordinary SQL
operations until such entries are made the hard way (with insert commands). This option is used
for creating pg_class etc themselves.

The table is created as shared if shared_relation is specified. It will have OIDs unless
without_oids is specified. The table’s row type OID (pg_type OID) can optionally be specified
via the rowtype_oid clause; if not specified, an OID is automatically generated for it. (The
rowtype_oid clause is useless if bootstrap is specified, but it can be provided anyway for
documentation.)

open tablename

Open the table named tablename for insertion of data. Any currently open table is closed.

close [tablename]

Close the open table. The name of the table can be given as a cross-check, but this is not required.

insert [OID = oid_value] (value1 value2 ...)

Insert a new row into the open table using value1, value2, etc., for its column values and
oid_value for its OID. If oid_value is zero (0) or the clause is omitted, and the table has OIDs,
then the next available OID is assigned.

NULL values can be specified using the special key word _null_. Values containing spaces must be
double quoted.

declare [unique] index indexname indexoid on tablename using amname (opclass1 name1

[, ...])

Create an index named indexname, having OID indexoid, on the table named tablename, using
the amname access method. The fields to index are called name1, name2 etc., and the operator classes
to use are opclass1, opclass2 etc., respectively. The index file is created and appropriate catalog
entries are made for it, but the index contents are not initialized by this command.

declare toast toasttableoid toastindexoid on tablename

Create a TOAST table for the table named tablename. The TOAST table is assigned OID
toasttableoid and its index is assigned OID toastindexoid. As with declare index,
filling of the index is postponed.

build indices

Fill in the indices that have previously been declared.

57.3. Structure of the Bootstrap BKI File
The open command cannot be used until the tables it uses exist and have entries for the table that is to
be opened. (These minimum tables are pg_class, pg_attribute, pg_proc, and pg_type.) To allow
those tables themselves to be filled, create with the bootstrap option implicitly opens the created table
for data insertion.

1965

Chapter 57. BKI Backend Interface

Also, the declare index and declare toast commands cannot be used until the system catalogs
they need have been created and filled in.

Thus, the structure of the postgres.bki file has to be:

1. create bootstrap one of the critical tables

2. insert data describing at least the critical tables

3. close

4. Repeat for the other critical tables.

5. create (without bootstrap) a noncritical table

6. open

7. insert desired data

8. close

9. Repeat for the other noncritical tables.

10. Define indexes and toast tables.

11. build indices

There are doubtless other, undocumented ordering dependencies.

57.4. Example
The following sequence of commands will create the table test_table with OID 420, having two
columns cola and colb of type int4 and text, respectively, and insert two rows into the table:

create test_table 420 (cola = int4, colb = text)
open test_table
insert OID=421 (1 "value1")
insert OID=422 (2 _null_)
close test_table

1966

Chapter 58. How the Planner Uses Statistics
This chapter builds on the material covered in Section 14.1 and Section 14.2 to show some additional
details about how the planner uses the system statistics to estimate the number of rows each part of a
query might return. This is a significant part of the planning process, providing much of the raw material
for cost calculation.

The intent of this chapter is not to document the code in detail, but to present an overview of how it works.
This will perhaps ease the learning curve for someone who subsequently wishes to read the code.

58.1. Row Estimation Examples
The examples shown below use tables in the PostgreSQL regression test database. The outputs shown
are taken from version 8.3. The behavior of earlier (or later) versions might vary. Note also that since
ANALYZE uses random sampling while producing statistics, the results will change slightly after any new
ANALYZE.

Let’s start with a very simple query:

EXPLAIN SELECT * FROM tenk1;

QUERY PLAN

Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

How the planner determines the cardinality of tenk1 is covered in Section 14.2, but is repeated here for
completeness. The number of pages and rows is looked up in pg_class:

SELECT relpages, reltuples FROM pg_class WHERE relname = ’tenk1’;

relpages | reltuples
----------+-----------

358 | 10000

These numbers are current as of the last VACUUM or ANALYZE on the table. The planner then fetches the
actual current number of pages in the table (this is a cheap operation, not requiring a table scan). If that
is different from relpages then reltuples is scaled accordingly to arrive at a current number-of-rows
estimate. In this case the value of relpages is up-to-date so the rows estimate is the same as reltuples.

Let’s move on to an example with a range condition in its WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

QUERY PLAN
--
Bitmap Heap Scan on tenk1 (cost=24.06..394.64 rows=1007 width=244)
Recheck Cond: (unique1 < 1000)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)

1967

Chapter 58. How the Planner Uses Statistics

Index Cond: (unique1 < 1000)

The planner examines the WHERE clause condition and looks up the selectivity function for the operator <
in pg_operator. This is held in the column oprrest, and the entry in this case is scalarltsel. The
scalarltsel function retrieves the histogram for unique1 from pg_statistics. For manual queries
it is more convenient to look in the simpler pg_stats view:

SELECT histogram_bounds FROM pg_stats
WHERE tablename=’tenk1’ AND attname=’unique1’;

histogram_bounds
--
{0,993,1997,3050,4040,5036,5957,7057,8029,9016,9995}

Next the fraction of the histogram occupied by “< 1000” is worked out. This is the selectivity. The
histogram divides the range into equal frequency buckets, so all we have to do is locate the bucket that our
value is in and count part of it and all of the ones before. The value 1000 is clearly in the second bucket
(993-1997). Assuming a linear distribution of values inside each bucket, we can calculate the selectivity
as:

selectivity = (1 + (1000 - bucket[2].min)/(bucket[2].max - bucket[2].min))/num_buckets
= (1 + (1000 - 993)/(1997 - 993))/10
= 0.100697

that is, one whole bucket plus a linear fraction of the second, divided by the number of buckets. The
estimated number of rows can now be calculated as the product of the selectivity and the cardinality of
tenk1:

rows = rel_cardinality * selectivity
= 10000 * 0.100697
= 1007 (rounding off)

Next let’s consider an example with an equality condition in its WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = ’CRAAAA’;

QUERY PLAN
--
Seq Scan on tenk1 (cost=0.00..483.00 rows=30 width=244)
Filter: (stringu1 = ’CRAAAA’::name)

Again the planner examines the WHERE clause condition and looks up the selectivity function for =, which
is eqsel. For equality estimation the histogram is not useful; instead the list of most common values
(MCVs) is used to determine the selectivity. Let’s have a look at the MCVs, with some additional columns
that will be useful later:

SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM pg_stats
WHERE tablename=’tenk1’ AND attname=’stringu1’;

null_frac | 0
n_distinct | 676

1968

Chapter 58. How the Planner Uses Statistics

most_common_vals | {EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,JOAAAA,MCAAAA,NAAAAA,WGAAAA}
most_common_freqs | {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}

Since CRAAAA appears in the list of MCVs, the selectivity is merely the corresponding entry in the list of
most common frequencies (MCFs):

selectivity = mcf[3]
= 0.003

As before, the estimated number of rows is just the product of this with the cardinality of tenk1:

rows = 10000 * 0.003
= 30

Now consider the same query, but with a constant that is not in the MCV list:

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = ’xxx’;

QUERY PLAN
--
Seq Scan on tenk1 (cost=0.00..483.00 rows=15 width=244)
Filter: (stringu1 = ’xxx’::name)

This is quite a different problem: how to estimate the selectivity when the value is not in the MCV list. The
approach is to use the fact that the value is not in the list, combined with the knowledge of the frequencies
for all of the MCVs:

selectivity = (1 - sum(mvf))/(num_distinct - num_mcv)
= (1 - (0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003 +

0.003 + 0.003 + 0.003 + 0.003))/(676 - 10)
= 0.0014559

That is, add up all the frequencies for the MCVs and subtract them from one, then divide by the number
of other distinct values. This amounts to assuming that the fraction of the column that is not any of the
MCVs is evenly distributed among all the other distinct values. Notice that there are no null values so we
don’t have to worry about those (otherwise we’d subtract the null fraction from the numerator as well).
The estimated number of rows is then calculated as usual:

rows = 10000 * 0.0014559
= 15 (rounding off)

The previous example with unique1 < 1000 was an oversimplification of what scalarltsel really
does; now that we have seen an example of the use of MCVs, we can fill in some more detail. The example
was correct as far as it went, because since unique1 is a unique column it has no MCVs (obviously, no
value is any more common than any other value). For a non-unique column, there will normally be both
a histogram and an MCV list, and the histogram does not include the portion of the column population
represented by the MCVs. We do things this way because it allows more precise estimation. In this situation
scalarltsel directly applies the condition (e.g., “< 1000”) to each value of the MCV list, and adds up
the frequencies of the MCVs for which the condition is true. This gives an exact estimate of the selectivity

1969

Chapter 58. How the Planner Uses Statistics

within the portion of the table that is MCVs. The histogram is then used in the same way as above
to estimate the selectivity in the portion of the table that is not MCVs, and then the two numbers are
combined to estimate the overall selectivity. For example, consider

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 < ’IAAAAA’;

QUERY PLAN
--
Seq Scan on tenk1 (cost=0.00..483.00 rows=3077 width=244)
Filter: (stringu1 < ’IAAAAA’::name)

We already saw the MCV information for stringu1, and here is its histogram:

SELECT histogram_bounds FROM pg_stats
WHERE tablename=’tenk1’ AND attname=’stringu1’;

histogram_bounds
--
{AAAAAA,CQAAAA,FRAAAA,IBAAAA,KRAAAA,NFAAAA,PSAAAA,SGAAAA,VAAAAA,XLAAAA,ZZAAAA}

Checking the MCV list, we find that the condition stringu1 < ’IAAAAA’ is satisfied by the first six
entries and not the last four, so the selectivity within the MCV part of the population is

selectivity = sum(relevant mvfs)
= 0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003
= 0.01833333

Summing all the MCFs also tells us that the total fraction of the population represented by MCVs is
0.03033333, and therefore the fraction represented by the histogram is 0.96966667 (again, there are no
nulls, else we’d have to exclude them here). We can see that the value IAAAAA falls nearly at the end of the
third histogram bucket. Using some rather cheesy assumptions about the frequency of different characters,
the planner arrives at the estimate 0.298387 for the portion of the histogram population that is less than
IAAAAA. We then combine the estimates for the MCV and non-MCV populations:

selectivity = mcv_selectivity + histogram_selectivity * histogram_fraction
= 0.01833333 + 0.298387 * 0.96966667
= 0.307669

rows = 10000 * 0.307669
= 3077 (rounding off)

In this particular example, the correction from the MCV list is fairly small, because the column distribution
is actually quite flat (the statistics showing these particular values as being more common than others are
mostly due to sampling error). In a more typical case where some values are significantly more common
than others, this complicated process gives a useful improvement in accuracy because the selectivity for
the most common values is found exactly.

Now let’s consider a case with more than one condition in the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000 AND stringu1 = ’xxx’;

QUERY PLAN
--

1970

Chapter 58. How the Planner Uses Statistics

Bitmap Heap Scan on tenk1 (cost=23.80..396.91 rows=1 width=244)
Recheck Cond: (unique1 < 1000)
Filter: (stringu1 = ’xxx’::name)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)

Index Cond: (unique1 < 1000)

The planner assumes that the two conditions are independent, so that the individual selectivities of the
clauses can be multiplied together:

selectivity = selectivity(unique1 < 1000) * selectivity(stringu1 = ’xxx’)
= 0.100697 * 0.0014559
= 0.0001466

rows = 10000 * 0.0001466
= 1 (rounding off)

Notice that the number of rows estimated to be returned from the bitmap index scan reflects only the
condition used with the index; this is important since it affects the cost estimate for the subsequent heap
fetches.

Finally we will examine a query that involves a join:

EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

QUERY PLAN
--
Nested Loop (cost=4.64..456.23 rows=50 width=488)
-> Bitmap Heap Scan on tenk1 t1 (cost=4.64..142.17 rows=50 width=244)

Recheck Cond: (unique1 < 50)
-> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.63 rows=50 width=0)

Index Cond: (unique1 < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..6.27 rows=1 width=244)

Index Cond: (unique2 = t1.unique2)

The restriction on tenk1, unique1 < 50, is evaluated before the nested-loop join. This is handled anal-
ogously to the previous range example. This time the value 50 falls into the first bucket of the unique1
histogram:

selectivity = (0 + (50 - bucket[1].min)/(bucket[1].max - bucket[1].min))/num_buckets
= (0 + (50 - 0)/(993 - 0))/10
= 0.005035

rows = 10000 * 0.005035
= 50 (rounding off)

The restriction for the join is t2.unique2 = t1.unique2. The operator is just our familiar =, however
the selectivity function is obtained from the oprjoin column of pg_operator, and is eqjoinsel.
eqjoinsel looks up the statistical information for both tenk2 and tenk1:

SELECT tablename, null_frac,n_distinct, most_common_vals FROM pg_stats
WHERE tablename IN (’tenk1’, ’tenk2’) AND attname=’unique2’;

1971

Chapter 58. How the Planner Uses Statistics

tablename | null_frac | n_distinct | most_common_vals
-----------+-----------+------------+------------------
tenk1 | 0 | -1 |
tenk2 | 0 | -1 |

In this case there is no MCV information for unique2 because all the values appear to be unique, so we
use an algorithm that relies only on the number of distinct values for both relations together with their null
fractions:

selectivity = (1 - null_frac1) * (1 - null_frac2) * min(1/num_distinct1, 1/num_distinct2)
= (1 - 0) * (1 - 0) / max(10000, 10000)
= 0.0001

This is, subtract the null fraction from one for each of the relations, and divide by the maximum of the
numbers of distinct values. The number of rows that the join is likely to emit is calculated as the cardinality
of the Cartesian product of the two inputs, multiplied by the selectivity:

rows = (outer_cardinality * inner_cardinality) * selectivity
= (50 * 10000) * 0.0001
= 50

Had there been MCV lists for the two columns, eqjoinsel would have used direct comparison of the
MCV lists to determine the join selectivity within the part of the column populations represented by the
MCVs. The estimate for the remainder of the populations follows the same approach shown here.

Notice that we showed inner_cardinality as 10000, that is, the unmodified size of tenk2. It might
appear from inspection of the EXPLAIN output that the estimate of join rows comes from 50 * 1, that
is, the number of outer rows times the estimated number of rows obtained by each inner index scan on
tenk2. But this is not the case: the join relation size is estimated before any particular join plan has been
considered. If everything is working well then the two ways of estimating the join size will produce about
the same answer, but due to roundoff error and other factors they sometimes diverge significantly.

For those interested in further details, estimation of the size of a table (before any WHERE clauses) is
done in src/backend/optimizer/util/plancat.c. The generic logic for clause selectivities is in
src/backend/optimizer/path/clausesel.c. The operator-specific selectivity functions are mostly
found in src/backend/utils/adt/selfuncs.c.

1972

VIII. Appendixes

Appendix A. PostgreSQL Error Codes
All messages emitted by the PostgreSQL server are assigned five-character error codes that follow the SQL
standard’s conventions for “SQLSTATE” codes. Applications that need to know which error condition
has occurred should usually test the error code, rather than looking at the textual error message. The error
codes are less likely to change across PostgreSQL releases, and also are not subject to change due to
localization of error messages. Note that some, but not all, of the error codes produced by PostgreSQL are
defined by the SQL standard; some additional error codes for conditions not defined by the standard have
been invented or borrowed from other databases.

According to the standard, the first two characters of an error code denote a class of errors, while the last
three characters indicate a specific condition within that class. Thus, an application that does not recognize
the specific error code can still be able to infer what to do from the error class.

Table A-1 lists all the error codes defined in PostgreSQL 9.2.7. (Some are not actually used at present,
but are defined by the SQL standard.) The error classes are also shown. For each error class there is a
“standard” error code having the last three characters 000. This code is used only for error conditions that
fall within the class but do not have any more-specific code assigned.

The symbol shown in the column “Condition Name” is also the condition name to use in PL/pgSQL.
Condition names can be written in either upper or lower case. (Note that PL/pgSQL does not recognize
warning, as opposed to error, condition names; those are classes 00, 01, and 02.)

Table A-1. PostgreSQL Error Codes

Error Code Condition Name
Class 00 — Successful Completion
00000 successful_completion

Class 01 — Warning
01000 warning

0100C dynamic_result_sets_returned

01008 implicit_zero_bit_padding

01003 null_value_eliminated_in_set_function

01007 privilege_not_granted

01006 privilege_not_revoked

01004 string_data_right_truncation

01P01 deprecated_feature

Class 02 — No Data (this is also a warning class per the SQL standard)
02000 no_data

02001 no_additional_dynamic_result_sets_returned

Class 03 — SQL Statement Not Yet Complete
03000 sql_statement_not_yet_complete

Class 08 — Connection Exception
08000 connection_exception

1974

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
08003 connection_does_not_exist

08006 connection_failure

08001 sqlclient_unable_to_establish_sqlconnection

08004 sqlserver_rejected_establishment_of_sqlconnection

08007 transaction_resolution_unknown

08P01 protocol_violation

Class 09 — Triggered Action Exception
09000 triggered_action_exception

Class 0A — Feature Not Supported
0A000 feature_not_supported

Class 0B — Invalid Transaction Initiation
0B000 invalid_transaction_initiation

Class 0F — Locator Exception
0F000 locator_exception

0F001 invalid_locator_specification

Class 0L — Invalid Grantor
0L000 invalid_grantor

0LP01 invalid_grant_operation

Class 0P — Invalid Role Specification
0P000 invalid_role_specification

Class 0Z — Diagnostics Exception
0Z000 diagnostics_exception

0Z002 stacked_diagnostics_accessed_without_active_handler

Class 20 — Case Not Found
20000 case_not_found

Class 21 — Cardinality Violation
21000 cardinality_violation

Class 22 — Data Exception
22000 data_exception

2202E array_subscript_error

22021 character_not_in_repertoire

22008 datetime_field_overflow

22012 division_by_zero

22005 error_in_assignment

2200B escape_character_conflict

22022 indicator_overflow

1975

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
22015 interval_field_overflow

2201E invalid_argument_for_logarithm

22014 invalid_argument_for_ntile_function

22016 invalid_argument_for_nth_value_function

2201F invalid_argument_for_power_function

2201G invalid_argument_for_width_bucket_function

22018 invalid_character_value_for_cast

22007 invalid_datetime_format

22019 invalid_escape_character

2200D invalid_escape_octet

22025 invalid_escape_sequence

22P06 nonstandard_use_of_escape_character

22010 invalid_indicator_parameter_value

22023 invalid_parameter_value

2201B invalid_regular_expression

2201W invalid_row_count_in_limit_clause

2201X invalid_row_count_in_result_offset_clause

22009 invalid_time_zone_displacement_value

2200C invalid_use_of_escape_character

2200G most_specific_type_mismatch

22004 null_value_not_allowed

22002 null_value_no_indicator_parameter

22003 numeric_value_out_of_range

22026 string_data_length_mismatch

22001 string_data_right_truncation

22011 substring_error

22027 trim_error

22024 unterminated_c_string

2200F zero_length_character_string

22P01 floating_point_exception

22P02 invalid_text_representation

22P03 invalid_binary_representation

22P04 bad_copy_file_format

22P05 untranslatable_character

2200L not_an_xml_document

2200M invalid_xml_document

1976

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
2200N invalid_xml_content

2200S invalid_xml_comment

2200T invalid_xml_processing_instruction

Class 23 — Integrity Constraint Violation
23000 integrity_constraint_violation

23001 restrict_violation

23502 not_null_violation

23503 foreign_key_violation

23505 unique_violation

23514 check_violation

23P01 exclusion_violation

Class 24 — Invalid Cursor State
24000 invalid_cursor_state

Class 25 — Invalid Transaction State
25000 invalid_transaction_state

25001 active_sql_transaction

25002 branch_transaction_already_active

25008 held_cursor_requires_same_isolation_level

25003 inappropriate_access_mode_for_branch_transaction

25004 inappropriate_isolation_level_for_branch_transaction

25005 no_active_sql_transaction_for_branch_transaction

25006 read_only_sql_transaction

25007 schema_and_data_statement_mixing_not_supported

25P01 no_active_sql_transaction

25P02 in_failed_sql_transaction

Class 26 — Invalid SQL Statement Name
26000 invalid_sql_statement_name

Class 27 — Triggered Data Change Violation
27000 triggered_data_change_violation

Class 28 — Invalid Authorization Specification
28000 invalid_authorization_specification

28P01 invalid_password

Class 2B — Dependent Privilege Descriptors Still Exist

1977

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
2B000 dependent_privilege_descriptors_still_exist

2BP01 dependent_objects_still_exist

Class 2D — Invalid Transaction Termination
2D000 invalid_transaction_termination

Class 2F — SQL Routine Exception
2F000 sql_routine_exception

2F005 function_executed_no_return_statement

2F002 modifying_sql_data_not_permitted

2F003 prohibited_sql_statement_attempted

2F004 reading_sql_data_not_permitted

Class 34 — Invalid Cursor Name
34000 invalid_cursor_name

Class 38 — External Routine Exception
38000 external_routine_exception

38001 containing_sql_not_permitted

38002 modifying_sql_data_not_permitted

38003 prohibited_sql_statement_attempted

38004 reading_sql_data_not_permitted

Class 39 — External Routine Invocation Exception
39000 external_routine_invocation_exception

39001 invalid_sqlstate_returned

39004 null_value_not_allowed

39P01 trigger_protocol_violated

39P02 srf_protocol_violated

Class 3B — Savepoint Exception
3B000 savepoint_exception

3B001 invalid_savepoint_specification

Class 3D — Invalid Catalog Name
3D000 invalid_catalog_name

Class 3F — Invalid Schema Name
3F000 invalid_schema_name

Class 40 — Transaction Rollback
40000 transaction_rollback

40002 transaction_integrity_constraint_violation

40001 serialization_failure

40003 statement_completion_unknown

40P01 deadlock_detected

1978

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
Class 42 — Syntax Error or Access Rule Violation
42000 syntax_error_or_access_rule_violation

42601 syntax_error

42501 insufficient_privilege

42846 cannot_coerce

42803 grouping_error

42P20 windowing_error

42P19 invalid_recursion

42830 invalid_foreign_key

42602 invalid_name

42622 name_too_long

42939 reserved_name

42804 datatype_mismatch

42P18 indeterminate_datatype

42P21 collation_mismatch

42P22 indeterminate_collation

42809 wrong_object_type

42703 undefined_column

42883 undefined_function

42P01 undefined_table

42P02 undefined_parameter

42704 undefined_object

42701 duplicate_column

42P03 duplicate_cursor

42P04 duplicate_database

42723 duplicate_function

42P05 duplicate_prepared_statement

42P06 duplicate_schema

42P07 duplicate_table

42712 duplicate_alias

42710 duplicate_object

42702 ambiguous_column

42725 ambiguous_function

42P08 ambiguous_parameter

42P09 ambiguous_alias

42P10 invalid_column_reference

42611 invalid_column_definition

42P11 invalid_cursor_definition

1979

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
42P12 invalid_database_definition

42P13 invalid_function_definition

42P14 invalid_prepared_statement_definition

42P15 invalid_schema_definition

42P16 invalid_table_definition

42P17 invalid_object_definition

Class 44 — WITH CHECK OPTION Violation
44000 with_check_option_violation

Class 53 — Insufficient Resources
53000 insufficient_resources

53100 disk_full

53200 out_of_memory

53300 too_many_connections

53400 configuration_limit_exceeded

Class 54 — Program Limit Exceeded
54000 program_limit_exceeded

54001 statement_too_complex

54011 too_many_columns

54023 too_many_arguments

Class 55 — Object Not In Prerequisite State
55000 object_not_in_prerequisite_state

55006 object_in_use

55P02 cant_change_runtime_param

55P03 lock_not_available

Class 57 — Operator Intervention
57000 operator_intervention

57014 query_canceled

57P01 admin_shutdown

57P02 crash_shutdown

57P03 cannot_connect_now

57P04 database_dropped

Class 58 — System Error (errors external to PostgreSQL itself)
58000 system_error

58030 io_error

58P01 undefined_file

58P02 duplicate_file

Class F0 — Configuration File Error
F0000 config_file_error

1980

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
F0001 lock_file_exists

Class HV — Foreign Data Wrapper Error (SQL/MED)
HV000 fdw_error

HV005 fdw_column_name_not_found

HV002 fdw_dynamic_parameter_value_needed

HV010 fdw_function_sequence_error

HV021 fdw_inconsistent_descriptor_information

HV024 fdw_invalid_attribute_value

HV007 fdw_invalid_column_name

HV008 fdw_invalid_column_number

HV004 fdw_invalid_data_type

HV006 fdw_invalid_data_type_descriptors

HV091 fdw_invalid_descriptor_field_identifier

HV00B fdw_invalid_handle

HV00C fdw_invalid_option_index

HV00D fdw_invalid_option_name

HV090 fdw_invalid_string_length_or_buffer_length

HV00A fdw_invalid_string_format

HV009 fdw_invalid_use_of_null_pointer

HV014 fdw_too_many_handles

HV001 fdw_out_of_memory

HV00P fdw_no_schemas

HV00J fdw_option_name_not_found

HV00K fdw_reply_handle

HV00Q fdw_schema_not_found

HV00R fdw_table_not_found

HV00L fdw_unable_to_create_execution

HV00M fdw_unable_to_create_reply

HV00N fdw_unable_to_establish_connection

Class P0 — PL/pgSQL Error
P0000 plpgsql_error

P0001 raise_exception

P0002 no_data_found

P0003 too_many_rows

Class XX — Internal Error
XX000 internal_error

1981

Appendix A. PostgreSQL Error Codes

Error Code Condition Name
XX001 data_corrupted

XX002 index_corrupted

1982

Appendix B. Date/Time Support
PostgreSQL uses an internal heuristic parser for all date/time input support. Dates and times are input as
strings, and are broken up into distinct fields with a preliminary determination of what kind of information
can be in the field. Each field is interpreted and either assigned a numeric value, ignored, or rejected. The
parser contains internal lookup tables for all textual fields, including months, days of the week, and time
zones.

This appendix includes information on the content of these lookup tables and describes the steps used by
the parser to decode dates and times.

B.1. Date/Time Input Interpretation
The date/time type inputs are all decoded using the following procedure.

1. Break the input string into tokens and categorize each token as a string, time, time zone, or number.

a. If the numeric token contains a colon (:), this is a time string. Include all subsequent digits
and colons.

b. If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a date
string which might have a text month. If a date token has already been seen, it is instead
interpreted as a time zone name (e.g., America/New_York).

c. If the token is numeric only, then it is either a single field or an ISO 8601 concatenated date
(e.g., 19990113 for January 13, 1999) or time (e.g., 141516 for 14:15:16).

d. If the token starts with a plus (+) or minus (-), then it is either a numeric time zone or a
special field.

2. If the token is a text string, match up with possible strings:

a. Do a binary-search table lookup for the token as a time zone abbreviation.

b. If not found, do a similar binary-search table lookup to match the token as either a special
string (e.g., today), day (e.g., Thursday), month (e.g., January), or noise word (e.g., at,
on).

c. If still not found, throw an error.

3. When the token is a number or number field:

a. If there are eight or six digits, and if no other date fields have been previously read,
then interpret as a “concatenated date” (e.g., 19990118 or 990118). The interpretation
is YYYYMMDD or YYMMDD.

b. If the token is three digits and a year has already been read, then interpret as day of year.

c. If four or six digits and a year has already been read, then interpret as a time (HHMM or
HHMMSS).

1983

Appendix B. Date/Time Support

d. If three or more digits and no date fields have yet been found, interpret as a year (this forces
yy-mm-dd ordering of the remaining date fields).

e. Otherwise the date field ordering is assumed to follow the DateStyle setting: mm-dd-yy,
dd-mm-yy, or yy-mm-dd. Throw an error if a month or day field is found to be out of range.

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero in
the Gregorian calendar, so numerically 1 BC becomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

Tip: Gregorian years AD 1-99 can be entered by using 4 digits with leading zeros (e.g., 0099 is AD
99).

B.2. Date/Time Key Words
Table B-1 shows the tokens that are recognized as names of months.

Table B-1. Month Names

Month Abbreviations
January Jan

February Feb

March Mar

April Apr

May

June Jun

July Jul

August Aug

September Sep, Sept

October Oct

November Nov

December Dec

Table B-2 shows the tokens that are recognized as names of days of the week.

Table B-2. Day of the Week Names

Day Abbreviations
Sunday Sun

Monday Mon

1984

Appendix B. Date/Time Support

Day Abbreviations
Tuesday Tue, Tues

Wednesday Wed, Weds

Thursday Thu, Thur, Thurs

Friday Fri

Saturday Sat

Table B-3 shows the tokens that serve various modifier purposes.

Table B-3. Date/Time Field Modifiers

Identifier Description
AM Time is before 12:00

AT Ignored

JULIAN, JD, J Next field is Julian Date

ON Ignored

PM Time is on or after 12:00

T Next field is time

B.3. Date/Time Configuration Files
Since timezone abbreviations are not well standardized, PostgreSQL provides a means to customize the
set of abbreviations accepted by the server. The timezone_abbreviations run-time parameter determines
the active set of abbreviations. While this parameter can be altered by any database user, the possible
values for it are under the control of the database administrator — they are in fact names of configuration
files stored in .../share/timezonesets/ of the installation directory. By adding or altering files in
that directory, the administrator can set local policy for timezone abbreviations.

timezone_abbreviations can be set to any file name found in .../share/timezonesets/,
if the file’s name is entirely alphabetic. (The prohibition against non-alphabetic characters in
timezone_abbreviations prevents reading files outside the intended directory, as well as reading
editor backup files and other extraneous files.)

A timezone abbreviation file can contain blank lines and comments beginning with #. Non-comment lines
must have one of these formats:

time_zone_name offset

time_zone_name offset D
@INCLUDE file_name

@OVERRIDE

A time_zone_name is just the abbreviation being defined. The offset is the zone’s offset in seconds
from UTC, positive being east from Greenwich and negative being west. For example, -18000 would be
five hours west of Greenwich, or North American east coast standard time. D indicates that the zone name

1985

Appendix B. Date/Time Support

represents local daylight-savings time rather than standard time. Since all known time zone offsets are on
15 minute boundaries, the number of seconds has to be a multiple of 900.

The @INCLUDE syntax allows inclusion of another file in the .../share/timezonesets/ directory.
Inclusion can be nested, to a limited depth.

The @OVERRIDE syntax indicates that subsequent entries in the file can override previous entries (i.e., en-
tries obtained from included files). Without this, conflicting definitions of the same timezone abbreviation
are considered an error.

In an unmodified installation, the file Default contains all the non-conflicting time zone abbreviations
for most of the world. Additional files Australia and India are provided for those regions: these files
first include the Default file and then add or modify timezones as needed.

For reference purposes, a standard installation also contains files Africa.txt, America.txt, etc,
containing information about every time zone abbreviation known to be in use according to the
zoneinfo timezone database. The zone name definitions found in these files can be copied and pasted
into a custom configuration file as needed. Note that these files cannot be directly referenced as
timezone_abbreviations settings, because of the dot embedded in their names.

Note: If an error occurs while reading the time zone data sets, no new value is applied but the old set
is kept. If the error occurs while starting the database, startup fails.

Caution
Time zone abbreviations defined in the configuration file override non-timezone
meanings built into PostgreSQL. For example, the Australia configuration file de-
fines SAT (for South Australian Standard Time). When this file is active, SAT will not
be recognized as an abbreviation for Saturday.

Caution
If you modify files in .../share/timezonesets/, it is up to you to make backups
— a normal database dump will not include this directory.

B.4. History of Units
The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime values’ are con-
strained by the natural rules for dates and times according to the Gregorian calendar”. PostgreSQL follows
the SQL standard’s lead by counting dates exclusively in the Gregorian calendar, even for years before
that calendar was in use. This rule is known as the proleptic Gregorian calendar.

The Julian calendar was introduced by Julius Caesar in 45 BC. It was in common use in the Western world
until the year 1582, when countries started changing to the Gregorian calendar. In the Julian calendar, the
tropical year is approximated as 365 1/4 days = 365.25 days. This gives an error of about 1 day in 128
years.

1986

Appendix B. Date/Time Support

The accumulating calendar error prompted Pope Gregory XIII to reform the calendar in accordance with
instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approximated as 365
+ 97 / 400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical year to shift one
day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the following
rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years. By
contrast, in the older Julian calendar all years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal,
and Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant to
change, and the Greek Orthodox countries didn’t change until the start of the 20th century. The reform was
observed by Great Britain and its dominions (including what is now the USA) in 1752. Thus 2 September
1752 was followed by 14 September 1752. This is why Unix systems have the cal program produce the
following:

$ cal 9 1752

September 1752
S M Tu W Th F S

1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

But, of course, this calendar is only valid for Great Britain and dominions, not other places. Since it would
be difficult and confusing to try to track the actual calendars that were in use in various places at various
times, PostgreSQL does not try, but rather follows the Gregorian calendar rules for all dates, even though
this method is not historically accurate.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century
BC. Legend has it that the Emperor Huangdi invented that calendar in 2637 BC. The People’s Republic
of China uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining
festivals.

The Julian Date system is another type of calendar, unrelated to the Julian calendar though it is confus-
ingly named similarly to that calendar. The Julian Date system was invented by the French scholar Joseph
Justus Scaliger (1540-1609) and probably takes its name from Scaliger’s father, the Italian scholar Julius
Caesar Scaliger (1484-1558). In the Julian Date system, each day has a sequential number, starting from
JD 0 (which is sometimes called the Julian Date). JD 0 corresponds to 1 January 4713 BC in the Julian
calendar, or 24 November 4714 BC in the Gregorian calendar. Julian Date counting is most often used by
astronomers for labeling their nightly observations, and therefore a date runs from noon UTC to the next
noon UTC, rather than from midnight to midnight: JD 0 designates the 24 hours from noon UTC on 24
November 4714 BC to noon UTC on 25 November 4714 BC.

1987

Appendix B. Date/Time Support

Although PostgreSQL supports Julian Date notation for input and output of dates (and also uses Julian
dates for some internal datetime calculations), it does not observe the nicety of having dates run from
noon to noon. PostgreSQL treats a Julian Date as running from midnight to midnight.

1988

Appendix C. SQL Key Words
Table C-1 lists all tokens that are key words in the SQL standard and in PostgreSQL 9.2.7. Background
information can be found in Section 4.1.1. (For space reasons, only the latest two versions of the SQL
standard, and SQL-92 for historical comparison, are included. The differences between those and the
other intermediate standard versions are small.)

SQL distinguishes between reserved and non-reserved key words. According to the standard, reserved
key words are the only real key words; they are never allowed as identifiers. Non-reserved key words only
have a special meaning in particular contexts and can be used as identifiers in other contexts. Most non-
reserved key words are actually the names of built-in tables and functions specified by SQL. The concept
of non-reserved key words essentially only exists to declare that some predefined meaning is attached to
a word in some contexts.

In the PostgreSQL parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special status in
the parser as compared to an ordinary identifier. (The latter is usually the case for functions specified by
SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be used as column
labels (for example, SELECT 55 AS CHECK, even though CHECK is a reserved key word).

In Table C-1 in the column for PostgreSQL we classify as “non-reserved” those key words that are ex-
plicitly known to the parser but are allowed as column or table names. Some key words that are otherwise
non-reserved cannot be used as function or data type names and are marked accordingly. (Most of these
words represent built-in functions or data types with special syntax. The function or type is still available
but it cannot be redefined by the user.) Labeled “reserved” are those tokens that are not allowed as column
or table names. Some reserved key words are allowable as names for functions or data types; this is also
shown in the table. If not so marked, a reserved key word is only allowed as an “AS” column label name.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key words
as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studying Table C-1 that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table C-1. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
A non-reserved non-reserved

ABORT non-reserved

ABS reserved reserved

ABSENT non-reserved non-reserved

ABSOLUTE non-reserved non-reserved non-reserved reserved

ACCESS non-reserved

ACCORDING non-reserved non-reserved

1989

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
ACTION non-reserved non-reserved non-reserved reserved

ADA non-reserved non-reserved non-reserved

ADD non-reserved non-reserved non-reserved reserved

ADMIN non-reserved non-reserved non-reserved

AFTER non-reserved non-reserved non-reserved

AGGREGATE non-reserved

ALL reserved reserved reserved reserved

ALLOCATE reserved reserved reserved

ALSO non-reserved

ALTER non-reserved reserved reserved reserved

ALWAYS non-reserved non-reserved non-reserved

ANALYSE reserved

ANALYZE reserved

AND reserved reserved reserved reserved

ANY reserved reserved reserved reserved

ARE reserved reserved reserved

ARRAY reserved reserved reserved

ARRAY_AGG reserved reserved

ARRAY_MAX_CARDINALITY reserved

AS reserved reserved reserved reserved

ASC reserved non-reserved non-reserved reserved

ASENSITIVE reserved reserved

ASSERTION non-reserved non-reserved non-reserved reserved

ASSIGNMENT non-reserved non-reserved non-reserved

ASYMMETRIC reserved reserved reserved

AT non-reserved reserved reserved reserved

ATOMIC reserved reserved

ATTRIBUTE non-reserved non-reserved non-reserved

ATTRIBUTES non-reserved non-reserved

AUTHORIZATION reserved (can be
function or type)

reserved reserved reserved

AVG reserved reserved reserved

BACKWARD non-reserved

BASE64 non-reserved non-reserved

BEFORE non-reserved non-reserved non-reserved

BEGIN non-reserved reserved reserved reserved

BEGIN_FRAME reserved

1990

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
BEGIN_PARTITION reserved

BERNOULLI non-reserved non-reserved

BETWEEN non-reserved
(cannot be function
or type)

reserved reserved reserved

BIGINT non-reserved
(cannot be function
or type)

reserved reserved

BINARY reserved (can be
function or type)

reserved reserved

BIT non-reserved
(cannot be function
or type)

reserved

BIT_LENGTH reserved

BLOB reserved reserved

BLOCKED non-reserved non-reserved

BOM non-reserved non-reserved

BOOLEAN non-reserved
(cannot be function
or type)

reserved reserved

BOTH reserved reserved reserved reserved

BREADTH non-reserved non-reserved

BY non-reserved reserved reserved reserved

C non-reserved non-reserved non-reserved

CACHE non-reserved

CALL reserved reserved

CALLED non-reserved reserved reserved

CARDINALITY reserved reserved

CASCADE non-reserved non-reserved non-reserved reserved

CASCADED non-reserved reserved reserved reserved

CASE reserved reserved reserved reserved

CAST reserved reserved reserved reserved

CATALOG non-reserved non-reserved non-reserved reserved

CATALOG_NAME non-reserved non-reserved non-reserved

CEIL reserved reserved

CEILING reserved reserved

CHAIN non-reserved non-reserved non-reserved

1991

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
CHAR non-reserved

(cannot be function
or type)

reserved reserved reserved

CHARACTER non-reserved
(cannot be function
or type)

reserved reserved reserved

CHARACTERISTICS non-reserved non-reserved non-reserved

CHARACTERS non-reserved non-reserved

CHARACTER_LENGTH reserved reserved reserved

CHARACTER_SET_CATALOG non-reserved non-reserved non-reserved

CHARACTER_SET_NAME non-reserved non-reserved non-reserved

CHARACTER_SET_SCHEMA non-reserved non-reserved non-reserved

CHAR_LENGTH reserved reserved reserved

CHECK reserved reserved reserved reserved

CHECKPOINT non-reserved

CLASS non-reserved

CLASS_ORIGIN non-reserved non-reserved non-reserved

CLOB reserved reserved

CLOSE non-reserved reserved reserved reserved

CLUSTER non-reserved

COALESCE non-reserved
(cannot be function
or type)

reserved reserved reserved

COBOL non-reserved non-reserved non-reserved

COLLATE reserved reserved reserved reserved

COLLATION reserved (can be
function or type)

non-reserved non-reserved reserved

COLLATION_CATALOG non-reserved non-reserved non-reserved

COLLATION_NAME non-reserved non-reserved non-reserved

COLLATION_SCHEMA non-reserved non-reserved non-reserved

COLLECT reserved reserved

COLUMN reserved reserved reserved reserved

COLUMNS non-reserved non-reserved

COLUMN_NAME non-reserved non-reserved non-reserved

1992

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
COMMAND_FUNCTION non-reserved non-reserved non-reserved

COMMAND_FUNCTION_CODE non-reserved non-reserved

COMMENT non-reserved

COMMENTS non-reserved

COMMIT non-reserved reserved reserved reserved

COMMITTED non-reserved non-reserved non-reserved non-reserved

CONCURRENTLY reserved (can be
function or type)

CONDITION reserved reserved

CONDITION_NUMBER non-reserved non-reserved non-reserved

CONFIGURATION non-reserved

CONNECT reserved reserved reserved

CONNECTION non-reserved non-reserved non-reserved reserved

CONNECTION_NAME non-reserved non-reserved non-reserved

CONSTRAINT reserved reserved reserved reserved

CONSTRAINTS non-reserved non-reserved non-reserved reserved

CONSTRAINT_CATALOG non-reserved non-reserved non-reserved

CONSTRAINT_NAME non-reserved non-reserved non-reserved

CONSTRAINT_SCHEMA non-reserved non-reserved non-reserved

CONSTRUCTOR non-reserved non-reserved

CONTAINS reserved non-reserved

CONTENT non-reserved non-reserved non-reserved

CONTINUE non-reserved non-reserved non-reserved reserved

CONTROL non-reserved non-reserved

CONVERSION non-reserved

CONVERT reserved reserved reserved

COPY non-reserved

CORR reserved reserved

CORRESPONDING reserved reserved reserved

COST non-reserved

COUNT reserved reserved reserved

COVAR_POP reserved reserved

COVAR_SAMP reserved reserved

1993

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
CREATE reserved reserved reserved reserved

CROSS reserved (can be
function or type)

reserved reserved reserved

CSV non-reserved

CUBE reserved reserved

CUME_DIST reserved reserved

CURRENT non-reserved reserved reserved reserved

CURRENT_CATALOG reserved reserved reserved

CURRENT_DATE reserved reserved reserved reserved

CURRENT_DEFAULT_TRANSFORM_GROUP reserved reserved

CURRENT_PATH reserved reserved

CURRENT_ROLE reserved reserved reserved

CURRENT_ROW reserved

CURRENT_SCHEMA reserved (can be
function or type)

reserved reserved

CURRENT_TIME reserved reserved reserved reserved

CURRENT_TIMESTAMPreserved reserved reserved reserved

CURRENT_TRANSFORM_GROUP_FOR_TYPEreserved reserved

CURRENT_USER reserved reserved reserved reserved

CURSOR non-reserved reserved reserved reserved

CURSOR_NAME non-reserved non-reserved non-reserved

CYCLE non-reserved reserved reserved

DATA non-reserved non-reserved non-reserved non-reserved

DATABASE non-reserved

DATALINK reserved reserved

DATE reserved reserved reserved

DATETIME_INTERVAL_CODE non-reserved non-reserved non-reserved

DATETIME_INTERVAL_PRECISION non-reserved non-reserved non-reserved

DAY non-reserved reserved reserved reserved

DB non-reserved non-reserved

DEALLOCATE non-reserved reserved reserved reserved

DEC non-reserved
(cannot be function
or type)

reserved reserved reserved

1994

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
DECIMAL non-reserved

(cannot be function
or type)

reserved reserved reserved

DECLARE non-reserved reserved reserved reserved

DEFAULT reserved reserved reserved reserved

DEFAULTS non-reserved non-reserved non-reserved

DEFERRABLE reserved non-reserved non-reserved reserved

DEFERRED non-reserved non-reserved non-reserved reserved

DEFINED non-reserved non-reserved

DEFINER non-reserved non-reserved non-reserved

DEGREE non-reserved non-reserved

DELETE non-reserved reserved reserved reserved

DELIMITER non-reserved

DELIMITERS non-reserved

DENSE_RANK reserved reserved

DEPTH non-reserved non-reserved

DEREF reserved reserved

DERIVED non-reserved non-reserved

DESC reserved non-reserved non-reserved reserved

DESCRIBE reserved reserved reserved

DESCRIPTOR non-reserved non-reserved reserved

DETERMINISTIC reserved reserved

DIAGNOSTICS non-reserved non-reserved reserved

DICTIONARY non-reserved

DISABLE non-reserved

DISCARD non-reserved

DISCONNECT reserved reserved reserved

DISPATCH non-reserved non-reserved

DISTINCT reserved reserved reserved reserved

DLNEWCOPY reserved reserved

DLPREVIOUSCOPY reserved reserved

DLURLCOMPLETE reserved reserved

DLURLCOMPLETEONLY reserved reserved

DLURLCOMPLETEWRITE reserved reserved

DLURLPATH reserved reserved

DLURLPATHONLY reserved reserved

DLURLPATHWRITE reserved reserved

1995

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
DLURLSCHEME reserved reserved

DLURLSERVER reserved reserved

DLVALUE reserved reserved

DO reserved

DOCUMENT non-reserved non-reserved non-reserved

DOMAIN non-reserved non-reserved non-reserved reserved

DOUBLE non-reserved reserved reserved reserved

DROP non-reserved reserved reserved reserved

DYNAMIC reserved reserved

DYNAMIC_FUNCTION non-reserved non-reserved non-reserved

DYNAMIC_FUNCTION_CODE non-reserved non-reserved

EACH non-reserved reserved reserved

ELEMENT reserved reserved

ELSE reserved reserved reserved reserved

EMPTY non-reserved non-reserved

ENABLE non-reserved

ENCODING non-reserved non-reserved non-reserved

ENCRYPTED non-reserved

END reserved reserved reserved reserved

END-EXEC reserved reserved reserved

END_FRAME reserved

END_PARTITION reserved

ENFORCED non-reserved

ENUM non-reserved

EQUALS reserved non-reserved

ESCAPE non-reserved reserved reserved reserved

EVERY reserved reserved

EXCEPT reserved reserved reserved reserved

EXCEPTION reserved

EXCLUDE non-reserved non-reserved non-reserved

EXCLUDING non-reserved non-reserved non-reserved

EXCLUSIVE non-reserved

EXEC reserved reserved reserved

EXECUTE non-reserved reserved reserved reserved

EXISTS non-reserved
(cannot be function
or type)

reserved reserved reserved

1996

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
EXP reserved reserved

EXPLAIN non-reserved

EXPRESSION non-reserved

EXTENSION non-reserved

EXTERNAL non-reserved reserved reserved reserved

EXTRACT non-reserved
(cannot be function
or type)

reserved reserved reserved

FALSE reserved reserved reserved reserved

FAMILY non-reserved

FETCH reserved reserved reserved reserved

FILE non-reserved non-reserved

FILTER reserved reserved

FINAL non-reserved non-reserved

FIRST non-reserved non-reserved non-reserved reserved

FIRST_VALUE reserved reserved

FLAG non-reserved non-reserved

FLOAT non-reserved
(cannot be function
or type)

reserved reserved reserved

FLOOR reserved reserved

FOLLOWING non-reserved non-reserved non-reserved

FOR reserved reserved reserved reserved

FORCE non-reserved

FOREIGN reserved reserved reserved reserved

FORTRAN non-reserved non-reserved non-reserved

FORWARD non-reserved

FOUND non-reserved non-reserved reserved

FRAME_ROW reserved

FREE reserved reserved

FREEZE reserved (can be
function or type)

FROM reserved reserved reserved reserved

FS non-reserved non-reserved

FULL reserved (can be
function or type)

reserved reserved reserved

FUNCTION non-reserved reserved reserved

FUNCTIONS non-reserved

FUSION reserved reserved

1997

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
G non-reserved non-reserved

GENERAL non-reserved non-reserved

GENERATED non-reserved non-reserved

GET reserved reserved reserved

GLOBAL non-reserved reserved reserved reserved

GO non-reserved non-reserved reserved

GOTO non-reserved non-reserved reserved

GRANT reserved reserved reserved reserved

GRANTED non-reserved non-reserved non-reserved

GREATEST non-reserved
(cannot be function
or type)

GROUP reserved reserved reserved reserved

GROUPING reserved reserved

GROUPS reserved

HANDLER non-reserved

HAVING reserved reserved reserved reserved

HEADER non-reserved

HEX non-reserved non-reserved

HIERARCHY non-reserved non-reserved

HOLD non-reserved reserved reserved

HOUR non-reserved reserved reserved reserved

ID non-reserved non-reserved

IDENTITY non-reserved reserved reserved reserved

IF non-reserved

IGNORE non-reserved non-reserved

ILIKE reserved (can be
function or type)

IMMEDIATE non-reserved non-reserved non-reserved reserved

IMMEDIATELY non-reserved

IMMUTABLE non-reserved

IMPLEMENTATION non-reserved non-reserved

IMPLICIT non-reserved

IMPORT reserved reserved

IN reserved reserved reserved reserved

INCLUDING non-reserved non-reserved non-reserved

INCREMENT non-reserved non-reserved non-reserved

INDENT non-reserved non-reserved

INDEX non-reserved

1998

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
INDEXES non-reserved

INDICATOR reserved reserved reserved

INHERIT non-reserved

INHERITS non-reserved

INITIALLY reserved non-reserved non-reserved reserved

INLINE non-reserved

INNER reserved (can be
function or type)

reserved reserved reserved

INOUT non-reserved
(cannot be function
or type)

reserved reserved

INPUT non-reserved non-reserved non-reserved reserved

INSENSITIVE non-reserved reserved reserved reserved

INSERT non-reserved reserved reserved reserved

INSTANCE non-reserved non-reserved

INSTANTIABLE non-reserved non-reserved

INSTEAD non-reserved non-reserved non-reserved

INT non-reserved
(cannot be function
or type)

reserved reserved reserved

INTEGER non-reserved
(cannot be function
or type)

reserved reserved reserved

INTEGRITY non-reserved non-reserved

INTERSECT reserved reserved reserved reserved

INTERSECTION reserved reserved

INTERVAL non-reserved
(cannot be function
or type)

reserved reserved reserved

INTO reserved reserved reserved reserved

INVOKER non-reserved non-reserved non-reserved

IS reserved (can be
function or type)

reserved reserved reserved

ISNULL reserved (can be
function or type)

ISOLATION non-reserved non-reserved non-reserved reserved

JOIN reserved (can be
function or type)

reserved reserved reserved

K non-reserved non-reserved

KEY non-reserved non-reserved non-reserved reserved

1999

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
KEY_MEMBER non-reserved non-reserved

KEY_TYPE non-reserved non-reserved

LABEL non-reserved

LAG reserved reserved

LANGUAGE non-reserved reserved reserved reserved

LARGE non-reserved reserved reserved

LAST non-reserved non-reserved non-reserved reserved

LAST_VALUE reserved reserved

LATERAL reserved reserved

LC_COLLATE non-reserved

LC_CTYPE non-reserved

LEAD reserved reserved

LEADING reserved reserved reserved reserved

LEAKPROOF non-reserved

LEAST non-reserved
(cannot be function
or type)

LEFT reserved (can be
function or type)

reserved reserved reserved

LENGTH non-reserved non-reserved non-reserved

LEVEL non-reserved non-reserved non-reserved reserved

LIBRARY non-reserved non-reserved

LIKE reserved (can be
function or type)

reserved reserved reserved

LIKE_REGEX reserved reserved

LIMIT reserved non-reserved non-reserved

LINK non-reserved non-reserved

LISTEN non-reserved

LN reserved reserved

LOAD non-reserved

LOCAL non-reserved reserved reserved reserved

LOCALTIME reserved reserved reserved

LOCALTIMESTAMP reserved reserved reserved

LOCATION non-reserved non-reserved non-reserved

LOCATOR non-reserved non-reserved

LOCK non-reserved

LOWER reserved reserved reserved

M non-reserved non-reserved

MAP non-reserved non-reserved

2000

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
MAPPING non-reserved non-reserved non-reserved

MATCH non-reserved reserved reserved reserved

MATCHED non-reserved non-reserved

MAX reserved reserved reserved

MAXVALUE non-reserved non-reserved non-reserved

MAX_CARDINALITY reserved

MEMBER reserved reserved

MERGE reserved reserved

MESSAGE_LENGTH non-reserved non-reserved non-reserved

MESSAGE_OCTET_LENGTH non-reserved non-reserved non-reserved

MESSAGE_TEXT non-reserved non-reserved non-reserved

METHOD reserved reserved

MIN reserved reserved reserved

MINUTE non-reserved reserved reserved reserved

MINVALUE non-reserved non-reserved non-reserved

MOD reserved reserved

MODE non-reserved

MODIFIES reserved reserved

MODULE reserved reserved reserved

MONTH non-reserved reserved reserved reserved

MORE non-reserved non-reserved non-reserved

MOVE non-reserved

MULTISET reserved reserved

MUMPS non-reserved non-reserved non-reserved

NAME non-reserved non-reserved non-reserved non-reserved

NAMES non-reserved non-reserved non-reserved reserved

NAMESPACE non-reserved non-reserved

NATIONAL non-reserved
(cannot be function
or type)

reserved reserved reserved

NATURAL reserved (can be
function or type)

reserved reserved reserved

NCHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

NCLOB reserved reserved

NESTING non-reserved non-reserved

NEW reserved reserved

2001

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
NEXT non-reserved non-reserved non-reserved reserved

NFC non-reserved non-reserved

NFD non-reserved non-reserved

NFKC non-reserved non-reserved

NFKD non-reserved non-reserved

NIL non-reserved non-reserved

NO non-reserved reserved reserved reserved

NONE non-reserved
(cannot be function
or type)

reserved reserved

NORMALIZE reserved reserved

NORMALIZED non-reserved non-reserved

NOT reserved reserved reserved reserved

NOTHING non-reserved

NOTIFY non-reserved

NOTNULL reserved (can be
function or type)

NOWAIT non-reserved

NTH_VALUE reserved reserved

NTILE reserved reserved

NULL reserved reserved reserved reserved

NULLABLE non-reserved non-reserved non-reserved

NULLIF non-reserved
(cannot be function
or type)

reserved reserved reserved

NULLS non-reserved non-reserved non-reserved

NUMBER non-reserved non-reserved non-reserved

NUMERIC non-reserved
(cannot be function
or type)

reserved reserved reserved

OBJECT non-reserved non-reserved non-reserved

OCCURRENCES_REGEX reserved reserved

OCTETS non-reserved non-reserved

OCTET_LENGTH reserved reserved reserved

OF non-reserved reserved reserved reserved

OFF non-reserved non-reserved non-reserved

OFFSET reserved reserved reserved

OIDS non-reserved

OLD reserved reserved

2002

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
ON reserved reserved reserved reserved

ONLY reserved reserved reserved reserved

OPEN reserved reserved reserved

OPERATOR non-reserved

OPTION non-reserved non-reserved non-reserved reserved

OPTIONS non-reserved non-reserved non-reserved

OR reserved reserved reserved reserved

ORDER reserved reserved reserved reserved

ORDERING non-reserved non-reserved

ORDINALITY non-reserved non-reserved

OTHERS non-reserved non-reserved

OUT non-reserved
(cannot be function
or type)

reserved reserved

OUTER reserved (can be
function or type)

reserved reserved reserved

OUTPUT non-reserved non-reserved reserved

OVER reserved (can be
function or type)

reserved reserved

OVERLAPS reserved (can be
function or type)

reserved reserved reserved

OVERLAY non-reserved
(cannot be function
or type)

reserved reserved

OVERRIDING non-reserved non-reserved

OWNED non-reserved

OWNER non-reserved

P non-reserved non-reserved

PAD non-reserved non-reserved reserved

PARAMETER reserved reserved

PARAMETER_MODE non-reserved non-reserved

PARAMETER_NAME non-reserved non-reserved

PARAMETER_ORDINAL_POSITION non-reserved non-reserved

PARAMETER_SPECIFIC_CATALOG non-reserved non-reserved

PARAMETER_SPECIFIC_NAME non-reserved non-reserved

PARAMETER_SPECIFIC_SCHEMA non-reserved non-reserved

2003

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
PARSER non-reserved

PARTIAL non-reserved non-reserved non-reserved reserved

PARTITION non-reserved reserved reserved

PASCAL non-reserved non-reserved non-reserved

PASSING non-reserved non-reserved non-reserved

PASSTHROUGH non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved non-reserved

PERCENT reserved

PERCENTILE_CONT reserved reserved

PERCENTILE_DISC reserved reserved

PERCENT_RANK reserved reserved

PERIOD reserved

PERMISSION non-reserved non-reserved

PLACING reserved non-reserved non-reserved

PLANS non-reserved

PLI non-reserved non-reserved non-reserved

PORTION reserved

POSITION non-reserved
(cannot be function
or type)

reserved reserved reserved

POSITION_REGEX reserved reserved

POWER reserved reserved

PRECEDES reserved

PRECEDING non-reserved non-reserved non-reserved

PRECISION non-reserved
(cannot be function
or type)

reserved reserved reserved

PREPARE non-reserved reserved reserved reserved

PREPARED non-reserved

PRESERVE non-reserved non-reserved non-reserved reserved

PRIMARY reserved reserved reserved reserved

PRIOR non-reserved non-reserved non-reserved reserved

PRIVILEGES non-reserved non-reserved non-reserved reserved

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved reserved

PUBLIC non-reserved non-reserved reserved

2004

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
QUOTE non-reserved

RANGE non-reserved reserved reserved

RANK reserved reserved

READ non-reserved non-reserved non-reserved reserved

READS reserved reserved

REAL non-reserved
(cannot be function
or type)

reserved reserved reserved

REASSIGN non-reserved

RECHECK non-reserved

RECOVERY non-reserved non-reserved

RECURSIVE non-reserved reserved reserved

REF non-reserved reserved reserved

REFERENCES reserved reserved reserved reserved

REFERENCING reserved reserved

REGR_AVGX reserved reserved

REGR_AVGY reserved reserved

REGR_COUNT reserved reserved

REGR_INTERCEPT reserved reserved

REGR_R2 reserved reserved

REGR_SLOPE reserved reserved

REGR_SXX reserved reserved

REGR_SXY reserved reserved

REGR_SYY reserved reserved

REINDEX non-reserved

RELATIVE non-reserved non-reserved non-reserved reserved

RELEASE non-reserved reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved non-reserved non-reserved

REPLACE non-reserved

REPLICA non-reserved

REQUIRING non-reserved non-reserved

RESET non-reserved

RESPECT non-reserved non-reserved

RESTART non-reserved non-reserved non-reserved

RESTORE non-reserved non-reserved

RESTRICT non-reserved non-reserved non-reserved reserved

RESULT reserved reserved

RETURN reserved reserved

2005

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
RETURNED_CARDINALITY non-reserved non-reserved

RETURNED_LENGTH non-reserved non-reserved non-reserved

RETURNED_OCTET_LENGTH non-reserved non-reserved non-reserved

RETURNED_SQLSTATE non-reserved non-reserved non-reserved

RETURNING reserved non-reserved non-reserved

RETURNS non-reserved reserved reserved

REVOKE non-reserved reserved reserved reserved

RIGHT reserved (can be
function or type)

reserved reserved reserved

ROLE non-reserved non-reserved non-reserved

ROLLBACK non-reserved reserved reserved reserved

ROLLUP reserved reserved

ROUTINE non-reserved non-reserved

ROUTINE_CATALOG non-reserved non-reserved

ROUTINE_NAME non-reserved non-reserved

ROUTINE_SCHEMA non-reserved non-reserved

ROW non-reserved
(cannot be function
or type)

reserved reserved

ROWS non-reserved reserved reserved reserved

ROW_COUNT non-reserved non-reserved non-reserved

ROW_NUMBER reserved reserved

RULE non-reserved

SAVEPOINT non-reserved reserved reserved

SCALE non-reserved non-reserved non-reserved

SCHEMA non-reserved non-reserved non-reserved reserved

SCHEMA_NAME non-reserved non-reserved non-reserved

SCOPE reserved reserved

SCOPE_CATALOG non-reserved non-reserved

SCOPE_NAME non-reserved non-reserved

SCOPE_SCHEMA non-reserved non-reserved

SCROLL non-reserved reserved reserved reserved

SEARCH non-reserved reserved reserved

SECOND non-reserved reserved reserved reserved

SECTION non-reserved non-reserved reserved

2006

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
SECURITY non-reserved non-reserved non-reserved

SELECT reserved reserved reserved reserved

SELECTIVE non-reserved non-reserved

SELF non-reserved non-reserved

SENSITIVE reserved reserved

SEQUENCE non-reserved non-reserved non-reserved

SEQUENCES non-reserved

SERIALIZABLE non-reserved non-reserved non-reserved non-reserved

SERVER non-reserved non-reserved non-reserved

SERVER_NAME non-reserved non-reserved non-reserved

SESSION non-reserved non-reserved non-reserved reserved

SESSION_USER reserved reserved reserved reserved

SET non-reserved reserved reserved reserved

SETOF non-reserved
(cannot be function
or type)

SETS non-reserved non-reserved

SHARE non-reserved

SHOW non-reserved

SIMILAR reserved (can be
function or type)

reserved reserved

SIMPLE non-reserved non-reserved non-reserved

SIZE non-reserved non-reserved reserved

SMALLINT non-reserved
(cannot be function
or type)

reserved reserved reserved

SNAPSHOT non-reserved

SOME reserved reserved reserved reserved

SOURCE non-reserved non-reserved

SPACE non-reserved non-reserved reserved

SPECIFIC reserved reserved

SPECIFICTYPE reserved reserved

SPECIFIC_NAME non-reserved non-reserved

SQL reserved reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved reserved

SQLSTATE reserved reserved reserved

SQLWARNING reserved reserved

2007

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
SQRT reserved reserved

STABLE non-reserved

STANDALONE non-reserved non-reserved non-reserved

START non-reserved reserved reserved

STATE non-reserved non-reserved

STATEMENT non-reserved non-reserved non-reserved

STATIC reserved reserved

STATISTICS non-reserved

STDDEV_POP reserved reserved

STDDEV_SAMP reserved reserved

STDIN non-reserved

STDOUT non-reserved

STORAGE non-reserved

STRICT non-reserved

STRIP non-reserved non-reserved non-reserved

STRUCTURE non-reserved non-reserved

STYLE non-reserved non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved non-reserved

SUBMULTISET reserved reserved

SUBSTRING non-reserved
(cannot be function
or type)

reserved reserved reserved

SUBSTRING_REGEX reserved reserved

SUCCEEDS reserved

SUM reserved reserved reserved

SYMMETRIC reserved reserved reserved

SYSID non-reserved

SYSTEM non-reserved reserved reserved

SYSTEM_TIME reserved

SYSTEM_USER reserved reserved reserved

T non-reserved non-reserved

TABLE reserved reserved reserved reserved

TABLES non-reserved

TABLESAMPLE reserved reserved

TABLESPACE non-reserved

TABLE_NAME non-reserved non-reserved non-reserved

TEMP non-reserved

2008

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
TEMPLATE non-reserved

TEMPORARY non-reserved non-reserved non-reserved reserved

TEXT non-reserved

THEN reserved reserved reserved reserved

TIES non-reserved non-reserved

TIME non-reserved
(cannot be function
or type)

reserved reserved reserved

TIMESTAMP non-reserved
(cannot be function
or type)

reserved reserved reserved

TIMEZONE_HOUR reserved reserved reserved

TIMEZONE_MINUTE reserved reserved reserved

TO reserved reserved reserved reserved

TOKEN non-reserved non-reserved

TOP_LEVEL_COUNT non-reserved non-reserved

TRAILING reserved reserved reserved reserved

TRANSACTION non-reserved non-reserved non-reserved reserved

TRANSACTIONS_COMMITTED non-reserved non-reserved

TRANSACTIONS_ROLLED_BACK non-reserved non-reserved

TRANSACTION_ACTIVE non-reserved non-reserved

TRANSFORM non-reserved non-reserved

TRANSFORMS non-reserved non-reserved

TRANSLATE reserved reserved reserved

TRANSLATE_REGEX reserved reserved

TRANSLATION reserved reserved reserved

TREAT non-reserved
(cannot be function
or type)

reserved reserved

TRIGGER non-reserved reserved reserved

TRIGGER_CATALOG non-reserved non-reserved

TRIGGER_NAME non-reserved non-reserved

TRIGGER_SCHEMA non-reserved non-reserved

2009

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
TRIM non-reserved

(cannot be function
or type)

reserved reserved reserved

TRIM_ARRAY reserved reserved

TRUE reserved reserved reserved reserved

TRUNCATE non-reserved reserved reserved

TRUSTED non-reserved

TYPE non-reserved non-reserved non-reserved non-reserved

TYPES non-reserved

UESCAPE reserved reserved

UNBOUNDED non-reserved non-reserved non-reserved

UNCOMMITTED non-reserved non-reserved non-reserved non-reserved

UNDER non-reserved non-reserved

UNENCRYPTED non-reserved

UNION reserved reserved reserved reserved

UNIQUE reserved reserved reserved reserved

UNKNOWN non-reserved reserved reserved reserved

UNLINK non-reserved non-reserved

UNLISTEN non-reserved

UNLOGGED non-reserved

UNNAMED non-reserved non-reserved non-reserved

UNNEST reserved reserved

UNTIL non-reserved

UNTYPED non-reserved non-reserved

UPDATE non-reserved reserved reserved reserved

UPPER reserved reserved reserved

URI non-reserved non-reserved

USAGE non-reserved non-reserved reserved

USER reserved reserved reserved reserved

USER_DEFINED_TYPE_CATALOG non-reserved non-reserved

USER_DEFINED_TYPE_CODE non-reserved non-reserved

USER_DEFINED_TYPE_NAME non-reserved non-reserved

USER_DEFINED_TYPE_SCHEMA non-reserved non-reserved

USING reserved reserved reserved reserved

VACUUM non-reserved

2010

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
VALID non-reserved non-reserved non-reserved

VALIDATE non-reserved

VALIDATOR non-reserved

VALUE non-reserved reserved reserved reserved

VALUES non-reserved
(cannot be function
or type)

reserved reserved reserved

VALUE_OF reserved

VARBINARY reserved reserved

VARCHAR non-reserved
(cannot be function
or type)

reserved reserved reserved

VARIADIC reserved

VARYING non-reserved reserved reserved reserved

VAR_POP reserved reserved

VAR_SAMP reserved reserved

VERBOSE reserved (can be
function or type)

VERSION non-reserved non-reserved non-reserved

VERSIONING reserved

VIEW non-reserved non-reserved non-reserved reserved

VOLATILE non-reserved

WHEN reserved reserved reserved reserved

WHENEVER reserved reserved reserved

WHERE reserved reserved reserved reserved

WHITESPACE non-reserved non-reserved non-reserved

WIDTH_BUCKET reserved reserved

WINDOW reserved reserved reserved

WITH reserved reserved reserved reserved

WITHIN reserved reserved

WITHOUT non-reserved reserved reserved

WORK non-reserved non-reserved non-reserved reserved

WRAPPER non-reserved non-reserved non-reserved

WRITE non-reserved non-reserved non-reserved reserved

XML non-reserved reserved reserved

XMLAGG reserved reserved

XMLATTRIBUTES non-reserved
(cannot be function
or type)

reserved reserved

XMLBINARY reserved reserved

2011

Appendix C. SQL Key Words

Key Word PostgreSQL SQL:2011 SQL:2008 SQL-92
XMLCAST reserved reserved

XMLCOMMENT reserved reserved

XMLCONCAT non-reserved
(cannot be function
or type)

reserved reserved

XMLDECLARATION non-reserved non-reserved

XMLDOCUMENT reserved reserved

XMLELEMENT non-reserved
(cannot be function
or type)

reserved reserved

XMLEXISTS non-reserved
(cannot be function
or type)

reserved reserved

XMLFOREST non-reserved
(cannot be function
or type)

reserved reserved

XMLITERATE reserved reserved

XMLNAMESPACES reserved reserved

XMLPARSE non-reserved
(cannot be function
or type)

reserved reserved

XMLPI non-reserved
(cannot be function
or type)

reserved reserved

XMLQUERY reserved reserved

XMLROOT non-reserved
(cannot be function
or type)

XMLSCHEMA non-reserved non-reserved

XMLSERIALIZE non-reserved
(cannot be function
or type)

reserved reserved

XMLTABLE reserved reserved

XMLTEXT reserved reserved

XMLVALIDATE reserved reserved

YEAR non-reserved reserved reserved reserved

YES non-reserved non-reserved non-reserved

ZONE non-reserved non-reserved non-reserved reserved

2012

Appendix D. SQL Conformance
This section attempts to outline to what extent PostgreSQL conforms to the current SQL standard. The
following information is not a full statement of conformance, but it presents the main topics in as much
detail as is both reasonable and useful for users.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL”. A revised version of
the standard is released from time to time; the most recent update appearing in 2011. The 2011 version
is referred to as ISO/IEC 9075:2011, or simply as SQL:2011. The versions prior to that were SQL:2008,
SQL:2003, SQL:1999, and SQL-92. Each version replaces the previous one, so claims of conformance to
earlier versions have no official merit. PostgreSQL development aims for conformance with the latest of-
ficial version of the standard where such conformance does not contradict traditional features or common
sense. Many of the features required by the SQL standard are supported, though sometimes with slightly
differing syntax or function. Further moves towards conformance can be expected over time.

SQL-92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database man-
agement systems claiming SQL standard conformance were conforming at only the Entry level, since the
entire set of features in the Intermediate and Full levels was either too voluminous or in conflict with
legacy behaviors.

Starting with SQL:1999, the SQL standard defines a large set of individual features rather than the ineffec-
tively broad three levels found in SQL-92. A large subset of these features represents the “Core” features,
which every conforming SQL implementation must supply. The rest of the features are purely optional.
Some optional features are grouped together to form “packages”, which SQL implementations can claim
conformance to, thus claiming conformance to particular groups of features.

The standard versions beginning with SQL:2003 are also split into a number of parts. Each is known by a
shorthand name. Note that these parts are not consecutively numbered.

• ISO/IEC 9075-1 Framework (SQL/Framework)

• ISO/IEC 9075-2 Foundation (SQL/Foundation)

• ISO/IEC 9075-3 Call Level Interface (SQL/CLI)

• ISO/IEC 9075-4 Persistent Stored Modules (SQL/PSM)

• ISO/IEC 9075-9 Management of External Data (SQL/MED)

• ISO/IEC 9075-10 Object Language Bindings (SQL/OLB)

• ISO/IEC 9075-11 Information and Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-13 Routines and Types using the Java Language (SQL/JRT)

• ISO/IEC 9075-14 XML-related specifications (SQL/XML)

The PostgreSQL core covers parts 1, 2, 9, 11, and 14. Part 3 is covered by the ODBC driver, and part
13 is covered by the PL/Java plug-in, but exact conformance is currently not being verified for these
components. There are currently no implementations of parts 4 and 10 for PostgreSQL.

2013

Appendix D. SQL Conformance

PostgreSQL supports most of the major features of SQL:2011. Out of 179 mandatory features required for
full Core conformance, PostgreSQL conforms to at least 160. In addition, there is a long list of supported
optional features. It might be worth noting that at the time of writing, no current version of any database
management system claims full conformance to Core SQL:2011.

In the following two sections, we provide a list of those features that PostgreSQL supports, followed
by a list of the features defined in SQL:2011 which are not yet supported in PostgreSQL. Both of these
lists are approximate: There might be minor details that are nonconforming for a feature that is listed as
supported, and large parts of an unsupported feature might in fact be implemented. The main body of the
documentation always contains the most accurate information about what does and does not work.

Note: Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature is not
supported, the main feature is listed as unsupported even if some other subfeatures are supported.

D.1. Supported Features

Identifier Package Description Comment
B012 Embedded C

B021 Direct SQL

E011 Core Numeric data types

E011-01 Core INTEGER and
SMALLINT data types

E011-02 Core REAL, DOUBLE
PRECISION, and
FLOAT data types

E011-03 Core DECIMAL and
NUMERIC data types

E011-04 Core Arithmetic operators

E011-05 Core Numeric comparison

E011-06 Core Implicit casting among
the numeric data types

E021 Core Character data types

E021-01 Core CHARACTER data type

E021-02 Core CHARACTER
VARYING data type

E021-03 Core Character literals

E021-04 Core CHARACTER_LENGTH
function

trims trailing spaces
from CHARACTER
values before counting

2014

Appendix D. SQL Conformance

Identifier Package Description Comment
E021-05 Core OCTET_LENGTH

function

E021-06 Core SUBSTRING function

E021-07 Core Character concatenation

E021-08 Core UPPER and LOWER
functions

E021-09 Core TRIM function

E021-10 Core Implicit casting among
the character string
types

E021-11 Core POSITION function

E021-12 Core Character comparison

E031 Core Identifiers

E031-01 Core Delimited identifiers

E031-02 Core Lower case identifiers

E031-03 Core Trailing underscore

E051 Core Basic query
specification

E051-01 Core SELECT DISTINCT

E051-02 Core GROUP BY clause

E051-04 Core GROUP BY can contain
columns not in <select
list>

E051-05 Core Select list items can be
renamed

E051-06 Core HAVING clause

E051-07 Core Qualified * in select list

E051-08 Core Correlation names in the
FROM clause

E051-09 Core Rename columns in the
FROM clause

E061 Core Basic predicates and
search conditions

E061-01 Core Comparison predicate

E061-02 Core BETWEEN predicate

E061-03 Core IN predicate with list of
values

E061-04 Core LIKE predicate

E061-05 Core LIKE predicate
ESCAPE clause

E061-06 Core NULL predicate

2015

Appendix D. SQL Conformance

Identifier Package Description Comment
E061-07 Core Quantified comparison

predicate

E061-08 Core EXISTS predicate

E061-09 Core Subqueries in
comparison predicate

E061-11 Core Subqueries in IN
predicate

E061-12 Core Subqueries in quantified
comparison predicate

E061-13 Core Correlated subqueries

E061-14 Core Search condition

E071 Core Basic query expressions

E071-01 Core UNION DISTINCT
table operator

E071-02 Core UNION ALL table
operator

E071-03 Core EXCEPT DISTINCT
table operator

E071-05 Core Columns combined via
table operators need not
have exactly the same
data type

E071-06 Core Table operators in
subqueries

E081 Core Basic Privileges

E081-01 Core SELECT privilege

E081-02 Core DELETE privilege

E081-03 Core INSERT privilege at the
table level

E081-04 Core UPDATE privilege at
the table level

E081-05 Core UPDATE privilege at
the column level

E081-06 Core REFERENCES
privilege at the table
level

E081-07 Core REFERENCES
privilege at the column
level

E081-08 Core WITH GRANT
OPTION

E081-09 Core USAGE privilege

2016

Appendix D. SQL Conformance

Identifier Package Description Comment
E081-10 Core EXECUTE privilege

E091 Core Set functions

E091-01 Core AVG

E091-02 Core COUNT

E091-03 Core MAX

E091-04 Core MIN

E091-05 Core SUM

E091-06 Core ALL quantifier

E091-07 Core DISTINCT quantifier

E101 Core Basic data manipulation

E101-01 Core INSERT statement

E101-03 Core Searched UPDATE
statement

E101-04 Core Searched DELETE
statement

E111 Core Single row SELECT
statement

E121 Core Basic cursor support

E121-01 Core DECLARE CURSOR

E121-02 Core ORDER BY columns
need not be in select list

E121-03 Core Value expressions in
ORDER BY clause

E121-04 Core OPEN statement

E121-06 Core Positioned UPDATE
statement

E121-07 Core Positioned DELETE
statement

E121-08 Core CLOSE statement

E121-10 Core FETCH statement
implicit NEXT

E121-17 Core WITH HOLD cursors

E131 Core Null value support
(nulls in lieu of values)

E141 Core Basic integrity
constraints

E141-01 Core NOT NULL constraints

E141-02 Core UNIQUE constraints of
NOT NULL columns

E141-03 Core PRIMARY KEY
constraints

2017

Appendix D. SQL Conformance

Identifier Package Description Comment
E141-04 Core Basic FOREIGN KEY

constraint with the NO
ACTION default for
both referential delete
action and referential
update action

E141-06 Core CHECK constraints

E141-07 Core Column defaults

E141-08 Core NOT NULL inferred on
PRIMARY KEY

E141-10 Core Names in a foreign key
can be specified in any
order

E151 Core Transaction support

E151-01 Core COMMIT statement

E151-02 Core ROLLBACK statement

E152 Core Basic SET
TRANSACTION
statement

E152-01 Core SET TRANSACTION
statement: ISOLATION
LEVEL
SERIALIZABLE clause

E152-02 Core SET TRANSACTION
statement: READ
ONLY and READ
WRITE clauses

E161 Core SQL comments using
leading double minus

E171 Core SQLSTATE support

F021 Core Basic information
schema

F021-01 Core COLUMNS view

F021-02 Core TABLES view

F021-03 Core VIEWS view

F021-04 Core TABLE_CONSTRAINTS
view

F021-05 Core REFERENTIAL_CONSTRAINTS
view

F021-06 Core CHECK_CONSTRAINTS
view

2018

Appendix D. SQL Conformance

Identifier Package Description Comment
F031 Core Basic schema

manipulation

F031-01 Core CREATE TABLE
statement to create
persistent base tables

F031-02 Core CREATE VIEW
statement

F031-03 Core GRANT statement

F031-04 Core ALTER TABLE
statement: ADD
COLUMN clause

F031-13 Core DROP TABLE
statement: RESTRICT
clause

F031-16 Core DROP VIEW statement:
RESTRICT clause

F031-19 Core REVOKE statement:
RESTRICT clause

F032 CASCADE drop
behavior

F033 ALTER TABLE
statement: DROP
COLUMN clause

F034 Extended REVOKE
statement

F034-01 REVOKE statement
performed by other than
the owner of a schema
object

F034-02 REVOKE statement:
GRANT OPTION FOR
clause

F034-03 REVOKE statement to
revoke a privilege that
the grantee has WITH
GRANT OPTION

F041 Core Basic joined table

F041-01 Core Inner join (but not
necessarily the INNER
keyword)

F041-02 Core INNER keyword

F041-03 Core LEFT OUTER JOIN

F041-04 Core RIGHT OUTER JOIN

2019

Appendix D. SQL Conformance

Identifier Package Description Comment
F041-05 Core Outer joins can be

nested

F041-07 Core The inner table in a left
or right outer join can
also be used in an inner
join

F041-08 Core All comparison
operators are supported
(rather than just =)

F051 Core Basic date and time

F051-01 Core DATE data type
(including support of
DATE literal)

F051-02 Core TIME data type
(including support of
TIME literal) with
fractional seconds
precision of at least 0

F051-03 Core TIMESTAMP data type
(including support of
TIMESTAMP literal)
with fractional seconds
precision of at least 0
and 6

F051-04 Core Comparison predicate
on DATE, TIME, and
TIMESTAMP data
types

F051-05 Core Explicit CAST between
datetime types and
character string types

F051-06 Core CURRENT_DATE

F051-07 Core LOCALTIME

F051-08 Core LOCALTIMESTAMP

F052 Enhanced datetime
facilities

Intervals and datetime
arithmetic

F053 OVERLAPS predicate

F081 Core UNION and EXCEPT
in views

F111 Isolation levels other
than SERIALIZABLE

2020

Appendix D. SQL Conformance

Identifier Package Description Comment
F111-01 READ

UNCOMMITTED
isolation level

F111-02 READ COMMITTED
isolation level

F111-03 REPEATABLE READ
isolation level

F131 Core Grouped operations

F131-01 Core WHERE, GROUP BY,
and HAVING clauses
supported in queries
with grouped views

F131-02 Core Multiple tables
supported in queries
with grouped views

F131-03 Core Set functions supported
in queries with grouped
views

F131-04 Core Subqueries with
GROUP BY and
HAVING clauses and
grouped views

F131-05 Core Single row SELECT
with GROUP BY and
HAVING clauses and
grouped views

F171 Multiple schemas per
user

F191 Enhanced integrity
management

Referential delete
actions

F200 TRUNCATE TABLE
statement

F201 Core CAST function

F221 Core Explicit defaults

F222 INSERT statement:
DEFAULT VALUES
clause

F231 Privilege tables

F231-01 TABLE_PRIVILEGES
view

F231-02 COLUMN_PRIVILEGES
view

2021

Appendix D. SQL Conformance

Identifier Package Description Comment
F231-03 USAGE_PRIVILEGES

view

F251 Domain support

F261 Core CASE expression

F261-01 Core Simple CASE

F261-02 Core Searched CASE

F261-03 Core NULLIF

F261-04 Core COALESCE

F262 Extended CASE
expression

F271 Compound character
literals

F281 LIKE enhancements

F302 INTERSECT table
operator

F302-01 INTERSECT
DISTINCT table
operator

F302-02 INTERSECT ALL table
operator

F304 EXCEPT ALL table
operator

F311-01 Core CREATE SCHEMA

F311-02 Core CREATE TABLE for
persistent base tables

F311-03 Core CREATE VIEW

F311-05 Core GRANT statement

F321 User authorization

F361 Subprogram support

F381 Extended schema
manipulation

F381-01 ALTER TABLE
statement: ALTER
COLUMN clause

F381-02 ALTER TABLE
statement: ADD
CONSTRAINT clause

F381-03 ALTER TABLE
statement: DROP
CONSTRAINT clause

F382 Alter column data type

2022

Appendix D. SQL Conformance

Identifier Package Description Comment
F383 Set column not null

clause

F391 Long identifiers

F392 Unicode escapes in
identifiers

F393 Unicode escapes in
literals

F401 Extended joined table

F401-01 NATURAL JOIN

F401-02 FULL OUTER JOIN

F401-04 CROSS JOIN

F402 Named column joins for
LOBs, arrays, and
multisets

F411 Enhanced datetime
facilities

Time zone specification differences regarding
literal interpretation

F421 National character

F431 Read-only scrollable
cursors

F431-01 FETCH with explicit
NEXT

F431-02 FETCH FIRST

F431-03 FETCH LAST

F431-04 FETCH PRIOR

F431-05 FETCH ABSOLUTE

F431-06 FETCH RELATIVE

F441 Extended set function
support

F442 Mixed column
references in set
functions

F471 Core Scalar subquery values

F481 Core Expanded NULL
predicate

F491 Enhanced integrity
management

Constraint management

F501 Core Features and
conformance views

F501-01 Core SQL_FEATURES view

F501-02 Core SQL_SIZING view

2023

Appendix D. SQL Conformance

Identifier Package Description Comment
F501-03 Core SQL_LANGUAGES

view

F502 Enhanced
documentation tables

F502-01 SQL_SIZING_PROFILES
view

F502-02 SQL_IMPLEMENTATION_INFO
view

F502-03 SQL_PACKAGES view

F531 Temporary tables

F555 Enhanced datetime
facilities

Enhanced seconds
precision

F561 Full value expressions

F571 Truth value tests

F591 Derived tables

F611 Indicator data types

F641 Row and table
constructors

F651 Catalog name qualifiers

F661 Simple tables

F672 Retrospective check
constraints

F690 Collation support but no character set
support

F692 Extended collation
support

F701 Enhanced integrity
management

Referential update
actions

F711 ALTER domain

F731 INSERT column
privileges

F761 Session management

F762 CURRENT_CATALOG

F763 CURRENT_SCHEMA

F771 Connection
management

F781 Self-referencing
operations

F791 Insensitive cursors

F801 Full set function

2024

Appendix D. SQL Conformance

Identifier Package Description Comment
F850 Top-level <order by

clause> in <query
expression>

F851 <order by clause> in
subqueries

F852 Top-level <order by
clause> in views

F855 Nested <order by
clause> in <query
expression>

F856 Nested <fetch first
clause> in <query
expression>

F857 Top-level <fetch first
clause> in <query
expression>

F858 <fetch first clause> in
subqueries

F859 Top-level <fetch first
clause> in views

F860 <fetch first row count>
in <fetch first clause>

F861 Top-level <result offset
clause> in <query
expression>

F862 <result offset clause>
in subqueries

F863 Nested <result offset
clause> in <query
expression>

F864 Top-level <result offset
clause> in views

F865 <offset row count> in
<result offset clause>

S071 Enhanced object support SQL paths in function
and type name
resolution

S092 Arrays of user-defined
types

S095 Array constructors by
query

S096 Optional array bounds

S098 ARRAY_AGG

2025

Appendix D. SQL Conformance

Identifier Package Description Comment
S111 Enhanced object support ONLY in query

expressions

S201 SQL-invoked routines
on arrays

S201-01 Array parameters

S201-02 Array as result type of
functions

S211 Enhanced object support User-defined cast
functions

T031 BOOLEAN data type

T071 BIGINT data type

T121 WITH (excluding
RECURSIVE) in query
expression

T122 WITH (excluding
RECURSIVE) in
subquery

T131 Recursive query

T132 Recursive query in
subquery

T141 SIMILAR predicate

T151 DISTINCT predicate

T152 DISTINCT predicate
with negation

T171 LIKE clause in table
definition

T172 AS subquery clause in
table definition

T173 Extended LIKE clause
in table definition

T191 Enhanced integrity
management

Referential action
RESTRICT

T201 Enhanced integrity
management

Comparable data types
for referential
constraints

T211-01 Active database,
Enhanced integrity
management

Triggers activated on
UPDATE, INSERT, or
DELETE of one base
table

T211-02 Active database,
Enhanced integrity
management

BEFORE triggers

2026

Appendix D. SQL Conformance

Identifier Package Description Comment
T211-03 Active database,

Enhanced integrity
management

AFTER triggers

T211-04 Active database,
Enhanced integrity
management

FOR EACH ROW
triggers

T211-05 Active database,
Enhanced integrity
management

Ability to specify a
search condition that
must be true before the
trigger is invoked

T211-07 Active database,
Enhanced integrity
management

TRIGGER privilege

T212 Enhanced integrity
management

Enhanced trigger
capability

T213 INSTEAD OF triggers

T231 Sensitive cursors

T241 START
TRANSACTION
statement

T271 Savepoints

T281 SELECT privilege with
column granularity

T312 OVERLAY function

T321-01 Core User-defined functions
with no overloading

T321-03 Core Function invocation

T321-06 Core ROUTINES view

T321-07 Core PARAMETERS view

T323 Explicit security for
external routines

T331 Basic roles

T341 Overloading of
SQL-invoked functions
and procedures

T351 Bracketed SQL
comments (/*...*/
comments)

T441 ABS and MOD
functions

T461 Symmetric BETWEEN
predicate

2027

Appendix D. SQL Conformance

Identifier Package Description Comment
T501 Enhanced EXISTS

predicate

T551 Optional key words for
default syntax

T581 Regular expression
substring function

T591 UNIQUE constraints of
possibly null columns

T614 NTILE function

T615 LEAD and LAG
functions

T617 FIRST_VALUE and
LAST_VALUE function

T621 Enhanced numeric
functions

T631 Core IN predicate with one
list element

T651 SQL-schema statements
in SQL routines

T655 Cyclically dependent
routines

X010 XML type

X011 Arrays of XML type

X016 Persistent XML values

X020 XMLConcat

X031 XMLElement

X032 XMLForest

X034 XMLAgg

X035 XMLAgg: ORDER BY
option

X036 XMLComment

X037 XMLPI

X040 Basic table mapping

X041 Basic table mapping:
nulls absent

X042 Basic table mapping:
null as nil

X043 Basic table mapping:
table as forest

X044 Basic table mapping:
table as element

2028

Appendix D. SQL Conformance

Identifier Package Description Comment
X045 Basic table mapping:

with target namespace

X046 Basic table mapping:
data mapping

X047 Basic table mapping:
metadata mapping

X048 Basic table mapping:
base64 encoding of
binary strings

X049 Basic table mapping:
hex encoding of binary
strings

X050 Advanced table
mapping

X051 Advanced table
mapping: nulls absent

X052 Advanced table
mapping: null as nil

X053 Advanced table
mapping: table as forest

X054 Advanced table
mapping: table as
element

X055 Advanced table
mapping: target
namespace

X056 Advanced table
mapping: data mapping

X057 Advanced table
mapping: metadata
mapping

X058 Advanced table
mapping: base64
encoding of binary
strings

X059 Advanced table
mapping: hex encoding
of binary strings

X060 XMLParse: Character
string input and
CONTENT option

2029

Appendix D. SQL Conformance

Identifier Package Description Comment
X061 XMLParse: Character

string input and
DOCUMENT option

X070 XMLSerialize:
Character string
serialization and
CONTENT option

X071 XMLSerialize:
Character string
serialization and
DOCUMENT option

X072 XMLSerialize:
Character string
serialization

X090 XML document
predicate

X120 XML parameters in
SQL routines

X121 XML parameters in
external routines

X400 Name and identifier
mapping

X410 Alter column data type:
XML type

D.2. Unsupported Features
The following features defined in SQL:2011 are not implemented in this release of PostgreSQL. In a few
cases, equivalent functionality is available.

Identifier Package Description Comment
B011 Embedded Ada

B013 Embedded COBOL

B014 Embedded Fortran

B015 Embedded MUMPS

B016 Embedded Pascal

B017 Embedded PL/I

B031 Basic dynamic SQL

B032 Extended dynamic SQL

2030

Appendix D. SQL Conformance

Identifier Package Description Comment
B032-01 <describe input

statement>

B033 Untyped SQL-invoked
function arguments

B034 Dynamic specification
of cursor attributes

B035 Non-extended descriptor
names

B041 Extensions to embedded
SQL exception
declarations

B051 Enhanced execution
rights

B111 Module language Ada

B112 Module language C

B113 Module language
COBOL

B114 Module language
Fortran

B115 Module language
MUMPS

B116 Module language Pascal

B117 Module language PL/I

B121 Routine language Ada

B122 Routine language C

B123 Routine language
COBOL

B124 Routine language
Fortran

B125 Routine language
MUMPS

B126 Routine language Pascal

B127 Routine language PL/I

B128 Routine language SQL

B211 Module language Ada:
VARCHAR and
NUMERIC support

B221 Routine language Ada:
VARCHAR and
NUMERIC support

2031

Appendix D. SQL Conformance

Identifier Package Description Comment
E153 Core Updatable queries with

subqueries

E182 Core Module language

F054 TIMESTAMP in DATE
type precedence list

F121 Basic diagnostics
management

F121-01 GET DIAGNOSTICS
statement

F121-02 SET TRANSACTION
statement:
DIAGNOSTICS SIZE
clause

F122 Enhanced diagnostics
management

F123 All diagnostics

F181 Core Multiple module
support

F202 TRUNCATE TABLE:
identity column restart
option

F263 Comma-separated
predicates in simple
CASE expression

F291 UNIQUE predicate

F301 CORRESPONDING in
query expressions

F311 Core Schema definition
statement

F311-04 Core CREATE VIEW: WITH
CHECK OPTION

F312 MERGE statement

F313 Enhanced MERGE
statement

F314 MERGE statement with
DELETE branch

F341 Usage tables no
ROUTINE_*_USAGE
tables

F384 Drop identity property
clause

2032

Appendix D. SQL Conformance

Identifier Package Description Comment
F385 Drop column generation

expression clause

F386 Set identity column
generation clause

F394 Optional normal form
specification

F403 Partitioned joined tables

F451 Character set definition

F461 Named character sets

F492 Optional table constraint
enforcement

F521 Enhanced integrity
management

Assertions

F671 Enhanced integrity
management

Subqueries in CHECK intentionally omitted

F693 SQL-session and client
module collations

F695 Translation support

F696 Additional translation
documentation

F721 Deferrable constraints foreign and unique keys
only

F741 Referential MATCH
types

no partial match yet

F751 View CHECK
enhancements

F812 Core Basic flagging

F813 Extended flagging

F821 Local table references

F831 Full cursor update

F831-01 Updatable scrollable
cursors

F831-02 Updatable ordered
cursors

F841 LIKE_REGEX
predicate

F842 OCCURENCES_REGEX
function

F843 POSITION_REGEX
function

F844 SUBSTRING_REGEX
function

2033

Appendix D. SQL Conformance

Identifier Package Description Comment
F845 TRANSLATE_REGEX

function

F846 Octet support in regular
expression operators

F847 Nonconstant regular
expressions

F866 FETCH FIRST clause:
PERCENT option

F867 FETCH FIRST clause:
WITH TIES option

S011 Core Distinct data types

S011-01 Core USER_DEFINED_TYPES
view

S023 Basic object support Basic structured types

S024 Enhanced object support Enhanced structured
types

S025 Final structured types

S026 Self-referencing
structured types

S027 Create method by
specific method name

S028 Permutable UDT
options list

S041 Basic object support Basic reference types

S043 Enhanced object support Enhanced reference
types

S051 Basic object support Create table of type partially supported

S081 Enhanced object support Subtables

S091 Basic array support partially supported

S091-01 Arrays of built-in data
types

S091-02 Arrays of distinct types

S091-03 Array expressions

S094 Arrays of reference
types

S097 Array element
assignment

S151 Basic object support Type predicate

S161 Enhanced object support Subtype treatment

2034

Appendix D. SQL Conformance

Identifier Package Description Comment
S162 Subtype treatment for

references

S202 SQL-invoked routines
on multisets

S231 Enhanced object support Structured type locators

S232 Array locators

S233 Multiset locators

S241 Transform functions

S242 Alter transform
statement

S251 User-defined orderings

S261 Specific type method

S271 Basic multiset support

S272 Multisets of
user-defined types

S274 Multisets of reference
types

S275 Advanced multiset
support

S281 Nested collection types

S291 Unique constraint on
entire row

S301 Enhanced UNNEST

S401 Distinct types based on
array types

S402 Distinct types based on
distinct types

S403 MAX_CARDINALITY

S404 TRIM_ARRAY

T011 Timestamp in
Information Schema

T021 BINARY and
VARBINARY data
types

T022 Advanced support for
BINARY and
VARBINARY data
types

T023 Compound binary literal

T024 Spaces in binary literals

2035

Appendix D. SQL Conformance

Identifier Package Description Comment
T041 Basic object support Basic LOB data type

support

T041-01 Basic object support BLOB data type

T041-02 Basic object support CLOB data type

T041-03 Basic object support POSITION, LENGTH,
LOWER, TRIM,
UPPER, and
SUBSTRING functions
for LOB data types

T041-04 Basic object support Concatenation of LOB
data types

T041-05 Basic object support LOB locator:
non-holdable

T042 Extended LOB data type
support

T043 Multiplier T

T044 Multiplier P

T051 Row types

T052 MAX and MIN for row
types

T053 Explicit aliases for
all-fields reference

T061 UCS support

T101 Enhanced nullability
determination

T111 Updatable joins, unions,
and columns

T174 Identity columns

T175 Generated columns

T176 Sequence generator
support

T177 Sequence generator
support: simple restart
option

T178 Identity columns:
simple restart option

T180 System-versioned tables

T181 Application-time period
tables

2036

Appendix D. SQL Conformance

Identifier Package Description Comment
T211 Active database,

Enhanced integrity
management

Basic trigger capability

T211-06 Active database,
Enhanced integrity
management

Support for run-time
rules for the interaction
of triggers and
constraints

T211-08 Active database,
Enhanced integrity
management

Multiple triggers for the
same event are executed
in the order in which
they were created in the
catalog

intentionally omitted

T251 SET TRANSACTION
statement: LOCAL
option

T261 Chained transactions

T272 Enhanced savepoint
management

T285 Enhanced derived
column names

T301 Functional
dependencies

partially supported

T321 Core Basic SQL-invoked
routines

T321-02 Core User-defined stored
procedures with no
overloading

T321-04 Core CALL statement

T321-05 Core RETURN statement

T322 PSM Declared data type
attributes

T324 Explicit security for
SQL routines

T325 Qualified SQL
parameter references

T326 Table functions

T332 Extended roles mostly supported

T431 OLAP Extended grouping
capabilities

T432 Nested and concatenated
GROUPING SETS

T433 Multiargument
GROUPING function

2037

Appendix D. SQL Conformance

Identifier Package Description Comment
T434 GROUP BY DISTINCT

T471 Result sets return value

T472 DESCRIBE CURSOR

T491 LATERAL derived table

T495 Combined data change
and retrieval

different syntax

T502 Period predicates

T511 Transaction counts

T521 Named arguments in
CALL statement

T522 Default values for IN
parameters of
SQL-invoked
procedures

T541 Updatable table
references

T561 Holdable locators

T571 Array-returning external
SQL-invoked functions

T572 Multiset-returning
external SQL-invoked
functions

T601 Local cursor references

T611 OLAP Elementary OLAP
operations

most forms supported

T612 Advanced OLAP
operations

some forms supported

T613 Sampling

T616 Null treatment option
for LEAD and LAG
functions

T618 NTH_VALUE function function exists, but
some options missing

T619 Nested window
functions

T620 WINDOW clause:
GROUPS option

T641 Multiple column
assignment

only some syntax
variants supported

2038

Appendix D. SQL Conformance

Identifier Package Description Comment
T652 SQL-dynamic

statements in SQL
routines

T653 SQL-schema statements
in external routines

T654 SQL-dynamic
statements in external
routines

M001 Datalinks

M002 Datalinks via SQL/CLI

M003 Datalinks via Embedded
SQL

M004 Foreign data support partially supported

M005 Foreign schema support

M006 GetSQLString routine

M007 TransmitRequest

M009 GetOpts and
GetStatistics routines

M010 Foreign data wrapper
support

M011 Datalinks via Ada

M012 Datalinks via C

M013 Datalinks via COBOL

M014 Datalinks via Fortran

M015 Datalinks via M

M016 Datalinks via Pascal

M017 Datalinks via PL/I

M018 Foreign data wrapper
interface routines in Ada

M019 Foreign data wrapper
interface routines in C

M020 Foreign data wrapper
interface routines in
COBOL

M021 Foreign data wrapper
interface routines in
Fortran

M022 Foreign data wrapper
interface routines in
MUMPS

2039

Appendix D. SQL Conformance

Identifier Package Description Comment
M023 Foreign data wrapper

interface routines in
Pascal

M024 Foreign data wrapper
interface routines in
PL/I

M030 SQL-server foreign data
support

M031 Foreign data wrapper
general routines

X012 Multisets of XML type

X013 Distinct types of XML
type

X014 Attributes of XML type

X015 Fields of XML type

X025 XMLCast

X030 XMLDocument

X038 XMLText

X065 XMLParse: BLOB input
and CONTENT option

X066 XMLParse: BLOB input
and DOCUMENT
option

X068 XMLSerialize: BOM

X069 XMLSerialize:
INDENT

X073 XMLSerialize: BLOB
serialization and
CONTENT option

X074 XMLSerialize: BLOB
serialization and
DOCUMENT option

X075 XMLSerialize: BLOB
serialization

X076 XMLSerialize:
VERSION

X077 XMLSerialize: explicit
ENCODING option

X078 XMLSerialize: explicit
XML declaration

X080 Namespaces in XML
publishing

2040

Appendix D. SQL Conformance

Identifier Package Description Comment
X081 Query-level XML

namespace declarations

X082 XML namespace
declarations in DML

X083 XML namespace
declarations in DDL

X084 XML namespace
declarations in
compound statements

X085 Predefined namespace
prefixes

X086 XML namespace
declarations in
XMLTable

X091 XML content predicate

X096 XMLExists

X100 Host language support
for XML: CONTENT
option

X101 Host language support
for XML: DOCUMENT
option

X110 Host language support
for XML: VARCHAR
mapping

X111 Host language support
for XML: CLOB
mapping

X112 Host language support
for XML: BLOB
mapping

X113 Host language support
for XML: STRIP
WHITESPACE option

X114 Host language support
for XML: PRESERVE
WHITESPACE option

X131 Query-level
XMLBINARY clause

X132 XMLBINARY clause in
DML

X133 XMLBINARY clause in
DDL

2041

Appendix D. SQL Conformance

Identifier Package Description Comment
X134 XMLBINARY clause in

compound statements

X135 XMLBINARY clause in
subqueries

X141 IS VALID predicate:
data-driven case

X142 IS VALID predicate:
ACCORDING TO
clause

X143 IS VALID predicate:
ELEMENT clause

X144 IS VALID predicate:
schema location

X145 IS VALID predicate
outside check
constraints

X151 IS VALID predicate
with DOCUMENT
option

X152 IS VALID predicate
with CONTENT option

X153 IS VALID predicate
with SEQUENCE
option

X155 IS VALID predicate:
NAMESPACE without
ELEMENT clause

X157 IS VALID predicate:
NO NAMESPACE with
ELEMENT clause

X160 Basic Information
Schema for registered
XML Schemas

X161 Advanced Information
Schema for registered
XML Schemas

X170 XML null handling
options

X171 NIL ON NO
CONTENT option

X181 XML(DOCUMENT(UNTYPED))
type

2042

Appendix D. SQL Conformance

Identifier Package Description Comment
X182 XML(DOCUMENT(ANY))

type

X190 XML(SEQUENCE)
type

X191 XML(DOCUMENT(XMLSCHEMA))
type

X192 XML(CONTENT(XMLSCHEMA))
type

X200 XMLQuery

X201 XMLQuery:
RETURNING
CONTENT

X202 XMLQuery:
RETURNING
SEQUENCE

X203 XMLQuery: passing a
context item

X204 XMLQuery: initializing
an XQuery variable

X205 XMLQuery: EMPTY
ON EMPTY option

X206 XMLQuery: NULL ON
EMPTY option

X211 XML 1.1 support

X221 XML passing
mechanism BY VALUE

X222 XML passing
mechanism BY REF

X231 XML(CONTENT(UNTYPED))
type

X232 XML(CONTENT(ANY))
type

X241 RETURNING
CONTENT in XML
publishing

X242 RETURNING
SEQUENCE in XML
publishing

X251 Persistent XML values
of
XML(DOCUMENT(UNTYPED))
type

2043

Appendix D. SQL Conformance

Identifier Package Description Comment
X252 Persistent XML values

of
XML(DOCUMENT(ANY))
type

X253 Persistent XML values
of
XML(CONTENT(UNTYPED))
type

X254 Persistent XML values
of
XML(CONTENT(ANY))
type

X255 Persistent XML values
of XML(SEQUENCE)
type

X256 Persistent XML values
of
XML(DOCUMENT(XMLSCHEMA))
type

X257 Persistent XML values
of
XML(CONTENT(XMLSCHEMA))
type

X260 XML type: ELEMENT
clause

X261 XML type:
NAMESPACE without
ELEMENT clause

X263 XML type: NO
NAMESPACE with
ELEMENT clause

X264 XML type: schema
location

X271 XMLValidate:
data-driven case

X272 XMLValidate:
ACCORDING TO
clause

X273 XMLValidate:
ELEMENT clause

X274 XMLValidate: schema
location

X281 XMLValidate: with
DOCUMENT option

2044

Appendix D. SQL Conformance

Identifier Package Description Comment
X282 XMLValidate with

CONTENT option

X283 XMLValidate with
SEQUENCE option

X284 XMLValidate
NAMESPACE without
ELEMENT clause

X286 XMLValidate: NO
NAMESPACE with
ELEMENT clause

X300 XMLTable

X301 XMLTable: derived
column list option

X302 XMLTable: ordinality
column option

X303 XMLTable: column
default option

X304 XMLTable: passing a
context item

X305 XMLTable: initializing
an XQuery variable

2045

Appendix E. Release Notes
The release notes contain the significant changes in each PostgreSQL release, with major features and
migration issues listed at the top. The release notes do not contain changes that affect only a few users or
changes that are internal and therefore not user-visible. For example, the optimizer is improved in almost
every release, but the improvements are usually observed by users as simply faster queries.

A complete list of changes for each release can be obtained by viewing the Git logs for each release. The
pgsql-committers email list1 records all source code changes as well. There is also a web interface2

that shows changes to specific files.

The name appearing next to each item represents the major developer for that item. Of course all changes
involve community discussion and patch review, so each item is truly a community effort.

E.1. Release 9.2.7

Release Date: 2014-02-20

This release contains a variety of fixes from 9.2.6. For information about new features in the 9.2 major
release, see Section E.8.

E.1.1. Migration to Version 9.2.7
A dump/restore is not required for those running 9.2.X.

However, if you are upgrading from a version earlier than 9.2.6, see Section E.2.

E.1.2. Changes

• Shore up GRANT ... WITH ADMIN OPTION restrictions (Noah Misch)

Granting a role without ADMIN OPTION is supposed to prevent the grantee from adding or removing
members from the granted role, but this restriction was easily bypassed by doing SET ROLE first. The
security impact is mostly that a role member can revoke the access of others, contrary to the wishes
of his grantor. Unapproved role member additions are a lesser concern, since an uncooperative role
member could provide most of his rights to others anyway by creating views or SECURITY DEFINER

functions. (CVE-2014-0060)

• Prevent privilege escalation via manual calls to PL validator functions (Andres Freund)

1. http://archives.postgresql.org/pgsql-committers/
2. http://git.postgresql.org/gitweb?p=postgresql.git;a=summary

2046

Appendix E. Release Notes

The primary role of PL validator functions is to be called implicitly during CREATE FUNCTION, but they
are also normal SQL functions that a user can call explicitly. Calling a validator on a function actually
written in some other language was not checked for and could be exploited for privilege-escalation
purposes. The fix involves adding a call to a privilege-checking function in each validator function.
Non-core procedural languages will also need to make this change to their own validator functions, if
any. (CVE-2014-0061)

• Avoid multiple name lookups during table and index DDL (Robert Haas, Andres Freund)

If the name lookups come to different conclusions due to concurrent activity, we might perform some
parts of the DDL on a different table than other parts. At least in the case of CREATE INDEX, this can be
used to cause the permissions checks to be performed against a different table than the index creation,
allowing for a privilege escalation attack. (CVE-2014-0062)

• Prevent buffer overrun with long datetime strings (Noah Misch)

The MAXDATELEN constant was too small for the longest possible value of type interval, allowing a
buffer overrun in interval_out(). Although the datetime input functions were more careful about
avoiding buffer overrun, the limit was short enough to cause them to reject some valid inputs, such
as input containing a very long timezone name. The ecpg library contained these vulnerabilities along
with some of its own. (CVE-2014-0063)

• Prevent buffer overrun due to integer overflow in size calculations (Noah Misch, Heikki Linnakangas)

Several functions, mostly type input functions, calculated an allocation size without checking for over-
flow. If overflow did occur, a too-small buffer would be allocated and then written past. (CVE-2014-
0064)

• Prevent overruns of fixed-size buffers (Peter Eisentraut, Jozef Mlich)

Use strlcpy() and related functions to provide a clear guarantee that fixed-size buffers are not over-
run. Unlike the preceding items, it is unclear whether these cases really represent live issues, since in
most cases there appear to be previous constraints on the size of the input string. Nonetheless it seems
prudent to silence all Coverity warnings of this type. (CVE-2014-0065)

• Avoid crashing if crypt() returns NULL (Honza Horak, Bruce Momjian)

There are relatively few scenarios in which crypt() could return NULL, but contrib/chkpass
would crash if it did. One practical case in which this could be an issue is if libc is configured to refuse
to execute unapproved hashing algorithms (e.g., “FIPS mode”). (CVE-2014-0066)

• Document risks of make check in the regression testing instructions (Noah Misch, Tom Lane)

Since the temporary server started by make check uses “trust” authentication, another user on the
same machine could connect to it as database superuser, and then potentially exploit the privileges of
the operating-system user who started the tests. A future release will probably incorporate changes in
the testing procedure to prevent this risk, but some public discussion is needed first. So for the moment,
just warn people against using make check when there are untrusted users on the same machine.
(CVE-2014-0067)

• Fix possible mis-replay of WAL records when some segments of a relation aren’t full size (Greg Stark,
Tom Lane)

The WAL update could be applied to the wrong page, potentially many pages past where it should have
been. Aside from corrupting data, this error has been observed to result in significant “bloat” of standby
servers compared to their masters, due to updates being applied far beyond where the end-of-file should

2047

Appendix E. Release Notes

have been. This failure mode does not appear to be a significant risk during crash recovery, only when
initially synchronizing a standby created from a base backup taken from a quickly-changing master.

• Fix bug in determining when recovery has reached consistency (Tomonari Katsumata, Heikki Lin-
nakangas)

In some cases WAL replay would mistakenly conclude that the database was already consistent at the
start of replay, thus possibly allowing hot-standby queries before the database was really consistent.
Other symptoms such as “PANIC: WAL contains references to invalid pages” were also possible.

• Fix improper locking of btree index pages while replaying a VACUUM operation in hot-standby mode
(Andres Freund, Heikki Linnakangas, Tom Lane)

This error could result in “PANIC: WAL contains references to invalid pages” failures.

• Ensure that insertions into non-leaf GIN index pages write a full-page WAL record when appropriate
(Heikki Linnakangas)

The previous coding risked index corruption in the event of a partial-page write during a system crash.

• When pause_at_recovery_target and recovery_target_inclusive are both set, ensure the
target record is applied before pausing, not after (Heikki Linnakangas)

• Fix race conditions during server process exit (Robert Haas)

Ensure that signal handlers don’t attempt to use the process’s MyProc pointer after it’s no longer valid.

• Fix race conditions in walsender shutdown logic and walreceiver SIGHUP signal handler (Tom Lane)

• Fix unsafe references to errno within error reporting logic (Christian Kruse)

This would typically lead to odd behaviors such as missing or inappropriate HINT fields.

• Fix possible crashes from using ereport() too early during server startup (Tom Lane)

The principal case we’ve seen in the field is a crash if the server is started in a directory it doesn’t have
permission to read.

• Clear retry flags properly in OpenSSL socket write function (Alexander Kukushkin)

This omission could result in a server lockup after unexpected loss of an SSL-encrypted connection.

• Fix length checking for Unicode identifiers (U&"..." syntax) containing escapes (Tom Lane)

A spurious truncation warning would be printed for such identifiers if the escaped form of the identifier
was too long, but the identifier actually didn’t need truncation after de-escaping.

• Allow keywords that are type names to be used in lists of roles (Stephen Frost)

A previous patch allowed such keywords to be used without quoting in places such as role identifiers;
but it missed cases where a list of role identifiers was permitted, such as DROP ROLE.

• Fix parser crash for EXISTS(SELECT * FROM zero_column_table) (Tom Lane)

• Fix possible crash due to invalid plan for nested sub-selects, such as WHERE (... x IN (SELECT

...) ...) IN (SELECT ...) (Tom Lane)

• Fix UPDATE/DELETE of an inherited target table that has UNION ALL subqueries (Tom Lane)

Without this fix, UNION ALL subqueries aren’t correctly inserted into the update plans for inheritance
child tables after the first one, typically resulting in no update happening for those child table(s).

2048

Appendix E. Release Notes

• Ensure that ANALYZE creates statistics for a table column even when all the values in it are “too wide”
(Tom Lane)

ANALYZE intentionally omits very wide values from its histogram and most-common-values calcula-
tions, but it neglected to do something sane in the case that all the sampled entries are too wide.

• In ALTER TABLE ... SET TABLESPACE, allow the database’s default tablespace to be used without
a permissions check (Stephen Frost)

CREATE TABLE has always allowed such usage, but ALTER TABLE didn’t get the memo.

• Fix “cannot accept a set” error when some arms of a CASE return a set and others don’t (Tom Lane)

• Properly distinguish numbers from non-numbers when generating JSON output (Andrew Dunstan)

• Fix checks for all-zero client addresses in pgstat functions (Kevin Grittner)

• Fix possible misclassification of multibyte characters by the text search parser (Tom Lane)

Non-ASCII characters could be misclassified when using C locale with a multibyte encoding. On Cyg-
win, non-C locales could fail as well.

• Fix possible misbehavior in plainto_tsquery() (Heikki Linnakangas)

Use memmove() not memcpy() for copying overlapping memory regions. There have been no field
reports of this actually causing trouble, but it’s certainly risky.

• Fix placement of permissions checks in pg_start_backup() and pg_stop_backup() (Andres Fre-
und, Magnus Hagander)

The previous coding might attempt to do catalog access when it shouldn’t.

• Accept SHIFT_JIS as an encoding name for locale checking purposes (Tatsuo Ishii)

• Fix *-qualification of named parameters in SQL-language functions (Tom Lane)

Given a composite-type parameter named foo, $1.* worked fine, but foo.* not so much.

• Fix misbehavior of PQhost() on Windows (Fujii Masao)

It should return localhost if no host has been specified.

• Improve error handling in libpq and psql for failures during COPY TO STDOUT/FROM STDIN (Tom
Lane)

In particular this fixes an infinite loop that could occur in 9.2 and up if the server connection was lost
during COPY FROM STDIN. Variants of that scenario might be possible in older versions, or with other
client applications.

• Fix incorrect translation handling in some psql \d commands (Peter Eisentraut, Tom Lane)

• Ensure pg_basebackup’s background process is killed when exiting its foreground process (Magnus
Hagander)

• Fix possible incorrect printing of filenames in pg_basebackup’s verbose mode (Magnus Hagander)

• Avoid including tablespaces inside PGDATA twice in base backups (Dimitri Fontaine, Magnus Hagan-
der)

• Fix misaligned descriptors in ecpg (MauMau)

• In ecpg, handle lack of a hostname in the connection parameters properly (Michael Meskes)

2049

Appendix E. Release Notes

• Fix performance regression in contrib/dblink connection startup (Joe Conway)

Avoid an unnecessary round trip when client and server encodings match.

• In contrib/isn, fix incorrect calculation of the check digit for ISMN values (Fabien Coelho)

• Fix contrib/pg_stat_statement’s handling of CURRENT_DATE and related constructs (Kyotaro
Horiguchi)

• Ensure client-code-only installation procedure works as documented (Peter Eisentraut)

• In Mingw and Cygwin builds, install the libpq DLL in the bin directory (Andrew Dunstan)

This duplicates what the MSVC build has long done. It should fix problems with programs like psql
failing to start because they can’t find the DLL.

• Avoid using the deprecated dllwrap tool in Cygwin builds (Marco Atzeri)

• Don’t generate plain-text HISTORY and src/test/regress/README files anymore (Tom Lane)

These text files duplicated the main HTML and PDF documentation formats. The trouble involved
in maintaining them greatly outweighs the likely audience for plain-text format. Distribution tarballs
will still contain files by these names, but they’ll just be stubs directing the reader to consult the main
documentation. The plain-text INSTALL file will still be maintained, as there is arguably a use-case for
that.

• Update time zone data files to tzdata release 2013i for DST law changes in Jordan and historical changes
in Cuba.

In addition, the zones Asia/Riyadh87, Asia/Riyadh88, and Asia/Riyadh89 have been removed,
as they are no longer maintained by IANA, and never represented actual civil timekeeping practice.

E.2. Release 9.2.6

Release Date: 2013-12-05

This release contains a variety of fixes from 9.2.5. For information about new features in the 9.2 major
release, see Section E.8.

E.2.1. Migration to Version 9.2.6
A dump/restore is not required for those running 9.2.X.

However, this release corrects a number of potential data corruption issues. See the first two changelog
entries below to find out whether your installation has been affected and what steps you can take if so.

Also, if you are upgrading from a version earlier than 9.2.4, see Section E.4.

2050

Appendix E. Release Notes

E.2.2. Changes

• Fix VACUUM’s tests to see whether it can update relfrozenxid (Andres Freund)

In some cases VACUUM (either manual or autovacuum) could incorrectly advance a table’s
relfrozenxid value, allowing tuples to escape freezing, causing those rows to become invisible
once 2^31 transactions have elapsed. The probability of data loss is fairly low since multiple incorrect
advancements would need to happen before actual loss occurs, but it’s not zero. In 9.2.0 and later, the
probability of loss is higher, and it’s also possible to get “could not access status of transaction” errors
as a consequence of this bug. Users upgrading from releases 9.0.4 or 8.4.8 or earlier are not affected,
but all later versions contain the bug.

The issue can be ameliorated by, after upgrading, vacuuming all tables in all databases while having
vacuum_freeze_table_age set to zero. This will fix any latent corruption but will not be able to
fix all pre-existing data errors. However, an installation can be presumed safe after performing this
vacuuming if it has executed fewer than 2^31 update transactions in its lifetime (check this with SELECT
txid_current() < 2^31).

• Fix initialization of pg_clog and pg_subtrans during hot standby startup (Andres Freund, Heikki
Linnakangas)

This bug can cause data loss on standby servers at the moment they start to accept hot-standby queries,
by marking committed transactions as uncommitted. The likelihood of such corruption is small unless,
at the time of standby startup, the primary server has executed many updating transactions since its last
checkpoint. Symptoms include missing rows, rows that should have been deleted being still visible, and
obsolete versions of updated rows being still visible alongside their newer versions.

This bug was introduced in versions 9.3.0, 9.2.5, 9.1.10, and 9.0.14. Standby servers that have only
been running earlier releases are not at risk. It’s recommended that standby servers that have ever run
any of the buggy releases be re-cloned from the primary (e.g., with a new base backup) after upgrading.

• Fix dangling-pointer problem in fast-path locking (Tom Lane)

This could lead to corruption of the lock data structures in shared memory, causing “lock already held”
and other odd errors.

• Truncate pg_multixact contents during WAL replay (Andres Freund)

This avoids ever-increasing disk space consumption in standby servers.

• Ensure an anti-wraparound VACUUM counts a page as scanned when it’s only verified that no tuples need
freezing (Sergey Burladyan, Jeff Janes)

This bug could result in failing to advance relfrozenxid, so that the table would still be thought to
need another anti-wraparound vacuum. In the worst case the database might even shut down to prevent
wraparound.

• Fix race condition in GIN index posting tree page deletion (Heikki Linnakangas)

This could lead to transient wrong answers or query failures.

• Fix “unexpected spgdoinsert() failure” error during SP-GiST index creation (Teodor Sigaev)

• Avoid flattening a subquery whose SELECT list contains a volatile function wrapped inside a sub-
SELECT (Tom Lane)

This avoids unexpected results due to extra evaluations of the volatile function.

2051

Appendix E. Release Notes

• Fix planner’s processing of non-simple-variable subquery outputs nested within outer joins (Tom Lane)

This error could lead to incorrect plans for queries involving multiple levels of subqueries within JOIN

syntax.

• Fix incorrect planning in cases where the same non-strict expression appears in multiple WHERE and
outer JOIN equality clauses (Tom Lane)

• Fix planner crash with whole-row reference to a subquery (Tom Lane)

• Fix incorrect generation of optimized MIN()/MAX() plans for inheritance trees (Tom Lane)

The planner could fail in cases where the MIN()/MAX() argument was an expression rather than a
simple variable.

• Fix premature deletion of temporary files (Andres Freund)

• Prevent intra-transaction memory leak when printing range values (Tom Lane)

This fix actually cures transient memory leaks in any datatype output function, but range types are the
only ones known to have had a significant problem.

• Prevent incorrect display of dropped columns in NOT NULL and CHECK constraint violation messages
(Michael Paquier and Tom Lane)

• Allow default arguments and named-argument notation for window functions (Tom Lane)

Previously, these cases were likely to crash.

• Fix possible read past end of memory in rule printing (Peter Eisentraut)

• Fix array slicing of int2vector and oidvector values (Tom Lane)

Expressions of this kind are now implicitly promoted to regular int2 or oid arrays.

• Fix incorrect behaviors when using a SQL-standard, simple GMT offset timezone (Tom Lane)

In some cases, the system would use the simple GMT offset value when it should have used the regular
timezone setting that had prevailed before the simple offset was selected. This change also causes the
timeofday function to honor the simple GMT offset zone.

• Prevent possible misbehavior when logging translations of Windows error codes (Tom Lane)

• Properly quote generated command lines in pg_ctl (Naoya Anzai and Tom Lane)

This fix applies only to Windows.

• Fix pg_dumpall to work when a source database sets default_transaction_read_only via ALTER
DATABASE SET (Kevin Grittner)

Previously, the generated script would fail during restore.

• Make ecpg search for quoted cursor names case-sensitively (Zoltán Böszörményi)

• Fix ecpg’s processing of lists of variables declared varchar (Zoltán Böszörményi)

• Make contrib/lo defend against incorrect trigger definitions (Marc Cousin)

• Update time zone data files to tzdata release 2013h for DST law changes in Argentina, Brazil, Jordan,
Libya, Liechtenstein, Morocco, and Palestine. Also, new timezone abbreviations WIB, WIT, WITA for
Indonesia.

2052

Appendix E. Release Notes

E.3. Release 9.2.5

Release Date: 2013-10-10

This release contains a variety of fixes from 9.2.4. For information about new features in the 9.2 major
release, see Section E.8.

E.3.1. Migration to Version 9.2.5
A dump/restore is not required for those running 9.2.X.

However, if you are upgrading from a version earlier than 9.2.4, see Section E.4.

E.3.2. Changes

• Prevent corruption of multi-byte characters when attempting to case-fold identifiers (Andrew Dunstan)

PostgreSQL case-folds non-ASCII characters only when using a single-byte server encoding.

• Fix memory leak when creating B-tree indexes on range columns (Heikki Linnakangas)

• Fix checkpoint memory leak in background writer when wal_level = hot_standby (Naoya Anzai)

• Fix memory leak caused by lo_open() failure (Heikki Linnakangas)

• Fix memory overcommit bug when work_mem is using more than 24GB of memory (Stephen Frost)

• Serializable snapshot fixes (Kevin Grittner, Heikki Linnakangas)

• Fix deadlock bug in libpq when using SSL (Stephen Frost)

• Fix possible SSL state corruption in threaded libpq applications (Nick Phillips, Stephen Frost)

• Improve estimate of planner cost when choosing between generic and custom plans (Tom Lane)

This change will favor generic plans when planning cost is high.

• Properly compute row estimates for boolean columns containing many NULL values (Andrew Gierth)

Previously tests like col IS NOT TRUE and col IS NOT FALSE did not properly factor in NULL
values when estimating plan costs.

• Fix accounting for qualifier evaluation costs in UNION ALL and inheritance queries (Tom Lane)

This fixes cases where suboptimal query plans could be chosen if some WHERE clauses are expensive to
calculate.

• Prevent pushing down WHERE clauses into unsafe UNION/INTERSECT subqueries (Tom Lane)

Subqueries of a UNION or INTERSECT that contain set-returning functions or volatile functions in their
SELECT lists could be improperly optimized, leading to run-time errors or incorrect query results.

• Fix rare case of “failed to locate grouping columns” planner failure (Tom Lane)

• Fix pg_dump of foreign tables with dropped columns (Andrew Dunstan)

2053

Appendix E. Release Notes

Previously such cases could cause a pg_upgrade error.

• Reorder pg_dump processing of extension-related rules and event triggers (Joe Conway)

• Force dumping of extension tables if specified by pg_dump -t or -n (Joe Conway)

• Improve view dumping code’s handling of dropped columns in referenced tables (Tom Lane)

• Fix pg_restore -l with the directory archive to display the correct format name (Fujii Masao)

• Properly record index comments created using UNIQUE and PRIMARY KEY syntax (Andres Freund)

This fixes a parallel pg_restore failure.

• Cause pg_basebackup -x with an empty xlog directory to throw an error rather than crashing (Mag-
nus Hagander, Haruka Takatsuka)

• Properly guarantee transmission of WAL files before clean switchover (Fujii Masao)

Previously, the streaming replication connection might close before all WAL files had been replayed on
the standby.

• Fix WAL segment timeline handling during recovery (Mitsumasa Kondo, Heikki Linnakangas)

WAL file recycling during standby recovery could lead to premature recovery completion, resulting in
data loss.

• Fix REINDEX TABLE and REINDEX DATABASE to properly revalidate constraints and mark invalidated
indexes as valid (Noah Misch)

REINDEX INDEX has always worked properly.

• Avoid deadlocks during insertion into SP-GiST indexes (Teodor Sigaev)

• Fix possible deadlock during concurrent CREATE INDEX CONCURRENTLY operations (Tom Lane)

• Fix GiST index lookup crash (Tom Lane)

• Fix regexp_matches() handling of zero-length matches (Jeevan Chalke)

Previously, zero-length matches like ’^’ could return too many matches.

• Fix crash for overly-complex regular expressions (Heikki Linnakangas)

• Fix regular expression match failures for back references combined with non-greedy quantifiers (Jeevan
Chalke)

• Prevent CREATE FUNCTION from checking SET variables unless function body checking is enabled
(Tom Lane)

• Allow ALTER DEFAULT PRIVILEGES to operate on schemas without requiring CREATE permission
(Tom Lane)

• Loosen restriction on keywords used in queries (Tom Lane)

Specifically, lessen keyword restrictions for role names, language names, EXPLAIN and COPY options,
and SET values. This allows COPY ... (FORMAT BINARY) to work as expected; previously BINARY

needed to be quoted.

• Print proper line number during COPY failure (Heikki Linnakangas)

• Fix pgp_pub_decrypt() so it works for secret keys with passwords (Marko Kreen)

2054

Appendix E. Release Notes

• Make pg_upgrade use pg_dump --quote-all-identifiers to avoid problems with keyword
changes between releases (Tom Lane)

• Remove rare inaccurate warning during vacuum of index-less tables (Heikki Linnakangas)

• Ensure that VACUUM ANALYZE still runs the ANALYZE phase if its attempt to truncate the file is can-
celled due to lock conflicts (Kevin Grittner)

• Avoid possible failure when performing transaction control commands (e.g ROLLBACK) in prepared
queries (Tom Lane)

• Ensure that floating-point data input accepts standard spellings of “infinity” on all platforms (Tom Lane)

The C99 standard says that allowable spellings are inf, +inf, -inf, infinity, +infinity, and
-infinity. Make sure we recognize these even if the platform’s strtod function doesn’t.

• Avoid unnecessary reporting when track_activities is off (Tom Lane)

• Expand ability to compare rows to records and arrays (Rafal Rzepecki, Tom Lane)

• Prevent crash when psql’s PSQLRC variable contains a tilde (Bruce Momjian)

• Add spinlock support for ARM64 (Mark Salter)

• Update time zone data files to tzdata release 2013d for DST law changes in Israel, Morocco, Palestine,
and Paraguay. Also, historical zone data corrections for Macquarie Island.

E.4. Release 9.2.4

Release Date: 2013-04-04

This release contains a variety of fixes from 9.2.3. For information about new features in the 9.2 major
release, see Section E.8.

E.4.1. Migration to Version 9.2.4
A dump/restore is not required for those running 9.2.X.

However, this release corrects several errors in management of GiST indexes. After installing this update,
it is advisable to REINDEX any GiST indexes that meet one or more of the conditions described below.

Also, if you are upgrading from a version earlier than 9.2.2, see Section E.6.

E.4.2. Changes

• Fix insecure parsing of server command-line switches (Mitsumasa Kondo, Kyotaro Horiguchi)

2055

Appendix E. Release Notes

A connection request containing a database name that begins with “-” could be crafted to damage or
destroy files within the server’s data directory, even if the request is eventually rejected. (CVE-2013-
1899)

• Reset OpenSSL randomness state in each postmaster child process (Marko Kreen)

This avoids a scenario wherein random numbers generated by contrib/pgcrypto functions might
be relatively easy for another database user to guess. The risk is only significant when the postmaster is
configured with ssl = on but most connections don’t use SSL encryption. (CVE-2013-1900)

• Make REPLICATION privilege checks test current user not authenticated user (Noah Misch)

An unprivileged database user could exploit this mistake to call pg_start_backup() or
pg_stop_backup(), thus possibly interfering with creation of routine backups. (CVE-2013-1901)

• Fix GiST indexes to not use “fuzzy” geometric comparisons when it’s not appropriate to do so (Alexan-
der Korotkov)

The core geometric types perform comparisons using “fuzzy” equality, but gist_box_same must do
exact comparisons, else GiST indexes using it might become inconsistent. After installing this update,
users should REINDEX any GiST indexes on box, polygon, circle, or point columns, since all of
these use gist_box_same.

• Fix erroneous range-union and penalty logic in GiST indexes that use contrib/btree_gist for
variable-width data types, that is text, bytea, bit, and numeric columns (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in useless index bloat. Users are advised to REINDEX such indexes after
installing this update.

• Fix bugs in GiST page splitting code for multi-column indexes (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in indexes that are unnecessarily inefficient to search. Users are advised to
REINDEX multi-column GiST indexes after installing this update.

• Fix gist_point_consistent to handle fuzziness consistently (Alexander Korotkov)

Index scans on GiST indexes on point columns would sometimes yield results different from a se-
quential scan, because gist_point_consistent disagreed with the underlying operator code about
whether to do comparisons exactly or fuzzily.

• Fix buffer leak in WAL replay (Heikki Linnakangas)

This bug could result in “incorrect local pin count” errors during replay, making recovery impossible.

• Ensure we do crash recovery before entering archive recovery, if the database was not stopped cleanly
and a recovery.conf file is present (Heikki Linnakangas, Kyotaro Horiguchi, Mitsumasa Kondo)

This is needed to ensure that the database is consistent in certain scenarios, such as initializing a standby
server with a filesystem snapshot from a running server.

• Avoid deleting not-yet-archived WAL files during crash recovery (Heikki Linnakangas, Fujii Masao)

• Fix race condition in DELETE RETURNING (Tom Lane)

Under the right circumstances, DELETE RETURNING could attempt to fetch data from a shared buffer
that the current process no longer has any pin on. If some other process changed the buffer meanwhile,
this would lead to garbage RETURNING output, or even a crash.

2056

Appendix E. Release Notes

• Fix infinite-loop risk in regular expression compilation (Tom Lane, Don Porter)

• Fix potential null-pointer dereference in regular expression compilation (Tom Lane)

• Fix to_char() to use ASCII-only case-folding rules where appropriate (Tom Lane)

This fixes misbehavior of some template patterns that should be locale-independent, but mishandled
“I” and “i” in Turkish locales.

• Fix unwanted rejection of timestamp 1999-12-31 24:00:00 (Tom Lane)

• Fix SQL-language functions to be safely usable as support functions for range types (Tom Lane)

• Fix logic error when a single transaction does UNLISTEN then LISTEN (Tom Lane)

The session wound up not listening for notify events at all, though it surely should listen in this case.

• Fix possible planner crash after columns have been added to a view that’s depended on by another view
(Tom Lane)

• Fix performance issue in EXPLAIN (ANALYZE, TIMING OFF) (Pavel Stehule)

• Remove useless “picksplit doesn’t support secondary split” log messages (Josh Hansen, Tom Lane)

This message seems to have been added in expectation of code that was never written, and probably
never will be, since GiST’s default handling of secondary splits is actually pretty good. So stop nagging
end users about it.

• Remove vestigial secondary-split support in gist_box_picksplit() (Tom Lane)

Not only was this implementation of secondary-split not better than the default implementation, it’s
actually worse. So remove it and let the default code path handle the case.

• Fix possible failure to send a session’s last few transaction commit/abort counts to the statistics collector
(Tom Lane)

• Eliminate memory leaks in PL/Perl’s spi_prepare() function (Alex Hunsaker, Tom Lane)

• Fix pg_dumpall to handle database names containing “=” correctly (Heikki Linnakangas)

• Avoid crash in pg_dump when an incorrect connection string is given (Heikki Linnakangas)

• Ignore invalid indexes in pg_dump and pg_upgrade (Michael Paquier, Bruce Momjian)

Dumping invalid indexes can cause problems at restore time, for example if the reason the index creation
failed was because it tried to enforce a uniqueness condition not satisfied by the table’s data. Also, if the
index creation is in fact still in progress, it seems reasonable to consider it to be an uncommitted DDL
change, which pg_dump wouldn’t be expected to dump anyway. pg_upgrade now also skips invalid
indexes rather than failing.

• In pg_basebackup, include only the current server version’s subdirectory when backing up a tablespace
(Heikki Linnakangas)

• Add a server version check in pg_basebackup and pg_receivexlog, so they fail cleanly with version
combinations that won’t work (Heikki Linnakangas)

• Fix contrib/dblink to handle inconsistent settings of DateStyle or IntervalStyle safely
(Daniel Farina, Tom Lane)

Previously, if the remote server had different settings of these parameters, ambiguous dates might be
read incorrectly. This fix ensures that datetime and interval columns fetched by a dblink query will be

2057

Appendix E. Release Notes

interpreted correctly. Note however that inconsistent settings are still risky, since literal values appearing
in SQL commands sent to the remote server might be interpreted differently than they would be locally.

• Fix contrib/pg_trgm’s similarity() function to return zero for trigram-less strings (Tom Lane)

Previously it returned NaN due to internal division by zero.

• Enable building PostgreSQL with Microsoft Visual Studio 2012 (Brar Piening, Noah Misch)

• Update time zone data files to tzdata release 2013b for DST law changes in Chile, Haiti, Morocco,
Paraguay, and some Russian areas. Also, historical zone data corrections for numerous places.

Also, update the time zone abbreviation files for recent changes in Russia and elsewhere: CHOT, GET,
IRKT, KGT, KRAT, MAGT, MAWT, MSK, NOVT, OMST, TKT, VLAT, WST, YAKT, YEKT now follow their
current meanings, and VOLT (Europe/Volgograd) and MIST (Antarctica/Macquarie) are added to the
default abbreviations list.

E.5. Release 9.2.3

Release Date: 2013-02-07

This release contains a variety of fixes from 9.2.2. For information about new features in the 9.2 major
release, see Section E.8.

E.5.1. Migration to Version 9.2.3
A dump/restore is not required for those running 9.2.X.

However, if you are upgrading from a version earlier than 9.2.2, see Section E.6.

E.5.2. Changes

• Prevent execution of enum_recv from SQL (Tom Lane)

The function was misdeclared, allowing a simple SQL command to crash the server. In principle an
attacker might be able to use it to examine the contents of server memory. Our thanks to Sumit Soni
(via Secunia SVCRP) for reporting this issue. (CVE-2013-0255)

• Fix multiple problems in detection of when a consistent database state has been reached during WAL
replay (Fujii Masao, Heikki Linnakangas, Simon Riggs, Andres Freund)

• Fix detection of end-of-backup point when no actual redo work is required (Heikki Linnakangas)

This mistake could result in incorrect “WAL ends before end of online backup” errors.

• Update minimum recovery point when truncating a relation file (Heikki Linnakangas)

Once data has been discarded, it’s no longer safe to stop recovery at an earlier point in the timeline.

2058

Appendix E. Release Notes

• Fix recycling of WAL segments after changing recovery target timeline (Heikki Linnakangas)

• Properly restore timeline history files from archive on cascading standby servers (Heikki Linnakangas)

• Fix lock conflict detection on hot-standby servers (Andres Freund, Robert Haas)

• Fix missing cancellations in hot standby mode (Noah Misch, Simon Riggs)

The need to cancel conflicting hot-standby queries would sometimes be missed, allowing those queries
to see inconsistent data.

• Prevent recovery pause feature from pausing before users can connect (Tom Lane)

• Fix SQL grammar to allow subscripting or field selection from a sub-SELECT result (Tom Lane)

• Fix performance problems with autovacuum truncation in busy workloads (Jan Wieck)

Truncation of empty pages at the end of a table requires exclusive lock, but autovacuum was coded to
fail (and release the table lock) when there are conflicting lock requests. Under load, it is easily possi-
ble that truncation would never occur, resulting in table bloat. Fix by performing a partial truncation,
releasing the lock, then attempting to re-acquire the lock and continue. This fix also greatly reduces the
average time before autovacuum releases the lock after a conflicting request arrives.

• Improve performance of SPI_execute and related functions, thereby improving PL/pgSQL’s
EXECUTE (Heikki Linnakangas, Tom Lane)

Remove some data-copying overhead that was added in 9.2 as a consequence of revisions in the plan
caching mechanism. This eliminates a performance regression compared to 9.1, and also saves memory,
especially when the query string to be executed contains many SQL statements.

A side benefit is that multi-statement query strings are now processed fully serially, that is we complete
execution of earlier statements before running parse analysis and planning on the following ones. This
eliminates a long-standing issue, in that DDL that should affect the behavior of a later statement will
now behave as expected.

• Restore pre-9.2 cost estimates for index usage (Tom Lane)

An ill-considered change of a fudge factor led to undesirably high cost estimates for use of very large
indexes.

• Fix intermittent crash in DROP INDEX CONCURRENTLY (Tom Lane)

• Fix potential corruption of shared-memory lock table during CREATE/DROP INDEX CONCURRENTLY

(Tom Lane)

• Fix COPY’s multiple-tuple-insertion code for the case of a tuple larger than page size minus fillfactor
(Heikki Linnakangas)

The previous coding could get into an infinite loop.

• Protect against race conditions when scanning pg_tablespace (Stephen Frost, Tom Lane)

CREATE DATABASE and DROP DATABASE could misbehave if there were concurrent updates of
pg_tablespace entries.

• Prevent DROP OWNED from trying to drop whole databases or tablespaces (Álvaro Herrera)

For safety, ownership of these objects must be reassigned, not dropped.

• Fix error in vacuum_freeze_table_age implementation (Andres Freund)

2059

Appendix E. Release Notes

In installations that have existed for more than vacuum_freeze_min_age transactions, this mistake
prevented autovacuum from using partial-table scans, so that a full-table scan would always happen
instead.

• Prevent misbehavior when a RowExpr or XmlExpr is parse-analyzed twice (Andres Freund, Tom Lane)

This mistake could be user-visible in contexts such as CREATE TABLE LIKE INCLUDING INDEXES.

• Improve defenses against integer overflow in hashtable sizing calculations (Jeff Davis)

• Fix some bugs associated with privileges on datatypes (Tom Lane)

There were some issues with default privileges for types, and pg_dump failed to dump such privileges
at all.

• Fix failure to ignore leftover temporary tables after a server crash (Tom Lane)

• Fix failure to rotate postmaster log files for size reasons on Windows (Jeff Janes, Heikki Linnakangas)

• Reject out-of-range dates in to_date() (Hitoshi Harada)

• Fix pg_extension_config_dump() to handle extension-update cases properly (Tom Lane)

This function will now replace any existing entry for the target table, making it usable in extension
update scripts.

• Fix PL/pgSQL’s reporting of plan-time errors in possibly-simple expressions (Tom Lane)

The previous coding resulted in sometimes omitting the first line in the CONTEXT traceback for the
error.

• Fix PL/Python’s handling of functions used as triggers on multiple tables (Andres Freund)

• Ensure that non-ASCII prompt strings are translated to the correct code page on Windows (Alexander
Law, Noah Misch)

This bug affected psql and some other client programs.

• Fix possible crash in psql’s \? command when not connected to a database (Meng Qingzhong)

• Fix possible error if a relation file is removed while pg_basebackup is running (Heikki Linnakangas)

• Tolerate timeline switches while pg_basebackup -X fetch is backing up a standby server (Heikki
Linnakangas)

• Make pg_dump exclude data of unlogged tables when running on a hot-standby server (Magnus Ha-
gander)

This would fail anyway because the data is not available on the standby server, so it seems most conve-
nient to assume --no-unlogged-table-data automatically.

• Fix pg_upgrade to deal with invalid indexes safely (Bruce Momjian)

• Fix pg_upgrade’s -O/-o options (Marti Raudsepp)

• Fix one-byte buffer overrun in libpq’s PQprintTuples (Xi Wang)

This ancient function is not used anywhere by PostgreSQL itself, but it might still be used by some
client code.

• Make ecpglib use translated messages properly (Chen Huajun)

• Properly install ecpg_compat and pgtypes libraries on MSVC (Jiang Guiqing)

2060

Appendix E. Release Notes

• Include our version of isinf() in libecpg if it’s not provided by the system (Jiang Guiqing)

• Rearrange configure’s tests for supplied functions so it is not fooled by bogus exports from
libedit/libreadline (Christoph Berg)

• Ensure Windows build number increases over time (Magnus Hagander)

• Make pgxs build executables with the right .exe suffix when cross-compiling for Windows (Zoltan
Boszormenyi)

• Add new timezone abbreviation FET (Tom Lane)

This is now used in some eastern-European time zones.

E.6. Release 9.2.2

Release Date: 2012-12-06

This release contains a variety of fixes from 9.2.1. For information about new features in the 9.2 major
release, see Section E.8.

E.6.1. Migration to Version 9.2.2
A dump/restore is not required for those running 9.2.X.

However, you may need to perform REINDEX operations to correct problems in concurrently-built indexes,
as described in the first changelog item below.

Also, if you are upgrading from version 9.2.0, see Section E.7.

E.6.2. Changes

• Fix multiple bugs associated with CREATE/DROP INDEX CONCURRENTLY (Andres Freund, Tom Lane,
Simon Riggs, Pavan Deolasee)

An error introduced while adding DROP INDEX CONCURRENTLY allowed incorrect indexing decisions
to be made during the initial phase of CREATE INDEX CONCURRENTLY; so that indexes built by
that command could be corrupt. It is recommended that indexes built in 9.2.X with CREATE INDEX

CONCURRENTLY be rebuilt after applying this update.

In addition, fix CREATE/DROP INDEX CONCURRENTLY to use in-place updates when changing the
state of an index’s pg_index row. This prevents race conditions that could cause concurrent sessions
to miss updating the target index, thus again resulting in corrupt concurrently-created indexes.

Also, fix various other operations to ensure that they ignore invalid indexes resulting from a failed
CREATE INDEX CONCURRENTLY command. The most important of these is VACUUM, because an auto-

2061

Appendix E. Release Notes

vacuum could easily be launched on the table before corrective action can be taken to fix or remove the
invalid index.

Also fix DROP INDEX CONCURRENTLY to not disable insertions into the target index until all queries
using it are done.

Also fix misbehavior if DROP INDEX CONCURRENTLY is canceled: the previous coding could leave an
un-droppable index behind.

• Correct predicate locking for DROP INDEX CONCURRENTLY (Kevin Grittner)

Previously, SSI predicate locks were processed at the wrong time, possibly leading to incorrect behavior
of serializable transactions executing in parallel with the DROP.

• Fix buffer locking during WAL replay (Tom Lane)

The WAL replay code was insufficiently careful about locking buffers when replaying WAL records
that affect more than one page. This could result in hot standby queries transiently seeing inconsistent
states, resulting in wrong answers or unexpected failures.

• Fix an error in WAL generation logic for GIN indexes (Tom Lane)

This could result in index corruption, if a torn-page failure occurred.

• Fix an error in WAL replay logic for SP-GiST indexes (Tom Lane)

This could result in index corruption after a crash, or on a standby server.

• Fix incorrect detection of end-of-base-backup location during WAL recovery (Heikki Linnakangas)

This mistake allowed hot standby mode to start up before the database reaches a consistent state.

• Properly remove startup process’s virtual XID lock when promoting a hot standby server to normal
running (Simon Riggs)

This oversight could prevent subsequent execution of certain operations such as CREATE INDEX

CONCURRENTLY.

• Avoid bogus “out-of-sequence timeline ID” errors in standby mode (Heikki Linnakangas)

• Prevent the postmaster from launching new child processes after it’s received a shutdown signal (Tom
Lane)

This mistake could result in shutdown taking longer than it should, or even never completing at all
without additional user action.

• Fix the syslogger process to not fail when log_rotation_age exceeds 2^31 milliseconds (about 25
days) (Tom Lane)

• Fix WaitLatch() to return promptly when the requested timeout expires (Jeff Janes, Tom Lane)

With the previous coding, a steady stream of non-wait-terminating interrupts could delay return from
WaitLatch() indefinitely. This has been shown to be a problem for the autovacuum launcher process,
and might cause trouble elsewhere as well.

• Avoid corruption of internal hash tables when out of memory (Hitoshi Harada)

• Prevent file descriptors for dropped tables from being held open past transaction end (Tom Lane)

This should reduce problems with long-since-dropped tables continuing to occupy disk space.

• Prevent database-wide crash and restart when a new child process is unable to create a pipe for its latch
(Tom Lane)

2062

Appendix E. Release Notes

Although the new process must fail, there is no good reason to force a database-wide restart, so avoid
that. This improves robustness when the kernel is nearly out of file descriptors.

• Avoid planner crash with joins to unflattened subqueries (Tom Lane)

• Fix planning of non-strict equivalence clauses above outer joins (Tom Lane)

The planner could derive incorrect constraints from a clause equating a non-strict construct to some-
thing else, for example WHERE COALESCE(foo, 0) = 0 when foo is coming from the nullable side
of an outer join. 9.2 showed this type of error in more cases than previous releases, but the basic bug
has been there for a long time.

• Fix SELECT DISTINCT with index-optimized MIN/MAX on an inheritance tree (Tom Lane)

The planner would fail with “failed to re-find MinMaxAggInfo record” given this combination of fac-
tors.

• Make sure the planner sees implicit and explicit casts as equivalent for all purposes, except in the
minority of cases where there’s actually a semantic difference (Tom Lane)

• Include join clauses when considering whether partial indexes can be used for a query (Tom Lane)

A strict join clause can be sufficient to establish an x IS NOT NULL predicate, for example. This fixes
a planner regression in 9.2, since previous versions could make comparable deductions.

• Limit growth of planning time when there are many indexable join clauses for the same index (Tom
Lane)

• Improve planner’s ability to prove exclusion constraints from equivalence classes (Tom Lane)

• Fix partial-row matching in hashed subplans to handle cross-type cases correctly (Tom Lane)

This affects multicolumn NOT IN subplans, such as WHERE (a, b) NOT IN (SELECT x, y FROM

...) when for instance b and y are int4 and int8 respectively. This mistake led to wrong answers or
crashes depending on the specific datatypes involved.

• Fix btree mark/restore functions to handle array keys (Tom Lane)

This oversight could result in wrong answers from merge joins whose inner side is an index scan using
an indexed_column = ANY(array) condition.

• Revert patch for taking fewer snapshots (Tom Lane)

The 9.2 change to reduce the number of snapshots taken during query execution led to some anomalous
behaviors not seen in previous releases, because execution would proceed with a snapshot acquired
before locking the tables used by the query. Thus, for example, a query would not be guaranteed to
see updates committed by a preceding transaction even if that transaction had exclusive lock. We’ll
probably revisit this in future releases, but meanwhile put it back the way it was before 9.2.

• Acquire buffer lock when re-fetching the old tuple for an AFTER ROW UPDATE/DELETE trigger (An-
dres Freund)

In very unusual circumstances, this oversight could result in passing incorrect data to a trigger WHEN
condition, or to the precheck logic for a foreign-key enforcement trigger. That could result in a crash,
or in an incorrect decision about whether to fire the trigger.

• Fix ALTER COLUMN TYPE to handle inherited check constraints properly (Pavan Deolasee)

This worked correctly in pre-8.4 releases, and now works correctly in 8.4 and later.

2063

Appendix E. Release Notes

• Fix ALTER EXTENSION SET SCHEMA’s failure to move some subsidiary objects into the new schema
(Álvaro Herrera, Dimitri Fontaine)

• Handle CREATE TABLE AS EXECUTE correctly in extended query protocol (Tom Lane)

• Don’t modify the input parse tree in DROP RULE IF NOT EXISTS and DROP TRIGGER IF NOT

EXISTS (Tom Lane)

This mistake would cause errors if a cached statement of one of these types was re-executed.

• Fix REASSIGN OWNED to handle grants on tablespaces (Álvaro Herrera)

• Ignore incorrect pg_attribute entries for system columns for views (Tom Lane)

Views do not have any system columns. However, we forgot to remove such entries when converting
a table to a view. That’s fixed properly for 9.3 and later, but in previous branches we need to defend
against existing mis-converted views.

• Fix rule printing to dump INSERT INTO table DEFAULT VALUES correctly (Tom Lane)

• Guard against stack overflow when there are too many UNION/INTERSECT/EXCEPT clauses in a query
(Tom Lane)

• Prevent platform-dependent failures when dividing the minimum possible integer value by -1 (Xi Wang,
Tom Lane)

• Fix possible access past end of string in date parsing (Hitoshi Harada)

• Fix failure to advance XID epoch if XID wraparound happens during a checkpoint and wal_level is
hot_standby (Tom Lane, Andres Freund)

While this mistake had no particular impact on PostgreSQL itself, it was bad for applications that rely
on txid_current() and related functions: the TXID value would appear to go backwards.

• Fix pg_terminate_backend() and pg_cancel_backend() to not throw error for a non-existent
target process (Josh Kupershmidt)

This case already worked as intended when called by a superuser, but not so much when called by
ordinary users.

• Fix display of pg_stat_replication.sync_state at a page boundary (Kyotaro Horiguchi)

• Produce an understandable error message if the length of the path name for a Unix-domain socket
exceeds the platform-specific limit (Tom Lane, Andrew Dunstan)

Formerly, this would result in something quite unhelpful, such as “Non-recoverable failure in name
resolution”.

• Fix memory leaks when sending composite column values to the client (Tom Lane)

• Save some cycles by not searching for subtransaction locks at commit (Simon Riggs)

In a transaction holding many exclusive locks, this useless activity could be quite costly.

• Make pg_ctl more robust about reading the postmaster.pid file (Heikki Linnakangas)

This fixes race conditions and possible file descriptor leakage.

• Fix possible crash in psql if incorrectly-encoded data is presented and the client_encoding setting
is a client-only encoding, such as SJIS (Jiang Guiqing)

• Make pg_dump dump SEQUENCE SET items in the data not pre-data section of the archive (Tom Lane)

2064

Appendix E. Release Notes

This fixes an undesirable inconsistency between the meanings of --data-only and
--section=data, and also fixes dumping of sequences that are marked as extension configuration
tables.

• Fix pg_dump’s handling of DROP DATABASE commands in --clean mode (Guillaume Lelarge)

Beginning in 9.2.0, pg_dump --clean would issue a DROP DATABASE command, which was either
useless or dangerous depending on the usage scenario. It no longer does that. This change also fixes
the combination of --clean and --create to work sensibly, i.e., emit DROP DATABASE then CREATE
DATABASE before reconnecting to the target database.

• Fix pg_dump for views with circular dependencies and no relation options (Tom Lane)

The previous fix to dump relation options when a view is involved in a circular dependency didn’t work
right for the case that the view has no options; it emitted ALTER VIEW foo SET () which is invalid
syntax.

• Fix bugs in the restore.sql script emitted by pg_dump in tar output format (Tom Lane)

The script would fail outright on tables whose names include upper-case characters. Also, make the
script capable of restoring data in --inserts mode as well as the regular COPY mode.

• Fix pg_restore to accept POSIX-conformant tar files (Brian Weaver, Tom Lane)

The original coding of pg_dump’s tar output mode produced files that are not fully conformant with
the POSIX standard. This has been corrected for version 9.3. This patch updates previous branches so
that they will accept both the incorrect and the corrected formats, in hopes of avoiding compatibility
problems when 9.3 comes out.

• Fix tar files emitted by pg_basebackup to be POSIX conformant (Brian Weaver, Tom Lane)

• Fix pg_resetxlog to locate postmaster.pid correctly when given a relative path to the data directory
(Tom Lane)

This mistake could lead to pg_resetxlog not noticing that there is an active postmaster using the data
directory.

• Fix libpq’s lo_import() and lo_export() functions to report file I/O errors properly (Tom Lane)

• Fix ecpg’s processing of nested structure pointer variables (Muhammad Usama)

• Fix ecpg’s ecpg_get_data function to handle arrays properly (Michael Meskes)

• Prevent pg_upgrade from trying to process TOAST tables for system catalogs (Bruce Momjian)

This fixes an error seen when the information_schema has been dropped and recreated. Other fail-
ures were also possible.

• Improve pg_upgrade performance by setting synchronous_commit to off in the new cluster (Bruce
Momjian)

• Make contrib/pageinspect’s btree page inspection functions take buffer locks while examining
pages (Tom Lane)

• Work around unportable behavior of malloc(0) and realloc(NULL, 0) (Tom Lane)

On platforms where these calls return NULL, some code mistakenly thought that meant out-of-memory.
This is known to have broken pg_dump for databases containing no user-defined aggregates. There
might be other cases as well.

2065

Appendix E. Release Notes

• Ensure that make install for an extension creates the extension installation directory (Cédric
Villemain)

Previously, this step was missed if MODULEDIR was set in the extension’s Makefile.

• Fix pgxs support for building loadable modules on AIX (Tom Lane)

Building modules outside the original source tree didn’t work on AIX.

• Update time zone data files to tzdata release 2012j for DST law changes in Cuba, Israel, Jordan, Libya,
Palestine, Western Samoa, and portions of Brazil.

E.7. Release 9.2.1

Release Date: 2012-09-24

This release contains a variety of fixes from 9.2.0. For information about new features in the 9.2 major
release, see Section E.8.

E.7.1. Migration to Version 9.2.1
A dump/restore is not required for those running 9.2.X.

However, you may need to perform REINDEX and/or VACUUM operations to recover from the effects of the
data corruption bug described in the first changelog item below.

E.7.2. Changes

• Fix persistence marking of shared buffers during WAL replay (Jeff Davis)

This mistake can result in buffers not being written out during checkpoints, resulting in data corruption
if the server later crashes without ever having written those buffers. Corruption can occur on any server
following crash recovery, but it is significantly more likely to occur on standby slave servers since those
perform much more WAL replay. There is a low probability of corruption of btree and GIN indexes.
There is a much higher probability of corruption of table “visibility maps”, which might lead to wrong
answers from index-only scans. Table data proper cannot be corrupted by this bug.

While no index corruption due to this bug is known to have occurred in the field, as a precaution-
ary measure it is recommended that production installations REINDEX all btree and GIN indexes at a
convenient time after upgrading to 9.2.1.

Also, it is recommended to perform a VACUUM of all tables while having vacuum_freeze_table_age
set to zero. This will fix any incorrect visibility map data. vacuum_cost_delay can be adjusted to
reduce the performance impact of vacuuming, while causing it to take longer to finish.

2066

Appendix E. Release Notes

• Fix possible incorrect sorting of output from queries involving WHERE indexed_column IN

(list_of_values) (Tom Lane)

• Fix planner failure for queries involving GROUP BY expressions along with window functions and ag-
gregates (Tom Lane)

• Fix planner’s assignment of executor parameters (Tom Lane)

This error could result in wrong answers from queries that scan the same WITH subquery multiple times.

• Improve planner’s handling of join conditions in index scans (Tom Lane)

• Improve selectivity estimation for text search queries involving prefixes, i.e. word:* patterns (Tom
Lane)

• Fix delayed recognition of permissions changes (Tom Lane)

A command that needed no locks other than ones its transaction already had might fail to notice a
concurrent GRANT or REVOKE that committed since the start of its transaction.

• Fix ANALYZE to not fail when a column is a domain over an array type (Tom Lane)

• Prevent PL/Perl from crashing if a recursive PL/Perl function is redefined while being executed (Tom
Lane)

• Work around possible misoptimization in PL/Perl (Tom Lane)

Some Linux distributions contain an incorrect version of pthread.h that results in incorrect compiled
code in PL/Perl, leading to crashes if a PL/Perl function calls another one that throws an error.

• Remove unnecessary dependency on pg_config from pg_upgrade (Peter Eisentraut)

• Update time zone data files to tzdata release 2012f for DST law changes in Fiji

E.8. Release 9.2

Release Date: 2012-09-10

E.8.1. Overview
This release has been largely focused on performance improvements, though new SQL features are not
lacking. Work also continues in the area of replication support. Major enhancements include:

• Allow queries to retrieve data only from indexes, avoiding heap access (index-only scans)

• Allow the planner to generate custom plans for specific parameter values even when using prepared
statements

• Improve the planner’s ability to use nested loops with inner index scans

• Allow streaming replication slaves to forward data to other slaves (cascading replication)

• Allow pg_basebackup to make base backups from standby servers

2067

Appendix E. Release Notes

• Add a pg_receivexlog tool to archive WAL file changes as they are written

• Add the SP-GiST (Space-Partitioned GiST) index access method

• Add support for range data types

• Add a JSON data type

• Add a security_barrier option for views

• Allow libpq connection strings to have the format of a URI

• Add a single-row processing mode to libpq for better handling of large result sets

The above items are explained in more detail in the sections below.

E.8.2. Migration to Version 9.2
A dump/restore using pg_dump, or use of pg_upgrade, is required for those wishing to migrate data from
any previous release.

Version 9.2 contains a number of changes that may affect compatibility with previous releases. Observe
the following incompatibilities:

E.8.2.1. System Catalogs

• Remove the spclocation field from pg_tablespace (Magnus Hagander)

This field was duplicative of the symbolic links that actually define tablespace locations, and thus risked
errors of omission when moving a tablespace. This change allows tablespace directories to be moved
while the server is down, by manually adjusting the symbolic links. To replace this field, we have added
pg_tablespace_location() to allow querying of the symbolic links.

• Move tsvector most-common-element statistics to new pg_stats columns (Alexander Korotkov)

Consult most_common_elems and most_common_elem_freqs for the data formerly available in
most_common_vals and most_common_freqs for a tsvector column.

E.8.2.2. Functions

• Remove hstore’s => operator (Robert Haas)

Users should now use hstore(text, text). Since PostgreSQL 9.0, a warning message has been
emitted when an operator named => is created because the SQL standard reserves that token for another
use.

• Ensure that xpath() escapes special characters in string values (Florian Pflug)

Without this it is possible for the result not to be valid XML.

• Make pg_relation_size() and friends return NULL if the object does not exist (Phil Sorber)

This prevents queries that call these functions from returning errors immediately after a concurrent
DROP.

2068

Appendix E. Release Notes

• Make EXTRACT(EPOCH FROM timestamp without time zone) measure the epoch from local mid-
night, not UTC midnight (Tom Lane)

This change reverts an ill-considered change made in release 7.3. Measuring from UTC midnight was
inconsistent because it made the result dependent on the timezone setting, which computations for
timestamp without time zone should not be. The previous behavior remains available by casting
the input value to timestamp with time zone.

• Properly parse time strings with trailing yesterday, today, and tomorrow (Dean Rasheed)

Previously, SELECT ’04:00:00 yesterday’::timestamp returned yesterday’s date at midnight.

• Fix to_date() and to_timestamp() to wrap incomplete dates toward 2020 (Bruce Momjian)

Previously, supplied years and year masks of less than four digits wrapped inconsistently.

E.8.2.3. Object Modification

• Prevent ALTER DOMAIN from working on non-domain types (Peter Eisentraut)

Owner and schema changes were previously possible on non-domain types.

• No longer forcibly lowercase procedural language names in CREATE FUNCTION (Robert Haas)

While unquoted language identifiers are still lowercased, strings and quoted identifiers are no longer
forcibly down-cased. Thus for example CREATE FUNCTION ... LANGUAGE ’C’ will no longer
work; it must be spelled ’c’, or better omit the quotes.

• Change system-generated names of foreign key enforcement triggers (Tom Lane)

This change ensures that the triggers fire in the correct order in some corner cases involving self-
referential foreign key constraints.

E.8.2.4. Command-Line Tools

• Provide consistent backquote, variable expansion, and quoted substring behavior in psql
meta-command arguments (Tom Lane)

Previously, such references were treated oddly when not separated by whitespace from adjacent text.
For example ’FOO’BAR was output as FOO BAR (unexpected insertion of a space) and FOO’BAR’BAZ

was output unchanged (not removing the quotes as most would expect).

• No longer treat clusterdb table names as double-quoted; no longer treat reindexdb table and index names
as double-quoted (Bruce Momjian)

Users must now include double-quotes in the command arguments if quoting is wanted.

• createuser no longer prompts for option settings by default (Peter Eisentraut)

Use --interactive to obtain the old behavior.

• Disable prompting for the user name in dropuser unless --interactive is specified (Peter Eisentraut)

2069

Appendix E. Release Notes

E.8.2.5. Server Settings

• Add server parameters for specifying the locations of server-side SSL files (Peter Eisentraut)

This allows changing the names and locations of the files that were previously hard-coded as
server.crt, server.key, root.crt, and root.crl in the data directory. The server will no
longer examine root.crt or root.crl by default; to load these files, the associated parameters must
be set to non-default values.

• Remove the silent_mode parameter (Heikki Linnakangas)

Similar behavior can be obtained with pg_ctl start -l postmaster.log.

• Remove the wal_sender_delay parameter, as it is no longer needed (Tom Lane)

• Remove the custom_variable_classes parameter (Tom Lane)

The checking provided by this setting was dubious. Now any setting can be prefixed by any class name.

E.8.2.6. Monitoring

• Rename pg_stat_activity.procpid to pid, to match other system tables (Magnus Hagander)

• Create a separate pg_stat_activity column to report process state (Scott Mead, Magnus Hagander)

The previous query and query_start values now remain available for an idle session, allowing
enhanced analysis.

• Rename pg_stat_activity.current_query to query because it is not cleared when the query
completes (Magnus Hagander)

• Change all SQL-level statistics timing values to be float8 columns measured in milliseconds (Tom
Lane)

This change eliminates the designed-in assumption that the values are accurate
to microseconds and no more (since the float8 values can be fractional).
The columns affected are pg_stat_user_functions.total_time,
pg_stat_user_functions.self_time, pg_stat_xact_user_functions.total_time,
and pg_stat_xact_user_functions.self_time. The statistics functions underlying
these columns now also return float8 milliseconds, rather than bigint microseconds.
contrib/pg_stat_statements’ total_time column is now also measured in milliseconds.

E.8.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 9.2 and the previous major
release.

2070

Appendix E. Release Notes

E.8.3.1. Server

E.8.3.1.1. Performance

• Allow queries to retrieve data only from indexes, avoiding heap access (Robert Haas, Ibrar Ahmed,
Heikki Linnakangas, Tom Lane)

This feature is often called index-only scans. Heap access can be skipped for heap pages containing only
tuples that are visible to all sessions, as reported by the visibility map; so the benefit applies mainly to
mostly-static data. The visibility map was made crash-safe as a necessary part of implementing this
feature.

• Add the SP-GiST (Space-Partitioned GiST) index access method (Teodor Sigaev, Oleg Bartunov, Tom
Lane)

SP-GiST is comparable to GiST in flexibility, but supports unbalanced partitioned search structures
rather than balanced trees. For suitable problems, SP-GiST can be faster than GiST in both index build
time and search time.

• Allow group commit to work effectively under heavy load (Peter Geoghegan, Simon Riggs, Heikki
Linnakangas)

Previously, batching of commits became ineffective as the write workload increased, because of internal
lock contention.

• Allow uncontended locks to be managed using a new fast-path lock mechanism (Robert Haas)

• Reduce overhead of creating virtual transaction ID locks (Robert Haas)

• Reduce the overhead of serializable isolation level locks (Dan Ports)

• Improve PowerPC and Itanium spinlock performance (Manabu Ori, Robert Haas, Tom Lane)

• Reduce overhead for shared invalidation cache messages (Robert Haas)

• Move the frequently accessed members of the PGPROC shared memory array to a separate array (Pavan
Deolasee, Heikki Linnakangas, Robert Haas)

• Improve COPY performance by adding tuples to the heap in batches (Heikki Linnakangas)

• Improve GiST index performance for geometric data types by producing better trees with less memory
allocation overhead (Alexander Korotkov)

• Improve GiST index build times (Alexander Korotkov, Heikki Linnakangas)

• Allow hint bits to be set sooner for temporary and unlogged tables (Robert Haas)

• Allow sorting to be performed by inlined, non-SQL-callable comparison functions (Peter Geoghegan,
Robert Haas, Tom Lane)

• Make the number of CLOG buffers scale based on shared_buffers (Robert Haas, Simon Riggs, Tom
Lane)

• Improve performance of buffer pool scans that occur when tables or databases are dropped (Jeff Janes,
Simon Riggs)

• Improve performance of checkpointer’s fsync-request queue when many tables are being dropped or
truncated (Tom Lane)

• Pass the safe number of file descriptors to child processes on Windows (Heikki Linnakangas)

2071

Appendix E. Release Notes

This allows Windows sessions to use more open file descriptors than before.

E.8.3.1.2. Process Management

• Create a dedicated background process to perform checkpoints (Simon Riggs)

Formerly the background writer did both dirty-page writing and checkpointing. Separating this into two
processes allows each goal to be accomplished more predictably.

• Improve asynchronous commit behavior by waking the walwriter sooner (Simon Riggs)

Previously, only wal_writer_delay triggered WAL flushing to disk; now filling a WAL buffer also
triggers WAL writes.

• Allow the bgwriter, walwriter, checkpointer, statistics collector, log collector, and archiver background
processes to sleep more efficiently during periods of inactivity (Peter Geoghegan, Tom Lane)

This series of changes reduces the frequency of process wake-ups when there is nothing to do, dramat-
ically reducing power consumption on idle servers.

E.8.3.1.3. Optimizer

• Allow the planner to generate custom plans for specific parameter values even when using prepared
statements (Tom Lane)

In the past, a prepared statement always had a single “generic” plan that was used for all parameter
values, which was frequently much inferior to the plans used for non-prepared statements containing
explicit constant values. Now, the planner attempts to generate custom plans for specific parameter
values. A generic plan will only be used after custom plans have repeatedly proven to provide no
benefit. This change should eliminate the performance penalties formerly seen from use of prepared
statements (including non-dynamic statements in PL/pgSQL).

• Improve the planner’s ability to use nested loops with inner index scans (Tom Lane)

The new “parameterized path” mechanism allows inner index scans to use values from relations that are
more than one join level up from the scan. This can greatly improve performance in situations where
semantic restrictions (such as outer joins) limit the allowed join orderings.

• Improve the planning API for foreign data wrappers (Etsuro Fujita, Shigeru Hanada, Tom Lane)

Wrappers can now provide multiple access “paths” for their tables, allowing more flexibility in join
planning.

• Recognize self-contradictory restriction clauses for non-table relations (Tom Lane)

This check is only performed when constraint_exclusion is on.

• Allow indexed_col op ANY(ARRAY[...]) conditions to be used in plain index scans and index-
only scans (Tom Lane)

Formerly such conditions could only be used in bitmap index scans.

• Support MIN/MAX index optimizations on boolean columns (Marti Raudsepp)

• Account for set-returning functions in SELECT target lists when setting row count estimates (Tom Lane)

2072

Appendix E. Release Notes

• Fix planner to handle indexes with duplicated columns more reliably (Tom Lane)

• Collect and use element-frequency statistics for arrays (Alexander Korotkov, Tom Lane)

This change improves selectivity estimation for the array <@, &&, and @> operators (array containment
and overlaps).

• Allow statistics to be collected for foreign tables (Etsuro Fujita)

• Improve cost estimates for use of partial indexes (Tom Lane)

• Improve the planner’s ability to use statistics for columns referenced in subqueries (Tom Lane)

• Improve statistical estimates for subqueries using DISTINCT (Tom Lane)

E.8.3.1.4. Authentication

• Do not treat role names and samerole specified in pg_hba.conf as automatically including supe-
rusers (Andrew Dunstan)

This makes it easier to use reject lines with group roles.

• Adjust pg_hba.conf processing to handle token parsing more consistently (Brendan Jurd, Álvaro
Herrera)

• Disallow empty pg_hba.conf files (Tom Lane)

This was done to more quickly detect misconfiguration.

• Make superuser privilege imply replication privilege (Noah Misch)

This avoids the need to explicitly assign such privileges.

E.8.3.1.5. Monitoring

• Attempt to log the current query string during a backend crash (Marti Raudsepp)

• Make logging of autovacuum I/O activity more verbose (Greg Smith, Noah Misch)

This logging is triggered by log_autovacuum_min_duration.

• Make WAL replay report failures sooner (Fujii Masao)

There were some cases where failures were only reported once the server went into master mode.

• Add pg_xlog_location_diff() to simplify WAL location comparisons (Euler Taveira de Oliveira)

This is useful for computing replication lag.

• Support configurable event log application names on Windows (MauMau, Magnus Hagander)

This allows different instances to use the event log with different identifiers, by setting the
event_source server parameter, which is similar to how syslog_ident works.

• Change “unexpected EOF” messages to DEBUG1 level, except when there is an open transaction (Mag-
nus Hagander)

This change reduces log chatter caused by applications that close database connections ungracefully.

2073

Appendix E. Release Notes

E.8.3.1.6. Statistical Views

• Track temporary file sizes and file counts in the pg_stat_database system view (Tomas Vondra)

• Add a deadlock counter to the pg_stat_database system view (Magnus Hagander)

• Add a server parameter track_io_timing to track I/O timings (Ants Aasma, Robert Haas)

• Report checkpoint timing information in pg_stat_bgwriter (Greg Smith, Peter Geoghegan)

E.8.3.1.7. Server Settings

• Silently ignore nonexistent schemas specified in search_path (Tom Lane)

This makes it more convenient to use generic path settings, which might include some schemas that
don’t exist in all databases.

• Allow superusers to set deadlock_timeout per-session, not just per-cluster (Noah Misch)

This allows deadlock_timeout to be reduced for transactions that are likely to be involved in a
deadlock, thus detecting the failure more quickly. Alternatively, increasing the value can be used to
reduce the chances of a session being chosen for cancellation due to a deadlock.

• Add a server parameter temp_file_limit to constrain temporary file space usage per session (Mark
Kirkwood)

• Allow a superuser to SET an extension’s superuser-only custom variable before loading the associated
extension (Tom Lane)

The system now remembers whether a SET was performed by a superuser, so that proper privilege
checking can be done when the extension is loaded.

• Add postmaster -C option to query configuration parameters (Bruce Momjian)

This allows pg_ctl to better handle cases where PGDATA or -D points to a configuration-only directory.

• Replace an empty locale name with the implied value in CREATE DATABASE (Tom Lane)

This prevents cases where pg_database.datcollate or datctype could be interpreted differently
after a server restart.

E.8.3.1.7.1. postgresql.conf

• Allow multiple errors in postgresql.conf to be reported, rather than just the first one (Alexey
Klyukin, Tom Lane)

• Allow a reload of postgresql.conf to be processed by all sessions, even if there are some settings
that are invalid for particular sessions (Alexey Klyukin)

Previously, such not-valid-within-session values would cause all setting changes to be ignored by that
session.

• Add an include_if_exists facility for configuration files (Greg Smith)

This works the same as include, except that an error is not thrown if the file is missing.

2074

Appendix E. Release Notes

• Identify the server time zone during initdb, and set postgresql.conf entries timezone and
log_timezone accordingly (Tom Lane)

This avoids expensive time zone probes during server start.

• Fix pg_settings to report postgresql.conf line numbers on Windows (Tom Lane)

E.8.3.2. Replication and Recovery

• Allow streaming replication slaves to forward data to other slaves (cascading replication) (Fujii Masao)

Previously, only the master server could supply streaming replication log files to standby servers.

• Add new synchronous_commit mode remote_write (Fujii Masao, Simon Riggs)

This mode waits for the standby server to write transaction data to its own operating system, but does
not wait for the data to be flushed to the standby’s disk.

• Add a pg_receivexlog tool to archive WAL file changes as they are written, rather than waiting for
completed WAL files (Magnus Hagander)

• Allow pg_basebackup to make base backups from standby servers (Jun Ishizuka, Fujii Masao)

This feature lets the work of making new base backups be off-loaded from the primary server.

• Allow streaming of WAL files while pg_basebackup is performing a backup (Magnus Hagander)

This allows passing of WAL files to the standby before they are discarded on the primary.

E.8.3.3. Queries

• Cancel the running query if the client gets disconnected (Florian Pflug)

If the backend detects loss of client connection during a query, it will now cancel the query rather than
attempting to finish it.

• Retain column names at run time for row expressions (Andrew Dunstan, Tom Lane)

This change allows better results when a row value is converted to hstore or json type: the fields of
the resulting value will now have the expected names.

• Improve column labels used for sub-SELECT results (Marti Raudsepp)

Previously, the generic label ?column? was used.

• Improve heuristics for determining the types of unknown values (Tom Lane)

The longstanding rule that an unknown constant might have the same type as the value on the other side
of the operator using it is now applied when considering polymorphic operators, not only for simple
operator matches.

• Warn about creating casts to or from domain types (Robert Haas)

Such casts have no effect.

2075

Appendix E. Release Notes

• When a row fails a CHECK or NOT NULL constraint, show the row’s contents as error detail (Jan Kundrát)

This should make it easier to identify which row is problematic when an insert or update is processing
many rows.

E.8.3.4. Object Manipulation

• Provide more reliable operation during concurrent DDL (Robert Haas, Noah Misch)

This change adds locking that should eliminate “cache lookup failed” errors in many scenarios. Also,
it is no longer possible to add relations to a schema that is being concurrently dropped, a scenario that
formerly led to inconsistent system catalog contents.

• Add CONCURRENTLY option to DROP INDEX (Simon Riggs)

This allows index removal without blocking other sessions.

• Allow foreign data wrappers to have per-column options (Shigeru Hanada)

• Improve pretty-printing of view definitions (Andrew Dunstan)

E.8.3.4.1. Constraints

• Allow CHECK constraints to be declared NOT VALID (Álvaro Herrera)

Adding a NOT VALID constraint does not cause the table to be scanned to verify that existing rows meet
the constraint. Subsequently, newly added or updated rows are checked. Such constraints are ignored
by the planner when considering constraint_exclusion, since it is not certain that all rows meet
the constraint.

The new ALTER TABLE VALIDATE command allows NOT VALID constraints to be checked for exist-
ing rows, after which they are converted into ordinary constraints.

• Allow CHECK constraints to be declared NO INHERIT (Nikhil Sontakke, Alex Hunsaker, Álvaro Her-
rera)

This makes them enforceable only on the parent table, not on child tables.

• Add the ability to rename constraints (Peter Eisentraut)

E.8.3.4.2. ALTER

• Reduce need to rebuild tables and indexes for certain ALTER TABLE ... ALTER COLUMN TYPE opera-
tions (Noah Misch)

Increasing the length limit for a varchar or varbit column, or removing the limit altogether, no
longer requires a table rewrite. Similarly, increasing the allowable precision of a numeric column, or
changing a column from constrained numeric to unconstrained numeric, no longer requires a table
rewrite. Table rewrites are also avoided in similar cases involving the interval, timestamp, and
timestamptz types.

• Avoid having ALTER TABLE revalidate foreign key constraints in some cases where it is not necessary
(Noah Misch)

2076

Appendix E. Release Notes

• Add IF EXISTS options to some ALTER commands (Pavel Stehule)

For example, ALTER FOREIGN TABLE IF EXISTS foo RENAME TO bar.

• Add ALTER FOREIGN DATA WRAPPER ... RENAME and ALTER SERVER ... RENAME (Peter Eisentraut)

• Add ALTER DOMAIN ... RENAME (Peter Eisentraut)

You could already rename domains using ALTER TYPE.

• Throw an error for ALTER DOMAIN ... DROP CONSTRAINT on a nonexistent constraint (Peter Eisen-
traut)

An IF EXISTS option has been added to provide the previous behavior.

E.8.3.4.3. CREATE TABLE

• Allow CREATE TABLE (LIKE ...) from foreign tables, views, and composite types (Peter Eisen-
traut)

For example, this allows a table to be created whose schema matches a view.

• Fix CREATE TABLE (LIKE ...) to avoid index name conflicts when copying index comments (Tom
Lane)

• Fix CREATE TABLE ... AS EXECUTE to handle WITH NO DATA and column name specifications (Tom
Lane)

E.8.3.4.4. Object Permissions

• Add a security_barrier option for views (KaiGai Kohei, Robert Haas)

This option prevents optimizations that might allow view-protected data to be exposed to users, for
example pushing a clause involving an insecure function into the WHERE clause of the view. Such views
can be expected to perform more poorly than ordinary views.

• Add a new LEAKPROOF function attribute to mark functions that can safely be pushed down into
security_barrier views (KaiGai Kohei)

• Add support for privileges on data types (Peter Eisentraut)

This adds support for the SQL-conforming USAGE privilege on types and domains. The intent is to be
able to restrict which users can create dependencies on types, since such dependencies limit the owner’s
ability to alter the type.

• Check for INSERT privileges in SELECT INTO / CREATE TABLE AS (KaiGai Kohei)

Because the object is being created by SELECT INTO or CREATE TABLE AS, the creator would ordi-
narily have insert permissions; but there are corner cases where this is not true, such as when ALTER

DEFAULT PRIVILEGES has removed such permissions.

2077

Appendix E. Release Notes

E.8.3.5. Utility Operations

• Allow VACUUM to more easily skip pages that cannot be locked (Simon Riggs, Robert Haas)

This change should greatly reduce the incidence of VACUUM getting “stuck” waiting for other sessions.

• Make EXPLAIN (BUFFERS) count blocks dirtied and written (Robert Haas)

• Make EXPLAIN ANALYZE report the number of rows rejected by filter steps (Marko Tiikkaja)

• Allow EXPLAIN ANALYZE to avoid timing overhead when time values are not wanted (Tomas Vondra)

This is accomplished by setting the new TIMING option to FALSE.

E.8.3.6. Data Types

• Add support for range data types (Jeff Davis, Tom Lane, Alexander Korotkov)

A range data type stores a lower and upper bound belonging to its base data type. It supports operations
like contains, overlaps, and intersection.

• Add a JSON data type (Robert Haas)

This type stores JSON (JavaScript Object Notation) data with proper validation.

• Add array_to_json() and row_to_json() (Andrew Dunstan)

• Add a SMALLSERIAL data type (Mike Pultz)

This is like SERIAL, except it stores the sequence in a two-byte integer column (int2).

• Allow domains to be declared NOT VALID (Álvaro Herrera)

This option can be set at domain creation time, or via ALTER DOMAIN ... ADD CONSTRAINT ... NOT
VALID. ALTER DOMAIN ... VALIDATE CONSTRAINT fully validates the constraint.

• Support more locale-specific formatting options for the money data type (Tom Lane)

Specifically, honor all the POSIX options for ordering of the value, sign, and currency symbol in mon-
etary output. Also, make sure that the thousands separator is only inserted to the left of the decimal
point, as required by POSIX.

• Add bitwise “and”, “or”, and “not” operators for the macaddr data type (Brendan Jurd)

• Allow xpath() to return a single-element XML array when supplied a scalar value (Florian Pflug)

Previously, it returned an empty array. This change will also cause xpath_exists() to return true,
not false, for such expressions.

• Improve XML error handling to be more robust (Florian Pflug)

E.8.3.7. Functions

• Allow non-superusers to use pg_cancel_backend() and pg_terminate_backend() on other ses-
sions belonging to the same user (Magnus Hagander, Josh Kupershmidt, Dan Farina)

Previously only superusers were allowed to use these functions.

2078

Appendix E. Release Notes

• Allow importing and exporting of transaction snapshots (Joachim Wieland, Tom Lane)

This allows multiple transactions to share identical views of the database state. Snapshots are exported
via pg_export_snapshot() and imported via SET TRANSACTION SNAPSHOT. Only snapshots from
currently-running transactions can be imported.

• Support COLLATION FOR on expressions (Peter Eisentraut)

This returns a string representing the collation of the expression.

• Add pg_opfamily_is_visible() (Josh Kupershmidt)

• Add a numeric variant of pg_size_pretty() for use with pg_xlog_location_diff() (Fujii
Masao)

• Add a pg_trigger_depth() function (Kevin Grittner)

This reports the current trigger call depth.

• Allow string_agg() to process bytea values (Pavel Stehule)

• Fix regular expressions in which a back-reference occurs within a larger quantified subexpression (Tom
Lane)

For example, ^(\w+)(\1)+$. Previous releases did not check that the back-reference actually
matched the first occurrence.

E.8.3.8. Information Schema

• Add information schema views role_udt_grants, udt_privileges, and user_defined_types

(Peter Eisentraut)

• Add composite-type attributes to the information schema element_types view (Peter Eisentraut)

• Implement interval_type columns in the information schema (Peter Eisentraut)

Formerly these columns read as nulls.

• Implement collation-related columns in the information schema attributes, columns, domains,
and element_types views (Peter Eisentraut)

• Implement the with_hierarchy column in the information schema table_privileges view (Peter
Eisentraut)

• Add display of sequence USAGE privileges to information schema (Peter Eisentraut)

• Make the information schema show default privileges (Peter Eisentraut)

Previously, non-empty default permissions were not represented in the views.

E.8.3.9. Server-Side Languages

E.8.3.9.1. PL/pgSQL Server-Side Language

• Allow the PL/pgSQL OPEN cursor command to supply parameters by name (Yeb Havinga)

2079

Appendix E. Release Notes

• Add a GET STACKED DIAGNOSTICS PL/pgSQL command to retrieve exception info (Pavel Stehule)

• Speed up PL/pgSQL array assignment by caching type information (Pavel Stehule)

• Improve performance and memory consumption for long chains of ELSIF clauses (Tom Lane)

• Output the function signature, not just the name, in PL/pgSQL error messages (Pavel Stehule)

E.8.3.9.2. PL/Python Server-Side Language

• Add PL/Python SPI cursor support (Jan Urbanski)

This allows PL/Python to read partial result sets.

• Add result metadata functions to PL/Python (Peter Eisentraut)

Specifically, this adds result object functions .colnames, .coltypes, and .coltypmods.

• Remove support for Python 2.2 (Peter Eisentraut)

E.8.3.9.3. SQL Server-Side Language

• Allow SQL-language functions to reference parameters by name (Matthew Draper)

To use this, simply name the function arguments and then reference the argument names in the SQL
function body.

E.8.3.10. Client Applications

• Add initdb options --auth-local and --auth-host (Peter Eisentraut)

This allows separate control of local and host pg_hba.conf authentication settings. --auth still
controls both.

• Add --replication/--no-replication flags to createuser to control replication permission (Fujii
Masao)

• Add the --if-exists option to dropdb and dropuser (Josh Kupershmidt)

• Give command-line tools the ability to specify the name of the database to connect to, and fall back to
template1 if a postgres database connection fails (Robert Haas)

E.8.3.10.1. psql

• Add a display mode to auto-expand output based on the display width (Peter Eisentraut)

This adds the auto option to the \x command, which switches to the expanded mode when the normal
output would be wider than the screen.

• Allow inclusion of a script file that is named relative to the directory of the file from which it was
invoked (Gurjeet Singh)

2080

Appendix E. Release Notes

This is done with a new command \ir.

• Add support for non-ASCII characters in psql variable names (Tom Lane)

• Add support for major-version-specific .psqlrc files (Bruce Momjian)

psql already supported minor-version-specific .psqlrc files.

• Provide environment variable overrides for psql history and startup file locations (Andrew Dunstan)

PSQL_HISTORY and PSQLRC now determine these file names if set.

• Add a \setenv command to modify the environment variables passed to child processes (Andrew
Dunstan)

• Name psql’s temporary editor files with a .sql extension (Peter Eisentraut)

This allows extension-sensitive editors to select the right mode.

• Allow psql to use zero-byte field and record separators (Peter Eisentraut)

Various shell tools use zero-byte (NUL) separators, e.g. find.

• Make the \timing option report times for failed queries (Magnus Hagander)

Previously times were reported only for successful queries.

• Unify and tighten psql’s treatment of \copy and SQL COPY (Noah Misch)

This fix makes failure behavior more predictable and honors \set ON_ERROR_ROLLBACK.

E.8.3.10.2. Informational Commands

• Make \d on a sequence show the table/column name owning it (Magnus Hagander)

• Show statistics target for columns in \d+ (Magnus Hagander)

• Show role password expiration dates in \du (Fabrízio de Royes Mello)

• Display comments for casts, conversions, domains, and languages (Josh Kupershmidt)

These are included in the output of \dC+, \dc+, \dD+, and \dL respectively.

• Display comments for SQL/MED objects (Josh Kupershmidt)

These are included in the output of \des+, \det+, and \dew+ for foreign servers, foreign tables, and
foreign data wrappers respectively.

• Change \dd to display comments only for object types without their own backslash command (Josh
Kupershmidt)

E.8.3.10.3. Tab Completion

• In psql tab completion, complete SQL keywords in either upper or lower case according to the new
COMP_KEYWORD_CASE setting (Peter Eisentraut)

• Add tab completion support for EXECUTE (Andreas Karlsson)

• Allow tab completion of role references in GRANT/REVOKE (Peter Eisentraut)

2081

Appendix E. Release Notes

• Allow tab completion of file names to supply quotes, when necessary (Noah Misch)

• Change tab completion support for TABLE to also include views (Magnus Hagander)

E.8.3.10.4. pg_dump

• Add an --exclude-table-data option to pg_dump (Andrew Dunstan)

This allows dumping of a table’s definition but not its data, on a per-table basis.

• Add a --section option to pg_dump and pg_restore (Andrew Dunstan)

Valid values are pre-data, data, and post-data. The option can be given more than once to select
two or more sections.

• Make pg_dumpall dump all roles first, then all configuration settings on roles (Phil Sorber)

This allows a role’s configuration settings to mention other roles without generating an error.

• Allow pg_dumpall to avoid errors if the postgres database is missing in the new cluster (Robert Haas)

• Dump foreign server user mappings in user name order (Peter Eisentraut)

This helps produce deterministic dump files.

• Dump operators in a predictable order (Peter Eisentraut)

• Tighten rules for when extension configuration tables are dumped by pg_dump (Tom Lane)

• Make pg_dump emit more useful dependency information (Tom Lane)

The dependency links included in archive-format dumps were formerly of very limited use, because
they frequently referenced objects that appeared nowhere in the dump. Now they represent actual de-
pendencies (possibly indirect) among the dumped objects.

• Improve pg_dump’s performance when dumping many database objects (Tom Lane)

E.8.3.11. libpq

• Allow libpq connection strings to have the format of a URI (Alexander Shulgin)

The syntax begins with postgres://. This can allow applications to avoid implementing their own
parser for URIs representing database connections.

• Add a connection option to disable SSL compression (Laurenz Albe)

This can be used to remove the overhead of SSL compression on fast networks.

• Add a single-row processing mode for better handling of large result sets (Kyotaro Horiguchi, Marko
Kreen)

Previously, libpq always collected the entire query result in memory before passing it back to the appli-
cation.

• Add const qualifiers to the declarations of the functions PQconnectdbParams,
PQconnectStartParams, and PQpingParams (Lionel Elie Mamane)

2082

Appendix E. Release Notes

• Allow the .pgpass file to include escaped characters in the password field (Robert Haas)

• Make library functions use abort() instead of exit() when it is necessary to terminate the process
(Peter Eisentraut)

This choice does not interfere with the normal exit codes used by the program, and generates a signal
that can be caught by the caller.

E.8.3.12. Source Code

• Remove dead ports (Peter Eisentraut)

The following platforms are no longer supported: dgux, nextstep, sunos4, svr4, ultrix4, univel, bsdi.

• Add support for building with MS Visual Studio 2010 (Brar Piening)

• Enable compiling with the MinGW-w64 32-bit compiler (Lars Kanis)

• Install plpgsql.h into include/server during installation (Heikki Linnakangas)

• Improve the latch facility to include detection of postmaster death (Peter Geoghegan, Heikki Linnakan-
gas, Tom Lane)

This eliminates one of the main reasons that background processes formerly had to wake up to poll for
events.

• Use C flexible array members, where supported (Peter Eisentraut)

• Improve the concurrent transaction regression tests (isolationtester) (Noah Misch)

• Modify thread_test to create its test files in the current directory, rather than /tmp (Bruce Momjian)

• Improve flex and bison warning and error reporting (Tom Lane)

• Add memory barrier support (Robert Haas)

This is currently unused.

• Modify pgindent to use a typedef file (Bruce Momjian)

• Add a hook for processing messages due to be sent to the server log (Martin Pihlak)

• Add object access hooks for DROP commands (KaiGai Kohei)

• Centralize DROP handling for some object types (KaiGai Kohei)

• Add a pg_upgrade test suite (Peter Eisentraut)

• Sync regular expression code with TCL 8.5.11 and improve internal processing (Tom Lane)

• Move CRC tables to libpgport, and provide them in a separate include file (Daniel Farina)

• Add options to git_changelog for use in major release note creation (Bruce Momjian)

• Support Linux’s /proc/self/oom_score_adj API (Tom Lane)

2083

Appendix E. Release Notes

E.8.3.13. Additional Modules

• Improve efficiency of dblink by using libpq’s new single-row processing mode (Kyotaro Horiguchi,
Marko Kreen)

This improvement does not apply to dblink_send_query()/dblink_get_result().

• Support force_not_null option in file_fdw (Shigeru Hanada)

• Implement dry-run mode for pg_archivecleanup (Gabriele Bartolini)

This only outputs the names of files to be deleted.

• Add new pgbench switches --unlogged-tables, --tablespace, and --index-tablespace

(Robert Haas)

• Change pg_test_fsync to test for a fixed amount of time, rather than a fixed number of cycles (Bruce
Momjian)

The -o/cycles option was removed, and -s/seconds added.

• Add a pg_test_timing utility to measure clock monotonicity and timing overhead (Ants Aasma, Greg
Smith)

• Add a tcn (triggered change notification) module to generate NOTIFY events on table changes (Kevin
Grittner)

E.8.3.13.1. pg_upgrade

• Adjust pg_upgrade environment variables (Bruce Momjian)

Rename data, bin, and port environment variables to begin with PG, and support
PGPORTOLD/PGPORTNEW, to replace PGPORT.

• Overhaul pg_upgrade logging and failure reporting (Bruce Momjian)

Create four append-only log files, and delete them on success. Add -r/--retain option to uncon-
ditionally retain these files. Also remove pg_upgrade options -g/-G/-l options as unnecessary, and
tighten log file permissions.

• Make pg_upgrade create a script to incrementally generate more accurate optimizer statistics (Bruce
Momjian)

This reduces the time needed to generate minimal cluster statistics after an upgrade.

• Allow pg_upgrade to upgrade an old cluster that does not have a postgres database (Bruce Momjian)

• Allow pg_upgrade to handle cases where some old or new databases are missing, as long as they are
empty (Bruce Momjian)

• Allow pg_upgrade to handle configuration-only directory installations (Bruce Momjian)

• In pg_upgrade, add -o/-O options to pass parameters to the servers (Bruce Momjian)

This is useful for configuration-only directory installs.

• Change pg_upgrade to use port 50432 by default (Bruce Momjian)

This helps avoid unintended client connections during the upgrade.

2084

Appendix E. Release Notes

• Reduce cluster locking in pg_upgrade (Bruce Momjian)

Specifically, only lock the old cluster if link mode is used, and do it right after the schema is restored.

E.8.3.13.2. pg_stat_statements

• Allow pg_stat_statements to aggregate similar queries via SQL text normalization (Peter Geoghegan,
Tom Lane)

Users with applications that use non-parameterized SQL will now be able to monitor query performance
without detailed log analysis.

• Add dirtied and written block counts and read/write times to pg_stat_statements (Robert Haas, Ants
Aasma)

• Prevent pg_stat_statements from double-counting PREPARE and EXECUTE commands (Tom Lane)

E.8.3.13.3. sepgsql

• Support SECURITY LABEL on global objects (KaiGai Kohei, Robert Haas)

Specifically, add security labels to databases, tablespaces, and roles.

• Allow sepgsql to honor database labels (KaiGai Kohei)

• Perform sepgsql permission checks during the creation of various objects (KaiGai Kohei)

• Add sepgsql_setcon() and related functions to control the sepgsql security domain (KaiGai Kohei)

• Add a user space access cache to sepgsql to improve performance (KaiGai Kohei)

E.8.3.14. Documentation

• Add a rule to optionally build HTML documentation using the stylesheet from the website (Magnus
Hagander)

Use gmake STYLE=website draft.

• Improve EXPLAIN documentation (Tom Lane)

• Document that user/database names are preserved with double-quoting by command-line tools like
vacuumdb (Bruce Momjian)

• Document the actual string returned by the client for MD5 authentication (Cyan Ogilvie)

• Deprecate use of GLOBAL and LOCAL in CREATE TEMP TABLE (Noah Misch)

PostgreSQL has long treated these keyword as no-ops, and continues to do so; but in future they might
mean what the SQL standard says they mean, so applications should avoid using them.

2085

Appendix E. Release Notes

E.9. Release 9.1.12

Release Date: 2014-02-20

This release contains a variety of fixes from 9.1.11. For information about new features in the 9.1 major
release, see Section E.21.

E.9.1. Migration to Version 9.1.12
A dump/restore is not required for those running 9.1.X.

However, if you are upgrading from a version earlier than 9.1.11, see Section E.10.

E.9.2. Changes

• Shore up GRANT ... WITH ADMIN OPTION restrictions (Noah Misch)

Granting a role without ADMIN OPTION is supposed to prevent the grantee from adding or removing
members from the granted role, but this restriction was easily bypassed by doing SET ROLE first. The
security impact is mostly that a role member can revoke the access of others, contrary to the wishes
of his grantor. Unapproved role member additions are a lesser concern, since an uncooperative role
member could provide most of his rights to others anyway by creating views or SECURITY DEFINER

functions. (CVE-2014-0060)

• Prevent privilege escalation via manual calls to PL validator functions (Andres Freund)

The primary role of PL validator functions is to be called implicitly during CREATE FUNCTION, but they
are also normal SQL functions that a user can call explicitly. Calling a validator on a function actually
written in some other language was not checked for and could be exploited for privilege-escalation
purposes. The fix involves adding a call to a privilege-checking function in each validator function.
Non-core procedural languages will also need to make this change to their own validator functions, if
any. (CVE-2014-0061)

• Avoid multiple name lookups during table and index DDL (Robert Haas, Andres Freund)

If the name lookups come to different conclusions due to concurrent activity, we might perform some
parts of the DDL on a different table than other parts. At least in the case of CREATE INDEX, this can be
used to cause the permissions checks to be performed against a different table than the index creation,
allowing for a privilege escalation attack. (CVE-2014-0062)

• Prevent buffer overrun with long datetime strings (Noah Misch)

The MAXDATELEN constant was too small for the longest possible value of type interval, allowing a
buffer overrun in interval_out(). Although the datetime input functions were more careful about
avoiding buffer overrun, the limit was short enough to cause them to reject some valid inputs, such
as input containing a very long timezone name. The ecpg library contained these vulnerabilities along
with some of its own. (CVE-2014-0063)

• Prevent buffer overrun due to integer overflow in size calculations (Noah Misch, Heikki Linnakangas)

2086

Appendix E. Release Notes

Several functions, mostly type input functions, calculated an allocation size without checking for over-
flow. If overflow did occur, a too-small buffer would be allocated and then written past. (CVE-2014-
0064)

• Prevent overruns of fixed-size buffers (Peter Eisentraut, Jozef Mlich)

Use strlcpy() and related functions to provide a clear guarantee that fixed-size buffers are not over-
run. Unlike the preceding items, it is unclear whether these cases really represent live issues, since in
most cases there appear to be previous constraints on the size of the input string. Nonetheless it seems
prudent to silence all Coverity warnings of this type. (CVE-2014-0065)

• Avoid crashing if crypt() returns NULL (Honza Horak, Bruce Momjian)

There are relatively few scenarios in which crypt() could return NULL, but contrib/chkpass
would crash if it did. One practical case in which this could be an issue is if libc is configured to refuse
to execute unapproved hashing algorithms (e.g., “FIPS mode”). (CVE-2014-0066)

• Document risks of make check in the regression testing instructions (Noah Misch, Tom Lane)

Since the temporary server started by make check uses “trust” authentication, another user on the
same machine could connect to it as database superuser, and then potentially exploit the privileges of
the operating-system user who started the tests. A future release will probably incorporate changes in
the testing procedure to prevent this risk, but some public discussion is needed first. So for the moment,
just warn people against using make check when there are untrusted users on the same machine.
(CVE-2014-0067)

• Fix possible mis-replay of WAL records when some segments of a relation aren’t full size (Greg Stark,
Tom Lane)

The WAL update could be applied to the wrong page, potentially many pages past where it should have
been. Aside from corrupting data, this error has been observed to result in significant “bloat” of standby
servers compared to their masters, due to updates being applied far beyond where the end-of-file should
have been. This failure mode does not appear to be a significant risk during crash recovery, only when
initially synchronizing a standby created from a base backup taken from a quickly-changing master.

• Fix bug in determining when recovery has reached consistency (Tomonari Katsumata, Heikki Lin-
nakangas)

In some cases WAL replay would mistakenly conclude that the database was already consistent at the
start of replay, thus possibly allowing hot-standby queries before the database was really consistent.
Other symptoms such as “PANIC: WAL contains references to invalid pages” were also possible.

• Fix improper locking of btree index pages while replaying a VACUUM operation in hot-standby mode
(Andres Freund, Heikki Linnakangas, Tom Lane)

This error could result in “PANIC: WAL contains references to invalid pages” failures.

• Ensure that insertions into non-leaf GIN index pages write a full-page WAL record when appropriate
(Heikki Linnakangas)

The previous coding risked index corruption in the event of a partial-page write during a system crash.

• When pause_at_recovery_target and recovery_target_inclusive are both set, ensure the
target record is applied before pausing, not after (Heikki Linnakangas)

• Fix race conditions during server process exit (Robert Haas)

Ensure that signal handlers don’t attempt to use the process’s MyProc pointer after it’s no longer valid.

2087

Appendix E. Release Notes

• Fix race conditions in walsender shutdown logic and walreceiver SIGHUP signal handler (Tom Lane)

• Fix unsafe references to errno within error reporting logic (Christian Kruse)

This would typically lead to odd behaviors such as missing or inappropriate HINT fields.

• Fix possible crashes from using ereport() too early during server startup (Tom Lane)

The principal case we’ve seen in the field is a crash if the server is started in a directory it doesn’t have
permission to read.

• Clear retry flags properly in OpenSSL socket write function (Alexander Kukushkin)

This omission could result in a server lockup after unexpected loss of an SSL-encrypted connection.

• Fix length checking for Unicode identifiers (U&"..." syntax) containing escapes (Tom Lane)

A spurious truncation warning would be printed for such identifiers if the escaped form of the identifier
was too long, but the identifier actually didn’t need truncation after de-escaping.

• Allow keywords that are type names to be used in lists of roles (Stephen Frost)

A previous patch allowed such keywords to be used without quoting in places such as role identifiers;
but it missed cases where a list of role identifiers was permitted, such as DROP ROLE.

• Fix parser crash for EXISTS(SELECT * FROM zero_column_table) (Tom Lane)

• Fix possible crash due to invalid plan for nested sub-selects, such as WHERE (... x IN (SELECT

...) ...) IN (SELECT ...) (Tom Lane)

• Ensure that ANALYZE creates statistics for a table column even when all the values in it are “too wide”
(Tom Lane)

ANALYZE intentionally omits very wide values from its histogram and most-common-values calcula-
tions, but it neglected to do something sane in the case that all the sampled entries are too wide.

• In ALTER TABLE ... SET TABLESPACE, allow the database’s default tablespace to be used without
a permissions check (Stephen Frost)

CREATE TABLE has always allowed such usage, but ALTER TABLE didn’t get the memo.

• Fix “cannot accept a set” error when some arms of a CASE return a set and others don’t (Tom Lane)

• Fix checks for all-zero client addresses in pgstat functions (Kevin Grittner)

• Fix possible misclassification of multibyte characters by the text search parser (Tom Lane)

Non-ASCII characters could be misclassified when using C locale with a multibyte encoding. On Cyg-
win, non-C locales could fail as well.

• Fix possible misbehavior in plainto_tsquery() (Heikki Linnakangas)

Use memmove() not memcpy() for copying overlapping memory regions. There have been no field
reports of this actually causing trouble, but it’s certainly risky.

• Fix placement of permissions checks in pg_start_backup() and pg_stop_backup() (Andres Fre-
und, Magnus Hagander)

The previous coding might attempt to do catalog access when it shouldn’t.

• Accept SHIFT_JIS as an encoding name for locale checking purposes (Tatsuo Ishii)

• Fix misbehavior of PQhost() on Windows (Fujii Masao)

2088

Appendix E. Release Notes

It should return localhost if no host has been specified.

• Improve error handling in libpq and psql for failures during COPY TO STDOUT/FROM STDIN (Tom
Lane)

In particular this fixes an infinite loop that could occur in 9.2 and up if the server connection was lost
during COPY FROM STDIN. Variants of that scenario might be possible in older versions, or with other
client applications.

• Fix possible incorrect printing of filenames in pg_basebackup’s verbose mode (Magnus Hagander)

• Avoid including tablespaces inside PGDATA twice in base backups (Dimitri Fontaine, Magnus Hagan-
der)

• Fix misaligned descriptors in ecpg (MauMau)

• In ecpg, handle lack of a hostname in the connection parameters properly (Michael Meskes)

• Fix performance regression in contrib/dblink connection startup (Joe Conway)

Avoid an unnecessary round trip when client and server encodings match.

• In contrib/isn, fix incorrect calculation of the check digit for ISMN values (Fabien Coelho)

• Ensure client-code-only installation procedure works as documented (Peter Eisentraut)

• In Mingw and Cygwin builds, install the libpq DLL in the bin directory (Andrew Dunstan)

This duplicates what the MSVC build has long done. It should fix problems with programs like psql
failing to start because they can’t find the DLL.

• Avoid using the deprecated dllwrap tool in Cygwin builds (Marco Atzeri)

• Don’t generate plain-text HISTORY and src/test/regress/README files anymore (Tom Lane)

These text files duplicated the main HTML and PDF documentation formats. The trouble involved
in maintaining them greatly outweighs the likely audience for plain-text format. Distribution tarballs
will still contain files by these names, but they’ll just be stubs directing the reader to consult the main
documentation. The plain-text INSTALL file will still be maintained, as there is arguably a use-case for
that.

• Update time zone data files to tzdata release 2013i for DST law changes in Jordan and historical changes
in Cuba.

In addition, the zones Asia/Riyadh87, Asia/Riyadh88, and Asia/Riyadh89 have been removed,
as they are no longer maintained by IANA, and never represented actual civil timekeeping practice.

E.10. Release 9.1.11

Release Date: 2013-12-05

This release contains a variety of fixes from 9.1.10. For information about new features in the 9.1 major
release, see Section E.21.

2089

Appendix E. Release Notes

E.10.1. Migration to Version 9.1.11
A dump/restore is not required for those running 9.1.X.

However, this release corrects a number of potential data corruption issues. See the first two changelog
entries below to find out whether your installation has been affected and what steps you can take if so.

Also, if you are upgrading from a version earlier than 9.1.9, see Section E.12.

E.10.2. Changes

• Fix VACUUM’s tests to see whether it can update relfrozenxid (Andres Freund)

In some cases VACUUM (either manual or autovacuum) could incorrectly advance a table’s
relfrozenxid value, allowing tuples to escape freezing, causing those rows to become invisible
once 2^31 transactions have elapsed. The probability of data loss is fairly low since multiple incorrect
advancements would need to happen before actual loss occurs, but it’s not zero. Users upgrading from
releases 9.0.4 or 8.4.8 or earlier are not affected, but all later versions contain the bug.

The issue can be ameliorated by, after upgrading, vacuuming all tables in all databases while having
vacuum_freeze_table_age set to zero. This will fix any latent corruption but will not be able to
fix all pre-existing data errors. However, an installation can be presumed safe after performing this
vacuuming if it has executed fewer than 2^31 update transactions in its lifetime (check this with SELECT
txid_current() < 2^31).

• Fix initialization of pg_clog and pg_subtrans during hot standby startup (Andres Freund, Heikki
Linnakangas)

This bug can cause data loss on standby servers at the moment they start to accept hot-standby queries,
by marking committed transactions as uncommitted. The likelihood of such corruption is small unless,
at the time of standby startup, the primary server has executed many updating transactions since its last
checkpoint. Symptoms include missing rows, rows that should have been deleted being still visible, and
obsolete versions of updated rows being still visible alongside their newer versions.

This bug was introduced in versions 9.3.0, 9.2.5, 9.1.10, and 9.0.14. Standby servers that have only
been running earlier releases are not at risk. It’s recommended that standby servers that have ever run
any of the buggy releases be re-cloned from the primary (e.g., with a new base backup) after upgrading.

• Truncate pg_multixact contents during WAL replay (Andres Freund)

This avoids ever-increasing disk space consumption in standby servers.

• Fix race condition in GIN index posting tree page deletion (Heikki Linnakangas)

This could lead to transient wrong answers or query failures.

• Avoid flattening a subquery whose SELECT list contains a volatile function wrapped inside a sub-
SELECT (Tom Lane)

This avoids unexpected results due to extra evaluations of the volatile function.

• Fix planner’s processing of non-simple-variable subquery outputs nested within outer joins (Tom Lane)

This error could lead to incorrect plans for queries involving multiple levels of subqueries within JOIN

syntax.

2090

Appendix E. Release Notes

• Fix incorrect generation of optimized MIN()/MAX() plans for inheritance trees (Tom Lane)

The planner could fail in cases where the MIN()/MAX() argument was an expression rather than a
simple variable.

• Fix premature deletion of temporary files (Andres Freund)

• Fix possible read past end of memory in rule printing (Peter Eisentraut)

• Fix array slicing of int2vector and oidvector values (Tom Lane)

Expressions of this kind are now implicitly promoted to regular int2 or oid arrays.

• Fix incorrect behaviors when using a SQL-standard, simple GMT offset timezone (Tom Lane)

In some cases, the system would use the simple GMT offset value when it should have used the regular
timezone setting that had prevailed before the simple offset was selected. This change also causes the
timeofday function to honor the simple GMT offset zone.

• Prevent possible misbehavior when logging translations of Windows error codes (Tom Lane)

• Properly quote generated command lines in pg_ctl (Naoya Anzai and Tom Lane)

This fix applies only to Windows.

• Fix pg_dumpall to work when a source database sets default_transaction_read_only via ALTER
DATABASE SET (Kevin Grittner)

Previously, the generated script would fail during restore.

• Make ecpg search for quoted cursor names case-sensitively (Zoltán Böszörményi)

• Fix ecpg’s processing of lists of variables declared varchar (Zoltán Böszörményi)

• Make contrib/lo defend against incorrect trigger definitions (Marc Cousin)

• Update time zone data files to tzdata release 2013h for DST law changes in Argentina, Brazil, Jordan,
Libya, Liechtenstein, Morocco, and Palestine. Also, new timezone abbreviations WIB, WIT, WITA for
Indonesia.

E.11. Release 9.1.10

Release Date: 2013-10-10

This release contains a variety of fixes from 9.1.9. For information about new features in the 9.1 major
release, see Section E.21.

E.11.1. Migration to Version 9.1.10
A dump/restore is not required for those running 9.1.X.

However, if you are upgrading from a version earlier than 9.1.9, see Section E.12.

2091

Appendix E. Release Notes

E.11.2. Changes

• Prevent corruption of multi-byte characters when attempting to case-fold identifiers (Andrew Dunstan)

PostgreSQL case-folds non-ASCII characters only when using a single-byte server encoding.

• Fix checkpoint memory leak in background writer when wal_level = hot_standby (Naoya Anzai)

• Fix memory leak caused by lo_open() failure (Heikki Linnakangas)

• Fix memory overcommit bug when work_mem is using more than 24GB of memory (Stephen Frost)

• Serializable snapshot fixes (Kevin Grittner, Heikki Linnakangas)

• Fix deadlock bug in libpq when using SSL (Stephen Frost)

• Fix possible SSL state corruption in threaded libpq applications (Nick Phillips, Stephen Frost)

• Properly compute row estimates for boolean columns containing many NULL values (Andrew Gierth)

Previously tests like col IS NOT TRUE and col IS NOT FALSE did not properly factor in NULL
values when estimating plan costs.

• Prevent pushing down WHERE clauses into unsafe UNION/INTERSECT subqueries (Tom Lane)

Subqueries of a UNION or INTERSECT that contain set-returning functions or volatile functions in their
SELECT lists could be improperly optimized, leading to run-time errors or incorrect query results.

• Fix rare case of “failed to locate grouping columns” planner failure (Tom Lane)

• Fix pg_dump of foreign tables with dropped columns (Andrew Dunstan)

Previously such cases could cause a pg_upgrade error.

• Reorder pg_dump processing of extension-related rules and event triggers (Joe Conway)

• Force dumping of extension tables if specified by pg_dump -t or -n (Joe Conway)

• Improve view dumping code’s handling of dropped columns in referenced tables (Tom Lane)

• Fix pg_restore -l with the directory archive to display the correct format name (Fujii Masao)

• Properly record index comments created using UNIQUE and PRIMARY KEY syntax (Andres Freund)

This fixes a parallel pg_restore failure.

• Properly guarantee transmission of WAL files before clean switchover (Fujii Masao)

Previously, the streaming replication connection might close before all WAL files had been replayed on
the standby.

• Fix WAL segment timeline handling during recovery (Mitsumasa Kondo, Heikki Linnakangas)

WAL file recycling during standby recovery could lead to premature recovery completion, resulting in
data loss.

• Fix REINDEX TABLE and REINDEX DATABASE to properly revalidate constraints and mark invalidated
indexes as valid (Noah Misch)

REINDEX INDEX has always worked properly.

• Fix possible deadlock during concurrent CREATE INDEX CONCURRENTLY operations (Tom Lane)

• Fix regexp_matches() handling of zero-length matches (Jeevan Chalke)

2092

Appendix E. Release Notes

Previously, zero-length matches like ’^’ could return too many matches.

• Fix crash for overly-complex regular expressions (Heikki Linnakangas)

• Fix regular expression match failures for back references combined with non-greedy quantifiers (Jeevan
Chalke)

• Prevent CREATE FUNCTION from checking SET variables unless function body checking is enabled
(Tom Lane)

• Allow ALTER DEFAULT PRIVILEGES to operate on schemas without requiring CREATE permission
(Tom Lane)

• Loosen restriction on keywords used in queries (Tom Lane)

Specifically, lessen keyword restrictions for role names, language names, EXPLAIN and COPY options,
and SET values. This allows COPY ... (FORMAT BINARY) to work as expected; previously BINARY

needed to be quoted.

• Fix pgp_pub_decrypt() so it works for secret keys with passwords (Marko Kreen)

• Make pg_upgrade use pg_dump --quote-all-identifiers to avoid problems with keyword
changes between releases (Tom Lane)

• Remove rare inaccurate warning during vacuum of index-less tables (Heikki Linnakangas)

• Ensure that VACUUM ANALYZE still runs the ANALYZE phase if its attempt to truncate the file is can-
celled due to lock conflicts (Kevin Grittner)

• Avoid possible failure when performing transaction control commands (e.g ROLLBACK) in prepared
queries (Tom Lane)

• Ensure that floating-point data input accepts standard spellings of “infinity” on all platforms (Tom Lane)

The C99 standard says that allowable spellings are inf, +inf, -inf, infinity, +infinity, and
-infinity. Make sure we recognize these even if the platform’s strtod function doesn’t.

• Expand ability to compare rows to records and arrays (Rafal Rzepecki, Tom Lane)

• Update time zone data files to tzdata release 2013d for DST law changes in Israel, Morocco, Palestine,
and Paraguay. Also, historical zone data corrections for Macquarie Island.

E.12. Release 9.1.9

Release Date: 2013-04-04

This release contains a variety of fixes from 9.1.8. For information about new features in the 9.1 major
release, see Section E.21.

E.12.1. Migration to Version 9.1.9
A dump/restore is not required for those running 9.1.X.

2093

Appendix E. Release Notes

However, this release corrects several errors in management of GiST indexes. After installing this update,
it is advisable to REINDEX any GiST indexes that meet one or more of the conditions described below.

Also, if you are upgrading from a version earlier than 9.1.6, see Section E.15.

E.12.2. Changes

• Fix insecure parsing of server command-line switches (Mitsumasa Kondo, Kyotaro Horiguchi)

A connection request containing a database name that begins with “-” could be crafted to damage or
destroy files within the server’s data directory, even if the request is eventually rejected. (CVE-2013-
1899)

• Reset OpenSSL randomness state in each postmaster child process (Marko Kreen)

This avoids a scenario wherein random numbers generated by contrib/pgcrypto functions might
be relatively easy for another database user to guess. The risk is only significant when the postmaster is
configured with ssl = on but most connections don’t use SSL encryption. (CVE-2013-1900)

• Make REPLICATION privilege checks test current user not authenticated user (Noah Misch)

An unprivileged database user could exploit this mistake to call pg_start_backup() or
pg_stop_backup(), thus possibly interfering with creation of routine backups. (CVE-2013-1901)

• Fix GiST indexes to not use “fuzzy” geometric comparisons when it’s not appropriate to do so (Alexan-
der Korotkov)

The core geometric types perform comparisons using “fuzzy” equality, but gist_box_same must do
exact comparisons, else GiST indexes using it might become inconsistent. After installing this update,
users should REINDEX any GiST indexes on box, polygon, circle, or point columns, since all of
these use gist_box_same.

• Fix erroneous range-union and penalty logic in GiST indexes that use contrib/btree_gist for
variable-width data types, that is text, bytea, bit, and numeric columns (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in useless index bloat. Users are advised to REINDEX such indexes after
installing this update.

• Fix bugs in GiST page splitting code for multi-column indexes (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in indexes that are unnecessarily inefficient to search. Users are advised to
REINDEX multi-column GiST indexes after installing this update.

• Fix gist_point_consistent to handle fuzziness consistently (Alexander Korotkov)

Index scans on GiST indexes on point columns would sometimes yield results different from a se-
quential scan, because gist_point_consistent disagreed with the underlying operator code about
whether to do comparisons exactly or fuzzily.

• Fix buffer leak in WAL replay (Heikki Linnakangas)

This bug could result in “incorrect local pin count” errors during replay, making recovery impossible.

• Fix race condition in DELETE RETURNING (Tom Lane)

2094

Appendix E. Release Notes

Under the right circumstances, DELETE RETURNING could attempt to fetch data from a shared buffer
that the current process no longer has any pin on. If some other process changed the buffer meanwhile,
this would lead to garbage RETURNING output, or even a crash.

• Fix infinite-loop risk in regular expression compilation (Tom Lane, Don Porter)

• Fix potential null-pointer dereference in regular expression compilation (Tom Lane)

• Fix to_char() to use ASCII-only case-folding rules where appropriate (Tom Lane)

This fixes misbehavior of some template patterns that should be locale-independent, but mishandled
“I” and “i” in Turkish locales.

• Fix unwanted rejection of timestamp 1999-12-31 24:00:00 (Tom Lane)

• Fix logic error when a single transaction does UNLISTEN then LISTEN (Tom Lane)

The session wound up not listening for notify events at all, though it surely should listen in this case.

• Fix possible planner crash after columns have been added to a view that’s depended on by another view
(Tom Lane)

• Remove useless “picksplit doesn’t support secondary split” log messages (Josh Hansen, Tom Lane)

This message seems to have been added in expectation of code that was never written, and probably
never will be, since GiST’s default handling of secondary splits is actually pretty good. So stop nagging
end users about it.

• Fix possible failure to send a session’s last few transaction commit/abort counts to the statistics collector
(Tom Lane)

• Eliminate memory leaks in PL/Perl’s spi_prepare() function (Alex Hunsaker, Tom Lane)

• Fix pg_dumpall to handle database names containing “=” correctly (Heikki Linnakangas)

• Avoid crash in pg_dump when an incorrect connection string is given (Heikki Linnakangas)

• Ignore invalid indexes in pg_dump and pg_upgrade (Michael Paquier, Bruce Momjian)

Dumping invalid indexes can cause problems at restore time, for example if the reason the index creation
failed was because it tried to enforce a uniqueness condition not satisfied by the table’s data. Also, if the
index creation is in fact still in progress, it seems reasonable to consider it to be an uncommitted DDL
change, which pg_dump wouldn’t be expected to dump anyway. pg_upgrade now also skips invalid
indexes rather than failing.

• In pg_basebackup, include only the current server version’s subdirectory when backing up a tablespace
(Heikki Linnakangas)

• Add a server version check in pg_basebackup and pg_receivexlog, so they fail cleanly with version
combinations that won’t work (Heikki Linnakangas)

• Fix contrib/pg_trgm’s similarity() function to return zero for trigram-less strings (Tom Lane)

Previously it returned NaN due to internal division by zero.

• Update time zone data files to tzdata release 2013b for DST law changes in Chile, Haiti, Morocco,
Paraguay, and some Russian areas. Also, historical zone data corrections for numerous places.

Also, update the time zone abbreviation files for recent changes in Russia and elsewhere: CHOT, GET,
IRKT, KGT, KRAT, MAGT, MAWT, MSK, NOVT, OMST, TKT, VLAT, WST, YAKT, YEKT now follow their

2095

Appendix E. Release Notes

current meanings, and VOLT (Europe/Volgograd) and MIST (Antarctica/Macquarie) are added to the
default abbreviations list.

E.13. Release 9.1.8

Release Date: 2013-02-07

This release contains a variety of fixes from 9.1.7. For information about new features in the 9.1 major
release, see Section E.21.

E.13.1. Migration to Version 9.1.8
A dump/restore is not required for those running 9.1.X.

However, if you are upgrading from a version earlier than 9.1.6, see Section E.15.

E.13.2. Changes

• Prevent execution of enum_recv from SQL (Tom Lane)

The function was misdeclared, allowing a simple SQL command to crash the server. In principle an
attacker might be able to use it to examine the contents of server memory. Our thanks to Sumit Soni
(via Secunia SVCRP) for reporting this issue. (CVE-2013-0255)

• Fix multiple problems in detection of when a consistent database state has been reached during WAL
replay (Fujii Masao, Heikki Linnakangas, Simon Riggs, Andres Freund)

• Update minimum recovery point when truncating a relation file (Heikki Linnakangas)

Once data has been discarded, it’s no longer safe to stop recovery at an earlier point in the timeline.

• Fix recycling of WAL segments after changing recovery target timeline (Heikki Linnakangas)

• Fix missing cancellations in hot standby mode (Noah Misch, Simon Riggs)

The need to cancel conflicting hot-standby queries would sometimes be missed, allowing those queries
to see inconsistent data.

• Prevent recovery pause feature from pausing before users can connect (Tom Lane)

• Fix SQL grammar to allow subscripting or field selection from a sub-SELECT result (Tom Lane)

• Fix performance problems with autovacuum truncation in busy workloads (Jan Wieck)

Truncation of empty pages at the end of a table requires exclusive lock, but autovacuum was coded to
fail (and release the table lock) when there are conflicting lock requests. Under load, it is easily possi-
ble that truncation would never occur, resulting in table bloat. Fix by performing a partial truncation,

2096

Appendix E. Release Notes

releasing the lock, then attempting to re-acquire the lock and continue. This fix also greatly reduces the
average time before autovacuum releases the lock after a conflicting request arrives.

• Protect against race conditions when scanning pg_tablespace (Stephen Frost, Tom Lane)

CREATE DATABASE and DROP DATABASE could misbehave if there were concurrent updates of
pg_tablespace entries.

• Prevent DROP OWNED from trying to drop whole databases or tablespaces (Álvaro Herrera)

For safety, ownership of these objects must be reassigned, not dropped.

• Fix error in vacuum_freeze_table_age implementation (Andres Freund)

In installations that have existed for more than vacuum_freeze_min_age transactions, this mistake
prevented autovacuum from using partial-table scans, so that a full-table scan would always happen
instead.

• Prevent misbehavior when a RowExpr or XmlExpr is parse-analyzed twice (Andres Freund, Tom Lane)

This mistake could be user-visible in contexts such as CREATE TABLE LIKE INCLUDING INDEXES.

• Improve defenses against integer overflow in hashtable sizing calculations (Jeff Davis)

• Fix failure to ignore leftover temporary tables after a server crash (Tom Lane)

• Reject out-of-range dates in to_date() (Hitoshi Harada)

• Fix pg_extension_config_dump() to handle extension-update cases properly (Tom Lane)

This function will now replace any existing entry for the target table, making it usable in extension
update scripts.

• Fix PL/Python’s handling of functions used as triggers on multiple tables (Andres Freund)

• Ensure that non-ASCII prompt strings are translated to the correct code page on Windows (Alexander
Law, Noah Misch)

This bug affected psql and some other client programs.

• Fix possible crash in psql’s \? command when not connected to a database (Meng Qingzhong)

• Fix possible error if a relation file is removed while pg_basebackup is running (Heikki Linnakangas)

• Make pg_dump exclude data of unlogged tables when running on a hot-standby server (Magnus Ha-
gander)

This would fail anyway because the data is not available on the standby server, so it seems most conve-
nient to assume --no-unlogged-table-data automatically.

• Fix pg_upgrade to deal with invalid indexes safely (Bruce Momjian)

• Fix one-byte buffer overrun in libpq’s PQprintTuples (Xi Wang)

This ancient function is not used anywhere by PostgreSQL itself, but it might still be used by some
client code.

• Make ecpglib use translated messages properly (Chen Huajun)

• Properly install ecpg_compat and pgtypes libraries on MSVC (Jiang Guiqing)

• Include our version of isinf() in libecpg if it’s not provided by the system (Jiang Guiqing)

2097

Appendix E. Release Notes

• Rearrange configure’s tests for supplied functions so it is not fooled by bogus exports from
libedit/libreadline (Christoph Berg)

• Ensure Windows build number increases over time (Magnus Hagander)

• Make pgxs build executables with the right .exe suffix when cross-compiling for Windows (Zoltan
Boszormenyi)

• Add new timezone abbreviation FET (Tom Lane)

This is now used in some eastern-European time zones.

E.14. Release 9.1.7

Release Date: 2012-12-06

This release contains a variety of fixes from 9.1.6. For information about new features in the 9.1 major
release, see Section E.21.

E.14.1. Migration to Version 9.1.7
A dump/restore is not required for those running 9.1.X.

However, if you are upgrading from a version earlier than 9.1.6, see Section E.15.

E.14.2. Changes

• Fix multiple bugs associated with CREATE INDEX CONCURRENTLY (Andres Freund, Tom Lane)

Fix CREATE INDEX CONCURRENTLY to use in-place updates when changing the state of an index’s
pg_index row. This prevents race conditions that could cause concurrent sessions to miss updating the
target index, thus resulting in corrupt concurrently-created indexes.

Also, fix various other operations to ensure that they ignore invalid indexes resulting from a failed
CREATE INDEX CONCURRENTLY command. The most important of these is VACUUM, because an auto-
vacuum could easily be launched on the table before corrective action can be taken to fix or remove the
invalid index.

• Fix buffer locking during WAL replay (Tom Lane)

The WAL replay code was insufficiently careful about locking buffers when replaying WAL records
that affect more than one page. This could result in hot standby queries transiently seeing inconsistent
states, resulting in wrong answers or unexpected failures.

• Fix an error in WAL generation logic for GIN indexes (Tom Lane)

This could result in index corruption, if a torn-page failure occurred.

2098

Appendix E. Release Notes

• Properly remove startup process’s virtual XID lock when promoting a hot standby server to normal
running (Simon Riggs)

This oversight could prevent subsequent execution of certain operations such as CREATE INDEX

CONCURRENTLY.

• Avoid bogus “out-of-sequence timeline ID” errors in standby mode (Heikki Linnakangas)

• Prevent the postmaster from launching new child processes after it’s received a shutdown signal (Tom
Lane)

This mistake could result in shutdown taking longer than it should, or even never completing at all
without additional user action.

• Avoid corruption of internal hash tables when out of memory (Hitoshi Harada)

• Prevent file descriptors for dropped tables from being held open past transaction end (Tom Lane)

This should reduce problems with long-since-dropped tables continuing to occupy disk space.

• Prevent database-wide crash and restart when a new child process is unable to create a pipe for its latch
(Tom Lane)

Although the new process must fail, there is no good reason to force a database-wide restart, so avoid
that. This improves robustness when the kernel is nearly out of file descriptors.

• Fix planning of non-strict equivalence clauses above outer joins (Tom Lane)

The planner could derive incorrect constraints from a clause equating a non-strict construct to some-
thing else, for example WHERE COALESCE(foo, 0) = 0 when foo is coming from the nullable side
of an outer join.

• Fix SELECT DISTINCT with index-optimized MIN/MAX on an inheritance tree (Tom Lane)

The planner would fail with “failed to re-find MinMaxAggInfo record” given this combination of fac-
tors.

• Improve planner’s ability to prove exclusion constraints from equivalence classes (Tom Lane)

• Fix partial-row matching in hashed subplans to handle cross-type cases correctly (Tom Lane)

This affects multicolumn NOT IN subplans, such as WHERE (a, b) NOT IN (SELECT x, y FROM

...) when for instance b and y are int4 and int8 respectively. This mistake led to wrong answers or
crashes depending on the specific datatypes involved.

• Acquire buffer lock when re-fetching the old tuple for an AFTER ROW UPDATE/DELETE trigger (An-
dres Freund)

In very unusual circumstances, this oversight could result in passing incorrect data to a trigger WHEN
condition, or to the precheck logic for a foreign-key enforcement trigger. That could result in a crash,
or in an incorrect decision about whether to fire the trigger.

• Fix ALTER COLUMN TYPE to handle inherited check constraints properly (Pavan Deolasee)

This worked correctly in pre-8.4 releases, and now works correctly in 8.4 and later.

• Fix ALTER EXTENSION SET SCHEMA’s failure to move some subsidiary objects into the new schema
(Álvaro Herrera, Dimitri Fontaine)

• Fix REASSIGN OWNED to handle grants on tablespaces (Álvaro Herrera)

• Ignore incorrect pg_attribute entries for system columns for views (Tom Lane)

2099

Appendix E. Release Notes

Views do not have any system columns. However, we forgot to remove such entries when converting
a table to a view. That’s fixed properly for 9.3 and later, but in previous branches we need to defend
against existing mis-converted views.

• Fix rule printing to dump INSERT INTO table DEFAULT VALUES correctly (Tom Lane)

• Guard against stack overflow when there are too many UNION/INTERSECT/EXCEPT clauses in a query
(Tom Lane)

• Prevent platform-dependent failures when dividing the minimum possible integer value by -1 (Xi Wang,
Tom Lane)

• Fix possible access past end of string in date parsing (Hitoshi Harada)

• Fix failure to advance XID epoch if XID wraparound happens during a checkpoint and wal_level is
hot_standby (Tom Lane, Andres Freund)

While this mistake had no particular impact on PostgreSQL itself, it was bad for applications that rely
on txid_current() and related functions: the TXID value would appear to go backwards.

• Fix display of pg_stat_replication.sync_state at a page boundary (Kyotaro Horiguchi)

• Produce an understandable error message if the length of the path name for a Unix-domain socket
exceeds the platform-specific limit (Tom Lane, Andrew Dunstan)

Formerly, this would result in something quite unhelpful, such as “Non-recoverable failure in name
resolution”.

• Fix memory leaks when sending composite column values to the client (Tom Lane)

• Make pg_ctl more robust about reading the postmaster.pid file (Heikki Linnakangas)

Fix race conditions and possible file descriptor leakage.

• Fix possible crash in psql if incorrectly-encoded data is presented and the client_encoding setting
is a client-only encoding, such as SJIS (Jiang Guiqing)

• Make pg_dump dump SEQUENCE SET items in the data not pre-data section of the archive (Tom Lane)

This change fixes dumping of sequences that are marked as extension configuration tables.

• Fix bugs in the restore.sql script emitted by pg_dump in tar output format (Tom Lane)

The script would fail outright on tables whose names include upper-case characters. Also, make the
script capable of restoring data in --inserts mode as well as the regular COPY mode.

• Fix pg_restore to accept POSIX-conformant tar files (Brian Weaver, Tom Lane)

The original coding of pg_dump’s tar output mode produced files that are not fully conformant with
the POSIX standard. This has been corrected for version 9.3. This patch updates previous branches so
that they will accept both the incorrect and the corrected formats, in hopes of avoiding compatibility
problems when 9.3 comes out.

• Fix tar files emitted by pg_basebackup to be POSIX conformant (Brian Weaver, Tom Lane)

• Fix pg_resetxlog to locate postmaster.pid correctly when given a relative path to the data directory
(Tom Lane)

This mistake could lead to pg_resetxlog not noticing that there is an active postmaster using the data
directory.

• Fix libpq’s lo_import() and lo_export() functions to report file I/O errors properly (Tom Lane)

2100

Appendix E. Release Notes

• Fix ecpg’s processing of nested structure pointer variables (Muhammad Usama)

• Fix ecpg’s ecpg_get_data function to handle arrays properly (Michael Meskes)

• Make contrib/pageinspect’s btree page inspection functions take buffer locks while examining
pages (Tom Lane)

• Ensure that make install for an extension creates the extension installation directory (Cédric
Villemain)

Previously, this step was missed if MODULEDIR was set in the extension’s Makefile.

• Fix pgxs support for building loadable modules on AIX (Tom Lane)

Building modules outside the original source tree didn’t work on AIX.

• Update time zone data files to tzdata release 2012j for DST law changes in Cuba, Israel, Jordan, Libya,
Palestine, Western Samoa, and portions of Brazil.

E.15. Release 9.1.6

Release Date: 2012-09-24

This release contains a variety of fixes from 9.1.5. For information about new features in the 9.1 major
release, see Section E.21.

E.15.1. Migration to Version 9.1.6
A dump/restore is not required for those running 9.1.X.

However, you may need to perform REINDEX operations to recover from the effects of the data corruption
bug described in the first changelog item below.

Also, if you are upgrading from a version earlier than 9.1.4, see Section E.17.

E.15.2. Changes

• Fix persistence marking of shared buffers during WAL replay (Jeff Davis)

This mistake can result in buffers not being written out during checkpoints, resulting in data corruption
if the server later crashes without ever having written those buffers. Corruption can occur on any server
following crash recovery, but it is significantly more likely to occur on standby slave servers since those
perform much more WAL replay. There is a low probability of corruption of btree and GIN indexes.
There is a much higher probability of corruption of table “visibility maps”. Fortunately, visibility maps
are non-critical data in 9.1, so the worst consequence of such corruption in 9.1 installations is transient
inefficiency of vacuuming. Table data proper cannot be corrupted by this bug.

2101

Appendix E. Release Notes

While no index corruption due to this bug is known to have occurred in the field, as a precaution-
ary measure it is recommended that production installations REINDEX all btree and GIN indexes at a
convenient time after upgrading to 9.1.6.

Also, if you intend to do an in-place upgrade to 9.2.X, before doing so it is recommended to per-
form a VACUUM of all tables while having vacuum_freeze_table_age set to zero. This will en-
sure that any lingering wrong data in the visibility maps is corrected before 9.2.X can depend on it.
vacuum_cost_delay can be adjusted to reduce the performance impact of vacuuming, while causing
it to take longer to finish.

• Fix planner’s assignment of executor parameters, and fix executor’s rescan logic for CTE plan nodes
(Tom Lane)

These errors could result in wrong answers from queries that scan the same WITH subquery multiple
times.

• Fix misbehavior when default_transaction_isolation is set to serializable (Kevin Grittner,
Tom Lane, Heikki Linnakangas)

Symptoms include crashes at process start on Windows, and crashes in hot standby operation.

• Improve selectivity estimation for text search queries involving prefixes, i.e. word:* patterns (Tom
Lane)

• Improve page-splitting decisions in GiST indexes (Alexander Korotkov, Robert Haas, Tom Lane)

Multi-column GiST indexes might suffer unexpected bloat due to this error.

• Fix cascading privilege revoke to stop if privileges are still held (Tom Lane)

If we revoke a grant option from some role X, but X still holds that option via a grant from someone
else, we should not recursively revoke the corresponding privilege from role(s) Y that X had granted it
to.

• Disallow extensions from containing the schema they are assigned to (Thom Brown)

This situation creates circular dependencies that confuse pg_dump and probably other things. It’s con-
fusing for humans too, so disallow it.

• Improve error messages for Hot Standby misconfiguration errors (Gurjeet Singh)

• Make configure probe for mbstowcs_l (Tom Lane)

This fixes build failures on some versions of AIX.

• Fix handling of SIGFPE when PL/Perl is in use (Andres Freund)

Perl resets the process’s SIGFPE handler to SIG_IGN, which could result in crashes later on. Restore
the normal Postgres signal handler after initializing PL/Perl.

• Prevent PL/Perl from crashing if a recursive PL/Perl function is redefined while being executed (Tom
Lane)

• Work around possible misoptimization in PL/Perl (Tom Lane)

Some Linux distributions contain an incorrect version of pthread.h that results in incorrect compiled
code in PL/Perl, leading to crashes if a PL/Perl function calls another one that throws an error.

• Fix bugs in contrib/pg_trgm’s LIKE pattern analysis code (Fujii Masao)

2102

Appendix E. Release Notes

LIKE queries using a trigram index could produce wrong results if the pattern contained LIKE escape
characters.

• Fix pg_upgrade’s handling of line endings on Windows (Andrew Dunstan)

Previously, pg_upgrade might add or remove carriage returns in places such as function bodies.

• On Windows, make pg_upgrade use backslash path separators in the scripts it emits (Andrew Dunstan)

• Remove unnecessary dependency on pg_config from pg_upgrade (Peter Eisentraut)

• Update time zone data files to tzdata release 2012f for DST law changes in Fiji

E.16. Release 9.1.5

Release Date: 2012-08-17

This release contains a variety of fixes from 9.1.4. For information about new features in the 9.1 major
release, see Section E.21.

E.16.1. Migration to Version 9.1.5
A dump/restore is not required for those running 9.1.X.

However, if you are upgrading from a version earlier than 9.1.4, see Section E.17.

E.16.2. Changes

• Prevent access to external files/URLs via XML entity references (Noah Misch, Tom Lane)

xml_parse() would attempt to fetch external files or URLs as needed to resolve DTD and entity
references in an XML value, thus allowing unprivileged database users to attempt to fetch data with
the privileges of the database server. While the external data wouldn’t get returned directly to the user,
portions of it could be exposed in error messages if the data didn’t parse as valid XML; and in any case
the mere ability to check existence of a file might be useful to an attacker. (CVE-2012-3489)

• Prevent access to external files/URLs via contrib/xml2’s xslt_process() (Peter Eisentraut)

libxslt offers the ability to read and write both files and URLs through stylesheet commands, thus
allowing unprivileged database users to both read and write data with the privileges of the database
server. Disable that through proper use of libxslt’s security options. (CVE-2012-3488)

Also, remove xslt_process()’s ability to fetch documents and stylesheets from external files/URLs.
While this was a documented “feature”, it was long regarded as a bad idea. The fix for CVE-2012-3489
broke that capability, and rather than expend effort on trying to fix it, we’re just going to summarily
remove it.

• Prevent too-early recycling of btree index pages (Noah Misch)

2103

Appendix E. Release Notes

When we allowed read-only transactions to skip assigning XIDs, we introduced the possibility that a
deleted btree page could be recycled while a read-only transaction was still in flight to it. This would
result in incorrect index search results. The probability of such an error occurring in the field seems
very low because of the timing requirements, but nonetheless it should be fixed.

• Fix crash-safety bug with newly-created-or-reset sequences (Tom Lane)

If ALTER SEQUENCE was executed on a freshly created or reset sequence, and then precisely one
nextval() call was made on it, and then the server crashed, WAL replay would restore the sequence
to a state in which it appeared that no nextval() had been done, thus allowing the first sequence value
to be returned again by the next nextval() call. In particular this could manifest for serial columns,
since creation of a serial column’s sequence includes an ALTER SEQUENCE OWNED BY step.

• Fix race condition in enum-type value comparisons (Robert Haas, Tom Lane)

Comparisons could fail when encountering an enum value added since the current query started.

• Fix txid_current() to report the correct epoch when not in hot standby (Heikki Linnakangas)

This fixes a regression introduced in the previous minor release.

• Prevent selection of unsuitable replication connections as the synchronous standby (Fujii Masao)

The master might improperly choose pseudo-servers such as pg_receivexlog or pg_basebackup as the
synchronous standby, and then wait indefinitely for them.

• Fix bug in startup of Hot Standby when a master transaction has many subtransactions (Andres Freund)

This mistake led to failures reported as “out-of-order XID insertion in KnownAssignedXids”.

• Ensure the backup_label file is fsync’d after pg_start_backup() (Dave Kerr)

• Fix timeout handling in walsender processes (Tom Lane)

WAL sender background processes neglected to establish a SIGALRM handler, meaning they would
wait forever in some corner cases where a timeout ought to happen.

• Wake walsenders after each background flush by walwriter (Andres Freund, Simon Riggs)

This greatly reduces replication delay when the workload contains only asynchronously-committed
transactions.

• Fix LISTEN/NOTIFY to cope better with I/O problems, such as out of disk space (Tom Lane)

After a write failure, all subsequent attempts to send more NOTIFY messages would fail with messages
like “Could not read from file "pg_notify/nnnn" at offset nnnnn: Success”.

• Only allow autovacuum to be auto-canceled by a directly blocked process (Tom Lane)

The original coding could allow inconsistent behavior in some cases; in particular, an autovacuum could
get canceled after less than deadlock_timeout grace period.

• Improve logging of autovacuum cancels (Robert Haas)

• Fix log collector so that log_truncate_on_rotation works during the very first log rotation after
server start (Tom Lane)

• Fix WITH attached to a nested set operation (UNION/INTERSECT/EXCEPT) (Tom Lane)

• Ensure that a whole-row reference to a subquery doesn’t include any extra GROUP BY or ORDER BY

columns (Tom Lane)

2104

Appendix E. Release Notes

• Fix dependencies generated during ALTER TABLE ... ADD CONSTRAINT USING INDEX (Tom
Lane)

This command left behind a redundant pg_depend entry for the index, which could confuse later
operations, notably ALTER TABLE ... ALTER COLUMN TYPE on one of the indexed columns.

• Fix REASSIGN OWNED to work on extensions (Alvaro Herrera)

• Disallow copying whole-row references in CHECK constraints and index definitions during CREATE

TABLE (Tom Lane)

This situation can arise in CREATE TABLE with LIKE or INHERITS. The copied whole-row variable
was incorrectly labeled with the row type of the original table not the new one. Rejecting the case
seems reasonable for LIKE, since the row types might well diverge later. For INHERITS we should
ideally allow it, with an implicit coercion to the parent table’s row type; but that will require more work
than seems safe to back-patch.

• Fix memory leak in ARRAY(SELECT ...) subqueries (Heikki Linnakangas, Tom Lane)

• Fix planner to pass correct collation to operator selectivity estimators (Tom Lane)

This was not previously required by any core selectivity estimation function, but third-party code might
need it.

• Fix extraction of common prefixes from regular expressions (Tom Lane)

The code could get confused by quantified parenthesized subexpressions, such as ^(foo)?bar. This
would lead to incorrect index optimization of searches for such patterns.

• Fix bugs with parsing signed hh:mm and hh:mm:ss fields in interval constants (Amit Kapila, Tom
Lane)

• Fix pg_dump to better handle views containing partial GROUP BY lists (Tom Lane)

A view that lists only a primary key column in GROUP BY, but uses other table columns as if they
were grouped, gets marked as depending on the primary key. Improper handling of such primary key
dependencies in pg_dump resulted in poorly-ordered dumps, which at best would be inefficient to
restore and at worst could result in outright failure of a parallel pg_restore run.

• In PL/Perl, avoid setting UTF8 flag when in SQL_ASCII encoding (Alex Hunsaker, Kyotaro Horiguchi,
Alvaro Herrera)

• Use Postgres’ encoding conversion functions, not Python’s, when converting a Python Unicode string
to the server encoding in PL/Python (Jan Urbanski)

This avoids some corner-case problems, notably that Python doesn’t support all the encodings Postgres
does. A notable functional change is that if the server encoding is SQL_ASCII, you will get the UTF-8
representation of the string; formerly, any non-ASCII characters in the string would result in an error.

• Fix mapping of PostgreSQL encodings to Python encodings in PL/Python (Jan Urbanski)

• Report errors properly in contrib/xml2’s xslt_process() (Tom Lane)

• Update time zone data files to tzdata release 2012e for DST law changes in Morocco and Tokelau

2105

Appendix E. Release Notes

E.17. Release 9.1.4

Release Date: 2012-06-04

This release contains a variety of fixes from 9.1.3. For information about new features in the 9.1 major
release, see Section E.21.

E.17.1. Migration to Version 9.1.4
A dump/restore is not required for those running 9.1.X.

However, if you use the citext data type, and you upgraded from a previous major release by run-
ning pg_upgrade, you should run CREATE EXTENSION citext FROM unpackaged to avoid collation-
related failures in citext operations. The same is necessary if you restore a dump from a pre-9.1 database
that contains an instance of the citext data type. If you’ve already run the CREATE EXTENSION com-
mand before upgrading to 9.1.4, you will instead need to do manual catalog updates as explained in the
third changelog item below.

Also, if you are upgrading from a version earlier than 9.1.2, see Section E.19.

E.17.2. Changes

• Fix incorrect password transformation in contrib/pgcrypto’s DES crypt() function (Solar De-
signer)

If a password string contained the byte value 0x80, the remainder of the password was ignored, causing
the password to be much weaker than it appeared. With this fix, the rest of the string is properly included
in the DES hash. Any stored password values that are affected by this bug will thus no longer match,
so the stored values may need to be updated. (CVE-2012-2143)

• Ignore SECURITY DEFINER and SET attributes for a procedural language’s call handler (Tom Lane)

Applying such attributes to a call handler could crash the server. (CVE-2012-2655)

• Make contrib/citext’s upgrade script fix collations of citext arrays and domains over citext
(Tom Lane)

Release 9.1.2 provided a fix for collations of citext columns and indexes in databases upgraded
or reloaded from pre-9.1 installations, but that fix was incomplete: it neglected to handle arrays and
domains over citext. This release extends the module’s upgrade script to handle these cases. As
before, if you have already run the upgrade script, you’ll need to run the collation update commands by
hand instead. See the 9.1.2 release notes for more information about doing this.

• Allow numeric timezone offsets in timestamp input to be up to 16 hours away from UTC (Tom Lane)

Some historical time zones have offsets larger than 15 hours, the previous limit. This could result in
dumped data values being rejected during reload.

• Fix timestamp conversion to cope when the given time is exactly the last DST transition time for the
current timezone (Tom Lane)

2106

Appendix E. Release Notes

This oversight has been there a long time, but was not noticed previously because most DST-using
zones are presumed to have an indefinite sequence of future DST transitions.

• Fix text to name and char to name casts to perform string truncation correctly in multibyte encodings
(Karl Schnaitter)

• Fix memory copying bug in to_tsquery() (Heikki Linnakangas)

• Ensure txid_current() reports the correct epoch when executed in hot standby (Simon Riggs)

• Fix planner’s handling of outer PlaceHolderVars within subqueries (Tom Lane)

This bug concerns sub-SELECTs that reference variables coming from the nullable side of an outer
join of the surrounding query. In 9.1, queries affected by this bug would fail with “ERROR: Upper-
level PlaceHolderVar found where not expected”. But in 9.0 and 8.4, you’d silently get possibly-wrong
answers, since the value transmitted into the subquery wouldn’t go to null when it should.

• Fix planning of UNION ALL subqueries with output columns that are not simple variables (Tom Lane)

Planning of such cases got noticeably worse in 9.1 as a result of a misguided fix for “MergeAppend
child’s targetlist doesn’t match MergeAppend” errors. Revert that fix and do it another way.

• Fix slow session startup when pg_attribute is very large (Tom Lane)

If pg_attribute exceeds one-fourth of shared_buffers, cache rebuilding code that is sometimes
needed during session start would trigger the synchronized-scan logic, causing it to take many times
longer than normal. The problem was particularly acute if many new sessions were starting at once.

• Ensure sequential scans check for query cancel reasonably often (Merlin Moncure)

A scan encountering many consecutive pages that contain no live tuples would not respond to interrupts
meanwhile.

• Ensure the Windows implementation of PGSemaphoreLock() clears ImmediateInterruptOK be-
fore returning (Tom Lane)

This oversight meant that a query-cancel interrupt received later in the same query could be accepted at
an unsafe time, with unpredictable but not good consequences.

• Show whole-row variables safely when printing views or rules (Abbas Butt, Tom Lane)

Corner cases involving ambiguous names (that is, the name could be either a table or column name
of the query) were printed in an ambiguous way, risking that the view or rule would be interpreted
differently after dump and reload. Avoid the ambiguous case by attaching a no-op cast.

• Fix COPY FROM to properly handle null marker strings that correspond to invalid encoding (Tom Lane)

A null marker string such as E’\\0’ should work, and did work in the past, but the case got broken in
8.4.

• Fix EXPLAIN VERBOSE for writable CTEs containing RETURNING clauses (Tom Lane)

• Fix PREPARE TRANSACTION to work correctly in the presence of advisory locks (Tom Lane)

Historically, PREPARE TRANSACTION has simply ignored any session-level advisory locks the session
holds, but this case was accidentally broken in 9.1.

• Fix truncation of unlogged tables (Robert Haas)

• Ignore missing schemas during non-interactive assignments of search_path (Tom Lane)

2107

Appendix E. Release Notes

This re-aligns 9.1’s behavior with that of older branches. Previously 9.1 would throw an error for nonex-
istent schemas mentioned in search_path settings obtained from places such as ALTER DATABASE

SET.

• Fix bugs with temporary or transient tables used in extension scripts (Tom Lane)

This includes cases such as a rewriting ALTER TABLE within an extension update script, since that uses
a transient table behind the scenes.

• Ensure autovacuum worker processes perform stack depth checking properly (Heikki Linnakangas)

Previously, infinite recursion in a function invoked by auto-ANALYZE could crash worker processes.

• Fix logging collector to not lose log coherency under high load (Andrew Dunstan)

The collector previously could fail to reassemble large messages if it got too busy.

• Fix logging collector to ensure it will restart file rotation after receiving SIGHUP (Tom Lane)

• Fix “too many LWLocks taken” failure in GiST indexes (Heikki Linnakangas)

• Fix WAL replay logic for GIN indexes to not fail if the index was subsequently dropped (Tom Lane)

• Correctly detect SSI conflicts of prepared transactions after a crash (Dan Ports)

• Avoid synchronous replication delay when committing a transaction that only modified temporary ta-
bles (Heikki Linnakangas)

In such a case the transaction’s commit record need not be flushed to standby servers, but some of the
code didn’t know that and waited for it to happen anyway.

• Fix error handling in pg_basebackup (Thomas Ogrisegg, Fujii Masao)

• Fix walsender to not go into a busy loop if connection is terminated (Fujii Masao)

• Fix memory leak in PL/pgSQL’s RETURN NEXT command (Joe Conway)

• Fix PL/pgSQL’s GET DIAGNOSTICS command when the target is the function’s first variable (Tom
Lane)

• Ensure that PL/Perl package-qualifies the _TD variable (Alex Hunsaker)

This bug caused trigger invocations to fail when they are nested within a function invocation that
changes the current package.

• Fix PL/Python functions returning composite types to accept a string for their result value (Jan Urban-
ski)

This case was accidentally broken by the 9.1 additions to allow a composite result value to be supplied
in other formats, such as dictionaries.

• Fix potential access off the end of memory in psql’s expanded display (\x) mode (Peter Eisentraut)

• Fix several performance problems in pg_dump when the database contains many objects (Jeff Janes,
Tom Lane)

pg_dump could get very slow if the database contained many schemas, or if many objects are in depen-
dency loops, or if there are many owned sequences.

• Fix memory and file descriptor leaks in pg_restore when reading a directory-format archive (Peter
Eisentraut)

2108

Appendix E. Release Notes

• Fix pg_upgrade for the case that a database stored in a non-default tablespace contains a table in the
cluster’s default tablespace (Bruce Momjian)

• In ecpg, fix rare memory leaks and possible overwrite of one byte after the sqlca_t structure (Peter
Eisentraut)

• Fix contrib/dblink’s dblink_exec() to not leak temporary database connections upon error (Tom
Lane)

• Fix contrib/dblink to report the correct connection name in error messages (Kyotaro Horiguchi)

• Fix contrib/vacuumlo to use multiple transactions when dropping many large objects (Tim Lewis,
Robert Haas, Tom Lane)

This change avoids exceeding max_locks_per_transaction when many objects need to be
dropped. The behavior can be adjusted with the new -l (limit) option.

• Update time zone data files to tzdata release 2012c for DST law changes in Antarctica, Armenia, Chile,
Cuba, Falkland Islands, Gaza, Haiti, Hebron, Morocco, Syria, and Tokelau Islands; also historical cor-
rections for Canada.

E.18. Release 9.1.3

Release Date: 2012-02-27

This release contains a variety of fixes from 9.1.2. For information about new features in the 9.1 major
release, see Section E.21.

E.18.1. Migration to Version 9.1.3
A dump/restore is not required for those running 9.1.X.

However, if you are upgrading from a version earlier than 9.1.2, see Section E.19.

E.18.2. Changes

• Require execute permission on the trigger function for CREATE TRIGGER (Robert Haas)

This missing check could allow another user to execute a trigger function with forged input data, by
installing it on a table he owns. This is only of significance for trigger functions marked SECURITY

DEFINER, since otherwise trigger functions run as the table owner anyway. (CVE-2012-0866)

• Remove arbitrary limitation on length of common name in SSL certificates (Heikki Linnakangas)

Both libpq and the server truncated the common name extracted from an SSL certificate at 32 bytes.
Normally this would cause nothing worse than an unexpected verification failure, but there are some
rather-implausible scenarios in which it might allow one certificate holder to impersonate another. The

2109

Appendix E. Release Notes

victim would have to have a common name exactly 32 bytes long, and the attacker would have to
persuade a trusted CA to issue a certificate in which the common name has that string as a prefix.
Impersonating a server would also require some additional exploit to redirect client connections. (CVE-
2012-0867)

• Convert newlines to spaces in names written in pg_dump comments (Robert Haas)

pg_dump was incautious about sanitizing object names that are emitted within SQL comments in its
output script. A name containing a newline would at least render the script syntactically incorrect.
Maliciously crafted object names could present a SQL injection risk when the script is reloaded. (CVE-
2012-0868)

• Fix btree index corruption from insertions concurrent with vacuuming (Tom Lane)

An index page split caused by an insertion could sometimes cause a concurrently-running VACUUM to
miss removing index entries that it should remove. After the corresponding table rows are removed,
the dangling index entries would cause errors (such as “could not read block N in file ...”) or worse,
silently wrong query results after unrelated rows are re-inserted at the now-free table locations. This
bug has been present since release 8.2, but occurs so infrequently that it was not diagnosed until now.
If you have reason to suspect that it has happened in your database, reindexing the affected index will
fix things.

• Fix transient zeroing of shared buffers during WAL replay (Tom Lane)

The replay logic would sometimes zero and refill a shared buffer, so that the contents were transiently
invalid. In hot standby mode this can result in a query that’s executing in parallel seeing garbage data.
Various symptoms could result from that, but the most common one seems to be “invalid memory alloc
request size”.

• Fix handling of data-modifying WITH subplans in READ COMMITTED rechecking (Tom Lane)

A WITH clause containing INSERT/UPDATE/DELETE would crash if the parent UPDATE or DELETE com-
mand needed to be re-evaluated at one or more rows due to concurrent updates in READ COMMITTED

mode.

• Fix corner case in SSI transaction cleanup (Dan Ports)

When finishing up a read-write serializable transaction, a crash could occur if all remaining active
serializable transactions are read-only.

• Fix postmaster to attempt restart after a hot-standby crash (Tom Lane)

A logic error caused the postmaster to terminate, rather than attempt to restart the cluster, if any backend
process crashed while operating in hot standby mode.

• Fix CLUSTER/VACUUM FULL handling of toast values owned by recently-updated rows (Tom Lane)

This oversight could lead to “duplicate key value violates unique constraint” errors being reported
against the toast table’s index during one of these commands.

• Update per-column permissions, not only per-table permissions, when changing table owner (Tom
Lane)

Failure to do this meant that any previously granted column permissions were still shown as having
been granted by the old owner. This meant that neither the new owner nor a superuser could revoke the
now-untraceable-to-table-owner permissions.

• Support foreign data wrappers and foreign servers in REASSIGN OWNED (Alvaro Herrera)

2110

Appendix E. Release Notes

This command failed with “unexpected classid” errors if it needed to change the ownership of any such
objects.

• Allow non-existent values for some settings in ALTER USER/DATABASE SET (Heikki Linnakangas)

Allow default_text_search_config, default_tablespace, and temp_tablespaces to be set
to names that are not known. This is because they might be known in another database where the setting
is intended to be used, or for the tablespace cases because the tablespace might not be created yet. The
same issue was previously recognized for search_path, and these settings now act like that one.

• Fix “unsupported node type” error caused by COLLATE in an INSERT expression (Tom Lane)

• Avoid crashing when we have problems deleting table files post-commit (Tom Lane)

Dropping a table should lead to deleting the underlying disk files only after the transaction commits.
In event of failure then (for instance, because of wrong file permissions) the code is supposed to just
emit a warning message and go on, since it’s too late to abort the transaction. This logic got broken as
of release 8.4, causing such situations to result in a PANIC and an unrestartable database.

• Recover from errors occurring during WAL replay of DROP TABLESPACE (Tom Lane)

Replay will attempt to remove the tablespace’s directories, but there are various reasons why this might
fail (for example, incorrect ownership or permissions on those directories). Formerly the replay code
would panic, rendering the database unrestartable without manual intervention. It seems better to log the
problem and continue, since the only consequence of failure to remove the directories is some wasted
disk space.

• Fix race condition in logging AccessExclusiveLocks for hot standby (Simon Riggs)

Sometimes a lock would be logged as being held by “transaction zero”. This is at least known to produce
assertion failures on slave servers, and might be the cause of more serious problems.

• Track the OID counter correctly during WAL replay, even when it wraps around (Tom Lane)

Previously the OID counter would remain stuck at a high value until the system exited replay mode.
The practical consequences of that are usually nil, but there are scenarios wherein a standby server
that’s been promoted to master might take a long time to advance the OID counter to a reasonable value
once values are needed.

• Prevent emitting misleading “consistent recovery state reached” log message at the beginning of crash
recovery (Heikki Linnakangas)

• Fix initial value of pg_stat_replication.replay_location (Fujii Masao)

Previously, the value shown would be wrong until at least one WAL record had been replayed.

• Fix regular expression back-references with * attached (Tom Lane)

Rather than enforcing an exact string match, the code would effectively accept any string that satisfies
the pattern sub-expression referenced by the back-reference symbol.

A similar problem still afflicts back-references that are embedded in a larger quantified expression,
rather than being the immediate subject of the quantifier. This will be addressed in a future PostgreSQL
release.

• Fix recently-introduced memory leak in processing of inet/cidr values (Heikki Linnakangas)

A patch in the December 2011 releases of PostgreSQL caused memory leakage in these operations,
which could be significant in scenarios such as building a btree index on such a column.

2111

Appendix E. Release Notes

• Fix planner’s ability to push down index-expression restrictions through UNION ALL (Tom Lane)

This type of optimization was inadvertently disabled by a fix for another problem in 9.1.2.

• Fix planning of WITH clauses referenced in UPDATE/DELETE on an inherited table (Tom Lane)

This bug led to “could not find plan for CTE” failures.

• Fix GIN cost estimation to handle column IN (...) index conditions (Marti Raudsepp)

This oversight would usually lead to crashes if such a condition could be used with a GIN index.

• Prevent assertion failure when exiting a session with an open, failed transaction (Tom Lane)

This bug has no impact on normal builds with asserts not enabled.

• Fix dangling pointer after CREATE TABLE AS/SELECT INTO in a SQL-language function (Tom Lane)

In most cases this only led to an assertion failure in assert-enabled builds, but worse consequences seem
possible.

• Avoid double close of file handle in syslogger on Windows (MauMau)

Ordinarily this error was invisible, but it would cause an exception when running on a debug version of
Windows.

• Fix I/O-conversion-related memory leaks in plpgsql (Andres Freund, Jan Urbanski, Tom Lane)

Certain operations would leak memory until the end of the current function.

• Work around bug in perl’s SvPVutf8() function (Andrew Dunstan)

This function crashes when handed a typeglob or certain read-only objects such as $^V. Make plperl
avoid passing those to it.

• In pg_dump, don’t dump contents of an extension’s configuration tables if the extension itself is not
being dumped (Tom Lane)

• Improve pg_dump’s handling of inherited table columns (Tom Lane)

pg_dump mishandled situations where a child column has a different default expression than its parent
column. If the default is textually identical to the parent’s default, but not actually the same (for instance,
because of schema search path differences) it would not be recognized as different, so that after dump
and restore the child would be allowed to inherit the parent’s default. Child columns that are NOT NULL

where their parent is not could also be restored subtly incorrectly.

• Fix pg_restore’s direct-to-database mode for INSERT-style table data (Tom Lane)

Direct-to-database restores from archive files made with --inserts or --column-inserts options
fail when using pg_restore from a release dated September or December 2011, as a result of an oversight
in a fix for another problem. The archive file itself is not at fault, and text-mode output is okay.

• Teach pg_upgrade to handle renaming of plpython’s shared library (Bruce Momjian)

Upgrading a pre-9.1 database that included plpython would fail because of this oversight.

• Allow pg_upgrade to process tables containing regclass columns (Bruce Momjian)

Since pg_upgrade now takes care to preserve pg_class OIDs, there was no longer any reason for this
restriction.

• Make libpq ignore ENOTDIR errors when looking for an SSL client certificate file (Magnus Hagander)

2112

Appendix E. Release Notes

This allows SSL connections to be established, though without a certificate, even when the user’s home
directory is set to something like /dev/null.

• Fix some more field alignment issues in ecpg’s SQLDA area (Zoltan Boszormenyi)

• Allow AT option in ecpg DEALLOCATE statements (Michael Meskes)

The infrastructure to support this has been there for awhile, but through an oversight there was still an
error check rejecting the case.

• Do not use the variable name when defining a varchar structure in ecpg (Michael Meskes)

• Fix contrib/auto_explain’s JSON output mode to produce valid JSON (Andrew Dunstan)

The output used brackets at the top level, when it should have used braces.

• Fix error in contrib/intarray’s int[] & int[] operator (Guillaume Lelarge)

If the smallest integer the two input arrays have in common is 1, and there are smaller values in either
array, then 1 would be incorrectly omitted from the result.

• Fix error detection in contrib/pgcrypto’s encrypt_iv() and decrypt_iv() (Marko Kreen)

These functions failed to report certain types of invalid-input errors, and would instead return random
garbage values for incorrect input.

• Fix one-byte buffer overrun in contrib/test_parser (Paul Guyot)

The code would try to read one more byte than it should, which would crash in corner cases. Since
contrib/test_parser is only example code, this is not a security issue in itself, but bad example
code is still bad.

• Use __sync_lock_test_and_set() for spinlocks on ARM, if available (Martin Pitt)

This function replaces our previous use of the SWPB instruction, which is deprecated and not available
on ARMv6 and later. Reports suggest that the old code doesn’t fail in an obvious way on recent ARM
boards, but simply doesn’t interlock concurrent accesses, leading to bizarre failures in multiprocess
operation.

• Use -fexcess-precision=standard option when building with gcc versions that accept it (Andrew
Dunstan)

This prevents assorted scenarios wherein recent versions of gcc will produce creative results.

• Allow use of threaded Python on FreeBSD (Chris Rees)

Our configure script previously believed that this combination wouldn’t work; but FreeBSD fixed the
problem, so remove that error check.

• Allow MinGW builds to use standardly-named OpenSSL libraries (Tomasz Ostrowski)

E.19. Release 9.1.2

Release Date: 2011-12-05

2113

Appendix E. Release Notes

This release contains a variety of fixes from 9.1.1. For information about new features in the 9.1 major
release, see Section E.21.

E.19.1. Migration to Version 9.1.2
A dump/restore is not required for those running 9.1.X.

However, a longstanding error was discovered in the definition of the
information_schema.referential_constraints view. If you rely on correct results from that
view, you should replace its definition as explained in the first changelog item below.

Also, if you use the citext data type, and you upgraded from a previous major release by
running pg_upgrade, you should run CREATE EXTENSION citext FROM unpackaged to avoid
collation-related failures in citext operations. The same is necessary if you restore a dump from a
pre-9.1 database that contains an instance of the citext data type. If you’ve already run the CREATE

EXTENSION command before upgrading to 9.1.2, you will instead need to do manual catalog updates as
explained in the second changelog item.

E.19.2. Changes

• Fix bugs in information_schema.referential_constraints view (Tom Lane)

This view was being insufficiently careful about matching the foreign-key constraint to the depended-
on primary or unique key constraint. That could result in failure to show a foreign key constraint at all,
or showing it multiple times, or claiming that it depends on a different constraint than the one it really
does.

Since the view definition is installed by initdb, merely upgrading will not fix the problem. If you need
to fix this in an existing installation, you can (as a superuser) drop the information_schema schema
then re-create it by sourcing SHAREDIR/information_schema.sql. (Run pg_config --sharedir

if you’re uncertain where SHAREDIR is.) This must be repeated in each database to be fixed.

• Make contrib/citext’s upgrade script fix collations of citext columns and indexes (Tom Lane)

Existing citext columns and indexes aren’t correctly marked as being of a collatable data type during
pg_upgrade from a pre-9.1 server, or when a pre-9.1 dump containing the citext type is loaded into
a 9.1 server. That leads to operations on these columns failing with errors such as “could not determine
which collation to use for string comparison”. This change allows them to be fixed by the same script
that upgrades the citext module into a proper 9.1 extension during CREATE EXTENSION citext

FROM unpackaged.

If you have a previously-upgraded database that is suffering from this problem, and you already ran
the CREATE EXTENSION command, you can manually run (as superuser) the UPDATE commands
found at the end of SHAREDIR/extension/citext--unpackaged--1.0.sql. (Run pg_config

--sharedir if you’re uncertain where SHAREDIR is.) There is no harm in doing this again if unsure.

• Fix possible crash during UPDATE or DELETE that joins to the output of a scalar-returning function (Tom
Lane)

A crash could only occur if the target row had been concurrently updated, so this problem surfaced only
intermittently.

2114

Appendix E. Release Notes

• Fix incorrect replay of WAL records for GIN index updates (Tom Lane)

This could result in transiently failing to find index entries after a crash, or on a hot-standby server. The
problem would be repaired by the next VACUUM of the index, however.

• Fix TOAST-related data corruption during CREATE TABLE dest AS SELECT * FROM src or
INSERT INTO dest SELECT * FROM src (Tom Lane)

If a table has been modified by ALTER TABLE ADD COLUMN, attempts to copy its data verbatim to
another table could produce corrupt results in certain corner cases. The problem can only manifest in
this precise form in 8.4 and later, but we patched earlier versions as well in case there are other code
paths that could trigger the same bug.

• Fix possible failures during hot standby startup (Simon Riggs)

• Start hot standby faster when initial snapshot is incomplete (Simon Riggs)

• Fix race condition during toast table access from stale syscache entries (Tom Lane)

The typical symptom was transient errors like “missing chunk number 0 for toast value NNNNN in
pg_toast_2619”, where the cited toast table would always belong to a system catalog.

• Track dependencies of functions on items used in parameter default expressions (Tom Lane)

Previously, a referenced object could be dropped without having dropped or modified the function,
leading to misbehavior when the function was used. Note that merely installing this update will not fix
the missing dependency entries; to do that, you’d need to CREATE OR REPLACE each such function
afterwards. If you have functions whose defaults depend on non-built-in objects, doing so is recom-
mended.

• Fix incorrect management of placeholder variables in nestloop joins (Tom Lane)

This bug is known to lead to “variable not found in subplan target list” planner errors, and could possibly
result in wrong query output when outer joins are involved.

• Fix window functions that sort by expressions involving aggregates (Tom Lane)

Previously these could fail with “could not find pathkey item to sort” planner errors.

• Fix “MergeAppend child’s targetlist doesn’t match MergeAppend” planner errors (Tom Lane)

• Fix index matching for operators with both collatable and noncollatable inputs (Tom Lane)

In 9.1.0, an indexable operator that has a non-collatable left-hand input type and a collatable right-
hand input type would not be recognized as matching the left-hand column’s index. An example is the
hstore ? text operator.

• Allow inlining of set-returning SQL functions with multiple OUT parameters (Tom Lane)

• Don’t trust deferred-unique indexes for join removal (Tom Lane and Marti Raudsepp)

A deferred uniqueness constraint might not hold intra-transaction, so assuming that it does could give
incorrect query results.

• Make DatumGetInetP() unpack inet datums that have a 1-byte header, and add a new macro,
DatumGetInetPP(), that does not (Heikki Linnakangas)

This change affects no core code, but might prevent crashes in add-on code that expects
DatumGetInetP() to produce an unpacked datum as per usual convention.

• Improve locale support in money type’s input and output (Tom Lane)

2115

Appendix E. Release Notes

Aside from not supporting all standard lc_monetary formatting options, the input and output func-
tions were inconsistent, meaning there were locales in which dumped money values could not be re-
read.

• Don’t let transform_null_equals affect CASE foo WHEN NULL ... constructs (Heikki
Linnakangas)

transform_null_equals is only supposed to affect foo = NULL expressions written directly by the
user, not equality checks generated internally by this form of CASE.

• Change foreign-key trigger creation order to better support self-referential foreign keys (Tom Lane)

For a cascading foreign key that references its own table, a row update will fire both the ON UPDATE

trigger and the CHECK trigger as one event. The ON UPDATE trigger must execute first, else the CHECK
will check a non-final state of the row and possibly throw an inappropriate error. However, the fir-
ing order of these triggers is determined by their names, which generally sort in creation order since
the triggers have auto-generated names following the convention “RI_ConstraintTrigger_NNNN”. A
proper fix would require modifying that convention, which we will do in 9.2, but it seems risky to
change it in existing releases. So this patch just changes the creation order of the triggers. Users en-
countering this type of error should drop and re-create the foreign key constraint to get its triggers into
the right order.

• Fix IF EXISTS to work correctly in DROP OPERATOR FAMILY (Robert Haas)

• Disallow dropping of an extension from within its own script (Tom Lane)

This prevents odd behavior in case of incorrect management of extension dependencies.

• Don’t mark auto-generated types as extension members (Robert Haas)

Relation rowtypes and automatically-generated array types do not need to have their own extension
membership entries in pg_depend, and creating such entries complicates matters for extension up-
grades.

• Cope with invalid pre-existing search_path settings during CREATE EXTENSION (Tom Lane)

• Avoid floating-point underflow while tracking buffer allocation rate (Greg Matthews)

While harmless in itself, on certain platforms this would result in annoying kernel log messages.

• Prevent autovacuum transactions from running in serializable mode (Tom Lane)

Autovacuum formerly used the cluster-wide default transaction isolation level, but there is no need
for it to use anything higher than READ COMMITTED, and using SERIALIZABLE could result in
unnecessary delays for other processes.

• Ensure walsender processes respond promptly to SIGTERM (Magnus Hagander)

• Exclude postmaster.opts from base backups (Magnus Hagander)

• Preserve configuration file name and line number values when starting child processes under Windows
(Tom Lane)

Formerly, these would not be displayed correctly in the pg_settings view.

• Fix incorrect field alignment in ecpg’s SQLDA area (Zoltan Boszormenyi)

• Preserve blank lines within commands in psql’s command history (Robert Haas)

The former behavior could cause problems if an empty line was removed from within a string literal,
for example.

2116

Appendix E. Release Notes

• Avoid platform-specific infinite loop in pg_dump (Steve Singer)

• Fix compression of plain-text output format in pg_dump (Adrian Klaver and Tom Lane)

pg_dump has historically understood -Z with no -F switch to mean that it should emit a
gzip-compressed version of its plain text output. Restore that behavior.

• Fix pg_dump to dump user-defined casts between auto-generated types, such as table rowtypes (Tom
Lane)

• Fix missed quoting of foreign server names in pg_dump (Tom Lane)

• Assorted fixes for pg_upgrade (Bruce Momjian)

Handle exclusion constraints correctly, avoid failures on Windows, don’t complain about mismatched
toast table names in 8.4 databases.

• In PL/pgSQL, allow foreign tables to define row types (Alexander Soudakov)

• Fix up conversions of PL/Perl functions’ results (Alex Hunsaker and Tom Lane)

Restore the pre-9.1 behavior that PL/Perl functions returning void ignore the result value of their last
Perl statement; 9.1.0 would throw an error if that statement returned a reference. Also, make sure it
works to return a string value for a composite type, so long as the string meets the type’s input format.
In addition, throw errors for attempts to return Perl arrays or hashes when the function’s declared result
type is not an array or composite type, respectively. (Pre-9.1 versions rather uselessly returned strings
like ARRAY(0x221a9a0) or HASH(0x221aa90) in such cases.)

• Ensure PL/Perl strings are always correctly UTF8-encoded (Amit Khandekar and Alex Hunsaker)

• Use the preferred version of xsubpp to build PL/Perl, not necessarily the operating system’s main copy
(David Wheeler and Alex Hunsaker)

• Correctly propagate SQLSTATE in PL/Python exceptions (Mika Eloranta and Jan Urbanski)

• Do not install PL/Python extension files for Python major versions other than the one built against
(Peter Eisentraut)

• Change all the contrib extension script files to report a useful error message if they are fed to psql
(Andrew Dunstan and Tom Lane)

This should help teach people about the new method of using CREATE EXTENSION to load these files.
In most cases, sourcing the scripts directly would fail anyway, but with harder-to-interpret messages.

• Fix incorrect coding in contrib/dict_int and contrib/dict_xsyn (Tom Lane)

Some functions incorrectly assumed that memory returned by palloc() is guaranteed zeroed.

• Remove contrib/sepgsql tests from the regular regression test mechanism (Tom Lane)

Since these tests require root privileges for setup, they’re impractical to run automatically. Switch over
to a manual approach instead, and provide a testing script to help with that.

• Fix assorted errors in contrib/unaccent’s configuration file parsing (Tom Lane)

• Honor query cancel interrupts promptly in pgstatindex() (Robert Haas)

• Fix incorrect quoting of log file name in Mac OS X start script (Sidar Lopez)

• Revert unintentional enabling of WAL_DEBUG (Robert Haas)

Fortunately, as debugging tools go, this one is pretty cheap; but it’s not intended to be enabled by
default, so revert.

2117

Appendix E. Release Notes

• Ensure VPATH builds properly install all server header files (Peter Eisentraut)

• Shorten file names reported in verbose error messages (Peter Eisentraut)

Regular builds have always reported just the name of the C file containing the error message call, but
VPATH builds formerly reported an absolute path name.

• Fix interpretation of Windows timezone names for Central America (Tom Lane)

Map “Central America Standard Time” to CST6, not CST6CDT, because DST is generally not observed
anywhere in Central America.

• Update time zone data files to tzdata release 2011n for DST law changes in Brazil, Cuba, Fiji, Palestine,
Russia, and Samoa; also historical corrections for Alaska and British East Africa.

E.20. Release 9.1.1

Release Date: 2011-09-26

This release contains a small number of fixes from 9.1.0. For information about new features in the 9.1
major release, see Section E.21.

E.20.1. Migration to Version 9.1.1
A dump/restore is not required for those running 9.1.X.

E.20.2. Changes

• Make pg_options_to_table return NULL for an option with no value (Tom Lane)

Previously such cases would result in a server crash.

• Fix memory leak at end of a GiST index scan (Tom Lane)

Commands that perform many separate GiST index scans, such as verification of a new GiST-based
exclusion constraint on a table already containing many rows, could transiently require large amounts
of memory due to this leak.

• Fix explicit reference to pg_temp schema in CREATE TEMPORARY TABLE (Robert Haas)

This used to be allowed, but failed in 9.1.0.

2118

Appendix E. Release Notes

E.21. Release 9.1

Release Date: 2011-09-12

E.21.1. Overview
This release shows PostgreSQL moving beyond the traditional relational-database feature set with new,
ground-breaking functionality that is unique to PostgreSQL. The streaming replication feature introduced
in release 9.0 is significantly enhanced by adding a synchronous-replication option, streaming backups,
and monitoring improvements. Major enhancements include:

• Allow synchronous replication

• Add support for foreign tables

• Add per-column collation support

• Add extensions which simplify packaging of additions to PostgreSQL

• Add a true serializable isolation level

• Support unlogged tables using the UNLOGGED option in CREATE TABLE

• Allow data-modification commands (INSERT/UPDATE/DELETE) in WITH clauses

• Add nearest-neighbor (order-by-operator) searching to GiST indexes

• Add a SECURITY LABEL command and support for SELinux permissions control

• Update the PL/Python server-side language

The above items are explained in more detail in the sections below.

E.21.2. Migration to Version 9.1
A dump/restore using pg_dump, or use of pg_upgrade, is required for those wishing to migrate data from
any previous release.

Version 9.1 contains a number of changes that may affect compatibility with previous releases. Observe
the following incompatibilities:

E.21.2.1. Strings

• Change the default value of standard_conforming_strings to on (Robert Haas)

By default, backslashes are now ordinary characters in string literals, not escape characters. This change
removes a long-standing incompatibility with the SQL standard. escape_string_warning has pro-
duced warnings about this usage for years. E” strings are the proper way to embed backslash escapes
in strings and are unaffected by this change.

2119

Appendix E. Release Notes

Warning
This change can break applications that are not expecting it and do their own
string escaping according to the old rules. The consequences could be as
severe as introducing SQL-injection security holes. Be sure to test applications
that are exposed to untrusted input, to ensure that they correctly handle single
quotes and backslashes in text strings.

E.21.2.2. Casting

• Disallow function-style and attribute-style data type casts for composite types (Tom Lane)

For example, disallow composite_value.text and text(composite_value). Unintentional uses of
this syntax have frequently resulted in bug reports; although it was not a bug, it seems better to go back
to rejecting such expressions. The CAST and :: syntaxes are still available for use when a cast of an
entire composite value is actually intended.

• Tighten casting checks for domains based on arrays (Tom Lane)

When a domain is based on an array type, it is allowed to “look through” the domain type to access the
array elements, including subscripting the domain value to fetch or assign an element. Assignment to
an element of such a domain value, for instance via UPDATE ... SET domaincol[5] = ..., will
now result in rechecking the domain type’s constraints, whereas before the checks were skipped.

E.21.2.3. Arrays

• Change string_to_array() to return an empty array for a zero-length string (Pavel Stehule)

Previously this returned a null value.

• Change string_to_array() so a NULL separator splits the string into characters (Pavel Stehule)

Previously this returned a null value.

E.21.2.4. Object Modification

• Fix improper checks for before/after triggers (Tom Lane)

Triggers can now be fired in three cases: BEFORE, AFTER, or INSTEAD OF some action. Trigger func-
tion authors should verify that their logic behaves sanely in all three cases.

• Require superuser or CREATEROLE permissions in order to set comments on roles (Tom Lane)

2120

Appendix E. Release Notes

E.21.2.5. Server Settings

• Change pg_last_xlog_receive_location() so it never moves backwards (Fujii Masao)

Previously, the value of pg_last_xlog_receive_location() could move backward when stream-
ing replication is restarted.

• Have logging of replication connections honor log_connections (Magnus Hagander)

Previously, replication connections were always logged.

E.21.2.6. PL/pgSQL Server-Side Language

• Change PL/pgSQL’s RAISE command without parameters to be catchable by the attached exception
block (Piyush Newe)

Previously RAISE in a code block was always scoped to an attached exception block, so it was uncatch-
able at the same scope.

• Adjust PL/pgSQL’s error line numbering code to be consistent with other PLs (Pavel Stehule)

Previously, PL/pgSQL would ignore (not count) an empty line at the start of the function body. Since
this was inconsistent with all other languages, the special case was removed.

• Make PL/pgSQL complain about conflicting IN and OUT parameter names (Tom Lane)

Formerly, the collision was not detected, and the name would just silently refer to only the OUT pa-
rameter.

• Type modifiers of PL/pgSQL variables are now visible to the SQL parser (Tom Lane)

A type modifier (such as a varchar length limit) attached to a PL/pgSQL variable was formerly enforced
during assignments, but was ignored for all other purposes. Such variables will now behave more like
table columns declared with the same modifier. This is not expected to make any visible difference
in most cases, but it could result in subtle changes for some SQL commands issued by PL/pgSQL
functions.

E.21.2.7. Contrib

• All contrib modules are now installed with CREATE EXTENSION rather than by manually invoking their
SQL scripts (Dimitri Fontaine, Tom Lane)

To update an existing database containing the 9.0 version of a contrib module, use CREATE EXTENSION

... FROM unpackaged to wrap the existing contrib module’s objects into an extension. When updat-
ing from a pre-9.0 version, drop the contrib module’s objects using its old uninstall script, then use
CREATE EXTENSION.

E.21.2.8. Other Incompatibilities

• Make pg_stat_reset() reset all database-level statistics (Tomas Vondra)

2121

Appendix E. Release Notes

Some pg_stat_database counters were not being reset.

• Fix some information_schema.triggers column names to match the new SQL-standard names
(Dean Rasheed)

• Treat ECPG cursor names as case-insensitive (Zoltan Boszormenyi)

E.21.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 9.1 and the previous major
release.

E.21.3.1. Server

E.21.3.1.1. Performance

• Support unlogged tables using the UNLOGGED option in CREATE TABLE (Robert Haas)

Such tables provide better update performance than regular tables, but are not crash-safe: their contents
are automatically cleared in case of a server crash. Their contents do not propagate to replication slaves,
either.

• Allow FULL OUTER JOIN to be implemented as a hash join, and allow either side of a LEFT OUTER

JOIN or RIGHT OUTER JOIN to be hashed (Tom Lane)

Previously FULL OUTER JOIN could only be implemented as a merge join, and LEFT OUTER JOIN

and RIGHT OUTER JOIN could hash only the nullable side of the join. These changes provide addi-
tional query optimization possibilities.

• Merge duplicate fsync requests (Robert Haas, Greg Smith)

This greatly improves performance under heavy write loads.

• Improve performance of commit_siblings (Greg Smith)

This allows the use of commit_siblings with less overhead.

• Reduce the memory requirement for large ispell dictionaries (Pavel Stehule, Tom Lane)

• Avoid leaving data files open after “blind writes” (Alvaro Herrera)

This fixes scenarios in which backends might hold files open long after they were deleted, preventing
the kernel from reclaiming disk space.

E.21.3.1.2. Optimizer

• Allow inheritance table scans to return meaningfully-sorted results (Greg Stark, Hans-Jurgen Schonig,
Robert Haas, Tom Lane)

This allows better optimization of queries that use ORDER BY, LIMIT, or MIN/MAX with inherited tables.

• Improve GIN index scan cost estimation (Teodor Sigaev)

2122

Appendix E. Release Notes

• Improve cost estimation for aggregates and window functions (Tom Lane)

E.21.3.1.3. Authentication

• Support host names and host suffixes (e.g. .example.com) in pg_hba.conf (Peter Eisentraut)

Previously only host IP addresses and CIDR values were supported.

• Support the key word all in the host column of pg_hba.conf (Peter Eisentraut)

Previously people used 0.0.0.0/0 or ::/0 for this.

• Reject local lines in pg_hba.conf on platforms that don’t support Unix-socket connections (Magnus
Hagander)

Formerly, such lines were silently ignored, which could be surprising. This makes the behavior more
like other unsupported cases.

• Allow GSSAPI to be used to authenticate to servers via SSPI (Christian Ullrich)

Specifically this allows Unix-based GSSAPI clients to do SSPI authentication with Windows servers.

• ident authentication over local sockets is now known as peer (Magnus Hagander)

The old term is still accepted for backward compatibility, but since the two methods are fundamentally
different, it seemed better to adopt different names for them.

• Rewrite peer authentication to avoid use of credential control messages (Tom Lane)

This change makes the peer authentication code simpler and better-performing. However, it requires the
platform to provide the getpeereid function or an equivalent socket operation. So far as is known,
the only platform for which peer authentication worked before and now will not is pre-5.0 NetBSD.

E.21.3.1.4. Monitoring

• Add details to the logging of restartpoints and checkpoints, which is controlled by log_checkpoints

(Fujii Masao, Greg Smith)

New details include WAL file and sync activity.

• Add log_file_mode which controls the permissions on log files created by the logging collector
(Martin Pihlak)

• Reduce the default maximum line length for syslog logging to 900 bytes plus prefixes (Noah Misch)

This avoids truncation of long log lines on syslog implementations that have a 1KB length limit, rather
than the more common 2KB.

E.21.3.1.5. Statistical Views

• Add client_hostname column to pg_stat_activity (Peter Eisentraut)

Previously only the client address was reported.

• Add pg_stat_xact_* statistics functions and views (Joel Jacobson)

2123

Appendix E. Release Notes

These are like the database-wide statistics counter views, but reflect counts for only the current trans-
action.

• Add time of last reset in database-level and background writer statistics views (Tomas Vondra)

• Add columns showing the number of vacuum and analyze operations in pg_stat_*_tables views
(Magnus Hagander)

• Add buffers_backend_fsync column to pg_stat_bgwriter (Greg Smith)

This new column counts the number of times a backend fsyncs a buffer.

E.21.3.1.6. Server Settings

• Provide auto-tuning of wal_buffers (Greg Smith)

By default, the value of wal_buffers is now chosen automatically based on the value of
shared_buffers.

• Increase the maximum values for deadlock_timeout, log_min_duration_statement, and
log_autovacuum_min_duration (Peter Eisentraut)

The maximum value for each of these parameters was previously only about 35 minutes. Much larger
values are now allowed.

E.21.3.2. Replication and Recovery

E.21.3.2.1. Streaming Replication and Continuous Archiving

• Allow synchronous replication (Simon Riggs, Fujii Masao)

This allows the primary server to wait for a standby to write a transaction’s information to disk before
acknowledging the commit. One standby at a time can take the role of the synchronous standby, as
controlled by the synchronous_standby_names setting. Synchronous replication can be enabled or
disabled on a per-transaction basis using the synchronous_commit setting.

• Add protocol support for sending file system backups to standby servers using the streaming replication
network connection (Magnus Hagander, Heikki Linnakangas)

This avoids the requirement of manually transferring a file system backup when setting up a standby
server.

• Add replication_timeout setting (Fujii Masao, Heikki Linnakangas)

Replication connections that are idle for more than the replication_timeout interval will be ter-
minated automatically. Formerly, a failed connection was typically not detected until the TCP timeout
elapsed, which is inconveniently long in many situations.

• Add command-line tool pg_basebackup for creating a new standby server or database backup (Magnus
Hagander)

• Add a replication permission for roles (Magnus Hagander)

2124

Appendix E. Release Notes

This is a read-only permission used for streaming replication. It allows a non-superuser role to be used
for replication connections. Previously only superusers could initiate replication connections; supe-
rusers still have this permission by default.

E.21.3.2.2. Replication Monitoring

• Add system view pg_stat_replication which displays activity of WAL sender processes (Itagaki
Takahiro, Simon Riggs)

This reports the status of all connected standby servers.

• Add monitoring function pg_last_xact_replay_timestamp() (Fujii Masao)

This returns the time at which the primary generated the most recent commit or abort record applied on
the standby.

E.21.3.2.3. Hot Standby

• Add configuration parameter hot_standby_feedback to enable standbys to postpone cleanup of old
row versions on the primary (Simon Riggs)

This helps avoid canceling long-running queries on the standby.

• Add the pg_stat_database_conflicts system view to show queries that have been canceled and
the reason (Magnus Hagander)

Cancellations can occur because of dropped tablespaces, lock timeouts, old snapshots, pinned buffers,
and deadlocks.

• Add a conflicts count to pg_stat_database (Magnus Hagander)

This is the number of conflicts that occurred in the database.

• Increase the maximum values for max_standby_archive_delay and
max_standby_streaming_delay

The maximum value for each of these parameters was previously only about 35 minutes. Much larger
values are now allowed.

• Add ERRCODE_T_R_DATABASE_DROPPED error code to report recovery conflicts due to dropped
databases (Tatsuo Ishii)

This is useful for connection pooling software.

E.21.3.2.4. Recovery Control

• Add functions to control streaming replication replay (Simon Riggs)

The new functions are pg_xlog_replay_pause(), pg_xlog_replay_resume(), and the status
function pg_is_xlog_replay_paused().

• Add recovery.conf setting pause_at_recovery_target to pause recovery at target (Simon
Riggs)

2125

Appendix E. Release Notes

This allows a recovery server to be queried to check whether the recovery point is the one desired.

• Add the ability to create named restore points using pg_create_restore_point() (Jaime
Casanova)

These named restore points can be specified as recovery targets using the new recovery.conf setting
recovery_target_name.

• Allow standby recovery to switch to a new timeline automatically (Heikki Linnakangas)

Now standby servers scan the archive directory for new timelines periodically.

• Add restart_after_crash setting which disables automatic server restart after a backend crash
(Robert Haas)

This allows external cluster management software to control whether the database server restarts or not.

• Allow recovery.conf to use the same quoting behavior as postgresql.conf (Dimitri Fontaine)

Previously all values had to be quoted.

E.21.3.3. Queries

• Add a true serializable isolation level (Kevin Grittner, Dan Ports)

Previously, asking for serializable isolation guaranteed only that a single MVCC snapshot would be
used for the entire transaction, which allowed certain documented anomalies. The old snapshot isolation
behavior is still available by requesting the REPEATABLE READ isolation level.

• Allow data-modification commands (INSERT/UPDATE/DELETE) in WITH clauses (Marko Tiikkaja, Hi-
toshi Harada)

These commands can use RETURNING to pass data up to the containing query.

• Allow WITH clauses to be attached to INSERT, UPDATE, DELETE statements (Marko Tiikkaja, Hitoshi
Harada)

• Allow non-GROUP BY columns in the query target list when the primary key is specified in the GROUP
BY clause (Peter Eisentraut)

The SQL standard allows this behavior, and because of the primary key, the result is unambiguous.

• Allow use of the key word DISTINCT in UNION/INTERSECT/EXCEPT clauses (Tom Lane)

DISTINCT is the default behavior so use of this key word is redundant, but the SQL standard allows it.

• Fix ordinary queries with rules to use the same snapshot behavior as EXPLAIN ANALYZE (Marko Ti-
ikkaja)

Previously EXPLAIN ANALYZE used slightly different snapshot timing for queries involving rules. The
EXPLAIN ANALYZE behavior was judged to be more logical.

E.21.3.3.1. Strings

• Add per-column collation support (Peter Eisentraut, Tom Lane)

2126

Appendix E. Release Notes

Previously collation (the sort ordering of text strings) could only be chosen at database creation. Colla-
tion can now be set per column, domain, index, or expression, via the SQL-standard COLLATE clause.

E.21.3.4. Object Manipulation

• Add extensions which simplify packaging of additions to PostgreSQL (Dimitri Fontaine, Tom Lane)

Extensions are controlled by the new CREATE/ALTER/DROP EXTENSION commands. This replaces ad-
hoc methods of grouping objects that are added to a PostgreSQL installation.

• Add support for foreign tables (Shigeru Hanada, Robert Haas, Jan Urbanski, Heikki Linnakangas)

This allows data stored outside the database to be used like native PostgreSQL-stored data. Foreign
tables are currently read-only, however.

• Allow new values to be added to an existing enum type via ALTER TYPE (Andrew Dunstan)

• Add ALTER TYPE ... ADD/DROP/ALTER/RENAME ATTRIBUTE (Peter Eisentraut)

This allows modification of composite types.

E.21.3.4.1. ALTER Object

• Add RESTRICT/CASCADE to ALTER TYPE operations on typed tables (Peter Eisentraut)

This controls ADD/DROP/ALTER/RENAME ATTRIBUTE cascading behavior.

• Support ALTER TABLE name {OF | NOT OF} type (Noah Misch)

This syntax allows a standalone table to be made into a typed table, or a typed table to be made stan-
dalone.

• Add support for more object types in ALTER ... SET SCHEMA commands (Dimitri Fontaine)

This command is now supported for conversions, operators, operator classes, operator families, text
search configurations, text search dictionaries, text search parsers, and text search templates.

E.21.3.4.2. CREATE/ALTER TABLE

• Add ALTER TABLE ... ADD UNIQUE/PRIMARY KEY USING INDEX (Gurjeet Singh)

This allows a primary key or unique constraint to be defined using an existing unique index, including
a concurrently created unique index.

• Allow ALTER TABLE to add foreign keys without validation (Simon Riggs)

The new option is called NOT VALID. The constraint’s state can later be modified to VALIDATED and
validation checks performed. Together these allow you to add a foreign key with minimal impact on
read and write operations.

• Allow ALTER TABLE ... SET DATA TYPE to avoid table rewrites in appropriate cases (Noah Misch,
Robert Haas)

2127

Appendix E. Release Notes

For example, converting a varchar column to text no longer requires a rewrite of the table. However,
increasing the length constraint on a varchar column still requires a table rewrite.

• Add CREATE TABLE IF NOT EXISTS syntax (Robert Haas)

This allows table creation without causing an error if the table already exists.

• Fix possible “tuple concurrently updated” error when two backends attempt to add an inheritance child
to the same table at the same time (Robert Haas)

ALTER TABLE now takes a stronger lock on the parent table, so that the sessions cannot try to update it
simultaneously.

E.21.3.4.3. Object Permissions

• Add a SECURITY LABEL command (KaiGai Kohei)

This allows security labels to be assigned to objects.

E.21.3.5. Utility Operations

• Add transaction-level advisory locks (Marko Tiikkaja)

These are similar to the existing session-level advisory locks, but such locks are automatically released
at transaction end.

• Make TRUNCATE ... RESTART IDENTITY restart sequences transactionally (Steve Singer)

Previously the counter could have been left out of sync if a backend crashed between the on-commit
truncation activity and commit completion.

E.21.3.5.1. COPY

• Add ENCODING option to COPY TO/FROM (Hitoshi Harada, Itagaki Takahiro)

This allows the encoding of the COPY file to be specified separately from client encoding.

• Add bidirectional COPY protocol support (Fujii Masao)

This is currently only used by streaming replication.

E.21.3.5.2. EXPLAIN

• Make EXPLAIN VERBOSE show the function call expression in a FunctionScan node (Tom Lane)

2128

Appendix E. Release Notes

E.21.3.5.3. VACUUM

• Add additional details to the output of VACUUM FULL VERBOSE and CLUSTER VERBOSE (Itagaki
Takahiro)

New information includes the live and dead tuple count and whether CLUSTER is using an index to
rebuild.

• Prevent autovacuum from waiting if it cannot acquire a table lock (Robert Haas)

It will try to vacuum that table later.

E.21.3.5.4. CLUSTER

• Allow CLUSTER to sort the table rather than scanning the index when it seems likely to be cheaper
(Leonardo Francalanci)

E.21.3.5.5. Indexes

• Add nearest-neighbor (order-by-operator) searching to GiST indexes (Teodor Sigaev, Tom Lane)

This allows GiST indexes to quickly return the N closest values in a query with LIMIT. For example

SELECT * FROM places ORDER BY location <-> point ’(101,456)’ LIMIT 10;

finds the ten places closest to a given target point.

• Allow GIN indexes to index null and empty values (Tom Lane)

This allows full GIN index scans, and fixes various corner cases in which GIN scans would fail.

• Allow GIN indexes to better recognize duplicate search entries (Tom Lane)

This reduces the cost of index scans, especially in cases where it avoids unnecessary full index scans.

• Fix GiST indexes to be fully crash-safe (Heikki Linnakangas)

Previously there were rare cases where a REINDEX would be required (you would be informed).

E.21.3.6. Data Types

• Allow numeric to use a more compact, two-byte header in common cases (Robert Haas)

Previously all numeric values had four-byte headers; this change saves on disk storage.

• Add support for dividing money by money (Andy Balholm)

• Allow binary I/O on type void (Radoslaw Smogura)

• Improve hypotenuse calculations for geometric operators (Paul Matthews)

This avoids unnecessary overflows, and may also be more accurate.

• Support hashing array values (Tom Lane)

2129

Appendix E. Release Notes

This provides additional query optimization possibilities.

• Don’t treat a composite type as sortable unless all its column types are sortable (Tom Lane)

This avoids possible “could not identify a comparison function” failures at runtime, if it is possible to
implement the query without sorting. Also, ANALYZE won’t try to use inappropriate statistics-gathering
methods for columns of such composite types.

E.21.3.6.1. Casting

• Add support for casting between money and numeric (Andy Balholm)

• Add support for casting from int4 and int8 to money (Joey Adams)

• Allow casting a table’s row type to the table’s supertype if it’s a typed table (Peter Eisentraut)

This is analogous to the existing facility that allows casting a row type to a supertable’s row type.

E.21.3.6.2. XML

• Add XML function XMLEXISTS and xpath_exists() functions (Mike Fowler)

These are used for XPath matching.

• Add XML functions xml_is_well_formed(), xml_is_well_formed_document(),
xml_is_well_formed_content() (Mike Fowler)

These check whether the input is properly-formed XML. They provide functionality that was previously
available only in the deprecated contrib/xml2 module.

E.21.3.7. Functions

• Add SQL function format(text, ...), which behaves analogously to C’s printf() (Pavel Ste-
hule, Robert Haas)

It currently supports formats for strings, SQL literals, and SQL identifiers.

• Add string functions concat(), concat_ws(), left(), right(), and reverse() (Pavel Stehule)

These improve compatibility with other database products.

• Add function pg_read_binary_file() to read binary files (Dimitri Fontaine, Itagaki Takahiro)

• Add a single-parameter version of function pg_read_file() to read an entire file (Dimitri Fontaine,
Itagaki Takahiro)

• Add three-parameter forms of array_to_string() and string_to_array() for null value pro-
cessing control (Pavel Stehule)

E.21.3.7.1. Object Information Functions

• Add the pg_describe_object() function (Alvaro Herrera)

2130

Appendix E. Release Notes

This function is used to obtain a human-readable string describing an object, based on the pg_class
OID, object OID, and sub-object ID. It can be used to help interpret the contents of pg_depend.

• Update comments for built-in operators and their underlying functions (Tom Lane)

Functions that are meant to be used via an associated operator are now commented as such.

• Add variable quote_all_identifiers to force the quoting of all identifiers in EXPLAIN and in
system catalog functions like pg_get_viewdef() (Robert Haas)

This makes exporting schemas to tools and other databases with different quoting rules easier.

• Add columns to the information_schema.sequences system view (Peter Eisentraut)

Previously, though the view existed, the columns about the sequence parameters were unimplemented.

• Allow public as a pseudo-role name in has_table_privilege() and related functions (Alvaro
Herrera)

This allows checking for public permissions.

E.21.3.7.2. Function and Trigger Creation

• Support INSTEAD OF triggers on views (Dean Rasheed)

This feature can be used to implement fully updatable views.

E.21.3.8. Server-Side Languages

E.21.3.8.1. PL/pgSQL Server-Side Language

• Add FOREACH IN ARRAY to PL/pgSQL (Pavel Stehule)

This is more efficient and readable than previous methods of iterating through the elements of an array
value.

• Allow RAISE without parameters to be caught in the same places that could catch a RAISE ERROR

from the same location (Piyush Newe)

The previous coding threw the error from the block containing the active exception handler. The new
behavior is more consistent with other DBMS products.

E.21.3.8.2. PL/Perl Server-Side Language

• Allow generic record arguments to PL/Perl functions (Andrew Dunstan)

PL/Perl functions can now be declared to accept type record. The behavior is the same as for any
named composite type.

• Convert PL/Perl array arguments to Perl arrays (Alexey Klyukin, Alex Hunsaker)

String representations are still available.

2131

Appendix E. Release Notes

• Convert PL/Perl composite-type arguments to Perl hashes (Alexey Klyukin, Alex Hunsaker)

String representations are still available.

E.21.3.8.3. PL/Python Server-Side Language

• Add table function support for PL/Python (Jan Urbanski)

PL/Python can now return multiple OUT parameters and record sets.

• Add a validator to PL/Python (Jan Urbanski)

This allows PL/Python functions to be syntax-checked at function creation time.

• Allow exceptions for SQL queries in PL/Python (Jan Urbanski)

This allows access to SQL-generated exception error codes from PL/Python exception blocks.

• Add explicit subtransactions to PL/Python (Jan Urbanski)

• Add PL/Python functions for quoting strings (Jan Urbanski)

These functions are plpy.quote_ident, plpy.quote_literal, and plpy.quote_nullable.

• Add traceback information to PL/Python errors (Jan Urbanski)

• Report PL/Python errors from iterators with PLy_elog (Jan Urbanski)

• Fix exception handling with Python 3 (Jan Urbanski)

Exception classes were previously not available in plpy under Python 3.

E.21.3.9. Client Applications

• Mark createlang and droplang as deprecated now that they just invoke extension commands (Tom Lane)

E.21.3.9.1. psql

• Add psql command \conninfo to show current connection information (David Christensen)

• Add psql command \sf to show a function’s definition (Pavel Stehule)

• Add psql command \dL to list languages (Fernando Ike)

• Add the S (“system”) option to psql’s \dn (list schemas) command (Tom Lane)

\dn without S now suppresses system schemas.

• Allow psql’s \e and \ef commands to accept a line number to be used to position the cursor in the
editor (Pavel Stehule)

This is passed to the editor according to the PSQL_EDITOR_LINENUMBER_ARG environment variable.

• Have psql set the client encoding from the operating system locale by default (Heikki Linnakangas)

This only happens if the PGCLIENTENCODING environment variable is not set.

2132

Appendix E. Release Notes

• Make \d distinguish between unique indexes and unique constraints (Josh Kupershmidt)

• Make \dt+ report pg_table_size instead of pg_relation_size when talking to 9.0 or later
servers (Bernd Helmle)

This is a more useful measure of table size, but note that it is not identical to what was previously
reported in the same display.

• Additional tab completion support (Itagaki Takahiro, Pavel Stehule, Andrey Popp, Christoph Berg,
David Fetter, Josh Kupershmidt)

E.21.3.9.2. pg_dump

• Add pg_dump and pg_dumpall option --quote-all-identifiers to force quoting of all identifiers
(Robert Haas)

• Add directory format to pg_dump (Joachim Wieland, Heikki Linnakangas)

This is internally similar to the tar pg_dump format.

E.21.3.9.3. pg_ctl

• Fix pg_ctl so it no longer incorrectly reports that the server is not running (Bruce Momjian)

Previously this could happen if the server was running but pg_ctl could not authenticate.

• Improve pg_ctl start’s “wait” (-w) option (Bruce Momjian, Tom Lane)

The wait mode is now significantly more robust. It will not get confused by non-default postmaster port
numbers, non-default Unix-domain socket locations, permission problems, or stale postmaster lock
files.

• Add promote option to pg_ctl to switch a standby server to primary (Fujii Masao)

E.21.3.10. Development Tools

E.21.3.10.1. libpq

• Add a libpq connection option client_encoding which behaves like the PGCLIENTENCODING envi-
ronment variable (Heikki Linnakangas)

The value auto sets the client encoding based on the operating system locale.

• Add PQlibVersion() function which returns the libpq library version (Magnus Hagander)

libpq already had PQserverVersion() which returns the server version.

• Allow libpq-using clients to check the user name of the server process when connecting via Unix-
domain sockets, with the new requirepeer connection option (Peter Eisentraut)

PostgreSQL already allowed servers to check the client user name when connecting via Unix-domain
sockets.

2133

Appendix E. Release Notes

• Add PQping() and PQpingParams() to libpq (Bruce Momjian, Tom Lane)

These functions allow detection of the server’s status without trying to open a new session.

E.21.3.10.2. ECPG

• Allow ECPG to accept dynamic cursor names even in WHERE CURRENT OF clauses (Zoltan Boszor-
menyi)

• Make ecpglib write double values with a precision of 15 digits, not 14 as formerly (Akira Kurosawa)

E.21.3.11. Build Options

• Use +Olibmerrno compile flag with HP-UX C compilers that accept it (Ibrar Ahmed)

This avoids possible misbehavior of math library calls on recent HP platforms.

E.21.3.11.1. Makefiles

• Improved parallel make support (Peter Eisentraut)

This allows for faster compiles. Also, make -k now works more consistently.

• Require GNU make 3.80 or newer (Peter Eisentraut)

This is necessary because of the parallel-make improvements.

• Add make maintainer-check target (Peter Eisentraut)

This target performs various source code checks that are not appropriate for either the build or the
regression tests. Currently: duplicate_oids, SGML syntax and tabs check, NLS syntax check.

• Support make check in contrib (Peter Eisentraut)

Formerly only make installcheck worked, but now there is support for testing in a temporary in-
stallation. The top-level make check-world target now includes testing contrib this way.

E.21.3.11.2. Windows

• On Windows, allow pg_ctl to register the service as auto-start or start-on-demand (Quan Zongliang)

• Add support for collecting crash dumps on Windows (Craig Ringer, Magnus Hagander)

minidumps can now be generated by non-debug Windows binaries and analyzed by standard debugging
tools.

• Enable building with the MinGW64 compiler (Andrew Dunstan)

This allows building 64-bit Windows binaries even on non-Windows platforms via cross-compiling.

2134

Appendix E. Release Notes

E.21.3.12. Source Code

• Revise the API for GUC variable assign hooks (Tom Lane)

The previous functions of assign hooks are now split between check hooks and assign hooks, where
the former can fail but the latter shouldn’t. This change will impact add-on modules that define custom
GUC parameters.

• Add latches to the source code to support waiting for events (Heikki Linnakangas)

• Centralize data modification permissions-checking logic (KaiGai Kohei)

• Add missing get_object_oid() functions, for consistency (Robert Haas)

• Improve ability to use C++ compilers for compiling add-on modules by removing conflicting key words
(Tom Lane)

• Add support for DragonFly BSD (Rumko)

• Expose quote_literal_cstr() for backend use (Robert Haas)

• Run regression tests in the default encoding (Peter Eisentraut)

Regression tests were previously always run with SQL_ASCII encoding.

• Add src/tools/git_changelog to replace cvs2cl and pgcvslog (Robert Haas, Tom Lane)

• Add git-external-diff script to src/tools (Bruce Momjian)

This is used to generate context diffs from git.

• Improve support for building with Clang (Peter Eisentraut)

E.21.3.12.1. Server Hooks

• Add source code hooks to check permissions (Robert Haas, Stephen Frost)

• Add post-object-creation function hooks for use by security frameworks (KaiGai Kohei)

• Add a client authentication hook (KaiGai Kohei)

E.21.3.13. Contrib

• Modify contrib modules and procedural languages to install via the new extension mechanism (Tom
Lane, Dimitri Fontaine)

• Add contrib/file_fdw foreign-data wrapper (Shigeru Hanada)

Foreign tables using this foreign data wrapper can read flat files in a manner very similar to COPY.

• Add nearest-neighbor search support to contrib/pg_trgm and contrib/btree_gist (Teodor
Sigaev)

• Add contrib/btree_gist support for searching on not-equals (Jeff Davis)

• Fix contrib/fuzzystrmatch’s levenshtein() function to handle multibyte characters (Alexan-
der Korotkov)

2135

Appendix E. Release Notes

• Add ssl_cipher() and ssl_version() functions to contrib/sslinfo (Robert Haas)

• Fix contrib/intarray and contrib/hstore to give consistent results with indexed empty arrays
(Tom Lane)

Previously an empty-array query that used an index might return different results from one that used a
sequential scan.

• Allow contrib/intarray to work properly on multidimensional arrays (Tom Lane)

• In contrib/intarray, avoid errors complaining about the presence of nulls in cases where no nulls
are actually present (Tom Lane)

• In contrib/intarray, fix behavior of containment operators with respect to empty arrays (Tom
Lane)

Empty arrays are now correctly considered to be contained in any other array.

• Remove contrib/xml2’s arbitrary limit on the number of parameter=value pairs that can be han-
dled by xslt_process() (Pavel Stehule)

The previous limit was 10.

• In contrib/pageinspect, fix heap_page_item to return infomasks as 32-bit values (Alvaro Herrera)

This avoids returning negative values, which was confusing. The underlying value is a 16-bit unsigned
integer.

E.21.3.13.1. Security

• Add contrib/sepgsql to interface permission checks with SELinux (KaiGai Kohei)

This uses the new SECURITY LABEL facility.

• Add contrib module auth_delay (KaiGai Kohei)

This causes the server to pause before returning authentication failure; it is designed to make brute force
password attacks more difficult.

• Add dummy_seclabel contrib module (KaiGai Kohei)

This is used for permission regression testing.

E.21.3.13.2. Performance

• Add support for LIKE and ILIKE index searches to contrib/pg_trgm (Alexander Korotkov)

• Add levenshtein_less_equal() function to contrib/fuzzystrmatch, which is optimized for
small distances (Alexander Korotkov)

• Improve performance of index lookups on contrib/seg columns (Alexander Korotkov)

• Improve performance of pg_upgrade for databases with many relations (Bruce Momjian)

• Add flag to contrib/pgbench to report per-statement latencies (Florian Pflug)

2136

Appendix E. Release Notes

E.21.3.13.3. Fsync Testing

• Move src/tools/test_fsync to contrib/pg_test_fsync (Bruce Momjian, Tom Lane)

• Add O_DIRECT support to contrib/pg_test_fsync (Bruce Momjian)

This matches the use of O_DIRECT by wal_sync_method.

• Add new tests to contrib/pg_test_fsync (Bruce Momjian)

E.21.3.14. Documentation

• Extensive ECPG documentation improvements (Satoshi Nagayasu)

• Extensive proofreading and documentation improvements (Thom Brown, Josh Kupershmidt, Susanne
Ebrecht)

• Add documentation for exit_on_error (Robert Haas)

This parameter causes sessions to exit on any error.

• Add documentation for pg_options_to_table() (Josh Berkus)

This function shows table storage options in a readable form.

• Document that it is possible to access all composite type fields using (compositeval).* syntax
(Peter Eisentraut)

• Document that translate() removes characters in from that don’t have a corresponding to character
(Josh Kupershmidt)

• Merge documentation for CREATE CONSTRAINT TRIGGER and CREATE TRIGGER (Alvaro Herrera)

• Centralize permission and upgrade documentation (Bruce Momjian)

• Add kernel tuning documentation for Solaris 10 (Josh Berkus)

Previously only Solaris 9 kernel tuning was documented.

• Handle non-ASCII characters consistently in HISTORY file (Peter Eisentraut)

While the HISTORY file is in English, we do have to deal with non-ASCII letters in contributor names.
These are now transliterated so that they are reasonably legible without assumptions about character
set.

E.22. Release 9.0.16

Release Date: 2014-02-20

2137

Appendix E. Release Notes

This release contains a variety of fixes from 9.0.15. For information about new features in the 9.0 major
release, see Section E.38.

E.22.1. Migration to Version 9.0.16
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.15, see Section E.23.

E.22.2. Changes

• Shore up GRANT ... WITH ADMIN OPTION restrictions (Noah Misch)

Granting a role without ADMIN OPTION is supposed to prevent the grantee from adding or removing
members from the granted role, but this restriction was easily bypassed by doing SET ROLE first. The
security impact is mostly that a role member can revoke the access of others, contrary to the wishes
of his grantor. Unapproved role member additions are a lesser concern, since an uncooperative role
member could provide most of his rights to others anyway by creating views or SECURITY DEFINER

functions. (CVE-2014-0060)

• Prevent privilege escalation via manual calls to PL validator functions (Andres Freund)

The primary role of PL validator functions is to be called implicitly during CREATE FUNCTION, but they
are also normal SQL functions that a user can call explicitly. Calling a validator on a function actually
written in some other language was not checked for and could be exploited for privilege-escalation
purposes. The fix involves adding a call to a privilege-checking function in each validator function.
Non-core procedural languages will also need to make this change to their own validator functions, if
any. (CVE-2014-0061)

• Avoid multiple name lookups during table and index DDL (Robert Haas, Andres Freund)

If the name lookups come to different conclusions due to concurrent activity, we might perform some
parts of the DDL on a different table than other parts. At least in the case of CREATE INDEX, this can be
used to cause the permissions checks to be performed against a different table than the index creation,
allowing for a privilege escalation attack. (CVE-2014-0062)

• Prevent buffer overrun with long datetime strings (Noah Misch)

The MAXDATELEN constant was too small for the longest possible value of type interval, allowing a
buffer overrun in interval_out(). Although the datetime input functions were more careful about
avoiding buffer overrun, the limit was short enough to cause them to reject some valid inputs, such
as input containing a very long timezone name. The ecpg library contained these vulnerabilities along
with some of its own. (CVE-2014-0063)

• Prevent buffer overrun due to integer overflow in size calculations (Noah Misch, Heikki Linnakangas)

Several functions, mostly type input functions, calculated an allocation size without checking for over-
flow. If overflow did occur, a too-small buffer would be allocated and then written past. (CVE-2014-
0064)

• Prevent overruns of fixed-size buffers (Peter Eisentraut, Jozef Mlich)

2138

Appendix E. Release Notes

Use strlcpy() and related functions to provide a clear guarantee that fixed-size buffers are not over-
run. Unlike the preceding items, it is unclear whether these cases really represent live issues, since in
most cases there appear to be previous constraints on the size of the input string. Nonetheless it seems
prudent to silence all Coverity warnings of this type. (CVE-2014-0065)

• Avoid crashing if crypt() returns NULL (Honza Horak, Bruce Momjian)

There are relatively few scenarios in which crypt() could return NULL, but contrib/chkpass
would crash if it did. One practical case in which this could be an issue is if libc is configured to refuse
to execute unapproved hashing algorithms (e.g., “FIPS mode”). (CVE-2014-0066)

• Document risks of make check in the regression testing instructions (Noah Misch, Tom Lane)

Since the temporary server started by make check uses “trust” authentication, another user on the
same machine could connect to it as database superuser, and then potentially exploit the privileges of
the operating-system user who started the tests. A future release will probably incorporate changes in
the testing procedure to prevent this risk, but some public discussion is needed first. So for the moment,
just warn people against using make check when there are untrusted users on the same machine.
(CVE-2014-0067)

• Fix possible mis-replay of WAL records when some segments of a relation aren’t full size (Greg Stark,
Tom Lane)

The WAL update could be applied to the wrong page, potentially many pages past where it should have
been. Aside from corrupting data, this error has been observed to result in significant “bloat” of standby
servers compared to their masters, due to updates being applied far beyond where the end-of-file should
have been. This failure mode does not appear to be a significant risk during crash recovery, only when
initially synchronizing a standby created from a base backup taken from a quickly-changing master.

• Fix bug in determining when recovery has reached consistency (Tomonari Katsumata, Heikki Lin-
nakangas)

In some cases WAL replay would mistakenly conclude that the database was already consistent at the
start of replay, thus possibly allowing hot-standby queries before the database was really consistent.
Other symptoms such as “PANIC: WAL contains references to invalid pages” were also possible.

• Fix improper locking of btree index pages while replaying a VACUUM operation in hot-standby mode
(Andres Freund, Heikki Linnakangas, Tom Lane)

This error could result in “PANIC: WAL contains references to invalid pages” failures.

• Ensure that insertions into non-leaf GIN index pages write a full-page WAL record when appropriate
(Heikki Linnakangas)

The previous coding risked index corruption in the event of a partial-page write during a system crash.

• Fix race conditions during server process exit (Robert Haas)

Ensure that signal handlers don’t attempt to use the process’s MyProc pointer after it’s no longer valid.

• Fix unsafe references to errno within error reporting logic (Christian Kruse)

This would typically lead to odd behaviors such as missing or inappropriate HINT fields.

• Fix possible crashes from using ereport() too early during server startup (Tom Lane)

The principal case we’ve seen in the field is a crash if the server is started in a directory it doesn’t have
permission to read.

2139

Appendix E. Release Notes

• Clear retry flags properly in OpenSSL socket write function (Alexander Kukushkin)

This omission could result in a server lockup after unexpected loss of an SSL-encrypted connection.

• Fix length checking for Unicode identifiers (U&"..." syntax) containing escapes (Tom Lane)

A spurious truncation warning would be printed for such identifiers if the escaped form of the identifier
was too long, but the identifier actually didn’t need truncation after de-escaping.

• Allow keywords that are type names to be used in lists of roles (Stephen Frost)

A previous patch allowed such keywords to be used without quoting in places such as role identifiers;
but it missed cases where a list of role identifiers was permitted, such as DROP ROLE.

• Fix possible crash due to invalid plan for nested sub-selects, such as WHERE (... x IN (SELECT

...) ...) IN (SELECT ...) (Tom Lane)

• Ensure that ANALYZE creates statistics for a table column even when all the values in it are “too wide”
(Tom Lane)

ANALYZE intentionally omits very wide values from its histogram and most-common-values calcula-
tions, but it neglected to do something sane in the case that all the sampled entries are too wide.

• In ALTER TABLE ... SET TABLESPACE, allow the database’s default tablespace to be used without
a permissions check (Stephen Frost)

CREATE TABLE has always allowed such usage, but ALTER TABLE didn’t get the memo.

• Fix “cannot accept a set” error when some arms of a CASE return a set and others don’t (Tom Lane)

• Fix checks for all-zero client addresses in pgstat functions (Kevin Grittner)

• Fix possible misclassification of multibyte characters by the text search parser (Tom Lane)

Non-ASCII characters could be misclassified when using C locale with a multibyte encoding. On Cyg-
win, non-C locales could fail as well.

• Fix possible misbehavior in plainto_tsquery() (Heikki Linnakangas)

Use memmove() not memcpy() for copying overlapping memory regions. There have been no field
reports of this actually causing trouble, but it’s certainly risky.

• Accept SHIFT_JIS as an encoding name for locale checking purposes (Tatsuo Ishii)

• Fix misbehavior of PQhost() on Windows (Fujii Masao)

It should return localhost if no host has been specified.

• Improve error handling in libpq and psql for failures during COPY TO STDOUT/FROM STDIN (Tom
Lane)

In particular this fixes an infinite loop that could occur in 9.2 and up if the server connection was lost
during COPY FROM STDIN. Variants of that scenario might be possible in older versions, or with other
client applications.

• Fix misaligned descriptors in ecpg (MauMau)

• In ecpg, handle lack of a hostname in the connection parameters properly (Michael Meskes)

• Fix performance regression in contrib/dblink connection startup (Joe Conway)

Avoid an unnecessary round trip when client and server encodings match.

• In contrib/isn, fix incorrect calculation of the check digit for ISMN values (Fabien Coelho)

2140

Appendix E. Release Notes

• Ensure client-code-only installation procedure works as documented (Peter Eisentraut)

• In Mingw and Cygwin builds, install the libpq DLL in the bin directory (Andrew Dunstan)

This duplicates what the MSVC build has long done. It should fix problems with programs like psql
failing to start because they can’t find the DLL.

• Avoid using the deprecated dllwrap tool in Cygwin builds (Marco Atzeri)

• Don’t generate plain-text HISTORY and src/test/regress/README files anymore (Tom Lane)

These text files duplicated the main HTML and PDF documentation formats. The trouble involved
in maintaining them greatly outweighs the likely audience for plain-text format. Distribution tarballs
will still contain files by these names, but they’ll just be stubs directing the reader to consult the main
documentation. The plain-text INSTALL file will still be maintained, as there is arguably a use-case for
that.

• Update time zone data files to tzdata release 2013i for DST law changes in Jordan and historical changes
in Cuba.

In addition, the zones Asia/Riyadh87, Asia/Riyadh88, and Asia/Riyadh89 have been removed,
as they are no longer maintained by IANA, and never represented actual civil timekeeping practice.

E.23. Release 9.0.15

Release Date: 2013-12-05

This release contains a variety of fixes from 9.0.14. For information about new features in the 9.0 major
release, see Section E.38.

E.23.1. Migration to Version 9.0.15
A dump/restore is not required for those running 9.0.X.

However, this release corrects a number of potential data corruption issues. See the first two changelog
entries below to find out whether your installation has been affected and what steps you can take if so.

Also, if you are upgrading from a version earlier than 9.0.13, see Section E.25.

E.23.2. Changes

• Fix VACUUM’s tests to see whether it can update relfrozenxid (Andres Freund)

In some cases VACUUM (either manual or autovacuum) could incorrectly advance a table’s
relfrozenxid value, allowing tuples to escape freezing, causing those rows to become invisible
once 2^31 transactions have elapsed. The probability of data loss is fairly low since multiple incorrect

2141

Appendix E. Release Notes

advancements would need to happen before actual loss occurs, but it’s not zero. Users upgrading from
releases 9.0.4 or 8.4.8 or earlier are not affected, but all later versions contain the bug.

The issue can be ameliorated by, after upgrading, vacuuming all tables in all databases while having
vacuum_freeze_table_age set to zero. This will fix any latent corruption but will not be able to
fix all pre-existing data errors. However, an installation can be presumed safe after performing this
vacuuming if it has executed fewer than 2^31 update transactions in its lifetime (check this with SELECT
txid_current() < 2^31).

• Fix initialization of pg_clog and pg_subtrans during hot standby startup (Andres Freund, Heikki
Linnakangas)

This bug can cause data loss on standby servers at the moment they start to accept hot-standby queries,
by marking committed transactions as uncommitted. The likelihood of such corruption is small unless,
at the time of standby startup, the primary server has executed many updating transactions since its last
checkpoint. Symptoms include missing rows, rows that should have been deleted being still visible, and
obsolete versions of updated rows being still visible alongside their newer versions.

This bug was introduced in versions 9.3.0, 9.2.5, 9.1.10, and 9.0.14. Standby servers that have only
been running earlier releases are not at risk. It’s recommended that standby servers that have ever run
any of the buggy releases be re-cloned from the primary (e.g., with a new base backup) after upgrading.

• Truncate pg_multixact contents during WAL replay (Andres Freund)

This avoids ever-increasing disk space consumption in standby servers.

• Fix race condition in GIN index posting tree page deletion (Heikki Linnakangas)

This could lead to transient wrong answers or query failures.

• Avoid flattening a subquery whose SELECT list contains a volatile function wrapped inside a sub-
SELECT (Tom Lane)

This avoids unexpected results due to extra evaluations of the volatile function.

• Fix planner’s processing of non-simple-variable subquery outputs nested within outer joins (Tom Lane)

This error could lead to incorrect plans for queries involving multiple levels of subqueries within JOIN

syntax.

• Fix premature deletion of temporary files (Andres Freund)

• Fix possible read past end of memory in rule printing (Peter Eisentraut)

• Fix array slicing of int2vector and oidvector values (Tom Lane)

Expressions of this kind are now implicitly promoted to regular int2 or oid arrays.

• Fix incorrect behaviors when using a SQL-standard, simple GMT offset timezone (Tom Lane)

In some cases, the system would use the simple GMT offset value when it should have used the regular
timezone setting that had prevailed before the simple offset was selected. This change also causes the
timeofday function to honor the simple GMT offset zone.

• Prevent possible misbehavior when logging translations of Windows error codes (Tom Lane)

• Properly quote generated command lines in pg_ctl (Naoya Anzai and Tom Lane)

This fix applies only to Windows.

2142

Appendix E. Release Notes

• Fix pg_dumpall to work when a source database sets default_transaction_read_only via ALTER
DATABASE SET (Kevin Grittner)

Previously, the generated script would fail during restore.

• Fix ecpg’s processing of lists of variables declared varchar (Zoltán Böszörményi)

• Make contrib/lo defend against incorrect trigger definitions (Marc Cousin)

• Update time zone data files to tzdata release 2013h for DST law changes in Argentina, Brazil, Jordan,
Libya, Liechtenstein, Morocco, and Palestine. Also, new timezone abbreviations WIB, WIT, WITA for
Indonesia.

E.24. Release 9.0.14

Release Date: 2013-10-10

This release contains a variety of fixes from 9.0.13. For information about new features in the 9.0 major
release, see Section E.38.

E.24.1. Migration to Version 9.0.14
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.13, see Section E.25.

E.24.2. Changes

• Prevent corruption of multi-byte characters when attempting to case-fold identifiers (Andrew Dunstan)

PostgreSQL case-folds non-ASCII characters only when using a single-byte server encoding.

• Fix checkpoint memory leak in background writer when wal_level = hot_standby (Naoya Anzai)

• Fix memory leak caused by lo_open() failure (Heikki Linnakangas)

• Fix memory overcommit bug when work_mem is using more than 24GB of memory (Stephen Frost)

• Fix deadlock bug in libpq when using SSL (Stephen Frost)

• Fix possible SSL state corruption in threaded libpq applications (Nick Phillips, Stephen Frost)

• Properly compute row estimates for boolean columns containing many NULL values (Andrew Gierth)

Previously tests like col IS NOT TRUE and col IS NOT FALSE did not properly factor in NULL
values when estimating plan costs.

• Prevent pushing down WHERE clauses into unsafe UNION/INTERSECT subqueries (Tom Lane)

2143

Appendix E. Release Notes

Subqueries of a UNION or INTERSECT that contain set-returning functions or volatile functions in their
SELECT lists could be improperly optimized, leading to run-time errors or incorrect query results.

• Fix rare case of “failed to locate grouping columns” planner failure (Tom Lane)

• Improve view dumping code’s handling of dropped columns in referenced tables (Tom Lane)

• Properly record index comments created using UNIQUE and PRIMARY KEY syntax (Andres Freund)

This fixes a parallel pg_restore failure.

• Fix REINDEX TABLE and REINDEX DATABASE to properly revalidate constraints and mark invalidated
indexes as valid (Noah Misch)

REINDEX INDEX has always worked properly.

• Fix possible deadlock during concurrent CREATE INDEX CONCURRENTLY operations (Tom Lane)

• Fix regexp_matches() handling of zero-length matches (Jeevan Chalke)

Previously, zero-length matches like ’^’ could return too many matches.

• Fix crash for overly-complex regular expressions (Heikki Linnakangas)

• Fix regular expression match failures for back references combined with non-greedy quantifiers (Jeevan
Chalke)

• Prevent CREATE FUNCTION from checking SET variables unless function body checking is enabled
(Tom Lane)

• Allow ALTER DEFAULT PRIVILEGES to operate on schemas without requiring CREATE permission
(Tom Lane)

• Loosen restriction on keywords used in queries (Tom Lane)

Specifically, lessen keyword restrictions for role names, language names, EXPLAIN and COPY options,
and SET values. This allows COPY ... (FORMAT BINARY) to work as expected; previously BINARY

needed to be quoted.

• Fix pgp_pub_decrypt() so it works for secret keys with passwords (Marko Kreen)

• Remove rare inaccurate warning during vacuum of index-less tables (Heikki Linnakangas)

• Ensure that VACUUM ANALYZE still runs the ANALYZE phase if its attempt to truncate the file is can-
celled due to lock conflicts (Kevin Grittner)

• Avoid possible failure when performing transaction control commands (e.g ROLLBACK) in prepared
queries (Tom Lane)

• Ensure that floating-point data input accepts standard spellings of “infinity” on all platforms (Tom Lane)

The C99 standard says that allowable spellings are inf, +inf, -inf, infinity, +infinity, and
-infinity. Make sure we recognize these even if the platform’s strtod function doesn’t.

• Expand ability to compare rows to records and arrays (Rafal Rzepecki, Tom Lane)

• Update time zone data files to tzdata release 2013d for DST law changes in Israel, Morocco, Palestine,
and Paraguay. Also, historical zone data corrections for Macquarie Island.

2144

Appendix E. Release Notes

E.25. Release 9.0.13

Release Date: 2013-04-04

This release contains a variety of fixes from 9.0.12. For information about new features in the 9.0 major
release, see Section E.38.

E.25.1. Migration to Version 9.0.13
A dump/restore is not required for those running 9.0.X.

However, this release corrects several errors in management of GiST indexes. After installing this update,
it is advisable to REINDEX any GiST indexes that meet one or more of the conditions described below.

Also, if you are upgrading from a version earlier than 9.0.6, see Section E.32.

E.25.2. Changes

• Fix insecure parsing of server command-line switches (Mitsumasa Kondo, Kyotaro Horiguchi)

A connection request containing a database name that begins with “-” could be crafted to damage or
destroy files within the server’s data directory, even if the request is eventually rejected. (CVE-2013-
1899)

• Reset OpenSSL randomness state in each postmaster child process (Marko Kreen)

This avoids a scenario wherein random numbers generated by contrib/pgcrypto functions might
be relatively easy for another database user to guess. The risk is only significant when the postmaster is
configured with ssl = on but most connections don’t use SSL encryption. (CVE-2013-1900)

• Fix GiST indexes to not use “fuzzy” geometric comparisons when it’s not appropriate to do so (Alexan-
der Korotkov)

The core geometric types perform comparisons using “fuzzy” equality, but gist_box_same must do
exact comparisons, else GiST indexes using it might become inconsistent. After installing this update,
users should REINDEX any GiST indexes on box, polygon, circle, or point columns, since all of
these use gist_box_same.

• Fix erroneous range-union and penalty logic in GiST indexes that use contrib/btree_gist for
variable-width data types, that is text, bytea, bit, and numeric columns (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in useless index bloat. Users are advised to REINDEX such indexes after
installing this update.

• Fix bugs in GiST page splitting code for multi-column indexes (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in indexes that are unnecessarily inefficient to search. Users are advised to
REINDEX multi-column GiST indexes after installing this update.

2145

Appendix E. Release Notes

• Fix gist_point_consistent to handle fuzziness consistently (Alexander Korotkov)

Index scans on GiST indexes on point columns would sometimes yield results different from a se-
quential scan, because gist_point_consistent disagreed with the underlying operator code about
whether to do comparisons exactly or fuzzily.

• Fix buffer leak in WAL replay (Heikki Linnakangas)

This bug could result in “incorrect local pin count” errors during replay, making recovery impossible.

• Fix race condition in DELETE RETURNING (Tom Lane)

Under the right circumstances, DELETE RETURNING could attempt to fetch data from a shared buffer
that the current process no longer has any pin on. If some other process changed the buffer meanwhile,
this would lead to garbage RETURNING output, or even a crash.

• Fix infinite-loop risk in regular expression compilation (Tom Lane, Don Porter)

• Fix potential null-pointer dereference in regular expression compilation (Tom Lane)

• Fix to_char() to use ASCII-only case-folding rules where appropriate (Tom Lane)

This fixes misbehavior of some template patterns that should be locale-independent, but mishandled
“I” and “i” in Turkish locales.

• Fix unwanted rejection of timestamp 1999-12-31 24:00:00 (Tom Lane)

• Fix logic error when a single transaction does UNLISTEN then LISTEN (Tom Lane)

The session wound up not listening for notify events at all, though it surely should listen in this case.

• Remove useless “picksplit doesn’t support secondary split” log messages (Josh Hansen, Tom Lane)

This message seems to have been added in expectation of code that was never written, and probably
never will be, since GiST’s default handling of secondary splits is actually pretty good. So stop nagging
end users about it.

• Fix possible failure to send a session’s last few transaction commit/abort counts to the statistics collector
(Tom Lane)

• Eliminate memory leaks in PL/Perl’s spi_prepare() function (Alex Hunsaker, Tom Lane)

• Fix pg_dumpall to handle database names containing “=” correctly (Heikki Linnakangas)

• Avoid crash in pg_dump when an incorrect connection string is given (Heikki Linnakangas)

• Ignore invalid indexes in pg_dump and pg_upgrade (Michael Paquier, Bruce Momjian)

Dumping invalid indexes can cause problems at restore time, for example if the reason the index creation
failed was because it tried to enforce a uniqueness condition not satisfied by the table’s data. Also, if the
index creation is in fact still in progress, it seems reasonable to consider it to be an uncommitted DDL
change, which pg_dump wouldn’t be expected to dump anyway. pg_upgrade now also skips invalid
indexes rather than failing.

• Fix contrib/pg_trgm’s similarity() function to return zero for trigram-less strings (Tom Lane)

Previously it returned NaN due to internal division by zero.

• Update time zone data files to tzdata release 2013b for DST law changes in Chile, Haiti, Morocco,
Paraguay, and some Russian areas. Also, historical zone data corrections for numerous places.

Also, update the time zone abbreviation files for recent changes in Russia and elsewhere: CHOT, GET,
IRKT, KGT, KRAT, MAGT, MAWT, MSK, NOVT, OMST, TKT, VLAT, WST, YAKT, YEKT now follow their

2146

Appendix E. Release Notes

current meanings, and VOLT (Europe/Volgograd) and MIST (Antarctica/Macquarie) are added to the
default abbreviations list.

E.26. Release 9.0.12

Release Date: 2013-02-07

This release contains a variety of fixes from 9.0.11. For information about new features in the 9.0 major
release, see Section E.38.

E.26.1. Migration to Version 9.0.12
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.6, see Section E.32.

E.26.2. Changes

• Prevent execution of enum_recv from SQL (Tom Lane)

The function was misdeclared, allowing a simple SQL command to crash the server. In principle an
attacker might be able to use it to examine the contents of server memory. Our thanks to Sumit Soni
(via Secunia SVCRP) for reporting this issue. (CVE-2013-0255)

• Fix multiple problems in detection of when a consistent database state has been reached during WAL
replay (Fujii Masao, Heikki Linnakangas, Simon Riggs, Andres Freund)

• Update minimum recovery point when truncating a relation file (Heikki Linnakangas)

Once data has been discarded, it’s no longer safe to stop recovery at an earlier point in the timeline.

• Fix missing cancellations in hot standby mode (Noah Misch, Simon Riggs)

The need to cancel conflicting hot-standby queries would sometimes be missed, allowing those queries
to see inconsistent data.

• Fix SQL grammar to allow subscripting or field selection from a sub-SELECT result (Tom Lane)

• Fix performance problems with autovacuum truncation in busy workloads (Jan Wieck)

Truncation of empty pages at the end of a table requires exclusive lock, but autovacuum was coded to
fail (and release the table lock) when there are conflicting lock requests. Under load, it is easily possi-
ble that truncation would never occur, resulting in table bloat. Fix by performing a partial truncation,
releasing the lock, then attempting to re-acquire the lock and continue. This fix also greatly reduces the
average time before autovacuum releases the lock after a conflicting request arrives.

• Protect against race conditions when scanning pg_tablespace (Stephen Frost, Tom Lane)

2147

Appendix E. Release Notes

CREATE DATABASE and DROP DATABASE could misbehave if there were concurrent updates of
pg_tablespace entries.

• Prevent DROP OWNED from trying to drop whole databases or tablespaces (Álvaro Herrera)

For safety, ownership of these objects must be reassigned, not dropped.

• Fix error in vacuum_freeze_table_age implementation (Andres Freund)

In installations that have existed for more than vacuum_freeze_min_age transactions, this mistake
prevented autovacuum from using partial-table scans, so that a full-table scan would always happen
instead.

• Prevent misbehavior when a RowExpr or XmlExpr is parse-analyzed twice (Andres Freund, Tom Lane)

This mistake could be user-visible in contexts such as CREATE TABLE LIKE INCLUDING INDEXES.

• Improve defenses against integer overflow in hashtable sizing calculations (Jeff Davis)

• Reject out-of-range dates in to_date() (Hitoshi Harada)

• Ensure that non-ASCII prompt strings are translated to the correct code page on Windows (Alexander
Law, Noah Misch)

This bug affected psql and some other client programs.

• Fix possible crash in psql’s \? command when not connected to a database (Meng Qingzhong)

• Fix pg_upgrade to deal with invalid indexes safely (Bruce Momjian)

• Fix one-byte buffer overrun in libpq’s PQprintTuples (Xi Wang)

This ancient function is not used anywhere by PostgreSQL itself, but it might still be used by some
client code.

• Make ecpglib use translated messages properly (Chen Huajun)

• Properly install ecpg_compat and pgtypes libraries on MSVC (Jiang Guiqing)

• Include our version of isinf() in libecpg if it’s not provided by the system (Jiang Guiqing)

• Rearrange configure’s tests for supplied functions so it is not fooled by bogus exports from
libedit/libreadline (Christoph Berg)

• Ensure Windows build number increases over time (Magnus Hagander)

• Make pgxs build executables with the right .exe suffix when cross-compiling for Windows (Zoltan
Boszormenyi)

• Add new timezone abbreviation FET (Tom Lane)

This is now used in some eastern-European time zones.

E.27. Release 9.0.11

Release Date: 2012-12-06

2148

Appendix E. Release Notes

This release contains a variety of fixes from 9.0.10. For information about new features in the 9.0 major
release, see Section E.38.

E.27.1. Migration to Version 9.0.11
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.6, see Section E.32.

E.27.2. Changes

• Fix multiple bugs associated with CREATE INDEX CONCURRENTLY (Andres Freund, Tom Lane)

Fix CREATE INDEX CONCURRENTLY to use in-place updates when changing the state of an index’s
pg_index row. This prevents race conditions that could cause concurrent sessions to miss updating the
target index, thus resulting in corrupt concurrently-created indexes.

Also, fix various other operations to ensure that they ignore invalid indexes resulting from a failed
CREATE INDEX CONCURRENTLY command. The most important of these is VACUUM, because an auto-
vacuum could easily be launched on the table before corrective action can be taken to fix or remove the
invalid index.

• Fix buffer locking during WAL replay (Tom Lane)

The WAL replay code was insufficiently careful about locking buffers when replaying WAL records
that affect more than one page. This could result in hot standby queries transiently seeing inconsistent
states, resulting in wrong answers or unexpected failures.

• Fix an error in WAL generation logic for GIN indexes (Tom Lane)

This could result in index corruption, if a torn-page failure occurred.

• Properly remove startup process’s virtual XID lock when promoting a hot standby server to normal
running (Simon Riggs)

This oversight could prevent subsequent execution of certain operations such as CREATE INDEX

CONCURRENTLY.

• Avoid bogus “out-of-sequence timeline ID” errors in standby mode (Heikki Linnakangas)

• Prevent the postmaster from launching new child processes after it’s received a shutdown signal (Tom
Lane)

This mistake could result in shutdown taking longer than it should, or even never completing at all
without additional user action.

• Avoid corruption of internal hash tables when out of memory (Hitoshi Harada)

• Fix planning of non-strict equivalence clauses above outer joins (Tom Lane)

The planner could derive incorrect constraints from a clause equating a non-strict construct to some-
thing else, for example WHERE COALESCE(foo, 0) = 0 when foo is coming from the nullable side
of an outer join.

• Improve planner’s ability to prove exclusion constraints from equivalence classes (Tom Lane)

2149

Appendix E. Release Notes

• Fix partial-row matching in hashed subplans to handle cross-type cases correctly (Tom Lane)

This affects multicolumn NOT IN subplans, such as WHERE (a, b) NOT IN (SELECT x, y FROM

...) when for instance b and y are int4 and int8 respectively. This mistake led to wrong answers or
crashes depending on the specific datatypes involved.

• Acquire buffer lock when re-fetching the old tuple for an AFTER ROW UPDATE/DELETE trigger (An-
dres Freund)

In very unusual circumstances, this oversight could result in passing incorrect data to the precheck
logic for a foreign-key enforcement trigger. That could result in a crash, or in an incorrect decision
about whether to fire the trigger.

• Fix ALTER COLUMN TYPE to handle inherited check constraints properly (Pavan Deolasee)

This worked correctly in pre-8.4 releases, and now works correctly in 8.4 and later.

• Fix REASSIGN OWNED to handle grants on tablespaces (Álvaro Herrera)

• Ignore incorrect pg_attribute entries for system columns for views (Tom Lane)

Views do not have any system columns. However, we forgot to remove such entries when converting
a table to a view. That’s fixed properly for 9.3 and later, but in previous branches we need to defend
against existing mis-converted views.

• Fix rule printing to dump INSERT INTO table DEFAULT VALUES correctly (Tom Lane)

• Guard against stack overflow when there are too many UNION/INTERSECT/EXCEPT clauses in a query
(Tom Lane)

• Prevent platform-dependent failures when dividing the minimum possible integer value by -1 (Xi Wang,
Tom Lane)

• Fix possible access past end of string in date parsing (Hitoshi Harada)

• Fix failure to advance XID epoch if XID wraparound happens during a checkpoint and wal_level is
hot_standby (Tom Lane, Andres Freund)

While this mistake had no particular impact on PostgreSQL itself, it was bad for applications that rely
on txid_current() and related functions: the TXID value would appear to go backwards.

• Produce an understandable error message if the length of the path name for a Unix-domain socket
exceeds the platform-specific limit (Tom Lane, Andrew Dunstan)

Formerly, this would result in something quite unhelpful, such as “Non-recoverable failure in name
resolution”.

• Fix memory leaks when sending composite column values to the client (Tom Lane)

• Make pg_ctl more robust about reading the postmaster.pid file (Heikki Linnakangas)

Fix race conditions and possible file descriptor leakage.

• Fix possible crash in psql if incorrectly-encoded data is presented and the client_encoding setting
is a client-only encoding, such as SJIS (Jiang Guiqing)

• Fix bugs in the restore.sql script emitted by pg_dump in tar output format (Tom Lane)

The script would fail outright on tables whose names include upper-case characters. Also, make the
script capable of restoring data in --inserts mode as well as the regular COPY mode.

• Fix pg_restore to accept POSIX-conformant tar files (Brian Weaver, Tom Lane)

2150

Appendix E. Release Notes

The original coding of pg_dump’s tar output mode produced files that are not fully conformant with
the POSIX standard. This has been corrected for version 9.3. This patch updates previous branches so
that they will accept both the incorrect and the corrected formats, in hopes of avoiding compatibility
problems when 9.3 comes out.

• Fix pg_resetxlog to locate postmaster.pid correctly when given a relative path to the data directory
(Tom Lane)

This mistake could lead to pg_resetxlog not noticing that there is an active postmaster using the data
directory.

• Fix libpq’s lo_import() and lo_export() functions to report file I/O errors properly (Tom Lane)

• Fix ecpg’s processing of nested structure pointer variables (Muhammad Usama)

• Fix ecpg’s ecpg_get_data function to handle arrays properly (Michael Meskes)

• Make contrib/pageinspect’s btree page inspection functions take buffer locks while examining
pages (Tom Lane)

• Fix pgxs support for building loadable modules on AIX (Tom Lane)

Building modules outside the original source tree didn’t work on AIX.

• Update time zone data files to tzdata release 2012j for DST law changes in Cuba, Israel, Jordan, Libya,
Palestine, Western Samoa, and portions of Brazil.

E.28. Release 9.0.10

Release Date: 2012-09-24

This release contains a variety of fixes from 9.0.9. For information about new features in the 9.0 major
release, see Section E.38.

E.28.1. Migration to Version 9.0.10
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.6, see Section E.32.

E.28.2. Changes

• Fix planner’s assignment of executor parameters, and fix executor’s rescan logic for CTE plan nodes
(Tom Lane)

These errors could result in wrong answers from queries that scan the same WITH subquery multiple
times.

2151

Appendix E. Release Notes

• Improve page-splitting decisions in GiST indexes (Alexander Korotkov, Robert Haas, Tom Lane)

Multi-column GiST indexes might suffer unexpected bloat due to this error.

• Fix cascading privilege revoke to stop if privileges are still held (Tom Lane)

If we revoke a grant option from some role X, but X still holds that option via a grant from someone
else, we should not recursively revoke the corresponding privilege from role(s) Y that X had granted it
to.

• Improve error messages for Hot Standby misconfiguration errors (Gurjeet Singh)

• Fix handling of SIGFPE when PL/Perl is in use (Andres Freund)

Perl resets the process’s SIGFPE handler to SIG_IGN, which could result in crashes later on. Restore
the normal Postgres signal handler after initializing PL/Perl.

• Prevent PL/Perl from crashing if a recursive PL/Perl function is redefined while being executed (Tom
Lane)

• Work around possible misoptimization in PL/Perl (Tom Lane)

Some Linux distributions contain an incorrect version of pthread.h that results in incorrect compiled
code in PL/Perl, leading to crashes if a PL/Perl function calls another one that throws an error.

• Fix pg_upgrade’s handling of line endings on Windows (Andrew Dunstan)

Previously, pg_upgrade might add or remove carriage returns in places such as function bodies.

• On Windows, make pg_upgrade use backslash path separators in the scripts it emits (Andrew Dunstan)

• Update time zone data files to tzdata release 2012f for DST law changes in Fiji

E.29. Release 9.0.9

Release Date: 2012-08-17

This release contains a variety of fixes from 9.0.8. For information about new features in the 9.0 major
release, see Section E.38.

E.29.1. Migration to Version 9.0.9
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.6, see Section E.32.

E.29.2. Changes

• Prevent access to external files/URLs via XML entity references (Noah Misch, Tom Lane)

2152

Appendix E. Release Notes

xml_parse() would attempt to fetch external files or URLs as needed to resolve DTD and entity
references in an XML value, thus allowing unprivileged database users to attempt to fetch data with
the privileges of the database server. While the external data wouldn’t get returned directly to the user,
portions of it could be exposed in error messages if the data didn’t parse as valid XML; and in any case
the mere ability to check existence of a file might be useful to an attacker. (CVE-2012-3489)

• Prevent access to external files/URLs via contrib/xml2’s xslt_process() (Peter Eisentraut)

libxslt offers the ability to read and write both files and URLs through stylesheet commands, thus
allowing unprivileged database users to both read and write data with the privileges of the database
server. Disable that through proper use of libxslt’s security options. (CVE-2012-3488)

Also, remove xslt_process()’s ability to fetch documents and stylesheets from external files/URLs.
While this was a documented “feature”, it was long regarded as a bad idea. The fix for CVE-2012-3489
broke that capability, and rather than expend effort on trying to fix it, we’re just going to summarily
remove it.

• Prevent too-early recycling of btree index pages (Noah Misch)

When we allowed read-only transactions to skip assigning XIDs, we introduced the possibility that a
deleted btree page could be recycled while a read-only transaction was still in flight to it. This would
result in incorrect index search results. The probability of such an error occurring in the field seems
very low because of the timing requirements, but nonetheless it should be fixed.

• Fix crash-safety bug with newly-created-or-reset sequences (Tom Lane)

If ALTER SEQUENCE was executed on a freshly created or reset sequence, and then precisely one
nextval() call was made on it, and then the server crashed, WAL replay would restore the sequence
to a state in which it appeared that no nextval() had been done, thus allowing the first sequence value
to be returned again by the next nextval() call. In particular this could manifest for serial columns,
since creation of a serial column’s sequence includes an ALTER SEQUENCE OWNED BY step.

• Fix txid_current() to report the correct epoch when not in hot standby (Heikki Linnakangas)

This fixes a regression introduced in the previous minor release.

• Fix bug in startup of Hot Standby when a master transaction has many subtransactions (Andres Freund)

This mistake led to failures reported as “out-of-order XID insertion in KnownAssignedXids”.

• Ensure the backup_label file is fsync’d after pg_start_backup() (Dave Kerr)

• Fix timeout handling in walsender processes (Tom Lane)

WAL sender background processes neglected to establish a SIGALRM handler, meaning they would
wait forever in some corner cases where a timeout ought to happen.

• Back-patch 9.1 improvement to compress the fsync request queue (Robert Haas)

This improves performance during checkpoints. The 9.1 change has now seen enough field testing to
seem safe to back-patch.

• Fix LISTEN/NOTIFY to cope better with I/O problems, such as out of disk space (Tom Lane)

After a write failure, all subsequent attempts to send more NOTIFY messages would fail with messages
like “Could not read from file "pg_notify/nnnn" at offset nnnnn: Success”.

• Only allow autovacuum to be auto-canceled by a directly blocked process (Tom Lane)

2153

Appendix E. Release Notes

The original coding could allow inconsistent behavior in some cases; in particular, an autovacuum could
get canceled after less than deadlock_timeout grace period.

• Improve logging of autovacuum cancels (Robert Haas)

• Fix log collector so that log_truncate_on_rotation works during the very first log rotation after
server start (Tom Lane)

• Fix WITH attached to a nested set operation (UNION/INTERSECT/EXCEPT) (Tom Lane)

• Ensure that a whole-row reference to a subquery doesn’t include any extra GROUP BY or ORDER BY

columns (Tom Lane)

• Disallow copying whole-row references in CHECK constraints and index definitions during CREATE

TABLE (Tom Lane)

This situation can arise in CREATE TABLE with LIKE or INHERITS. The copied whole-row variable
was incorrectly labeled with the row type of the original table not the new one. Rejecting the case
seems reasonable for LIKE, since the row types might well diverge later. For INHERITS we should
ideally allow it, with an implicit coercion to the parent table’s row type; but that will require more work
than seems safe to back-patch.

• Fix memory leak in ARRAY(SELECT ...) subqueries (Heikki Linnakangas, Tom Lane)

• Fix extraction of common prefixes from regular expressions (Tom Lane)

The code could get confused by quantified parenthesized subexpressions, such as ^(foo)?bar. This
would lead to incorrect index optimization of searches for such patterns.

• Fix bugs with parsing signed hh:mm and hh:mm:ss fields in interval constants (Amit Kapila, Tom
Lane)

• Use Postgres’ encoding conversion functions, not Python’s, when converting a Python Unicode string
to the server encoding in PL/Python (Jan Urbanski)

This avoids some corner-case problems, notably that Python doesn’t support all the encodings Postgres
does. A notable functional change is that if the server encoding is SQL_ASCII, you will get the UTF-8
representation of the string; formerly, any non-ASCII characters in the string would result in an error.

• Fix mapping of PostgreSQL encodings to Python encodings in PL/Python (Jan Urbanski)

• Report errors properly in contrib/xml2’s xslt_process() (Tom Lane)

• Update time zone data files to tzdata release 2012e for DST law changes in Morocco and Tokelau

E.30. Release 9.0.8

Release Date: 2012-06-04

This release contains a variety of fixes from 9.0.7. For information about new features in the 9.0 major
release, see Section E.38.

2154

Appendix E. Release Notes

E.30.1. Migration to Version 9.0.8
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.6, see Section E.32.

E.30.2. Changes

• Fix incorrect password transformation in contrib/pgcrypto’s DES crypt() function (Solar De-
signer)

If a password string contained the byte value 0x80, the remainder of the password was ignored, causing
the password to be much weaker than it appeared. With this fix, the rest of the string is properly included
in the DES hash. Any stored password values that are affected by this bug will thus no longer match,
so the stored values may need to be updated. (CVE-2012-2143)

• Ignore SECURITY DEFINER and SET attributes for a procedural language’s call handler (Tom Lane)

Applying such attributes to a call handler could crash the server. (CVE-2012-2655)

• Allow numeric timezone offsets in timestamp input to be up to 16 hours away from UTC (Tom Lane)

Some historical time zones have offsets larger than 15 hours, the previous limit. This could result in
dumped data values being rejected during reload.

• Fix timestamp conversion to cope when the given time is exactly the last DST transition time for the
current timezone (Tom Lane)

This oversight has been there a long time, but was not noticed previously because most DST-using
zones are presumed to have an indefinite sequence of future DST transitions.

• Fix text to name and char to name casts to perform string truncation correctly in multibyte encodings
(Karl Schnaitter)

• Fix memory copying bug in to_tsquery() (Heikki Linnakangas)

• Ensure txid_current() reports the correct epoch when executed in hot standby (Simon Riggs)

• Fix planner’s handling of outer PlaceHolderVars within subqueries (Tom Lane)

This bug concerns sub-SELECTs that reference variables coming from the nullable side of an outer
join of the surrounding query. In 9.1, queries affected by this bug would fail with “ERROR: Upper-
level PlaceHolderVar found where not expected”. But in 9.0 and 8.4, you’d silently get possibly-wrong
answers, since the value transmitted into the subquery wouldn’t go to null when it should.

• Fix slow session startup when pg_attribute is very large (Tom Lane)

If pg_attribute exceeds one-fourth of shared_buffers, cache rebuilding code that is sometimes
needed during session start would trigger the synchronized-scan logic, causing it to take many times
longer than normal. The problem was particularly acute if many new sessions were starting at once.

• Ensure sequential scans check for query cancel reasonably often (Merlin Moncure)

A scan encountering many consecutive pages that contain no live tuples would not respond to interrupts
meanwhile.

2155

Appendix E. Release Notes

• Ensure the Windows implementation of PGSemaphoreLock() clears ImmediateInterruptOK be-
fore returning (Tom Lane)

This oversight meant that a query-cancel interrupt received later in the same query could be accepted at
an unsafe time, with unpredictable but not good consequences.

• Show whole-row variables safely when printing views or rules (Abbas Butt, Tom Lane)

Corner cases involving ambiguous names (that is, the name could be either a table or column name
of the query) were printed in an ambiguous way, risking that the view or rule would be interpreted
differently after dump and reload. Avoid the ambiguous case by attaching a no-op cast.

• Fix COPY FROM to properly handle null marker strings that correspond to invalid encoding (Tom Lane)

A null marker string such as E’\\0’ should work, and did work in the past, but the case got broken in
8.4.

• Ensure autovacuum worker processes perform stack depth checking properly (Heikki Linnakangas)

Previously, infinite recursion in a function invoked by auto-ANALYZE could crash worker processes.

• Fix logging collector to not lose log coherency under high load (Andrew Dunstan)

The collector previously could fail to reassemble large messages if it got too busy.

• Fix logging collector to ensure it will restart file rotation after receiving SIGHUP (Tom Lane)

• Fix WAL replay logic for GIN indexes to not fail if the index was subsequently dropped (Tom Lane)

• Fix memory leak in PL/pgSQL’s RETURN NEXT command (Joe Conway)

• Fix PL/pgSQL’s GET DIAGNOSTICS command when the target is the function’s first variable (Tom
Lane)

• Fix potential access off the end of memory in psql’s expanded display (\x) mode (Peter Eisentraut)

• Fix several performance problems in pg_dump when the database contains many objects (Jeff Janes,
Tom Lane)

pg_dump could get very slow if the database contained many schemas, or if many objects are in depen-
dency loops, or if there are many owned sequences.

• Fix pg_upgrade for the case that a database stored in a non-default tablespace contains a table in the
cluster’s default tablespace (Bruce Momjian)

• In ecpg, fix rare memory leaks and possible overwrite of one byte after the sqlca_t structure (Peter
Eisentraut)

• Fix contrib/dblink’s dblink_exec() to not leak temporary database connections upon error (Tom
Lane)

• Fix contrib/dblink to report the correct connection name in error messages (Kyotaro Horiguchi)

• Fix contrib/vacuumlo to use multiple transactions when dropping many large objects (Tim Lewis,
Robert Haas, Tom Lane)

This change avoids exceeding max_locks_per_transaction when many objects need to be
dropped. The behavior can be adjusted with the new -l (limit) option.

• Update time zone data files to tzdata release 2012c for DST law changes in Antarctica, Armenia, Chile,
Cuba, Falkland Islands, Gaza, Haiti, Hebron, Morocco, Syria, and Tokelau Islands; also historical cor-
rections for Canada.

2156

Appendix E. Release Notes

E.31. Release 9.0.7

Release Date: 2012-02-27

This release contains a variety of fixes from 9.0.6. For information about new features in the 9.0 major
release, see Section E.38.

E.31.1. Migration to Version 9.0.7
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.6, see Section E.32.

E.31.2. Changes

• Require execute permission on the trigger function for CREATE TRIGGER (Robert Haas)

This missing check could allow another user to execute a trigger function with forged input data, by
installing it on a table he owns. This is only of significance for trigger functions marked SECURITY

DEFINER, since otherwise trigger functions run as the table owner anyway. (CVE-2012-0866)

• Remove arbitrary limitation on length of common name in SSL certificates (Heikki Linnakangas)

Both libpq and the server truncated the common name extracted from an SSL certificate at 32 bytes.
Normally this would cause nothing worse than an unexpected verification failure, but there are some
rather-implausible scenarios in which it might allow one certificate holder to impersonate another. The
victim would have to have a common name exactly 32 bytes long, and the attacker would have to
persuade a trusted CA to issue a certificate in which the common name has that string as a prefix.
Impersonating a server would also require some additional exploit to redirect client connections. (CVE-
2012-0867)

• Convert newlines to spaces in names written in pg_dump comments (Robert Haas)

pg_dump was incautious about sanitizing object names that are emitted within SQL comments in its
output script. A name containing a newline would at least render the script syntactically incorrect.
Maliciously crafted object names could present a SQL injection risk when the script is reloaded. (CVE-
2012-0868)

• Fix btree index corruption from insertions concurrent with vacuuming (Tom Lane)

An index page split caused by an insertion could sometimes cause a concurrently-running VACUUM to
miss removing index entries that it should remove. After the corresponding table rows are removed,
the dangling index entries would cause errors (such as “could not read block N in file ...”) or worse,
silently wrong query results after unrelated rows are re-inserted at the now-free table locations. This
bug has been present since release 8.2, but occurs so infrequently that it was not diagnosed until now.
If you have reason to suspect that it has happened in your database, reindexing the affected index will
fix things.

• Fix transient zeroing of shared buffers during WAL replay (Tom Lane)

2157

Appendix E. Release Notes

The replay logic would sometimes zero and refill a shared buffer, so that the contents were transiently
invalid. In hot standby mode this can result in a query that’s executing in parallel seeing garbage data.
Various symptoms could result from that, but the most common one seems to be “invalid memory alloc
request size”.

• Fix postmaster to attempt restart after a hot-standby crash (Tom Lane)

A logic error caused the postmaster to terminate, rather than attempt to restart the cluster, if any backend
process crashed while operating in hot standby mode.

• Fix CLUSTER/VACUUM FULL handling of toast values owned by recently-updated rows (Tom Lane)

This oversight could lead to “duplicate key value violates unique constraint” errors being reported
against the toast table’s index during one of these commands.

• Update per-column permissions, not only per-table permissions, when changing table owner (Tom
Lane)

Failure to do this meant that any previously granted column permissions were still shown as having
been granted by the old owner. This meant that neither the new owner nor a superuser could revoke the
now-untraceable-to-table-owner permissions.

• Support foreign data wrappers and foreign servers in REASSIGN OWNED (Alvaro Herrera)

This command failed with “unexpected classid” errors if it needed to change the ownership of any such
objects.

• Allow non-existent values for some settings in ALTER USER/DATABASE SET (Heikki Linnakangas)

Allow default_text_search_config, default_tablespace, and temp_tablespaces to be set
to names that are not known. This is because they might be known in another database where the setting
is intended to be used, or for the tablespace cases because the tablespace might not be created yet. The
same issue was previously recognized for search_path, and these settings now act like that one.

• Avoid crashing when we have problems deleting table files post-commit (Tom Lane)

Dropping a table should lead to deleting the underlying disk files only after the transaction commits.
In event of failure then (for instance, because of wrong file permissions) the code is supposed to just
emit a warning message and go on, since it’s too late to abort the transaction. This logic got broken as
of release 8.4, causing such situations to result in a PANIC and an unrestartable database.

• Recover from errors occurring during WAL replay of DROP TABLESPACE (Tom Lane)

Replay will attempt to remove the tablespace’s directories, but there are various reasons why this might
fail (for example, incorrect ownership or permissions on those directories). Formerly the replay code
would panic, rendering the database unrestartable without manual intervention. It seems better to log the
problem and continue, since the only consequence of failure to remove the directories is some wasted
disk space.

• Fix race condition in logging AccessExclusiveLocks for hot standby (Simon Riggs)

Sometimes a lock would be logged as being held by “transaction zero”. This is at least known to produce
assertion failures on slave servers, and might be the cause of more serious problems.

• Track the OID counter correctly during WAL replay, even when it wraps around (Tom Lane)

Previously the OID counter would remain stuck at a high value until the system exited replay mode.
The practical consequences of that are usually nil, but there are scenarios wherein a standby server

2158

Appendix E. Release Notes

that’s been promoted to master might take a long time to advance the OID counter to a reasonable value
once values are needed.

• Prevent emitting misleading “consistent recovery state reached” log message at the beginning of crash
recovery (Heikki Linnakangas)

• Fix initial value of pg_stat_replication.replay_location (Fujii Masao)

Previously, the value shown would be wrong until at least one WAL record had been replayed.

• Fix regular expression back-references with * attached (Tom Lane)

Rather than enforcing an exact string match, the code would effectively accept any string that satisfies
the pattern sub-expression referenced by the back-reference symbol.

A similar problem still afflicts back-references that are embedded in a larger quantified expression,
rather than being the immediate subject of the quantifier. This will be addressed in a future PostgreSQL
release.

• Fix recently-introduced memory leak in processing of inet/cidr values (Heikki Linnakangas)

A patch in the December 2011 releases of PostgreSQL caused memory leakage in these operations,
which could be significant in scenarios such as building a btree index on such a column.

• Fix dangling pointer after CREATE TABLE AS/SELECT INTO in a SQL-language function (Tom Lane)

In most cases this only led to an assertion failure in assert-enabled builds, but worse consequences seem
possible.

• Avoid double close of file handle in syslogger on Windows (MauMau)

Ordinarily this error was invisible, but it would cause an exception when running on a debug version of
Windows.

• Fix I/O-conversion-related memory leaks in plpgsql (Andres Freund, Jan Urbanski, Tom Lane)

Certain operations would leak memory until the end of the current function.

• Improve pg_dump’s handling of inherited table columns (Tom Lane)

pg_dump mishandled situations where a child column has a different default expression than its parent
column. If the default is textually identical to the parent’s default, but not actually the same (for instance,
because of schema search path differences) it would not be recognized as different, so that after dump
and restore the child would be allowed to inherit the parent’s default. Child columns that are NOT NULL

where their parent is not could also be restored subtly incorrectly.

• Fix pg_restore’s direct-to-database mode for INSERT-style table data (Tom Lane)

Direct-to-database restores from archive files made with --inserts or --column-inserts options
fail when using pg_restore from a release dated September or December 2011, as a result of an oversight
in a fix for another problem. The archive file itself is not at fault, and text-mode output is okay.

• Allow pg_upgrade to process tables containing regclass columns (Bruce Momjian)

Since pg_upgrade now takes care to preserve pg_class OIDs, there was no longer any reason for this
restriction.

• Make libpq ignore ENOTDIR errors when looking for an SSL client certificate file (Magnus Hagander)

This allows SSL connections to be established, though without a certificate, even when the user’s home
directory is set to something like /dev/null.

2159

Appendix E. Release Notes

• Fix some more field alignment issues in ecpg’s SQLDA area (Zoltan Boszormenyi)

• Allow AT option in ecpg DEALLOCATE statements (Michael Meskes)

The infrastructure to support this has been there for awhile, but through an oversight there was still an
error check rejecting the case.

• Do not use the variable name when defining a varchar structure in ecpg (Michael Meskes)

• Fix contrib/auto_explain’s JSON output mode to produce valid JSON (Andrew Dunstan)

The output used brackets at the top level, when it should have used braces.

• Fix error in contrib/intarray’s int[] & int[] operator (Guillaume Lelarge)

If the smallest integer the two input arrays have in common is 1, and there are smaller values in either
array, then 1 would be incorrectly omitted from the result.

• Fix error detection in contrib/pgcrypto’s encrypt_iv() and decrypt_iv() (Marko Kreen)

These functions failed to report certain types of invalid-input errors, and would instead return random
garbage values for incorrect input.

• Fix one-byte buffer overrun in contrib/test_parser (Paul Guyot)

The code would try to read one more byte than it should, which would crash in corner cases. Since
contrib/test_parser is only example code, this is not a security issue in itself, but bad example
code is still bad.

• Use __sync_lock_test_and_set() for spinlocks on ARM, if available (Martin Pitt)

This function replaces our previous use of the SWPB instruction, which is deprecated and not available
on ARMv6 and later. Reports suggest that the old code doesn’t fail in an obvious way on recent ARM
boards, but simply doesn’t interlock concurrent accesses, leading to bizarre failures in multiprocess
operation.

• Use -fexcess-precision=standard option when building with gcc versions that accept it (Andrew
Dunstan)

This prevents assorted scenarios wherein recent versions of gcc will produce creative results.

• Allow use of threaded Python on FreeBSD (Chris Rees)

Our configure script previously believed that this combination wouldn’t work; but FreeBSD fixed the
problem, so remove that error check.

E.32. Release 9.0.6

Release Date: 2011-12-05

This release contains a variety of fixes from 9.0.5. For information about new features in the 9.0 major
release, see Section E.38.

2160

Appendix E. Release Notes

E.32.1. Migration to Version 9.0.6
A dump/restore is not required for those running 9.0.X.

However, a longstanding error was discovered in the definition of the
information_schema.referential_constraints view. If you rely on correct results from that
view, you should replace its definition as explained in the first changelog item below.

Also, if you are upgrading from a version earlier than 9.0.4, see Section E.34.

E.32.2. Changes

• Fix bugs in information_schema.referential_constraints view (Tom Lane)

This view was being insufficiently careful about matching the foreign-key constraint to the depended-
on primary or unique key constraint. That could result in failure to show a foreign key constraint at all,
or showing it multiple times, or claiming that it depends on a different constraint than the one it really
does.

Since the view definition is installed by initdb, merely upgrading will not fix the problem. If you need
to fix this in an existing installation, you can (as a superuser) drop the information_schema schema
then re-create it by sourcing SHAREDIR/information_schema.sql. (Run pg_config --sharedir

if you’re uncertain where SHAREDIR is.) This must be repeated in each database to be fixed.

• Fix possible crash during UPDATE or DELETE that joins to the output of a scalar-returning function (Tom
Lane)

A crash could only occur if the target row had been concurrently updated, so this problem surfaced only
intermittently.

• Fix incorrect replay of WAL records for GIN index updates (Tom Lane)

This could result in transiently failing to find index entries after a crash, or on a hot-standby server. The
problem would be repaired by the next VACUUM of the index, however.

• Fix TOAST-related data corruption during CREATE TABLE dest AS SELECT * FROM src or
INSERT INTO dest SELECT * FROM src (Tom Lane)

If a table has been modified by ALTER TABLE ADD COLUMN, attempts to copy its data verbatim to
another table could produce corrupt results in certain corner cases. The problem can only manifest in
this precise form in 8.4 and later, but we patched earlier versions as well in case there are other code
paths that could trigger the same bug.

• Fix possible failures during hot standby startup (Simon Riggs)

• Start hot standby faster when initial snapshot is incomplete (Simon Riggs)

• Fix race condition during toast table access from stale syscache entries (Tom Lane)

The typical symptom was transient errors like “missing chunk number 0 for toast value NNNNN in
pg_toast_2619”, where the cited toast table would always belong to a system catalog.

• Track dependencies of functions on items used in parameter default expressions (Tom Lane)

Previously, a referenced object could be dropped without having dropped or modified the function,
leading to misbehavior when the function was used. Note that merely installing this update will not fix

2161

Appendix E. Release Notes

the missing dependency entries; to do that, you’d need to CREATE OR REPLACE each such function
afterwards. If you have functions whose defaults depend on non-built-in objects, doing so is recom-
mended.

• Allow inlining of set-returning SQL functions with multiple OUT parameters (Tom Lane)

• Don’t trust deferred-unique indexes for join removal (Tom Lane and Marti Raudsepp)

A deferred uniqueness constraint might not hold intra-transaction, so assuming that it does could give
incorrect query results.

• Make DatumGetInetP() unpack inet datums that have a 1-byte header, and add a new macro,
DatumGetInetPP(), that does not (Heikki Linnakangas)

This change affects no core code, but might prevent crashes in add-on code that expects
DatumGetInetP() to produce an unpacked datum as per usual convention.

• Improve locale support in money type’s input and output (Tom Lane)

Aside from not supporting all standard lc_monetary formatting options, the input and output func-
tions were inconsistent, meaning there were locales in which dumped money values could not be re-
read.

• Don’t let transform_null_equals affect CASE foo WHEN NULL ... constructs (Heikki
Linnakangas)

transform_null_equals is only supposed to affect foo = NULL expressions written directly by the
user, not equality checks generated internally by this form of CASE.

• Change foreign-key trigger creation order to better support self-referential foreign keys (Tom Lane)

For a cascading foreign key that references its own table, a row update will fire both the ON UPDATE

trigger and the CHECK trigger as one event. The ON UPDATE trigger must execute first, else the CHECK
will check a non-final state of the row and possibly throw an inappropriate error. However, the fir-
ing order of these triggers is determined by their names, which generally sort in creation order since
the triggers have auto-generated names following the convention “RI_ConstraintTrigger_NNNN”. A
proper fix would require modifying that convention, which we will do in 9.2, but it seems risky to
change it in existing releases. So this patch just changes the creation order of the triggers. Users en-
countering this type of error should drop and re-create the foreign key constraint to get its triggers into
the right order.

• Avoid floating-point underflow while tracking buffer allocation rate (Greg Matthews)

While harmless in itself, on certain platforms this would result in annoying kernel log messages.

• Preserve configuration file name and line number values when starting child processes under Windows
(Tom Lane)

Formerly, these would not be displayed correctly in the pg_settings view.

• Fix incorrect field alignment in ecpg’s SQLDA area (Zoltan Boszormenyi)

• Preserve blank lines within commands in psql’s command history (Robert Haas)

The former behavior could cause problems if an empty line was removed from within a string literal,
for example.

• Fix pg_dump to dump user-defined casts between auto-generated types, such as table rowtypes (Tom
Lane)

2162

Appendix E. Release Notes

• Assorted fixes for pg_upgrade (Bruce Momjian)

Handle exclusion constraints correctly, avoid failures on Windows, don’t complain about mismatched
toast table names in 8.4 databases.

• Use the preferred version of xsubpp to build PL/Perl, not necessarily the operating system’s main copy
(David Wheeler and Alex Hunsaker)

• Fix incorrect coding in contrib/dict_int and contrib/dict_xsyn (Tom Lane)

Some functions incorrectly assumed that memory returned by palloc() is guaranteed zeroed.

• Fix assorted errors in contrib/unaccent’s configuration file parsing (Tom Lane)

• Honor query cancel interrupts promptly in pgstatindex() (Robert Haas)

• Fix incorrect quoting of log file name in Mac OS X start script (Sidar Lopez)

• Ensure VPATH builds properly install all server header files (Peter Eisentraut)

• Shorten file names reported in verbose error messages (Peter Eisentraut)

Regular builds have always reported just the name of the C file containing the error message call, but
VPATH builds formerly reported an absolute path name.

• Fix interpretation of Windows timezone names for Central America (Tom Lane)

Map “Central America Standard Time” to CST6, not CST6CDT, because DST is generally not observed
anywhere in Central America.

• Update time zone data files to tzdata release 2011n for DST law changes in Brazil, Cuba, Fiji, Palestine,
Russia, and Samoa; also historical corrections for Alaska and British East Africa.

E.33. Release 9.0.5

Release Date: 2011-09-26

This release contains a variety of fixes from 9.0.4. For information about new features in the 9.0 major
release, see Section E.38.

E.33.1. Migration to Version 9.0.5
A dump/restore is not required for those running 9.0.X.

However, if you are upgrading from a version earlier than 9.0.4, see Section E.34.

E.33.2. Changes

• Fix catalog cache invalidation after a VACUUM FULL or CLUSTER on a system catalog (Tom Lane)

2163

Appendix E. Release Notes

In some cases the relocation of a system catalog row to another place would not be recognized by
concurrent server processes, allowing catalog corruption to occur if they then tried to update that row.
The worst-case outcome could be as bad as complete loss of a table.

• Fix incorrect order of operations during sinval reset processing, and ensure that TOAST OIDs are
preserved in system catalogs (Tom Lane)

These mistakes could lead to transient failures after a VACUUM FULL or CLUSTER on a system catalog.

• Fix bugs in indexing of in-doubt HOT-updated tuples (Tom Lane)

These bugs could result in index corruption after reindexing a system catalog. They are not believed to
affect user indexes.

• Fix multiple bugs in GiST index page split processing (Heikki Linnakangas)

The probability of occurrence was low, but these could lead to index corruption.

• Fix possible buffer overrun in tsvector_concat() (Tom Lane)

The function could underestimate the amount of memory needed for its result, leading to server crashes.

• Fix crash in xml_recv when processing a “standalone” parameter (Tom Lane)

• Make pg_options_to_table return NULL for an option with no value (Tom Lane)

Previously such cases would result in a server crash.

• Avoid possibly accessing off the end of memory in ANALYZE and in SJIS-2004 encoding conversion
(Noah Misch)

This fixes some very-low-probability server crash scenarios.

• Protect pg_stat_reset_shared() against NULL input (Magnus Hagander)

• Fix possible failure when a recovery conflict deadlock is detected within a sub-transaction (Tom Lane)

• Avoid spurious conflicts while recycling btree index pages during hot standby (Noah Misch, Simon
Riggs)

• Shut down WAL receiver if it’s still running at end of recovery (Heikki Linnakangas)

The postmaster formerly panicked in this situation, but it’s actually a legitimate case.

• Fix race condition in relcache init file invalidation (Tom Lane)

There was a window wherein a new backend process could read a stale init file but miss the inval
messages that would tell it the data is stale. The result would be bizarre failures in catalog accesses,
typically “could not read block 0 in file ...” later during startup.

• Fix memory leak at end of a GiST index scan (Tom Lane)

Commands that perform many separate GiST index scans, such as verification of a new GiST-based
exclusion constraint on a table already containing many rows, could transiently require large amounts
of memory due to this leak.

• Fix memory leak when encoding conversion has to be done on incoming command strings and LISTEN
is active (Tom Lane)

• Fix incorrect memory accounting (leading to possible memory bloat) in tuplestores supporting holdable
cursors and plpgsql’s RETURN NEXT command (Tom Lane)

• Fix trigger WHEN conditions when both BEFORE and AFTER triggers exist (Tom Lane)

2164

Appendix E. Release Notes

Evaluation of WHEN conditions for AFTER ROW UPDATE triggers could crash if there had been a BEFORE
ROW trigger fired for the same update.

• Fix performance problem when constructing a large, lossy bitmap (Tom Lane)

• Fix join selectivity estimation for unique columns (Tom Lane)

This fixes an erroneous planner heuristic that could lead to poor estimates of the result size of a join.

• Fix nested PlaceHolderVar expressions that appear only in sub-select target lists (Tom Lane)

This mistake could result in outputs of an outer join incorrectly appearing as NULL.

• Allow the planner to assume that empty parent tables really are empty (Tom Lane)

Normally an empty table is assumed to have a certain minimum size for planning purposes; but this
heuristic seems to do more harm than good for the parent table of an inheritance hierarchy, which often
is permanently empty.

• Allow nested EXISTS queries to be optimized properly (Tom Lane)

• Fix array- and path-creating functions to ensure padding bytes are zeroes (Tom Lane)

This avoids some situations where the planner will think that semantically-equal constants are not equal,
resulting in poor optimization.

• Fix EXPLAIN to handle gating Result nodes within inner-indexscan subplans (Tom Lane)

The usual symptom of this oversight was “bogus varno” errors.

• Fix btree preprocessing of indexedcol IS NULL conditions (Dean Rasheed)

Such a condition is unsatisfiable if combined with any other type of btree-indexable condition on the
same index column. The case was handled incorrectly in 9.0.0 and later, leading to query output where
there should be none.

• Work around gcc 4.6.0 bug that breaks WAL replay (Tom Lane)

This could lead to loss of committed transactions after a server crash.

• Fix dump bug for VALUES in a view (Tom Lane)

• Disallow SELECT FOR UPDATE/SHARE on sequences (Tom Lane)

This operation doesn’t work as expected and can lead to failures.

• Fix VACUUM so that it always updates pg_class.reltuples/relpages (Tom Lane)

This fixes some scenarios where autovacuum could make increasingly poor decisions about when to
vacuum tables.

• Defend against integer overflow when computing size of a hash table (Tom Lane)

• Fix cases where CLUSTER might attempt to access already-removed TOAST data (Tom Lane)

• Fix premature timeout failures during initial authentication transaction (Tom Lane)

• Fix portability bugs in use of credentials control messages for “peer” authentication (Tom Lane)

• Fix SSPI login when multiple roundtrips are required (Ahmed Shinwari, Magnus Hagander)

The typical symptom of this problem was “The function requested is not supported” errors during SSPI
login.

• Fix failure when adding a new variable of a custom variable class to postgresql.conf (Tom Lane)

2165

Appendix E. Release Notes

• Throw an error if pg_hba.conf contains hostssl but SSL is disabled (Tom Lane)

This was concluded to be more user-friendly than the previous behavior of silently ignoring such lines.

• Fix failure when DROP OWNED BY attempts to remove default privileges on sequences (Shigeru
Hanada)

• Fix typo in pg_srand48 seed initialization (Andres Freund)

This led to failure to use all bits of the provided seed. This function is not used on most platforms (only
those without srandom), and the potential security exposure from a less-random-than-expected seed
seems minimal in any case.

• Avoid integer overflow when the sum of LIMIT and OFFSET values exceeds 2^63 (Heikki Linnakangas)

• Add overflow checks to int4 and int8 versions of generate_series() (Robert Haas)

• Fix trailing-zero removal in to_char() (Marti Raudsepp)

In a format with FM and no digit positions after the decimal point, zeroes to the left of the decimal point
could be removed incorrectly.

• Fix pg_size_pretty() to avoid overflow for inputs close to 2^63 (Tom Lane)

• Weaken plpgsql’s check for typmod matching in record values (Tom Lane)

An overly enthusiastic check could lead to discarding length modifiers that should have been kept.

• Correctly handle quotes in locale names during initdb (Heikki Linnakangas)

The case can arise with some Windows locales, such as “People’s Republic of China”.

• In pg_upgrade, avoid dumping orphaned temporary tables (Bruce Momjian)

This prevents situations wherein table OID assignments could get out of sync between old and new
installations.

• Fix pg_upgrade to preserve toast tables’ relfrozenxids during an upgrade from 8.3 (Bruce Momjian)

Failure to do this could lead to pg_clog files being removed too soon after the upgrade.

• In pg_upgrade, fix the -l (log) option to work on Windows (Bruce Momjian)

• In pg_ctl, support silent mode for service registrations on Windows (MauMau)

• Fix psql’s counting of script file line numbers during COPY from a different file (Tom Lane)

• Fix pg_restore’s direct-to-database mode for standard_conforming_strings (Tom Lane)

pg_restore could emit incorrect commands when restoring directly to a database server from an archive
file that had been made with standard_conforming_strings set to on.

• Be more user-friendly about unsupported cases for parallel pg_restore (Tom Lane)

This change ensures that such cases are detected and reported before any restore actions have been
taken.

• Fix write-past-buffer-end and memory leak in libpq’s LDAP service lookup code (Albe Laurenz)

• In libpq, avoid failures when using nonblocking I/O and an SSL connection (Martin Pihlak, Tom Lane)

• Improve libpq’s handling of failures during connection startup (Tom Lane)

In particular, the response to a server report of fork() failure during SSL connection startup is now
saner.

2166

Appendix E. Release Notes

• Improve libpq’s error reporting for SSL failures (Tom Lane)

• Fix PQsetvalue() to avoid possible crash when adding a new tuple to a PGresult originally obtained
from a server query (Andrew Chernow)

• Make ecpglib write double values with 15 digits precision (Akira Kurosawa)

• In ecpglib, be sure LC_NUMERIC setting is restored after an error (Michael Meskes)

• Apply upstream fix for blowfish signed-character bug (CVE-2011-2483) (Tom Lane)

contrib/pg_crypto’s blowfish encryption code could give wrong results on platforms where char is
signed (which is most), leading to encrypted passwords being weaker than they should be.

• Fix memory leak in contrib/seg (Heikki Linnakangas)

• Fix pgstatindex() to give consistent results for empty indexes (Tom Lane)

• Allow building with perl 5.14 (Alex Hunsaker)

• Fix assorted issues with build and install file paths containing spaces (Tom Lane)

• Update time zone data files to tzdata release 2011i for DST law changes in Canada, Egypt, Russia,
Samoa, and South Sudan.

E.34. Release 9.0.4

Release Date: 2011-04-18

This release contains a variety of fixes from 9.0.3. For information about new features in the 9.0 major
release, see Section E.38.

E.34.1. Migration to Version 9.0.4
A dump/restore is not required for those running 9.0.X.

However, if your installation was upgraded from a previous major release by running pg_upgrade,
you should take action to prevent possible data loss due to a now-fixed bug in pg_upgrade. The
recommended solution is to run VACUUM FREEZE on all TOAST tables. More information is available at
http://wiki.postgresql.org/wiki/20110408pg_upgrade_fix3.

E.34.2. Changes

• Fix pg_upgrade’s handling of TOAST tables (Bruce Momjian)

The pg_class.relfrozenxid value for TOAST tables was not correctly copied into the new instal-
lation during pg_upgrade. This could later result in pg_clog files being discarded while they were

3. http://wiki.postgresql.org/wiki/20110408pg_upgrade_fix

2167

Appendix E. Release Notes

still needed to validate tuples in the TOAST tables, leading to “could not access status of transaction”
failures.

This error poses a significant risk of data loss for installations that have been upgraded with pg_upgrade.
This patch corrects the problem for future uses of pg_upgrade, but does not in itself cure the issue in
installations that have been processed with a buggy version of pg_upgrade.

• Suppress incorrect “PD_ALL_VISIBLE flag was incorrectly set” warning (Heikki Linnakangas)

VACUUM would sometimes issue this warning in cases that are actually valid.

• Use better SQLSTATE error codes for hot standby conflict cases (Tatsuo Ishii and Simon Riggs)

All retryable conflict errors now have an error code that indicates that a retry is possible.
Also, session closure due to the database being dropped on the master is now reported as
ERRCODE_DATABASE_DROPPED, rather than ERRCODE_ADMIN_SHUTDOWN, so that connection poolers
can handle the situation correctly.

• Prevent intermittent hang in interactions of startup process with bgwriter process (Simon Riggs)

This affected recovery in non-hot-standby cases.

• Disallow including a composite type in itself (Tom Lane)

This prevents scenarios wherein the server could recurse infinitely while processing the composite type.
While there are some possible uses for such a structure, they don’t seem compelling enough to justify
the effort required to make sure it always works safely.

• Avoid potential deadlock during catalog cache initialization (Nikhil Sontakke)

In some cases the cache loading code would acquire share lock on a system index before locking the
index’s catalog. This could deadlock against processes trying to acquire exclusive locks in the other,
more standard order.

• Fix dangling-pointer problem in BEFORE ROW UPDATE trigger handling when there was a concurrent
update to the target tuple (Tom Lane)

This bug has been observed to result in intermittent “cannot extract system attribute from virtual tu-
ple” failures while trying to do UPDATE RETURNING ctid. There is a very small probability of more
serious errors, such as generating incorrect index entries for the updated tuple.

• Disallow DROP TABLE when there are pending deferred trigger events for the table (Tom Lane)

Formerly the DROP would go through, leading to “could not open relation with OID nnn” errors when
the triggers were eventually fired.

• Allow “replication” as a user name in pg_hba.conf (Andrew Dunstan)

“replication” is special in the database name column, but it was mistakenly also treated as special in the
user name column.

• Prevent crash triggered by constant-false WHERE conditions during GEQO optimization (Tom Lane)

• Improve planner’s handling of semi-join and anti-join cases (Tom Lane)

• Fix handling of SELECT FOR UPDATE in a sub-SELECT (Tom Lane)

This bug typically led to “cannot extract system attribute from virtual tuple” errors.

• Fix selectivity estimation for text search to account for NULLs (Jesper Krogh)

2168

Appendix E. Release Notes

• Fix get_actual_variable_range() to support hypothetical indexes injected by an index adviser plugin
(Gurjeet Singh)

• Fix PL/Python memory leak involving array slices (Daniel Popowich)

• Allow libpq’s SSL initialization to succeed when user’s home directory is unavailable (Tom Lane)

If the SSL mode is such that a root certificate file is not required, there is no need to fail. This change
restores the behavior to what it was in pre-9.0 releases.

• Fix libpq to return a useful error message for errors detected in conninfo_array_parse (Joseph
Adams)

A typo caused the library to return NULL, rather than the PGconn structure containing the error mes-
sage, to the application.

• Fix ecpg preprocessor’s handling of float constants (Heikki Linnakangas)

• Fix parallel pg_restore to handle comments on POST_DATA items correctly (Arnd Hannemann)

• Fix pg_restore to cope with long lines (over 1KB) in TOC files (Tom Lane)

• Put in more safeguards against crashing due to division-by-zero with overly enthusiastic compiler opti-
mization (Aurelien Jarno)

• Support use of dlopen() in FreeBSD and OpenBSD on MIPS (Tom Lane)

There was a hard-wired assumption that this system function was not available on MIPS hardware on
these systems. Use a compile-time test instead, since more recent versions have it.

• Fix compilation failures on HP-UX (Heikki Linnakangas)

• Avoid crash when trying to write to the Windows console very early in process startup (Rushabh Lathia)

• Support building with MinGW 64 bit compiler for Windows (Andrew Dunstan)

• Fix version-incompatibility problem with libintl on Windows (Hiroshi Inoue)

• Fix usage of xcopy in Windows build scripts to work correctly under Windows 7 (Andrew Dunstan)

This affects the build scripts only, not installation or usage.

• Fix path separator used by pg_regress on Cygwin (Andrew Dunstan)

• Update time zone data files to tzdata release 2011f for DST law changes in Chile, Cuba, Falkland Is-
lands, Morocco, Samoa, and Turkey; also historical corrections for South Australia, Alaska, and Hawaii.

E.35. Release 9.0.3

Release Date: 2011-01-31

This release contains a variety of fixes from 9.0.2. For information about new features in the 9.0 major
release, see Section E.38.

2169

Appendix E. Release Notes

E.35.1. Migration to Version 9.0.3
A dump/restore is not required for those running 9.0.X.

E.35.2. Changes

• Before exiting walreceiver, ensure all the received WAL is fsync’d to disk (Heikki Linnakangas)

Otherwise the standby server could replay some un-synced WAL, conceivably leading to data corrup-
tion if the system crashes just at that point.

• Avoid excess fsync activity in walreceiver (Heikki Linnakangas)

• Make ALTER TABLE revalidate uniqueness and exclusion constraints when needed (Noah Misch)

This was broken in 9.0 by a change that was intended to suppress revalidation during VACUUM FULL

and CLUSTER, but unintentionally affected ALTER TABLE as well.

• Fix EvalPlanQual for UPDATE of an inheritance tree in which the tables are not all alike (Tom Lane)

Any variation in the table row types (including dropped columns present in only some child tables)
would confuse the EvalPlanQual code, leading to misbehavior or even crashes. Since EvalPlanQual is
only executed during concurrent updates to the same row, the problem was only seen intermittently.

• Avoid failures when EXPLAIN tries to display a simple-form CASE expression (Tom Lane)

If the CASE’s test expression was a constant, the planner could simplify the CASE into a form that
confused the expression-display code, resulting in “unexpected CASE WHEN clause” errors.

• Fix assignment to an array slice that is before the existing range of subscripts (Tom Lane)

If there was a gap between the newly added subscripts and the first pre-existing subscript, the code mis-
calculated how many entries needed to be copied from the old array’s null bitmap, potentially leading
to data corruption or crash.

• Avoid unexpected conversion overflow in planner for very distant date values (Tom Lane)

The date type supports a wider range of dates than can be represented by the timestamp types, but
the planner assumed it could always convert a date to timestamp with impunity.

• Fix PL/Python crash when an array contains null entries (Alex Hunsaker)

• Remove ecpg’s fixed length limit for constants defining an array dimension (Michael Meskes)

• Fix erroneous parsing of tsquery values containing ... & !(subexpression) | ... (Tom Lane)

Queries containing this combination of operators were not executed correctly. The same error existed
in contrib/intarray’s query_int type and contrib/ltree’s ltxtquery type.

• Fix buffer overrun in contrib/intarray’s input function for the query_int type (Apple)

This bug is a security risk since the function’s return address could be overwritten. Thanks to Apple
Inc’s security team for reporting this issue and supplying the fix. (CVE-2010-4015)

• Fix bug in contrib/seg’s GiST picksplit algorithm (Alexander Korotkov)

2170

Appendix E. Release Notes

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a seg column. If you have such an index, consider REINDEXing it after installing this update. (This
is identical to the bug that was fixed in contrib/cube in the previous update.)

E.36. Release 9.0.2

Release Date: 2010-12-16

This release contains a variety of fixes from 9.0.1. For information about new features in the 9.0 major
release, see Section E.38.

E.36.1. Migration to Version 9.0.2
A dump/restore is not required for those running 9.0.X.

E.36.2. Changes

• Force the default wal_sync_method to be fdatasync on Linux (Tom Lane, Marti Raudsepp)

The default on Linux has actually been fdatasync for many years, but recent kernel changes caused
PostgreSQL to choose open_datasync instead. This choice did not result in any performance im-
provement, and caused outright failures on certain filesystems, notably ext4 with the data=journal
mount option.

• Fix “too many KnownAssignedXids” error during Hot Standby replay (Heikki Linnakangas)

• Fix race condition in lock acquisition during Hot Standby (Simon Riggs)

• Avoid unnecessary conflicts during Hot Standby (Simon Riggs)

This fixes some cases where replay was considered to conflict with standby queries (causing delay of
replay or possibly cancellation of the queries), but there was no real conflict.

• Fix assorted bugs in WAL replay logic for GIN indexes (Tom Lane)

This could result in “bad buffer id: 0” failures or corruption of index contents during replication.

• Fix recovery from base backup when the starting checkpoint WAL record is not in the same WAL
segment as its redo point (Jeff Davis)

• Fix corner-case bug when streaming replication is enabled immediately after creating the master
database cluster (Heikki Linnakangas)

• Fix persistent slowdown of autovacuum workers when multiple workers remain active for a long time
(Tom Lane)

The effective vacuum_cost_limit for an autovacuum worker could drop to nearly zero if it processed
enough tables, causing it to run extremely slowly.

2171

Appendix E. Release Notes

• Fix long-term memory leak in autovacuum launcher (Alvaro Herrera)

• Avoid failure when trying to report an impending transaction wraparound condition from outside a
transaction (Tom Lane)

This oversight prevented recovery after transaction wraparound got too close, because database startup
processing would fail.

• Add support for detecting register-stack overrun on IA64 (Tom Lane)

The IA64 architecture has two hardware stacks. Full prevention of stack-overrun failures requires
checking both.

• Add a check for stack overflow in copyObject() (Tom Lane)

Certain code paths could crash due to stack overflow given a sufficiently complex query.

• Fix detection of page splits in temporary GiST indexes (Heikki Linnakangas)

It is possible to have a “concurrent” page split in a temporary index, if for example there is an open
cursor scanning the index when an insertion is done. GiST failed to detect this case and hence could
deliver wrong results when execution of the cursor continued.

• Fix error checking during early connection processing (Tom Lane)

The check for too many child processes was skipped in some cases, possibly leading to postmaster
crash when attempting to add the new child process to fixed-size arrays.

• Improve efficiency of window functions (Tom Lane)

Certain cases where a large number of tuples needed to be read in advance, but work_mem was large
enough to allow them all to be held in memory, were unexpectedly slow. percent_rank(),
cume_dist() and ntile() in particular were subject to this problem.

• Avoid memory leakage while ANALYZE’ing complex index expressions (Tom Lane)

• Ensure an index that uses a whole-row Var still depends on its table (Tom Lane)

An index declared like create index i on t (foo(t.*)) would not automatically get dropped
when its table was dropped.

• Add missing support in DROP OWNED BY for removing foreign data wrapper/server privileges belong-
ing to a user (Heikki Linnakangas)

• Do not “inline” a SQL function with multiple OUT parameters (Tom Lane)

This avoids a possible crash due to loss of information about the expected result rowtype.

• Fix crash when inline-ing a set-returning function whose argument list contains a reference to an inline-
able user function (Tom Lane)

• Behave correctly if ORDER BY, LIMIT, FOR UPDATE, or WITH is attached to the VALUES part of
INSERT ... VALUES (Tom Lane)

• Make the OFF keyword unreserved (Heikki Linnakangas)

This prevents problems with using off as a variable name in PL/pgSQL. That worked before 9.0, but
was now broken because PL/pgSQL now treats all core reserved words as reserved.

• Fix constant-folding of COALESCE() expressions (Tom Lane)

The planner would sometimes attempt to evaluate sub-expressions that in fact could never be reached,
possibly leading to unexpected errors.

2172

Appendix E. Release Notes

• Fix “could not find pathkey item to sort” planner failure with comparison of whole-row Vars (Tom
Lane)

• Fix postmaster crash when connection acceptance (accept() or one of the calls made immediately
after it) fails, and the postmaster was compiled with GSSAPI support (Alexander Chernikov)

• Retry after receiving an invalid response packet from a RADIUS authentication server (Magnus Ha-
gander)

This fixes a low-risk potential denial of service condition.

• Fix missed unlink of temporary files when log_temp_files is active (Tom Lane)

If an error occurred while attempting to emit the log message, the unlink was not done, resulting in
accumulation of temp files.

• Add print functionality for InhRelation nodes (Tom Lane)

This avoids a failure when debug_print_parse is enabled and certain types of query are executed.

• Fix incorrect calculation of distance from a point to a horizontal line segment (Tom Lane)

This bug affected several different geometric distance-measurement operators.

• Fix incorrect calculation of transaction status in ecpg (Itagaki Takahiro)

• Fix errors in psql’s Unicode-escape support (Tom Lane)

• Speed up parallel pg_restore when the archive contains many large objects (blobs) (Tom Lane)

• Fix PL/pgSQL’s handling of “simple” expressions to not fail in recursion or error-recovery cases (Tom
Lane)

• Fix PL/pgSQL’s error reporting for no-such-column cases (Tom Lane)

As of 9.0, it would sometimes report “missing FROM-clause entry for table foo” when “record foo has
no field bar” would be more appropriate.

• Fix PL/Python to honor typmod (i.e., length or precision restrictions) when assigning to tuple fields
(Tom Lane)

This fixes a regression from 8.4.

• Fix PL/Python’s handling of set-returning functions (Jan Urbanski)

Attempts to call SPI functions within the iterator generating a set result would fail.

• Fix bug in contrib/cube’s GiST picksplit algorithm (Alexander Korotkov)

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a cube column. If you have such an index, consider REINDEXing it after installing this update.

• Don’t emit “identifier will be truncated” notices in contrib/dblink except when creating new con-
nections (Itagaki Takahiro)

• Fix potential coredump on missing public key in contrib/pgcrypto (Marti Raudsepp)

• Fix buffer overrun in contrib/pg_upgrade (Hernan Gonzalez)

• Fix memory leak in contrib/xml2’s XPath query functions (Tom Lane)

• Update time zone data files to tzdata release 2010o for DST law changes in Fiji and Samoa; also
historical corrections for Hong Kong.

2173

Appendix E. Release Notes

E.37. Release 9.0.1

Release Date: 2010-10-04

This release contains a variety of fixes from 9.0.0. For information about new features in the 9.0 major
release, see Section E.38.

E.37.1. Migration to Version 9.0.1
A dump/restore is not required for those running 9.0.X.

E.37.2. Changes

• Use a separate interpreter for each calling SQL userid in PL/Perl and PL/Tcl (Tom Lane)

This change prevents security problems that can be caused by subverting Perl or Tcl code that will be
executed later in the same session under another SQL user identity (for example, within a SECURITY

DEFINER function). Most scripting languages offer numerous ways that that might be done, such as
redefining standard functions or operators called by the target function. Without this change, any SQL
user with Perl or Tcl language usage rights can do essentially anything with the SQL privileges of the
target function’s owner.

The cost of this change is that intentional communication among Perl and Tcl functions becomes more
difficult. To provide an escape hatch, PL/PerlU and PL/TclU functions continue to use only one inter-
preter per session. This is not considered a security issue since all such functions execute at the trust
level of a database superuser already.

It is likely that third-party procedural languages that claim to offer trusted execution have similar se-
curity issues. We advise contacting the authors of any PL you are depending on for security-critical
purposes.

Our thanks to Tim Bunce for pointing out this issue (CVE-2010-3433).

• Improve pg_get_expr() security fix so that the function can still be used on the output of a sub-select
(Tom Lane)

• Fix incorrect placement of placeholder evaluation (Tom Lane)

This bug could result in query outputs being non-null when they should be null, in cases where the
inner side of an outer join is a sub-select with non-strict expressions in its output list.

• Fix join removal’s handling of placeholder expressions (Tom Lane)

• Fix possible duplicate scans of UNION ALL member relations (Tom Lane)

• Prevent infinite loop in ProcessIncomingNotify() after unlistening (Jeff Davis)

• Prevent show_session_authorization() from crashing within autovacuum processes (Tom Lane)

• Re-allow input of Julian dates prior to 0001-01-01 AD (Tom Lane)

2174

Appendix E. Release Notes

Input such as ’J100000’::date worked before 8.4, but was unintentionally broken by added error-
checking.

• Make psql recognize DISCARD ALL as a command that should not be encased in a transaction block in
autocommit-off mode (Itagaki Takahiro)

• Update build infrastructure and documentation to reflect the source code repository’s move from CVS
to Git (Magnus Hagander and others)

E.38. Release 9.0

Release Date: 2010-09-20

E.38.1. Overview
This release of PostgreSQL adds features that have been requested for years, such as easy-to-use repli-
cation, a mass permission-changing facility, and anonymous code blocks. While past major releases have
been conservative in their scope, this release shows a bold new desire to provide facilities that new and
existing users of PostgreSQL will embrace. This has all been done with few incompatibilities. Major
enhancements include:

• Built-in replication based on log shipping. This advance consists of two features: Streaming Replica-
tion, allowing continuous archive (WAL) files to be streamed over a network connection to a standby
server, and Hot Standby, allowing continuous archive standby servers to execute read-only queries. The
net effect is to support a single master with multiple read-only slave servers.

• Easier database object permissions management. GRANT/REVOKE IN SCHEMA supports mass permis-
sions changes on existing objects, while ALTER DEFAULT PRIVILEGES allows control of privileges
for objects created in the future. Large objects (BLOBs) now support permissions management as well.

• Broadly enhanced stored procedure support. The DO statement supports ad-hoc or “anonymous” code
blocks. Functions can now be called using named parameters. PL/pgSQL is now installed by default,
and PL/Perl and PL/Python have been enhanced in several ways, including support for Python3.

• Full support for 64-bit Windows.

• More advanced reporting queries, including additional windowing options (PRECEDING and
FOLLOWING) and the ability to control the order in which values are fed to aggregate functions.

• New trigger features, including SQL-standard-compliant per-column triggers and conditional trigger
execution.

• Deferrable unique constraints. Mass updates to unique keys are now possible without trickery.

• Exclusion constraints. These provide a generalized version of unique constraints, allowing enforcement
of complex conditions.

• New and enhanced security features, including RADIUS authentication, LDAP authentication improve-
ments, and a new contrib module passwordcheck for testing password strength.

2175

Appendix E. Release Notes

• New high-performance implementation of the LISTEN/NOTIFY feature. Pending events are now stored
in a memory-based queue rather than a table. Also, a “payload” string can be sent with each event,
rather than transmitting just an event name as before.

• New implementation of VACUUM FULL. This command now rewrites the entire table and indexes, rather
than moving individual rows to compact space. It is substantially faster in most cases, and no longer
results in index bloat.

• New contrib module pg_upgrade to support in-place upgrades from 8.3 or 8.4 to 9.0.

• Multiple performance enhancements for specific types of queries, including elimination of unnecessary
joins. This helps optimize some automatically-generated queries, such as those produced by object-
relational mappers (ORMs).

• EXPLAIN enhancements. The output is now available in JSON, XML, or YAML format, and includes
buffer utilization and other data not previously available.

• hstore improvements, including new functions and greater data capacity.

The above items are explained in more detail in the sections below.

E.38.2. Migration to Version 9.0
A dump/restore using pg_dump, or use of pg_upgrade, is required for those wishing to migrate data from
any previous release.

Version 9.0 contains a number of changes that selectively break backwards compatibility in order to
support new features and code quality improvements. In particular, users who make extensive use of
PL/pgSQL, Point-In-Time Recovery (PITR), or Warm Standby should test their applications because of
slight user-visible changes in those areas. Observe the following incompatibilities:

E.38.2.1. Server Settings

• Remove server parameter add_missing_from, which was defaulted to off for many years (Tom Lane)

• Remove server parameter regex_flavor, which was defaulted to advanced for many years (Tom
Lane)

• archive_mode now only affects archive_command; a new setting, wal_level, affects the contents
of the write-ahead log (Heikki Linnakangas)

• log_temp_files now uses default file size units of kilobytes (Robert Haas)

E.38.2.2. Queries

• When querying a parent table, do not do any separate permission checks on child tables scanned as part
of the query (Peter Eisentraut)

The SQL standard specifies this behavior, and it is also much more convenient in practice than the
former behavior of checking permissions on each child as well as the parent.

2176

Appendix E. Release Notes

E.38.2.3. Data Types

• bytea output now appears in hex format by default (Peter Eisentraut)

The server parameter bytea_output can be used to select the traditional output format if needed for
compatibility.

• Array input now considers only plain ASCII whitespace characters to be potentially ignorable; it will
never ignore non-ASCII characters, even if they are whitespace according to some locales (Tom Lane)

This avoids some corner cases where array values could be interpreted differently depending on the
server’s locale settings.

• Improve standards compliance of SIMILAR TO patterns and SQL-style substring() patterns (Tom
Lane)

This includes treating ? and {...} as pattern metacharacters, while they were simple literal characters
before; that corresponds to new features added in SQL:2008. Also, ^ and $ are now treated as simple
literal characters; formerly they were treated as metacharacters, as if the pattern were following POSIX
rather than SQL rules. Also, in SQL-standard substring(), use of parentheses for nesting no longer
interferes with capturing of a substring. Also, processing of bracket expressions (character classes) is
now more standards-compliant.

• Reject negative length values in 3-parameter substring() for bit strings, per the SQL standard (Tom
Lane)

• Make date_trunc truncate rather than round when reducing precision of fractional seconds (Tom
Lane)

The code always acted this way for integer-based dates/times. Now float-based dates/times behave
similarly.

E.38.2.4. Object Renaming

• Tighten enforcement of column name consistency during RENAME when a child table inherits the same
column from multiple unrelated parents (KaiGai Kohei)

• No longer automatically rename indexes and index columns when the underlying table columns are
renamed (Tom Lane)

Administrators can still rename such indexes and columns manually. This change will require an update
of the JDBC driver, and possibly other drivers, so that unique indexes are correctly recognized after a
rename.

• CREATE OR REPLACE FUNCTION can no longer change the declared names of function parameters
(Pavel Stehule)

In order to avoid creating ambiguity in named-parameter calls, it is no longer allowed to change the
aliases for input parameters in the declaration of an existing function (although names can still be
assigned to previously unnamed parameters). You now have to DROP and recreate the function to do
that.

2177

Appendix E. Release Notes

E.38.2.5. PL/pgSQL

• PL/pgSQL now throws an error if a variable name conflicts with a column name used in a query (Tom
Lane)

The former behavior was to bind ambiguous names to PL/pgSQL variables in preference to query
columns, which often resulted in surprising misbehavior. Throwing an error allows easy detection of
ambiguous situations. Although it’s recommended that functions encountering this type of error be
modified to remove the conflict, the old behavior can be restored if necessary via the configuration
parameter plpgsql.variable_conflict, or via the per-function option #variable_conflict.

• PL/pgSQL no longer allows variable names that match certain SQL reserved words (Tom Lane)

This is a consequence of aligning the PL/pgSQL parser to match the core SQL parser more closely. If
necessary, variable names can be double-quoted to avoid this restriction.

• PL/pgSQL now requires columns of composite results to match the expected type modifier as well as
base type (Pavel Stehule, Tom Lane)

For example, if a column of the result type is declared as NUMERIC(30,2), it is no longer acceptable
to return a NUMERIC of some other precision in that column. Previous versions neglected to check the
type modifier and would thus allow result rows that didn’t actually conform to the declared restrictions.

• PL/pgSQL now treats selection into composite fields more consistently (Tom Lane)

Formerly, a statement like SELECT ... INTO rec.fld FROM ...was treated as a scalar assignment
even if the record field fld was of composite type. Now it is treated as a record assignment, the same
as when the INTO target is a regular variable of composite type. So the values to be assigned to the
field’s subfields should be written as separate columns of the SELECT list, not as a ROW(...) construct
as in previous versions.

If you need to do this in a way that will work in both 9.0 and previous releases, you can write something
like rec.fld := ROW(...) FROM

• Remove PL/pgSQL’s RENAME declaration (Tom Lane)

Instead of RENAME, use ALIAS, which can now create an alias for any variable, not only dollar sign
parameter names (such as $1) as before.

E.38.2.6. Other Incompatibilities

• Deprecate use of => as an operator name (Robert Haas)

Future versions of PostgreSQL will probably reject this operator name entirely, in order to support the
SQL-standard notation for named function parameters. For the moment, it is still allowed, but a warning
is emitted when such an operator is defined.

• Remove support for platforms that don’t have a working 64-bit integer data type (Tom Lane)

It is believed all still-supported platforms have working 64-bit integer data types.

2178

Appendix E. Release Notes

E.38.3. Changes
Version 9.0 has an unprecedented number of new major features, and over 200 enhancements, improve-
ments, new commands, new functions, and other changes.

E.38.3.1. Server

E.38.3.1.1. Continuous Archiving and Streaming Replication

PostgreSQL’s existing standby-server capability has been expanded both to support read-only queries on
standby servers and to greatly reduce the lag between master and standby servers. For many users, this
will be a useful and low-administration form of replication, either for high availability or for horizontal
scalability.

• Allow a standby server to accept read-only queries (Simon Riggs, Heikki Linnakangas)

This feature is called Hot Standby. There are new postgresql.conf and recovery.conf settings
to control this feature, as well as extensive documentation.

• Allow write-ahead log (WAL) data to be streamed to a standby server (Fujii Masao, Heikki Linnakan-
gas)

This feature is called Streaming Replication. Previously WAL data could be sent to standby servers
only in units of entire WAL files (normally 16 megabytes each). Streaming Replication eliminates this
inefficiency and allows updates on the master to be propagated to standby servers with very little delay.
There are new postgresql.conf and recovery.conf settings to control this feature, as well as
extensive documentation.

• Add pg_last_xlog_receive_location() and pg_last_xlog_replay_location(), which
can be used to monitor standby server WAL activity (Simon Riggs, Fujii Masao, Heikki Linnakangas)

E.38.3.1.2. Performance

• Allow per-tablespace values to be set for sequential and random page cost estimates
(seq_page_cost/random_page_cost) via ALTER TABLESPACE ... SET/RESET (Robert Haas)

• Improve performance and reliability of EvalPlanQual rechecks in join queries (Tom Lane)

UPDATE, DELETE, and SELECT FOR UPDATE/SHARE queries that involve joins will now behave much
better when encountering freshly-updated rows.

• Improve performance of TRUNCATE when the table was created or truncated earlier in the same trans-
action (Tom Lane)

• Improve performance of finding inheritance child tables (Tom Lane)

E.38.3.1.3. Optimizer

• Remove unnecessary outer joins (Robert Haas)

2179

Appendix E. Release Notes

Outer joins where the inner side is unique and not referenced above the join are unnecessary and are
therefore now removed. This will accelerate many automatically generated queries, such as those cre-
ated by object-relational mappers (ORMs).

• Allow IS NOT NULL restrictions to use indexes (Tom Lane)

This is particularly useful for finding MAX()/MIN() values in indexes that contain many null values.

• Improve the optimizer’s choices about when to use materialize nodes, and when to use sorting versus
hashing for DISTINCT (Tom Lane)

• Improve the optimizer’s equivalence detection for expressions involving boolean <> operators (Tom
Lane)

E.38.3.1.4. GEQO

• Use the same random seed every time GEQO plans a query (Andres Freund)

While the Genetic Query Optimizer (GEQO) still selects random plans, it now always selects the
same random plans for identical queries, thus giving more consistent performance. You can modify
geqo_seed to experiment with alternative plans.

• Improve GEQO plan selection (Tom Lane)

This avoids the rare error “failed to make a valid plan”, and should also improve planning speed.

E.38.3.1.5. Optimizer Statistics

• Improve ANALYZE to support inheritance-tree statistics (Tom Lane)

This is particularly useful for partitioned tables. However, autovacuum does not yet automatically re-
analyze parent tables when child tables change.

• Improve autovacuum’s detection of when re-analyze is necessary (Tom Lane)

• Improve optimizer’s estimation for greater/less-than comparisons (Tom Lane)

When looking up statistics for greater/less-than comparisons, if the comparison value is in the first
or last histogram bucket, use an index (if available) to fetch the current actual column minimum or
maximum. This greatly improves the accuracy of estimates for comparison values near the ends of the
data range, particularly if the range is constantly changing due to addition of new data.

• Allow setting of number-of-distinct-values statistics using ALTER TABLE (Robert Haas)

This allows users to override the estimated number or percentage of distinct values for a column. This
statistic is normally computed by ANALYZE, but the estimate can be poor, especially on tables with very
large numbers of rows.

E.38.3.1.6. Authentication

• Add support for RADIUS (Remote Authentication Dial In User Service) authentication (Magnus Ha-
gander)

2180

Appendix E. Release Notes

• Allow LDAP (Lightweight Directory Access Protocol) authentication to operate in “search/bind” mode
(Robert Fleming, Magnus Hagander)

This allows the user to be looked up first, then the system uses the DN (Distinguished Name) returned
for that user.

• Add samehost and samenet designations to pg_hba.conf (Stef Walter)

These match the server’s IP address and subnet address respectively.

• Pass trusted SSL root certificate names to the client so the client can return an appropriate client certifi-
cate (Craig Ringer)

E.38.3.1.7. Monitoring

• Add the ability for clients to set an application name, which is displayed in pg_stat_activity (Dave
Page)

This allows administrators to characterize database traffic and troubleshoot problems by source appli-
cation.

• Add a SQLSTATE option (%e) to log_line_prefix (Guillaume Smet)

This allows users to compile statistics on errors and messages by error code number.

• Write to the Windows event log in UTF16 encoding (Itagaki Takahiro)

Now there is true multilingual support for PostgreSQL log messages on Windows.

E.38.3.1.8. Statistics Counters

• Add pg_stat_reset_shared(’bgwriter’) to reset the cluster-wide shared statistics for the back-
ground writer (Greg Smith)

• Add pg_stat_reset_single_table_counters() and
pg_stat_reset_single_function_counters() to allow resetting the
statistics counters for individual tables and functions (Magnus Hagander)

E.38.3.1.9. Server Settings

• Allow setting of configuration parameters based on database/role combinations (Alvaro Herrera)

Previously only per-database and per-role settings were possible, not combinations. All role and
database settings are now stored in the new pg_db_role_setting system catalog. A new psql
command \drds shows these settings. The legacy system views pg_roles, pg_shadow, and
pg_user do not show combination settings, and therefore no longer completely represent the
configuration for a user or database.

• Add server parameter bonjour, which controls whether a Bonjour-enabled server advertises itself via
Bonjour (Tom Lane)

The default is off, meaning it does not advertise. This allows packagers to distribute Bonjour-enabled
builds without worrying that individual users might not want the feature.

2181

Appendix E. Release Notes

• Add server parameter enable_material, which controls the use of materialize nodes in the optimizer
(Robert Haas)

The default is on. When off, the optimizer will not add materialize nodes purely for performance rea-
sons, though they will still be used when necessary for correctness.

• Change server parameter log_temp_files to use default file size units of kilobytes (Robert Haas)

Previously this setting was interpreted in bytes if no units were specified.

• Log changes of parameter values when postgresql.conf is reloaded (Peter Eisentraut)

This lets administrators and security staff audit changes of database settings, and is also very convenient
for checking the effects of postgresql.conf edits.

• Properly enforce superuser permissions for custom server parameters (Tom Lane)

Non-superusers can no longer issue ALTER ROLE/DATABASE SET for parameters that are not currently
known to the server. This allows the server to correctly check that superuser-only parameters are only
set by superusers. Previously, the SET would be allowed and then ignored at session start, making
superuser-only custom parameters much less useful than they should be.

E.38.3.2. Queries

• Perform SELECT FOR UPDATE/SHARE processing after applying LIMIT, so the number of rows re-
turned is always predictable (Tom Lane)

Previously, changes made by concurrent transactions could cause a SELECT FOR UPDATE to unexpect-
edly return fewer rows than specified by its LIMIT. FOR UPDATE in combination with ORDER BY can
still produce surprising results, but that can be corrected by placing FOR UPDATE in a subquery.

• Allow mixing of traditional and SQL-standard LIMIT/OFFSET syntax (Tom Lane)

• Extend the supported frame options in window functions (Hitoshi Harada)

Frames can now start with CURRENT ROW, and the ROWS n PRECEDING/FOLLOWING options are now
supported.

• Make SELECT INTO and CREATE TABLE AS return row counts to the client in their command tags
(Boszormenyi Zoltan)

This can save an entire round-trip to the client, allowing result counts and pagination to be calculated
without an additional COUNT query.

E.38.3.2.1. Unicode Strings

• Support Unicode surrogate pairs (dual 16-bit representation) in U& strings and identifiers (Peter Eisen-
traut)

• Support Unicode escapes in E’...’ strings (Marko Kreen)

2182

Appendix E. Release Notes

E.38.3.3. Object Manipulation

• Speed up CREATE DATABASE by deferring flushes to disk (Andres Freund, Greg Stark)

• Allow comments on columns of tables, views, and composite types only, not other relation types such
as indexes and TOAST tables (Tom Lane)

• Allow the creation of enumerated types containing no values (Bruce Momjian)

• Let values of columns having storage type MAIN remain on the main heap page unless the row cannot
fit on a page (Kevin Grittner)

Previously MAIN values were forced out to TOAST tables until the row size was less than one-quarter
of the page size.

E.38.3.3.1. ALTER TABLE

• Implement IF EXISTS for ALTER TABLE DROP COLUMN and ALTER TABLE DROP CONSTRAINT

(Andres Freund)

• Allow ALTER TABLE commands that rewrite tables to skip WAL logging (Itagaki Takahiro)

Such operations either produce a new copy of the table or are rolled back, so WAL archiving can
be skipped, unless running in continuous archiving mode. This reduces I/O overhead and improves
performance.

• Fix failure of ALTER TABLE table ADD COLUMN col serial when done by non-owner of table
(Tom Lane)

E.38.3.3.2. CREATE TABLE

• Add support for copying COMMENTS and STORAGE settings in CREATE TABLE ... LIKE commands
(Itagaki Takahiro)

• Add a shortcut for copying all properties in CREATE TABLE ... LIKE commands (Itagaki Takahiro)

• Add the SQL-standard CREATE TABLE ... OF type command (Peter Eisentraut)

This allows creation of a table that matches an existing composite type. Additional constraints and
defaults can be specified in the command.

E.38.3.3.3. Constraints

• Add deferrable unique constraints (Dean Rasheed)

This allows mass updates, such as UPDATE tab SET col = col + 1, to work reliably on columns
that have unique indexes or are marked as primary keys. If the constraint is specified as DEFERRABLE it
will be checked at the end of the statement, rather than after each row is updated. The constraint check
can also be deferred until the end of the current transaction, allowing such updates to be spread over
multiple SQL commands.

• Add exclusion constraints (Jeff Davis)

2183

Appendix E. Release Notes

Exclusion constraints generalize uniqueness constraints by allowing arbitrary comparison operators,
not just equality. They are created with the CREATE TABLE CONSTRAINT ... EXCLUDE clause. The
most common use of exclusion constraints is to specify that column entries must not overlap, rather
than simply not be equal. This is useful for time periods and other ranges, as well as arrays. This
feature enhances checking of data integrity for many calendaring, time-management, and scientific
applications.

• Improve uniqueness-constraint violation error messages to report the values causing the failure (Itagaki
Takahiro)

For example, a uniqueness constraint violation might now report Key (x)=(2) already exists.

E.38.3.3.4. Object Permissions

• Add the ability to make mass permission changes across a whole schema using the new GRANT/REVOKE
IN SCHEMA clause (Petr Jelinek)

This simplifies management of object permissions and makes it easier to utilize database roles for
application data security.

• Add ALTER DEFAULT PRIVILEGES command to control privileges of objects created later (Petr Je-
linek)

This greatly simplifies the assignment of object privileges in a complex database application. Default
privileges can be set for tables, views, sequences, and functions. Defaults may be assigned on a per-
schema basis, or database-wide.

• Add the ability to control large object (BLOB) permissions with GRANT/REVOKE (KaiGai Kohei)

Formerly, any database user could read or modify any large object. Read and write permissions can
now be granted and revoked per large object, and the ownership of large objects is tracked.

E.38.3.4. Utility Operations

• Make LISTEN/NOTIFY store pending events in a memory queue, rather than in a system table (Joachim
Wieland)

This substantially improves performance, while retaining the existing features of transactional support
and guaranteed delivery.

• Allow NOTIFY to pass an optional “payload” string to listeners (Joachim Wieland)

This greatly improves the usefulness of LISTEN/NOTIFY as a general-purpose event queue system.

• Allow CLUSTER on all per-database system catalogs (Tom Lane)

Shared catalogs still cannot be clustered.

E.38.3.4.1. COPY

• Accept COPY ... CSV FORCE QUOTE * (Itagaki Takahiro)

2184

Appendix E. Release Notes

Now * can be used as shorthand for “all columns” in the FORCE QUOTE clause.

• Add new COPY syntax that allows options to be specified inside parentheses (Robert Haas, Emmanuel
Cecchet)

This allows greater flexibility for future COPY options. The old syntax is still supported, but only for
pre-existing options.

E.38.3.4.2. EXPLAIN

• Allow EXPLAIN to output in XML, JSON, or YAML format (Robert Haas, Greg Sabino Mullane)

The new output formats are easily machine-readable, supporting the development of new tools for
analysis of EXPLAIN output.

• Add new BUFFERS option to report query buffer usage during EXPLAIN ANALYZE (Itagaki Takahiro)

This allows better query profiling for individual queries. Buffer usage is no longer reported in the output
for log_statement_stats and related settings.

• Add hash usage information to EXPLAIN output (Robert Haas)

• Add new EXPLAIN syntax that allows options to be specified inside parentheses (Robert Haas)

This allows greater flexibility for future EXPLAIN options. The old syntax is still supported, but only
for pre-existing options.

E.38.3.4.3. VACUUM

• Change VACUUM FULL to rewrite the entire table and rebuild its indexes, rather than moving individual
rows around to compact space (Itagaki Takahiro, Tom Lane)

The previous method was usually slower and caused index bloat. Note that the new method will use
more disk space transiently during VACUUM FULL; potentially as much as twice the space normally
occupied by the table and its indexes.

• Add new VACUUM syntax that allows options to be specified inside parentheses (Itagaki Takahiro)

This allows greater flexibility for future VACUUM options. The old syntax is still supported, but only for
pre-existing options.

E.38.3.4.4. Indexes

• Allow an index to be named automatically by omitting the index name in CREATE INDEX (Tom Lane)

• By default, multicolumn indexes are now named after all their columns; and index expression columns
are now named based on their expressions (Tom Lane)

• Reindexing shared system catalogs is now fully transactional and crash-safe (Tom Lane)

Formerly, reindexing a shared index was only allowed in standalone mode, and a crash during the
operation could leave the index in worse condition than it was before.

• Add point_ops operator class for GiST (Teodor Sigaev)

2185

Appendix E. Release Notes

This feature permits GiST indexing of point columns. The index can be used for several types of
queries such as point <@ polygon (point is in polygon). This should make many PostGIS queries
faster.

• Use red-black binary trees for GIN index creation (Teodor Sigaev)

Red-black trees are self-balancing. This avoids slowdowns in cases where the input is in nonrandom
order.

E.38.3.5. Data Types

• Allow bytea values to be written in hex notation (Peter Eisentraut)

The server parameter bytea_output controls whether hex or traditional format is used for bytea
output. Libpq’s PQescapeByteaConn() function automatically uses the hex format when connected
to PostgreSQL 9.0 or newer servers. However, pre-9.0 libpq versions will not correctly process hex
format from newer servers.

The new hex format will be directly compatible with more applications that use binary data, allowing
them to store and retrieve it without extra conversion. It is also significantly faster to read and write
than the traditional format.

• Allow server parameter extra_float_digits to be increased to 3 (Tom Lane)

The previous maximum extra_float_digits setting was 2. There are cases where 3 digits are
needed to dump and restore float4 values exactly. pg_dump will now use the setting of 3 when
dumping from a server that allows it.

• Tighten input checking for int2vector values (Caleb Welton)

E.38.3.5.1. Full Text Search

• Add prefix support in synonym dictionaries (Teodor Sigaev)

• Add filtering dictionaries (Teodor Sigaev)

Filtering dictionaries allow tokens to be modified then passed to subsequent dictionaries.

• Allow underscores in email-address tokens (Teodor Sigaev)

• Use more standards-compliant rules for parsing URL tokens (Tom Lane)

E.38.3.6. Functions

• Allow function calls to supply parameter names and match them to named parameters in the function
definition (Pavel Stehule)

For example, if a function is defined to take parameters a and b, it can be called with func(a := 7,

b := 12) or func(b := 12, a := 7).

• Support locale-specific regular expression processing with UTF-8 server encoding (Tom Lane)

2186

Appendix E. Release Notes

Locale-specific regular expression functionality includes case-insensitive matching and locale-specific
character classes. Previously, these features worked correctly for non-ASCII characters only if the
database used a single-byte server encoding (such as LATIN1). They will still misbehave in multi-byte
encodings other than UTF-8.

• Add support for scientific notation in to_char() (EEEE specification) (Pavel Stehule, Brendan Jurd)

• Make to_char() honor FM (fill mode) in Y, YY, and YYY specifications (Bruce Momjian, Tom Lane)

It was already honored by YYYY.

• Fix to_char() to output localized numeric and monetary strings in the correct encoding on Windows
(Hiroshi Inoue, Itagaki Takahiro, Bruce Momjian)

• Correct calculations of “overlaps” and “contains” operations for polygons (Teodor Sigaev)

The polygon && (overlaps) operator formerly just checked to see if the two polygons’ bounding boxes
overlapped. It now does a more correct check. The polygon @> and <@ (contains/contained by) opera-
tors formerly checked to see if one polygon’s vertexes were all contained in the other; this can wrongly
report “true” for some non-convex polygons. Now they check that all line segments of one polygon are
contained in the other.

E.38.3.6.1. Aggregates

• Allow aggregate functions to use ORDER BY (Andrew Gierth)

For example, this is now supported: array_agg(a ORDER BY b). This is useful with aggregates for
which the order of input values is significant, and eliminates the need to use a nonstandard subquery to
determine the ordering.

• Multi-argument aggregate functions can now use DISTINCT (Andrew Gierth)

• Add the string_agg() aggregate function to combine values into a single string (Pavel Stehule)

• Aggregate functions that are called with DISTINCT are now passed NULL values if the aggregate
transition function is not marked as STRICT (Andrew Gierth)

For example, agg(DISTINCT x) might pass a NULL x value to agg(). This is more consistent with
the behavior in non-DISTINCT cases.

E.38.3.6.2. Bit Strings

• Add get_bit() and set_bit() functions for bit strings, mirroring those for bytea (Leonardo F)

• Implement OVERLAY() (replace) for bit strings and bytea (Leonardo F)

E.38.3.6.3. Object Information Functions

• Add pg_table_size() and pg_indexes_size() to provide a more user-friendly interface to the
pg_relation_size() function (Bernd Helmle)

• Add has_sequence_privilege() for sequence permission checking (Abhijit Menon-Sen)

• Update the information_schema views to conform to SQL:2008 (Peter Eisentraut)

2187

Appendix E. Release Notes

• Make the information_schema views correctly display maximum octet lengths for char and
varchar columns (Peter Eisentraut)

• Speed up information_schema privilege views (Joachim Wieland)

E.38.3.6.4. Function and Trigger Creation

• Support execution of anonymous code blocks using the DO statement (Petr Jelinek, Joshua Tolley,
Hannu Valtonen)

This allows execution of server-side code without the need to create and delete a temporary function
definition. Code can be executed in any language for which the user has permissions to define a function.

• Implement SQL-standard-compliant per-column triggers (Itagaki Takahiro)

Such triggers are fired only when the specified column(s) are affected by the query, e.g. appear in an
UPDATE’s SET list.

• Add the WHEN clause to CREATE TRIGGER to allow control over whether a trigger is fired (Itagaki
Takahiro)

While the same type of check can always be performed inside the trigger, doing it in an external WHEN
clause can have performance benefits.

E.38.3.7. Server-Side Languages

• Add the OR REPLACE clause to CREATE LANGUAGE (Tom Lane)

This is helpful to optionally install a language if it does not already exist, and is particularly helpful
now that PL/pgSQL is installed by default.

E.38.3.7.1. PL/pgSQL Server-Side Language

• Install PL/pgSQL by default (Bruce Momjian)

The language can still be removed from a particular database if the administrator has security or per-
formance concerns about making it available.

• Improve handling of cases where PL/pgSQL variable names conflict with identifiers used in queries
within a function (Tom Lane)

The default behavior is now to throw an error when there is a conflict, so as to avoid surprising be-
haviors. This can be modified, via the configuration parameter plpgsql.variable_conflict or the
per-function option #variable_conflict, to allow either the variable or the query-supplied column
to be used. In any case PL/pgSQL will no longer attempt to substitute variables in places where they
would not be syntactically valid.

• Make PL/pgSQL use the main lexer, rather than its own version (Tom Lane)

2188

Appendix E. Release Notes

This ensures accurate tracking of the main system’s behavior for details such as string escaping. Some
user-visible details, such as the set of keywords considered reserved in PL/pgSQL, have changed in
consequence.

• Avoid throwing an unnecessary error for an invalid record reference (Tom Lane)

An error is now thrown only if the reference is actually fetched, rather than whenever the enclosing
expression is reached. For example, many people have tried to do this in triggers:

if TG_OP = ’INSERT’ and NEW.col1 = ... then

This will now actually work as expected.

• Improve PL/pgSQL’s ability to handle row types with dropped columns (Pavel Stehule)

• Allow input parameters to be assigned values within PL/pgSQL functions (Steve Prentice)

Formerly, input parameters were treated as being declared CONST, so the function’s code could not
change their values. This restriction has been removed to simplify porting of functions from other
DBMSes that do not impose the equivalent restriction. An input parameter now acts like a local variable
initialized to the passed-in value.

• Improve error location reporting in PL/pgSQL (Tom Lane)

• Add count and ALL options to MOVE FORWARD/BACKWARD in PL/pgSQL (Pavel Stehule)

• Allow PL/pgSQL’s WHERE CURRENT OF to use a cursor variable (Tom Lane)

• Allow PL/pgSQL’s OPEN cursor FOR EXECUTE to use parameters (Pavel Stehule, Itagaki Takahiro)

This is accomplished with a new USING clause.

E.38.3.7.2. PL/Perl Server-Side Language

• Add new PL/Perl functions: quote_literal(), quote_nullable(), quote_ident(),
encode_bytea(), decode_bytea(), looks_like_number(), encode_array_literal(),
encode_array_constructor() (Tim Bunce)

• Add server parameter plperl.on_init to specify a PL/Perl initialization function (Tim Bunce)

plperl.on_plperl_init and plperl.on_plperlu_init are also available for initialization that
is specific to the trusted or untrusted language respectively.

• Support END blocks in PL/Perl (Tim Bunce)

END blocks do not currently allow database access.

• Allow use strict in PL/Perl (Tim Bunce)

Perl strict checks can also be globally enabled with the new server parameter plperl.use_strict.

• Allow require in PL/Perl (Tim Bunce)

This basically tests to see if the module is loaded, and if not, generates an error. It will not allow loading
of modules that the administrator has not preloaded via the initialization parameters.

• Allow use feature in PL/Perl if Perl version 5.10 or later is used (Tim Bunce)

• Verify that PL/Perl return values are valid in the server encoding (Andrew Dunstan)

2189

Appendix E. Release Notes

E.38.3.7.3. PL/Python Server-Side Language

• Add Unicode support in PL/Python (Peter Eisentraut)

Strings are automatically converted from/to the server encoding as necessary.

• Improve bytea support in PL/Python (Caleb Welton)

Bytea values passed into PL/Python are now represented as binary, rather than the PostgreSQL bytea

text format. Bytea values containing null bytes are now also output properly from PL/Python. Passing
of boolean, integer, and float values was also improved.

• Support arrays as parameters and return values in PL/Python (Peter Eisentraut)

• Improve mapping of SQL domains to Python types (Peter Eisentraut)

• Add Python 3 support to PL/Python (Peter Eisentraut)

The new server-side language is called plpython3u. This cannot be used in the same session with the
Python 2 server-side language.

• Improve error location and exception reporting in PL/Python (Peter Eisentraut)

E.38.3.8. Client Applications

• Add an --analyze-only option to vacuumdb, to analyze without vacuuming (Bruce Momjian)

E.38.3.8.1. psql

• Add support for quoting/escaping the values of psql variables as SQL strings or identifiers (Pavel Ste-
hule, Robert Haas)

For example, :’var’ will produce the value of var quoted and properly escaped as a literal string,
while :"var" will produce its value quoted and escaped as an identifier.

• Ignore a leading UTF-8-encoded Unicode byte-order marker in script files read by psql (Itagaki
Takahiro)

This is enabled when the client encoding is UTF-8. It improves compatibility with certain editors,
mostly on Windows, that insist on inserting such markers.

• Fix psql --file - to properly honor --single-transaction (Bruce Momjian)

• Avoid overwriting of psql’s command-line history when two psql sessions are run concurrently (Tom
Lane)

• Improve psql’s tab completion support (Itagaki Takahiro)

• Show \timing output when it is enabled, regardless of “quiet” mode (Peter Eisentraut)

E.38.3.8.1.1. psql Display

• Improve display of wrapped columns in psql (Roger Leigh)

2190

Appendix E. Release Notes

This behavior is now the default. The previous formatting is available by using \pset linestyle

old-ascii.

• Allow psql to use fancy Unicode line-drawing characters via \pset linestyle unicode (Roger
Leigh)

E.38.3.8.1.2. psql \d Commands

• Make \d show child tables that inherit from the specified parent (Damien Clochard)

\d shows only the number of child tables, while \d+ shows the names of all child tables.

• Show definitions of index columns in \d index_name (Khee Chin)

The definition is useful for expression indexes.

• Show a view’s defining query only in \d+, not in \d (Peter Eisentraut)

Always including the query was deemed overly verbose.

E.38.3.8.2. pg_dump

• Make pg_dump/pg_restore --clean also remove large objects (Itagaki Takahiro)

• Fix pg_dump to properly dump large objects when standard_conforming_strings is enabled
(Tom Lane)

The previous coding could fail when dumping to an archive file and then generating script output from
pg_restore.

• pg_restore now emits large-object data in hex format when generating script output (Tom Lane)

This could cause compatibility problems if the script is then loaded into a pre-9.0 server. To work
around that, restore directly to the server, instead.

• Allow pg_dump to dump comments attached to columns of composite types (Taro Minowa (Higepon))

• Make pg_dump --verbose output the pg_dump and server versions in text output mode (Jim Cox,
Tom Lane)

These were already provided in custom output mode.

• pg_restore now complains if any command-line arguments remain after the switches and optional file
name (Tom Lane)

Previously, it silently ignored any such arguments.

E.38.3.8.3. pg_ctl

• Allow pg_ctl to be used safely to start the postmaster during a system reboot (Tom Lane)

Previously, pg_ctl’s parent process could have been mistakenly identified as a running postmaster based
on a stale postmaster lock file, resulting in a transient failure to start the database.

2191

Appendix E. Release Notes

• Give pg_ctl the ability to initialize the database (by invoking initdb) (Zdenek Kotala)

E.38.3.9. Development Tools

E.38.3.9.1. libpq

• Add new libpq functions PQconnectdbParams() and PQconnectStartParams() (Guillaume
Lelarge)

These functions are similar to PQconnectdb() and PQconnectStart() except that they accept a
null-terminated array of connection options, rather than requiring all options to be provided in a single
string.

• Add libpq functions PQescapeLiteral() and PQescapeIdentifier() (Robert Haas)

These functions return appropriately quoted and escaped SQL string literals and identifiers. The caller
is not required to pre-allocate the string result, as is required by PQescapeStringConn().

• Add support for a per-user service file (.pg_service.conf), which is checked before the site-wide
service file (Peter Eisentraut)

• Properly report an error if the specified libpq service cannot be found (Peter Eisentraut)

• Add TCP keepalive settings in libpq (Tollef Fog Heen, Fujii Masao, Robert Haas)

Keepalive settings were already supported on the server end of TCP connections.

• Avoid extra system calls to block and unblock SIGPIPE in libpq, on platforms that offer alternative
methods (Jeremy Kerr)

• When a .pgpass-supplied password fails, mention where the password came from in the error message
(Bruce Momjian)

• Load all SSL certificates given in the client certificate file (Tom Lane)

This improves support for indirectly-signed SSL certificates.

E.38.3.9.2. ecpg

• Add SQLDA (SQL Descriptor Area) support to ecpg (Boszormenyi Zoltan)

• Add the DESCRIBE [OUTPUT] statement to ecpg (Boszormenyi Zoltan)

• Add an ECPGtransactionStatus function to return the current transaction status (Bernd Helmle)

• Add the string data type in ecpg Informix-compatibility mode (Boszormenyi Zoltan)

• Allow ecpg to use new and old variable names without restriction (Michael Meskes)

• Allow ecpg to use variable names in free() (Michael Meskes)

• Make ecpg_dynamic_type() return zero for non-SQL3 data types (Michael Meskes)

Previously it returned the negative of the data type OID. This could be confused with valid type OIDs,
however.

2192

Appendix E. Release Notes

• Support long long types on platforms that already have 64-bit long (Michael Meskes)

E.38.3.9.2.1. ecpg Cursors

• Add out-of-scope cursor support in ecpg’s native mode (Boszormenyi Zoltan)

This allows DECLARE to use variables that are not in scope when OPEN is called. This facility already
existed in ecpg’s Informix-compatibility mode.

• Allow dynamic cursor names in ecpg (Boszormenyi Zoltan)

• Allow ecpg to use noise words FROM and IN in FETCH and MOVE (Boszormenyi Zoltan)

E.38.3.10. Build Options

• Enable client thread safety by default (Bruce Momjian)

The thread-safety option can be disabled with configure --disable-thread-safety.

• Add support for controlling the Linux out-of-memory killer (Alex Hunsaker, Tom Lane)

Now that /proc/self/oom_adj allows disabling of the Linux out-of-memory (OOM) killer, it’s rec-
ommendable to disable OOM kills for the postmaster. It may then be desirable to re-enable OOM kills
for the postmaster’s child processes. The new compile-time option LINUX_OOM_ADJ allows the killer
to be reactivated for child processes.

E.38.3.10.1. Makefiles

• New Makefile targets world, install-world, and installcheck-world (Andrew Dunstan)

These are similar to the existing all, install, and installcheck targets, but they also build the
HTML documentation, build and test contrib, and test server-side languages and ecpg.

• Add data and documentation installation location control to PGXS Makefiles (Mark Cave-Ayland)

• Add Makefile rules to build the PostgreSQL documentation as a single HTML file or as a single plain-
text file (Peter Eisentraut, Bruce Momjian)

E.38.3.10.2. Windows

• Support compiling on 64-bit Windows and running in 64-bit mode (Tsutomu Yamada, Magnus Hagan-
der)

This allows for large shared memory sizes on Windows.

• Support server builds using Visual Studio 2008 (Magnus Hagander)

2193

Appendix E. Release Notes

E.38.3.11. Source Code

• Distribute prebuilt documentation in a subdirectory tree, rather than as tar archive files inside the distri-
bution tarball (Peter Eisentraut)

For example, the prebuilt HTML documentation is now in doc/src/sgml/html/; the manual pages
are packaged similarly.

• Make the server’s lexer reentrant (Tom Lane)

This was needed for use of the lexer by PL/pgSQL.

• Improve speed of memory allocation (Tom Lane, Greg Stark)

• User-defined constraint triggers now have entries in pg_constraint as well as pg_trigger (Tom
Lane)

Because of this change, pg_constraint.pgconstrname is now redundant and has been removed.

• Add system catalog columns pg_constraint.conindid and pg_trigger.tgconstrindid to bet-
ter document the use of indexes for constraint enforcement (Tom Lane)

• Allow multiple conditions to be communicated to backends using a single operating system signal (Fujii
Masao)

This allows new features to be added without a platform-specific constraint on the number of signal
conditions.

• Improve source code test coverage, including contrib, PL/Python, and PL/Perl (Peter Eisentraut,
Andrew Dunstan)

• Remove the use of flat files for system table bootstrapping (Tom Lane, Alvaro Herrera)

This improves performance when using many roles or databases, and eliminates some possible failure
conditions.

• Automatically generate the initial contents of pg_attribute for “bootstrapped” catalogs (John Nay-
lor)

This greatly simplifies changes to these catalogs.

• Split the processing of INSERT/UPDATE/DELETE operations out of execMain.c (Marko Tiikkaja)

Updates are now executed in a separate ModifyTable node. This change is necessary infrastructure for
future improvements.

• Simplify translation of psql’s SQL help text (Peter Eisentraut)

• Reduce the lengths of some file names so that all file paths in the distribution tarball are less than 100
characters (Tom Lane)

Some decompression programs have problems with longer file paths.

• Add a new ERRCODE_INVALID_PASSWORD SQLSTATE error code (Bruce Momjian)

• With authors’ permissions, remove the few remaining personal source code copyright notices (Bruce
Momjian)

The personal copyright notices were insignificant but the community occasionally had to answer ques-
tions about them.

2194

Appendix E. Release Notes

• Add new documentation section about running PostgreSQL in non-durable mode to improve perfor-
mance (Bruce Momjian)

• Restructure the HTML documentation Makefile rules to make their dependency checks work cor-
rectly, avoiding unnecessary rebuilds (Peter Eisentraut)

• Use DocBook XSL stylesheets for man page building, rather than Docbook2X (Peter Eisentraut)

This changes the set of tools needed to build the man pages.

• Improve PL/Perl code structure (Tim Bunce)

• Improve error context reports in PL/Perl (Alexey Klyukin)

E.38.3.11.1. New Build Requirements

Note that these requirements do not apply when building from a distribution tarball, since tarballs include
the files that these programs are used to build.

• Require Autoconf 2.63 to build configure (Peter Eisentraut)

• Require Flex 2.5.31 or later to build from a CVS checkout (Tom Lane)

• Require Perl version 5.8 or later to build from a CVS checkout (John Naylor, Andrew Dunstan)

E.38.3.11.2. Portability

• Use a more modern API for Bonjour (Tom Lane)

Bonjour support now requires OS X 10.3 or later. The older API has been deprecated by Apple.

• Add spinlock support for the SuperH architecture (Nobuhiro Iwamatsu)

• Allow non-GCC compilers to use inline functions if they support them (Kurt Harriman)

• Remove support for platforms that don’t have a working 64-bit integer data type (Tom Lane)

• Restructure use of LDFLAGS to be more consistent across platforms (Tom Lane)

LDFLAGS is now used for linking both executables and shared libraries, and we add on LDFLAGS_EX

when linking executables, or LDFLAGS_SL when linking shared libraries.

E.38.3.11.3. Server Programming

• Make backend header files safe to include in C++ (Kurt Harriman, Peter Eisentraut)

These changes remove keyword conflicts that previously made C++ usage difficult in backend code.
However, there are still other complexities when using C++ for backend functions. extern "C" { } is
still necessary in appropriate places, and memory management and error handling are still problematic.

• Add AggCheckCallContext() for use in detecting if a C function is being called as an aggregate
(Hitoshi Harada)

• Change calling convention for SearchSysCache() and related functions to avoid hard-wiring the
maximum number of cache keys (Robert Haas)

2195

Appendix E. Release Notes

Existing calls will still work for the moment, but can be expected to break in 9.1 or later if not converted
to the new style.

• Require calls of fastgetattr() and heap_getattr() backend macros to provide a non-NULL
fourth argument (Robert Haas)

• Custom typanalyze functions should no longer rely on VacAttrStats.attr to determine the type of
data they will be passed (Tom Lane)

This was changed to allow collection of statistics on index columns for which the storage type is dif-
ferent from the underlying column data type. There are new fields that tell the actual datatype being
analyzed.

E.38.3.11.4. Server Hooks

• Add parser hooks for processing ColumnRef and ParamRef nodes (Tom Lane)

• Add a ProcessUtility hook so loadable modules can control utility commands (Itagaki Takahiro)

E.38.3.11.5. Binary Upgrade Support

• Add contrib/pg_upgrade to support in-place upgrades (Bruce Momjian)

This avoids the requirement of dumping/reloading the database when upgrading to a new major release
of PostgreSQL, thus reducing downtime by orders of magnitude. It supports upgrades to 9.0 from
PostgreSQL 8.3 and 8.4.

• Add support for preserving relation relfilenode values during binary upgrades (Bruce Momjian)

• Add support for preserving pg_type and pg_enum OIDs during binary upgrades (Bruce Momjian)

• Move data files within tablespaces into PostgreSQL-version-specific subdirectories (Bruce Momjian)

This simplifies binary upgrades.

E.38.3.12. Contrib

• Add multithreading option (-j) to contrib/pgbench (Itagaki Takahiro)

This allows multiple CPUs to be used by pgbench, reducing the risk of pgbench itself becoming the test
bottleneck.

• Add \shell and \setshell meta commands to contrib/pgbench (Michael Paquier)

• New features for contrib/dict_xsyn (Sergey Karpov)

The new options are matchorig, matchsynonyms, and keepsynonyms.

• Add full text dictionary contrib/unaccent (Teodor Sigaev)

This filtering dictionary removes accents from letters, which makes full-text searches over multiple
languages much easier.

2196

Appendix E. Release Notes

• Add dblink_get_notify() to contrib/dblink (Marcus Kempe)

This allows asynchronous notifications in dblink.

• Improve contrib/dblink’s handling of dropped columns (Tom Lane)

This affects dblink_build_sql_insert() and related functions. These functions now number
columns according to logical not physical column numbers.

• Greatly increase contrib/hstore’s data length limit, and add B-tree and hash support so GROUP BY

and DISTINCT operations are possible on hstore columns (Andrew Gierth)

New functions and operators were also added. These improvements make hstore a full-function key-
value store embedded in PostgreSQL.

• Add contrib/passwordcheck to support site-specific password strength policies (Laurenz Albe)

The source code of this module should be modified to implement site-specific password policies.

• Add contrib/pg_archivecleanup tool (Simon Riggs)

This is designed to be used in the archive_cleanup_command server parameter, to remove no-
longer-needed archive files.

• Add query text to contrib/auto_explain output (Andrew Dunstan)

• Add buffer access counters to contrib/pg_stat_statements (Itagaki Takahiro)

• Update contrib/start-scripts/linux to use /proc/self/oom_adj to disable the Linux out-
of-memory (OOM) killer (Alex Hunsaker, Tom Lane)

E.39. Release 8.4.20

Release Date: 2014-02-20

This release contains a variety of fixes from 8.4.19. For information about new features in the 8.4 major
release, see Section E.59.

The PostgreSQL community will stop releasing updates for the 8.4.X release series in July 2014. Users
are encouraged to update to a newer release branch soon.

E.39.1. Migration to Version 8.4.20
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.19, see Section E.40.

2197

Appendix E. Release Notes

E.39.2. Changes

• Shore up GRANT ... WITH ADMIN OPTION restrictions (Noah Misch)

Granting a role without ADMIN OPTION is supposed to prevent the grantee from adding or removing
members from the granted role, but this restriction was easily bypassed by doing SET ROLE first. The
security impact is mostly that a role member can revoke the access of others, contrary to the wishes
of his grantor. Unapproved role member additions are a lesser concern, since an uncooperative role
member could provide most of his rights to others anyway by creating views or SECURITY DEFINER

functions. (CVE-2014-0060)

• Prevent privilege escalation via manual calls to PL validator functions (Andres Freund)

The primary role of PL validator functions is to be called implicitly during CREATE FUNCTION, but they
are also normal SQL functions that a user can call explicitly. Calling a validator on a function actually
written in some other language was not checked for and could be exploited for privilege-escalation
purposes. The fix involves adding a call to a privilege-checking function in each validator function.
Non-core procedural languages will also need to make this change to their own validator functions, if
any. (CVE-2014-0061)

• Avoid multiple name lookups during table and index DDL (Robert Haas, Andres Freund)

If the name lookups come to different conclusions due to concurrent activity, we might perform some
parts of the DDL on a different table than other parts. At least in the case of CREATE INDEX, this can be
used to cause the permissions checks to be performed against a different table than the index creation,
allowing for a privilege escalation attack. (CVE-2014-0062)

• Prevent buffer overrun with long datetime strings (Noah Misch)

The MAXDATELEN constant was too small for the longest possible value of type interval, allowing a
buffer overrun in interval_out(). Although the datetime input functions were more careful about
avoiding buffer overrun, the limit was short enough to cause them to reject some valid inputs, such
as input containing a very long timezone name. The ecpg library contained these vulnerabilities along
with some of its own. (CVE-2014-0063)

• Prevent buffer overrun due to integer overflow in size calculations (Noah Misch, Heikki Linnakangas)

Several functions, mostly type input functions, calculated an allocation size without checking for over-
flow. If overflow did occur, a too-small buffer would be allocated and then written past. (CVE-2014-
0064)

• Prevent overruns of fixed-size buffers (Peter Eisentraut, Jozef Mlich)

Use strlcpy() and related functions to provide a clear guarantee that fixed-size buffers are not over-
run. Unlike the preceding items, it is unclear whether these cases really represent live issues, since in
most cases there appear to be previous constraints on the size of the input string. Nonetheless it seems
prudent to silence all Coverity warnings of this type. (CVE-2014-0065)

• Avoid crashing if crypt() returns NULL (Honza Horak, Bruce Momjian)

There are relatively few scenarios in which crypt() could return NULL, but contrib/chkpass
would crash if it did. One practical case in which this could be an issue is if libc is configured to refuse
to execute unapproved hashing algorithms (e.g., “FIPS mode”). (CVE-2014-0066)

• Document risks of make check in the regression testing instructions (Noah Misch, Tom Lane)

2198

Appendix E. Release Notes

Since the temporary server started by make check uses “trust” authentication, another user on the
same machine could connect to it as database superuser, and then potentially exploit the privileges of
the operating-system user who started the tests. A future release will probably incorporate changes in
the testing procedure to prevent this risk, but some public discussion is needed first. So for the moment,
just warn people against using make check when there are untrusted users on the same machine.
(CVE-2014-0067)

• Fix possible mis-replay of WAL records when some segments of a relation aren’t full size (Greg Stark,
Tom Lane)

The WAL update could be applied to the wrong page, potentially many pages past where it should have
been. Aside from corrupting data, this error has been observed to result in significant “bloat” of standby
servers compared to their masters, due to updates being applied far beyond where the end-of-file should
have been. This failure mode does not appear to be a significant risk during crash recovery, only when
initially synchronizing a standby created from a base backup taken from a quickly-changing master.

• Ensure that insertions into non-leaf GIN index pages write a full-page WAL record when appropriate
(Heikki Linnakangas)

The previous coding risked index corruption in the event of a partial-page write during a system crash.

• Fix race conditions during server process exit (Robert Haas)

Ensure that signal handlers don’t attempt to use the process’s MyProc pointer after it’s no longer valid.

• Fix unsafe references to errno within error reporting logic (Christian Kruse)

This would typically lead to odd behaviors such as missing or inappropriate HINT fields.

• Fix possible crashes from using ereport() too early during server startup (Tom Lane)

The principal case we’ve seen in the field is a crash if the server is started in a directory it doesn’t have
permission to read.

• Clear retry flags properly in OpenSSL socket write function (Alexander Kukushkin)

This omission could result in a server lockup after unexpected loss of an SSL-encrypted connection.

• Fix length checking for Unicode identifiers (U&"..." syntax) containing escapes (Tom Lane)

A spurious truncation warning would be printed for such identifiers if the escaped form of the identifier
was too long, but the identifier actually didn’t need truncation after de-escaping.

• Fix possible crash due to invalid plan for nested sub-selects, such as WHERE (... x IN (SELECT

...) ...) IN (SELECT ...) (Tom Lane)

• Ensure that ANALYZE creates statistics for a table column even when all the values in it are “too wide”
(Tom Lane)

ANALYZE intentionally omits very wide values from its histogram and most-common-values calcula-
tions, but it neglected to do something sane in the case that all the sampled entries are too wide.

• In ALTER TABLE ... SET TABLESPACE, allow the database’s default tablespace to be used without
a permissions check (Stephen Frost)

CREATE TABLE has always allowed such usage, but ALTER TABLE didn’t get the memo.

• Fix “cannot accept a set” error when some arms of a CASE return a set and others don’t (Tom Lane)

• Fix checks for all-zero client addresses in pgstat functions (Kevin Grittner)

2199

Appendix E. Release Notes

• Fix possible misclassification of multibyte characters by the text search parser (Tom Lane)

Non-ASCII characters could be misclassified when using C locale with a multibyte encoding. On Cyg-
win, non-C locales could fail as well.

• Fix possible misbehavior in plainto_tsquery() (Heikki Linnakangas)

Use memmove() not memcpy() for copying overlapping memory regions. There have been no field
reports of this actually causing trouble, but it’s certainly risky.

• Accept SHIFT_JIS as an encoding name for locale checking purposes (Tatsuo Ishii)

• Fix misbehavior of PQhost() on Windows (Fujii Masao)

It should return localhost if no host has been specified.

• Improve error handling in libpq and psql for failures during COPY TO STDOUT/FROM STDIN (Tom
Lane)

In particular this fixes an infinite loop that could occur in 9.2 and up if the server connection was lost
during COPY FROM STDIN. Variants of that scenario might be possible in older versions, or with other
client applications.

• Fix misaligned descriptors in ecpg (MauMau)

• In ecpg, handle lack of a hostname in the connection parameters properly (Michael Meskes)

• Fix performance regression in contrib/dblink connection startup (Joe Conway)

Avoid an unnecessary round trip when client and server encodings match.

• In contrib/isn, fix incorrect calculation of the check digit for ISMN values (Fabien Coelho)

• Ensure client-code-only installation procedure works as documented (Peter Eisentraut)

• In Mingw and Cygwin builds, install the libpq DLL in the bin directory (Andrew Dunstan)

This duplicates what the MSVC build has long done. It should fix problems with programs like psql
failing to start because they can’t find the DLL.

• Don’t generate plain-text HISTORY and src/test/regress/README files anymore (Tom Lane)

These text files duplicated the main HTML and PDF documentation formats. The trouble involved
in maintaining them greatly outweighs the likely audience for plain-text format. Distribution tarballs
will still contain files by these names, but they’ll just be stubs directing the reader to consult the main
documentation. The plain-text INSTALL file will still be maintained, as there is arguably a use-case for
that.

• Update time zone data files to tzdata release 2013i for DST law changes in Jordan and historical changes
in Cuba.

In addition, the zones Asia/Riyadh87, Asia/Riyadh88, and Asia/Riyadh89 have been removed,
as they are no longer maintained by IANA, and never represented actual civil timekeeping practice.

E.40. Release 8.4.19

Release Date: 2013-12-05

2200

Appendix E. Release Notes

This release contains a variety of fixes from 8.4.18. For information about new features in the 8.4 major
release, see Section E.59.

E.40.1. Migration to Version 8.4.19
A dump/restore is not required for those running 8.4.X.

However, this release corrects a potential data corruption issue. See the first changelog entry below to find
out whether your installation has been affected and what steps you can take if so.

Also, if you are upgrading from a version earlier than 8.4.17, see Section E.42.

E.40.2. Changes

• Fix VACUUM’s tests to see whether it can update relfrozenxid (Andres Freund)

In some cases VACUUM (either manual or autovacuum) could incorrectly advance a table’s
relfrozenxid value, allowing tuples to escape freezing, causing those rows to become invisible
once 2^31 transactions have elapsed. The probability of data loss is fairly low since multiple incorrect
advancements would need to happen before actual loss occurs, but it’s not zero. Users upgrading from
release 8.4.8 or earlier are not affected, but all later versions contain the bug.

The issue can be ameliorated by, after upgrading, vacuuming all tables in all databases while having
vacuum_freeze_table_age set to zero. This will fix any latent corruption but will not be able to
fix all pre-existing data errors. However, an installation can be presumed safe after performing this
vacuuming if it has executed fewer than 2^31 update transactions in its lifetime (check this with SELECT
txid_current() < 2^31).

• Fix race condition in GIN index posting tree page deletion (Heikki Linnakangas)

This could lead to transient wrong answers or query failures.

• Avoid flattening a subquery whose SELECT list contains a volatile function wrapped inside a sub-
SELECT (Tom Lane)

This avoids unexpected results due to extra evaluations of the volatile function.

• Fix planner’s processing of non-simple-variable subquery outputs nested within outer joins (Tom Lane)

This error could lead to incorrect plans for queries involving multiple levels of subqueries within JOIN

syntax.

• Fix premature deletion of temporary files (Andres Freund)

• Fix possible read past end of memory in rule printing (Peter Eisentraut)

• Fix array slicing of int2vector and oidvector values (Tom Lane)

Expressions of this kind are now implicitly promoted to regular int2 or oid arrays.

• Fix incorrect behaviors when using a SQL-standard, simple GMT offset timezone (Tom Lane)

2201

Appendix E. Release Notes

In some cases, the system would use the simple GMT offset value when it should have used the regular
timezone setting that had prevailed before the simple offset was selected. This change also causes the
timeofday function to honor the simple GMT offset zone.

• Prevent possible misbehavior when logging translations of Windows error codes (Tom Lane)

• Properly quote generated command lines in pg_ctl (Naoya Anzai and Tom Lane)

This fix applies only to Windows.

• Fix pg_dumpall to work when a source database sets default_transaction_read_only via ALTER
DATABASE SET (Kevin Grittner)

Previously, the generated script would fail during restore.

• Fix ecpg’s processing of lists of variables declared varchar (Zoltán Böszörményi)

• Make contrib/lo defend against incorrect trigger definitions (Marc Cousin)

• Update time zone data files to tzdata release 2013h for DST law changes in Argentina, Brazil, Jordan,
Libya, Liechtenstein, Morocco, and Palestine. Also, new timezone abbreviations WIB, WIT, WITA for
Indonesia.

E.41. Release 8.4.18

Release Date: 2013-10-10

This release contains a variety of fixes from 8.4.17. For information about new features in the 8.4 major
release, see Section E.59.

E.41.1. Migration to Version 8.4.18
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.17, see Section E.42.

E.41.2. Changes

• Prevent corruption of multi-byte characters when attempting to case-fold identifiers (Andrew Dunstan)

PostgreSQL case-folds non-ASCII characters only when using a single-byte server encoding.

• Fix memory leak caused by lo_open() failure (Heikki Linnakangas)

• Fix memory overcommit bug when work_mem is using more than 24GB of memory (Stephen Frost)

• Fix deadlock bug in libpq when using SSL (Stephen Frost)

• Properly compute row estimates for boolean columns containing many NULL values (Andrew Gierth)

2202

Appendix E. Release Notes

Previously tests like col IS NOT TRUE and col IS NOT FALSE did not properly factor in NULL
values when estimating plan costs.

• Prevent pushing down WHERE clauses into unsafe UNION/INTERSECT subqueries (Tom Lane)

Subqueries of a UNION or INTERSECT that contain set-returning functions or volatile functions in their
SELECT lists could be improperly optimized, leading to run-time errors or incorrect query results.

• Fix rare case of “failed to locate grouping columns” planner failure (Tom Lane)

• Improve view dumping code’s handling of dropped columns in referenced tables (Tom Lane)

• Fix possible deadlock during concurrent CREATE INDEX CONCURRENTLY operations (Tom Lane)

• Fix regexp_matches() handling of zero-length matches (Jeevan Chalke)

Previously, zero-length matches like ’^’ could return too many matches.

• Fix crash for overly-complex regular expressions (Heikki Linnakangas)

• Fix regular expression match failures for back references combined with non-greedy quantifiers (Jeevan
Chalke)

• Prevent CREATE FUNCTION from checking SET variables unless function body checking is enabled
(Tom Lane)

• Fix pgp_pub_decrypt() so it works for secret keys with passwords (Marko Kreen)

• Remove rare inaccurate warning during vacuum of index-less tables (Heikki Linnakangas)

• Avoid possible failure when performing transaction control commands (e.g ROLLBACK) in prepared
queries (Tom Lane)

• Ensure that floating-point data input accepts standard spellings of “infinity” on all platforms (Tom Lane)

The C99 standard says that allowable spellings are inf, +inf, -inf, infinity, +infinity, and
-infinity. Make sure we recognize these even if the platform’s strtod function doesn’t.

• Expand ability to compare rows to records and arrays (Rafal Rzepecki, Tom Lane)

• Update time zone data files to tzdata release 2013d for DST law changes in Israel, Morocco, Palestine,
and Paraguay. Also, historical zone data corrections for Macquarie Island.

E.42. Release 8.4.17

Release Date: 2013-04-04

This release contains a variety of fixes from 8.4.16. For information about new features in the 8.4 major
release, see Section E.59.

E.42.1. Migration to Version 8.4.17
A dump/restore is not required for those running 8.4.X.

2203

Appendix E. Release Notes

However, this release corrects several errors in management of GiST indexes. After installing this update,
it is advisable to REINDEX any GiST indexes that meet one or more of the conditions described below.

Also, if you are upgrading from a version earlier than 8.4.10, see Section E.49.

E.42.2. Changes

• Reset OpenSSL randomness state in each postmaster child process (Marko Kreen)

This avoids a scenario wherein random numbers generated by contrib/pgcrypto functions might
be relatively easy for another database user to guess. The risk is only significant when the postmaster is
configured with ssl = on but most connections don’t use SSL encryption. (CVE-2013-1900)

• Fix GiST indexes to not use “fuzzy” geometric comparisons when it’s not appropriate to do so (Alexan-
der Korotkov)

The core geometric types perform comparisons using “fuzzy” equality, but gist_box_same must do
exact comparisons, else GiST indexes using it might become inconsistent. After installing this update,
users should REINDEX any GiST indexes on box, polygon, circle, or point columns, since all of
these use gist_box_same.

• Fix erroneous range-union and penalty logic in GiST indexes that use contrib/btree_gist for
variable-width data types, that is text, bytea, bit, and numeric columns (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in useless index bloat. Users are advised to REINDEX such indexes after
installing this update.

• Fix bugs in GiST page splitting code for multi-column indexes (Tom Lane)

These errors could result in inconsistent indexes in which some keys that are present would not be
found by searches, and also in indexes that are unnecessarily inefficient to search. Users are advised to
REINDEX multi-column GiST indexes after installing this update.

• Fix infinite-loop risk in regular expression compilation (Tom Lane, Don Porter)

• Fix potential null-pointer dereference in regular expression compilation (Tom Lane)

• Fix to_char() to use ASCII-only case-folding rules where appropriate (Tom Lane)

This fixes misbehavior of some template patterns that should be locale-independent, but mishandled
“I” and “i” in Turkish locales.

• Fix unwanted rejection of timestamp 1999-12-31 24:00:00 (Tom Lane)

• Remove useless “picksplit doesn’t support secondary split” log messages (Josh Hansen, Tom Lane)

This message seems to have been added in expectation of code that was never written, and probably
never will be, since GiST’s default handling of secondary splits is actually pretty good. So stop nagging
end users about it.

• Fix possible failure to send a session’s last few transaction commit/abort counts to the statistics collector
(Tom Lane)

• Eliminate memory leaks in PL/Perl’s spi_prepare() function (Alex Hunsaker, Tom Lane)

• Fix pg_dumpall to handle database names containing “=” correctly (Heikki Linnakangas)

2204

Appendix E. Release Notes

• Avoid crash in pg_dump when an incorrect connection string is given (Heikki Linnakangas)

• Ignore invalid indexes in pg_dump (Michael Paquier)

Dumping invalid indexes can cause problems at restore time, for example if the reason the index creation
failed was because it tried to enforce a uniqueness condition not satisfied by the table’s data. Also, if
the index creation is in fact still in progress, it seems reasonable to consider it to be an uncommitted
DDL change, which pg_dump wouldn’t be expected to dump anyway.

• Fix contrib/pg_trgm’s similarity() function to return zero for trigram-less strings (Tom Lane)

Previously it returned NaN due to internal division by zero.

• Update time zone data files to tzdata release 2013b for DST law changes in Chile, Haiti, Morocco,
Paraguay, and some Russian areas. Also, historical zone data corrections for numerous places.

Also, update the time zone abbreviation files for recent changes in Russia and elsewhere: CHOT, GET,
IRKT, KGT, KRAT, MAGT, MAWT, MSK, NOVT, OMST, TKT, VLAT, WST, YAKT, YEKT now follow their
current meanings, and VOLT (Europe/Volgograd) and MIST (Antarctica/Macquarie) are added to the
default abbreviations list.

E.43. Release 8.4.16

Release Date: 2013-02-07

This release contains a variety of fixes from 8.4.15. For information about new features in the 8.4 major
release, see Section E.59.

E.43.1. Migration to Version 8.4.16
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.10, see Section E.49.

E.43.2. Changes

• Prevent execution of enum_recv from SQL (Tom Lane)

The function was misdeclared, allowing a simple SQL command to crash the server. In principle an
attacker might be able to use it to examine the contents of server memory. Our thanks to Sumit Soni
(via Secunia SVCRP) for reporting this issue. (CVE-2013-0255)

• Update minimum recovery point when truncating a relation file (Heikki Linnakangas)

Once data has been discarded, it’s no longer safe to stop recovery at an earlier point in the timeline.

• Fix SQL grammar to allow subscripting or field selection from a sub-SELECT result (Tom Lane)

2205

Appendix E. Release Notes

• Protect against race conditions when scanning pg_tablespace (Stephen Frost, Tom Lane)

CREATE DATABASE and DROP DATABASE could misbehave if there were concurrent updates of
pg_tablespace entries.

• Prevent DROP OWNED from trying to drop whole databases or tablespaces (Álvaro Herrera)

For safety, ownership of these objects must be reassigned, not dropped.

• Fix error in vacuum_freeze_table_age implementation (Andres Freund)

In installations that have existed for more than vacuum_freeze_min_age transactions, this mistake
prevented autovacuum from using partial-table scans, so that a full-table scan would always happen
instead.

• Prevent misbehavior when a RowExpr or XmlExpr is parse-analyzed twice (Andres Freund, Tom Lane)

This mistake could be user-visible in contexts such as CREATE TABLE LIKE INCLUDING INDEXES.

• Improve defenses against integer overflow in hashtable sizing calculations (Jeff Davis)

• Reject out-of-range dates in to_date() (Hitoshi Harada)

• Ensure that non-ASCII prompt strings are translated to the correct code page on Windows (Alexander
Law, Noah Misch)

This bug affected psql and some other client programs.

• Fix possible crash in psql’s \? command when not connected to a database (Meng Qingzhong)

• Fix one-byte buffer overrun in libpq’s PQprintTuples (Xi Wang)

This ancient function is not used anywhere by PostgreSQL itself, but it might still be used by some
client code.

• Make ecpglib use translated messages properly (Chen Huajun)

• Properly install ecpg_compat and pgtypes libraries on MSVC (Jiang Guiqing)

• Rearrange configure’s tests for supplied functions so it is not fooled by bogus exports from
libedit/libreadline (Christoph Berg)

• Ensure Windows build number increases over time (Magnus Hagander)

• Make pgxs build executables with the right .exe suffix when cross-compiling for Windows (Zoltan
Boszormenyi)

• Add new timezone abbreviation FET (Tom Lane)

This is now used in some eastern-European time zones.

E.44. Release 8.4.15

Release Date: 2012-12-06

This release contains a variety of fixes from 8.4.14. For information about new features in the 8.4 major
release, see Section E.59.

2206

Appendix E. Release Notes

E.44.1. Migration to Version 8.4.15
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.10, see Section E.49.

E.44.2. Changes

• Fix multiple bugs associated with CREATE INDEX CONCURRENTLY (Andres Freund, Tom Lane)

Fix CREATE INDEX CONCURRENTLY to use in-place updates when changing the state of an index’s
pg_index row. This prevents race conditions that could cause concurrent sessions to miss updating the
target index, thus resulting in corrupt concurrently-created indexes.

Also, fix various other operations to ensure that they ignore invalid indexes resulting from a failed
CREATE INDEX CONCURRENTLY command. The most important of these is VACUUM, because an auto-
vacuum could easily be launched on the table before corrective action can be taken to fix or remove the
invalid index.

• Avoid corruption of internal hash tables when out of memory (Hitoshi Harada)

• Fix planning of non-strict equivalence clauses above outer joins (Tom Lane)

The planner could derive incorrect constraints from a clause equating a non-strict construct to some-
thing else, for example WHERE COALESCE(foo, 0) = 0 when foo is coming from the nullable side
of an outer join.

• Improve planner’s ability to prove exclusion constraints from equivalence classes (Tom Lane)

• Fix partial-row matching in hashed subplans to handle cross-type cases correctly (Tom Lane)

This affects multicolumn NOT IN subplans, such as WHERE (a, b) NOT IN (SELECT x, y FROM

...) when for instance b and y are int4 and int8 respectively. This mistake led to wrong answers or
crashes depending on the specific datatypes involved.

• Acquire buffer lock when re-fetching the old tuple for an AFTER ROW UPDATE/DELETE trigger (An-
dres Freund)

In very unusual circumstances, this oversight could result in passing incorrect data to the precheck
logic for a foreign-key enforcement trigger. That could result in a crash, or in an incorrect decision
about whether to fire the trigger.

• Fix ALTER COLUMN TYPE to handle inherited check constraints properly (Pavan Deolasee)

This worked correctly in pre-8.4 releases, and now works correctly in 8.4 and later.

• Fix REASSIGN OWNED to handle grants on tablespaces (Álvaro Herrera)

• Ignore incorrect pg_attribute entries for system columns for views (Tom Lane)

Views do not have any system columns. However, we forgot to remove such entries when converting
a table to a view. That’s fixed properly for 9.3 and later, but in previous branches we need to defend
against existing mis-converted views.

• Fix rule printing to dump INSERT INTO table DEFAULT VALUES correctly (Tom Lane)

2207

Appendix E. Release Notes

• Guard against stack overflow when there are too many UNION/INTERSECT/EXCEPT clauses in a query
(Tom Lane)

• Prevent platform-dependent failures when dividing the minimum possible integer value by -1 (Xi Wang,
Tom Lane)

• Fix possible access past end of string in date parsing (Hitoshi Harada)

• Produce an understandable error message if the length of the path name for a Unix-domain socket
exceeds the platform-specific limit (Tom Lane, Andrew Dunstan)

Formerly, this would result in something quite unhelpful, such as “Non-recoverable failure in name
resolution”.

• Fix memory leaks when sending composite column values to the client (Tom Lane)

• Make pg_ctl more robust about reading the postmaster.pid file (Heikki Linnakangas)

Fix race conditions and possible file descriptor leakage.

• Fix possible crash in psql if incorrectly-encoded data is presented and the client_encoding setting
is a client-only encoding, such as SJIS (Jiang Guiqing)

• Fix bugs in the restore.sql script emitted by pg_dump in tar output format (Tom Lane)

The script would fail outright on tables whose names include upper-case characters. Also, make the
script capable of restoring data in --inserts mode as well as the regular COPY mode.

• Fix pg_restore to accept POSIX-conformant tar files (Brian Weaver, Tom Lane)

The original coding of pg_dump’s tar output mode produced files that are not fully conformant with
the POSIX standard. This has been corrected for version 9.3. This patch updates previous branches so
that they will accept both the incorrect and the corrected formats, in hopes of avoiding compatibility
problems when 9.3 comes out.

• Fix pg_resetxlog to locate postmaster.pid correctly when given a relative path to the data directory
(Tom Lane)

This mistake could lead to pg_resetxlog not noticing that there is an active postmaster using the data
directory.

• Fix libpq’s lo_import() and lo_export() functions to report file I/O errors properly (Tom Lane)

• Fix ecpg’s processing of nested structure pointer variables (Muhammad Usama)

• Make contrib/pageinspect’s btree page inspection functions take buffer locks while examining
pages (Tom Lane)

• Fix pgxs support for building loadable modules on AIX (Tom Lane)

Building modules outside the original source tree didn’t work on AIX.

• Update time zone data files to tzdata release 2012j for DST law changes in Cuba, Israel, Jordan, Libya,
Palestine, Western Samoa, and portions of Brazil.

2208

Appendix E. Release Notes

E.45. Release 8.4.14

Release Date: 2012-09-24

This release contains a variety of fixes from 8.4.13. For information about new features in the 8.4 major
release, see Section E.59.

E.45.1. Migration to Version 8.4.14
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.10, see Section E.49.

E.45.2. Changes

• Fix planner’s assignment of executor parameters, and fix executor’s rescan logic for CTE plan nodes
(Tom Lane)

These errors could result in wrong answers from queries that scan the same WITH subquery multiple
times.

• Improve page-splitting decisions in GiST indexes (Alexander Korotkov, Robert Haas, Tom Lane)

Multi-column GiST indexes might suffer unexpected bloat due to this error.

• Fix cascading privilege revoke to stop if privileges are still held (Tom Lane)

If we revoke a grant option from some role X, but X still holds that option via a grant from someone
else, we should not recursively revoke the corresponding privilege from role(s) Y that X had granted it
to.

• Fix handling of SIGFPE when PL/Perl is in use (Andres Freund)

Perl resets the process’s SIGFPE handler to SIG_IGN, which could result in crashes later on. Restore
the normal Postgres signal handler after initializing PL/Perl.

• Prevent PL/Perl from crashing if a recursive PL/Perl function is redefined while being executed (Tom
Lane)

• Work around possible misoptimization in PL/Perl (Tom Lane)

Some Linux distributions contain an incorrect version of pthread.h that results in incorrect compiled
code in PL/Perl, leading to crashes if a PL/Perl function calls another one that throws an error.

• Update time zone data files to tzdata release 2012f for DST law changes in Fiji

2209

Appendix E. Release Notes

E.46. Release 8.4.13

Release Date: 2012-08-17

This release contains a variety of fixes from 8.4.12. For information about new features in the 8.4 major
release, see Section E.59.

E.46.1. Migration to Version 8.4.13
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.10, see Section E.49.

E.46.2. Changes

• Prevent access to external files/URLs via XML entity references (Noah Misch, Tom Lane)

xml_parse() would attempt to fetch external files or URLs as needed to resolve DTD and entity
references in an XML value, thus allowing unprivileged database users to attempt to fetch data with
the privileges of the database server. While the external data wouldn’t get returned directly to the user,
portions of it could be exposed in error messages if the data didn’t parse as valid XML; and in any case
the mere ability to check existence of a file might be useful to an attacker. (CVE-2012-3489)

• Prevent access to external files/URLs via contrib/xml2’s xslt_process() (Peter Eisentraut)

libxslt offers the ability to read and write both files and URLs through stylesheet commands, thus
allowing unprivileged database users to both read and write data with the privileges of the database
server. Disable that through proper use of libxslt’s security options. (CVE-2012-3488)

Also, remove xslt_process()’s ability to fetch documents and stylesheets from external files/URLs.
While this was a documented “feature”, it was long regarded as a bad idea. The fix for CVE-2012-3489
broke that capability, and rather than expend effort on trying to fix it, we’re just going to summarily
remove it.

• Prevent too-early recycling of btree index pages (Noah Misch)

When we allowed read-only transactions to skip assigning XIDs, we introduced the possibility that a
deleted btree page could be recycled while a read-only transaction was still in flight to it. This would
result in incorrect index search results. The probability of such an error occurring in the field seems
very low because of the timing requirements, but nonetheless it should be fixed.

• Fix crash-safety bug with newly-created-or-reset sequences (Tom Lane)

If ALTER SEQUENCE was executed on a freshly created or reset sequence, and then precisely one
nextval() call was made on it, and then the server crashed, WAL replay would restore the sequence
to a state in which it appeared that no nextval() had been done, thus allowing the first sequence value
to be returned again by the next nextval() call. In particular this could manifest for serial columns,
since creation of a serial column’s sequence includes an ALTER SEQUENCE OWNED BY step.

• Ensure the backup_label file is fsync’d after pg_start_backup() (Dave Kerr)

2210

Appendix E. Release Notes

• Back-patch 9.1 improvement to compress the fsync request queue (Robert Haas)

This improves performance during checkpoints. The 9.1 change has now seen enough field testing to
seem safe to back-patch.

• Only allow autovacuum to be auto-canceled by a directly blocked process (Tom Lane)

The original coding could allow inconsistent behavior in some cases; in particular, an autovacuum could
get canceled after less than deadlock_timeout grace period.

• Improve logging of autovacuum cancels (Robert Haas)

• Fix log collector so that log_truncate_on_rotation works during the very first log rotation after
server start (Tom Lane)

• Fix WITH attached to a nested set operation (UNION/INTERSECT/EXCEPT) (Tom Lane)

• Ensure that a whole-row reference to a subquery doesn’t include any extra GROUP BY or ORDER BY

columns (Tom Lane)

• Disallow copying whole-row references in CHECK constraints and index definitions during CREATE

TABLE (Tom Lane)

This situation can arise in CREATE TABLE with LIKE or INHERITS. The copied whole-row variable
was incorrectly labeled with the row type of the original table not the new one. Rejecting the case
seems reasonable for LIKE, since the row types might well diverge later. For INHERITS we should
ideally allow it, with an implicit coercion to the parent table’s row type; but that will require more work
than seems safe to back-patch.

• Fix memory leak in ARRAY(SELECT ...) subqueries (Heikki Linnakangas, Tom Lane)

• Fix extraction of common prefixes from regular expressions (Tom Lane)

The code could get confused by quantified parenthesized subexpressions, such as ^(foo)?bar. This
would lead to incorrect index optimization of searches for such patterns.

• Fix bugs with parsing signed hh:mm and hh:mm:ss fields in interval constants (Amit Kapila, Tom
Lane)

• Report errors properly in contrib/xml2’s xslt_process() (Tom Lane)

• Update time zone data files to tzdata release 2012e for DST law changes in Morocco and Tokelau

E.47. Release 8.4.12

Release Date: 2012-06-04

This release contains a variety of fixes from 8.4.11. For information about new features in the 8.4 major
release, see Section E.59.

2211

Appendix E. Release Notes

E.47.1. Migration to Version 8.4.12
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.10, see Section E.49.

E.47.2. Changes

• Fix incorrect password transformation in contrib/pgcrypto’s DES crypt() function (Solar De-
signer)

If a password string contained the byte value 0x80, the remainder of the password was ignored, causing
the password to be much weaker than it appeared. With this fix, the rest of the string is properly included
in the DES hash. Any stored password values that are affected by this bug will thus no longer match,
so the stored values may need to be updated. (CVE-2012-2143)

• Ignore SECURITY DEFINER and SET attributes for a procedural language’s call handler (Tom Lane)

Applying such attributes to a call handler could crash the server. (CVE-2012-2655)

• Allow numeric timezone offsets in timestamp input to be up to 16 hours away from UTC (Tom Lane)

Some historical time zones have offsets larger than 15 hours, the previous limit. This could result in
dumped data values being rejected during reload.

• Fix timestamp conversion to cope when the given time is exactly the last DST transition time for the
current timezone (Tom Lane)

This oversight has been there a long time, but was not noticed previously because most DST-using
zones are presumed to have an indefinite sequence of future DST transitions.

• Fix text to name and char to name casts to perform string truncation correctly in multibyte encodings
(Karl Schnaitter)

• Fix memory copying bug in to_tsquery() (Heikki Linnakangas)

• Fix planner’s handling of outer PlaceHolderVars within subqueries (Tom Lane)

This bug concerns sub-SELECTs that reference variables coming from the nullable side of an outer
join of the surrounding query. In 9.1, queries affected by this bug would fail with “ERROR: Upper-
level PlaceHolderVar found where not expected”. But in 9.0 and 8.4, you’d silently get possibly-wrong
answers, since the value transmitted into the subquery wouldn’t go to null when it should.

• Fix slow session startup when pg_attribute is very large (Tom Lane)

If pg_attribute exceeds one-fourth of shared_buffers, cache rebuilding code that is sometimes
needed during session start would trigger the synchronized-scan logic, causing it to take many times
longer than normal. The problem was particularly acute if many new sessions were starting at once.

• Ensure sequential scans check for query cancel reasonably often (Merlin Moncure)

A scan encountering many consecutive pages that contain no live tuples would not respond to interrupts
meanwhile.

• Ensure the Windows implementation of PGSemaphoreLock() clears ImmediateInterruptOK be-
fore returning (Tom Lane)

2212

Appendix E. Release Notes

This oversight meant that a query-cancel interrupt received later in the same query could be accepted at
an unsafe time, with unpredictable but not good consequences.

• Show whole-row variables safely when printing views or rules (Abbas Butt, Tom Lane)

Corner cases involving ambiguous names (that is, the name could be either a table or column name
of the query) were printed in an ambiguous way, risking that the view or rule would be interpreted
differently after dump and reload. Avoid the ambiguous case by attaching a no-op cast.

• Fix COPY FROM to properly handle null marker strings that correspond to invalid encoding (Tom Lane)

A null marker string such as E’\\0’ should work, and did work in the past, but the case got broken in
8.4.

• Ensure autovacuum worker processes perform stack depth checking properly (Heikki Linnakangas)

Previously, infinite recursion in a function invoked by auto-ANALYZE could crash worker processes.

• Fix logging collector to not lose log coherency under high load (Andrew Dunstan)

The collector previously could fail to reassemble large messages if it got too busy.

• Fix logging collector to ensure it will restart file rotation after receiving SIGHUP (Tom Lane)

• Fix WAL replay logic for GIN indexes to not fail if the index was subsequently dropped (Tom Lane)

• Fix memory leak in PL/pgSQL’s RETURN NEXT command (Joe Conway)

• Fix PL/pgSQL’s GET DIAGNOSTICS command when the target is the function’s first variable (Tom
Lane)

• Fix potential access off the end of memory in psql’s expanded display (\x) mode (Peter Eisentraut)

• Fix several performance problems in pg_dump when the database contains many objects (Jeff Janes,
Tom Lane)

pg_dump could get very slow if the database contained many schemas, or if many objects are in depen-
dency loops, or if there are many owned sequences.

• Fix contrib/dblink’s dblink_exec() to not leak temporary database connections upon error (Tom
Lane)

• Fix contrib/dblink to report the correct connection name in error messages (Kyotaro Horiguchi)

• Update time zone data files to tzdata release 2012c for DST law changes in Antarctica, Armenia, Chile,
Cuba, Falkland Islands, Gaza, Haiti, Hebron, Morocco, Syria, and Tokelau Islands; also historical cor-
rections for Canada.

E.48. Release 8.4.11

Release Date: 2012-02-27

This release contains a variety of fixes from 8.4.10. For information about new features in the 8.4 major
release, see Section E.59.

2213

Appendix E. Release Notes

E.48.1. Migration to Version 8.4.11
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.10, see Section E.49.

E.48.2. Changes

• Require execute permission on the trigger function for CREATE TRIGGER (Robert Haas)

This missing check could allow another user to execute a trigger function with forged input data, by
installing it on a table he owns. This is only of significance for trigger functions marked SECURITY

DEFINER, since otherwise trigger functions run as the table owner anyway. (CVE-2012-0866)

• Remove arbitrary limitation on length of common name in SSL certificates (Heikki Linnakangas)

Both libpq and the server truncated the common name extracted from an SSL certificate at 32 bytes.
Normally this would cause nothing worse than an unexpected verification failure, but there are some
rather-implausible scenarios in which it might allow one certificate holder to impersonate another. The
victim would have to have a common name exactly 32 bytes long, and the attacker would have to
persuade a trusted CA to issue a certificate in which the common name has that string as a prefix.
Impersonating a server would also require some additional exploit to redirect client connections. (CVE-
2012-0867)

• Convert newlines to spaces in names written in pg_dump comments (Robert Haas)

pg_dump was incautious about sanitizing object names that are emitted within SQL comments in its
output script. A name containing a newline would at least render the script syntactically incorrect.
Maliciously crafted object names could present a SQL injection risk when the script is reloaded. (CVE-
2012-0868)

• Fix btree index corruption from insertions concurrent with vacuuming (Tom Lane)

An index page split caused by an insertion could sometimes cause a concurrently-running VACUUM to
miss removing index entries that it should remove. After the corresponding table rows are removed,
the dangling index entries would cause errors (such as “could not read block N in file ...”) or worse,
silently wrong query results after unrelated rows are re-inserted at the now-free table locations. This
bug has been present since release 8.2, but occurs so infrequently that it was not diagnosed until now.
If you have reason to suspect that it has happened in your database, reindexing the affected index will
fix things.

• Update per-column permissions, not only per-table permissions, when changing table owner (Tom
Lane)

Failure to do this meant that any previously granted column permissions were still shown as having
been granted by the old owner. This meant that neither the new owner nor a superuser could revoke the
now-untraceable-to-table-owner permissions.

• Allow non-existent values for some settings in ALTER USER/DATABASE SET (Heikki Linnakangas)

Allow default_text_search_config, default_tablespace, and temp_tablespaces to be set
to names that are not known. This is because they might be known in another database where the setting

2214

Appendix E. Release Notes

is intended to be used, or for the tablespace cases because the tablespace might not be created yet. The
same issue was previously recognized for search_path, and these settings now act like that one.

• Avoid crashing when we have problems deleting table files post-commit (Tom Lane)

Dropping a table should lead to deleting the underlying disk files only after the transaction commits.
In event of failure then (for instance, because of wrong file permissions) the code is supposed to just
emit a warning message and go on, since it’s too late to abort the transaction. This logic got broken as
of release 8.4, causing such situations to result in a PANIC and an unrestartable database.

• Track the OID counter correctly during WAL replay, even when it wraps around (Tom Lane)

Previously the OID counter would remain stuck at a high value until the system exited replay mode.
The practical consequences of that are usually nil, but there are scenarios wherein a standby server
that’s been promoted to master might take a long time to advance the OID counter to a reasonable value
once values are needed.

• Fix regular expression back-references with * attached (Tom Lane)

Rather than enforcing an exact string match, the code would effectively accept any string that satisfies
the pattern sub-expression referenced by the back-reference symbol.

A similar problem still afflicts back-references that are embedded in a larger quantified expression,
rather than being the immediate subject of the quantifier. This will be addressed in a future PostgreSQL
release.

• Fix recently-introduced memory leak in processing of inet/cidr values (Heikki Linnakangas)

A patch in the December 2011 releases of PostgreSQL caused memory leakage in these operations,
which could be significant in scenarios such as building a btree index on such a column.

• Fix dangling pointer after CREATE TABLE AS/SELECT INTO in a SQL-language function (Tom Lane)

In most cases this only led to an assertion failure in assert-enabled builds, but worse consequences seem
possible.

• Avoid double close of file handle in syslogger on Windows (MauMau)

Ordinarily this error was invisible, but it would cause an exception when running on a debug version of
Windows.

• Fix I/O-conversion-related memory leaks in plpgsql (Andres Freund, Jan Urbanski, Tom Lane)

Certain operations would leak memory until the end of the current function.

• Improve pg_dump’s handling of inherited table columns (Tom Lane)

pg_dump mishandled situations where a child column has a different default expression than its parent
column. If the default is textually identical to the parent’s default, but not actually the same (for instance,
because of schema search path differences) it would not be recognized as different, so that after dump
and restore the child would be allowed to inherit the parent’s default. Child columns that are NOT NULL

where their parent is not could also be restored subtly incorrectly.

• Fix pg_restore’s direct-to-database mode for INSERT-style table data (Tom Lane)

Direct-to-database restores from archive files made with --inserts or --column-inserts options
fail when using pg_restore from a release dated September or December 2011, as a result of an oversight
in a fix for another problem. The archive file itself is not at fault, and text-mode output is okay.

• Allow AT option in ecpg DEALLOCATE statements (Michael Meskes)

2215

Appendix E. Release Notes

The infrastructure to support this has been there for awhile, but through an oversight there was still an
error check rejecting the case.

• Fix error in contrib/intarray’s int[] & int[] operator (Guillaume Lelarge)

If the smallest integer the two input arrays have in common is 1, and there are smaller values in either
array, then 1 would be incorrectly omitted from the result.

• Fix error detection in contrib/pgcrypto’s encrypt_iv() and decrypt_iv() (Marko Kreen)

These functions failed to report certain types of invalid-input errors, and would instead return random
garbage values for incorrect input.

• Fix one-byte buffer overrun in contrib/test_parser (Paul Guyot)

The code would try to read one more byte than it should, which would crash in corner cases. Since
contrib/test_parser is only example code, this is not a security issue in itself, but bad example
code is still bad.

• Use __sync_lock_test_and_set() for spinlocks on ARM, if available (Martin Pitt)

This function replaces our previous use of the SWPB instruction, which is deprecated and not available
on ARMv6 and later. Reports suggest that the old code doesn’t fail in an obvious way on recent ARM
boards, but simply doesn’t interlock concurrent accesses, leading to bizarre failures in multiprocess
operation.

• Use -fexcess-precision=standard option when building with gcc versions that accept it (Andrew
Dunstan)

This prevents assorted scenarios wherein recent versions of gcc will produce creative results.

• Allow use of threaded Python on FreeBSD (Chris Rees)

Our configure script previously believed that this combination wouldn’t work; but FreeBSD fixed the
problem, so remove that error check.

E.49. Release 8.4.10

Release Date: 2011-12-05

This release contains a variety of fixes from 8.4.9. For information about new features in the 8.4 major
release, see Section E.59.

E.49.1. Migration to Version 8.4.10
A dump/restore is not required for those running 8.4.X.

However, a longstanding error was discovered in the definition of the
information_schema.referential_constraints view. If you rely on correct results from that
view, you should replace its definition as explained in the first changelog item below.

Also, if you are upgrading from a version earlier than 8.4.8, see Section E.51.

2216

Appendix E. Release Notes

E.49.2. Changes

• Fix bugs in information_schema.referential_constraints view (Tom Lane)

This view was being insufficiently careful about matching the foreign-key constraint to the depended-
on primary or unique key constraint. That could result in failure to show a foreign key constraint at all,
or showing it multiple times, or claiming that it depends on a different constraint than the one it really
does.

Since the view definition is installed by initdb, merely upgrading will not fix the problem. If you need
to fix this in an existing installation, you can (as a superuser) drop the information_schema schema
then re-create it by sourcing SHAREDIR/information_schema.sql. (Run pg_config --sharedir

if you’re uncertain where SHAREDIR is.) This must be repeated in each database to be fixed.

• Fix incorrect replay of WAL records for GIN index updates (Tom Lane)

This could result in transiently failing to find index entries after a crash, or on a hot-standby server. The
problem would be repaired by the next VACUUM of the index, however.

• Fix TOAST-related data corruption during CREATE TABLE dest AS SELECT * FROM src or
INSERT INTO dest SELECT * FROM src (Tom Lane)

If a table has been modified by ALTER TABLE ADD COLUMN, attempts to copy its data verbatim to
another table could produce corrupt results in certain corner cases. The problem can only manifest in
this precise form in 8.4 and later, but we patched earlier versions as well in case there are other code
paths that could trigger the same bug.

• Fix race condition during toast table access from stale syscache entries (Tom Lane)

The typical symptom was transient errors like “missing chunk number 0 for toast value NNNNN in
pg_toast_2619”, where the cited toast table would always belong to a system catalog.

• Track dependencies of functions on items used in parameter default expressions (Tom Lane)

Previously, a referenced object could be dropped without having dropped or modified the function,
leading to misbehavior when the function was used. Note that merely installing this update will not fix
the missing dependency entries; to do that, you’d need to CREATE OR REPLACE each such function
afterwards. If you have functions whose defaults depend on non-built-in objects, doing so is recom-
mended.

• Allow inlining of set-returning SQL functions with multiple OUT parameters (Tom Lane)

• Make DatumGetInetP() unpack inet datums that have a 1-byte header, and add a new macro,
DatumGetInetPP(), that does not (Heikki Linnakangas)

This change affects no core code, but might prevent crashes in add-on code that expects
DatumGetInetP() to produce an unpacked datum as per usual convention.

• Improve locale support in money type’s input and output (Tom Lane)

Aside from not supporting all standard lc_monetary formatting options, the input and output func-
tions were inconsistent, meaning there were locales in which dumped money values could not be re-
read.

• Don’t let transform_null_equals affect CASE foo WHEN NULL ... constructs (Heikki
Linnakangas)

2217

Appendix E. Release Notes

transform_null_equals is only supposed to affect foo = NULL expressions written directly by the
user, not equality checks generated internally by this form of CASE.

• Change foreign-key trigger creation order to better support self-referential foreign keys (Tom Lane)

For a cascading foreign key that references its own table, a row update will fire both the ON UPDATE

trigger and the CHECK trigger as one event. The ON UPDATE trigger must execute first, else the CHECK
will check a non-final state of the row and possibly throw an inappropriate error. However, the fir-
ing order of these triggers is determined by their names, which generally sort in creation order since
the triggers have auto-generated names following the convention “RI_ConstraintTrigger_NNNN”. A
proper fix would require modifying that convention, which we will do in 9.2, but it seems risky to
change it in existing releases. So this patch just changes the creation order of the triggers. Users en-
countering this type of error should drop and re-create the foreign key constraint to get its triggers into
the right order.

• Avoid floating-point underflow while tracking buffer allocation rate (Greg Matthews)

While harmless in itself, on certain platforms this would result in annoying kernel log messages.

• Preserve configuration file name and line number values when starting child processes under Windows
(Tom Lane)

Formerly, these would not be displayed correctly in the pg_settings view.

• Preserve blank lines within commands in psql’s command history (Robert Haas)

The former behavior could cause problems if an empty line was removed from within a string literal,
for example.

• Fix pg_dump to dump user-defined casts between auto-generated types, such as table rowtypes (Tom
Lane)

• Use the preferred version of xsubpp to build PL/Perl, not necessarily the operating system’s main copy
(David Wheeler and Alex Hunsaker)

• Fix incorrect coding in contrib/dict_int and contrib/dict_xsyn (Tom Lane)

Some functions incorrectly assumed that memory returned by palloc() is guaranteed zeroed.

• Honor query cancel interrupts promptly in pgstatindex() (Robert Haas)

• Ensure VPATH builds properly install all server header files (Peter Eisentraut)

• Shorten file names reported in verbose error messages (Peter Eisentraut)

Regular builds have always reported just the name of the C file containing the error message call, but
VPATH builds formerly reported an absolute path name.

• Fix interpretation of Windows timezone names for Central America (Tom Lane)

Map “Central America Standard Time” to CST6, not CST6CDT, because DST is generally not observed
anywhere in Central America.

• Update time zone data files to tzdata release 2011n for DST law changes in Brazil, Cuba, Fiji, Palestine,
Russia, and Samoa; also historical corrections for Alaska and British East Africa.

2218

Appendix E. Release Notes

E.50. Release 8.4.9

Release Date: 2011-09-26

This release contains a variety of fixes from 8.4.8. For information about new features in the 8.4 major
release, see Section E.59.

E.50.1. Migration to Version 8.4.9
A dump/restore is not required for those running 8.4.X.

However, if you are upgrading from a version earlier than 8.4.8, see Section E.51.

E.50.2. Changes

• Fix bugs in indexing of in-doubt HOT-updated tuples (Tom Lane)

These bugs could result in index corruption after reindexing a system catalog. They are not believed to
affect user indexes.

• Fix multiple bugs in GiST index page split processing (Heikki Linnakangas)

The probability of occurrence was low, but these could lead to index corruption.

• Fix possible buffer overrun in tsvector_concat() (Tom Lane)

The function could underestimate the amount of memory needed for its result, leading to server crashes.

• Fix crash in xml_recv when processing a “standalone” parameter (Tom Lane)

• Make pg_options_to_table return NULL for an option with no value (Tom Lane)

Previously such cases would result in a server crash.

• Avoid possibly accessing off the end of memory in ANALYZE and in SJIS-2004 encoding conversion
(Noah Misch)

This fixes some very-low-probability server crash scenarios.

• Prevent intermittent hang in interactions of startup process with bgwriter process (Simon Riggs)

This affected recovery in non-hot-standby cases.

• Fix race condition in relcache init file invalidation (Tom Lane)

There was a window wherein a new backend process could read a stale init file but miss the inval
messages that would tell it the data is stale. The result would be bizarre failures in catalog accesses,
typically “could not read block 0 in file ...” later during startup.

• Fix memory leak at end of a GiST index scan (Tom Lane)

Commands that perform many separate GiST index scans, such as verification of a new GiST-based
exclusion constraint on a table already containing many rows, could transiently require large amounts
of memory due to this leak.

2219

Appendix E. Release Notes

• Fix incorrect memory accounting (leading to possible memory bloat) in tuplestores supporting holdable
cursors and plpgsql’s RETURN NEXT command (Tom Lane)

• Fix performance problem when constructing a large, lossy bitmap (Tom Lane)

• Fix join selectivity estimation for unique columns (Tom Lane)

This fixes an erroneous planner heuristic that could lead to poor estimates of the result size of a join.

• Fix nested PlaceHolderVar expressions that appear only in sub-select target lists (Tom Lane)

This mistake could result in outputs of an outer join incorrectly appearing as NULL.

• Allow nested EXISTS queries to be optimized properly (Tom Lane)

• Fix array- and path-creating functions to ensure padding bytes are zeroes (Tom Lane)

This avoids some situations where the planner will think that semantically-equal constants are not equal,
resulting in poor optimization.

• Fix EXPLAIN to handle gating Result nodes within inner-indexscan subplans (Tom Lane)

The usual symptom of this oversight was “bogus varno” errors.

• Work around gcc 4.6.0 bug that breaks WAL replay (Tom Lane)

This could lead to loss of committed transactions after a server crash.

• Fix dump bug for VALUES in a view (Tom Lane)

• Disallow SELECT FOR UPDATE/SHARE on sequences (Tom Lane)

This operation doesn’t work as expected and can lead to failures.

• Fix VACUUM so that it always updates pg_class.reltuples/relpages (Tom Lane)

This fixes some scenarios where autovacuum could make increasingly poor decisions about when to
vacuum tables.

• Defend against integer overflow when computing size of a hash table (Tom Lane)

• Fix cases where CLUSTER might attempt to access already-removed TOAST data (Tom Lane)

• Fix portability bugs in use of credentials control messages for “peer” authentication (Tom Lane)

• Fix SSPI login when multiple roundtrips are required (Ahmed Shinwari, Magnus Hagander)

The typical symptom of this problem was “The function requested is not supported” errors during SSPI
login.

• Throw an error if pg_hba.conf contains hostssl but SSL is disabled (Tom Lane)

This was concluded to be more user-friendly than the previous behavior of silently ignoring such lines.

• Fix typo in pg_srand48 seed initialization (Andres Freund)

This led to failure to use all bits of the provided seed. This function is not used on most platforms (only
those without srandom), and the potential security exposure from a less-random-than-expected seed
seems minimal in any case.

• Avoid integer overflow when the sum of LIMIT and OFFSET values exceeds 2^63 (Heikki Linnakangas)

• Add overflow checks to int4 and int8 versions of generate_series() (Robert Haas)

• Fix trailing-zero removal in to_char() (Marti Raudsepp)

2220

Appendix E. Release Notes

In a format with FM and no digit positions after the decimal point, zeroes to the left of the decimal point
could be removed incorrectly.

• Fix pg_size_pretty() to avoid overflow for inputs close to 2^63 (Tom Lane)

• Weaken plpgsql’s check for typmod matching in record values (Tom Lane)

An overly enthusiastic check could lead to discarding length modifiers that should have been kept.

• Correctly handle quotes in locale names during initdb (Heikki Linnakangas)

The case can arise with some Windows locales, such as “People’s Republic of China”.

• Fix pg_upgrade to preserve toast tables’ relfrozenxids during an upgrade from 8.3 (Bruce Momjian)

Failure to do this could lead to pg_clog files being removed too soon after the upgrade.

• In pg_ctl, support silent mode for service registrations on Windows (MauMau)

• Fix psql’s counting of script file line numbers during COPY from a different file (Tom Lane)

• Fix pg_restore’s direct-to-database mode for standard_conforming_strings (Tom Lane)

pg_restore could emit incorrect commands when restoring directly to a database server from an archive
file that had been made with standard_conforming_strings set to on.

• Be more user-friendly about unsupported cases for parallel pg_restore (Tom Lane)

This change ensures that such cases are detected and reported before any restore actions have been
taken.

• Fix write-past-buffer-end and memory leak in libpq’s LDAP service lookup code (Albe Laurenz)

• In libpq, avoid failures when using nonblocking I/O and an SSL connection (Martin Pihlak, Tom Lane)

• Improve libpq’s handling of failures during connection startup (Tom Lane)

In particular, the response to a server report of fork() failure during SSL connection startup is now
saner.

• Improve libpq’s error reporting for SSL failures (Tom Lane)

• Fix PQsetvalue() to avoid possible crash when adding a new tuple to a PGresult originally obtained
from a server query (Andrew Chernow)

• Make ecpglib write double values with 15 digits precision (Akira Kurosawa)

• In ecpglib, be sure LC_NUMERIC setting is restored after an error (Michael Meskes)

• Apply upstream fix for blowfish signed-character bug (CVE-2011-2483) (Tom Lane)

contrib/pg_crypto’s blowfish encryption code could give wrong results on platforms where char is
signed (which is most), leading to encrypted passwords being weaker than they should be.

• Fix memory leak in contrib/seg (Heikki Linnakangas)

• Fix pgstatindex() to give consistent results for empty indexes (Tom Lane)

• Allow building with perl 5.14 (Alex Hunsaker)

• Update configure script’s method for probing existence of system functions (Tom Lane)

The version of autoconf we used in 8.3 and 8.2 could be fooled by compilers that perform link-time
optimization.

• Fix assorted issues with build and install file paths containing spaces (Tom Lane)

2221

Appendix E. Release Notes

• Update time zone data files to tzdata release 2011i for DST law changes in Canada, Egypt, Russia,
Samoa, and South Sudan.

E.51. Release 8.4.8

Release Date: 2011-04-18

This release contains a variety of fixes from 8.4.7. For information about new features in the 8.4 major
release, see Section E.59.

E.51.1. Migration to Version 8.4.8
A dump/restore is not required for those running 8.4.X.

However, if your installation was upgraded from a previous major release by running pg_upgrade,
you should take action to prevent possible data loss due to a now-fixed bug in pg_upgrade. The
recommended solution is to run VACUUM FREEZE on all TOAST tables. More information is available at
http://wiki.postgresql.org/wiki/20110408pg_upgrade_fix4.

Also, if you are upgrading from a version earlier than 8.4.2, see Section E.57.

E.51.2. Changes

• Fix pg_upgrade’s handling of TOAST tables (Bruce Momjian)

The pg_class.relfrozenxid value for TOAST tables was not correctly copied into the new instal-
lation during pg_upgrade. This could later result in pg_clog files being discarded while they were
still needed to validate tuples in the TOAST tables, leading to “could not access status of transaction”
failures.

This error poses a significant risk of data loss for installations that have been upgraded with pg_upgrade.
This patch corrects the problem for future uses of pg_upgrade, but does not in itself cure the issue in
installations that have been processed with a buggy version of pg_upgrade.

• Suppress incorrect “PD_ALL_VISIBLE flag was incorrectly set” warning (Heikki Linnakangas)

VACUUM would sometimes issue this warning in cases that are actually valid.

• Disallow including a composite type in itself (Tom Lane)

This prevents scenarios wherein the server could recurse infinitely while processing the composite type.
While there are some possible uses for such a structure, they don’t seem compelling enough to justify
the effort required to make sure it always works safely.

• Avoid potential deadlock during catalog cache initialization (Nikhil Sontakke)

4. http://wiki.postgresql.org/wiki/20110408pg_upgrade_fix

2222

Appendix E. Release Notes

In some cases the cache loading code would acquire share lock on a system index before locking the
index’s catalog. This could deadlock against processes trying to acquire exclusive locks in the other,
more standard order.

• Fix dangling-pointer problem in BEFORE ROW UPDATE trigger handling when there was a concurrent
update to the target tuple (Tom Lane)

This bug has been observed to result in intermittent “cannot extract system attribute from virtual tu-
ple” failures while trying to do UPDATE RETURNING ctid. There is a very small probability of more
serious errors, such as generating incorrect index entries for the updated tuple.

• Disallow DROP TABLE when there are pending deferred trigger events for the table (Tom Lane)

Formerly the DROP would go through, leading to “could not open relation with OID nnn” errors when
the triggers were eventually fired.

• Prevent crash triggered by constant-false WHERE conditions during GEQO optimization (Tom Lane)

• Improve planner’s handling of semi-join and anti-join cases (Tom Lane)

• Fix selectivity estimation for text search to account for NULLs (Jesper Krogh)

• Improve PL/pgSQL’s ability to handle row types with dropped columns (Pavel Stehule)

This is a back-patch of fixes previously made in 9.0.

• Fix PL/Python memory leak involving array slices (Daniel Popowich)

• Fix pg_restore to cope with long lines (over 1KB) in TOC files (Tom Lane)

• Put in more safeguards against crashing due to division-by-zero with overly enthusiastic compiler opti-
mization (Aurelien Jarno)

• Support use of dlopen() in FreeBSD and OpenBSD on MIPS (Tom Lane)

There was a hard-wired assumption that this system function was not available on MIPS hardware on
these systems. Use a compile-time test instead, since more recent versions have it.

• Fix compilation failures on HP-UX (Heikki Linnakangas)

• Fix version-incompatibility problem with libintl on Windows (Hiroshi Inoue)

• Fix usage of xcopy in Windows build scripts to work correctly under Windows 7 (Andrew Dunstan)

This affects the build scripts only, not installation or usage.

• Fix path separator used by pg_regress on Cygwin (Andrew Dunstan)

• Update time zone data files to tzdata release 2011f for DST law changes in Chile, Cuba, Falkland Is-
lands, Morocco, Samoa, and Turkey; also historical corrections for South Australia, Alaska, and Hawaii.

E.52. Release 8.4.7

Release Date: 2011-01-31

2223

Appendix E. Release Notes

This release contains a variety of fixes from 8.4.6. For information about new features in the 8.4 major
release, see Section E.59.

E.52.1. Migration to Version 8.4.7
A dump/restore is not required for those running 8.4.X. However, if you are upgrading from a version
earlier than 8.4.2, see Section E.57.

E.52.2. Changes

• Avoid failures when EXPLAIN tries to display a simple-form CASE expression (Tom Lane)

If the CASE’s test expression was a constant, the planner could simplify the CASE into a form that
confused the expression-display code, resulting in “unexpected CASE WHEN clause” errors.

• Fix assignment to an array slice that is before the existing range of subscripts (Tom Lane)

If there was a gap between the newly added subscripts and the first pre-existing subscript, the code mis-
calculated how many entries needed to be copied from the old array’s null bitmap, potentially leading
to data corruption or crash.

• Avoid unexpected conversion overflow in planner for very distant date values (Tom Lane)

The date type supports a wider range of dates than can be represented by the timestamp types, but
the planner assumed it could always convert a date to timestamp with impunity.

• Fix pg_restore’s text output for large objects (BLOBs) when standard_conforming_strings is on
(Tom Lane)

Although restoring directly to a database worked correctly, string escaping was incorrect if pg_restore
was asked for SQL text output and standard_conforming_strings had been enabled in the source
database.

• Fix erroneous parsing of tsquery values containing ... & !(subexpression) | ... (Tom Lane)

Queries containing this combination of operators were not executed correctly. The same error existed
in contrib/intarray’s query_int type and contrib/ltree’s ltxtquery type.

• Fix buffer overrun in contrib/intarray’s input function for the query_int type (Apple)

This bug is a security risk since the function’s return address could be overwritten. Thanks to Apple
Inc’s security team for reporting this issue and supplying the fix. (CVE-2010-4015)

• Fix bug in contrib/seg’s GiST picksplit algorithm (Alexander Korotkov)

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a seg column. If you have such an index, consider REINDEXing it after installing this update. (This
is identical to the bug that was fixed in contrib/cube in the previous update.)

2224

Appendix E. Release Notes

E.53. Release 8.4.6

Release Date: 2010-12-16

This release contains a variety of fixes from 8.4.5. For information about new features in the 8.4 major
release, see Section E.59.

E.53.1. Migration to Version 8.4.6
A dump/restore is not required for those running 8.4.X. However, if you are upgrading from a version
earlier than 8.4.2, see Section E.57.

E.53.2. Changes

• Force the default wal_sync_method to be fdatasync on Linux (Tom Lane, Marti Raudsepp)

The default on Linux has actually been fdatasync for many years, but recent kernel changes caused
PostgreSQL to choose open_datasync instead. This choice did not result in any performance im-
provement, and caused outright failures on certain filesystems, notably ext4 with the data=journal
mount option.

• Fix assorted bugs in WAL replay logic for GIN indexes (Tom Lane)

This could result in “bad buffer id: 0” failures or corruption of index contents during replication.

• Fix recovery from base backup when the starting checkpoint WAL record is not in the same WAL
segment as its redo point (Jeff Davis)

• Fix persistent slowdown of autovacuum workers when multiple workers remain active for a long time
(Tom Lane)

The effective vacuum_cost_limit for an autovacuum worker could drop to nearly zero if it processed
enough tables, causing it to run extremely slowly.

• Add support for detecting register-stack overrun on IA64 (Tom Lane)

The IA64 architecture has two hardware stacks. Full prevention of stack-overrun failures requires
checking both.

• Add a check for stack overflow in copyObject() (Tom Lane)

Certain code paths could crash due to stack overflow given a sufficiently complex query.

• Fix detection of page splits in temporary GiST indexes (Heikki Linnakangas)

It is possible to have a “concurrent” page split in a temporary index, if for example there is an open
cursor scanning the index when an insertion is done. GiST failed to detect this case and hence could
deliver wrong results when execution of the cursor continued.

• Fix error checking during early connection processing (Tom Lane)

2225

Appendix E. Release Notes

The check for too many child processes was skipped in some cases, possibly leading to postmaster
crash when attempting to add the new child process to fixed-size arrays.

• Improve efficiency of window functions (Tom Lane)

Certain cases where a large number of tuples needed to be read in advance, but work_mem was large
enough to allow them all to be held in memory, were unexpectedly slow. percent_rank(),
cume_dist() and ntile() in particular were subject to this problem.

• Avoid memory leakage while ANALYZE’ing complex index expressions (Tom Lane)

• Ensure an index that uses a whole-row Var still depends on its table (Tom Lane)

An index declared like create index i on t (foo(t.*)) would not automatically get dropped
when its table was dropped.

• Do not “inline” a SQL function with multiple OUT parameters (Tom Lane)

This avoids a possible crash due to loss of information about the expected result rowtype.

• Behave correctly if ORDER BY, LIMIT, FOR UPDATE, or WITH is attached to the VALUES part of
INSERT ... VALUES (Tom Lane)

• Fix constant-folding of COALESCE() expressions (Tom Lane)

The planner would sometimes attempt to evaluate sub-expressions that in fact could never be reached,
possibly leading to unexpected errors.

• Fix postmaster crash when connection acceptance (accept() or one of the calls made immediately
after it) fails, and the postmaster was compiled with GSSAPI support (Alexander Chernikov)

• Fix missed unlink of temporary files when log_temp_files is active (Tom Lane)

If an error occurred while attempting to emit the log message, the unlink was not done, resulting in
accumulation of temp files.

• Add print functionality for InhRelation nodes (Tom Lane)

This avoids a failure when debug_print_parse is enabled and certain types of query are executed.

• Fix incorrect calculation of distance from a point to a horizontal line segment (Tom Lane)

This bug affected several different geometric distance-measurement operators.

• Fix incorrect calculation of transaction status in ecpg (Itagaki Takahiro)

• Fix PL/pgSQL’s handling of “simple” expressions to not fail in recursion or error-recovery cases (Tom
Lane)

• Fix PL/Python’s handling of set-returning functions (Jan Urbanski)

Attempts to call SPI functions within the iterator generating a set result would fail.

• Fix bug in contrib/cube’s GiST picksplit algorithm (Alexander Korotkov)

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a cube column. If you have such an index, consider REINDEXing it after installing this update.

• Don’t emit “identifier will be truncated” notices in contrib/dblink except when creating new con-
nections (Itagaki Takahiro)

• Fix potential coredump on missing public key in contrib/pgcrypto (Marti Raudsepp)

• Fix memory leak in contrib/xml2’s XPath query functions (Tom Lane)

2226

Appendix E. Release Notes

• Update time zone data files to tzdata release 2010o for DST law changes in Fiji and Samoa; also
historical corrections for Hong Kong.

E.54. Release 8.4.5

Release Date: 2010-10-04

This release contains a variety of fixes from 8.4.4. For information about new features in the 8.4 major
release, see Section E.59.

E.54.1. Migration to Version 8.4.5
A dump/restore is not required for those running 8.4.X. However, if you are upgrading from a version
earlier than 8.4.2, see Section E.57.

E.54.2. Changes

• Use a separate interpreter for each calling SQL userid in PL/Perl and PL/Tcl (Tom Lane)

This change prevents security problems that can be caused by subverting Perl or Tcl code that will be
executed later in the same session under another SQL user identity (for example, within a SECURITY

DEFINER function). Most scripting languages offer numerous ways that that might be done, such as
redefining standard functions or operators called by the target function. Without this change, any SQL
user with Perl or Tcl language usage rights can do essentially anything with the SQL privileges of the
target function’s owner.

The cost of this change is that intentional communication among Perl and Tcl functions becomes more
difficult. To provide an escape hatch, PL/PerlU and PL/TclU functions continue to use only one inter-
preter per session. This is not considered a security issue since all such functions execute at the trust
level of a database superuser already.

It is likely that third-party procedural languages that claim to offer trusted execution have similar se-
curity issues. We advise contacting the authors of any PL you are depending on for security-critical
purposes.

Our thanks to Tim Bunce for pointing out this issue (CVE-2010-3433).

• Prevent possible crashes in pg_get_expr() by disallowing it from being called with an argument that
is not one of the system catalog columns it’s intended to be used with (Heikki Linnakangas, Tom Lane)

• Treat exit code 128 (ERROR_WAIT_NO_CHILDREN) as non-fatal on Windows (Magnus Hagander)

Under high load, Windows processes will sometimes fail at startup with this error code. Formerly the
postmaster treated this as a panic condition and restarted the whole database, but that seems to be an
overreaction.

2227

Appendix E. Release Notes

• Fix incorrect placement of placeholder evaluation (Tom Lane)

This bug could result in query outputs being non-null when they should be null, in cases where the
inner side of an outer join is a sub-select with non-strict expressions in its output list.

• Fix possible duplicate scans of UNION ALL member relations (Tom Lane)

• Fix “cannot handle unplanned sub-select” error (Tom Lane)

This occurred when a sub-select contains a join alias reference that expands into an expression contain-
ing another sub-select.

• Fix mishandling of whole-row Vars that reference a view or sub-select and appear within a nested
sub-select (Tom Lane)

• Fix mishandling of cross-type IN comparisons (Tom Lane)

This could result in failures if the planner tried to implement an IN join with a sort-then-unique-then-
plain-join plan.

• Fix computation of ANALYZE statistics for tsvector columns (Jan Urbanski)

The original coding could produce incorrect statistics, leading to poor plan choices later.

• Improve planner’s estimate of memory used by array_agg(), string_agg(), and similar aggregate
functions (Hitoshi Harada)

The previous drastic underestimate could lead to out-of-memory failures due to inappropriate choice of
a hash-aggregation plan.

• Fix failure to mark cached plans as transient (Tom Lane)

If a plan is prepared while CREATE INDEX CONCURRENTLY is in progress for one of the referenced
tables, it is supposed to be re-planned once the index is ready for use. This was not happening reliably.

• Reduce PANIC to ERROR in some occasionally-reported btree failure cases, and provide additional
detail in the resulting error messages (Tom Lane)

This should improve the system’s robustness with corrupted indexes.

• Fix incorrect search logic for partial-match queries with GIN indexes (Tom Lane)

Cases involving AND/OR combination of several GIN index conditions didn’t always give the right
answer, and were sometimes much slower than necessary.

• Prevent show_session_authorization() from crashing within autovacuum processes (Tom Lane)

• Defend against functions returning setof record where not all the returned rows are actually of the same
rowtype (Tom Lane)

• Fix possible corruption of pending trigger event lists during subtransaction rollback (Tom Lane)

This could lead to a crash or incorrect firing of triggers.

• Fix possible failure when hashing a pass-by-reference function result (Tao Ma, Tom Lane)

• Improve merge join’s handling of NULLs in the join columns (Tom Lane)

A merge join can now stop entirely upon reaching the first NULL, if the sort order is such that NULLs
sort high.

• Take care to fsync the contents of lockfiles (both postmaster.pid and the socket lockfile) while
writing them (Tom Lane)

2228

Appendix E. Release Notes

This omission could result in corrupted lockfile contents if the machine crashes shortly after postmaster
start. That could in turn prevent subsequent attempts to start the postmaster from succeeding, until the
lockfile is manually removed.

• Avoid recursion while assigning XIDs to heavily-nested subtransactions (Andres Freund, Robert Haas)

The original coding could result in a crash if there was limited stack space.

• Avoid holding open old WAL segments in the walwriter process (Magnus Hagander, Heikki Linnakan-
gas)

The previous coding would prevent removal of no-longer-needed segments.

• Fix log_line_prefix’s %i escape, which could produce junk early in backend startup (Tom Lane)

• Prevent misinterpretation of partially-specified relation options for TOAST tables (Itagaki Takahiro)

In particular, fillfactor would be read as zero if any other reloption had been set for the table,
leading to serious bloat.

• Fix inheritance count tracking in ALTER TABLE ... ADD CONSTRAINT (Robert Haas)

• Fix possible data corruption in ALTER TABLE ... SET TABLESPACE when archiving is enabled (Jeff
Davis)

• Allow CREATE DATABASE and ALTER DATABASE ... SET TABLESPACE to be interrupted by
query-cancel (Guillaume Lelarge)

• Improve CREATE INDEX’s checking of whether proposed index expressions are immutable (Tom Lane)

• Fix REASSIGN OWNED to handle operator classes and families (Asko Tiidumaa)

• Fix possible core dump when comparing two empty tsquery values (Tom Lane)

• Fix LIKE’s handling of patterns containing % followed by _ (Tom Lane)

We’ve fixed this before, but there were still some incorrectly-handled cases.

• Re-allow input of Julian dates prior to 0001-01-01 AD (Tom Lane)

Input such as ’J100000’::date worked before 8.4, but was unintentionally broken by added error-
checking.

• Fix PL/pgSQL to throw an error, not crash, if a cursor is closed within a FOR loop that is iterating over
that cursor (Heikki Linnakangas)

• In PL/Python, defend against null pointer results from PyCObject_AsVoidPtr and
PyCObject_FromVoidPtr (Peter Eisentraut)

• In libpq, fix full SSL certificate verification for the case where both host and hostaddr are specified
(Tom Lane)

• Make psql recognize DISCARD ALL as a command that should not be encased in a transaction block in
autocommit-off mode (Itagaki Takahiro)

• Fix some issues in pg_dump’s handling of SQL/MED objects (Tom Lane)

Notably, pg_dump would always fail if run by a non-superuser, which was not intended.

• Improve pg_dump and pg_restore’s handling of non-seekable archive files (Tom Lane, Robert Haas)

This is important for proper functioning of parallel restore.

• Improve parallel pg_restore’s ability to cope with selective restore (-L option) (Tom Lane)

2229

Appendix E. Release Notes

The original code tended to fail if the -L file commanded a non-default restore ordering.

• Fix ecpg to process data from RETURNING clauses correctly (Michael Meskes)

• Fix some memory leaks in ecpg (Zoltan Boszormenyi)

• Improve contrib/dblink’s handling of tables containing dropped columns (Tom Lane)

• Fix connection leak after “duplicate connection name” errors in contrib/dblink (Itagaki Takahiro)

• Fix contrib/dblink to handle connection names longer than 62 bytes correctly (Itagaki Takahiro)

• Add hstore(text, text) function to contrib/hstore (Robert Haas)

This function is the recommended substitute for the now-deprecated => operator. It was back-patched
so that future-proofed code can be used with older server versions. Note that the patch will be effective
only after contrib/hstore is installed or reinstalled in a particular database. Users might prefer to
execute the CREATE FUNCTION command by hand, instead.

• Update build infrastructure and documentation to reflect the source code repository’s move from CVS
to Git (Magnus Hagander and others)

• Update time zone data files to tzdata release 2010l for DST law changes in Egypt and Palestine; also
historical corrections for Finland.

This change also adds new names for two Micronesian timezones: Pacific/Chuuk is now preferred over
Pacific/Truk (and the preferred abbreviation is CHUT not TRUT) and Pacific/Pohnpei is preferred over
Pacific/Ponape.

• Make Windows’ “N. Central Asia Standard Time” timezone map to Asia/Novosibirsk, not Asia/Almaty
(Magnus Hagander)

Microsoft changed the DST behavior of this zone in the timezone update from KB976098.
Asia/Novosibirsk is a better match to its new behavior.

E.55. Release 8.4.4

Release Date: 2010-05-17

This release contains a variety of fixes from 8.4.3. For information about new features in the 8.4 major
release, see Section E.59.

E.55.1. Migration to Version 8.4.4
A dump/restore is not required for those running 8.4.X. However, if you are upgrading from a version
earlier than 8.4.2, see Section E.57.

2230

Appendix E. Release Notes

E.55.2. Changes

• Enforce restrictions in plperl using an opmask applied to the whole interpreter, instead of using
Safe.pm (Tim Bunce, Andrew Dunstan)

Recent developments have convinced us that Safe.pm is too insecure to rely on for making plperl

trustable. This change removes use of Safe.pm altogether, in favor of using a separate interpreter with
an opcode mask that is always applied. Pleasant side effects of the change include that it is now possible
to use Perl’s strict pragma in a natural way in plperl, and that Perl’s $a and $b variables work as
expected in sort routines, and that function compilation is significantly faster. (CVE-2010-1169)

• Prevent PL/Tcl from executing untrustworthy code from pltcl_modules (Tom)

PL/Tcl’s feature for autoloading Tcl code from a database table could be exploited for trojan-horse
attacks, because there was no restriction on who could create or insert into that table. This change
disables the feature unless pltcl_modules is owned by a superuser. (However, the permissions on the
table are not checked, so installations that really need a less-than-secure modules table can still grant
suitable privileges to trusted non-superusers.) Also, prevent loading code into the unrestricted “normal”
Tcl interpreter unless we are really going to execute a pltclu function. (CVE-2010-1170)

• Fix data corruption during WAL replay of ALTER ... SET TABLESPACE (Tom)

When archive_mode is on, ALTER ... SET TABLESPACE generates a WAL record whose replay
logic was incorrect. It could write the data to the wrong place, leading to possibly-unrecoverable data
corruption. Data corruption would be observed on standby slaves, and could occur on the master as well
if a database crash and recovery occurred after committing the ALTER and before the next checkpoint.

• Fix possible crash if a cache reset message is received during rebuild of a relcache entry (Heikki)

This error was introduced in 8.4.3 while fixing a related failure.

• Apply per-function GUC settings while running the language validator for the function (Itagaki
Takahiro)

This avoids failures if the function’s code is invalid without the setting; an example is that SQL functions
may not parse if the search_path is not correct.

• Do constraint exclusion for inherited UPDATE and DELETE target tables when
constraint_exclusion = partition (Tom)

Due to an oversight, this setting previously only caused constraint exclusion to be checked in SELECT

commands.

• Do not allow an unprivileged user to reset superuser-only parameter settings (Alvaro)

Previously, if an unprivileged user ran ALTER USER ... RESET ALL for himself, or ALTER

DATABASE ... RESET ALL for a database he owns, this would remove all special parameter settings
for the user or database, even ones that are only supposed to be changeable by a superuser. Now, the
ALTER will only remove the parameters that the user has permission to change.

• Avoid possible crash during backend shutdown if shutdown occurs when a CONTEXT addition would be
made to log entries (Tom)

In some cases the context-printing function would fail because the current transaction had already been
rolled back when it came time to print a log message.

• Fix erroneous handling of %r parameter in recovery_end_command (Heikki)

2231

Appendix E. Release Notes

The value always came out zero.

• Ensure the archiver process responds to changes in archive_command as soon as possible (Tom)

• Fix pl/pgsql’s CASE statement to not fail when the case expression is a query that returns no rows (Tom)

• Update pl/perl’s ppport.h for modern Perl versions (Andrew)

• Fix assorted memory leaks in pl/python (Andreas Freund, Tom)

• Handle empty-string connect parameters properly in ecpg (Michael)

• Prevent infinite recursion in psql when expanding a variable that refers to itself (Tom)

• Fix psql’s \copy to not add spaces around a dot within \copy (select ...) (Tom)

Addition of spaces around the decimal point in a numeric literal would result in a syntax error.

• Avoid formatting failure in psql when running in a locale context that doesn’t match the
client_encoding (Tom)

• Fix unnecessary “GIN indexes do not support whole-index scans” errors for unsatisfiable queries using
contrib/intarray operators (Tom)

• Ensure that contrib/pgstattuple functions respond to cancel interrupts promptly (Tatsuhito Kasa-
hara)

• Make server startup deal properly with the case that shmget() returns EINVAL for an existing shared
memory segment (Tom)

This behavior has been observed on BSD-derived kernels including OS X. It resulted in an entirely-
misleading startup failure complaining that the shared memory request size was too large.

• Avoid possible crashes in syslogger process on Windows (Heikki)

• Deal more robustly with incomplete time zone information in the Windows registry (Magnus)

• Update the set of known Windows time zone names (Magnus)

• Update time zone data files to tzdata release 2010j for DST law changes in Argentina, Australian
Antarctic, Bangladesh, Mexico, Morocco, Pakistan, Palestine, Russia, Syria, Tunisia; also historical
corrections for Taiwan.

Also, add PKST (Pakistan Summer Time) to the default set of timezone abbreviations.

E.56. Release 8.4.3

Release Date: 2010-03-15

This release contains a variety of fixes from 8.4.2. For information about new features in the 8.4 major
release, see Section E.59.

2232

Appendix E. Release Notes

E.56.1. Migration to Version 8.4.3
A dump/restore is not required for those running 8.4.X. However, if you are upgrading from a version
earlier than 8.4.2, see Section E.57.

E.56.2. Changes

• Add new configuration parameter ssl_renegotiation_limit to control how often we do session
key renegotiation for an SSL connection (Magnus)

This can be set to zero to disable renegotiation completely, which may be required if a broken SSL
library is used. In particular, some vendors are shipping stopgap patches for CVE-2009-3555 that cause
renegotiation attempts to fail.

• Fix possible deadlock during backend startup (Tom)

• Fix possible crashes due to not handling errors during relcache reload cleanly (Tom)

• Fix possible crash due to use of dangling pointer to a cached plan (Tatsuo)

• Fix possible crash due to overenthusiastic invalidation of cached plan for ROLLBACK (Tom)

• Fix possible crashes when trying to recover from a failure in subtransaction start (Tom)

• Fix server memory leak associated with use of savepoints and a client encoding different from server’s
encoding (Tom)

• Fix incorrect WAL data emitted during end-of-recovery cleanup of a GIST index page split (Yoichi
Hirai)

This would result in index corruption, or even more likely an error during WAL replay, if we were
unlucky enough to crash during end-of-recovery cleanup after having completed an incomplete GIST
insertion.

• Fix bug in WAL redo cleanup method for GIN indexes (Heikki)

• Fix incorrect comparison of scan key in GIN index search (Teodor)

• Make substring() for bit types treat any negative length as meaning “all the rest of the string”
(Tom)

The previous coding treated only -1 that way, and would produce an invalid result value for other
negative values, possibly leading to a crash (CVE-2010-0442).

• Fix integer-to-bit-string conversions to handle the first fractional byte correctly when the output bit
width is wider than the given integer by something other than a multiple of 8 bits (Tom)

• Fix some cases of pathologically slow regular expression matching (Tom)

• Fix bug occurring when trying to inline a SQL function that returns a set of a composite type that
contains dropped columns (Tom)

• Fix bug with trying to update a field of an element of a composite-type array column (Tom)

• Avoid failure when EXPLAIN has to print a FieldStore or assignment ArrayRef expression (Tom)

These cases can arise now that EXPLAIN VERBOSE tries to print plan node target lists.

2233

Appendix E. Release Notes

• Avoid an unnecessary coercion failure in some cases where an undecorated literal string appears in a
subquery within UNION/INTERSECT/EXCEPT (Tom)

This fixes a regression for some cases that worked before 8.4.

• Avoid undesirable rowtype compatibility check failures in some cases where a whole-row Var has a
rowtype that contains dropped columns (Tom)

• Fix the STOP WAL LOCATION entry in backup history files to report the next WAL segment’s name
when the end location is exactly at a segment boundary (Itagaki Takahiro)

• Always pass the catalog ID to an option validator function specified in CREATE FOREIGN DATA

WRAPPER (Martin Pihlak)

• Fix some more cases of temporary-file leakage (Heikki)

This corrects a problem introduced in the previous minor release. One case that failed is when a plpgsql
function returning set is called within another function’s exception handler.

• Add support for doing FULL JOIN ON FALSE (Tom)

This prevents a regression from pre-8.4 releases for some queries that can now be simplified to a
constant-false join condition.

• Improve constraint exclusion processing of boolean-variable cases, in particular make it possible to
exclude a partition that has a “bool_column = false” constraint (Tom)

• Prevent treating an INOUT cast as representing binary compatibility (Heikki)

• Include column name in the message when warning about inability to grant or revoke column-level
privileges (Stephen Frost)

This is more useful than before and helps to prevent confusion when a REVOKE generates multiple
messages, which formerly appeared to be duplicates.

• When reading pg_hba.conf and related files, do not treat @something as a file inclusion request if
the @ appears inside quote marks; also, never treat @ by itself as a file inclusion request (Tom)

This prevents erratic behavior if a role or database name starts with @. If you need to include a file
whose path name contains spaces, you can still do so, but you must write @"/path to/file" rather
than putting the quotes around the whole construct.

• Prevent infinite loop on some platforms if a directory is named as an inclusion target in pg_hba.conf

and related files (Tom)

• Fix possible infinite loop if SSL_read or SSL_write fails without setting errno (Tom)

This is reportedly possible with some Windows versions of openssl.

• Disallow GSSAPI authentication on local connections, since it requires a hostname to function correctly
(Magnus)

• Protect ecpg against applications freeing strings unexpectedly (Michael)

• Make ecpg report the proper SQLSTATE if the connection disappears (Michael)

• Fix translation of cell contents in psql \d output (Heikki)

• Fix psql’s numericlocale option to not format strings it shouldn’t in latex and troff output formats
(Heikki)

• Fix a small per-query memory leak in psql (Tom)

2234

Appendix E. Release Notes

• Make psql return the correct exit status (3) when ON_ERROR_STOP and --single-transaction are
both specified and an error occurs during the implied COMMIT (Bruce)

• Fix pg_dump’s output of permissions for foreign servers (Heikki)

• Fix possible crash in parallel pg_restore due to out-of-range dependency IDs (Tom)

• Fix plpgsql failure in one case where a composite column is set to NULL (Tom)

• Fix possible failure when calling PL/Perl functions from PL/PerlU or vice versa (Tim Bunce)

• Add volatile markings in PL/Python to avoid possible compiler-specific misbehavior (Zdenek Ko-
tala)

• Ensure PL/Tcl initializes the Tcl interpreter fully (Tom)

The only known symptom of this oversight is that the Tcl clock command misbehaves if using Tcl 8.5
or later.

• Prevent ExecutorEnd from being run on portals created within a failed transaction or subtransaction
(Tom)

This is known to cause issues when using contrib/auto_explain.

• Prevent crash in contrib/dblink when too many key columns are specified to a
dblink_build_sql_* function (Rushabh Lathia, Joe Conway)

• Allow zero-dimensional arrays in contrib/ltree operations (Tom)

This case was formerly rejected as an error, but it’s more convenient to treat it the same as a zero-
element array. In particular this avoids unnecessary failures when an ltree operation is applied to the
result of ARRAY(SELECT ...) and the sub-select returns no rows.

• Fix assorted crashes in contrib/xml2 caused by sloppy memory management (Tom)

• Make building of contrib/xml2 more robust on Windows (Andrew)

• Fix race condition in Windows signal handling (Radu Ilie)

One known symptom of this bug is that rows in pg_listener could be dropped under heavy load.

• Make the configure script report failure if the C compiler does not provide a working 64-bit integer
datatype (Tom)

This case has been broken for some time, and no longer seems worth supporting, so just reject it at
configure time instead.

• Update time zone data files to tzdata release 2010e for DST law changes in Bangladesh, Chile, Fiji,
Mexico, Paraguay, Samoa.

E.57. Release 8.4.2

Release Date: 2009-12-14

2235

Appendix E. Release Notes

This release contains a variety of fixes from 8.4.1. For information about new features in the 8.4 major
release, see Section E.59.

E.57.1. Migration to Version 8.4.2
A dump/restore is not required for those running 8.4.X. However, if you have any hash indexes, you should
REINDEX them after updating to 8.4.2, to repair possible damage.

E.57.2. Changes

• Protect against indirect security threats caused by index functions changing session-local state (Gurjeet
Singh, Tom)

This change prevents allegedly-immutable index functions from possibly subverting a superuser’s ses-
sion (CVE-2009-4136).

• Reject SSL certificates containing an embedded null byte in the common name (CN) field (Magnus)

This prevents unintended matching of a certificate to a server or client name during SSL validation
(CVE-2009-4034).

• Fix hash index corruption (Tom)

The 8.4 change that made hash indexes keep entries sorted by hash value failed to update the bucket
splitting and compaction routines to preserve the ordering. So application of either of those operations
could lead to permanent corruption of an index, in the sense that searches might fail to find entries that
are present. To deal with this, it is recommended to REINDEX any hash indexes you may have after
installing this update.

• Fix possible crash during backend-startup-time cache initialization (Tom)

• Avoid crash on empty thesaurus dictionary (Tom)

• Prevent signals from interrupting VACUUM at unsafe times (Alvaro)

This fix prevents a PANIC if a VACUUM FULL is canceled after it’s already committed its tuple move-
ments, as well as transient errors if a plain VACUUM is interrupted after having truncated the table.

• Fix possible crash due to integer overflow in hash table size calculation (Tom)

This could occur with extremely large planner estimates for the size of a hashjoin’s result.

• Fix crash if a DROP is attempted on an internally-dependent object (Tom)

• Fix very rare crash in inet/cidr comparisons (Chris Mikkelson)

• Ensure that shared tuple-level locks held by prepared transactions are not ignored (Heikki)

• Fix premature drop of temporary files used for a cursor that is accessed within a subtransaction (Heikki)

• Fix memory leak in syslogger process when rotating to a new CSV logfile (Tom)

• Fix memory leak in postmaster when re-parsing pg_hba.conf (Tom)

• Fix Windows permission-downgrade logic (Jesse Morris)

2236

Appendix E. Release Notes

This fixes some cases where the database failed to start on Windows, often with misleading error mes-
sages such as “could not locate matching postgres executable”.

• Make FOR UPDATE/SHARE in the primary query not propagate into WITH queries (Tom)

For example, in

WITH w AS (SELECT * FROM foo) SELECT * FROM w, bar ... FOR UPDATE

the FOR UPDATE will now affect bar but not foo. This is more useful and consistent than the original
8.4 behavior, which tried to propagate FOR UPDATE into the WITH query but always failed due to
assorted implementation restrictions. It also follows the design rule that WITH queries are executed as
if independent of the main query.

• Fix bug with a WITH RECURSIVE query immediately inside another one (Tom)

• Fix concurrency bug in hash indexes (Tom)

Concurrent insertions could cause index scans to transiently report wrong results.

• Fix incorrect logic for GiST index page splits, when the split depends on a non-first column of the index
(Paul Ramsey)

• Fix wrong search results for a multi-column GIN index with fastupdate enabled (Teodor)

• Fix bugs in WAL entry creation for GIN indexes (Tom)

These bugs were masked when full_page_writes was on, but with it off a WAL replay failure was
certain if a crash occurred before the next checkpoint.

• Don’t error out if recycling or removing an old WAL file fails at the end of checkpoint (Heikki)

It’s better to treat the problem as non-fatal and allow the checkpoint to complete. Future checkpoints
will retry the removal. Such problems are not expected in normal operation, but have been seen to be
caused by misdesigned Windows anti-virus and backup software.

• Ensure WAL files aren’t repeatedly archived on Windows (Heikki)

This is another symptom that could happen if some other process interfered with deletion of a no-
longer-needed file.

• Fix PAM password processing to be more robust (Tom)

The previous code is known to fail with the combination of the Linux pam_krb5 PAM module with
Microsoft Active Directory as the domain controller. It might have problems elsewhere too, since it was
making unjustified assumptions about what arguments the PAM stack would pass to it.

• Raise the maximum authentication token (Kerberos ticket) size in GSSAPI and SSPI authentication
methods (Ian Turner)

While the old 2000-byte limit was more than enough for Unix Kerberos implementations, tickets issued
by Windows Domain Controllers can be much larger.

• Ensure that domain constraints are enforced in constructs like ARRAY[...]::domain, where the do-
main is over an array type (Heikki)

• Fix foreign-key logic for some cases involving composite-type columns as foreign keys (Tom)

• Ensure that a cursor’s snapshot is not modified after it is created (Alvaro)

This could lead to a cursor delivering wrong results if later operations in the same transaction modify
the data the cursor is supposed to return.

2237

Appendix E. Release Notes

• Fix CREATE TABLE to properly merge default expressions coming from different inheritance parent
tables (Tom)

This used to work but was broken in 8.4.

• Re-enable collection of access statistics for sequences (Akira Kurosawa)

This used to work but was broken in 8.3.

• Fix processing of ownership dependencies during CREATE OR REPLACE FUNCTION (Tom)

• Fix incorrect handling of WHERE x=x conditions (Tom)

In some cases these could get ignored as redundant, but they aren’t — they’re equivalent to x IS NOT

NULL.

• Fix incorrect plan construction when using hash aggregation to implement DISTINCT for textually
identical volatile expressions (Tom)

• Fix Assert failure for a volatile SELECT DISTINCT ON expression (Tom)

• Fix ts_stat() to not fail on an empty tsvector value (Tom)

• Make text search parser accept underscores in XML attributes (Peter)

• Fix encoding handling in xml binary input (Heikki)

If the XML header doesn’t specify an encoding, we now assume UTF-8 by default; the previous han-
dling was inconsistent.

• Fix bug with calling plperl from plperlu or vice versa (Tom)

An error exit from the inner function could result in crashes due to failure to re-select the correct Perl
interpreter for the outer function.

• Fix session-lifespan memory leak when a PL/Perl function is redefined (Tom)

• Ensure that Perl arrays are properly converted to PostgreSQL arrays when returned by a set-returning
PL/Perl function (Andrew Dunstan, Abhijit Menon-Sen)

This worked correctly already for non-set-returning functions.

• Fix rare crash in exception processing in PL/Python (Peter)

• Fix ecpg problem with comments in DECLARE CURSOR statements (Michael)

• Fix ecpg to not treat recently-added keywords as reserved words (Tom)

This affected the keywords CALLED, CATALOG, DEFINER, ENUM, FOLLOWING, INVOKER, OPTIONS,
PARTITION, PRECEDING, RANGE, SECURITY, SERVER, UNBOUNDED, and WRAPPER.

• Re-allow regular expression special characters in psql’s \df function name parameter (Tom)

• In contrib/fuzzystrmatch, correct the calculation of levenshtein distances with non-default
costs (Marcin Mank)

• In contrib/pg_standby, disable triggering failover with a signal on Windows (Fujii Masao)

This never did anything useful, because Windows doesn’t have Unix-style signals, but recent changes
made it actually crash.

• Put FREEZE and VERBOSE options in the right order in the VACUUM command that contrib/vacuumdb
produces (Heikki)

2238

Appendix E. Release Notes

• Fix possible leak of connections when contrib/dblink encounters an error (Tatsuhito Kasahara)

• Ensure psql’s flex module is compiled with the correct system header definitions (Tom)

This fixes build failures on platforms where --enable-largefile causes incompatible changes in
the generated code.

• Make the postmaster ignore any application_name parameter in connection request packets, to im-
prove compatibility with future libpq versions (Tom)

• Update the timezone abbreviation files to match current reality (Joachim Wieland)

This includes adding IDT to the default timezone abbreviation set.

• Update time zone data files to tzdata release 2009s for DST law changes in Antarctica, Argentina,
Bangladesh, Fiji, Novokuznetsk, Pakistan, Palestine, Samoa, Syria; also historical corrections for Hong
Kong.

E.58. Release 8.4.1

Release Date: 2009-09-09

This release contains a variety of fixes from 8.4. For information about new features in the 8.4 major
release, see Section E.59.

E.58.1. Migration to Version 8.4.1
A dump/restore is not required for those running 8.4.X.

E.58.2. Changes

• Fix WAL page header initialization at the end of archive recovery (Heikki)

This could lead to failure to process the WAL in a subsequent archive recovery.

• Fix “cannot make new WAL entries during recovery” error (Tom)

• Fix problem that could make expired rows visible after a crash (Tom)

This bug involved a page status bit potentially not being set correctly after a server crash.

• Disallow RESET ROLE and RESET SESSION AUTHORIZATION inside security-definer functions
(Tom, Heikki)

This covers a case that was missed in the previous patch that disallowed SET ROLE and SET SESSION

AUTHORIZATION inside security-definer functions. (See CVE-2007-6600)

• Make LOAD of an already-loaded loadable module into a no-op (Tom)

2239

Appendix E. Release Notes

Formerly, LOAD would attempt to unload and re-load the module, but this is unsafe and not all that
useful.

• Make window function PARTITION BY and ORDER BY items always be interpreted as simple expres-
sions (Tom)

In 8.4.0 these lists were parsed following the rules used for top-level GROUP BY and ORDER BY lists.
But this was not correct per the SQL standard, and it led to possible circularity.

• Fix several errors in planning of semi-joins (Tom)

These led to wrong query results in some cases where IN or EXISTS was used together with another
join.

• Fix handling of whole-row references to subqueries that are within an outer join (Tom)

An example is SELECT COUNT(ss.*) FROM ... LEFT JOIN (SELECT ...) ss ON Here,
ss.* would be treated as ROW(NULL,NULL,...) for null-extended join rows, which is not the same
as a simple NULL. Now it is treated as a simple NULL.

• Fix Windows shared-memory allocation code (Tsutomu Yamada, Magnus)

This bug led to the often-reported “could not reattach to shared memory” error message.

• Fix locale handling with plperl (Heikki)

This bug could cause the server’s locale setting to change when a plperl function is called, leading to
data corruption.

• Fix handling of reloptions to ensure setting one option doesn’t force default values for others (Itagaki
Takahiro)

• Ensure that a “fast shutdown” request will forcibly terminate open sessions, even if a “smart shutdown”
was already in progress (Fujii Masao)

• Avoid memory leak for array_agg() in GROUP BY queries (Tom)

• Treat to_char(..., ’TH’) as an uppercase ordinal suffix with ’HH’/’HH12’ (Heikki)

It was previously handled as ’th’ (lowercase).

• Include the fractional part in the result of EXTRACT(second) and EXTRACT(milliseconds) for
time and time with time zone inputs (Tom)

This has always worked for floating-point datetime configurations, but was broken in the integer date-
time code.

• Fix overflow for INTERVAL ’x ms’ when x is more than 2 million and integer datetimes are in use
(Alex Hunsaker)

• Improve performance when processing toasted values in index scans (Tom)

This is particularly useful for PostGIS5.

• Fix a typo that disabled commit_delay (Jeff Janes)

• Output early-startup messages to postmaster.log if the server is started in silent mode (Tom)

Previously such error messages were discarded, leading to difficulty in debugging.

• Remove translated FAQs (Peter)

5. http://postgis.refractions.net/

2240

Appendix E. Release Notes

They are now on the wiki6. The main FAQ was moved to the wiki some time ago.

• Fix pg_ctl to not go into an infinite loop if postgresql.conf is empty (Jeff Davis)

• Fix several errors in pg_dump’s --binary-upgrade mode (Bruce, Tom)

pg_dump --binary-upgrade is used by pg_migrator.

• Fix contrib/xml2’s xslt_process() to properly handle the maximum number of parameters
(twenty) (Tom)

• Improve robustness of libpq’s code to recover from errors during COPY FROM STDIN (Tom)

• Avoid including conflicting readline and editline header files when both libraries are installed (Zdenek
Kotala)

• Work around gcc bug that causes “floating-point exception” instead of “division by zero” on some
platforms (Tom)

• Update time zone data files to tzdata release 2009l for DST law changes in Bangladesh, Egypt, Mauri-
tius.

E.59. Release 8.4

Release Date: 2009-07-01

E.59.1. Overview
After many years of development, PostgreSQL has become feature-complete in many areas. This release
shows a targeted approach to adding features (e.g., authentication, monitoring, space reuse), and adds
capabilities defined in the later SQL standards. The major areas of enhancement are:

• Windowing Functions

• Common Table Expressions and Recursive Queries

• Default and variadic parameters for functions

• Parallel Restore

• Column Permissions

• Per-database locale settings

• Improved hash indexes

• Improved join performance for EXISTS and NOT EXISTS queries

• Easier-to-use Warm Standby

• Automatic sizing of the Free Space Map

6. http://wiki.postgresql.org/wiki/FAQ

2241

Appendix E. Release Notes

• Visibility Map (greatly reduces vacuum overhead for slowly-changing tables)

• Version-aware psql (backslash commands work against older servers)

• Support SSL certificates for user authentication

• Per-function runtime statistics

• Easy editing of functions in psql

• New contrib modules: pg_stat_statements, auto_explain, citext, btree_gin

The above items are explained in more detail in the sections below.

E.59.2. Migration to Version 8.4
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

Observe the following incompatibilities:

E.59.2.1. General

• Use 64-bit integer datetimes by default (Neil Conway)

Previously this was selected by configure’s --enable-integer-datetimes option. To retain the old
behavior, build with --disable-integer-datetimes.

• Remove ipcclean utility command (Bruce)

The utility only worked on a few platforms. Users should use their operating system tools instead.

E.59.2.2. Server Settings

• Change default setting for log_min_messages to warning (previously it was notice) to reduce log
file volume (Tom)

• Change default setting for max_prepared_transactions to zero (previously it was 5) (Tom)

• Make debug_print_parse, debug_print_rewritten, and debug_print_plan output appear at
LOG message level, not DEBUG1 as formerly (Tom)

• Make debug_pretty_print default to on (Tom)

• Remove explain_pretty_print parameter (no longer needed) (Tom)

• Make log_temp_files settable by superusers only, like other logging options (Simon Riggs)

• Remove automatic appending of the epoch timestamp when no % escapes are present in log_filename
(Robert Haas)

This change was made because some users wanted a fixed log filename, for use with an external log
rotation tool.

• Remove log_restartpoints from recovery.conf; instead use log_checkpoints (Simon)

2242

Appendix E. Release Notes

• Remove krb_realm and krb_server_hostname; these are now set in pg_hba.conf instead (Mag-
nus)

• There are also significant changes in pg_hba.conf, as described below.

E.59.2.3. Queries

• Change TRUNCATE and LOCK to apply to child tables of the specified table(s) (Peter)

These commands now accept an ONLY option that prevents processing child tables; this option must be
used if the old behavior is needed.

• SELECT DISTINCT and UNION/INTERSECT/EXCEPT no longer always produce sorted output (Tom)

Previously, these types of queries always removed duplicate rows by means of Sort/Unique processing
(i.e., sort then remove adjacent duplicates). Now they can be implemented by hashing, which will not
produce sorted output. If an application relied on the output being in sorted order, the recommended
fix is to add an ORDER BY clause. As a short-term workaround, the previous behavior can be restored
by disabling enable_hashagg, but that is a very performance-expensive fix. SELECT DISTINCT ON

never uses hashing, however, so its behavior is unchanged.

• Force child tables to inherit CHECK constraints from parents (Alex Hunsaker, Nikhil Sontakke, Tom)

Formerly it was possible to drop such a constraint from a child table, allowing rows that violate the con-
straint to be visible when scanning the parent table. This was deemed inconsistent, as well as contrary
to SQL standard.

• Disallow negative LIMIT or OFFSET values, rather than treating them as zero (Simon)

• Disallow LOCK TABLE outside a transaction block (Tom)

Such an operation is useless because the lock would be released immediately.

• Sequences now contain an additional start_value column (Zoltan Boszormenyi)

This supports ALTER SEQUENCE ... RESTART.

E.59.2.4. Functions and Operators

• Make numeric zero raised to a fractional power return 0, rather than throwing an error, and make
numeric zero raised to the zero power return 1, rather than error (Bruce)

This matches the longstanding float8 behavior.

• Allow unary minus of floating-point values to produce minus zero (Tom)

The changed behavior is more IEEE-standard compliant.

• Throw an error if an escape character is the last character in a LIKE pattern (i.e., it has nothing to
escape) (Tom)

Previously, such an escape character was silently ignored, thus possibly masking application logic er-
rors.

• Remove ~=~ and ~<>~ operators formerly used for LIKE index comparisons (Tom)

2243

Appendix E. Release Notes

Pattern indexes now use the regular equality operator.

• xpath() now passes its arguments to libxml without any changes (Andrew)

This means that the XML argument must be a well-formed XML document. The previous coding
attempted to allow XML fragments, but it did not work well.

• Make xmlelement() format attribute values just like content values (Peter)

Previously, attribute values were formatted according to the normal SQL output behavior, which is
sometimes at odds with XML rules.

• Rewrite memory management for libxml-using functions (Tom)

This change should avoid some compatibility problems with use of libxml in PL/Perl and other add-on
code.

• Adopt a faster algorithm for hash functions (Kenneth Marshall, based on work of Bob Jenkins)

Many of the built-in hash functions now deliver different results on little-endian and big-endian plat-
forms.

E.59.2.4.1. Temporal Functions and Operators

• DateStyle no longer controls interval output formatting; instead there is a new variable
IntervalStyle (Ron Mayer)

• Improve consistency of handling of fractional seconds in timestamp and interval output (Ron
Mayer)

This may result in displaying a different number of fractional digits than before, or rounding instead of
truncating.

• Make to_char()’s localized month/day names depend on LC_TIME, not LC_MESSAGES (Euler Taveira
de Oliveira)

• Cause to_date() and to_timestamp() to more consistently report errors for invalid input (Brendan
Jurd)

Previous versions would often ignore or silently misread input that did not match the format string.
Such cases will now result in an error.

• Fix to_timestamp() to not require upper/lower case matching for meridian (AM/PM) and era (BC/AD)
format designations (Brendan Jurd)

For example, input value ad now matches the format string AD.

E.59.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 8.4 and the previous major
release.

2244

Appendix E. Release Notes

E.59.3.1. Performance

• Improve optimizer statistics calculations (Jan Urbanski, Tom)

In particular, estimates for full-text-search operators are greatly improved.

• Allow SELECT DISTINCT and UNION/INTERSECT/EXCEPT to use hashing (Tom)

This means that these types of queries no longer automatically produce sorted output.

• Create explicit concepts of semi-joins and anti-joins (Tom)

This work formalizes our previous ad-hoc treatment of IN (SELECT ...) clauses, and extends it
to EXISTS and NOT EXISTS clauses. It should result in significantly better planning of EXISTS and
NOT EXISTS queries. In general, logically equivalent IN and EXISTS clauses should now have similar
performance, whereas previously IN often won.

• Improve optimization of sub-selects beneath outer joins (Tom)

Formerly, a sub-select or view could not be optimized very well if it appeared within the nullable side
of an outer join and contained non-strict expressions (for instance, constants) in its result list.

• Improve the performance of text_position() and related functions by using Boyer-Moore-Horspool
searching (David Rowley)

This is particularly helpful for long search patterns.

• Reduce I/O load of writing the statistics collection file by writing the file only when requested (Martin
Pihlak)

• Improve performance for bulk inserts (Robert Haas, Simon)

• Increase the default value of default_statistics_target from 10 to 100 (Greg Sabino Mullane,
Tom)

The maximum value was also increased from 1000 to 10000.

• Perform constraint_exclusion checking by default in queries involving inheritance or UNION ALL

(Tom)

A new constraint_exclusion setting, partition, was added to specify this behavior.

• Allow I/O read-ahead for bitmap index scans (Greg Stark)

The amount of read-ahead is controlled by effective_io_concurrency. This feature is available
only if the kernel has posix_fadvise() support.

• Inline simple set-returning SQL functions in FROM clauses (Richard Rowell)

• Improve performance of multi-batch hash joins by providing a special case for join key values that are
especially common in the outer relation (Bryce Cutt, Ramon Lawrence)

• Reduce volume of temporary data in multi-batch hash joins by suppressing “physical tlist” optimization
(Michael Henderson, Ramon Lawrence)

• Avoid waiting for idle-in-transaction sessions during CREATE INDEX CONCURRENTLY (Simon)

• Improve performance of shared cache invalidation (Tom)

2245

Appendix E. Release Notes

E.59.3.2. Server

E.59.3.2.1. Settings

• Convert many postgresql.conf settings to enumerated values so that pg_settings can display the
valid values (Magnus)

• Add cursor_tuple_fraction parameter to control the fraction of a cursor’s rows that the planner
assumes will be fetched (Robert Hell)

• Allow underscores in the names of custom variable classes in postgresql.conf (Tom)

E.59.3.2.2. Authentication and security

• Remove support for the (insecure) crypt authentication method (Magnus)

This effectively obsoletes pre-PostgreSQL 7.2 client libraries, as there is no longer any non-plaintext
password method that they can use.

• Support regular expressions in pg_ident.conf (Magnus)

• Allow Kerberos/GSSAPI parameters to be changed without restarting the postmaster (Magnus)

• Support SSL certificate chains in server certificate file (Andrew Gierth)

Including the full certificate chain makes the client able to verify the certificate without having all
intermediate CA certificates present in the local store, which is often the case for commercial CAs.

• Report appropriate error message for combination of MD5 authentication and db_user_namespace

enabled (Bruce)

E.59.3.2.3. pg_hba.conf

• Change all authentication options to use name=value syntax (Magnus)

This makes incompatible changes to the ldap, pam and ident authentication methods. All
pg_hba.conf entries with these methods need to be rewritten using the new format.

• Remove the ident sameuser option, instead making that behavior the default if no usermap is spec-
ified (Magnus)

• Allow a usermap parameter for all external authentication methods (Magnus)

Previously a usermap was only supported for ident authentication.

• Add clientcert option to control requesting of a client certificate (Magnus)

Previously this was controlled by the presence of a root certificate file in the server’s data directory.

• Add cert authentication method to allow user authentication via SSL certificates (Magnus)

Previously SSL certificates could only verify that the client had access to a certificate, not authenticate
a user.

• Allow krb5, gssapi and sspi realm and krb5 host settings to be specified in pg_hba.conf (Mag-
nus)

2246

Appendix E. Release Notes

These override the settings in postgresql.conf.

• Add include_realm parameter for krb5, gssapi, and sspi methods (Magnus)

This allows identical usernames from different realms to be authenticated as different database users
using usermaps.

• Parse pg_hba.conf fully when it is loaded, so that errors are reported immediately (Magnus)

Previously, most errors in the file wouldn’t be detected until clients tried to connect, so an erroneous
file could render the system unusable. With the new behavior, if an error is detected during reload then
the bad file is rejected and the postmaster continues to use its old copy.

• Show all parsing errors in pg_hba.conf instead of aborting after the first one (Selena Deckelmann)

• Support ident authentication over Unix-domain sockets on Solaris (Garick Hamlin)

E.59.3.2.4. Continuous Archiving

• Provide an option to pg_start_backup() to force its implied checkpoint to finish as quickly as
possible (Tom)

The default behavior avoids excess I/O consumption, but that is pointless if no concurrent query activity
is going on.

• Make pg_stop_backup() wait for modified WAL files to be archived (Simon)

This guarantees that the backup is valid at the time pg_stop_backup() completes.

• When archiving is enabled, rotate the last WAL segment at shutdown so that all transactions can be
archived immediately (Guillaume Smet, Heikki)

• Delay “smart” shutdown while a continuous archiving base backup is in progress (Laurenz Albe)

• Cancel a continuous archiving base backup if “fast” shutdown is requested (Laurenz Albe)

• Allow recovery.conf boolean variables to take the same range of string values as
postgresql.conf boolean variables (Bruce)

E.59.3.2.5. Monitoring

• Add pg_conf_load_time() to report when the PostgreSQL configuration files were last loaded
(George Gensure)

• Add pg_terminate_backend() to safely terminate a backend (the SIGTERM signal works also)
(Tom, Bruce)

While it’s always been possible to SIGTERM a single backend, this was previously considered unsup-
ported; and testing of the case found some bugs that are now fixed.

• Add ability to track user-defined functions’ call counts and runtimes (Martin Pihlak)

Function statistics appear in a new system view, pg_stat_user_functions. Tracking is controlled
by the new parameter track_functions.

• Allow specification of the maximum query string size in pg_stat_activity via new
track_activity_query_size parameter (Thomas Lee)

2247

Appendix E. Release Notes

• Increase the maximum line length sent to syslog, in hopes of improving performance (Tom)

• Add read-only configuration variables segment_size, wal_block_size, and wal_segment_size

(Bernd Helmle)

• When reporting a deadlock, report the text of all queries involved in the deadlock to the server log
(Itagaki Takahiro)

• Add pg_stat_get_activity(pid) function to return information about a specific process id (Mag-
nus)

• Allow the location of the server’s statistics file to be specified via stats_temp_directory (Magnus)

This allows the statistics file to be placed in a RAM-resident directory to reduce I/O requirements. On
startup/shutdown, the file is copied to its traditional location ($PGDATA/global/) so it is preserved
across restarts.

E.59.3.3. Queries

• Add support for WINDOW functions (Hitoshi Harada)

• Add support for WITH clauses (CTEs), including WITH RECURSIVE (Yoshiyuki Asaba, Tatsuo Ishii,
Tom)

• Add TABLE command (Peter)

TABLE tablename is a SQL standard short-hand for SELECT * FROM tablename.

• Allow AS to be optional when specifying a SELECT (or RETURNING) column output label (Hiroshi
Saito)

This works so long as the column label is not any PostgreSQL keyword; otherwise AS is still needed.

• Support set-returning functions in SELECT result lists even for functions that return their result via a
tuplestore (Tom)

In particular, this means that functions written in PL/pgSQL and other PL languages can now be called
this way.

• Support set-returning functions in the output of aggregation and grouping queries (Tom)

• Allow SELECT FOR UPDATE/SHARE to work on inheritance trees (Tom)

• Add infrastructure for SQL/MED (Martin Pihlak, Peter)

There are no remote or external SQL/MED capabilities yet, but this change provides a standardized and
future-proof system for managing connection information for modules like dblink and plproxy.

• Invalidate cached plans when referenced schemas, functions, operators, or operator classes are modified
(Martin Pihlak, Tom)

This improves the system’s ability to respond to on-the-fly DDL changes.

• Allow comparison of composite types and allow arrays of anonymous composite types (Tom)

This allows constructs such as row(1, 1.1) = any (array[row(7, 7.7), row(1, 1.0)]).
This is particularly useful in recursive queries.

2248

Appendix E. Release Notes

• Add support for Unicode string literal and identifier specifications using code points, e.g.
U&’d\0061t\+000061’ (Peter)

• Reject \000 in string literals and COPY data (Tom)

Previously, this was accepted but had the effect of terminating the string contents.

• Improve the parser’s ability to report error locations (Tom)

An error location is now reported for many semantic errors, such as mismatched datatypes, that previ-
ously could not be localized.

E.59.3.3.1. TRUNCATE

• Support statement-level ON TRUNCATE triggers (Simon)

• Add RESTART/CONTINUE IDENTITY options for TRUNCATE TABLE (Zoltan Boszormenyi)

The start value of a sequence can be changed by ALTER SEQUENCE START WITH.

• Allow TRUNCATE tab1, tab1 to succeed (Bruce)

• Add a separate TRUNCATE permission (Robert Haas)

E.59.3.3.2. EXPLAIN

• Make EXPLAIN VERBOSE show the output columns of each plan node (Tom)

Previously EXPLAIN VERBOSE output an internal representation of the query plan. (That behavior is
now available via debug_print_plan.)

• Make EXPLAIN identify subplans and initplans with individual labels (Tom)

• Make EXPLAIN honor debug_print_plan (Tom)

• Allow EXPLAIN on CREATE TABLE AS (Peter)

E.59.3.3.3. LIMIT/OFFSET

• Allow sub-selects in LIMIT and OFFSET (Tom)

• Add SQL-standard syntax for LIMIT/OFFSET capabilities (Peter)

To wit, OFFSET num {ROW|ROWS} FETCH {FIRST|NEXT} [num] {ROW|ROWS} ONLY.

E.59.3.4. Object Manipulation

• Add support for column-level privileges (Stephen Frost, KaiGai Kohei)

• Refactor multi-object DROP operations to reduce the need for CASCADE (Alex Hunsaker)

For example, if table B has a dependency on table A, the command DROP TABLE A, B no longer
requires the CASCADE option.

2249

Appendix E. Release Notes

• Fix various problems with concurrent DROP commands by ensuring that locks are taken before we begin
to drop dependencies of an object (Tom)

• Improve reporting of dependencies during DROP commands (Tom)

• Add WITH [NO] DATA clause to CREATE TABLE AS, per the SQL standard (Peter, Tom)

• Add support for user-defined I/O conversion casts (Heikki)

• Allow CREATE AGGREGATE to use an internal transition datatype (Tom)

• Add LIKE clause to CREATE TYPE (Tom)

This simplifies creation of data types that use the same internal representation as an existing type.

• Allow specification of the type category and “preferred” status for user-defined base types (Tom)

This allows more control over the coercion behavior of user-defined types.

• Allow CREATE OR REPLACE VIEW to add columns to the end of a view (Robert Haas)

E.59.3.4.1. ALTER

• Add ALTER TYPE RENAME (Petr Jelinek)

• Add ALTER SEQUENCE ... RESTART (with no parameter) to reset a sequence to its initial value
(Zoltan Boszormenyi)

• Modify the ALTER TABLE syntax to allow all reasonable combinations for tables, indexes, sequences,
and views (Tom)

This change allows the following new syntaxes:

• ALTER SEQUENCE OWNER TO

• ALTER VIEW ALTER COLUMN SET/DROP DEFAULT

• ALTER VIEW OWNER TO

• ALTER VIEW SET SCHEMA

There is no actual new functionality here, but formerly you had to say ALTER TABLE to do these things,
which was confusing.

• Add support for the syntax ALTER TABLE ... ALTER COLUMN ... SET DATA TYPE (Peter)

This is SQL-standard syntax for functionality that was already supported.

• Make ALTER TABLE SET WITHOUT OIDS rewrite the table to physically remove OID values (Tom)

Also, add ALTER TABLE SET WITH OIDS to rewrite the table to add OIDs.

E.59.3.4.2. Database Manipulation

• Improve reporting of CREATE/DROP/RENAME DATABASE failure when uncommitted prepared transac-
tions are the cause (Tom)

• Make LC_COLLATE and LC_CTYPE into per-database settings (Radek Strnad, Heikki)

This makes collation similar to encoding, which was always configurable per database.

2250

Appendix E. Release Notes

• Improve checks that the database encoding, collation (LC_COLLATE), and character classes (LC_CTYPE)
match (Heikki, Tom)

Note in particular that a new database’s encoding and locale settings can be changed only when copying
from template0. This prevents possibly copying data that doesn’t match the settings.

• Add ALTER DATABASE SET TABLESPACE to move a database to a new tablespace (Guillaume
Lelarge, Bernd Helmle)

E.59.3.5. Utility Operations

• Add a VERBOSE option to the CLUSTER command and clusterdb (Jim Cox)

• Decrease memory requirements for recording pending trigger events (Tom)

E.59.3.5.1. Indexes

• Dramatically improve the speed of building and accessing hash indexes (Tom Raney, Shreya Bhargava)

This allows hash indexes to be sometimes faster than btree indexes. However, hash indexes are still not
crash-safe.

• Make hash indexes store only the hash code, not the full value of the indexed column (Xiao Meng)

This greatly reduces the size of hash indexes for long indexed values, improving performance.

• Implement fast update option for GIN indexes (Teodor, Oleg)

This option greatly improves update speed at a small penalty in search speed.

• xxx_pattern_ops indexes can now be used for simple equality comparisons, not only for LIKE (Tom)

E.59.3.5.2. Full Text Indexes

• Remove the requirement to use @@@ when doing GIN weighted lookups on full text indexes (Tom,
Teodor)

The normal @@ text search operator can be used instead.

• Add an optimizer selectivity function for @@ text search operations (Jan Urbanski)

• Allow prefix matching in full text searches (Teodor Sigaev, Oleg Bartunov)

• Support multi-column GIN indexes (Teodor Sigaev)

• Improve support for Nepali language and Devanagari alphabet (Teodor)

E.59.3.5.3. VACUUM

• Track free space in separate per-relation “fork” files (Heikki)

2251

Appendix E. Release Notes

Free space discovered by VACUUM is now recorded in *_fsm files, rather than in a fixed-sized shared
memory area. The max_fsm_pages and max_fsm_relations settings have been removed, greatly
simplifying administration of free space management.

• Add a visibility map to track pages that do not require vacuuming (Heikki)

This allows VACUUM to avoid scanning all of a table when only a portion of the table needs vacuuming.
The visibility map is stored in per-relation “fork” files.

• Add vacuum_freeze_table_age parameter to control when VACUUM should ignore the visibility
map and do a full table scan to freeze tuples (Heikki)

• Track transaction snapshots more carefully (Alvaro)

This improves VACUUM’s ability to reclaim space in the presence of long-running transactions.

• Add ability to specify per-relation autovacuum and TOAST parameters in CREATE TABLE (Alvaro,
Euler Taveira de Oliveira)

Autovacuum options used to be stored in a system table.

• Add --freeze option to vacuumdb (Bruce)

E.59.3.6. Data Types

• Add a CaseSensitive option for text search synonym dictionaries (Simon)

• Improve the precision of NUMERIC division (Tom)

• Add basic arithmetic operators for int2 with int8 (Tom)

This eliminates the need for explicit casting in some situations.

• Allow UUID input to accept an optional hyphen after every fourth digit (Robert Haas)

• Allow on/off as input for the boolean data type (Itagaki Takahiro)

• Allow spaces around NaN in the input string for type numeric (Sam Mason)

E.59.3.6.1. Temporal Data Types

• Reject year 0 BC and years 000 and 0000 (Tom)

Previously these were interpreted as 1 BC. (Note: years 0 and 00 are still assumed to be the year 2000.)

• Include SGT (Singapore time) in the default list of known time zone abbreviations (Tom)

• Support infinity and -infinity as values of type date (Tom)

• Make parsing of interval literals more standard-compliant (Tom, Ron Mayer)

For example, INTERVAL ’1’ YEAR now does what it’s supposed to.

• Allow interval fractional-seconds precision to be specified after the second keyword, for SQL stan-
dard compliance (Tom)

2252

Appendix E. Release Notes

Formerly the precision had to be specified after the keyword interval. (For backwards compatibility,
this syntax is still supported, though deprecated.) Data type definitions will now be output using the
standard format.

• Support the IS0 8601 interval syntax (Ron Mayer, Kevin Grittner)

For example, INTERVAL ’P1Y2M3DT4H5M6.7S’ is now supported.

• Add IntervalStyle parameter which controls how interval values are output (Ron Mayer)

Valid values are: postgres, postgres_verbose, sql_standard, iso_8601. This setting also con-
trols the handling of negative interval input when only some fields have positive/negative designa-
tions.

• Improve consistency of handling of fractional seconds in timestamp and interval output (Ron
Mayer)

E.59.3.6.2. Arrays

• Improve the handling of casts applied to ARRAY[] constructs, such as ARRAY[...]::integer[]

(Brendan Jurd)

Formerly PostgreSQL attempted to determine a data type for the ARRAY[] construct without refer-
ence to the ensuing cast. This could fail unnecessarily in many cases, in particular when the ARRAY[]
construct was empty or contained only ambiguous entries such as NULL. Now the cast is consulted to
determine the type that the array elements must be.

• Make SQL-syntax ARRAY dimensions optional to match the SQL standard (Peter)

• Add array_ndims() to return the number of dimensions of an array (Robert Haas)

• Add array_length() to return the length of an array for a specified dimension (Jim Nasby, Robert
Haas, Peter Eisentraut)

• Add aggregate function array_agg(), which returns all aggregated values as a single array (Robert
Haas, Jeff Davis, Peter)

• Add unnest(), which converts an array to individual row values (Tom)

This is the opposite of array_agg().

• Add array_fill() to create arrays initialized with a value (Pavel Stehule)

• Add generate_subscripts() to simplify generating the range of an array’s subscripts (Pavel Ste-
hule)

E.59.3.6.3. Wide-Value Storage (TOAST)

• Consider TOAST compression on values as short as 32 bytes (previously 256 bytes) (Greg Stark)

• Require 25% minimum space savings before using TOAST compression (previously 20% for small
values and any-savings-at-all for large values) (Greg)

• Improve TOAST heuristics for rows that have a mix of large and small toastable fields, so that we prefer
to push large values out of line and don’t compress small values unnecessarily (Greg, Tom)

2253

Appendix E. Release Notes

E.59.3.7. Functions

• Document that setseed() allows values from -1 to 1 (not just 0 to 1), and enforce the valid range
(Kris Jurka)

• Add server-side function lo_import(filename, oid) (Tatsuo)

• Add quote_nullable(), which behaves like quote_literal() but returns the string NULL for a
null argument (Brendan Jurd)

• Improve full text search headline() function to allow extracting several fragments of text (Sushant
Sinha)

• Add suppress_redundant_updates_trigger() trigger function to avoid overhead for non-data-
changing updates (Andrew)

• Add div(numeric, numeric) to perform numeric division without rounding (Tom)

• Add timestamp and timestamptz versions of generate_series() (Hitoshi Harada)

E.59.3.7.1. Object Information Functions

• Implement current_query() for use by functions that need to know the currently running query
(Tomas Doran)

• Add pg_get_keywords() to return a list of the parser keywords (Dave Page)

• Add pg_get_functiondef() to see a function’s definition (Abhijit Menon-Sen)

• Allow the second argument of pg_get_expr() to be zero when deparsing an expression that does not
contain variables (Tom)

• Modify pg_relation_size() to use regclass (Heikki)

pg_relation_size(data_type_name) no longer works.

• Add boot_val and reset_val columns to pg_settings output (Greg Smith)

• Add source file name and line number columns to pg_settings output for variables set in a configu-
ration file (Magnus, Alvaro)

For security reasons, these columns are only visible to superusers.

• Add support for CURRENT_CATALOG, CURRENT_SCHEMA, SET CATALOG, SET SCHEMA (Peter)

These provide SQL-standard syntax for existing features.

• Add pg_typeof() which returns the data type of any value (Brendan Jurd)

• Make version() return information about whether the server is a 32- or 64-bit binary (Bruce)

• Fix the behavior of information schema columns is_insertable_into and is_updatable to be
consistent (Peter)

• Improve the behavior of information schema datetime_precision columns (Peter)

These columns now show zero for date columns, and 6 (the default precision) for time, timestamp,
and interval without a declared precision, rather than showing null as formerly.

• Convert remaining builtin set-returning functions to use OUT parameters (Jaime Casanova)

2254

Appendix E. Release Notes

This makes it possible to call these functions without specifying a column list:
pg_show_all_settings(), pg_lock_status(), pg_prepared_xact(),
pg_prepared_statement(), pg_cursor()

• Make pg_*_is_visible() and has_*_privilege() functions return NULL for invalid OIDs, rather
than reporting an error (Tom)

• Extend has_*_privilege() functions to allow inquiring about the OR of multiple privileges in one
call (Stephen Frost, Tom)

• Add has_column_privilege() and has_any_column_privilege() functions (Stephen Frost,
Tom)

E.59.3.7.2. Function Creation

• Support variadic functions (functions with a variable number of arguments) (Pavel Stehule)

Only trailing arguments can be optional, and they all must be of the same data type.

• Support default values for function arguments (Pavel Stehule)

• Add CREATE FUNCTION ... RETURNS TABLE clause (Pavel Stehule)

• Allow SQL-language functions to return the output of an INSERT/UPDATE/DELETE RETURNING clause
(Tom)

E.59.3.7.3. PL/pgSQL Server-Side Language

• Support EXECUTE USING for easier insertion of data values into a dynamic query string (Pavel Stehule)

• Allow looping over the results of a cursor using a FOR loop (Pavel Stehule)

• Support RETURN QUERY EXECUTE (Pavel Stehule)

• Improve the RAISE command (Pavel Stehule)

• Support DETAIL and HINT fields

• Support specification of the SQLSTATE error code

• Support an exception name parameter

• Allow RAISE without parameters in an exception block to re-throw the current error

• Allow specification of SQLSTATE codes in EXCEPTION lists (Pavel Stehule)

This is useful for handling custom SQLSTATE codes.

• Support the CASE statement (Pavel Stehule)

• Make RETURN QUERY set the special FOUND and GET DIAGNOSTICS ROW_COUNT variables (Pavel
Stehule)

• Make FETCH and MOVE set the GET DIAGNOSTICS ROW_COUNT variable (Andrew Gierth)

• Make EXIT without a label always exit the innermost loop (Tom)

2255

Appendix E. Release Notes

Formerly, if there were a BEGIN block more closely nested than any loop, it would exit that block
instead. The new behavior matches Oracle(TM) and is also what was previously stated by our own
documentation.

• Make processing of string literals and nested block comments match the main SQL parser’s processing
(Tom)

In particular, the format string in RAISE now works the same as any other string literal, including
being subject to standard_conforming_strings. This change also fixes other cases in which valid
commands would fail when standard_conforming_strings is on.

• Avoid memory leakage when the same function is called at varying exception-block nesting depths
(Tom)

E.59.3.8. Client Applications

• Fix pg_ctl restart to preserve command-line arguments (Bruce)

• Add -w/--no-password option that prevents password prompting in all utilities that have a
-W/--password option (Peter)

• Remove -q (quiet) option of createdb, createuser, dropdb, dropuser (Peter)

These options have had no effect since PostgreSQL 8.3.

E.59.3.8.1. psql

• Remove verbose startup banner; now just suggest help (Joshua Drake)

• Make help show common backslash commands (Greg Sabino Mullane)

• Add \pset format wrapped mode to wrap output to the screen width, or file/pipe output too if
\pset columns is set (Bryce Nesbitt)

• Allow all supported spellings of boolean values in \pset, rather than just on and off (Bruce)

Formerly, any string other than “off” was silently taken to mean true. psql will now complain about
unrecognized spellings (but still take them as true).

• Use the pager for wide output (Bruce)

• Require a space between a one-letter backslash command and its first argument (Bernd Helmle)

This removes a historical source of ambiguity.

• Improve tab completion support for schema-qualified and quoted identifiers (Greg Sabino Mullane)

• Add optional on/off argument for \timing (David Fetter)

• Display access control rights on multiple lines (Brendan Jurd, Andreas Scherbaum)

• Make \l show database access privileges (Andrew Gilligan)

• Make \l+ show database sizes, if permissions allow (Andrew Gilligan)

• Add the \ef command to edit function definitions (Abhijit Menon-Sen)

2256

Appendix E. Release Notes

E.59.3.8.2. psql \d* commands

• Make \d* commands that do not have a pattern argument show system objects only if the S modifier is
specified (Greg Sabino Mullane, Bruce)

The former behavior was inconsistent across different variants of \d, and in most cases it provided no
easy way to see just user objects.

• Improve \d* commands to work with older PostgreSQL server versions (back to 7.4), not only the
current server version (Guillaume Lelarge)

• Make \d show foreign-key constraints that reference the selected table (Kenneth D’Souza)

• Make \d on a sequence show its column values (Euler Taveira de Oliveira)

• Add column storage type and other relation options to the \d+ display (Gregory Stark, Euler Taveira
de Oliveira)

• Show relation size in \dt+ output (Dickson S. Guedes)

• Show the possible values of enum types in \dT+ (David Fetter)

• Allow \dC to accept a wildcard pattern, which matches either datatype involved in the cast (Tom)

• Add a function type column to \df’s output, and add options to list only selected types of functions
(David Fetter)

• Make \df not hide functions that take or return type cstring (Tom)

Previously, such functions were hidden because most of them are datatype I/O functions, which were
deemed uninteresting. The new policy about hiding system functions by default makes this wart unnec-
essary.

E.59.3.8.3. pg_dump

• Add a --no-tablespaces option to pg_dump/pg_dumpall/pg_restore so that dumps can be restored
to clusters that have non-matching tablespace layouts (Gavin Roy)

• Remove -d and -D options from pg_dump and pg_dumpall (Tom)

These options were too frequently confused with the option to select a database name in other Post-
greSQL client applications. The functionality is still available, but you must now spell out the long
option name --inserts or --column-inserts.

• Remove -i/--ignore-version option from pg_dump and pg_dumpall (Tom)

Use of this option does not throw an error, but it has no effect. This option was removed because the
version checks are necessary for safety.

• Disable statement_timeout during dump and restore (Joshua Drake)

• Add pg_dump/pg_dumpall option --lock-wait-timeout (David Gould)

This allows dumps to fail if unable to acquire a shared lock within the specified amount of time.

• Reorder pg_dump --data-only output to dump tables referenced by foreign keys before the refer-
encing tables (Tom)

2257

Appendix E. Release Notes

This allows data loads when foreign keys are already present. If circular references make a safe ordering
impossible, a NOTICE is issued.

• Allow pg_dump, pg_dumpall, and pg_restore to use a specified role (Benedek László)

• Allow pg_restore to use multiple concurrent connections to do the restore (Andrew)

The number of concurrent connections is controlled by the option --jobs. This is supported only for
custom-format archives.

E.59.3.9. Programming Tools

E.59.3.9.1. libpq

• Allow the OID to be specified when importing a large object, via new function
lo_import_with_oid() (Tatsuo)

• Add “events” support (Andrew Chernow, Merlin Moncure)

This adds the ability to register callbacks to manage private data associated with PGconn and PGresult
objects.

• Improve error handling to allow the return of multiple error messages as multi-line error reports (Mag-
nus)

• Make PQexecParams() and related functions return PGRES_EMPTY_QUERY for an empty query (Tom)

They previously returned PGRES_COMMAND_OK.

• Document how to avoid the overhead of WSACleanup() on Windows (Andrew Chernow)

• Do not rely on Kerberos tickets to determine the default database username (Magnus)

Previously, a Kerberos-capable build of libpq would use the principal name from any available Kerberos
ticket as default database username, even if the connection wasn’t using Kerberos authentication. This
was deemed inconsistent and confusing. The default username is now determined the same way with or
without Kerberos. Note however that the database username must still match the ticket when Kerberos
authentication is used.

E.59.3.9.2. libpq SSL (Secure Sockets Layer) support

• Fix certificate validation for SSL connections (Magnus)

libpq now supports verifying both the certificate and the name of the server when making SSL connec-
tions. If a root certificate is not available to use for verification, SSL connections will fail. The sslmode
parameter is used to enable certificate verification and set the level of checking. The default is still not
to do any verification, allowing connections to SSL-enabled servers without requiring a root certificate
on the client.

• Support wildcard server certificates (Magnus)

If a certificate CN starts with *, it will be treated as a wildcard when matching the hostname, allowing
the use of the same certificate for multiple servers.

2258

Appendix E. Release Notes

• Allow the file locations for client certificates to be specified (Mark Woodward, Alvaro, Magnus)

• Add a PQinitOpenSSL function to allow greater control over OpenSSL/libcrypto initialization (An-
drew Chernow)

• Make libpq unregister its OpenSSL callbacks when no database connections remain open (Bruce, Mag-
nus, Russell Smith)

This is required for applications that unload the libpq library, otherwise invalid OpenSSL callbacks will
remain.

E.59.3.9.3. ecpg

• Add localization support for messages (Euler Taveira de Oliveira)

• ecpg parser is now automatically generated from the server parser (Michael)

Previously the ecpg parser was hand-maintained.

E.59.3.9.4. Server Programming Interface (SPI)

• Add support for single-use plans with out-of-line parameters (Tom)

• Add new SPI_OK_REWRITTEN return code for SPI_execute() (Heikki)

This is used when a command is rewritten to another type of command.

• Remove unnecessary inclusions from executor/spi.h (Tom)

SPI-using modules might need to add some #include lines if they were depending on spi.h to include
things for them.

E.59.3.10. Build Options

• Update build system to use Autoconf 2.61 (Peter)

• Require GNU bison for source code builds (Peter)

This has effectively been required for several years, but now there is no infrastructure claiming to
support other parser tools.

• Add pg_config --htmldir option (Peter)

• Pass float4 by value inside the server (Zoltan Boszormenyi)

Add configure option --disable-float4-byval to use the old behavior. External C functions that
use old-style (version 0) call convention and pass or return float4 values will be broken by this change,
so you may need the configure option if you have such functions and don’t want to update them.

• Pass float8, int8, and related datatypes by value inside the server on 64-bit platforms (Zoltan Boszor-
menyi)

2259

Appendix E. Release Notes

Add configure option --disable-float8-byval to use the old behavior. As above, this change
might break old-style external C functions.

• Add configure options --with-segsize, --with-blocksize, --with-wal-blocksize,
--with-wal-segsize (Zdenek Kotala, Tom)

This simplifies build-time control over several constants that previously could only be changed by
editing pg_config_manual.h.

• Allow threaded builds on Solaris 2.5 (Bruce)

• Use the system’s getopt_long() on Solaris (Zdenek Kotala, Tom)

This makes option processing more consistent with what Solaris users expect.

• Add support for the Sun Studio compiler on Linux (Julius Stroffek)

• Append the major version number to the backend gettext domain, and the soname major version num-
ber to libraries’ gettext domain (Peter)

This simplifies parallel installations of multiple versions.

• Add support for code coverage testing with gcov (Michelle Caisse)

• Allow out-of-tree builds on Mingw and Cygwin (Richard Evans)

• Fix the use of Mingw as a cross-compiling source platform (Peter)

E.59.3.11. Source Code

• Support 64-bit time zone data files (Heikki)

This adds support for daylight saving time (DST) calculations beyond the year 2038.

• Deprecate use of platform’s time_t data type (Tom)

Some platforms have migrated to 64-bit time_t, some have not, and Windows can’t make up its mind
what it’s doing. Define pg_time_t to have the same meaning as time_t, but always be 64 bits (unless
the platform has no 64-bit integer type), and use that type in all module APIs and on-disk data formats.

• Fix bug in handling of the time zone database when cross-compiling (Richard Evans)

• Link backend object files in one step, rather than in stages (Peter)

• Improve gettext support to allow better translation of plurals (Peter)

• Add message translation support to the PL languages (Alvaro, Peter)

• Add more DTrace probes (Robert Lor)

• Enable DTrace support on Mac OS X Leopard and other non-Solaris platforms (Robert Lor)

• Simplify and standardize conversions between C strings and text datums, by providing common func-
tions for the purpose (Brendan Jurd, Tom)

• Clean up the include/catalog/ header files so that frontend programs can include them without
including postgres.h (Zdenek Kotala)

• Make name char-aligned, and suppress zero-padding of name entries in indexes (Tom)

• Recover better if dynamically-loaded code executes exit() (Tom)

2260

Appendix E. Release Notes

• Add a hook to let plug-ins monitor the executor (Itagaki Takahiro)

• Add a hook to allow the planner’s statistics lookup behavior to be overridden (Simon Riggs)

• Add shmem_startup_hook() for custom shared memory requirements (Tom)

• Replace the index access method amgetmulti entry point with amgetbitmap, and extend the API for
amgettuple to support run-time determination of operator lossiness (Heikki, Tom, Teodor)

The API for GIN and GiST opclass consistent functions has been extended as well.

• Add support for partial-match searches in GIN indexes (Teodor Sigaev, Oleg Bartunov)

• Replace pg_class column reltriggers with boolean relhastriggers (Simon)

Also remove unused pg_class columns relukeys, relfkeys, and relrefs.

• Add a relistemp column to pg_class to ease identification of temporary tables (Tom)

• Move platform FAQs into the main documentation (Peter)

• Prevent parser input files from being built with any conflicts (Peter)

• Add support for the KOI8U (Ukrainian) encoding (Peter)

• Add Japanese message translations (Japan PostgreSQL Users Group)

This used to be maintained as a separate project.

• Fix problem when setting LC_MESSAGES on MSVC-built systems (Hiroshi Inoue, Hiroshi Saito, Mag-
nus)

E.59.3.12. Contrib

• Add contrib/auto_explain to automatically run EXPLAIN on queries exceeding a specified dura-
tion (Itagaki Takahiro, Tom)

• Add contrib/btree_gin to allow GIN indexes to handle more datatypes (Oleg, Teodor)

• Add contrib/citext to provide a case-insensitive, multibyte-aware text data type (David Wheeler)

• Add contrib/pg_stat_statements for server-wide tracking of statement execution statistics (Ita-
gaki Takahiro)

• Add duration and query mode options to contrib/pgbench (Itagaki Takahiro)

• Make contrib/pgbench use table names pgbench_accounts, pgbench_branches,
pgbench_history, and pgbench_tellers, rather than just accounts, branches, history, and
tellers (Tom)

This is to reduce the risk of accidentally destroying real data by running pgbench.

• Fix contrib/pgstattuple to handle tables and indexes with over 2 billion pages (Tatsuhito Kasa-
hara)

• In contrib/fuzzystrmatch, add a version of the Levenshtein string-distance function that allows
the user to specify the costs of insertion, deletion, and substitution (Volkan Yazici)

• Make contrib/ltree support multibyte encodings (laser)

2261

Appendix E. Release Notes

• Enable contrib/dblink to use connection information stored in the SQL/MED catalogs (Joe Con-
way)

• Improve contrib/dblink’s reporting of errors from the remote server (Joe Conway)

• Make contrib/dblink set client_encoding to match the local database’s encoding (Joe Conway)

This prevents encoding problems when communicating with a remote database that uses a different
encoding.

• Make sure contrib/dblink uses a password supplied by the user, and not accidentally taken from
the server’s .pgpass file (Joe Conway)

This is a minor security enhancement.

• Add fsm_page_contents() to contrib/pageinspect (Heikki)

• Modify get_raw_page() to support free space map (*_fsm) files. Also update
contrib/pg_freespacemap.

• Add support for multibyte encodings to contrib/pg_trgm (Teodor)

• Rewrite contrib/intagg to use new functions array_agg() and unnest() (Tom)

• Make contrib/pg_standby recover all available WAL before failover (Fujii Masao, Simon, Heikki)

To make this work safely, you now need to set the new recovery_end_command option in
recovery.conf to clean up the trigger file after failover. pg_standby will no longer remove the
trigger file itself.

• contrib/pg_standby’s -l option is now a no-op, because it is unsafe to use a symlink (Simon)

E.60. Release 8.3.23

Release Date: 2013-02-07

This release contains a variety of fixes from 8.3.22. For information about new features in the 8.3 major
release, see Section E.83.

This is expected to be the last PostgreSQL release in the 8.3.X series. Users are encouraged to update to
a newer release branch soon.

E.60.1. Migration to Version 8.3.23
A dump/restore is not required for those running 8.3.X.

However, if you are upgrading from a version earlier than 8.3.17, see Section E.66.

2262

Appendix E. Release Notes

E.60.2. Changes

• Prevent execution of enum_recv from SQL (Tom Lane)

The function was misdeclared, allowing a simple SQL command to crash the server. In principle an
attacker might be able to use it to examine the contents of server memory. Our thanks to Sumit Soni
(via Secunia SVCRP) for reporting this issue. (CVE-2013-0255)

• Fix SQL grammar to allow subscripting or field selection from a sub-SELECT result (Tom Lane)

• Protect against race conditions when scanning pg_tablespace (Stephen Frost, Tom Lane)

CREATE DATABASE and DROP DATABASE could misbehave if there were concurrent updates of
pg_tablespace entries.

• Prevent DROP OWNED from trying to drop whole databases or tablespaces (Álvaro Herrera)

For safety, ownership of these objects must be reassigned, not dropped.

• Prevent misbehavior when a RowExpr or XmlExpr is parse-analyzed twice (Andres Freund, Tom Lane)

This mistake could be user-visible in contexts such as CREATE TABLE LIKE INCLUDING INDEXES.

• Improve defenses against integer overflow in hashtable sizing calculations (Jeff Davis)

• Ensure that non-ASCII prompt strings are translated to the correct code page on Windows (Alexander
Law, Noah Misch)

This bug affected psql and some other client programs.

• Fix possible crash in psql’s \? command when not connected to a database (Meng Qingzhong)

• Fix one-byte buffer overrun in libpq’s PQprintTuples (Xi Wang)

This ancient function is not used anywhere by PostgreSQL itself, but it might still be used by some
client code.

• Rearrange configure’s tests for supplied functions so it is not fooled by bogus exports from
libedit/libreadline (Christoph Berg)

• Ensure Windows build number increases over time (Magnus Hagander)

• Make pgxs build executables with the right .exe suffix when cross-compiling for Windows (Zoltan
Boszormenyi)

• Add new timezone abbreviation FET (Tom Lane)

This is now used in some eastern-European time zones.

E.61. Release 8.3.22

Release Date: 2012-12-06

This release contains a variety of fixes from 8.3.21. For information about new features in the 8.3 major
release, see Section E.83.

2263

Appendix E. Release Notes

The PostgreSQL community will stop releasing updates for the 8.3.X release series in February 2013.
Users are encouraged to update to a newer release branch soon.

E.61.1. Migration to Version 8.3.22
A dump/restore is not required for those running 8.3.X.

However, if you are upgrading from a version earlier than 8.3.17, see Section E.66.

E.61.2. Changes

• Fix multiple bugs associated with CREATE INDEX CONCURRENTLY (Andres Freund, Tom Lane)

Fix CREATE INDEX CONCURRENTLY to use in-place updates when changing the state of an index’s
pg_index row. This prevents race conditions that could cause concurrent sessions to miss updating the
target index, thus resulting in corrupt concurrently-created indexes.

Also, fix various other operations to ensure that they ignore invalid indexes resulting from a failed
CREATE INDEX CONCURRENTLY command. The most important of these is VACUUM, because an auto-
vacuum could easily be launched on the table before corrective action can be taken to fix or remove the
invalid index.

• Avoid corruption of internal hash tables when out of memory (Hitoshi Harada)

• Fix planning of non-strict equivalence clauses above outer joins (Tom Lane)

The planner could derive incorrect constraints from a clause equating a non-strict construct to some-
thing else, for example WHERE COALESCE(foo, 0) = 0 when foo is coming from the nullable side
of an outer join.

• Improve planner’s ability to prove exclusion constraints from equivalence classes (Tom Lane)

• Fix partial-row matching in hashed subplans to handle cross-type cases correctly (Tom Lane)

This affects multicolumn NOT IN subplans, such as WHERE (a, b) NOT IN (SELECT x, y FROM

...) when for instance b and y are int4 and int8 respectively. This mistake led to wrong answers or
crashes depending on the specific datatypes involved.

• Acquire buffer lock when re-fetching the old tuple for an AFTER ROW UPDATE/DELETE trigger (An-
dres Freund)

In very unusual circumstances, this oversight could result in passing incorrect data to the precheck
logic for a foreign-key enforcement trigger. That could result in a crash, or in an incorrect decision
about whether to fire the trigger.

• Fix REASSIGN OWNED to handle grants on tablespaces (Álvaro Herrera)

• Ignore incorrect pg_attribute entries for system columns for views (Tom Lane)

Views do not have any system columns. However, we forgot to remove such entries when converting
a table to a view. That’s fixed properly for 9.3 and later, but in previous branches we need to defend
against existing mis-converted views.

• Fix rule printing to dump INSERT INTO table DEFAULT VALUES correctly (Tom Lane)

2264

Appendix E. Release Notes

• Guard against stack overflow when there are too many UNION/INTERSECT/EXCEPT clauses in a query
(Tom Lane)

• Prevent platform-dependent failures when dividing the minimum possible integer value by -1 (Xi Wang,
Tom Lane)

• Fix possible access past end of string in date parsing (Hitoshi Harada)

• Produce an understandable error message if the length of the path name for a Unix-domain socket
exceeds the platform-specific limit (Tom Lane, Andrew Dunstan)

Formerly, this would result in something quite unhelpful, such as “Non-recoverable failure in name
resolution”.

• Fix memory leaks when sending composite column values to the client (Tom Lane)

• Make pg_ctl more robust about reading the postmaster.pid file (Heikki Linnakangas)

Fix race conditions and possible file descriptor leakage.

• Fix possible crash in psql if incorrectly-encoded data is presented and the client_encoding setting
is a client-only encoding, such as SJIS (Jiang Guiqing)

• Fix bugs in the restore.sql script emitted by pg_dump in tar output format (Tom Lane)

The script would fail outright on tables whose names include upper-case characters. Also, make the
script capable of restoring data in --inserts mode as well as the regular COPY mode.

• Fix pg_restore to accept POSIX-conformant tar files (Brian Weaver, Tom Lane)

The original coding of pg_dump’s tar output mode produced files that are not fully conformant with
the POSIX standard. This has been corrected for version 9.3. This patch updates previous branches so
that they will accept both the incorrect and the corrected formats, in hopes of avoiding compatibility
problems when 9.3 comes out.

• Fix pg_resetxlog to locate postmaster.pid correctly when given a relative path to the data directory
(Tom Lane)

This mistake could lead to pg_resetxlog not noticing that there is an active postmaster using the data
directory.

• Fix libpq’s lo_import() and lo_export() functions to report file I/O errors properly (Tom Lane)

• Fix ecpg’s processing of nested structure pointer variables (Muhammad Usama)

• Make contrib/pageinspect’s btree page inspection functions take buffer locks while examining
pages (Tom Lane)

• Fix pgxs support for building loadable modules on AIX (Tom Lane)

Building modules outside the original source tree didn’t work on AIX.

• Update time zone data files to tzdata release 2012j for DST law changes in Cuba, Israel, Jordan, Libya,
Palestine, Western Samoa, and portions of Brazil.

2265

Appendix E. Release Notes

E.62. Release 8.3.21

Release Date: 2012-09-24

This release contains a variety of fixes from 8.3.20. For information about new features in the 8.3 major
release, see Section E.83.

The PostgreSQL community will stop releasing updates for the 8.3.X release series in February 2013.
Users are encouraged to update to a newer release branch soon.

E.62.1. Migration to Version 8.3.21
A dump/restore is not required for those running 8.3.X.

However, if you are upgrading from a version earlier than 8.3.17, see Section E.66.

E.62.2. Changes

• Improve page-splitting decisions in GiST indexes (Alexander Korotkov, Robert Haas, Tom Lane)

Multi-column GiST indexes might suffer unexpected bloat due to this error.

• Fix cascading privilege revoke to stop if privileges are still held (Tom Lane)

If we revoke a grant option from some role X, but X still holds that option via a grant from someone
else, we should not recursively revoke the corresponding privilege from role(s) Y that X had granted it
to.

• Fix handling of SIGFPE when PL/Perl is in use (Andres Freund)

Perl resets the process’s SIGFPE handler to SIG_IGN, which could result in crashes later on. Restore
the normal Postgres signal handler after initializing PL/Perl.

• Prevent PL/Perl from crashing if a recursive PL/Perl function is redefined while being executed (Tom
Lane)

• Work around possible misoptimization in PL/Perl (Tom Lane)

Some Linux distributions contain an incorrect version of pthread.h that results in incorrect compiled
code in PL/Perl, leading to crashes if a PL/Perl function calls another one that throws an error.

• Update time zone data files to tzdata release 2012f for DST law changes in Fiji

E.63. Release 8.3.20

Release Date: 2012-08-17

2266

Appendix E. Release Notes

This release contains a variety of fixes from 8.3.19. For information about new features in the 8.3 major
release, see Section E.83.

The PostgreSQL community will stop releasing updates for the 8.3.X release series in February 2013.
Users are encouraged to update to a newer release branch soon.

E.63.1. Migration to Version 8.3.20
A dump/restore is not required for those running 8.3.X.

However, if you are upgrading from a version earlier than 8.3.17, see Section E.66.

E.63.2. Changes

• Prevent access to external files/URLs via XML entity references (Noah Misch, Tom Lane)

xml_parse() would attempt to fetch external files or URLs as needed to resolve DTD and entity
references in an XML value, thus allowing unprivileged database users to attempt to fetch data with
the privileges of the database server. While the external data wouldn’t get returned directly to the user,
portions of it could be exposed in error messages if the data didn’t parse as valid XML; and in any case
the mere ability to check existence of a file might be useful to an attacker. (CVE-2012-3489)

• Prevent access to external files/URLs via contrib/xml2’s xslt_process() (Peter Eisentraut)

libxslt offers the ability to read and write both files and URLs through stylesheet commands, thus
allowing unprivileged database users to both read and write data with the privileges of the database
server. Disable that through proper use of libxslt’s security options. (CVE-2012-3488)

Also, remove xslt_process()’s ability to fetch documents and stylesheets from external files/URLs.
While this was a documented “feature”, it was long regarded as a bad idea. The fix for CVE-2012-3489
broke that capability, and rather than expend effort on trying to fix it, we’re just going to summarily
remove it.

• Prevent too-early recycling of btree index pages (Noah Misch)

When we allowed read-only transactions to skip assigning XIDs, we introduced the possibility that a
deleted btree page could be recycled while a read-only transaction was still in flight to it. This would
result in incorrect index search results. The probability of such an error occurring in the field seems
very low because of the timing requirements, but nonetheless it should be fixed.

• Fix crash-safety bug with newly-created-or-reset sequences (Tom Lane)

If ALTER SEQUENCE was executed on a freshly created or reset sequence, and then precisely one
nextval() call was made on it, and then the server crashed, WAL replay would restore the sequence
to a state in which it appeared that no nextval() had been done, thus allowing the first sequence value
to be returned again by the next nextval() call. In particular this could manifest for serial columns,
since creation of a serial column’s sequence includes an ALTER SEQUENCE OWNED BY step.

• Ensure the backup_label file is fsync’d after pg_start_backup() (Dave Kerr)

• Back-patch 9.1 improvement to compress the fsync request queue (Robert Haas)

2267

Appendix E. Release Notes

This improves performance during checkpoints. The 9.1 change has now seen enough field testing to
seem safe to back-patch.

• Only allow autovacuum to be auto-canceled by a directly blocked process (Tom Lane)

The original coding could allow inconsistent behavior in some cases; in particular, an autovacuum could
get canceled after less than deadlock_timeout grace period.

• Improve logging of autovacuum cancels (Robert Haas)

• Fix log collector so that log_truncate_on_rotation works during the very first log rotation after
server start (Tom Lane)

• Ensure that a whole-row reference to a subquery doesn’t include any extra GROUP BY or ORDER BY

columns (Tom Lane)

• Disallow copying whole-row references in CHECK constraints and index definitions during CREATE

TABLE (Tom Lane)

This situation can arise in CREATE TABLE with LIKE or INHERITS. The copied whole-row variable
was incorrectly labeled with the row type of the original table not the new one. Rejecting the case
seems reasonable for LIKE, since the row types might well diverge later. For INHERITS we should
ideally allow it, with an implicit coercion to the parent table’s row type; but that will require more work
than seems safe to back-patch.

• Fix memory leak in ARRAY(SELECT ...) subqueries (Heikki Linnakangas, Tom Lane)

• Fix extraction of common prefixes from regular expressions (Tom Lane)

The code could get confused by quantified parenthesized subexpressions, such as ^(foo)?bar. This
would lead to incorrect index optimization of searches for such patterns.

• Report errors properly in contrib/xml2’s xslt_process() (Tom Lane)

• Update time zone data files to tzdata release 2012e for DST law changes in Morocco and Tokelau

E.64. Release 8.3.19

Release Date: 2012-06-04

This release contains a variety of fixes from 8.3.18. For information about new features in the 8.3 major
release, see Section E.83.

E.64.1. Migration to Version 8.3.19
A dump/restore is not required for those running 8.3.X.

However, if you are upgrading from a version earlier than 8.3.17, see Section E.66.

2268

Appendix E. Release Notes

E.64.2. Changes

• Fix incorrect password transformation in contrib/pgcrypto’s DES crypt() function (Solar De-
signer)

If a password string contained the byte value 0x80, the remainder of the password was ignored, causing
the password to be much weaker than it appeared. With this fix, the rest of the string is properly included
in the DES hash. Any stored password values that are affected by this bug will thus no longer match,
so the stored values may need to be updated. (CVE-2012-2143)

• Ignore SECURITY DEFINER and SET attributes for a procedural language’s call handler (Tom Lane)

Applying such attributes to a call handler could crash the server. (CVE-2012-2655)

• Allow numeric timezone offsets in timestamp input to be up to 16 hours away from UTC (Tom Lane)

Some historical time zones have offsets larger than 15 hours, the previous limit. This could result in
dumped data values being rejected during reload.

• Fix timestamp conversion to cope when the given time is exactly the last DST transition time for the
current timezone (Tom Lane)

This oversight has been there a long time, but was not noticed previously because most DST-using
zones are presumed to have an indefinite sequence of future DST transitions.

• Fix text to name and char to name casts to perform string truncation correctly in multibyte encodings
(Karl Schnaitter)

• Fix memory copying bug in to_tsquery() (Heikki Linnakangas)

• Fix slow session startup when pg_attribute is very large (Tom Lane)

If pg_attribute exceeds one-fourth of shared_buffers, cache rebuilding code that is sometimes
needed during session start would trigger the synchronized-scan logic, causing it to take many times
longer than normal. The problem was particularly acute if many new sessions were starting at once.

• Ensure sequential scans check for query cancel reasonably often (Merlin Moncure)

A scan encountering many consecutive pages that contain no live tuples would not respond to interrupts
meanwhile.

• Ensure the Windows implementation of PGSemaphoreLock() clears ImmediateInterruptOK be-
fore returning (Tom Lane)

This oversight meant that a query-cancel interrupt received later in the same query could be accepted at
an unsafe time, with unpredictable but not good consequences.

• Show whole-row variables safely when printing views or rules (Abbas Butt, Tom Lane)

Corner cases involving ambiguous names (that is, the name could be either a table or column name
of the query) were printed in an ambiguous way, risking that the view or rule would be interpreted
differently after dump and reload. Avoid the ambiguous case by attaching a no-op cast.

• Ensure autovacuum worker processes perform stack depth checking properly (Heikki Linnakangas)

Previously, infinite recursion in a function invoked by auto-ANALYZE could crash worker processes.

• Fix logging collector to not lose log coherency under high load (Andrew Dunstan)

The collector previously could fail to reassemble large messages if it got too busy.

2269

Appendix E. Release Notes

• Fix logging collector to ensure it will restart file rotation after receiving SIGHUP (Tom Lane)

• Fix PL/pgSQL’s GET DIAGNOSTICS command when the target is the function’s first variable (Tom
Lane)

• Fix several performance problems in pg_dump when the database contains many objects (Jeff Janes,
Tom Lane)

pg_dump could get very slow if the database contained many schemas, or if many objects are in depen-
dency loops, or if there are many owned sequences.

• Fix contrib/dblink’s dblink_exec() to not leak temporary database connections upon error (Tom
Lane)

• Update time zone data files to tzdata release 2012c for DST law changes in Antarctica, Armenia, Chile,
Cuba, Falkland Islands, Gaza, Haiti, Hebron, Morocco, Syria, and Tokelau Islands; also historical cor-
rections for Canada.

E.65. Release 8.3.18

Release Date: 2012-02-27

This release contains a variety of fixes from 8.3.17. For information about new features in the 8.3 major
release, see Section E.83.

E.65.1. Migration to Version 8.3.18
A dump/restore is not required for those running 8.3.X.

However, if you are upgrading from a version earlier than 8.3.17, see Section E.66.

E.65.2. Changes

• Require execute permission on the trigger function for CREATE TRIGGER (Robert Haas)

This missing check could allow another user to execute a trigger function with forged input data, by
installing it on a table he owns. This is only of significance for trigger functions marked SECURITY

DEFINER, since otherwise trigger functions run as the table owner anyway. (CVE-2012-0866)

• Convert newlines to spaces in names written in pg_dump comments (Robert Haas)

pg_dump was incautious about sanitizing object names that are emitted within SQL comments in its
output script. A name containing a newline would at least render the script syntactically incorrect.
Maliciously crafted object names could present a SQL injection risk when the script is reloaded. (CVE-
2012-0868)

• Fix btree index corruption from insertions concurrent with vacuuming (Tom Lane)

2270

Appendix E. Release Notes

An index page split caused by an insertion could sometimes cause a concurrently-running VACUUM to
miss removing index entries that it should remove. After the corresponding table rows are removed,
the dangling index entries would cause errors (such as “could not read block N in file ...”) or worse,
silently wrong query results after unrelated rows are re-inserted at the now-free table locations. This
bug has been present since release 8.2, but occurs so infrequently that it was not diagnosed until now.
If you have reason to suspect that it has happened in your database, reindexing the affected index will
fix things.

• Allow non-existent values for some settings in ALTER USER/DATABASE SET (Heikki Linnakangas)

Allow default_text_search_config, default_tablespace, and temp_tablespaces to be set
to names that are not known. This is because they might be known in another database where the setting
is intended to be used, or for the tablespace cases because the tablespace might not be created yet. The
same issue was previously recognized for search_path, and these settings now act like that one.

• Track the OID counter correctly during WAL replay, even when it wraps around (Tom Lane)

Previously the OID counter would remain stuck at a high value until the system exited replay mode.
The practical consequences of that are usually nil, but there are scenarios wherein a standby server
that’s been promoted to master might take a long time to advance the OID counter to a reasonable value
once values are needed.

• Fix regular expression back-references with * attached (Tom Lane)

Rather than enforcing an exact string match, the code would effectively accept any string that satisfies
the pattern sub-expression referenced by the back-reference symbol.

A similar problem still afflicts back-references that are embedded in a larger quantified expression,
rather than being the immediate subject of the quantifier. This will be addressed in a future PostgreSQL
release.

• Fix recently-introduced memory leak in processing of inet/cidr values (Heikki Linnakangas)

A patch in the December 2011 releases of PostgreSQL caused memory leakage in these operations,
which could be significant in scenarios such as building a btree index on such a column.

• Avoid double close of file handle in syslogger on Windows (MauMau)

Ordinarily this error was invisible, but it would cause an exception when running on a debug version of
Windows.

• Fix I/O-conversion-related memory leaks in plpgsql (Andres Freund, Jan Urbanski, Tom Lane)

Certain operations would leak memory until the end of the current function.

• Improve pg_dump’s handling of inherited table columns (Tom Lane)

pg_dump mishandled situations where a child column has a different default expression than its parent
column. If the default is textually identical to the parent’s default, but not actually the same (for instance,
because of schema search path differences) it would not be recognized as different, so that after dump
and restore the child would be allowed to inherit the parent’s default. Child columns that are NOT NULL

where their parent is not could also be restored subtly incorrectly.

• Fix pg_restore’s direct-to-database mode for INSERT-style table data (Tom Lane)

Direct-to-database restores from archive files made with --inserts or --column-inserts options
fail when using pg_restore from a release dated September or December 2011, as a result of an oversight
in a fix for another problem. The archive file itself is not at fault, and text-mode output is okay.

2271

Appendix E. Release Notes

• Fix error in contrib/intarray’s int[] & int[] operator (Guillaume Lelarge)

If the smallest integer the two input arrays have in common is 1, and there are smaller values in either
array, then 1 would be incorrectly omitted from the result.

• Fix error detection in contrib/pgcrypto’s encrypt_iv() and decrypt_iv() (Marko Kreen)

These functions failed to report certain types of invalid-input errors, and would instead return random
garbage values for incorrect input.

• Fix one-byte buffer overrun in contrib/test_parser (Paul Guyot)

The code would try to read one more byte than it should, which would crash in corner cases. Since
contrib/test_parser is only example code, this is not a security issue in itself, but bad example
code is still bad.

• Use __sync_lock_test_and_set() for spinlocks on ARM, if available (Martin Pitt)

This function replaces our previous use of the SWPB instruction, which is deprecated and not available
on ARMv6 and later. Reports suggest that the old code doesn’t fail in an obvious way on recent ARM
boards, but simply doesn’t interlock concurrent accesses, leading to bizarre failures in multiprocess
operation.

• Use -fexcess-precision=standard option when building with gcc versions that accept it (Andrew
Dunstan)

This prevents assorted scenarios wherein recent versions of gcc will produce creative results.

• Allow use of threaded Python on FreeBSD (Chris Rees)

Our configure script previously believed that this combination wouldn’t work; but FreeBSD fixed the
problem, so remove that error check.

E.66. Release 8.3.17

Release Date: 2011-12-05

This release contains a variety of fixes from 8.3.16. For information about new features in the 8.3 major
release, see Section E.83.

E.66.1. Migration to Version 8.3.17
A dump/restore is not required for those running 8.3.X.

However, a longstanding error was discovered in the definition of the
information_schema.referential_constraints view. If you rely on correct results from that
view, you should replace its definition as explained in the first changelog item below.

Also, if you are upgrading from a version earlier than 8.3.8, see Section E.75.

2272

Appendix E. Release Notes

E.66.2. Changes

• Fix bugs in information_schema.referential_constraints view (Tom Lane)

This view was being insufficiently careful about matching the foreign-key constraint to the depended-
on primary or unique key constraint. That could result in failure to show a foreign key constraint at all,
or showing it multiple times, or claiming that it depends on a different constraint than the one it really
does.

Since the view definition is installed by initdb, merely upgrading will not fix the problem. If you need
to fix this in an existing installation, you can (as a superuser) drop the information_schema schema
then re-create it by sourcing SHAREDIR/information_schema.sql. (Run pg_config --sharedir

if you’re uncertain where SHAREDIR is.) This must be repeated in each database to be fixed.

• Fix TOAST-related data corruption during CREATE TABLE dest AS SELECT * FROM src or
INSERT INTO dest SELECT * FROM src (Tom Lane)

If a table has been modified by ALTER TABLE ADD COLUMN, attempts to copy its data verbatim to
another table could produce corrupt results in certain corner cases. The problem can only manifest in
this precise form in 8.4 and later, but we patched earlier versions as well in case there are other code
paths that could trigger the same bug.

• Fix race condition during toast table access from stale syscache entries (Tom Lane)

The typical symptom was transient errors like “missing chunk number 0 for toast value NNNNN in
pg_toast_2619”, where the cited toast table would always belong to a system catalog.

• Make DatumGetInetP() unpack inet datums that have a 1-byte header, and add a new macro,
DatumGetInetPP(), that does not (Heikki Linnakangas)

This change affects no core code, but might prevent crashes in add-on code that expects
DatumGetInetP() to produce an unpacked datum as per usual convention.

• Improve locale support in money type’s input and output (Tom Lane)

Aside from not supporting all standard lc_monetary formatting options, the input and output func-
tions were inconsistent, meaning there were locales in which dumped money values could not be re-
read.

• Don’t let transform_null_equals affect CASE foo WHEN NULL ... constructs (Heikki
Linnakangas)

transform_null_equals is only supposed to affect foo = NULL expressions written directly by the
user, not equality checks generated internally by this form of CASE.

• Change foreign-key trigger creation order to better support self-referential foreign keys (Tom Lane)

For a cascading foreign key that references its own table, a row update will fire both the ON UPDATE

trigger and the CHECK trigger as one event. The ON UPDATE trigger must execute first, else the CHECK
will check a non-final state of the row and possibly throw an inappropriate error. However, the fir-
ing order of these triggers is determined by their names, which generally sort in creation order since
the triggers have auto-generated names following the convention “RI_ConstraintTrigger_NNNN”. A
proper fix would require modifying that convention, which we will do in 9.2, but it seems risky to
change it in existing releases. So this patch just changes the creation order of the triggers. Users en-
countering this type of error should drop and re-create the foreign key constraint to get its triggers into
the right order.

2273

Appendix E. Release Notes

• Avoid floating-point underflow while tracking buffer allocation rate (Greg Matthews)

While harmless in itself, on certain platforms this would result in annoying kernel log messages.

• Preserve blank lines within commands in psql’s command history (Robert Haas)

The former behavior could cause problems if an empty line was removed from within a string literal,
for example.

• Fix pg_dump to dump user-defined casts between auto-generated types, such as table rowtypes (Tom
Lane)

• Use the preferred version of xsubpp to build PL/Perl, not necessarily the operating system’s main copy
(David Wheeler and Alex Hunsaker)

• Fix incorrect coding in contrib/dict_int and contrib/dict_xsyn (Tom Lane)

Some functions incorrectly assumed that memory returned by palloc() is guaranteed zeroed.

• Honor query cancel interrupts promptly in pgstatindex() (Robert Haas)

• Ensure VPATH builds properly install all server header files (Peter Eisentraut)

• Shorten file names reported in verbose error messages (Peter Eisentraut)

Regular builds have always reported just the name of the C file containing the error message call, but
VPATH builds formerly reported an absolute path name.

• Fix interpretation of Windows timezone names for Central America (Tom Lane)

Map “Central America Standard Time” to CST6, not CST6CDT, because DST is generally not observed
anywhere in Central America.

• Update time zone data files to tzdata release 2011n for DST law changes in Brazil, Cuba, Fiji, Palestine,
Russia, and Samoa; also historical corrections for Alaska and British East Africa.

E.67. Release 8.3.16

Release Date: 2011-09-26

This release contains a variety of fixes from 8.3.15. For information about new features in the 8.3 major
release, see Section E.83.

E.67.1. Migration to Version 8.3.16
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

2274

Appendix E. Release Notes

E.67.2. Changes

• Fix bugs in indexing of in-doubt HOT-updated tuples (Tom Lane)

These bugs could result in index corruption after reindexing a system catalog. They are not believed to
affect user indexes.

• Fix multiple bugs in GiST index page split processing (Heikki Linnakangas)

The probability of occurrence was low, but these could lead to index corruption.

• Fix possible buffer overrun in tsvector_concat() (Tom Lane)

The function could underestimate the amount of memory needed for its result, leading to server crashes.

• Fix crash in xml_recv when processing a “standalone” parameter (Tom Lane)

• Avoid possibly accessing off the end of memory in ANALYZE and in SJIS-2004 encoding conversion
(Noah Misch)

This fixes some very-low-probability server crash scenarios.

• Fix race condition in relcache init file invalidation (Tom Lane)

There was a window wherein a new backend process could read a stale init file but miss the inval
messages that would tell it the data is stale. The result would be bizarre failures in catalog accesses,
typically “could not read block 0 in file ...” later during startup.

• Fix memory leak at end of a GiST index scan (Tom Lane)

Commands that perform many separate GiST index scans, such as verification of a new GiST-based
exclusion constraint on a table already containing many rows, could transiently require large amounts
of memory due to this leak.

• Fix performance problem when constructing a large, lossy bitmap (Tom Lane)

• Fix array- and path-creating functions to ensure padding bytes are zeroes (Tom Lane)

This avoids some situations where the planner will think that semantically-equal constants are not equal,
resulting in poor optimization.

• Work around gcc 4.6.0 bug that breaks WAL replay (Tom Lane)

This could lead to loss of committed transactions after a server crash.

• Fix dump bug for VALUES in a view (Tom Lane)

• Disallow SELECT FOR UPDATE/SHARE on sequences (Tom Lane)

This operation doesn’t work as expected and can lead to failures.

• Defend against integer overflow when computing size of a hash table (Tom Lane)

• Fix cases where CLUSTER might attempt to access already-removed TOAST data (Tom Lane)

• Fix portability bugs in use of credentials control messages for “peer” authentication (Tom Lane)

• Fix SSPI login when multiple roundtrips are required (Ahmed Shinwari, Magnus Hagander)

The typical symptom of this problem was “The function requested is not supported” errors during SSPI
login.

• Fix typo in pg_srand48 seed initialization (Andres Freund)

2275

Appendix E. Release Notes

This led to failure to use all bits of the provided seed. This function is not used on most platforms (only
those without srandom), and the potential security exposure from a less-random-than-expected seed
seems minimal in any case.

• Avoid integer overflow when the sum of LIMIT and OFFSET values exceeds 2^63 (Heikki Linnakangas)

• Add overflow checks to int4 and int8 versions of generate_series() (Robert Haas)

• Fix trailing-zero removal in to_char() (Marti Raudsepp)

In a format with FM and no digit positions after the decimal point, zeroes to the left of the decimal point
could be removed incorrectly.

• Fix pg_size_pretty() to avoid overflow for inputs close to 2^63 (Tom Lane)

• In pg_ctl, support silent mode for service registrations on Windows (MauMau)

• Fix psql’s counting of script file line numbers during COPY from a different file (Tom Lane)

• Fix pg_restore’s direct-to-database mode for standard_conforming_strings (Tom Lane)

pg_restore could emit incorrect commands when restoring directly to a database server from an archive
file that had been made with standard_conforming_strings set to on.

• Fix write-past-buffer-end and memory leak in libpq’s LDAP service lookup code (Albe Laurenz)

• In libpq, avoid failures when using nonblocking I/O and an SSL connection (Martin Pihlak, Tom Lane)

• Improve libpq’s handling of failures during connection startup (Tom Lane)

In particular, the response to a server report of fork() failure during SSL connection startup is now
saner.

• Improve libpq’s error reporting for SSL failures (Tom Lane)

• Make ecpglib write double values with 15 digits precision (Akira Kurosawa)

• In ecpglib, be sure LC_NUMERIC setting is restored after an error (Michael Meskes)

• Apply upstream fix for blowfish signed-character bug (CVE-2011-2483) (Tom Lane)

contrib/pg_crypto’s blowfish encryption code could give wrong results on platforms where char is
signed (which is most), leading to encrypted passwords being weaker than they should be.

• Fix memory leak in contrib/seg (Heikki Linnakangas)

• Fix pgstatindex() to give consistent results for empty indexes (Tom Lane)

• Allow building with perl 5.14 (Alex Hunsaker)

• Update configure script’s method for probing existence of system functions (Tom Lane)

The version of autoconf we used in 8.3 and 8.2 could be fooled by compilers that perform link-time
optimization.

• Fix assorted issues with build and install file paths containing spaces (Tom Lane)

• Update time zone data files to tzdata release 2011i for DST law changes in Canada, Egypt, Russia,
Samoa, and South Sudan.

2276

Appendix E. Release Notes

E.68. Release 8.3.15

Release Date: 2011-04-18

This release contains a variety of fixes from 8.3.14. For information about new features in the 8.3 major
release, see Section E.83.

E.68.1. Migration to Version 8.3.15
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

E.68.2. Changes

• Disallow including a composite type in itself (Tom Lane)

This prevents scenarios wherein the server could recurse infinitely while processing the composite type.
While there are some possible uses for such a structure, they don’t seem compelling enough to justify
the effort required to make sure it always works safely.

• Avoid potential deadlock during catalog cache initialization (Nikhil Sontakke)

In some cases the cache loading code would acquire share lock on a system index before locking the
index’s catalog. This could deadlock against processes trying to acquire exclusive locks in the other,
more standard order.

• Fix dangling-pointer problem in BEFORE ROW UPDATE trigger handling when there was a concurrent
update to the target tuple (Tom Lane)

This bug has been observed to result in intermittent “cannot extract system attribute from virtual tu-
ple” failures while trying to do UPDATE RETURNING ctid. There is a very small probability of more
serious errors, such as generating incorrect index entries for the updated tuple.

• Disallow DROP TABLE when there are pending deferred trigger events for the table (Tom Lane)

Formerly the DROP would go through, leading to “could not open relation with OID nnn” errors when
the triggers were eventually fired.

• Fix PL/Python memory leak involving array slices (Daniel Popowich)

• Fix pg_restore to cope with long lines (over 1KB) in TOC files (Tom Lane)

• Put in more safeguards against crashing due to division-by-zero with overly enthusiastic compiler opti-
mization (Aurelien Jarno)

• Support use of dlopen() in FreeBSD and OpenBSD on MIPS (Tom Lane)

There was a hard-wired assumption that this system function was not available on MIPS hardware on
these systems. Use a compile-time test instead, since more recent versions have it.

• Fix compilation failures on HP-UX (Heikki Linnakangas)

2277

Appendix E. Release Notes

• Fix version-incompatibility problem with libintl on Windows (Hiroshi Inoue)

• Fix usage of xcopy in Windows build scripts to work correctly under Windows 7 (Andrew Dunstan)

This affects the build scripts only, not installation or usage.

• Fix path separator used by pg_regress on Cygwin (Andrew Dunstan)

• Update time zone data files to tzdata release 2011f for DST law changes in Chile, Cuba, Falkland Is-
lands, Morocco, Samoa, and Turkey; also historical corrections for South Australia, Alaska, and Hawaii.

E.69. Release 8.3.14

Release Date: 2011-01-31

This release contains a variety of fixes from 8.3.13. For information about new features in the 8.3 major
release, see Section E.83.

E.69.1. Migration to Version 8.3.14
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

E.69.2. Changes

• Avoid failures when EXPLAIN tries to display a simple-form CASE expression (Tom Lane)

If the CASE’s test expression was a constant, the planner could simplify the CASE into a form that
confused the expression-display code, resulting in “unexpected CASE WHEN clause” errors.

• Fix assignment to an array slice that is before the existing range of subscripts (Tom Lane)

If there was a gap between the newly added subscripts and the first pre-existing subscript, the code mis-
calculated how many entries needed to be copied from the old array’s null bitmap, potentially leading
to data corruption or crash.

• Avoid unexpected conversion overflow in planner for very distant date values (Tom Lane)

The date type supports a wider range of dates than can be represented by the timestamp types, but
the planner assumed it could always convert a date to timestamp with impunity.

• Fix pg_restore’s text output for large objects (BLOBs) when standard_conforming_strings is on
(Tom Lane)

Although restoring directly to a database worked correctly, string escaping was incorrect if pg_restore
was asked for SQL text output and standard_conforming_strings had been enabled in the source
database.

2278

Appendix E. Release Notes

• Fix erroneous parsing of tsquery values containing ... & !(subexpression) | ... (Tom Lane)

Queries containing this combination of operators were not executed correctly. The same error existed
in contrib/intarray’s query_int type and contrib/ltree’s ltxtquery type.

• Fix buffer overrun in contrib/intarray’s input function for the query_int type (Apple)

This bug is a security risk since the function’s return address could be overwritten. Thanks to Apple
Inc’s security team for reporting this issue and supplying the fix. (CVE-2010-4015)

• Fix bug in contrib/seg’s GiST picksplit algorithm (Alexander Korotkov)

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a seg column. If you have such an index, consider REINDEXing it after installing this update. (This
is identical to the bug that was fixed in contrib/cube in the previous update.)

E.70. Release 8.3.13

Release Date: 2010-12-16

This release contains a variety of fixes from 8.3.12. For information about new features in the 8.3 major
release, see Section E.83.

E.70.1. Migration to Version 8.3.13
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

E.70.2. Changes

• Force the default wal_sync_method to be fdatasync on Linux (Tom Lane, Marti Raudsepp)

The default on Linux has actually been fdatasync for many years, but recent kernel changes caused
PostgreSQL to choose open_datasync instead. This choice did not result in any performance im-
provement, and caused outright failures on certain filesystems, notably ext4 with the data=journal
mount option.

• Fix assorted bugs in WAL replay logic for GIN indexes (Tom Lane)

This could result in “bad buffer id: 0” failures or corruption of index contents during replication.

• Fix recovery from base backup when the starting checkpoint WAL record is not in the same WAL
segment as its redo point (Jeff Davis)

• Fix persistent slowdown of autovacuum workers when multiple workers remain active for a long time
(Tom Lane)

2279

Appendix E. Release Notes

The effective vacuum_cost_limit for an autovacuum worker could drop to nearly zero if it processed
enough tables, causing it to run extremely slowly.

• Add support for detecting register-stack overrun on IA64 (Tom Lane)

The IA64 architecture has two hardware stacks. Full prevention of stack-overrun failures requires
checking both.

• Add a check for stack overflow in copyObject() (Tom Lane)

Certain code paths could crash due to stack overflow given a sufficiently complex query.

• Fix detection of page splits in temporary GiST indexes (Heikki Linnakangas)

It is possible to have a “concurrent” page split in a temporary index, if for example there is an open
cursor scanning the index when an insertion is done. GiST failed to detect this case and hence could
deliver wrong results when execution of the cursor continued.

• Avoid memory leakage while ANALYZE’ing complex index expressions (Tom Lane)

• Ensure an index that uses a whole-row Var still depends on its table (Tom Lane)

An index declared like create index i on t (foo(t.*)) would not automatically get dropped
when its table was dropped.

• Do not “inline” a SQL function with multiple OUT parameters (Tom Lane)

This avoids a possible crash due to loss of information about the expected result rowtype.

• Behave correctly if ORDER BY, LIMIT, FOR UPDATE, or WITH is attached to the VALUES part of
INSERT ... VALUES (Tom Lane)

• Fix constant-folding of COALESCE() expressions (Tom Lane)

The planner would sometimes attempt to evaluate sub-expressions that in fact could never be reached,
possibly leading to unexpected errors.

• Fix postmaster crash when connection acceptance (accept() or one of the calls made immediately
after it) fails, and the postmaster was compiled with GSSAPI support (Alexander Chernikov)

• Fix missed unlink of temporary files when log_temp_files is active (Tom Lane)

If an error occurred while attempting to emit the log message, the unlink was not done, resulting in
accumulation of temp files.

• Add print functionality for InhRelation nodes (Tom Lane)

This avoids a failure when debug_print_parse is enabled and certain types of query are executed.

• Fix incorrect calculation of distance from a point to a horizontal line segment (Tom Lane)

This bug affected several different geometric distance-measurement operators.

• Fix PL/pgSQL’s handling of “simple” expressions to not fail in recursion or error-recovery cases (Tom
Lane)

• Fix PL/Python’s handling of set-returning functions (Jan Urbanski)

Attempts to call SPI functions within the iterator generating a set result would fail.

• Fix bug in contrib/cube’s GiST picksplit algorithm (Alexander Korotkov)

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a cube column. If you have such an index, consider REINDEXing it after installing this update.

2280

Appendix E. Release Notes

• Don’t emit “identifier will be truncated” notices in contrib/dblink except when creating new con-
nections (Itagaki Takahiro)

• Fix potential coredump on missing public key in contrib/pgcrypto (Marti Raudsepp)

• Fix memory leak in contrib/xml2’s XPath query functions (Tom Lane)

• Update time zone data files to tzdata release 2010o for DST law changes in Fiji and Samoa; also
historical corrections for Hong Kong.

E.71. Release 8.3.12

Release Date: 2010-10-04

This release contains a variety of fixes from 8.3.11. For information about new features in the 8.3 major
release, see Section E.83.

E.71.1. Migration to Version 8.3.12
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

E.71.2. Changes

• Use a separate interpreter for each calling SQL userid in PL/Perl and PL/Tcl (Tom Lane)

This change prevents security problems that can be caused by subverting Perl or Tcl code that will be
executed later in the same session under another SQL user identity (for example, within a SECURITY

DEFINER function). Most scripting languages offer numerous ways that that might be done, such as
redefining standard functions or operators called by the target function. Without this change, any SQL
user with Perl or Tcl language usage rights can do essentially anything with the SQL privileges of the
target function’s owner.

The cost of this change is that intentional communication among Perl and Tcl functions becomes more
difficult. To provide an escape hatch, PL/PerlU and PL/TclU functions continue to use only one inter-
preter per session. This is not considered a security issue since all such functions execute at the trust
level of a database superuser already.

It is likely that third-party procedural languages that claim to offer trusted execution have similar se-
curity issues. We advise contacting the authors of any PL you are depending on for security-critical
purposes.

Our thanks to Tim Bunce for pointing out this issue (CVE-2010-3433).

• Prevent possible crashes in pg_get_expr() by disallowing it from being called with an argument that
is not one of the system catalog columns it’s intended to be used with (Heikki Linnakangas, Tom Lane)

2281

Appendix E. Release Notes

• Treat exit code 128 (ERROR_WAIT_NO_CHILDREN) as non-fatal on Windows (Magnus Hagander)

Under high load, Windows processes will sometimes fail at startup with this error code. Formerly the
postmaster treated this as a panic condition and restarted the whole database, but that seems to be an
overreaction.

• Fix incorrect usage of non-strict OR joinclauses in Append indexscans (Tom Lane)

This is a back-patch of an 8.4 fix that was missed in the 8.3 branch. This corrects an error introduced in
8.3.8 that could cause incorrect results for outer joins when the inner relation is an inheritance tree or
UNION ALL subquery.

• Fix possible duplicate scans of UNION ALL member relations (Tom Lane)

• Fix “cannot handle unplanned sub-select” error (Tom Lane)

This occurred when a sub-select contains a join alias reference that expands into an expression contain-
ing another sub-select.

• Fix failure to mark cached plans as transient (Tom Lane)

If a plan is prepared while CREATE INDEX CONCURRENTLY is in progress for one of the referenced
tables, it is supposed to be re-planned once the index is ready for use. This was not happening reliably.

• Reduce PANIC to ERROR in some occasionally-reported btree failure cases, and provide additional
detail in the resulting error messages (Tom Lane)

This should improve the system’s robustness with corrupted indexes.

• Prevent show_session_authorization() from crashing within autovacuum processes (Tom Lane)

• Defend against functions returning setof record where not all the returned rows are actually of the same
rowtype (Tom Lane)

• Fix possible failure when hashing a pass-by-reference function result (Tao Ma, Tom Lane)

• Improve merge join’s handling of NULLs in the join columns (Tom Lane)

A merge join can now stop entirely upon reaching the first NULL, if the sort order is such that NULLs
sort high.

• Take care to fsync the contents of lockfiles (both postmaster.pid and the socket lockfile) while
writing them (Tom Lane)

This omission could result in corrupted lockfile contents if the machine crashes shortly after postmaster
start. That could in turn prevent subsequent attempts to start the postmaster from succeeding, until the
lockfile is manually removed.

• Avoid recursion while assigning XIDs to heavily-nested subtransactions (Andres Freund, Robert Haas)

The original coding could result in a crash if there was limited stack space.

• Avoid holding open old WAL segments in the walwriter process (Magnus Hagander, Heikki Linnakan-
gas)

The previous coding would prevent removal of no-longer-needed segments.

• Fix log_line_prefix’s %i escape, which could produce junk early in backend startup (Tom Lane)

• Fix possible data corruption in ALTER TABLE ... SET TABLESPACE when archiving is enabled (Jeff
Davis)

2282

Appendix E. Release Notes

• Allow CREATE DATABASE and ALTER DATABASE ... SET TABLESPACE to be interrupted by
query-cancel (Guillaume Lelarge)

• Fix REASSIGN OWNED to handle operator classes and families (Asko Tiidumaa)

• Fix possible core dump when comparing two empty tsquery values (Tom Lane)

• Fix LIKE’s handling of patterns containing % followed by _ (Tom Lane)

We’ve fixed this before, but there were still some incorrectly-handled cases.

• In PL/Python, defend against null pointer results from PyCObject_AsVoidPtr and
PyCObject_FromVoidPtr (Peter Eisentraut)

• Make psql recognize DISCARD ALL as a command that should not be encased in a transaction block in
autocommit-off mode (Itagaki Takahiro)

• Fix ecpg to process data from RETURNING clauses correctly (Michael Meskes)

• Improve contrib/dblink’s handling of tables containing dropped columns (Tom Lane)

• Fix connection leak after “duplicate connection name” errors in contrib/dblink (Itagaki Takahiro)

• Fix contrib/dblink to handle connection names longer than 62 bytes correctly (Itagaki Takahiro)

• Add hstore(text, text) function to contrib/hstore (Robert Haas)

This function is the recommended substitute for the now-deprecated => operator. It was back-patched
so that future-proofed code can be used with older server versions. Note that the patch will be effective
only after contrib/hstore is installed or reinstalled in a particular database. Users might prefer to
execute the CREATE FUNCTION command by hand, instead.

• Update build infrastructure and documentation to reflect the source code repository’s move from CVS
to Git (Magnus Hagander and others)

• Update time zone data files to tzdata release 2010l for DST law changes in Egypt and Palestine; also
historical corrections for Finland.

This change also adds new names for two Micronesian timezones: Pacific/Chuuk is now preferred over
Pacific/Truk (and the preferred abbreviation is CHUT not TRUT) and Pacific/Pohnpei is preferred over
Pacific/Ponape.

• Make Windows’ “N. Central Asia Standard Time” timezone map to Asia/Novosibirsk, not Asia/Almaty
(Magnus Hagander)

Microsoft changed the DST behavior of this zone in the timezone update from KB976098.
Asia/Novosibirsk is a better match to its new behavior.

E.72. Release 8.3.11

Release Date: 2010-05-17

This release contains a variety of fixes from 8.3.10. For information about new features in the 8.3 major
release, see Section E.83.

2283

Appendix E. Release Notes

E.72.1. Migration to Version 8.3.11
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

E.72.2. Changes

• Enforce restrictions in plperl using an opmask applied to the whole interpreter, instead of using
Safe.pm (Tim Bunce, Andrew Dunstan)

Recent developments have convinced us that Safe.pm is too insecure to rely on for making plperl

trustable. This change removes use of Safe.pm altogether, in favor of using a separate interpreter with
an opcode mask that is always applied. Pleasant side effects of the change include that it is now possible
to use Perl’s strict pragma in a natural way in plperl, and that Perl’s $a and $b variables work as
expected in sort routines, and that function compilation is significantly faster. (CVE-2010-1169)

• Prevent PL/Tcl from executing untrustworthy code from pltcl_modules (Tom)

PL/Tcl’s feature for autoloading Tcl code from a database table could be exploited for trojan-horse
attacks, because there was no restriction on who could create or insert into that table. This change
disables the feature unless pltcl_modules is owned by a superuser. (However, the permissions on the
table are not checked, so installations that really need a less-than-secure modules table can still grant
suitable privileges to trusted non-superusers.) Also, prevent loading code into the unrestricted “normal”
Tcl interpreter unless we are really going to execute a pltclu function. (CVE-2010-1170)

• Fix possible crash if a cache reset message is received during rebuild of a relcache entry (Heikki)

This error was introduced in 8.3.10 while fixing a related failure.

• Apply per-function GUC settings while running the language validator for the function (Itagaki
Takahiro)

This avoids failures if the function’s code is invalid without the setting; an example is that SQL functions
may not parse if the search_path is not correct.

• Do not allow an unprivileged user to reset superuser-only parameter settings (Alvaro)

Previously, if an unprivileged user ran ALTER USER ... RESET ALL for himself, or ALTER

DATABASE ... RESET ALL for a database he owns, this would remove all special parameter settings
for the user or database, even ones that are only supposed to be changeable by a superuser. Now, the
ALTER will only remove the parameters that the user has permission to change.

• Avoid possible crash during backend shutdown if shutdown occurs when a CONTEXT addition would be
made to log entries (Tom)

In some cases the context-printing function would fail because the current transaction had already been
rolled back when it came time to print a log message.

• Ensure the archiver process responds to changes in archive_command as soon as possible (Tom)

• Update pl/perl’s ppport.h for modern Perl versions (Andrew)

• Fix assorted memory leaks in pl/python (Andreas Freund, Tom)

• Prevent infinite recursion in psql when expanding a variable that refers to itself (Tom)

2284

Appendix E. Release Notes

• Fix psql’s \copy to not add spaces around a dot within \copy (select ...) (Tom)

Addition of spaces around the decimal point in a numeric literal would result in a syntax error.

• Fix unnecessary “GIN indexes do not support whole-index scans” errors for unsatisfiable queries using
contrib/intarray operators (Tom)

• Ensure that contrib/pgstattuple functions respond to cancel interrupts promptly (Tatsuhito Kasa-
hara)

• Make server startup deal properly with the case that shmget() returns EINVAL for an existing shared
memory segment (Tom)

This behavior has been observed on BSD-derived kernels including OS X. It resulted in an entirely-
misleading startup failure complaining that the shared memory request size was too large.

• Avoid possible crashes in syslogger process on Windows (Heikki)

• Deal more robustly with incomplete time zone information in the Windows registry (Magnus)

• Update the set of known Windows time zone names (Magnus)

• Update time zone data files to tzdata release 2010j for DST law changes in Argentina, Australian
Antarctic, Bangladesh, Mexico, Morocco, Pakistan, Palestine, Russia, Syria, Tunisia; also historical
corrections for Taiwan.

Also, add PKST (Pakistan Summer Time) to the default set of timezone abbreviations.

E.73. Release 8.3.10

Release Date: 2010-03-15

This release contains a variety of fixes from 8.3.9. For information about new features in the 8.3 major
release, see Section E.83.

E.73.1. Migration to Version 8.3.10
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

E.73.2. Changes

• Add new configuration parameter ssl_renegotiation_limit to control how often we do session
key renegotiation for an SSL connection (Magnus)

This can be set to zero to disable renegotiation completely, which may be required if a broken SSL
library is used. In particular, some vendors are shipping stopgap patches for CVE-2009-3555 that cause
renegotiation attempts to fail.

2285

Appendix E. Release Notes

• Fix possible deadlock during backend startup (Tom)

• Fix possible crashes due to not handling errors during relcache reload cleanly (Tom)

• Fix possible crash due to use of dangling pointer to a cached plan (Tatsuo)

• Fix possible crashes when trying to recover from a failure in subtransaction start (Tom)

• Fix server memory leak associated with use of savepoints and a client encoding different from server’s
encoding (Tom)

• Fix incorrect WAL data emitted during end-of-recovery cleanup of a GIST index page split (Yoichi
Hirai)

This would result in index corruption, or even more likely an error during WAL replay, if we were
unlucky enough to crash during end-of-recovery cleanup after having completed an incomplete GIST
insertion.

• Make substring() for bit types treat any negative length as meaning “all the rest of the string”
(Tom)

The previous coding treated only -1 that way, and would produce an invalid result value for other
negative values, possibly leading to a crash (CVE-2010-0442).

• Fix integer-to-bit-string conversions to handle the first fractional byte correctly when the output bit
width is wider than the given integer by something other than a multiple of 8 bits (Tom)

• Fix some cases of pathologically slow regular expression matching (Tom)

• Fix assorted crashes in xml processing caused by sloppy memory management (Tom)

This is a back-patch of changes first applied in 8.4. The 8.3 code was known buggy, but the new code
was sufficiently different to not want to back-patch it until it had gotten some field testing.

• Fix bug with trying to update a field of an element of a composite-type array column (Tom)

• Fix the STOP WAL LOCATION entry in backup history files to report the next WAL segment’s name
when the end location is exactly at a segment boundary (Itagaki Takahiro)

• Fix some more cases of temporary-file leakage (Heikki)

This corrects a problem introduced in the previous minor release. One case that failed is when a plpgsql
function returning set is called within another function’s exception handler.

• Improve constraint exclusion processing of boolean-variable cases, in particular make it possible to
exclude a partition that has a “bool_column = false” constraint (Tom)

• When reading pg_hba.conf and related files, do not treat @something as a file inclusion request if
the @ appears inside quote marks; also, never treat @ by itself as a file inclusion request (Tom)

This prevents erratic behavior if a role or database name starts with @. If you need to include a file
whose path name contains spaces, you can still do so, but you must write @"/path to/file" rather
than putting the quotes around the whole construct.

• Prevent infinite loop on some platforms if a directory is named as an inclusion target in pg_hba.conf

and related files (Tom)

• Fix possible infinite loop if SSL_read or SSL_write fails without setting errno (Tom)

This is reportedly possible with some Windows versions of openssl.

2286

Appendix E. Release Notes

• Disallow GSSAPI authentication on local connections, since it requires a hostname to function correctly
(Magnus)

• Make ecpg report the proper SQLSTATE if the connection disappears (Michael)

• Fix psql’s numericlocale option to not format strings it shouldn’t in latex and troff output formats
(Heikki)

• Make psql return the correct exit status (3) when ON_ERROR_STOP and --single-transaction are
both specified and an error occurs during the implied COMMIT (Bruce)

• Fix plpgsql failure in one case where a composite column is set to NULL (Tom)

• Fix possible failure when calling PL/Perl functions from PL/PerlU or vice versa (Tim Bunce)

• Add volatile markings in PL/Python to avoid possible compiler-specific misbehavior (Zdenek Ko-
tala)

• Ensure PL/Tcl initializes the Tcl interpreter fully (Tom)

The only known symptom of this oversight is that the Tcl clock command misbehaves if using Tcl 8.5
or later.

• Prevent crash in contrib/dblink when too many key columns are specified to a
dblink_build_sql_* function (Rushabh Lathia, Joe Conway)

• Allow zero-dimensional arrays in contrib/ltree operations (Tom)

This case was formerly rejected as an error, but it’s more convenient to treat it the same as a zero-
element array. In particular this avoids unnecessary failures when an ltree operation is applied to the
result of ARRAY(SELECT ...) and the sub-select returns no rows.

• Fix assorted crashes in contrib/xml2 caused by sloppy memory management (Tom)

• Make building of contrib/xml2 more robust on Windows (Andrew)

• Fix race condition in Windows signal handling (Radu Ilie)

One known symptom of this bug is that rows in pg_listener could be dropped under heavy load.

• Update time zone data files to tzdata release 2010e for DST law changes in Bangladesh, Chile, Fiji,
Mexico, Paraguay, Samoa.

E.74. Release 8.3.9

Release Date: 2009-12-14

This release contains a variety of fixes from 8.3.8. For information about new features in the 8.3 major
release, see Section E.83.

2287

Appendix E. Release Notes

E.74.1. Migration to Version 8.3.9
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.8, see Section E.75.

E.74.2. Changes

• Protect against indirect security threats caused by index functions changing session-local state (Gurjeet
Singh, Tom)

This change prevents allegedly-immutable index functions from possibly subverting a superuser’s ses-
sion (CVE-2009-4136).

• Reject SSL certificates containing an embedded null byte in the common name (CN) field (Magnus)

This prevents unintended matching of a certificate to a server or client name during SSL validation
(CVE-2009-4034).

• Fix possible crash during backend-startup-time cache initialization (Tom)

• Avoid crash on empty thesaurus dictionary (Tom)

• Prevent signals from interrupting VACUUM at unsafe times (Alvaro)

This fix prevents a PANIC if a VACUUM FULL is canceled after it’s already committed its tuple move-
ments, as well as transient errors if a plain VACUUM is interrupted after having truncated the table.

• Fix possible crash due to integer overflow in hash table size calculation (Tom)

This could occur with extremely large planner estimates for the size of a hashjoin’s result.

• Fix very rare crash in inet/cidr comparisons (Chris Mikkelson)

• Ensure that shared tuple-level locks held by prepared transactions are not ignored (Heikki)

• Fix premature drop of temporary files used for a cursor that is accessed within a subtransaction (Heikki)

• Fix memory leak in syslogger process when rotating to a new CSV logfile (Tom)

• Fix Windows permission-downgrade logic (Jesse Morris)

This fixes some cases where the database failed to start on Windows, often with misleading error mes-
sages such as “could not locate matching postgres executable”.

• Fix incorrect logic for GiST index page splits, when the split depends on a non-first column of the index
(Paul Ramsey)

• Don’t error out if recycling or removing an old WAL file fails at the end of checkpoint (Heikki)

It’s better to treat the problem as non-fatal and allow the checkpoint to complete. Future checkpoints
will retry the removal. Such problems are not expected in normal operation, but have been seen to be
caused by misdesigned Windows anti-virus and backup software.

• Ensure WAL files aren’t repeatedly archived on Windows (Heikki)

This is another symptom that could happen if some other process interfered with deletion of a no-
longer-needed file.

• Fix PAM password processing to be more robust (Tom)

2288

Appendix E. Release Notes

The previous code is known to fail with the combination of the Linux pam_krb5 PAM module with
Microsoft Active Directory as the domain controller. It might have problems elsewhere too, since it was
making unjustified assumptions about what arguments the PAM stack would pass to it.

• Raise the maximum authentication token (Kerberos ticket) size in GSSAPI and SSPI authentication
methods (Ian Turner)

While the old 2000-byte limit was more than enough for Unix Kerberos implementations, tickets issued
by Windows Domain Controllers can be much larger.

• Re-enable collection of access statistics for sequences (Akira Kurosawa)

This used to work but was broken in 8.3.

• Fix processing of ownership dependencies during CREATE OR REPLACE FUNCTION (Tom)

• Fix incorrect handling of WHERE x=x conditions (Tom)

In some cases these could get ignored as redundant, but they aren’t — they’re equivalent to x IS NOT

NULL.

• Make text search parser accept underscores in XML attributes (Peter)

• Fix encoding handling in xml binary input (Heikki)

If the XML header doesn’t specify an encoding, we now assume UTF-8 by default; the previous han-
dling was inconsistent.

• Fix bug with calling plperl from plperlu or vice versa (Tom)

An error exit from the inner function could result in crashes due to failure to re-select the correct Perl
interpreter for the outer function.

• Fix session-lifespan memory leak when a PL/Perl function is redefined (Tom)

• Ensure that Perl arrays are properly converted to PostgreSQL arrays when returned by a set-returning
PL/Perl function (Andrew Dunstan, Abhijit Menon-Sen)

This worked correctly already for non-set-returning functions.

• Fix rare crash in exception processing in PL/Python (Peter)

• In contrib/pg_standby, disable triggering failover with a signal on Windows (Fujii Masao)

This never did anything useful, because Windows doesn’t have Unix-style signals, but recent changes
made it actually crash.

• Ensure psql’s flex module is compiled with the correct system header definitions (Tom)

This fixes build failures on platforms where --enable-largefile causes incompatible changes in
the generated code.

• Make the postmaster ignore any application_name parameter in connection request packets, to im-
prove compatibility with future libpq versions (Tom)

• Update the timezone abbreviation files to match current reality (Joachim Wieland)

This includes adding IDT and SGT to the default timezone abbreviation set.

• Update time zone data files to tzdata release 2009s for DST law changes in Antarctica, Argentina,
Bangladesh, Fiji, Novokuznetsk, Pakistan, Palestine, Samoa, Syria; also historical corrections for Hong
Kong.

2289

Appendix E. Release Notes

E.75. Release 8.3.8

Release Date: 2009-09-09

This release contains a variety of fixes from 8.3.7. For information about new features in the 8.3 major
release, see Section E.83.

E.75.1. Migration to Version 8.3.8
A dump/restore is not required for those running 8.3.X. However, if you have any hash indexes on
interval columns, you must REINDEX them after updating to 8.3.8. Also, if you are upgrading from
a version earlier than 8.3.5, see Section E.78.

E.75.2. Changes

• Fix Windows shared-memory allocation code (Tsutomu Yamada, Magnus)

This bug led to the often-reported “could not reattach to shared memory” error message.

• Force WAL segment switch during pg_start_backup() (Heikki)

This avoids corner cases that could render a base backup unusable.

• Disallow RESET ROLE and RESET SESSION AUTHORIZATION inside security-definer functions
(Tom, Heikki)

This covers a case that was missed in the previous patch that disallowed SET ROLE and SET SESSION

AUTHORIZATION inside security-definer functions. (See CVE-2007-6600)

• Make LOAD of an already-loaded loadable module into a no-op (Tom)

Formerly, LOAD would attempt to unload and re-load the module, but this is unsafe and not all that
useful.

• Disallow empty passwords during LDAP authentication (Magnus)

• Fix handling of sub-SELECTs appearing in the arguments of an outer-level aggregate function (Tom)

• Fix bugs associated with fetching a whole-row value from the output of a Sort or Materialize plan node
(Tom)

• Prevent synchronize_seqscans from changing the results of scrollable and WITH HOLD cursors
(Tom)

• Revert planner change that disabled partial-index and constraint exclusion optimizations when there
were more than 100 clauses in an AND or OR list (Tom)

• Fix hash calculation for data type interval (Tom)

This corrects wrong results for hash joins on interval values. It also changes the contents of hash indexes
on interval columns. If you have any such indexes, you must REINDEX them after updating.

• Treat to_char(..., ’TH’) as an uppercase ordinal suffix with ’HH’/’HH12’ (Heikki)

2290

Appendix E. Release Notes

It was previously handled as ’th’ (lowercase).

• Fix overflow for INTERVAL ’x ms’ when x is more than 2 million and integer datetimes are in use
(Alex Hunsaker)

• Fix calculation of distance between a point and a line segment (Tom)

This led to incorrect results from a number of geometric operators.

• Fix money data type to work in locales where currency amounts have no fractional digits, e.g. Japan
(Itagaki Takahiro)

• Fix LIKE for case where pattern contains %_ (Tom)

• Properly round datetime input like 00:12:57.9999999999999999999999999999 (Tom)

• Fix memory leaks in XML operations (Tom)

• Fix poor choice of page split point in GiST R-tree operator classes (Teodor)

• Ensure that a “fast shutdown” request will forcibly terminate open sessions, even if a “smart shutdown”
was already in progress (Fujii Masao)

• Avoid performance degradation in bulk inserts into GIN indexes when the input values are (nearly) in
sorted order (Tom)

• Correctly enforce NOT NULL domain constraints in some contexts in PL/pgSQL (Tom)

• Fix portability issues in plperl initialization (Andrew Dunstan)

• Fix pg_ctl to not go into an infinite loop if postgresql.conf is empty (Jeff Davis)

• Improve pg_dump’s efficiency when there are many large objects (Tamas Vincze)

• Use SIGUSR1, not SIGQUIT, as the failover signal for pg_standby (Heikki)

• Make pg_standby’s maxretries option behave as documented (Fujii Masao)

• Make contrib/hstore throw an error when a key or value is too long to fit in its data structure, rather
than silently truncating it (Andrew Gierth)

• Fix contrib/xml2’s xslt_process() to properly handle the maximum number of parameters
(twenty) (Tom)

• Improve robustness of libpq’s code to recover from errors during COPY FROM STDIN (Tom)

• Avoid including conflicting readline and editline header files when both libraries are installed (Zdenek
Kotala)

• Update time zone data files to tzdata release 2009l for DST law changes in Bangladesh, Egypt, Jordan,
Pakistan, Argentina/San_Luis, Cuba, Jordan (historical correction only), Mauritius, Morocco, Palestine,
Syria, Tunisia.

E.76. Release 8.3.7

Release Date: 2009-03-16

2291

Appendix E. Release Notes

This release contains a variety of fixes from 8.3.6. For information about new features in the 8.3 major
release, see Section E.83.

E.76.1. Migration to Version 8.3.7
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.5, see Section E.78.

E.76.2. Changes

• Prevent error recursion crashes when encoding conversion fails (Tom)

This change extends fixes made in the last two minor releases for related failure scenarios. The previous
fixes were narrowly tailored for the original problem reports, but we have now recognized that any error
thrown by an encoding conversion function could potentially lead to infinite recursion while trying to
report the error. The solution therefore is to disable translation and encoding conversion and report
the plain-ASCII form of any error message, if we find we have gotten into a recursive error reporting
situation. (CVE-2009-0922)

• Disallow CREATE CONVERSION with the wrong encodings for the specified conversion function
(Heikki)

This prevents one possible scenario for encoding conversion failure. The previous change is a backstop
to guard against other kinds of failures in the same area.

• Fix xpath() to not modify the path expression unless necessary, and to make a saner attempt at it when
necessary (Andrew)

The SQL standard suggests that xpath should work on data that is a document fragment, but libxml
doesn’t support that, and indeed it’s not clear that this is sensible according to the XPath standard.
xpath attempted to work around this mismatch by modifying both the data and the path expression,
but the modification was buggy and could cause valid searches to fail. Now, xpath checks whether the
data is in fact a well-formed document, and if so invokes libxml with no change to the data or path
expression. Otherwise, a different modification method that is somewhat less likely to fail is used.

Note: The new modification method is still not 100% satisfactory, and it seems likely that no real
solution is possible. This patch should therefore be viewed as a band-aid to keep from breaking
existing applications unnecessarily. It is likely that PostgreSQL 8.4 will simply reject use of xpath
on data that is not a well-formed document.

• Fix core dump when to_char() is given format codes that are inappropriate for the type of the data
argument (Tom)

• Fix possible failure in text search when C locale is used with a multi-byte encoding (Teodor)

Crashes were possible on platforms where wchar_t is narrower than int; Windows in particular.

2292

Appendix E. Release Notes

• Fix extreme inefficiency in text search parser’s handling of an email-like string containing multiple @

characters (Heikki)

• Fix planner problem with sub-SELECT in the output list of a larger subquery (Tom)

The known symptom of this bug is a “failed to locate grouping columns” error that is dependent on the
datatype involved; but there could be other issues as well.

• Fix decompilation of CASE WHEN with an implicit coercion (Tom)

This mistake could lead to Assert failures in an Assert-enabled build, or an “unexpected CASE WHEN
clause” error message in other cases, when trying to examine or dump a view.

• Fix possible misassignment of the owner of a TOAST table’s rowtype (Tom)

If CLUSTER or a rewriting variant of ALTER TABLE were executed by someone other than the table
owner, the pg_type entry for the table’s TOAST table would end up marked as owned by that someone.
This caused no immediate problems, since the permissions on the TOAST rowtype aren’t examined by
any ordinary database operation. However, it could lead to unexpected failures if one later tried to drop
the role that issued the command (in 8.1 or 8.2), or “owner of data type appears to be invalid” warnings
from pg_dump after having done so (in 8.3).

• Change UNLISTEN to exit quickly if the current session has never executed any LISTEN command
(Tom)

Most of the time this is not a particularly useful optimization, but since DISCARD ALL invokes
UNLISTEN, the previous coding caused a substantial performance problem for applications that made
heavy use of DISCARD ALL.

• Fix PL/pgSQL to not treat INTO after INSERT as an INTO-variables clause anywhere in the string, not
only at the start; in particular, don’t fail for INSERT INTO within CREATE RULE (Tom)

• Clean up PL/pgSQL error status variables fully at block exit (Ashesh Vashi and Dave Page)

This is not a problem for PL/pgSQL itself, but the omission could cause the PL/pgSQL Debugger to
crash while examining the state of a function.

• Retry failed calls to CallNamedPipe() on Windows (Steve Marshall, Magnus)

It appears that this function can sometimes fail transiently; we previously treated any failure as a hard
error, which could confuse LISTEN/NOTIFY as well as other operations.

• Add MUST (Mauritius Island Summer Time) to the default list of known timezone abbreviations (Xavier
Bugaud)

E.77. Release 8.3.6

Release Date: 2009-02-02

This release contains a variety of fixes from 8.3.5. For information about new features in the 8.3 major
release, see Section E.83.

2293

Appendix E. Release Notes

E.77.1. Migration to Version 8.3.6
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.5, see Section E.78.

E.77.2. Changes

• Make DISCARD ALL release advisory locks, in addition to everything it already did (Tom)

This was decided to be the most appropriate behavior. This could affect existing applications, however.

• Fix whole-index GiST scans to work correctly (Teodor)

This error could cause rows to be lost if a table is clustered on a GiST index.

• Fix crash of xmlconcat(NULL) (Peter)

• Fix possible crash in ispell dictionary if high-bit-set characters are used as flags (Teodor)

This is known to be done by one widely available Norwegian dictionary, and the same condition may
exist in others.

• Fix misordering of pg_dump output for composite types (Tom)

The most likely problem was for user-defined operator classes to be dumped after indexes or views that
needed them.

• Improve handling of URLs in headline() function (Teodor)

• Improve handling of overlength headlines in headline() function (Teodor)

• Prevent possible Assert failure or misconversion if an encoding conversion is created with the wrong
conversion function for the specified pair of encodings (Tom, Heikki)

• Fix possible Assert failure if a statement executed in PL/pgSQL is rewritten into another kind of state-
ment, for example if an INSERT is rewritten into an UPDATE (Heikki)

• Ensure that a snapshot is available to datatype input functions (Tom)

This primarily affects domains that are declared with CHECK constraints involving user-defined stable
or immutable functions. Such functions typically fail if no snapshot has been set.

• Make it safer for SPI-using functions to be used within datatype I/O; in particular, to be used in domain
check constraints (Tom)

• Avoid unnecessary locking of small tables in VACUUM (Heikki)

• Fix a problem that sometimes kept ALTER TABLE ENABLE/DISABLE RULE from being recognized
by active sessions (Tom)

• Fix a problem that made UPDATE RETURNING tableoid return zero instead of the correct OID (Tom)

• Allow functions declared as taking ANYARRAY to work on the pg_statistic columns of that type
(Tom)

This used to work, but was unintentionally broken in 8.3.

• Fix planner misestimation of selectivity when transitive equality is applied to an outer-join clause (Tom)

2294

Appendix E. Release Notes

This could result in bad plans for queries like ... from a left join b on a.a1 = b.b1

where a.a1 = 42 ...

• Improve optimizer’s handling of long IN lists (Tom)

This change avoids wasting large amounts of time on such lists when constraint exclusion is enabled.

• Prevent synchronous scan during GIN index build (Tom)

Because GIN is optimized for inserting tuples in increasing TID order, choosing to use a synchronous
scan could slow the build by a factor of three or more.

• Ensure that the contents of a holdable cursor don’t depend on the contents of TOAST tables (Tom)

Previously, large field values in a cursor result might be represented as TOAST pointers, which would
fail if the referenced table got dropped before the cursor is read, or if the large value is deleted and then
vacuumed away. This cannot happen with an ordinary cursor, but it could with a cursor that is held past
its creating transaction.

• Fix memory leak when a set-returning function is terminated without reading its whole result (Tom)

• Fix encoding conversion problems in XML functions when the database encoding isn’t UTF-8 (Tom)

• Fix contrib/dblink’s dblink_get_result(text,bool) function (Joe)

• Fix possible garbage output from contrib/sslinfo functions (Tom)

• Fix incorrect behavior of contrib/tsearch2 compatibility trigger when it’s fired more than once in
a command (Teodor)

• Fix possible mis-signaling in autovacuum (Heikki)

• Support running as a service on Windows 7 beta (Dave and Magnus)

• Fix ecpg’s handling of varchar structs (Michael)

• Fix configure script to properly report failure when unable to obtain linkage information for PL/Perl
(Andrew)

• Make all documentation reference pgsql-bugs and/or pgsql-hackers as appropriate, instead of the
now-decommissioned pgsql-ports and pgsql-patches mailing lists (Tom)

• Update time zone data files to tzdata release 2009a (for Kathmandu and historical DST corrections in
Switzerland, Cuba)

E.78. Release 8.3.5

Release Date: 2008-11-03

This release contains a variety of fixes from 8.3.4. For information about new features in the 8.3 major
release, see Section E.83.

2295

Appendix E. Release Notes

E.78.1. Migration to Version 8.3.5
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.1, see Section E.82. Also, if you were running a previous 8.3.X release, it is recommended
to REINDEX all GiST indexes after the upgrade.

E.78.2. Changes

• Fix GiST index corruption due to marking the wrong index entry “dead” after a deletion (Teodor)

This would result in index searches failing to find rows they should have found. Corrupted indexes can
be fixed with REINDEX.

• Fix backend crash when the client encoding cannot represent a localized error message (Tom)

We have addressed similar issues before, but it would still fail if the “character has no equivalent”
message itself couldn’t be converted. The fix is to disable localization and send the plain ASCII error
message when we detect such a situation.

• Fix possible crash in bytea-to-XML mapping (Michael McMaster)

• Fix possible crash when deeply nested functions are invoked from a trigger (Tom)

• Improve optimization of expression IN (expression-list) queries (Tom, per an idea from Robert
Haas)

Cases in which there are query variables on the right-hand side had been handled less efficiently in
8.2.x and 8.3.x than in prior versions. The fix restores 8.1 behavior for such cases.

• Fix mis-expansion of rule queries when a sub-SELECT appears in a function call in FROM, a multi-row
VALUES list, or a RETURNING list (Tom)

The usual symptom of this problem is an “unrecognized node type” error.

• Fix Assert failure during rescan of an IS NULL search of a GiST index (Teodor)

• Fix memory leak during rescan of a hashed aggregation plan (Neil)

• Ensure an error is reported when a newly-defined PL/pgSQL trigger function is invoked as a normal
function (Tom)

• Force a checkpoint before CREATE DATABASE starts to copy files (Heikki)

This prevents a possible failure if files had recently been deleted in the source database.

• Prevent possible collision of relfilenode numbers when moving a table to another tablespace with
ALTER SET TABLESPACE (Heikki)

The command tried to re-use the existing filename, instead of picking one that is known unused in the
destination directory.

• Fix incorrect text search headline generation when single query item matches first word of text (Sushant
Sinha)

• Fix improper display of fractional seconds in interval values when using a non-ISO datestyle in an
--enable-integer-datetimes build (Ron Mayer)

• Make ILIKE compare characters case-insensitively even when they’re escaped (Andrew)

2296

Appendix E. Release Notes

• Ensure DISCARD is handled properly by statement logging (Tom)

• Fix incorrect logging of last-completed-transaction time during PITR recovery (Tom)

• Ensure SPI_getvalue and SPI_getbinval behave correctly when the passed tuple and tuple de-
scriptor have different numbers of columns (Tom)

This situation is normal when a table has had columns added or removed, but these two functions didn’t
handle it properly. The only likely consequence is an incorrect error indication.

• Mark SessionReplicationRole as PGDLLIMPORT so it can be used by Slony on Windows (Magnus)

• Fix small memory leak when using libpq’s gsslib parameter (Magnus)

The space used by the parameter string was not freed at connection close.

• Ensure libgssapi is linked into libpq if needed (Markus Schaaf)

• Fix ecpg’s parsing of CREATE ROLE (Michael)

• Fix recent breakage of pg_ctl restart (Tom)

• Ensure pg_control is opened in binary mode (Itagaki Takahiro)

pg_controldata and pg_resetxlog did this incorrectly, and so could fail on Windows.

• Update time zone data files to tzdata release 2008i (for DST law changes in Argentina, Brazil, Mauri-
tius, Syria)

E.79. Release 8.3.4

Release Date: 2008-09-22

This release contains a variety of fixes from 8.3.3. For information about new features in the 8.3 major
release, see Section E.83.

E.79.1. Migration to Version 8.3.4
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.1, see Section E.82.

E.79.2. Changes

• Fix bug in btree WAL recovery code (Heikki)

Recovery failed if the WAL ended partway through a page split operation.

• Fix potential use of wrong cutoff XID for HOT page pruning (Alvaro)

2297

Appendix E. Release Notes

This error created a risk of corruption in system catalogs that are consulted by VACUUM: dead tuple ver-
sions might be removed too soon. The impact of this on actual database operations would be minimal,
since the system doesn’t follow MVCC rules while examining catalogs, but it might result in transiently
wrong output from pg_dump or other client programs.

• Fix potential miscalculation of datfrozenxid (Alvaro)

This error may explain some recent reports of failure to remove old pg_clog data.

• Fix incorrect HOT updates after pg_class is reindexed (Tom)

Corruption of pg_class could occur if REINDEX TABLE pg_class was followed in the same session
by an ALTER TABLE RENAME or ALTER TABLE SET SCHEMA command.

• Fix missed “combo cid” case (Karl Schnaitter)

This error made rows incorrectly invisible to a transaction in which they had been deleted by multiple
subtransactions that all aborted.

• Prevent autovacuum from crashing if the table it’s currently checking is deleted at just the wrong time
(Alvaro)

• Widen local lock counters from 32 to 64 bits (Tom)

This responds to reports that the counters could overflow in sufficiently long transactions, leading to
unexpected “lock is already held” errors.

• Fix possible duplicate output of tuples during a GiST index scan (Teodor)

• Regenerate foreign key checking queries from scratch when either table is modified (Tom)

Previously, 8.3 would attempt to replan the query, but would work from previously generated query
text. This led to failures if a table or column was renamed.

• Fix missed permissions checks when a view contains a simple UNION ALL construct (Heikki)

Permissions for the referenced tables were checked properly, but not permissions for the view itself.

• Add checks in executor startup to ensure that the tuples produced by an INSERT or UPDATE will match
the target table’s current rowtype (Tom)

This situation is believed to be impossible in 8.3, but it can happen in prior releases, so a check seems
prudent.

• Fix possible repeated drops during DROP OWNED (Tom)

This would typically result in strange errors such as “cache lookup failed for relation NNN”.

• Fix several memory leaks in XML operations (Kris Jurka, Tom)

• Fix xmlserialize() to raise error properly for unacceptable target data type (Tom)

• Fix a couple of places that mis-handled multibyte characters in text search configuration file parsing
(Tom)

Certain characters occurring in configuration files would always cause “invalid byte sequence for en-
coding” failures.

• Provide file name and line number location for all errors reported in text search configuration files
(Tom)

• Fix AT TIME ZONE to first try to interpret its timezone argument as a timezone abbreviation, and only
try it as a full timezone name if that fails, rather than the other way around as formerly (Tom)

2298

Appendix E. Release Notes

The timestamp input functions have always resolved ambiguous zone names in this order. Making AT

TIME ZONE do so as well improves consistency, and fixes a compatibility bug introduced in 8.1: in
ambiguous cases we now behave the same as 8.0 and before did, since in the older versions AT TIME

ZONE accepted only abbreviations.

• Fix datetime input functions to correctly detect integer overflow when running on a 64-bit platform
(Tom)

• Prevent integer overflows during units conversion when displaying a configuration parameter that has
units (Tom)

• Improve performance of writing very long log messages to syslog (Tom)

• Allow spaces in the suffix part of an LDAP URL in pg_hba.conf (Tom)

• Fix bug in backwards scanning of a cursor on a SELECT DISTINCT ON query (Tom)

• Fix planner bug that could improperly push down IS NULL tests below an outer join (Tom)

This was triggered by occurrence of IS NULL tests for the same relation in all arms of an upper OR
clause.

• Fix planner bug with nested sub-select expressions (Tom)

If the outer sub-select has no direct dependency on the parent query, but the inner one does, the outer
value might not get recalculated for new parent query rows.

• Fix planner to estimate that GROUP BY expressions yielding boolean results always result in two groups,
regardless of the expressions’ contents (Tom)

This is very substantially more accurate than the regular GROUP BY estimate for certain boolean tests
like col IS NULL.

• Fix PL/pgSQL to not fail when a FOR loop’s target variable is a record containing composite-type fields
(Tom)

• Fix PL/Tcl to behave correctly with Tcl 8.5, and to be more careful about the encoding of data sent to
or from Tcl (Tom)

• Improve performance of PQescapeBytea() (Rudolf Leitgeb)

• On Windows, work around a Microsoft bug by preventing libpq from trying to send more than 64kB
per system call (Magnus)

• Fix ecpg to handle variables properly in SET commands (Michael)

• Improve pg_dump and pg_restore’s error reporting after failure to send a SQL command (Tom)

• Fix pg_ctl to properly preserve postmaster command-line arguments across a restart (Bruce)

• Fix erroneous WAL file cutoff point calculation in pg_standby (Simon)

• Update time zone data files to tzdata release 2008f (for DST law changes in Argentina, Bahamas, Brazil,
Mauritius, Morocco, Pakistan, Palestine, and Paraguay)

2299

Appendix E. Release Notes

E.80. Release 8.3.3

Release Date: 2008-06-12

This release contains one serious and one minor bug fix over 8.3.2. For information about new features in
the 8.3 major release, see Section E.83.

E.80.1. Migration to Version 8.3.3
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.1, see Section E.82.

E.80.2. Changes

• Make pg_get_ruledef() parenthesize negative constants (Tom)

Before this fix, a negative constant in a view or rule might be dumped as, say, -42::integer, which is
subtly incorrect: it should be (-42)::integer due to operator precedence rules. Usually this would
make little difference, but it could interact with another recent patch to cause PostgreSQL to reject what
had been a valid SELECT DISTINCT view query. Since this could result in pg_dump output failing to
reload, it is being treated as a high-priority fix. The only released versions in which dump output is
actually incorrect are 8.3.1 and 8.2.7.

• Make ALTER AGGREGATE ... OWNER TO update pg_shdepend (Tom)

This oversight could lead to problems if the aggregate was later involved in a DROP OWNED or
REASSIGN OWNED operation.

E.81. Release 8.3.2

Release Date: never released

This release contains a variety of fixes from 8.3.1. For information about new features in the 8.3 major
release, see Section E.83.

E.81.1. Migration to Version 8.3.2
A dump/restore is not required for those running 8.3.X. However, if you are upgrading from a version
earlier than 8.3.1, see Section E.82.

2300

Appendix E. Release Notes

E.81.2. Changes

• Fix ERRORDATA_STACK_SIZE exceeded crash that occurred on Windows when using UTF-8
database encoding and a different client encoding (Tom)

• Fix incorrect archive truncation point calculation for the %r macro in recovery_command parameters
(Simon)

This could lead to data loss if a warm-standby script relied on %r to decide when to throw away WAL
segment files.

• Fix ALTER TABLE ADD COLUMN ... PRIMARY KEY so that the new column is correctly checked to
see if it’s been initialized to all non-nulls (Brendan Jurd)

Previous versions neglected to check this requirement at all.

• Fix REASSIGN OWNED so that it works on procedural languages too (Alvaro)

• Fix problems with SELECT FOR UPDATE/SHARE occurring as a subquery in a query with a non-
SELECT top-level operation (Tom)

• Fix possible CREATE TABLE failure when inheriting the “same” constraint from multiple parent rela-
tions that inherited that constraint from a common ancestor (Tom)

• Fix pg_get_ruledef() to show the alias, if any, attached to the target table of an UPDATE or DELETE
(Tom)

• Restore the pre-8.3 behavior that an out-of-range block number in a TID being used in a TidScan plan
results in silently not matching any rows (Tom)

8.3.0 and 8.3.1 threw an error instead.

• Fix GIN bug that could result in a too many LWLocks taken failure (Teodor)

• Fix broken GiST comparison function for tsquery (Teodor)

• Fix tsvector_update_trigger() and ts_stat() to accept domains over the types they expect to
work with (Tom)

• Fix failure to support enum data types as foreign keys (Tom)

• Avoid possible crash when decompressing corrupted data (Zdenek Kotala)

• Fix race conditions between delayed unlinks and DROP DATABASE (Heikki)

In the worst case this could result in deleting a newly created table in a new database that happened
to get the same OID as the recently-dropped one; but of course that is an extremely low-probability
scenario.

• Repair two places where SIGTERM exit of a backend could leave corrupted state in shared memory
(Tom)

Neither case is very important if SIGTERM is used to shut down the whole database cluster together,
but there was a problem if someone tried to SIGTERM individual backends.

• Fix possible crash due to incorrect plan generated for an x IN (SELECT y FROM ...) clause when x
and y have different data types; and make sure the behavior is semantically correct when the conversion
from y’s type to x’s type is lossy (Tom)

2301

Appendix E. Release Notes

• Fix oversight that prevented the planner from substituting known Param values as if they were constants
(Tom)

This mistake partially disabled optimization of unnamed extended-Query statements in 8.3.0 and 8.3.1:
in particular the LIKE-to-indexscan optimization would never be applied if the LIKE pattern was passed
as a parameter, and constraint exclusion depending on a parameter value didn’t work either.

• Fix planner failure when an indexable MIN or MAX aggregate is used with DISTINCT or ORDER BY

(Tom)

• Fix planner to ensure it never uses a “physical tlist” for a plan node that is feeding a Sort node (Tom)

This led to the sort having to push around more data than it really needed to, since unused column
values were included in the sorted data.

• Avoid unnecessary copying of query strings (Tom)

This fixes a performance problem introduced in 8.3.0 when a very large number of commands are
submitted as a single query string.

• Make TransactionIdIsCurrentTransactionId() use binary search instead of linear search
when checking child-transaction XIDs (Heikki)

This fixes some cases in which 8.3.0 was significantly slower than earlier releases.

• Fix conversions between ISO-8859-5 and other encodings to handle Cyrillic “Yo” characters (e and E

with two dots) (Sergey Burladyan)

• Fix several datatype input functions, notably array_in(), that were allowing unused bytes in their
results to contain uninitialized, unpredictable values (Tom)

This could lead to failures in which two apparently identical literal values were not seen as equal,
resulting in the parser complaining about unmatched ORDER BY and DISTINCT expressions.

• Fix a corner case in regular-expression substring matching (substring(string from pattern))
(Tom)

The problem occurs when there is a match to the pattern overall but the user has specified a paren-
thesized subexpression and that subexpression hasn’t got a match. An example is substring(’foo’
from ’foo(bar)?’). This should return NULL, since (bar) isn’t matched, but it was mistakenly
returning the whole-pattern match instead (ie, foo).

• Prevent cancellation of an auto-vacuum that was launched to prevent XID wraparound (Alvaro)

• Improve ANALYZE’s handling of in-doubt tuples (those inserted or deleted by a not-yet-committed trans-
action) so that the counts it reports to the stats collector are more likely to be correct (Pavan Deolasee)

• Fix initdb to reject a relative path for its --xlogdir (-X) option (Tom)

• Make psql print tab characters as an appropriate number of spaces, rather than \x09 as was done in
8.3.0 and 8.3.1 (Bruce)

• Update time zone data files to tzdata release 2008c (for DST law changes in Morocco, Iraq, Choibalsan,
Pakistan, Syria, Cuba, and Argentina/San_Luis)

• Add ECPGget_PGconn() function to ecpglib (Michael)

• Fix incorrect result from ecpg’s PGTYPEStimestamp_sub() function (Michael)

• Fix handling of continuation line markers in ecpg (Michael)

2302

Appendix E. Release Notes

• Fix possible crashes in contrib/cube functions (Tom)

• Fix core dump in contrib/xml2’s xpath_table() function when the input query returns a NULL
value (Tom)

• Fix contrib/xml2’s makefile to not override CFLAGS, and make it auto-configure properly for libxslt
present or not (Tom)

E.82. Release 8.3.1

Release Date: 2008-03-17

This release contains a variety of fixes from 8.3.0. For information about new features in the 8.3 major
release, see Section E.83.

E.82.1. Migration to Version 8.3.1
A dump/restore is not required for those running 8.3.X. However, you might need to REINDEX indexes on
textual columns after updating, if you are affected by the Windows locale issue described below.

E.82.2. Changes

• Fix character string comparison for Windows locales that consider different character combinations as
equal (Tom)

This fix applies only on Windows and only when using UTF-8 database encoding. The same fix was
made for all other cases over two years ago, but Windows with UTF-8 uses a separate code path that
was not updated. If you are using a locale that considers some non-identical strings as equal, you may
need to REINDEX to fix existing indexes on textual columns.

• Repair corner-case bugs in VACUUM FULL (Tom)

A potential deadlock between concurrent VACUUM FULL operations on different system catalogs was
introduced in 8.2. This has now been corrected. 8.3 made this worse because the deadlock could occur
within a critical code section, making it a PANIC rather than just ERROR condition.

Also, a VACUUM FULL that failed partway through vacuuming a system catalog could result in cache
corruption in concurrent database sessions.

Another VACUUM FULL bug introduced in 8.3 could result in a crash or out-of-memory report when
dealing with pages containing no live tuples.

• Fix misbehavior of foreign key checks involving character or bit columns (Tom)

If the referencing column were of a different but compatible type (for instance varchar), the constraint
was enforced incorrectly.

2303

Appendix E. Release Notes

• Avoid needless deadlock failures in no-op foreign-key checks (Stephan Szabo, Tom)

• Fix possible core dump when re-planning a prepared query (Tom)

This bug affected only protocol-level prepare operations, not SQL PREPARE, and so tended to be seen
only with JDBC, DBI, and other client-side drivers that use prepared statements heavily.

• Fix possible failure when re-planning a query that calls an SPI-using function (Tom)

• Fix failure in row-wise comparisons involving columns of different datatypes (Tom)

• Fix longstanding LISTEN/NOTIFY race condition (Tom)

In rare cases a session that had just executed a LISTEN might not get a notification, even though one
would be expected because the concurrent transaction executing NOTIFY was observed to commit later.

A side effect of the fix is that a transaction that has executed a not-yet-committed LISTEN command will
not see any row in pg_listener for the LISTEN, should it choose to look; formerly it would have.
This behavior was never documented one way or the other, but it is possible that some applications
depend on the old behavior.

• Disallow LISTEN and UNLISTEN within a prepared transaction (Tom)

This was formerly allowed but trying to do it had various unpleasant consequences, notably that the
originating backend could not exit as long as an UNLISTEN remained uncommitted.

• Disallow dropping a temporary table within a prepared transaction (Heikki)

This was correctly disallowed by 8.1, but the check was inadvertently broken in 8.2 and 8.3.

• Fix rare crash when an error occurs during a query using a hash index (Heikki)

• Fix incorrect comparison of tsquery values (Teodor)

• Fix incorrect behavior of LIKE with non-ASCII characters in single-byte encodings (Rolf Jentsch)

• Disable xmlvalidate (Tom)

This function should have been removed before 8.3 release, but was inadvertently left in the source
code. It poses a small security risk since unprivileged users could use it to read the first few characters
of any file accessible to the server.

• Fix memory leaks in certain usages of set-returning functions (Neil)

• Make encode(bytea, ’escape’) convert all high-bit-set byte values into \nnn octal escape se-
quences (Tom)

This is necessary to avoid encoding problems when the database encoding is multi-byte. This change
could pose compatibility issues for applications that are expecting specific results from encode.

• Fix input of datetime values for February 29 in years BC (Tom)

The former coding was mistaken about which years were leap years.

• Fix “unrecognized node type” error in some variants of ALTER OWNER (Tom)

• Avoid tablespace permissions errors in CREATE TABLE LIKE INCLUDING INDEXES (Tom)

• Ensure pg_stat_activity.waiting flag is cleared when a lock wait is aborted (Tom)

• Fix handling of process permissions on Windows Vista (Dave, Magnus)

In particular, this fix allows starting the server as the Administrator user.

2304

Appendix E. Release Notes

• Update time zone data files to tzdata release 2008a (in particular, recent Chile changes); adjust timezone
abbreviation VET (Venezuela) to mean UTC-4:30, not UTC-4:00 (Tom)

• Fix ecpg problems with arrays (Michael)

• Fix pg_ctl to correctly extract the postmaster’s port number from command-line options (Itagaki
Takahiro, Tom)

Previously, pg_ctl start -w could try to contact the postmaster on the wrong port, leading to bogus
reports of startup failure.

• Use -fwrapv to defend against possible misoptimization in recent gcc versions (Tom)

This is known to be necessary when building PostgreSQL with gcc 4.3 or later.

• Enable building contrib/uuid-ossp with MSVC (Hiroshi Saito)

E.83. Release 8.3

Release Date: 2008-02-04

E.83.1. Overview
With significant new functionality and performance enhancements, this release represents a major leap
forward for PostgreSQL. This was made possible by a growing community that has dramatically acceler-
ated the pace of development. This release adds the following major features:

• Full text search is integrated into the core database system

• Support for the SQL/XML standard, including new operators and an XML data type

• Enumerated data types (ENUM)

• Arrays of composite types

• Universally Unique Identifier (UUID) data type

• Add control over whether NULLs sort first or last

• Updatable cursors

• Server configuration parameters can now be set on a per-function basis

• User-defined types can now have type modifiers

• Automatically re-plan cached queries when table definitions change or statistics are updated

• Numerous improvements in logging and statistics collection

• Support Security Service Provider Interface (SSPI) for authentication on Windows

• Support multiple concurrent autovacuum processes, and other autovacuum improvements

• Allow the whole PostgreSQL distribution to be compiled with Microsoft Visual C++

2305

Appendix E. Release Notes

Major performance improvements are listed below. Most of these enhancements are automatic and do not
require user changes or tuning:

• Asynchronous commit delays writes to WAL during transaction commit

• Checkpoint writes can be spread over a longer time period to smooth the I/O spike during each check-
point

• Heap-Only Tuples (HOT) accelerate space reuse for most UPDATEs and DELETEs

• Just-in-time background writer strategy improves disk write efficiency

• Using non-persistent transaction IDs for read-only transactions reduces overhead and VACUUM require-
ments

• Per-field and per-row storage overhead has been reduced

• Large sequential scans no longer force out frequently used cached pages

• Concurrent large sequential scans can now share disk reads

• ORDER BY ... LIMIT can be done without sorting

The above items are explained in more detail in the sections below.

E.83.2. Migration to Version 8.3
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

Observe the following incompatibilities:

E.83.2.1. General

• Non-character data types are no longer automatically cast to TEXT (Peter, Tom)

Previously, if a non-character value was supplied to an operator or function that requires text input, it
was automatically cast to text, for most (though not all) built-in data types. This no longer happens: an
explicit cast to text is now required for all non-character-string types. For example, these expressions
formerly worked:

substr(current_date, 1, 4)
23 LIKE ’2%’

but will now draw “function does not exist” and “operator does not exist” errors respectively. Use an
explicit cast instead:

substr(current_date::text, 1, 4)
23::text LIKE ’2%’

(Of course, you can use the more verbose CAST() syntax too.) The reason for the change is that these
automatic casts too often caused surprising behavior. An example is that in previous releases, this
expression was accepted but did not do what was expected:

current_date < 2017-11-17

This is actually comparing a date to an integer, which should be (and now is) rejected — but in the
presence of automatic casts both sides were cast to text and a textual comparison was done, because
the text < text operator was able to match the expression when no other < operator could.

2306

Appendix E. Release Notes

Types char(n) and varchar(n) still cast to text automatically. Also, automatic casting to text still
works for inputs to the concatenation (||) operator, so long as least one input is a character-string type.

• Full text search features from contrib/tsearch2 have been moved into the core server, with some
minor syntax changes

contrib/tsearch2 now contains a compatibility interface.

• ARRAY(SELECT ...), where the SELECT returns no rows, now returns an empty array, rather than
NULL (Tom)

• The array type name for a base data type is no longer always the base type’s name with an underscore
prefix

The old naming convention is still honored when possible, but application code should no longer depend
on it. Instead use the new pg_type.typarray column to identify the array data type associated with
a given type.

• ORDER BY ... USING operator must now use a less-than or greater-than operator that is defined
in a btree operator class

This restriction was added to prevent inconsistent results.

• SET LOCAL changes now persist until the end of the outermost transaction, unless rolled back (Tom)

Previously SET LOCAL’s effects were lost after subtransaction commit (RELEASE SAVEPOINT or exit
from a PL/pgSQL exception block).

• Commands rejected in transaction blocks are now also rejected in multiple-statement query strings
(Tom)

For example, "BEGIN; DROP DATABASE; COMMIT" will now be rejected even if submitted as a single
query message.

• ROLLBACK outside a transaction block now issues NOTICE instead of WARNING (Bruce)

• Prevent NOTIFY/LISTEN/UNLISTEN from accepting schema-qualified names (Bruce)

Formerly, these commands accepted schema.relation but ignored the schema part, which was con-
fusing.

• ALTER SEQUENCE no longer affects the sequence’s currval() state (Tom)

• Foreign keys now must match indexable conditions for cross-data-type references (Tom)

This improves semantic consistency and helps avoid performance problems.

• Restrict object size functions to users who have reasonable permissions to view such information (Tom)

For example, pg_database_size() now requires CONNECT permission, which is granted to everyone
by default. pg_tablespace_size() requires CREATE permission in the tablespace, or is allowed if
the tablespace is the default tablespace for the database.

• Remove the undocumented !!= (not in) operator (Tom)

NOT IN (SELECT ...) is the proper way to perform this operation.

• Internal hashing functions are now more uniformly-distributed (Tom)

If application code was computing and storing hash values using internal PostgreSQL hashing func-
tions, the hash values must be regenerated.

• C-code conventions for handling variable-length data values have changed (Greg Stark, Tom)

2307

Appendix E. Release Notes

The new SET_VARSIZE() macro must be used to set the length of generated varlena values. Also, it
might be necessary to expand (“de-TOAST”) input values in more cases.

• Continuous archiving no longer reports each successful archive operation to the server logs unless
DEBUG level is used (Simon)

E.83.2.2. Configuration Parameters

• Numerous changes in administrative server parameters

bgwriter_lru_percent, bgwriter_all_percent, bgwriter_all_maxpages,
stats_start_collector, and stats_reset_on_server_start are removed.
redirect_stderr is renamed to logging_collector. stats_command_string is renamed
to track_activities. stats_block_level and stats_row_level are merged into
track_counts. A new boolean configuration parameter, archive_mode, controls archiving.
Autovacuum’s default settings have changed.

• Remove stats_start_collector parameter (Tom)

We now always start the collector process, unless UDP socket creation fails.

• Remove stats_reset_on_server_start parameter (Tom)

This was removed because pg_stat_reset() can be used for this purpose.

• Commenting out a parameter in postgresql.conf now causes it to revert to its default value (Joachim
Wieland)

Previously, commenting out an entry left the parameter’s value unchanged until the next server restart.

E.83.2.3. Character Encodings

• Add more checks for invalidly-encoded data (Andrew)

This change plugs some holes that existed in literal backslash escape string processing and COPY escape
processing. Now the de-escaped string is rechecked to see if the result created an invalid multi-byte
character.

• Disallow database encodings that are inconsistent with the server’s locale setting (Tom)

On most platforms, C locale is the only locale that will work with any database encoding. Other locale
settings imply a specific encoding and will misbehave if the database encoding is something different.
(Typical symptoms include bogus textual sort order and wrong results from upper() or lower().)
The server now rejects attempts to create databases that have an incompatible encoding.

• Ensure that chr() cannot create invalidly-encoded values (Andrew)

In UTF8-encoded databases the argument of chr() is now treated as a Unicode code point. In other
multi-byte encodings chr()’s argument must designate a 7-bit ASCII character. Zero is no longer
accepted. ascii() has been adjusted to match.

• Adjust convert() behavior to ensure encoding validity (Andrew)

2308

Appendix E. Release Notes

The two argument form of convert() has been removed. The three argument form now takes a bytea
first argument and returns a bytea. To cover the loss of functionality, three new functions have been
added:

• convert_from(bytea, name) returns text — converts the first argument from the named en-
coding to the database encoding

• convert_to(text, name) returns bytea — converts the first argument from the database encod-
ing to the named encoding

• length(bytea, name) returns integer — gives the length of the first argument in characters in
the named encoding

• Remove convert(argument USING conversion_name) (Andrew)

Its behavior did not match the SQL standard.

• Make JOHAB encoding client-only (Tatsuo)

JOHAB is not safe as a server-side encoding.

E.83.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 8.3 and the previous major
release.

E.83.3.1. Performance

• Asynchronous commit delays writes to WAL during transaction commit (Simon)

This feature dramatically increases performance for short data-modifying transactions. The disadvan-
tage is that because disk writes are delayed, if the database or operating system crashes before data
is written to the disk, committed data will be lost. This feature is useful for applications that can ac-
cept some data loss. Unlike turning off fsync, using asynchronous commit does not put database
consistency at risk; the worst case is that after a crash the last few reportedly-committed transac-
tions might not be committed after all. This feature is enabled by turning off synchronous_commit
(which can be done per-session or per-transaction, if some transactions are critical and others are not).
wal_writer_delay can be adjusted to control the maximum delay before transactions actually reach
disk.

• Checkpoint writes can be spread over a longer time period to smooth the I/O spike during each check-
point (Itagaki Takahiro and Heikki Linnakangas)

Previously all modified buffers were forced to disk as quickly as possible during a checkpoint, causing
an I/O spike that decreased server performance. This new approach spreads out disk writes during
checkpoints, reducing peak I/O usage. (User-requested and shutdown checkpoints are still written as
quickly as possible.)

• Heap-Only Tuples (HOT) accelerate space reuse for most UPDATEs and DELETEs (Pavan Deolasee, with
ideas from many others)

2309

Appendix E. Release Notes

UPDATEs and DELETEs leave dead tuples behind, as do failed INSERTs. Previously only VACUUM could
reclaim space taken by dead tuples. With HOT dead tuple space can be automatically reclaimed at the
time of INSERT or UPDATE if no changes are made to indexed columns. This allows for more consistent
performance. Also, HOT avoids adding duplicate index entries.

• Just-in-time background writer strategy improves disk write efficiency (Greg Smith, Itagaki Takahiro)

This greatly reduces the need for manual tuning of the background writer.

• Per-field and per-row storage overhead have been reduced (Greg Stark, Heikki Linnakangas)

Variable-length data types with data values less than 128 bytes long will see a storage decrease of 3 to
6 bytes. For example, two adjacent char(1) fields now use 4 bytes instead of 16. Row headers are also
4 bytes shorter than before.

• Using non-persistent transaction IDs for read-only transactions reduces overhead and VACUUM require-
ments (Florian Pflug)

Non-persistent transaction IDs do not increment the global transaction counter. Therefore, they re-
duce the load on pg_clog and increase the time between forced vacuums to prevent transaction ID
wraparound. Other performance improvements were also made that should improve concurrency.

• Avoid incrementing the command counter after a read-only command (Tom)

There was formerly a hard limit of 232 (4 billion) commands per transaction. Now only commands
that actually changed the database count, so while this limit still exists, it should be significantly less
annoying.

• Create a dedicated WAL writer process to off-load work from backends (Simon)

• Skip unnecessary WAL writes for CLUSTER and COPY (Simon)

Unless WAL archiving is enabled, the system now avoids WAL writes for CLUSTER and just fsync()s
the table at the end of the command. It also does the same for COPY if the table was created in the same
transaction.

• Large sequential scans no longer force out frequently used cached pages (Simon, Heikki, Tom)

• Concurrent large sequential scans can now share disk reads (Jeff Davis)

This is accomplished by starting the new sequential scan in the middle of the table (where another
sequential scan is already in-progress) and wrapping around to the beginning to finish. This can affect
the order of returned rows in a query that does not specify ORDER BY. The synchronize_seqscans
configuration parameter can be used to disable this if necessary.

• ORDER BY ... LIMIT can be done without sorting (Greg Stark)

This is done by sequentially scanning the table and tracking just the “top N” candidate rows, rather than
performing a full sort of the entire table. This is useful when there is no matching index and the LIMIT
is not large.

• Put a rate limit on messages sent to the statistics collector by backends (Tom)

This reduces overhead for short transactions, but might sometimes increase the delay before statistics
are tallied.

• Improve hash join performance for cases with many NULLs (Tom)

• Speed up operator lookup for cases with non-exact datatype matches (Tom)

2310

Appendix E. Release Notes

E.83.3.2. Server

• Autovacuum is now enabled by default (Alvaro)

Several changes were made to eliminate disadvantages of having autovacuum enabled, thereby justify-
ing the change in default. Several other autovacuum parameter defaults were also modified.

• Support multiple concurrent autovacuum processes (Alvaro, Itagaki Takahiro)

This allows multiple vacuums to run concurrently. This prevents vacuuming of a large table from de-
laying vacuuming of smaller tables.

• Automatically re-plan cached queries when table definitions change or statistics are updated (Tom)

Previously PL/pgSQL functions that referenced temporary tables would fail if the temporary table was
dropped and recreated between function invocations, unless EXECUTE was used. This improvement
fixes that problem and many related issues.

• Add a temp_tablespaces parameter to control the tablespaces for temporary tables and files (Jaime
Casanova, Albert Cervera, Bernd Helmle)

This parameter defines a list of tablespaces to be used. This enables spreading the I/O load across
multiple tablespaces. A random tablespace is chosen each time a temporary object is created. Temporary
files are no longer stored in per-database pgsql_tmp/ directories but in per-tablespace directories.

• Place temporary tables’ TOAST tables in special schemas named pg_toast_temp_nnn (Tom)

This allows low-level code to recognize these tables as temporary, which enables various optimizations
such as not WAL-logging changes and using local rather than shared buffers for access. This also fixes
a bug wherein backends unexpectedly held open file references to temporary TOAST tables.

• Fix problem that a constant flow of new connection requests could indefinitely delay the postmaster
from completing a shutdown or a crash restart (Tom)

• Guard against a very-low-probability data loss scenario by preventing re-use of a deleted table’s relfilen-
ode until after the next checkpoint (Heikki)

• Fix CREATE CONSTRAINT TRIGGER to convert old-style foreign key trigger definitions into regular
foreign key constraints (Tom)

This will ease porting of foreign key constraints carried forward from pre-7.3 databases, if they were
never converted using contrib/adddepend.

• Fix DEFAULT NULL to override inherited defaults (Tom)

DEFAULT NULL was formerly considered a noise phrase, but it should (and now does) override non-null
defaults that would otherwise be inherited from a parent table or domain.

• Add new encodings EUC_JIS_2004 and SHIFT_JIS_2004 (Tatsuo)

These new encodings can be converted to and from UTF-8.

• Change server startup log message from “database system is ready” to “database system is ready to
accept connections”, and adjust its timing

The message now appears only when the postmaster is really ready to accept connections.

2311

Appendix E. Release Notes

E.83.3.3. Monitoring

• Add log_autovacuum_min_duration parameter to support configurable logging of autovacuum
activity (Simon, Alvaro)

• Add log_lock_waits parameter to log lock waiting (Simon)

• Add log_temp_files parameter to log temporary file usage (Bill Moran)

• Add log_checkpoints parameter to improve logging of checkpoints (Greg Smith, Heikki)

• log_line_prefix now supports %s and %c escapes in all processes (Andrew)

Previously these escapes worked only for user sessions, not for background database processes.

• Add log_restartpoints to control logging of point-in-time recovery restart points (Simon)

• Last transaction end time is now logged at end of recovery and at each logged restart point (Simon)

• Autovacuum now reports its activity start time in pg_stat_activity (Tom)

• Allow server log output in comma-separated value (CSV) format (Arul Shaji, Greg Smith, Andrew
Dunstan)

CSV-format log files can easily be loaded into a database table for subsequent analysis.

• Use PostgreSQL-supplied timezone support for formatting timestamps displayed in the server log
(Tom)

This avoids Windows-specific problems with localized time zone names that are in the wrong encoding.
There is a new log_timezone parameter that controls the timezone used in log messages, indepen-
dently of the client-visible timezone parameter.

• New system view pg_stat_bgwriter displays statistics about background writer activity (Magnus)

• Add new columns for database-wide tuple statistics to pg_stat_database (Magnus)

• Add an xact_start (transaction start time) column to pg_stat_activity (Neil)

This makes it easier to identify long-running transactions.

• Add n_live_tuples and n_dead_tuples columns to pg_stat_all_tables and related views
(Glen Parker)

• Merge stats_block_level and stats_row_level parameters into a single parameter
track_counts, which controls all messages sent to the statistics collector process (Tom)

• Rename stats_command_string parameter to track_activities (Tom)

• Fix statistical counting of live and dead tuples to recognize that committed and aborted transactions
have different effects (Tom)

E.83.3.4. Authentication

• Support Security Service Provider Interface (SSPI) for authentication on Windows (Magnus)

• Support GSSAPI authentication (Henry Hotz, Magnus)

This should be preferred to native Kerberos authentication because GSSAPI is an industry standard.

2312

Appendix E. Release Notes

• Support a global SSL configuration file (Victor Wagner)

• Add ssl_ciphers parameter to control accepted SSL ciphers (Victor Wagner)

• Add a Kerberos realm parameter, krb_realm (Magnus)

E.83.3.5. Write-Ahead Log (WAL) and Continuous Archiving

• Change the timestamps recorded in transaction WAL records from time_t to TimestampTz representa-
tion (Tom)

This provides sub-second resolution in WAL, which can be useful for point-in-time recovery.

• Reduce WAL disk space needed by warm standby servers (Simon)

This change allows a warm standby server to pass the name of the earliest still-needed WAL file to the
recovery script, allowing automatic removal of no-longer-needed WAL files. This is done using %r in
the restore_command parameter of recovery.conf.

• New boolean configuration parameter, archive_mode, controls archiving (Simon)

Previously setting archive_command to an empty string turned off archiving. Now archive_mode

turns archiving on and off, independently of archive_command. This is useful for stopping archiving
temporarily.

E.83.3.6. Queries

• Full text search is integrated into the core database system (Teodor, Oleg)

Text search has been improved, moved into the core code, and is now installed by default.
contrib/tsearch2 now contains a compatibility interface.

• Add control over whether NULLs sort first or last (Teodor, Tom)

The syntax is ORDER BY ... NULLS FIRST/LAST.

• Allow per-column ascending/descending (ASC/DESC) ordering options for indexes (Teodor, Tom)

Previously a query using ORDER BY with mixed ASC/DESC specifiers could not fully use an index. Now
an index can be fully used in such cases if the index was created with matching ASC/DESC specifications.
NULL sort order within an index can be controlled, too.

• Allow col IS NULL to use an index (Teodor)

• Updatable cursors (Arul Shaji, Tom)

This eliminates the need to reference a primary key to UPDATE or DELETE rows returned by a cursor.
The syntax is UPDATE/DELETE WHERE CURRENT OF.

• Allow FOR UPDATE in cursors (Arul Shaji, Tom)

• Create a general mechanism that supports casts to and from the standard string types (TEXT, VARCHAR,
CHAR) for every datatype, by invoking the datatype’s I/O functions (Tom)

2313

Appendix E. Release Notes

Previously, such casts were available only for types that had specialized function(s) for the purpose.
These new casts are assignment-only in the to-string direction, explicit-only in the other direction, and
therefore should create no surprising behavior.

• Allow UNION and related constructs to return a domain type, when all inputs are of that domain type
(Tom)

Formerly, the output would be considered to be of the domain’s base type.

• Allow limited hashing when using two different data types (Tom)

This allows hash joins, hash indexes, hashed subplans, and hash aggregation to be used in situations
involving cross-data-type comparisons, if the data types have compatible hash functions. Currently,
cross-data-type hashing support exists for smallint/integer/bigint, and for float4/float8.

• Improve optimizer logic for detecting when variables are equal in a WHERE clause (Tom)

This allows mergejoins to work with descending sort orders, and improves recognition of redundant
sort columns.

• Improve performance when planning large inheritance trees in cases where most tables are excluded by
constraints (Tom)

E.83.3.7. Object Manipulation

• Arrays of composite types (David Fetter, Andrew, Tom)

In addition to arrays of explicitly-declared composite types, arrays of the rowtypes of regular tables and
views are now supported, except for rowtypes of system catalogs, sequences, and TOAST tables.

• Server configuration parameters can now be set on a per-function basis (Tom)

For example, functions can now set their own search_path to prevent unexpected behavior if a dif-
ferent search_path exists at run-time. Security definer functions should set search_path to avoid
security loopholes.

• CREATE/ALTER FUNCTION now supports COST and ROWS options (Tom)

COST allows specification of the cost of a function call. ROWS allows specification of the average number
or rows returned by a set-returning function. These values are used by the optimizer in choosing the
best plan.

• Implement CREATE TABLE LIKE ... INCLUDING INDEXES (Trevor Hardcastle, Nikhil Sontakke,
Neil)

• Allow CREATE INDEX CONCURRENTLY to ignore transactions in other databases (Simon)

• Add ALTER VIEW ... RENAME TO and ALTER SEQUENCE ... RENAME TO (David Fetter, Neil)

Previously this could only be done via ALTER TABLE ... RENAME TO.

• Make CREATE/DROP/RENAME DATABASE wait briefly for conflicting backends to exit before failing
(Tom)

This increases the likelihood that these commands will succeed.

• Allow triggers and rules to be deactivated in groups using a configuration parameter, for replication
purposes (Jan)

2314

Appendix E. Release Notes

This allows replication systems to disable triggers and rewrite rules as a group without modifying
the system catalogs directly. The behavior is controlled by ALTER TABLE and a new parameter
session_replication_role.

• User-defined types can now have type modifiers (Teodor, Tom)

This allows a user-defined type to take a modifier, like ssnum(7). Previously only built-in data types
could have modifiers.

E.83.3.8. Utility Commands

• Non-superuser database owners now are able to add trusted procedural languages to their databases by
default (Jeremy Drake)

While this is reasonably safe, some administrators might wish to revoke the privilege. It is controlled
by pg_pltemplate.tmpldbacreate.

• Allow a session’s current parameter setting to be used as the default for future sessions (Tom)

This is done with SET ... FROM CURRENT in CREATE/ALTER FUNCTION, ALTER DATABASE, or
ALTER ROLE.

• Implement new commands DISCARD ALL, DISCARD PLANS, DISCARD TEMPORARY, CLOSE ALL,
and DEALLOCATE ALL (Marko Kreen, Neil)

These commands simplify resetting a database session to its initial state, and are particularly useful for
connection-pooling software.

• Make CLUSTER MVCC-safe (Heikki Linnakangas)

Formerly, CLUSTER would discard all tuples that were committed dead, even if there were still transac-
tions that should be able to see them under MVCC visibility rules.

• Add new CLUSTER syntax: CLUSTER table USING index (Holger Schurig)

The old CLUSTER syntax is still supported, but the new form is considered more logical.

• Fix EXPLAIN so it can show complex plans more accurately (Tom)

References to subplan outputs are now always shown correctly, instead of using ?columnN? for com-
plicated cases.

• Limit the amount of information reported when a user is dropped (Alvaro)

Previously, dropping (or attempting to drop) a user who owned many objects could result in large
NOTICE or ERROR messages listing all these objects; this caused problems for some client applications.
The length of the message is now limited, although a full list is still sent to the server log.

E.83.3.9. Data Types

• Support for the SQL/XML standard, including new operators and an XML data type (Nikolay
Samokhvalov, Pavel Stehule, Peter)

• Enumerated data types (ENUM) (Tom Dunstan)

2315

Appendix E. Release Notes

This feature provides convenient support for fields that have a small, fixed set of allowed values. An
example of creating an ENUM type is CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’happy’).

• Universally Unique Identifier (UUID) data type (Gevik Babakhani, Neil)

This closely matches RFC 4122.

• Widen the MONEY data type to 64 bits (D’Arcy Cain)

This greatly increases the range of supported MONEY values.

• Fix float4/float8 to handle Infinity and NAN (Not A Number) consistently (Bruce)

The code formerly was not consistent about distinguishing Infinity from overflow conditions.

• Allow leading and trailing whitespace during input of boolean values (Neil)

• Prevent COPY from using digits and lowercase letters as delimiters (Tom)

E.83.3.10. Functions

• Add new regular expression functions regexp_matches(), regexp_split_to_array(), and
regexp_split_to_table() (Jeremy Drake, Neil)

These functions provide extraction of regular expression subexpressions and allow splitting a string
using a POSIX regular expression.

• Add lo_truncate() for large object truncation (Kris Jurka)

• Implement width_bucket() for the float8 data type (Neil)

• Add pg_stat_clear_snapshot() to discard statistics snapshots collected during the current trans-
action (Tom)

The first request for statistics in a transaction takes a statistics snapshot that does not change during the
transaction. This function allows the snapshot to be discarded and a new snapshot loaded during the
next statistics query. This is particularly useful for PL/pgSQL functions, which are confined to a single
transaction.

• Add isodow option to EXTRACT() and date_part() (Bruce)

This returns the day of the week, with Sunday as seven. (dow returns Sunday as zero.)

• Add ID (ISO day of week) and IDDD (ISO day of year) format codes for to_char(), to_date(), and
to_timestamp() (Brendan Jurd)

• Make to_timestamp() and to_date() assume TM (trim) option for potentially variable-width fields
(Bruce)

This matches Oracle’s behavior.

• Fix off-by-one conversion error in to_date()/to_timestamp() D (non-ISO day of week) fields
(Bruce)

• Make setseed() return void, rather than a useless integer value (Neil)

• Add a hash function for NUMERIC (Neil)

This allows hash indexes and hash-based plans to be used with NUMERIC columns.

2316

Appendix E. Release Notes

• Improve efficiency of LIKE/ILIKE, especially for multi-byte character sets like UTF-8 (Andrew, Itagaki
Takahiro)

• Make currtid() functions require SELECT privileges on the target table (Tom)

• Add several txid_*() functions to query active transaction IDs (Jan)

This is useful for various replication solutions.

E.83.3.11. PL/pgSQL Server-Side Language

• Add scrollable cursor support, including directional control in FETCH (Pavel Stehule)

• Allow IN as an alternative to FROM in PL/pgSQL’s FETCH statement, for consistency with the backend’s
FETCH command (Pavel Stehule)

• Add MOVE to PL/pgSQL (Magnus, Pavel Stehule, Neil)

• Implement RETURN QUERY (Pavel Stehule, Neil)

This adds convenient syntax for PL/pgSQL set-returning functions that want to return the result of a
query. RETURN QUERY is easier and more efficient than a loop around RETURN NEXT.

• Allow function parameter names to be qualified with the function’s name (Tom)

For example, myfunc.myvar. This is particularly useful for specifying variables in a query where the
variable name might match a column name.

• Make qualification of variables with block labels work properly (Tom)

Formerly, outer-level block labels could unexpectedly interfere with recognition of inner-level record
or row references.

• Tighten requirements for FOR loop STEP values (Tom)

Prevent non-positive STEP values, and handle loop overflows.

• Improve accuracy when reporting syntax error locations (Tom)

E.83.3.12. Other Server-Side Languages

• Allow type-name arguments to PL/Perl spi_prepare() to be data type aliases in addition to names
found in pg_type (Andrew)

• Allow type-name arguments to PL/Python plpy.prepare() to be data type aliases in addition to
names found in pg_type (Andrew)

• Allow type-name arguments to PL/Tcl spi_prepare to be data type aliases in addition to names found
in pg_type (Andrew)

• Enable PL/PythonU to compile on Python 2.5 (Marko Kreen)

• Support a true PL/Python boolean type in compatible Python versions (Python 2.3 and later) (Marko
Kreen)

2317

Appendix E. Release Notes

• Fix PL/Tcl problems with thread-enabled libtcl spawning multiple threads within the backend (Steve
Marshall, Paul Bayer, Doug Knight)

This caused all sorts of unpleasantness.

E.83.3.13. psql

• List disabled triggers separately in \d output (Brendan Jurd)

• In \d patterns, always match $ literally (Tom)

• Show aggregate return types in \da output (Greg Sabino Mullane)

• Add the function’s volatility status to the output of \df+ (Neil)

• Add \prompt capability (Chad Wagner)

• Allow \pset, \t, and \x to specify on or off, rather than just toggling (Chad Wagner)

• Add \sleep capability (Jan)

• Enable \timing output for \copy (Andrew)

• Improve \timing resolution on Windows (Itagaki Takahiro)

• Flush \o output after each backslash command (Tom)

• Correctly detect and report errors while reading a -f input file (Peter)

• Remove -u option (this option has long been deprecated) (Tom)

E.83.3.14. pg_dump

• Add --tablespaces-only and --roles-only options to pg_dumpall (Dave Page)

• Add an output file option to pg_dumpall (Dave Page)

This is primarily useful on Windows, where output redirection of child pg_dump processes does not
work.

• Allow pg_dumpall to accept an initial-connection database name rather than the default template1
(Dave Page)

• In -n and -t switches, always match $ literally (Tom)

• Improve performance when a database has thousands of objects (Tom)

• Remove -u option (this option has long been deprecated) (Tom)

E.83.3.15. Other Client Applications

• In initdb, allow the location of the pg_xlog directory to be specified (Euler Taveira de Oliveira)

• Enable server core dump generation in pg_regress on supported operating systems (Andrew)

• Add a -t (timeout) parameter to pg_ctl (Bruce)

2318

Appendix E. Release Notes

This controls how long pg_ctl will wait when waiting for server startup or shutdown. Formerly the
timeout was hard-wired as 60 seconds.

• Add a pg_ctl option to control generation of server core dumps (Andrew)

• Allow Control-C to cancel clusterdb, reindexdb, and vacuumdb (Itagaki Takahiro, Magnus)

• Suppress command tag output for createdb, createuser, dropdb, and dropuser (Peter)

The --quiet option is ignored and will be removed in 8.4. Progress messages when acting on all
databases now go to stdout instead of stderr because they are not actually errors.

E.83.3.16. libpq

• Interpret the dbName parameter of PQsetdbLogin() as a conninfo string if it contains an equals
sign (Andrew)

This allows use of conninfo strings in client programs that still use PQsetdbLogin().

• Support a global SSL configuration file (Victor Wagner)

• Add environment variable PGSSLKEY to control SSL hardware keys (Victor Wagner)

• Add lo_truncate() for large object truncation (Kris Jurka)

• Add PQconnectionNeedsPassword() that returns true if the server required a password but none
was supplied (Joe Conway, Tom)

If this returns true after a failed connection attempt, a client application should prompt the user for
a password. In the past applications have had to check for a specific error message string to decide
whether a password is needed; that approach is now deprecated.

• Add PQconnectionUsedPassword() that returns true if the supplied password was actually used
(Joe Conway, Tom)

This is useful in some security contexts where it is important to know whether a user-supplied password
is actually valid.

E.83.3.17. ecpg

• Use V3 frontend/backend protocol (Michael)

This adds support for server-side prepared statements.

• Use native threads, instead of pthreads, on Windows (Magnus)

• Improve thread-safety of ecpglib (Itagaki Takahiro)

• Make the ecpg libraries export only necessary API symbols (Michael)

2319

Appendix E. Release Notes

E.83.3.18. Windows Port

• Allow the whole PostgreSQL distribution to be compiled with Microsoft Visual C++ (Magnus and
others)

This allows Windows-based developers to use familiar development and debugging tools. Windows
executables made with Visual C++ might also have better stability and performance than those made
with other tool sets. The client-only Visual C++ build scripts have been removed.

• Drastically reduce postmaster’s memory usage when it has many child processes (Magnus)

• Allow regression tests to be started by an administrative user (Magnus)

• Add native shared memory implementation (Magnus)

E.83.3.19. Server Programming Interface (SPI)

• Add cursor-related functionality in SPI (Pavel Stehule)

Allow access to the cursor-related planning options, and add FETCH/MOVE routines.

• Allow execution of cursor commands through SPI_execute (Tom)

The macro SPI_ERROR_CURSOR still exists but will never be returned.

• SPI plan pointers are now declared as SPIPlanPtr instead of void * (Tom)

This does not break application code, but switching is recommended to help catch simple programming
mistakes.

E.83.3.20. Build Options

• Add configure option --enable-profiling to enable code profiling (works only with gcc) (Korry
Douglas and Nikhil Sontakke)

• Add configure option --with-system-tzdata to use the operating system’s time zone database (Pe-
ter)

• Fix PGXS so extensions can be built against PostgreSQL installations whose pg_config program does
not appear first in the PATH (Tom)

• Support gmake draft when building the SGML documentation (Bruce)

Unless draft is used, the documentation build will now be repeated if necessary to ensure the index is
up-to-date.

E.83.3.21. Source Code

• Rename macro DLLIMPORT to PGDLLIMPORT to avoid conflicting with third party includes (like Tcl)
that define DLLIMPORT (Magnus)

2320

Appendix E. Release Notes

• Create “operator families” to improve planning of queries involving cross-data-type comparisons (Tom)

• Update GIN extractQuery() API to allow signalling that nothing can satisfy the query (Teodor)

• Move NAMEDATALEN definition from postgres_ext.h to pg_config_manual.h (Peter)

• Provide strlcpy() and strlcat() on all platforms, and replace error-prone uses of strncpy(),
strncat(), etc (Peter)

• Create hooks to let an external plugin monitor (or even replace) the planner and create plans for hypo-
thetical situations (Gurjeet Singh, Tom)

• Create a function variable join_search_hook to let plugins override the join search order portion of
the planner (Julius Stroffek)

• Add tas() support for Renesas’ M32R processor (Kazuhiro Inaoka)

• quote_identifier() and pg_dump no longer quote keywords that are unreserved according to the
grammar (Tom)

• Change the on-disk representation of the NUMERIC data type so that the sign_dscale word comes
before the weight (Tom)

• Use SYSV semaphores rather than POSIX on Darwin>= 6.0, i.e., OS X 10.2 and up (Chris Marcellino)

• Add acronym and NFS documentation sections (Bruce)

• "Postgres" is now documented as an accepted alias for "PostgreSQL" (Peter)

• Add documentation about preventing database server spoofing when the server is down (Bruce)

E.83.3.22. Contrib

• Move contrib README content into the main PostgreSQL documentation (Albert Cervera i Areny)

• Add contrib/pageinspect module for low-level page inspection (Simon, Heikki)

• Add contrib/pg_standby module for controlling warm standby operation (Simon)

• Add contrib/uuid-ossp module for generating UUID values using the OSSP UUID library (Peter)

Use configure --with-ossp-uuid to activate. This takes advantage of the new UUID builtin type.

• Add contrib/dict_int, contrib/dict_xsyn, and contrib/test_parser modules to provide
sample add-on text search dictionary templates and parsers (Sergey Karpov)

• Allow contrib/pgbench to set the fillfactor (Pavan Deolasee)

• Add timestamps to contrib/pgbench -l (Greg Smith)

• Add usage count statistics to contrib/pgbuffercache (Greg Smith)

• Add GIN support for contrib/hstore (Teodor)

• Add GIN support for contrib/pg_trgm (Guillaume Smet, Teodor)

• Update OS/X startup scripts in contrib/start-scripts (Mark Cotner, David Fetter)

• Restrict pgrowlocks() and dblink_get_pkey() to users who have SELECT privilege on the target
table (Tom)

• Restrict contrib/pgstattuple functions to superusers (Tom)

2321

Appendix E. Release Notes

• contrib/xml2 is deprecated and planned for removal in 8.4 (Peter)

The new XML support in core PostgreSQL supersedes this module.

E.84. Release 8.2.23

Release Date: 2011-12-05

This release contains a variety of fixes from 8.2.22. For information about new features in the 8.2 major
release, see Section E.107.

This is expected to be the last PostgreSQL release in the 8.2.X series. Users are encouraged to update to
a newer release branch soon.

E.84.1. Migration to Version 8.2.23
A dump/restore is not required for those running 8.2.X.

However, a longstanding error was discovered in the definition of the
information_schema.referential_constraints view. If you rely on correct results from that
view, you should replace its definition as explained in the first changelog item below.

Also, if you are upgrading from a version earlier than 8.2.14, see Section E.93.

E.84.2. Changes

• Fix bugs in information_schema.referential_constraints view (Tom Lane)

This view was being insufficiently careful about matching the foreign-key constraint to the depended-
on primary or unique key constraint. That could result in failure to show a foreign key constraint at all,
or showing it multiple times, or claiming that it depends on a different constraint than the one it really
does.

Since the view definition is installed by initdb, merely upgrading will not fix the problem. If you need
to fix this in an existing installation, you can (as a superuser) drop the information_schema schema
then re-create it by sourcing SHAREDIR/information_schema.sql. (Run pg_config --sharedir

if you’re uncertain where SHAREDIR is.) This must be repeated in each database to be fixed.

• Fix TOAST-related data corruption during CREATE TABLE dest AS SELECT * FROM src or
INSERT INTO dest SELECT * FROM src (Tom Lane)

If a table has been modified by ALTER TABLE ADD COLUMN, attempts to copy its data verbatim to
another table could produce corrupt results in certain corner cases. The problem can only manifest in
this precise form in 8.4 and later, but we patched earlier versions as well in case there are other code
paths that could trigger the same bug.

2322

Appendix E. Release Notes

• Fix race condition during toast table access from stale syscache entries (Tom Lane)

The typical symptom was transient errors like “missing chunk number 0 for toast value NNNNN in
pg_toast_2619”, where the cited toast table would always belong to a system catalog.

• Improve locale support in money type’s input and output (Tom Lane)

Aside from not supporting all standard lc_monetary formatting options, the input and output func-
tions were inconsistent, meaning there were locales in which dumped money values could not be re-
read.

• Don’t let transform_null_equals affect CASE foo WHEN NULL ... constructs (Heikki
Linnakangas)

transform_null_equals is only supposed to affect foo = NULL expressions written directly by the
user, not equality checks generated internally by this form of CASE.

• Change foreign-key trigger creation order to better support self-referential foreign keys (Tom Lane)

For a cascading foreign key that references its own table, a row update will fire both the ON UPDATE

trigger and the CHECK trigger as one event. The ON UPDATE trigger must execute first, else the CHECK
will check a non-final state of the row and possibly throw an inappropriate error. However, the fir-
ing order of these triggers is determined by their names, which generally sort in creation order since
the triggers have auto-generated names following the convention “RI_ConstraintTrigger_NNNN”. A
proper fix would require modifying that convention, which we will do in 9.2, but it seems risky to
change it in existing releases. So this patch just changes the creation order of the triggers. Users en-
countering this type of error should drop and re-create the foreign key constraint to get its triggers into
the right order.

• Preserve blank lines within commands in psql’s command history (Robert Haas)

The former behavior could cause problems if an empty line was removed from within a string literal,
for example.

• Use the preferred version of xsubpp to build PL/Perl, not necessarily the operating system’s main copy
(David Wheeler and Alex Hunsaker)

• Honor query cancel interrupts promptly in pgstatindex() (Robert Haas)

• Ensure VPATH builds properly install all server header files (Peter Eisentraut)

• Shorten file names reported in verbose error messages (Peter Eisentraut)

Regular builds have always reported just the name of the C file containing the error message call, but
VPATH builds formerly reported an absolute path name.

• Fix interpretation of Windows timezone names for Central America (Tom Lane)

Map “Central America Standard Time” to CST6, not CST6CDT, because DST is generally not observed
anywhere in Central America.

• Update time zone data files to tzdata release 2011n for DST law changes in Brazil, Cuba, Fiji, Palestine,
Russia, and Samoa; also historical corrections for Alaska and British East Africa.

2323

Appendix E. Release Notes

E.85. Release 8.2.22

Release Date: 2011-09-26

This release contains a variety of fixes from 8.2.21. For information about new features in the 8.2 major
release, see Section E.107.

The PostgreSQL community will stop releasing updates for the 8.2.X release series in December 2011.
Users are encouraged to update to a newer release branch soon.

E.85.1. Migration to Version 8.2.22
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.85.2. Changes

• Fix multiple bugs in GiST index page split processing (Heikki Linnakangas)

The probability of occurrence was low, but these could lead to index corruption.

• Avoid possibly accessing off the end of memory in ANALYZE (Noah Misch)

This fixes a very-low-probability server crash scenario.

• Fix race condition in relcache init file invalidation (Tom Lane)

There was a window wherein a new backend process could read a stale init file but miss the inval
messages that would tell it the data is stale. The result would be bizarre failures in catalog accesses,
typically “could not read block 0 in file ...” later during startup.

• Fix memory leak at end of a GiST index scan (Tom Lane)

Commands that perform many separate GiST index scans, such as verification of a new GiST-based
exclusion constraint on a table already containing many rows, could transiently require large amounts
of memory due to this leak.

• Fix performance problem when constructing a large, lossy bitmap (Tom Lane)

• Fix array- and path-creating functions to ensure padding bytes are zeroes (Tom Lane)

This avoids some situations where the planner will think that semantically-equal constants are not equal,
resulting in poor optimization.

• Work around gcc 4.6.0 bug that breaks WAL replay (Tom Lane)

This could lead to loss of committed transactions after a server crash.

• Fix dump bug for VALUES in a view (Tom Lane)

• Disallow SELECT FOR UPDATE/SHARE on sequences (Tom Lane)

This operation doesn’t work as expected and can lead to failures.

2324

Appendix E. Release Notes

• Defend against integer overflow when computing size of a hash table (Tom Lane)

• Fix portability bugs in use of credentials control messages for “peer” authentication (Tom Lane)

• Fix typo in pg_srand48 seed initialization (Andres Freund)

This led to failure to use all bits of the provided seed. This function is not used on most platforms (only
those without srandom), and the potential security exposure from a less-random-than-expected seed
seems minimal in any case.

• Avoid integer overflow when the sum of LIMIT and OFFSET values exceeds 2^63 (Heikki Linnakangas)

• Add overflow checks to int4 and int8 versions of generate_series() (Robert Haas)

• Fix trailing-zero removal in to_char() (Marti Raudsepp)

In a format with FM and no digit positions after the decimal point, zeroes to the left of the decimal point
could be removed incorrectly.

• Fix pg_size_pretty() to avoid overflow for inputs close to 2^63 (Tom Lane)

• Fix psql’s counting of script file line numbers during COPY from a different file (Tom Lane)

• Fix pg_restore’s direct-to-database mode for standard_conforming_strings (Tom Lane)

pg_restore could emit incorrect commands when restoring directly to a database server from an archive
file that had been made with standard_conforming_strings set to on.

• Fix write-past-buffer-end and memory leak in libpq’s LDAP service lookup code (Albe Laurenz)

• In libpq, avoid failures when using nonblocking I/O and an SSL connection (Martin Pihlak, Tom Lane)

• Improve libpq’s handling of failures during connection startup (Tom Lane)

In particular, the response to a server report of fork() failure during SSL connection startup is now
saner.

• Make ecpglib write double values with 15 digits precision (Akira Kurosawa)

• Apply upstream fix for blowfish signed-character bug (CVE-2011-2483) (Tom Lane)

contrib/pg_crypto’s blowfish encryption code could give wrong results on platforms where char is
signed (which is most), leading to encrypted passwords being weaker than they should be.

• Fix memory leak in contrib/seg (Heikki Linnakangas)

• Fix pgstatindex() to give consistent results for empty indexes (Tom Lane)

• Allow building with perl 5.14 (Alex Hunsaker)

• Update configure script’s method for probing existence of system functions (Tom Lane)

The version of autoconf we used in 8.3 and 8.2 could be fooled by compilers that perform link-time
optimization.

• Fix assorted issues with build and install file paths containing spaces (Tom Lane)

• Update time zone data files to tzdata release 2011i for DST law changes in Canada, Egypt, Russia,
Samoa, and South Sudan.

2325

Appendix E. Release Notes

E.86. Release 8.2.21

Release Date: 2011-04-18

This release contains a variety of fixes from 8.2.20. For information about new features in the 8.2 major
release, see Section E.107.

E.86.1. Migration to Version 8.2.21
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.86.2. Changes

• Avoid potential deadlock during catalog cache initialization (Nikhil Sontakke)

In some cases the cache loading code would acquire share lock on a system index before locking the
index’s catalog. This could deadlock against processes trying to acquire exclusive locks in the other,
more standard order.

• Fix dangling-pointer problem in BEFORE ROW UPDATE trigger handling when there was a concurrent
update to the target tuple (Tom Lane)

This bug has been observed to result in intermittent “cannot extract system attribute from virtual tu-
ple” failures while trying to do UPDATE RETURNING ctid. There is a very small probability of more
serious errors, such as generating incorrect index entries for the updated tuple.

• Disallow DROP TABLE when there are pending deferred trigger events for the table (Tom Lane)

Formerly the DROP would go through, leading to “could not open relation with OID nnn” errors when
the triggers were eventually fired.

• Fix PL/Python memory leak involving array slices (Daniel Popowich)

• Fix pg_restore to cope with long lines (over 1KB) in TOC files (Tom Lane)

• Put in more safeguards against crashing due to division-by-zero with overly enthusiastic compiler opti-
mization (Aurelien Jarno)

• Support use of dlopen() in FreeBSD and OpenBSD on MIPS (Tom Lane)

There was a hard-wired assumption that this system function was not available on MIPS hardware on
these systems. Use a compile-time test instead, since more recent versions have it.

• Fix compilation failures on HP-UX (Heikki Linnakangas)

• Fix path separator used by pg_regress on Cygwin (Andrew Dunstan)

• Update time zone data files to tzdata release 2011f for DST law changes in Chile, Cuba, Falkland Is-
lands, Morocco, Samoa, and Turkey; also historical corrections for South Australia, Alaska, and Hawaii.

2326

Appendix E. Release Notes

E.87. Release 8.2.20

Release Date: 2011-01-31

This release contains a variety of fixes from 8.2.19. For information about new features in the 8.2 major
release, see Section E.107.

E.87.1. Migration to Version 8.2.20
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.87.2. Changes

• Avoid failures when EXPLAIN tries to display a simple-form CASE expression (Tom Lane)

If the CASE’s test expression was a constant, the planner could simplify the CASE into a form that
confused the expression-display code, resulting in “unexpected CASE WHEN clause” errors.

• Fix assignment to an array slice that is before the existing range of subscripts (Tom Lane)

If there was a gap between the newly added subscripts and the first pre-existing subscript, the code mis-
calculated how many entries needed to be copied from the old array’s null bitmap, potentially leading
to data corruption or crash.

• Avoid unexpected conversion overflow in planner for very distant date values (Tom Lane)

The date type supports a wider range of dates than can be represented by the timestamp types, but
the planner assumed it could always convert a date to timestamp with impunity.

• Fix pg_restore’s text output for large objects (BLOBs) when standard_conforming_strings is on
(Tom Lane)

Although restoring directly to a database worked correctly, string escaping was incorrect if pg_restore
was asked for SQL text output and standard_conforming_strings had been enabled in the source
database.

• Fix erroneous parsing of tsquery values containing ... & !(subexpression) | ... (Tom Lane)

Queries containing this combination of operators were not executed correctly. The same error existed
in contrib/intarray’s query_int type and contrib/ltree’s ltxtquery type.

• Fix buffer overrun in contrib/intarray’s input function for the query_int type (Apple)

This bug is a security risk since the function’s return address could be overwritten. Thanks to Apple
Inc’s security team for reporting this issue and supplying the fix. (CVE-2010-4015)

• Fix bug in contrib/seg’s GiST picksplit algorithm (Alexander Korotkov)

2327

Appendix E. Release Notes

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a seg column. If you have such an index, consider REINDEXing it after installing this update. (This
is identical to the bug that was fixed in contrib/cube in the previous update.)

E.88. Release 8.2.19

Release Date: 2010-12-16

This release contains a variety of fixes from 8.2.18. For information about new features in the 8.2 major
release, see Section E.107.

E.88.1. Migration to Version 8.2.19
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.88.2. Changes

• Force the default wal_sync_method to be fdatasync on Linux (Tom Lane, Marti Raudsepp)

The default on Linux has actually been fdatasync for many years, but recent kernel changes caused
PostgreSQL to choose open_datasync instead. This choice did not result in any performance im-
provement, and caused outright failures on certain filesystems, notably ext4 with the data=journal
mount option.

• Fix assorted bugs in WAL replay logic for GIN indexes (Tom Lane)

This could result in “bad buffer id: 0” failures or corruption of index contents during replication.

• Fix recovery from base backup when the starting checkpoint WAL record is not in the same WAL
segment as its redo point (Jeff Davis)

• Add support for detecting register-stack overrun on IA64 (Tom Lane)

The IA64 architecture has two hardware stacks. Full prevention of stack-overrun failures requires
checking both.

• Add a check for stack overflow in copyObject() (Tom Lane)

Certain code paths could crash due to stack overflow given a sufficiently complex query.

• Fix detection of page splits in temporary GiST indexes (Heikki Linnakangas)

It is possible to have a “concurrent” page split in a temporary index, if for example there is an open
cursor scanning the index when an insertion is done. GiST failed to detect this case and hence could
deliver wrong results when execution of the cursor continued.

• Avoid memory leakage while ANALYZE’ing complex index expressions (Tom Lane)

2328

Appendix E. Release Notes

• Ensure an index that uses a whole-row Var still depends on its table (Tom Lane)

An index declared like create index i on t (foo(t.*)) would not automatically get dropped
when its table was dropped.

• Do not “inline” a SQL function with multiple OUT parameters (Tom Lane)

This avoids a possible crash due to loss of information about the expected result rowtype.

• Behave correctly if ORDER BY, LIMIT, FOR UPDATE, or WITH is attached to the VALUES part of
INSERT ... VALUES (Tom Lane)

• Fix constant-folding of COALESCE() expressions (Tom Lane)

The planner would sometimes attempt to evaluate sub-expressions that in fact could never be reached,
possibly leading to unexpected errors.

• Add print functionality for InhRelation nodes (Tom Lane)

This avoids a failure when debug_print_parse is enabled and certain types of query are executed.

• Fix incorrect calculation of distance from a point to a horizontal line segment (Tom Lane)

This bug affected several different geometric distance-measurement operators.

• Fix PL/pgSQL’s handling of “simple” expressions to not fail in recursion or error-recovery cases (Tom
Lane)

• Fix PL/Python’s handling of set-returning functions (Jan Urbanski)

Attempts to call SPI functions within the iterator generating a set result would fail.

• Fix bug in contrib/cube’s GiST picksplit algorithm (Alexander Korotkov)

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a cube column. If you have such an index, consider REINDEXing it after installing this update.

• Don’t emit “identifier will be truncated” notices in contrib/dblink except when creating new con-
nections (Itagaki Takahiro)

• Fix potential coredump on missing public key in contrib/pgcrypto (Marti Raudsepp)

• Fix memory leak in contrib/xml2’s XPath query functions (Tom Lane)

• Update time zone data files to tzdata release 2010o for DST law changes in Fiji and Samoa; also
historical corrections for Hong Kong.

E.89. Release 8.2.18

Release Date: 2010-10-04

This release contains a variety of fixes from 8.2.17. For information about new features in the 8.2 major
release, see Section E.107.

2329

Appendix E. Release Notes

E.89.1. Migration to Version 8.2.18
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.89.2. Changes

• Use a separate interpreter for each calling SQL userid in PL/Perl and PL/Tcl (Tom Lane)

This change prevents security problems that can be caused by subverting Perl or Tcl code that will be
executed later in the same session under another SQL user identity (for example, within a SECURITY

DEFINER function). Most scripting languages offer numerous ways that that might be done, such as
redefining standard functions or operators called by the target function. Without this change, any SQL
user with Perl or Tcl language usage rights can do essentially anything with the SQL privileges of the
target function’s owner.

The cost of this change is that intentional communication among Perl and Tcl functions becomes more
difficult. To provide an escape hatch, PL/PerlU and PL/TclU functions continue to use only one inter-
preter per session. This is not considered a security issue since all such functions execute at the trust
level of a database superuser already.

It is likely that third-party procedural languages that claim to offer trusted execution have similar se-
curity issues. We advise contacting the authors of any PL you are depending on for security-critical
purposes.

Our thanks to Tim Bunce for pointing out this issue (CVE-2010-3433).

• Prevent possible crashes in pg_get_expr() by disallowing it from being called with an argument that
is not one of the system catalog columns it’s intended to be used with (Heikki Linnakangas, Tom Lane)

• Fix Windows shared-memory allocation code (Tsutomu Yamada, Magnus Hagander)

This bug led to the often-reported “could not reattach to shared memory” error message. This is a
back-patch of a fix that was applied to newer branches some time ago.

• Treat exit code 128 (ERROR_WAIT_NO_CHILDREN) as non-fatal on Windows (Magnus Hagander)

Under high load, Windows processes will sometimes fail at startup with this error code. Formerly the
postmaster treated this as a panic condition and restarted the whole database, but that seems to be an
overreaction.

• Fix possible duplicate scans of UNION ALL member relations (Tom Lane)

• Fix “cannot handle unplanned sub-select” error (Tom Lane)

This occurred when a sub-select contains a join alias reference that expands into an expression contain-
ing another sub-select.

• Reduce PANIC to ERROR in some occasionally-reported btree failure cases, and provide additional
detail in the resulting error messages (Tom Lane)

This should improve the system’s robustness with corrupted indexes.

• Prevent show_session_authorization() from crashing within autovacuum processes (Tom Lane)

2330

Appendix E. Release Notes

• Defend against functions returning setof record where not all the returned rows are actually of the same
rowtype (Tom Lane)

• Fix possible failure when hashing a pass-by-reference function result (Tao Ma, Tom Lane)

• Take care to fsync the contents of lockfiles (both postmaster.pid and the socket lockfile) while
writing them (Tom Lane)

This omission could result in corrupted lockfile contents if the machine crashes shortly after postmaster
start. That could in turn prevent subsequent attempts to start the postmaster from succeeding, until the
lockfile is manually removed.

• Avoid recursion while assigning XIDs to heavily-nested subtransactions (Andres Freund, Robert Haas)

The original coding could result in a crash if there was limited stack space.

• Fix log_line_prefix’s %i escape, which could produce junk early in backend startup (Tom Lane)

• Fix possible data corruption in ALTER TABLE ... SET TABLESPACE when archiving is enabled (Jeff
Davis)

• Allow CREATE DATABASE and ALTER DATABASE ... SET TABLESPACE to be interrupted by
query-cancel (Guillaume Lelarge)

• In PL/Python, defend against null pointer results from PyCObject_AsVoidPtr and
PyCObject_FromVoidPtr (Peter Eisentraut)

• Improve contrib/dblink’s handling of tables containing dropped columns (Tom Lane)

• Fix connection leak after “duplicate connection name” errors in contrib/dblink (Itagaki Takahiro)

• Fix contrib/dblink to handle connection names longer than 62 bytes correctly (Itagaki Takahiro)

• Add hstore(text, text) function to contrib/hstore (Robert Haas)

This function is the recommended substitute for the now-deprecated => operator. It was back-patched
so that future-proofed code can be used with older server versions. Note that the patch will be effective
only after contrib/hstore is installed or reinstalled in a particular database. Users might prefer to
execute the CREATE FUNCTION command by hand, instead.

• Update build infrastructure and documentation to reflect the source code repository’s move from CVS
to Git (Magnus Hagander and others)

• Update time zone data files to tzdata release 2010l for DST law changes in Egypt and Palestine; also
historical corrections for Finland.

This change also adds new names for two Micronesian timezones: Pacific/Chuuk is now preferred over
Pacific/Truk (and the preferred abbreviation is CHUT not TRUT) and Pacific/Pohnpei is preferred over
Pacific/Ponape.

• Make Windows’ “N. Central Asia Standard Time” timezone map to Asia/Novosibirsk, not Asia/Almaty
(Magnus Hagander)

Microsoft changed the DST behavior of this zone in the timezone update from KB976098.
Asia/Novosibirsk is a better match to its new behavior.

2331

Appendix E. Release Notes

E.90. Release 8.2.17

Release Date: 2010-05-17

This release contains a variety of fixes from 8.2.16. For information about new features in the 8.2 major
release, see Section E.107.

E.90.1. Migration to Version 8.2.17
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.90.2. Changes

• Enforce restrictions in plperl using an opmask applied to the whole interpreter, instead of using
Safe.pm (Tim Bunce, Andrew Dunstan)

Recent developments have convinced us that Safe.pm is too insecure to rely on for making plperl

trustable. This change removes use of Safe.pm altogether, in favor of using a separate interpreter with
an opcode mask that is always applied. Pleasant side effects of the change include that it is now possible
to use Perl’s strict pragma in a natural way in plperl, and that Perl’s $a and $b variables work as
expected in sort routines, and that function compilation is significantly faster. (CVE-2010-1169)

• Prevent PL/Tcl from executing untrustworthy code from pltcl_modules (Tom)

PL/Tcl’s feature for autoloading Tcl code from a database table could be exploited for trojan-horse
attacks, because there was no restriction on who could create or insert into that table. This change
disables the feature unless pltcl_modules is owned by a superuser. (However, the permissions on the
table are not checked, so installations that really need a less-than-secure modules table can still grant
suitable privileges to trusted non-superusers.) Also, prevent loading code into the unrestricted “normal”
Tcl interpreter unless we are really going to execute a pltclu function. (CVE-2010-1170)

• Fix possible crash if a cache reset message is received during rebuild of a relcache entry (Heikki)

This error was introduced in 8.2.16 while fixing a related failure.

• Do not allow an unprivileged user to reset superuser-only parameter settings (Alvaro)

Previously, if an unprivileged user ran ALTER USER ... RESET ALL for himself, or ALTER

DATABASE ... RESET ALL for a database he owns, this would remove all special parameter settings
for the user or database, even ones that are only supposed to be changeable by a superuser. Now, the
ALTER will only remove the parameters that the user has permission to change.

• Avoid possible crash during backend shutdown if shutdown occurs when a CONTEXT addition would be
made to log entries (Tom)

In some cases the context-printing function would fail because the current transaction had already been
rolled back when it came time to print a log message.

• Update pl/perl’s ppport.h for modern Perl versions (Andrew)

2332

Appendix E. Release Notes

• Fix assorted memory leaks in pl/python (Andreas Freund, Tom)

• Prevent infinite recursion in psql when expanding a variable that refers to itself (Tom)

• Fix psql’s \copy to not add spaces around a dot within \copy (select ...) (Tom)

Addition of spaces around the decimal point in a numeric literal would result in a syntax error.

• Ensure that contrib/pgstattuple functions respond to cancel interrupts promptly (Tatsuhito Kasa-
hara)

• Make server startup deal properly with the case that shmget() returns EINVAL for an existing shared
memory segment (Tom)

This behavior has been observed on BSD-derived kernels including OS X. It resulted in an entirely-
misleading startup failure complaining that the shared memory request size was too large.

• Avoid possible crashes in syslogger process on Windows (Heikki)

• Deal more robustly with incomplete time zone information in the Windows registry (Magnus)

• Update the set of known Windows time zone names (Magnus)

• Update time zone data files to tzdata release 2010j for DST law changes in Argentina, Australian
Antarctic, Bangladesh, Mexico, Morocco, Pakistan, Palestine, Russia, Syria, Tunisia; also historical
corrections for Taiwan.

Also, add PKST (Pakistan Summer Time) to the default set of timezone abbreviations.

E.91. Release 8.2.16

Release Date: 2010-03-15

This release contains a variety of fixes from 8.2.15. For information about new features in the 8.2 major
release, see Section E.107.

E.91.1. Migration to Version 8.2.16
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.91.2. Changes

• Add new configuration parameter ssl_renegotiation_limit to control how often we do session
key renegotiation for an SSL connection (Magnus)

2333

Appendix E. Release Notes

This can be set to zero to disable renegotiation completely, which may be required if a broken SSL
library is used. In particular, some vendors are shipping stopgap patches for CVE-2009-3555 that cause
renegotiation attempts to fail.

• Fix possible deadlock during backend startup (Tom)

• Fix possible crashes due to not handling errors during relcache reload cleanly (Tom)

• Fix possible crashes when trying to recover from a failure in subtransaction start (Tom)

• Fix server memory leak associated with use of savepoints and a client encoding different from server’s
encoding (Tom)

• Fix incorrect WAL data emitted during end-of-recovery cleanup of a GIST index page split (Yoichi
Hirai)

This would result in index corruption, or even more likely an error during WAL replay, if we were
unlucky enough to crash during end-of-recovery cleanup after having completed an incomplete GIST
insertion.

• Make substring() for bit types treat any negative length as meaning “all the rest of the string”
(Tom)

The previous coding treated only -1 that way, and would produce an invalid result value for other
negative values, possibly leading to a crash (CVE-2010-0442).

• Fix integer-to-bit-string conversions to handle the first fractional byte correctly when the output bit
width is wider than the given integer by something other than a multiple of 8 bits (Tom)

• Fix some cases of pathologically slow regular expression matching (Tom)

• Fix the STOP WAL LOCATION entry in backup history files to report the next WAL segment’s name
when the end location is exactly at a segment boundary (Itagaki Takahiro)

• Fix some more cases of temporary-file leakage (Heikki)

This corrects a problem introduced in the previous minor release. One case that failed is when a plpgsql
function returning set is called within another function’s exception handler.

• Improve constraint exclusion processing of boolean-variable cases, in particular make it possible to
exclude a partition that has a “bool_column = false” constraint (Tom)

• When reading pg_hba.conf and related files, do not treat @something as a file inclusion request if
the @ appears inside quote marks; also, never treat @ by itself as a file inclusion request (Tom)

This prevents erratic behavior if a role or database name starts with @. If you need to include a file
whose path name contains spaces, you can still do so, but you must write @"/path to/file" rather
than putting the quotes around the whole construct.

• Prevent infinite loop on some platforms if a directory is named as an inclusion target in pg_hba.conf

and related files (Tom)

• Fix possible infinite loop if SSL_read or SSL_write fails without setting errno (Tom)

This is reportedly possible with some Windows versions of openssl.

• Fix psql’s numericlocale option to not format strings it shouldn’t in latex and troff output formats
(Heikki)

• Make psql return the correct exit status (3) when ON_ERROR_STOP and --single-transaction are
both specified and an error occurs during the implied COMMIT (Bruce)

2334

Appendix E. Release Notes

• Fix plpgsql failure in one case where a composite column is set to NULL (Tom)

• Fix possible failure when calling PL/Perl functions from PL/PerlU or vice versa (Tim Bunce)

• Add volatile markings in PL/Python to avoid possible compiler-specific misbehavior (Zdenek Ko-
tala)

• Ensure PL/Tcl initializes the Tcl interpreter fully (Tom)

The only known symptom of this oversight is that the Tcl clock command misbehaves if using Tcl 8.5
or later.

• Prevent crash in contrib/dblink when too many key columns are specified to a
dblink_build_sql_* function (Rushabh Lathia, Joe Conway)

• Fix assorted crashes in contrib/xml2 caused by sloppy memory management (Tom)

• Make building of contrib/xml2 more robust on Windows (Andrew)

• Fix race condition in Windows signal handling (Radu Ilie)

One known symptom of this bug is that rows in pg_listener could be dropped under heavy load.

• Update time zone data files to tzdata release 2010e for DST law changes in Bangladesh, Chile, Fiji,
Mexico, Paraguay, Samoa.

E.92. Release 8.2.15

Release Date: 2009-12-14

This release contains a variety of fixes from 8.2.14. For information about new features in the 8.2 major
release, see Section E.107.

E.92.1. Migration to Version 8.2.15
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.14, see Section E.93.

E.92.2. Changes

• Protect against indirect security threats caused by index functions changing session-local state (Gurjeet
Singh, Tom)

This change prevents allegedly-immutable index functions from possibly subverting a superuser’s ses-
sion (CVE-2009-4136).

• Reject SSL certificates containing an embedded null byte in the common name (CN) field (Magnus)

2335

Appendix E. Release Notes

This prevents unintended matching of a certificate to a server or client name during SSL validation
(CVE-2009-4034).

• Fix possible crash during backend-startup-time cache initialization (Tom)

• Prevent signals from interrupting VACUUM at unsafe times (Alvaro)

This fix prevents a PANIC if a VACUUM FULL is canceled after it’s already committed its tuple move-
ments, as well as transient errors if a plain VACUUM is interrupted after having truncated the table.

• Fix possible crash due to integer overflow in hash table size calculation (Tom)

This could occur with extremely large planner estimates for the size of a hashjoin’s result.

• Fix very rare crash in inet/cidr comparisons (Chris Mikkelson)

• Ensure that shared tuple-level locks held by prepared transactions are not ignored (Heikki)

• Fix premature drop of temporary files used for a cursor that is accessed within a subtransaction (Heikki)

• Fix incorrect logic for GiST index page splits, when the split depends on a non-first column of the index
(Paul Ramsey)

• Don’t error out if recycling or removing an old WAL file fails at the end of checkpoint (Heikki)

It’s better to treat the problem as non-fatal and allow the checkpoint to complete. Future checkpoints
will retry the removal. Such problems are not expected in normal operation, but have been seen to be
caused by misdesigned Windows anti-virus and backup software.

• Ensure WAL files aren’t repeatedly archived on Windows (Heikki)

This is another symptom that could happen if some other process interfered with deletion of a no-
longer-needed file.

• Fix PAM password processing to be more robust (Tom)

The previous code is known to fail with the combination of the Linux pam_krb5 PAM module with
Microsoft Active Directory as the domain controller. It might have problems elsewhere too, since it was
making unjustified assumptions about what arguments the PAM stack would pass to it.

• Fix processing of ownership dependencies during CREATE OR REPLACE FUNCTION (Tom)

• Fix bug with calling plperl from plperlu or vice versa (Tom)

An error exit from the inner function could result in crashes due to failure to re-select the correct Perl
interpreter for the outer function.

• Fix session-lifespan memory leak when a PL/Perl function is redefined (Tom)

• Ensure that Perl arrays are properly converted to PostgreSQL arrays when returned by a set-returning
PL/Perl function (Andrew Dunstan, Abhijit Menon-Sen)

This worked correctly already for non-set-returning functions.

• Fix rare crash in exception processing in PL/Python (Peter)

• Ensure psql’s flex module is compiled with the correct system header definitions (Tom)

This fixes build failures on platforms where --enable-largefile causes incompatible changes in
the generated code.

• Make the postmaster ignore any application_name parameter in connection request packets, to im-
prove compatibility with future libpq versions (Tom)

2336

Appendix E. Release Notes

• Update the timezone abbreviation files to match current reality (Joachim Wieland)

This includes adding IDT and SGT to the default timezone abbreviation set.

• Update time zone data files to tzdata release 2009s for DST law changes in Antarctica, Argentina,
Bangladesh, Fiji, Novokuznetsk, Pakistan, Palestine, Samoa, Syria; also historical corrections for Hong
Kong.

E.93. Release 8.2.14

Release Date: 2009-09-09

This release contains a variety of fixes from 8.2.13. For information about new features in the 8.2 major
release, see Section E.107.

E.93.1. Migration to Version 8.2.14
A dump/restore is not required for those running 8.2.X. However, if you have any hash indexes on
interval columns, you must REINDEX them after updating to 8.2.14. Also, if you are upgrading from a
version earlier than 8.2.11, see Section E.96.

E.93.2. Changes

• Force WAL segment switch during pg_start_backup() (Heikki)

This avoids corner cases that could render a base backup unusable.

• Disallow RESET ROLE and RESET SESSION AUTHORIZATION inside security-definer functions
(Tom, Heikki)

This covers a case that was missed in the previous patch that disallowed SET ROLE and SET SESSION

AUTHORIZATION inside security-definer functions. (See CVE-2007-6600)

• Make LOAD of an already-loaded loadable module into a no-op (Tom)

Formerly, LOAD would attempt to unload and re-load the module, but this is unsafe and not all that
useful.

• Disallow empty passwords during LDAP authentication (Magnus)

• Fix handling of sub-SELECTs appearing in the arguments of an outer-level aggregate function (Tom)

• Fix bugs associated with fetching a whole-row value from the output of a Sort or Materialize plan node
(Tom)

• Revert planner change that disabled partial-index and constraint exclusion optimizations when there
were more than 100 clauses in an AND or OR list (Tom)

2337

Appendix E. Release Notes

• Fix hash calculation for data type interval (Tom)

This corrects wrong results for hash joins on interval values. It also changes the contents of hash indexes
on interval columns. If you have any such indexes, you must REINDEX them after updating.

• Treat to_char(..., ’TH’) as an uppercase ordinal suffix with ’HH’/’HH12’ (Heikki)

It was previously handled as ’th’ (lowercase).

• Fix overflow for INTERVAL ’x ms’ when x is more than 2 million and integer datetimes are in use
(Alex Hunsaker)

• Fix calculation of distance between a point and a line segment (Tom)

This led to incorrect results from a number of geometric operators.

• Fix money data type to work in locales where currency amounts have no fractional digits, e.g. Japan
(Itagaki Takahiro)

• Properly round datetime input like 00:12:57.9999999999999999999999999999 (Tom)

• Fix poor choice of page split point in GiST R-tree operator classes (Teodor)

• Avoid performance degradation in bulk inserts into GIN indexes when the input values are (nearly) in
sorted order (Tom)

• Correctly enforce NOT NULL domain constraints in some contexts in PL/pgSQL (Tom)

• Fix portability issues in plperl initialization (Andrew Dunstan)

• Fix pg_ctl to not go into an infinite loop if postgresql.conf is empty (Jeff Davis)

• Make contrib/hstore throw an error when a key or value is too long to fit in its data structure, rather
than silently truncating it (Andrew Gierth)

• Fix contrib/xml2’s xslt_process() to properly handle the maximum number of parameters
(twenty) (Tom)

• Improve robustness of libpq’s code to recover from errors during COPY FROM STDIN (Tom)

• Avoid including conflicting readline and editline header files when both libraries are installed (Zdenek
Kotala)

• Update time zone data files to tzdata release 2009l for DST law changes in Bangladesh, Egypt, Jordan,
Pakistan, Argentina/San_Luis, Cuba, Jordan (historical correction only), Mauritius, Morocco, Palestine,
Syria, Tunisia.

E.94. Release 8.2.13

Release Date: 2009-03-16

This release contains a variety of fixes from 8.2.12. For information about new features in the 8.2 major
release, see Section E.107.

2338

Appendix E. Release Notes

E.94.1. Migration to Version 8.2.13
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.11, see Section E.96.

E.94.2. Changes

• Prevent error recursion crashes when encoding conversion fails (Tom)

This change extends fixes made in the last two minor releases for related failure scenarios. The previous
fixes were narrowly tailored for the original problem reports, but we have now recognized that any error
thrown by an encoding conversion function could potentially lead to infinite recursion while trying to
report the error. The solution therefore is to disable translation and encoding conversion and report
the plain-ASCII form of any error message, if we find we have gotten into a recursive error reporting
situation. (CVE-2009-0922)

• Disallow CREATE CONVERSION with the wrong encodings for the specified conversion function
(Heikki)

This prevents one possible scenario for encoding conversion failure. The previous change is a backstop
to guard against other kinds of failures in the same area.

• Fix core dump when to_char() is given format codes that are inappropriate for the type of the data
argument (Tom)

• Fix possible failure in contrib/tsearch2 when C locale is used with a multi-byte encoding (Teodor)

Crashes were possible on platforms where wchar_t is narrower than int; Windows in particular.

• Fix extreme inefficiency in contrib/tsearch2 parser’s handling of an email-like string containing
multiple @ characters (Heikki)

• Fix decompilation of CASE WHEN with an implicit coercion (Tom)

This mistake could lead to Assert failures in an Assert-enabled build, or an “unexpected CASE WHEN
clause” error message in other cases, when trying to examine or dump a view.

• Fix possible misassignment of the owner of a TOAST table’s rowtype (Tom)

If CLUSTER or a rewriting variant of ALTER TABLE were executed by someone other than the table
owner, the pg_type entry for the table’s TOAST table would end up marked as owned by that someone.
This caused no immediate problems, since the permissions on the TOAST rowtype aren’t examined by
any ordinary database operation. However, it could lead to unexpected failures if one later tried to drop
the role that issued the command (in 8.1 or 8.2), or “owner of data type appears to be invalid” warnings
from pg_dump after having done so (in 8.3).

• Fix PL/pgSQL to not treat INTO after INSERT as an INTO-variables clause anywhere in the string, not
only at the start; in particular, don’t fail for INSERT INTO within CREATE RULE (Tom)

• Clean up PL/pgSQL error status variables fully at block exit (Ashesh Vashi and Dave Page)

This is not a problem for PL/pgSQL itself, but the omission could cause the PL/pgSQL Debugger to
crash while examining the state of a function.

• Retry failed calls to CallNamedPipe() on Windows (Steve Marshall, Magnus)

2339

Appendix E. Release Notes

It appears that this function can sometimes fail transiently; we previously treated any failure as a hard
error, which could confuse LISTEN/NOTIFY as well as other operations.

• Add MUST (Mauritius Island Summer Time) to the default list of known timezone abbreviations (Xavier
Bugaud)

E.95. Release 8.2.12

Release Date: 2009-02-02

This release contains a variety of fixes from 8.2.11. For information about new features in the 8.2 major
release, see Section E.107.

E.95.1. Migration to Version 8.2.12
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.11, see Section E.96.

E.95.2. Changes

• Improve handling of URLs in headline() function (Teodor)

• Improve handling of overlength headlines in headline() function (Teodor)

• Prevent possible Assert failure or misconversion if an encoding conversion is created with the wrong
conversion function for the specified pair of encodings (Tom, Heikki)

• Fix possible Assert failure if a statement executed in PL/pgSQL is rewritten into another kind of state-
ment, for example if an INSERT is rewritten into an UPDATE (Heikki)

• Ensure that a snapshot is available to datatype input functions (Tom)

This primarily affects domains that are declared with CHECK constraints involving user-defined stable
or immutable functions. Such functions typically fail if no snapshot has been set.

• Make it safer for SPI-using functions to be used within datatype I/O; in particular, to be used in domain
check constraints (Tom)

• Avoid unnecessary locking of small tables in VACUUM (Heikki)

• Fix a problem that made UPDATE RETURNING tableoid return zero instead of the correct OID (Tom)

• Fix planner misestimation of selectivity when transitive equality is applied to an outer-join clause (Tom)

This could result in bad plans for queries like ... from a left join b on a.a1 = b.b1

where a.a1 = 42 ...

• Improve optimizer’s handling of long IN lists (Tom)

2340

Appendix E. Release Notes

This change avoids wasting large amounts of time on such lists when constraint exclusion is enabled.

• Ensure that the contents of a holdable cursor don’t depend on the contents of TOAST tables (Tom)

Previously, large field values in a cursor result might be represented as TOAST pointers, which would
fail if the referenced table got dropped before the cursor is read, or if the large value is deleted and then
vacuumed away. This cannot happen with an ordinary cursor, but it could with a cursor that is held past
its creating transaction.

• Fix memory leak when a set-returning function is terminated without reading its whole result (Tom)

• Fix contrib/dblink’s dblink_get_result(text,bool) function (Joe)

• Fix possible garbage output from contrib/sslinfo functions (Tom)

• Fix configure script to properly report failure when unable to obtain linkage information for PL/Perl
(Andrew)

• Make all documentation reference pgsql-bugs and/or pgsql-hackers as appropriate, instead of the
now-decommissioned pgsql-ports and pgsql-patches mailing lists (Tom)

• Update time zone data files to tzdata release 2009a (for Kathmandu and historical DST corrections in
Switzerland, Cuba)

E.96. Release 8.2.11

Release Date: 2008-11-03

This release contains a variety of fixes from 8.2.10. For information about new features in the 8.2 major
release, see Section E.107.

E.96.1. Migration to Version 8.2.11
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.7, see Section E.100. Also, if you were running a previous 8.2.X release, it is recommended
to REINDEX all GiST indexes after the upgrade.

E.96.2. Changes

• Fix GiST index corruption due to marking the wrong index entry “dead” after a deletion (Teodor)

This would result in index searches failing to find rows they should have found. Corrupted indexes can
be fixed with REINDEX.

• Fix backend crash when the client encoding cannot represent a localized error message (Tom)

2341

Appendix E. Release Notes

We have addressed similar issues before, but it would still fail if the “character has no equivalent”
message itself couldn’t be converted. The fix is to disable localization and send the plain ASCII error
message when we detect such a situation.

• Fix possible crash when deeply nested functions are invoked from a trigger (Tom)

• Improve optimization of expression IN (expression-list) queries (Tom, per an idea from Robert
Haas)

Cases in which there are query variables on the right-hand side had been handled less efficiently in
8.2.x and 8.3.x than in prior versions. The fix restores 8.1 behavior for such cases.

• Fix mis-expansion of rule queries when a sub-SELECT appears in a function call in FROM, a multi-row
VALUES list, or a RETURNING list (Tom)

The usual symptom of this problem is an “unrecognized node type” error.

• Fix memory leak during rescan of a hashed aggregation plan (Neil)

• Ensure an error is reported when a newly-defined PL/pgSQL trigger function is invoked as a normal
function (Tom)

• Prevent possible collision of relfilenode numbers when moving a table to another tablespace with
ALTER SET TABLESPACE (Heikki)

The command tried to re-use the existing filename, instead of picking one that is known unused in the
destination directory.

• Fix incorrect tsearch2 headline generation when single query item matches first word of text (Sushant
Sinha)

• Fix improper display of fractional seconds in interval values when using a non-ISO datestyle in an
--enable-integer-datetimes build (Ron Mayer)

• Ensure SPI_getvalue and SPI_getbinval behave correctly when the passed tuple and tuple de-
scriptor have different numbers of columns (Tom)

This situation is normal when a table has had columns added or removed, but these two functions didn’t
handle it properly. The only likely consequence is an incorrect error indication.

• Fix ecpg’s parsing of CREATE ROLE (Michael)

• Fix recent breakage of pg_ctl restart (Tom)

• Ensure pg_control is opened in binary mode (Itagaki Takahiro)

pg_controldata and pg_resetxlog did this incorrectly, and so could fail on Windows.

• Update time zone data files to tzdata release 2008i (for DST law changes in Argentina, Brazil, Mauri-
tius, Syria)

E.97. Release 8.2.10

Release Date: 2008-09-22

2342

Appendix E. Release Notes

This release contains a variety of fixes from 8.2.9. For information about new features in the 8.2 major
release, see Section E.107.

E.97.1. Migration to Version 8.2.10
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.7, see Section E.100.

E.97.2. Changes

• Fix bug in btree WAL recovery code (Heikki)

Recovery failed if the WAL ended partway through a page split operation.

• Fix potential miscalculation of datfrozenxid (Alvaro)

This error may explain some recent reports of failure to remove old pg_clog data.

• Widen local lock counters from 32 to 64 bits (Tom)

This responds to reports that the counters could overflow in sufficiently long transactions, leading to
unexpected “lock is already held” errors.

• Fix possible duplicate output of tuples during a GiST index scan (Teodor)

• Fix missed permissions checks when a view contains a simple UNION ALL construct (Heikki)

Permissions for the referenced tables were checked properly, but not permissions for the view itself.

• Add checks in executor startup to ensure that the tuples produced by an INSERT or UPDATE will match
the target table’s current rowtype (Tom)

ALTER COLUMN TYPE, followed by re-use of a previously cached plan, could produce this type of
situation. The check protects against data corruption and/or crashes that could ensue.

• Fix possible repeated drops during DROP OWNED (Tom)

This would typically result in strange errors such as “cache lookup failed for relation NNN”.

• Fix AT TIME ZONE to first try to interpret its timezone argument as a timezone abbreviation, and only
try it as a full timezone name if that fails, rather than the other way around as formerly (Tom)

The timestamp input functions have always resolved ambiguous zone names in this order. Making AT

TIME ZONE do so as well improves consistency, and fixes a compatibility bug introduced in 8.1: in
ambiguous cases we now behave the same as 8.0 and before did, since in the older versions AT TIME

ZONE accepted only abbreviations.

• Fix datetime input functions to correctly detect integer overflow when running on a 64-bit platform
(Tom)

• Prevent integer overflows during units conversion when displaying a configuration parameter that has
units (Tom)

• Improve performance of writing very long log messages to syslog (Tom)

• Allow spaces in the suffix part of an LDAP URL in pg_hba.conf (Tom)

2343

Appendix E. Release Notes

• Fix bug in backwards scanning of a cursor on a SELECT DISTINCT ON query (Tom)

• Fix planner bug with nested sub-select expressions (Tom)

If the outer sub-select has no direct dependency on the parent query, but the inner one does, the outer
value might not get recalculated for new parent query rows.

• Fix planner to estimate that GROUP BY expressions yielding boolean results always result in two groups,
regardless of the expressions’ contents (Tom)

This is very substantially more accurate than the regular GROUP BY estimate for certain boolean tests
like col IS NULL.

• Fix PL/pgSQL to not fail when a FOR loop’s target variable is a record containing composite-type fields
(Tom)

• Fix PL/Tcl to behave correctly with Tcl 8.5, and to be more careful about the encoding of data sent to
or from Tcl (Tom)

• On Windows, work around a Microsoft bug by preventing libpq from trying to send more than 64kB
per system call (Magnus)

• Improve pg_dump and pg_restore’s error reporting after failure to send a SQL command (Tom)

• Fix pg_ctl to properly preserve postmaster command-line arguments across a restart (Bruce)

• Update time zone data files to tzdata release 2008f (for DST law changes in Argentina, Bahamas, Brazil,
Mauritius, Morocco, Pakistan, Palestine, and Paraguay)

E.98. Release 8.2.9

Release Date: 2008-06-12

This release contains one serious and one minor bug fix over 8.2.8. For information about new features in
the 8.2 major release, see Section E.107.

E.98.1. Migration to Version 8.2.9
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.7, see Section E.100.

E.98.2. Changes

• Make pg_get_ruledef() parenthesize negative constants (Tom)

Before this fix, a negative constant in a view or rule might be dumped as, say, -42::integer, which is
subtly incorrect: it should be (-42)::integer due to operator precedence rules. Usually this would
make little difference, but it could interact with another recent patch to cause PostgreSQL to reject what

2344

Appendix E. Release Notes

had been a valid SELECT DISTINCT view query. Since this could result in pg_dump output failing to
reload, it is being treated as a high-priority fix. The only released versions in which dump output is
actually incorrect are 8.3.1 and 8.2.7.

• Make ALTER AGGREGATE ... OWNER TO update pg_shdepend (Tom)

This oversight could lead to problems if the aggregate was later involved in a DROP OWNED or
REASSIGN OWNED operation.

E.99. Release 8.2.8

Release Date: never released

This release contains a variety of fixes from 8.2.7. For information about new features in the 8.2 major
release, see Section E.107.

E.99.1. Migration to Version 8.2.8
A dump/restore is not required for those running 8.2.X. However, if you are upgrading from a version
earlier than 8.2.7, see Section E.100.

E.99.2. Changes

• Fix ERRORDATA_STACK_SIZE exceeded crash that occurred on Windows when using UTF-8
database encoding and a different client encoding (Tom)

• Fix ALTER TABLE ADD COLUMN ... PRIMARY KEY so that the new column is correctly checked to
see if it’s been initialized to all non-nulls (Brendan Jurd)

Previous versions neglected to check this requirement at all.

• Fix possible CREATE TABLE failure when inheriting the “same” constraint from multiple parent rela-
tions that inherited that constraint from a common ancestor (Tom)

• Fix pg_get_ruledef() to show the alias, if any, attached to the target table of an UPDATE or DELETE
(Tom)

• Fix GIN bug that could result in a too many LWLocks taken failure (Teodor)

• Avoid possible crash when decompressing corrupted data (Zdenek Kotala)

• Repair two places where SIGTERM exit of a backend could leave corrupted state in shared memory
(Tom)

Neither case is very important if SIGTERM is used to shut down the whole database cluster together,
but there was a problem if someone tried to SIGTERM individual backends.

2345

Appendix E. Release Notes

• Fix conversions between ISO-8859-5 and other encodings to handle Cyrillic “Yo” characters (e and E

with two dots) (Sergey Burladyan)

• Fix several datatype input functions, notably array_in(), that were allowing unused bytes in their
results to contain uninitialized, unpredictable values (Tom)

This could lead to failures in which two apparently identical literal values were not seen as equal,
resulting in the parser complaining about unmatched ORDER BY and DISTINCT expressions.

• Fix a corner case in regular-expression substring matching (substring(string from pattern))
(Tom)

The problem occurs when there is a match to the pattern overall but the user has specified a paren-
thesized subexpression and that subexpression hasn’t got a match. An example is substring(’foo’
from ’foo(bar)?’). This should return NULL, since (bar) isn’t matched, but it was mistakenly
returning the whole-pattern match instead (ie, foo).

• Update time zone data files to tzdata release 2008c (for DST law changes in Morocco, Iraq, Choibalsan,
Pakistan, Syria, Cuba, and Argentina/San_Luis)

• Fix incorrect result from ecpg’s PGTYPEStimestamp_sub() function (Michael)

• Fix broken GiST comparison function for contrib/tsearch2’s tsquery type (Teodor)

• Fix possible crashes in contrib/cube functions (Tom)

• Fix core dump in contrib/xml2’s xpath_table() function when the input query returns a NULL
value (Tom)

• Fix contrib/xml2’s makefile to not override CFLAGS (Tom)

• Fix DatumGetBool macro to not fail with gcc 4.3 (Tom)

This problem affects “old style” (V0) C functions that return boolean. The fix is already in 8.3, but the
need to back-patch it was not realized at the time.

E.100. Release 8.2.7

Release Date: 2008-03-17

This release contains a variety of fixes from 8.2.6. For information about new features in the 8.2 major
release, see Section E.107.

E.100.1. Migration to Version 8.2.7
A dump/restore is not required for those running 8.2.X. However, you might need to REINDEX indexes on
textual columns after updating, if you are affected by the Windows locale issue described below.

2346

Appendix E. Release Notes

E.100.2. Changes

• Fix character string comparison for Windows locales that consider different character combinations as
equal (Tom)

This fix applies only on Windows and only when using UTF-8 database encoding. The same fix was
made for all other cases over two years ago, but Windows with UTF-8 uses a separate code path that
was not updated. If you are using a locale that considers some non-identical strings as equal, you may
need to REINDEX to fix existing indexes on textual columns.

• Repair potential deadlock between concurrent VACUUM FULL operations on different system catalogs
(Tom)

• Fix longstanding LISTEN/NOTIFY race condition (Tom)

In rare cases a session that had just executed a LISTEN might not get a notification, even though one
would be expected because the concurrent transaction executing NOTIFY was observed to commit later.

A side effect of the fix is that a transaction that has executed a not-yet-committed LISTEN command will
not see any row in pg_listener for the LISTEN, should it choose to look; formerly it would have.
This behavior was never documented one way or the other, but it is possible that some applications
depend on the old behavior.

• Disallow LISTEN and UNLISTEN within a prepared transaction (Tom)

This was formerly allowed but trying to do it had various unpleasant consequences, notably that the
originating backend could not exit as long as an UNLISTEN remained uncommitted.

• Disallow dropping a temporary table within a prepared transaction (Heikki)

This was correctly disallowed by 8.1, but the check was inadvertently broken in 8.2.

• Fix rare crash when an error occurs during a query using a hash index (Heikki)

• Fix memory leaks in certain usages of set-returning functions (Neil)

• Fix input of datetime values for February 29 in years BC (Tom)

The former coding was mistaken about which years were leap years.

• Fix “unrecognized node type” error in some variants of ALTER OWNER (Tom)

• Ensure pg_stat_activity.waiting flag is cleared when a lock wait is aborted (Tom)

• Fix handling of process permissions on Windows Vista (Dave, Magnus)

In particular, this fix allows starting the server as the Administrator user.

• Update time zone data files to tzdata release 2008a (in particular, recent Chile changes); adjust timezone
abbreviation VET (Venezuela) to mean UTC-4:30, not UTC-4:00 (Tom)

• Fix pg_ctl to correctly extract the postmaster’s port number from command-line options (Itagaki
Takahiro, Tom)

Previously, pg_ctl start -w could try to contact the postmaster on the wrong port, leading to bogus
reports of startup failure.

• Use -fwrapv to defend against possible misoptimization in recent gcc versions (Tom)

This is known to be necessary when building PostgreSQL with gcc 4.3 or later.

2347

Appendix E. Release Notes

• Correctly enforce statement_timeout values longer than INT_MAXmicroseconds (about 35 minutes)
(Tom)

This bug affects only builds with --enable-integer-datetimes.

• Fix “unexpected PARAM_SUBLINK ID” planner error when constant-folding simplifies a sub-select
(Tom)

• Fix logical errors in constraint-exclusion handling of IS NULL and NOT expressions (Tom)

The planner would sometimes exclude partitions that should not have been excluded because of the
possibility of NULL results.

• Fix another cause of “failed to build any N-way joins” planner errors (Tom)

This could happen in cases where a clauseless join needed to be forced before a join clause could be
exploited.

• Fix incorrect constant propagation in outer-join planning (Tom)

The planner could sometimes incorrectly conclude that a variable could be constrained to be equal to a
constant, leading to wrong query results.

• Fix display of constant expressions in ORDER BY and GROUP BY (Tom)

An explicitly casted constant would be shown incorrectly. This could for example lead to corruption of
a view definition during dump and reload.

• Fix libpq to handle NOTICE messages correctly during COPY OUT (Tom)

This failure has only been observed to occur when a user-defined datatype’s output routine issues a
NOTICE, but there is no guarantee it couldn’t happen due to other causes.

E.101. Release 8.2.6

Release Date: 2008-01-07

This release contains a variety of fixes from 8.2.5, including fixes for significant security issues. For
information about new features in the 8.2 major release, see Section E.107.

E.101.1. Migration to Version 8.2.6
A dump/restore is not required for those running 8.2.X.

E.101.2. Changes

• Prevent functions in indexes from executing with the privileges of the user running VACUUM, ANALYZE,
etc (Tom)

2348

Appendix E. Release Notes

Functions used in index expressions and partial-index predicates are evaluated whenever a new table
entry is made. It has long been understood that this poses a risk of trojan-horse code execution if one
modifies a table owned by an untrustworthy user. (Note that triggers, defaults, check constraints, etc.
pose the same type of risk.) But functions in indexes pose extra danger because they will be executed by
routine maintenance operations such as VACUUM FULL, which are commonly performed automatically
under a superuser account. For example, a nefarious user can execute code with superuser privileges by
setting up a trojan-horse index definition and waiting for the next routine vacuum. The fix arranges for
standard maintenance operations (including VACUUM, ANALYZE, REINDEX, and CLUSTER) to execute
as the table owner rather than the calling user, using the same privilege-switching mechanism already
used for SECURITY DEFINER functions. To prevent bypassing this security measure, execution of SET
SESSION AUTHORIZATION and SET ROLE is now forbidden within a SECURITY DEFINER context.
(CVE-2007-6600)

• Repair assorted bugs in the regular-expression package (Tom, Will Drewry)

Suitably crafted regular-expression patterns could cause crashes, infinite or near-infinite looping, and/or
massive memory consumption, all of which pose denial-of-service hazards for applications that ac-
cept regex search patterns from untrustworthy sources. (CVE-2007-4769, CVE-2007-4772, CVE-2007-
6067)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

The fix that appeared for this in 8.2.5 was incomplete, as it plugged the hole for only some dblink

functions. (CVE-2007-6601, CVE-2007-3278)

• Fix bugs in WAL replay for GIN indexes (Teodor)

• Fix GIN index build to work properly when maintenance_work_mem is 4GB or more (Tom)

• Update time zone data files to tzdata release 2007k (in particular, recent Argentina changes) (Tom)

• Improve planner’s handling of LIKE/regex estimation in non-C locales (Tom)

• Fix planning-speed problem for deep outer-join nests, as well as possible poor choice of join order
(Tom)

• Fix planner failure in some cases of WHERE false AND var IN (SELECT ...) (Tom)

• Make CREATE TABLE ... SERIAL and ALTER SEQUENCE ... OWNED BY not change the
currval() state of the sequence (Tom)

• Preserve the tablespace and storage parameters of indexes that are rebuilt by ALTER TABLE ...

ALTER COLUMN TYPE (Tom)

• Make archive recovery always start a new WAL timeline, rather than only when a recovery stop time
was used (Simon)

This avoids a corner-case risk of trying to overwrite an existing archived copy of the last WAL segment,
and seems simpler and cleaner than the original definition.

• Make VACUUM not use all of maintenance_work_mem when the table is too small for it to be useful
(Alvaro)

• Fix potential crash in translate() when using a multibyte database encoding (Tom)

• Make corr() return the correct result for negative correlation values (Neil)

• Fix overflow in extract(epoch from interval) for intervals exceeding 68 years (Tom)

2349

Appendix E. Release Notes

• Fix PL/Perl to not fail when a UTF-8 regular expression is used in a trusted function (Andrew)

• Fix PL/Perl to cope when platform’s Perl defines type bool as int rather than char (Tom)

While this could theoretically happen anywhere, no standard build of Perl did things this way ... until
Mac OS X 10.5.

• Fix PL/Python to work correctly with Python 2.5 on 64-bit machines (Marko Kreen)

• Fix PL/Python to not crash on long exception messages (Alvaro)

• Fix pg_dump to correctly handle inheritance child tables that have default expressions different from
their parent’s (Tom)

• Fix libpq crash when PGPASSFILE refers to a file that is not a plain file (Martin Pitt)

• ecpg parser fixes (Michael)

• Make contrib/pgcrypto defend against OpenSSL libraries that fail on keys longer than 128 bits;
which is the case at least on some Solaris versions (Marko Kreen)

• Make contrib/tablefunc’s crosstab() handle NULL rowid as a category in its own right, rather
than crashing (Joe)

• Fix tsvector and tsquery output routines to escape backslashes correctly (Teodor, Bruce)

• Fix crash of to_tsvector() on huge input strings (Teodor)

• Require a specific version of Autoconf to be used when re-generating the configure script (Peter)

This affects developers and packagers only. The change was made to prevent accidental use of untested
combinations of Autoconf and PostgreSQL versions. You can remove the version check if you really
want to use a different Autoconf version, but it’s your responsibility whether the result works or not.

• Update gettimeofday configuration check so that PostgreSQL can be built on newer versions of
MinGW (Magnus)

E.102. Release 8.2.5

Release Date: 2007-09-17

This release contains a variety of fixes from 8.2.4. For information about new features in the 8.2 major
release, see Section E.107.

E.102.1. Migration to Version 8.2.5
A dump/restore is not required for those running 8.2.X.

2350

Appendix E. Release Notes

E.102.2. Changes

• Prevent index corruption when a transaction inserts rows and then aborts close to the end of a concurrent
VACUUM on the same table (Tom)

• Fix ALTER DOMAIN ADD CONSTRAINT for cases involving domains over domains (Tom)

• Make CREATE DOMAIN ... DEFAULT NULL work properly (Tom)

• Fix some planner problems with outer joins, notably poor size estimation for t1 LEFT JOIN t2

WHERE t2.col IS NULL (Tom)

• Allow the interval data type to accept input consisting only of milliseconds or microseconds (Neil)

• Allow timezone name to appear before the year in timestamp input (Tom)

• Fixes for GIN indexes used by /contrib/tsearch2 (Teodor)

• Speed up rtree index insertion (Teodor)

• Fix excessive logging of SSL error messages (Tom)

• Fix logging so that log messages are never interleaved when using the syslogger process (Andrew)

• Fix crash when log_min_error_statement logging runs out of memory (Tom)

• Fix incorrect handling of some foreign-key corner cases (Tom)

• Fix stddev_pop(numeric) and var_pop(numeric) (Tom)

• Prevent REINDEX and CLUSTER from failing due to attempting to process temporary tables of other
sessions (Alvaro)

• Update the time zone database rules, particularly New Zealand’s upcoming changes (Tom)

• Windows socket and semaphore improvements (Magnus)

• Make pg_ctl -w work properly in Windows service mode (Dave Page)

• Fix memory allocation bug when using MIT Kerberos on Windows (Magnus)

• Suppress timezone name (%Z) in log timestamps on Windows because of possible encoding mismatches
(Tom)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

• Restrict /contrib/pgstattuple functions to superusers, for security reasons (Tom)

• Do not let /contrib/intarray try to make its GIN opclass the default (this caused problems at
dump/restore) (Tom)

E.103. Release 8.2.4

Release Date: 2007-04-23

2351

Appendix E. Release Notes

This release contains a variety of fixes from 8.2.3, including a security fix. For information about new
features in the 8.2 major release, see Section E.107.

E.103.1. Migration to Version 8.2.4
A dump/restore is not required for those running 8.2.X.

E.103.2. Changes

• Support explicit placement of the temporary-table schema within search_path, and disable searching
it for functions and operators (Tom)

This is needed to allow a security-definer function to set a truly secure value of search_path. Without
it, an unprivileged SQL user can use temporary objects to execute code with the privileges of the
security-definer function (CVE-2007-2138). See CREATE FUNCTION for more information.

• Fix shared_preload_libraries for Windows by forcing reload in each backend (Korry Douglas)

• Fix to_char() so it properly upper/lower cases localized day or month names (Pavel Stehule)

• /contrib/tsearch2 crash fixes (Teodor)

• Require COMMIT PREPARED to be executed in the same database as the transaction was prepared in
(Heikki)

• Allow pg_dump to do binary backups larger than two gigabytes on Windows (Magnus)

• New traditional (Taiwan) Chinese FAQ (Zhou Daojing)

• Prevent the statistics collector from writing to disk too frequently (Tom)

• Fix potential-data-corruption bug in how VACUUM FULL handles UPDATE chains (Tom, Pavan Deolasee)

• Fix bug in domains that use array types (Tom)

• Fix pg_dump so it can dump a serial column’s sequence using -t when not also dumping the owning
table (Tom)

• Planner fixes, including improving outer join and bitmap scan selection logic (Tom)

• Fix possible wrong answers or crash when a PL/pgSQL function tries to RETURN from within an
EXCEPTION block (Tom)

• Fix PANIC during enlargement of a hash index (Tom)

• Fix POSIX-style timezone specs to follow new USA DST rules (Tom)

E.104. Release 8.2.3

Release Date: 2007-02-07

2352

Appendix E. Release Notes

This release contains two fixes from 8.2.2. For information about new features in the 8.2 major release,
see Section E.107.

E.104.1. Migration to Version 8.2.3
A dump/restore is not required for those running 8.2.X.

E.104.2. Changes

• Remove overly-restrictive check for type length in constraints and functional indexes(Tom)

• Fix optimization so MIN/MAX in subqueries can again use indexes (Tom)

E.105. Release 8.2.2

Release Date: 2007-02-05

This release contains a variety of fixes from 8.2.1, including a security fix. For information about new
features in the 8.2 major release, see Section E.107.

E.105.1. Migration to Version 8.2.2
A dump/restore is not required for those running 8.2.X.

E.105.2. Changes

• Remove security vulnerabilities that allowed connected users to read backend memory (Tom)

The vulnerabilities involve suppressing the normal check that a SQL function returns the data type it’s
declared to, and changing the data type of a table column (CVE-2007-0555, CVE-2007-0556). These
errors can easily be exploited to cause a backend crash, and in principle might be used to read database
content that the user should not be able to access.

• Fix not-so-rare-anymore bug wherein btree index page splits could fail due to choosing an infeasible
split point (Heikki Linnakangas)

• Fix Borland C compile scripts (L Bayuk)

• Properly handle to_char(’CC’) for years ending in 00 (Tom)

Year 2000 is in the twentieth century, not the twenty-first.

• /contrib/tsearch2 localization improvements (Tatsuo, Teodor)

2353

Appendix E. Release Notes

• Fix incorrect permission check in information_schema.key_column_usage view (Tom)

The symptom is “relation with OID nnnnn does not exist” errors. To get this fix without
using initdb, use CREATE OR REPLACE VIEW to install the corrected definition found in
share/information_schema.sql. Note you will need to do this in each database.

• Improve VACUUM performance for databases with many tables (Tom)

• Fix for rare Assert() crash triggered by UNION (Tom)

• Fix potentially incorrect results from index searches using ROW inequality conditions (Tom)

• Tighten security of multi-byte character processing for UTF8 sequences over three bytes long (Tom)

• Fix bogus “permission denied” failures occurring on Windows due to attempts to fsync already-deleted
files (Magnus, Tom)

• Fix bug that could cause the statistics collector to hang on Windows (Magnus)

This would in turn lead to autovacuum not working.

• Fix possible crashes when an already-in-use PL/pgSQL function is updated (Tom)

• Improve PL/pgSQL handling of domain types (Sergiy Vyshnevetskiy, Tom)

• Fix possible errors in processing PL/pgSQL exception blocks (Tom)

E.106. Release 8.2.1

Release Date: 2007-01-08

This release contains a variety of fixes from 8.2. For information about new features in the 8.2 major
release, see Section E.107.

E.106.1. Migration to Version 8.2.1
A dump/restore is not required for those running 8.2.

E.106.2. Changes

• Fix crash with SELECT ... LIMIT ALL (also LIMIT NULL) (Tom)

• Several /contrib/tsearch2 fixes (Teodor)

• On Windows, make log messages coming from the operating system use ASCII encoding (Hiroshi
Saito)

This fixes a conversion problem when there is a mismatch between the encoding of the operating system
and database server.

2354

Appendix E. Release Notes

• Fix Windows linking of pg_dump using win32.mak (Hiroshi Saito)

• Fix planner mistakes for outer join queries (Tom)

• Fix several problems in queries involving sub-SELECTs (Tom)

• Fix potential crash in SPI during subtransaction abort (Tom)

This affects all PL functions since they all use SPI.

• Improve build speed of PDF documentation (Peter)

• Re-add JST (Japan) timezone abbreviation (Tom)

• Improve optimization decisions related to index scans (Tom)

• Have psql print multi-byte combining characters as before, rather than output as \u (Tom)

• Improve index usage of regular expressions that use parentheses (Tom)

This improves psql \d performance also.

• Make pg_dumpall assume that databases have public CONNECT privilege, when dumping from a pre-8.2
server (Tom)

This preserves the previous behavior that anyone can connect to a database if allowed by pg_hba.conf.

E.107. Release 8.2

Release Date: 2006-12-05

E.107.1. Overview
This release adds many functionality and performance improvements that were requested by users, in-
cluding:

• Query language enhancements including INSERT/UPDATE/DELETE RETURNING, multirow VALUES

lists, and optional target-table alias in UPDATE/DELETE

• Index creation without blocking concurrent INSERT/UPDATE/DELETE operations

• Many query optimization improvements, including support for reordering outer joins

• Improved sorting performance with lower memory usage

• More efficient locking with better concurrency

• More efficient vacuuming

• Easier administration of warm standby servers

• New FILLFACTOR support for tables and indexes

• Monitoring, logging, and performance tuning additions

2355

Appendix E. Release Notes

• More control over creating and dropping objects

• Table inheritance relationships can be defined for and removed from pre-existing tables

• COPY TO can copy the output of an arbitrary SELECT statement

• Array improvements, including nulls in arrays

• Aggregate-function improvements, including multiple-input aggregates and SQL:2003 statistical func-
tions

• Many contrib/ improvements

E.107.2. Migration to Version 8.2
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

Observe the following incompatibilities:

• Set escape_string_warning to on by default (Bruce)

This issues a warning if backslash escapes are used in non-escape (non-E”) strings.

• Change the row constructor syntax (ROW(...)) so that list elements foo.* will be expanded to a list
of their member fields, rather than creating a nested row type field as formerly (Tom)

The new behavior is substantially more useful since it allows, for example, triggers to check for data
changes with IF row(new.*) IS DISTINCT FROM row(old.*). The old behavior is still available
by omitting .*.

• Make row comparisons follow SQL standard semantics and allow them to be used in index scans (Tom)

Previously, row = and <> comparisons followed the standard but < <= > >= did not. A row compar-
ison can now be used as an index constraint for a multicolumn index matching the row value.

• Make row IS [NOT] NULL tests follow SQL standard semantics (Tom)

The former behavior conformed to the standard for simple cases with IS NULL, but IS NOT NULL

would return true if any row field was non-null, whereas the standard says it should return true only
when all fields are non-null.

• Make SET CONSTRAINT affect only one constraint (Kris Jurka)

In previous releases, SET CONSTRAINT modified all constraints with a matching name. In this release,
the schema search path is used to modify only the first matching constraint. A schema specification is
also supported. This more nearly conforms to the SQL standard.

• Remove RULE permission for tables, for security reasons (Tom)

As of this release, only a table’s owner can create or modify rules for the table. For backwards compat-
ibility, GRANT/REVOKE RULE is still accepted, but it does nothing.

• Array comparison improvements (Tom)

Now array dimensions are also compared.

• Change array concatenation to match documented behavior (Tom)

2356

Appendix E. Release Notes

This changes the previous behavior where concatenation would modify the array lower bound.

• Make command-line options of postmaster and postgres identical (Peter)

This allows the postmaster to pass arguments to each backend without using -o. Note that some options
are now only available as long-form options, because there were conflicting single-letter options.

• Deprecate use of postmaster symbolic link (Peter)

postmaster and postgres commands now act identically, with the behavior determined by command-line
options. The postmaster symbolic link is kept for compatibility, but is not really needed.

• Change log_duration to output even if the query is not output (Tom)

In prior releases, log_duration only printed if the query appeared earlier in the log.

• Make to_char(time) and to_char(interval) treat HH and HH12 as 12-hour intervals

Most applications should use HH24 unless they want a 12-hour display.

• Zero unmasked bits in conversion from INET to CIDR (Tom)

This ensures that the converted value is actually valid for CIDR.

• Remove australian_timezones configuration variable (Joachim Wieland)

This variable has been superseded by a more general facility for configuring timezone abbreviations.

• Improve cost estimation for nested-loop index scans (Tom)

This might eliminate the need to set unrealistically small values of random_page_cost. If you have
been using a very small random_page_cost, please recheck your test cases.

• Change behavior of pg_dump -n and -t options. (Greg Sabino Mullane)

See the pg_dump manual page for details.

• Change libpq PQdsplen() to return a useful value (Martijn van Oosterhout)

• Declare libpq PQgetssl() as returning void *, rather than SSL * (Martijn van Oosterhout)

This allows applications to use the function without including the OpenSSL headers.

• C-language loadable modules must now include a PG_MODULE_MAGIC macro call for version compati-
bility checking (Martijn van Oosterhout)

• For security’s sake, modules used by a PL/PerlU function are no longer available to PL/Perl functions
(Andrew)

Note: This also implies that data can no longer be shared between a PL/Perl function and a
PL/PerlU function. Some Perl installations have not been compiled with the correct flags to allow
multiple interpreters to exist within a single process. In this situation PL/Perl and PL/PerlU cannot
both be used in a single backend. The solution is to get a Perl installation which supports multiple
interpreters.

• In contrib/xml2/, rename xml_valid() to xml_is_well_formed() (Tom)

xml_valid() will remain for backward compatibility, but its behavior will change to do schema
checking in a future release.

2357

Appendix E. Release Notes

• Remove contrib/ora2pg/, now at http://www.samse.fr/GPL/ora2pg

• Remove contrib modules that have been migrated to PgFoundry: adddepend, dbase, dbmirror,
fulltextindex, mac, userlock

• Remove abandoned contrib modules: mSQL-interface, tips

• Remove QNX and BEOS ports (Bruce)

These ports no longer had active maintainers.

E.107.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 8.2 and the previous major
release.

E.107.3.1. Performance Improvements

• Allow the planner to reorder outer joins in some circumstances (Tom)

In previous releases, outer joins would always be evaluated in the order written in the query. This change
allows the query optimizer to consider reordering outer joins, in cases where it can determine that the
join order can be changed without altering the meaning of the query. This can make a considerable
performance difference for queries involving multiple outer joins or mixed inner and outer joins.

• Improve efficiency of IN (list-of-expressions) clauses (Tom)

• Improve sorting speed and reduce memory usage (Simon, Tom)

• Improve subtransaction performance (Alvaro, Itagaki Takahiro, Tom)

• Add FILLFACTOR to table and index creation (ITAGAKI Takahiro)

This leaves extra free space in each table or index page, allowing improved performance as the database
grows. This is particularly valuable to maintain clustering.

• Increase default values for shared_buffers and max_fsm_pages (Andrew)

• Improve locking performance by breaking the lock manager tables into sections (Tom)

This allows locking to be more fine-grained, reducing contention.

• Reduce locking requirements of sequential scans (Qingqing Zhou)

• Reduce locking required for database creation and destruction (Tom)

• Improve the optimizer’s selectivity estimates for LIKE, ILIKE, and regular expression operations (Tom)

• Improve planning of joins to inherited tables and UNION ALL views (Tom)

• Allow constraint exclusion to be applied to inherited UPDATE and DELETE queries (Tom)

SELECT already honored constraint exclusion.

• Improve planning of constant WHERE clauses, such as a condition that depends only on variables inher-
ited from an outer query level (Tom)

• Protocol-level unnamed prepared statements are re-planned for each set of BIND values (Tom)

2358

Appendix E. Release Notes

This improves performance because the exact parameter values can be used in the plan.

• Speed up vacuuming of B-Tree indexes (Heikki Linnakangas, Tom)

• Avoid extra scan of tables without indexes during VACUUM (Greg Stark)

• Improve multicolumn GiST indexing (Oleg, Teodor)

• Remove dead index entries before B-Tree page split (Junji Teramoto)

E.107.3.2. Server Changes

• Allow a forced switch to a new transaction log file (Simon, Tom)

This is valuable for keeping warm standby slave servers in sync with the master. Transaction log file
switching now also happens automatically during pg_stop_backup(). This ensures that all transac-
tion log files needed for recovery can be archived immediately.

• Add WAL informational functions (Simon)

Add functions for interrogating the current transaction log insertion point and determining WAL file-
names from the hex WAL locations displayed by pg_stop_backup() and related functions.

• Improve recovery from a crash during WAL replay (Simon)

The server now does periodic checkpoints during WAL recovery, so if there is a crash, future WAL
recovery is shortened. This also eliminates the need for warm standby servers to replay the entire log
since the base backup if they crash.

• Improve reliability of long-term WAL replay (Heikki, Simon, Tom)

Formerly, trying to roll forward through more than 2 billion transactions would not work due to XID
wraparound. This meant warm standby servers had to be reloaded from fresh base backups periodically.

• Add archive_timeout to force transaction log file switches at a given interval (Simon)

This enforces a maximum replication delay for warm standby servers.

• Add native LDAP authentication (Magnus Hagander)

This is particularly useful for platforms that do not support PAM, such as Windows.

• Add GRANT CONNECT ON DATABASE (Gevik Babakhani)

This gives SQL-level control over database access. It works as an additional filter on top of the existing
pg_hba.conf controls.

• Add support for SSL Certificate Revocation List (CRL) files (Libor Hohoš)

The server and libpq both recognize CRL files now.

• GiST indexes are now clusterable (Teodor)

• Remove routine autovacuum server log entries (Bruce)

pg_stat_activity now shows autovacuum activity.

• Track maximum XID age within individual tables, instead of whole databases (Alvaro)

This reduces the overhead involved in preventing transaction ID wraparound, by avoiding unnecessary
VACUUMs.

2359

Appendix E. Release Notes

• Add last vacuum and analyze timestamp columns to the stats collector (Larry Rosenman)

These values now appear in the pg_stat_*_tables system views.

• Improve performance of statistics monitoring, especially stats_command_string (Tom, Bruce)

This release enables stats_command_string by default, now that its overhead is minimal. This
means pg_stat_activity will now show all active queries by default.

• Add a waiting column to pg_stat_activity (Tom)

This allows pg_stat_activity to show all the information included in the ps display.

• Add configuration parameter update_process_title to control whether the ps display is updated
for every command (Bruce)

On platforms where it is expensive to update the ps display, it might be worthwhile to turn this off and
rely solely on pg_stat_activity for status information.

• Allow units to be specified in configuration settings (Peter)

For example, you can now set shared_buffers to 32MB rather than mentally converting sizes.

• Add support for include directives in postgresql.conf (Joachim Wieland)

• Improve logging of protocol-level prepare/bind/execute messages (Bruce, Tom)

Such logging now shows statement names, bind parameter values, and the text of the query being
executed. Also, the query text is properly included in logged error messages when enabled by
log_min_error_statement.

• Prevent max_stack_depth from being set to unsafe values

On platforms where we can determine the actual kernel stack depth limit (which is most), make sure
that the initial default value of max_stack_depth is safe, and reject attempts to set it to unsafely large
values.

• Enable highlighting of error location in query in more cases (Tom)

The server is now able to report a specific error location for some semantic errors (such as unrecognized
column name), rather than just for basic syntax errors as before.

• Fix “failed to re-find parent key” errors in VACUUM (Tom)

• Clean out pg_internal.init cache files during server restart (Simon)

This avoids a hazard that the cache files might contain stale data after PITR recovery.

• Fix race condition for truncation of a large relation across a gigabyte boundary by VACUUM (Tom)

• Fix bug causing needless deadlock errors on row-level locks (Tom)

• Fix bugs affecting multi-gigabyte hash indexes (Tom)

• Each backend process is now its own process group leader (Tom)

This allows query cancel to abort subprocesses invoked from a backend or archive/recovery process.

E.107.3.3. Query Changes

• Add INSERT/UPDATE/DELETE RETURNING (Jonah Harris, Tom)

2360

Appendix E. Release Notes

This allows these commands to return values, such as the computed serial key for a new row. In the
UPDATE case, values from the updated version of the row are returned.

• Add support for multiple-row VALUES clauses, per SQL standard (Joe, Tom)

This allows INSERT to insert multiple rows of constants, or queries to generate result sets using con-
stants. For example, INSERT ... VALUES (...), (...),, and SELECT * FROM (VALUES

(...), (...),) AS alias(f1, ...).

• Allow UPDATE and DELETE to use an alias for the target table (Atsushi Ogawa)

The SQL standard does not permit an alias in these commands, but many database systems allow one
anyway for notational convenience.

• Allow UPDATE to set multiple columns with a list of values (Susanne Ebrecht)

This is basically a short-hand for assigning the columns and values in pairs. The syntax is UPDATE tab

SET (column, ...) = (val, ...).

• Make row comparisons work per standard (Tom)

The forms <, <=, >, >= now compare rows lexicographically, that is, compare the first elements, if
equal compare the second elements, and so on. Formerly they expanded to an AND condition across
all the elements, which was neither standard nor very useful.

• Add CASCADE option to TRUNCATE (Joachim Wieland)

This causes TRUNCATE to automatically include all tables that reference the specified table(s) via foreign
keys. While convenient, this is a dangerous tool — use with caution!

• Support FOR UPDATE and FOR SHARE in the same SELECT command (Tom)

• Add IS NOT DISTINCT FROM (Pavel Stehule)

This operator is similar to equality (=), but evaluates to true when both left and right operands are NULL,
and to false when just one is, rather than yielding NULL in these cases.

• Improve the length output used by UNION/INTERSECT/EXCEPT (Tom)

When all corresponding columns are of the same defined length, that length is used for the result, rather
than a generic length.

• Allow ILIKE to work for multi-byte encodings (Tom)

Internally, ILIKE now calls lower() and then uses LIKE. Locale-specific regular expression patterns
still do not work in these encodings.

• Enable standard_conforming_strings to be turned on (Kevin Grittner)

This allows backslash escaping in strings to be disabled, making PostgreSQL more
standards-compliant. The default is off for backwards compatibility, but future releases will default
this to on.

• Do not flatten subqueries that contain volatile functions in their target lists (Jaime Casanova)

This prevents surprising behavior due to multiple evaluation of a volatile function (such as
random() or nextval()). It might cause performance degradation in the presence of functions that
are unnecessarily marked as volatile.

• Add system views pg_prepared_statements and pg_cursors to show prepared statements and
open cursors (Joachim Wieland, Neil)

2361

Appendix E. Release Notes

These are very useful in pooled connection setups.

• Support portal parameters in EXPLAIN and EXECUTE (Tom)

This allows, for example, JDBC ? parameters to work in these commands.

• If SQL-level PREPARE parameters are unspecified, infer their types from the content of the query (Neil)

Protocol-level PREPARE already did this.

• Allow LIMIT and OFFSET to exceed two billion (Dhanaraj M)

E.107.3.4. Object Manipulation Changes

• Add TABLESPACE clause to CREATE TABLE AS (Neil)

This allows a tablespace to be specified for the new table.

• Add ON COMMIT clause to CREATE TABLE AS (Neil)

This allows temporary tables to be truncated or dropped on transaction commit. The default behavior is
for the table to remain until the session ends.

• Add INCLUDING CONSTRAINTS to CREATE TABLE LIKE (Greg Stark)

This allows easy copying of CHECK constraints to a new table.

• Allow the creation of placeholder (shell) types (Martijn van Oosterhout)

A shell type declaration creates a type name, without specifying any of the details of the type. Making
a shell type is useful because it allows cleaner declaration of the type’s input/output functions, which
must exist before the type can be defined “for real”. The syntax is CREATE TYPE typename.

• Aggregate functions now support multiple input parameters (Sergey Koposov, Tom)

• Add new aggregate creation syntax (Tom)

The new syntax is CREATE AGGREGATE aggname (input_type) (parameter_list). This more nat-
urally supports the new multi-parameter aggregate functionality. The previous syntax is still supported.

• Add ALTER ROLE PASSWORD NULL to remove a previously set role password (Peter)

• Add DROP object IF EXISTS for many object types (Andrew)

This allows DROP operations on non-existent objects without generating an error.

• Add DROP OWNED to drop all objects owned by a role (Alvaro)

• Add REASSIGN OWNED to reassign ownership of all objects owned by a role (Alvaro)

This, and DROP OWNED above, facilitate dropping roles.

• Add GRANT ON SEQUENCE syntax (Bruce)

This was added for setting sequence-specific permissions. GRANT ON TABLE for sequences is still sup-
ported for backward compatibility.

• Add USAGE permission for sequences that allows only currval() and nextval(), not setval()
(Bruce)

2362

Appendix E. Release Notes

USAGE permission allows more fine-grained control over sequence access. Granting USAGE allows
users to increment a sequence, but prevents them from setting the sequence to an arbitrary value using
setval().

• Add ALTER TABLE [NO] INHERIT (Greg Stark)

This allows inheritance to be adjusted dynamically, rather than just at table creation and destruction.
This is very valuable when using inheritance to implement table partitioning.

• Allow comments on global objects to be stored globally (Kris Jurka)

Previously, comments attached to databases were stored in individual databases, making them ineffec-
tive, and there was no provision at all for comments on roles or tablespaces. This change adds a new
shared catalog pg_shdescription and stores comments on databases, roles, and tablespaces therein.

E.107.3.5. Utility Command Changes

• Add option to allow indexes to be created without blocking concurrent writes to the table (Greg Stark,
Tom)

The new syntax is CREATE INDEX CONCURRENTLY. The default behavior is still to block table modi-
fication while a index is being created.

• Provide advisory locking functionality (Abhijit Menon-Sen, Tom)

This is a new locking API designed to replace what used to be in /contrib/userlock. The userlock code
is now on pgfoundry.

• Allow COPY to dump a SELECT query (Zoltan Boszormenyi, Karel Zak)

This allows COPY to dump arbitrary SQL queries. The syntax is COPY (SELECT ...) TO.

• Make the COPY command return a command tag that includes the number of rows copied (Volkan
YAZICI)

• Allow VACUUM to expire rows without being affected by other concurrent VACUUM operations (Hannu
Krossing, Alvaro, Tom)

• Make initdb detect the operating system locale and set the default DateStyle accordingly (Peter)

This makes it more likely that the installed postgresql.conf DateStyle value will be as desired.

• Reduce number of progress messages displayed by initdb (Tom)

E.107.3.6. Date/Time Changes

• Allow full timezone names in timestamp input values (Joachim Wieland)

For example, ’2006-05-24 21:11 America/New_York’::timestamptz.

• Support configurable timezone abbreviations (Joachim Wieland)

A desired set of timezone abbreviations can be chosen via the configuration parameter
timezone_abbreviations.

2363

Appendix E. Release Notes

• Add pg_timezone_abbrevs and pg_timezone_names views to show supported timezones (Mag-
nus Hagander)

• Add clock_timestamp(), statement_timestamp(), and transaction_timestamp() (Bruce)

clock_timestamp() is the current wall-clock time, statement_timestamp() is the time the cur-
rent statement arrived at the server, and transaction_timestamp() is an alias for now().

• Allow to_char() to print localized month and day names (Euler Taveira de Oliveira)

• Allow to_char(time) and to_char(interval) to output AM/PM specifications (Bruce)

Intervals and times are treated as 24-hour periods, e.g. 25 hours is considered AM.

• Add new function justify_interval() to adjust interval units (Mark Dilger)

• Allow timezone offsets up to 14:59 away from GMT

Kiribati uses GMT+14, so we’d better accept that.

• Interval computation improvements (Michael Glaesemann, Bruce)

E.107.3.7. Other Data Type and Function Changes

• Allow arrays to contain NULL elements (Tom)

• Allow assignment to array elements not contiguous with the existing entries (Tom)

The intervening array positions will be filled with nulls. This is per SQL standard.

• New built-in operators for array-subset comparisons (@>, <@, &&) (Teodor, Tom)

These operators can be indexed for many data types using GiST or GIN indexes.

• Add convenient arithmetic operations on INET/CIDR values (Stephen R. van den Berg)

The new operators are & (and), | (or), ~ (not), inet + int8, inet - int8, and inet - inet.

• Add new aggregate functions from SQL:2003 (Neil)

The new functions are var_pop(), var_samp(), stddev_pop(), and stddev_samp().
var_samp() and stddev_samp() are merely renamings of the existing aggregates variance() and
stddev(). The latter names remain available for backward compatibility.

• Add SQL:2003 statistical aggregates (Sergey Koposov)

New functions: regr_intercept(), regr_slope(), regr_r2(), corr(), covar_samp(),
covar_pop(), regr_avgx(), regr_avgy(), regr_sxy(), regr_sxx(), regr_syy(),
regr_count().

• Allow domains to be based on other domains (Tom)

• Properly enforce domain CHECK constraints everywhere (Neil, Tom)

For example, the result of a user-defined function that is declared to return a domain type is now checked
against the domain’s constraints. This closes a significant hole in the domain implementation.

• Fix problems with dumping renamed SERIAL columns (Tom)

2364

Appendix E. Release Notes

The fix is to dump a SERIAL column by explicitly specifying its DEFAULT and sequence elements, and
reconstructing the SERIAL column on reload using a new ALTER SEQUENCE OWNED BY command.
This also allows dropping a SERIAL column specification.

• Add a server-side sleep function pg_sleep() (Joachim Wieland)

• Add all comparison operators for the tid (tuple id) data type (Mark Kirkwood, Greg Stark, Tom)

E.107.3.8. PL/pgSQL Server-Side Language Changes

• Add TG_table_name and TG_table_schema to trigger parameters (Andrew)

TG_relname is now deprecated. Comparable changes have been made in the trigger parameters for the
other PLs as well.

• Allow FOR statements to return values to scalars as well as records and row types (Pavel Stehule)

• Add a BY clause to the FOR loop, to control the iteration increment (Jaime Casanova)

• Add STRICT to SELECT INTO (Matt Miller)

STRICT mode throws an exception if more or less than one row is returned by the SELECT, for Oracle
PL/SQL compatibility.

E.107.3.9. PL/Perl Server-Side Language Changes

• Add table_name and table_schema to trigger parameters (Adam Sjøgren)

• Add prepared queries (Dmitry Karasik)

• Make $_TD trigger data a global variable (Andrew)

Previously, it was lexical, which caused unexpected sharing violations.

• Run PL/Perl and PL/PerlU in separate interpreters, for security reasons (Andrew)

In consequence, they can no longer share data nor loaded modules. Also, if Perl has not been compiled
with the requisite flags to allow multiple interpreters, only one of these languages can be used in any
given backend process.

E.107.3.10. PL/Python Server-Side Language Changes

• Named parameters are passed as ordinary variables, as well as in the args[] array (Sven Suursoho)

• Add table_name and table_schema to trigger parameters (Andrew)

• Allow returning of composite types and result sets (Sven Suursoho)

• Return result-set as list, iterator, or generator (Sven Suursoho)

• Allow functions to return void (Neil)

• Python 2.5 is now supported (Tom)

2365

Appendix E. Release Notes

E.107.3.11. psql Changes

• Add new command \password for changing role password with client-side password encryption (Pe-
ter)

• Allow \c to connect to a new host and port number (David, Volkan YAZICI)

• Add tablespace display to \l+ (Philip Yarra)

• Improve \df slash command to include the argument names and modes (OUT or INOUT) of the function
(David Fetter)

• Support binary COPY (Andreas Pflug)

• Add option to run the entire session in a single transaction (Simon)

Use option -1 or --single-transaction.

• Support for automatically retrieving SELECT results in batches using a cursor (Chris Mair)

This is enabled using \set FETCH_COUNT n. This feature allows large result sets to be retrieved in
psql without attempting to buffer the entire result set in memory.

• Make multi-line values align in the proper column (Martijn van Oosterhout)

Field values containing newlines are now displayed in a more readable fashion.

• Save multi-line statements as a single entry, rather than one line at a time (Sergey E. Koposov)

This makes up-arrow recall of queries easier. (This is not available on Windows, because that platform
uses the native command-line editing present in the operating system.)

• Make the line counter 64-bit so it can handle files with more than two billion lines (David Fetter)

• Report both the returned data and the command status tag for INSERT/UPDATE/DELETE RETURNING

(Tom)

E.107.3.12. pg_dump Changes

• Allow complex selection of objects to be included or excluded by pg_dump (Greg Sabino Mullane)

pg_dump now supports multiple -n (schema) and -t (table) options, and adds -N and -T options to
exclude objects. Also, the arguments of these switches can now be wild-card expressions rather than
single object names, for example -t ’foo*’, and a schema can be part of a -t or -T switch, for
example -t schema1.table1.

• Add pg_restore --no-data-for-failed-tables option to suppress loading data if table creation
failed (i.e., the table already exists) (Martin Pitt)

• Add pg_restore option to run the entire session in a single transaction (Simon)

Use option -1 or --single-transaction.

2366

Appendix E. Release Notes

E.107.3.13. libpq Changes

• Add PQencryptPassword() to encrypt passwords (Tom)

This allows passwords to be sent pre-encrypted for commands like ALTER ROLE ... PASSWORD.

• Add function PQisthreadsafe() (Bruce)

This allows applications to query the thread-safety status of the library.

• Add PQdescribePrepared(), PQdescribePortal(), and related functions to return information
about previously prepared statements and open cursors (Volkan YAZICI)

• Allow LDAP lookups from pg_service.conf (Laurenz Albe)

• Allow a hostname in ~/.pgpass to match the default socket directory (Bruce)

A blank hostname continues to match any Unix-socket connection, but this addition allows entries that
are specific to one of several postmasters on the machine.

E.107.3.14. ecpg Changes

• Allow SHOW to put its result into a variable (Joachim Wieland)

• Add COPY TO STDOUT (Joachim Wieland)

• Add regression tests (Joachim Wieland, Michael)

• Major source code cleanups (Joachim Wieland, Michael)

E.107.3.15. Windows Port

• Allow MSVC to compile the PostgreSQL server (Magnus, Hiroshi Saito)

• Add MSVC support for utility commands and pg_dump (Hiroshi Saito)

• Add support for Windows code pages 1253, 1254, 1255, and 1257 (Kris Jurka)

• Drop privileges on startup, so that the server can be started from an administrative account (Magnus)

• Stability fixes (Qingqing Zhou, Magnus)

• Add native semaphore implementation (Qingqing Zhou)

The previous code mimicked SysV semaphores.

E.107.3.16. Source Code Changes

• Add GIN (Generalized Inverted iNdex) index access method (Teodor, Oleg)

• Remove R-tree indexing (Tom)

Rtree has been re-implemented using GiST. Among other differences, this means that rtree indexes now
have support for crash recovery via write-ahead logging (WAL).

2367

Appendix E. Release Notes

• Reduce libraries needlessly linked into the backend (Martijn van Oosterhout, Tom)

• Add a configure flag to allow libedit to be preferred over GNU readline (Bruce)

Use configure --with-libedit-preferred.

• Allow installation into directories containing spaces (Peter)

• Improve ability to relocate installation directories (Tom)

• Add support for Solaris x86_64 using the Solaris compiler (Pierre Girard, Theo Schlossnagle, Bruce)

• Add DTrace support (Robert Lor)

• Add PG_VERSION_NUM for use by third-party applications wanting to test the backend version in C
using > and < comparisons (Bruce)

• Add XLOG_BLCKSZ as independent from BLCKSZ (Mark Wong)

• Add LWLOCK_STATS define to report locking activity (Tom)

• Emit warnings for unknown configure options (Martijn van Oosterhout)

• Add server support for “plugin” libraries that can be used for add-on tasks such as debugging and
performance measurement (Korry Douglas)

This consists of two features: a table of “rendezvous variables” that allows separately-loaded shared
libraries to communicate, and a new configuration parameter local_preload_libraries that allows
libraries to be loaded into specific sessions without explicit cooperation from the client application. This
allows external add-ons to implement features such as a PL/pgSQL debugger.

• Rename existing configuration parameter preload_libraries to shared_preload_libraries

(Tom)

This was done for clarity in comparison to local_preload_libraries.

• Add new configuration parameter server_version_num (Greg Sabino Mullane)

This is like server_version, but is an integer, e.g. 80200. This allows applications to make version
checks more easily.

• Add a configuration parameter seq_page_cost (Tom)

• Re-implement the regression test script as a C program (Magnus, Tom)

• Allow loadable modules to allocate shared memory and lightweight locks (Marc Munro)

• Add automatic initialization and finalization of dynamically loaded libraries (Ralf Engelschall, Tom)

New functions _PG_init() and _PG_fini() are called if the library defines such symbols. Hence we
no longer need to specify an initialization function in shared_preload_libraries; we can assume
that the library used the _PG_init() convention instead.

• Add PG_MODULE_MAGIC header block to all shared object files (Martijn van Oosterhout)

The magic block prevents version mismatches between loadable object files and servers.

• Add shared library support for AIX (Laurenz Albe)

• New XML documentation section (Bruce)

2368

Appendix E. Release Notes

E.107.3.17. Contrib Changes

• Major tsearch2 improvements (Oleg, Teodor)

• multibyte encoding support, including UTF8

• query rewriting support

• improved ranking functions

• thesaurus dictionary support

• Ispell dictionaries now recognize MySpell format, used by OpenOffice

• GIN support

• Add adminpack module containing Pgadmin administration functions (Dave)

These functions provide additional file system access routines not present in the default PostgreSQL
server.

• Add sslinfo module (Victor Wagner)

Reports information about the current connection’s SSL certificate.

• Add pgrowlocks module (Tatsuo)

This shows row locking information for a specified table.

• Add hstore module (Oleg, Teodor)

• Add isn module, replacing isbn_issn (Jeremy Kronuz)

This new implementation supports EAN13, UPC, ISBN (books), ISMN (music), and ISSN (serials).

• Add index information functions to pgstattuple (ITAGAKI Takahiro, Satoshi Nagayasu)

• Add pg_freespacemap module to display free space map information (Mark Kirkwood)

• pgcrypto now has all planned functionality (Marko Kreen)

• Include iMath library in pgcrypto to have the public-key encryption functions always available.

• Add SHA224 algorithm that was missing in OpenBSD code.

• Activate builtin code for SHA224/256/384/512 hashes on older OpenSSL to have those algorithms
always available.

• New function gen_random_bytes() that returns cryptographically strong randomness. Useful for gen-
erating encryption keys.

• Remove digest_exists(), hmac_exists() and cipher_exists() functions.

• Improvements to cube module (Joshua Reich)

New functions are cube(float[]), cube(float[], float[]), and cube_subset(cube,

int4[]).

• Add async query capability to dblink (Kai Londenberg, Joe Conway)

• New operators for array-subset comparisons (@>, <@, &&) (Tom)

2369

Appendix E. Release Notes

Various contrib packages already had these operators for their datatypes, but the naming wasn’t consis-
tent. We have now added consistently named array-subset comparison operators to the core code and all
the contrib packages that have such functionality. (The old names remain available, but are deprecated.)

• Add uninstall scripts for all contrib packages that have install scripts (David, Josh Drake)

E.108. Release 8.1.23

Release Date: 2010-12-16

This release contains a variety of fixes from 8.1.22. For information about new features in the 8.1 major
release, see Section E.131.

This is expected to be the last PostgreSQL release in the 8.1.X series. Users are encouraged to update to
a newer release branch soon.

E.108.1. Migration to Version 8.1.23
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.18, see Section E.113.

E.108.2. Changes

• Force the default wal_sync_method to be fdatasync on Linux (Tom Lane, Marti Raudsepp)

The default on Linux has actually been fdatasync for many years, but recent kernel changes caused
PostgreSQL to choose open_datasync instead. This choice did not result in any performance im-
provement, and caused outright failures on certain filesystems, notably ext4 with the data=journal
mount option.

• Fix recovery from base backup when the starting checkpoint WAL record is not in the same WAL
segment as its redo point (Jeff Davis)

• Add support for detecting register-stack overrun on IA64 (Tom Lane)

The IA64 architecture has two hardware stacks. Full prevention of stack-overrun failures requires
checking both.

• Add a check for stack overflow in copyObject() (Tom Lane)

Certain code paths could crash due to stack overflow given a sufficiently complex query.

• Fix detection of page splits in temporary GiST indexes (Heikki Linnakangas)

2370

Appendix E. Release Notes

It is possible to have a “concurrent” page split in a temporary index, if for example there is an open
cursor scanning the index when an insertion is done. GiST failed to detect this case and hence could
deliver wrong results when execution of the cursor continued.

• Avoid memory leakage while ANALYZE’ing complex index expressions (Tom Lane)

• Ensure an index that uses a whole-row Var still depends on its table (Tom Lane)

An index declared like create index i on t (foo(t.*)) would not automatically get dropped
when its table was dropped.

• Do not “inline” a SQL function with multiple OUT parameters (Tom Lane)

This avoids a possible crash due to loss of information about the expected result rowtype.

• Fix constant-folding of COALESCE() expressions (Tom Lane)

The planner would sometimes attempt to evaluate sub-expressions that in fact could never be reached,
possibly leading to unexpected errors.

• Add print functionality for InhRelation nodes (Tom Lane)

This avoids a failure when debug_print_parse is enabled and certain types of query are executed.

• Fix incorrect calculation of distance from a point to a horizontal line segment (Tom Lane)

This bug affected several different geometric distance-measurement operators.

• Fix PL/pgSQL’s handling of “simple” expressions to not fail in recursion or error-recovery cases (Tom
Lane)

• Fix bug in contrib/cube’s GiST picksplit algorithm (Alexander Korotkov)

This could result in considerable inefficiency, though not actually incorrect answers, in a GiST index
on a cube column. If you have such an index, consider REINDEXing it after installing this update.

• Don’t emit “identifier will be truncated” notices in contrib/dblink except when creating new con-
nections (Itagaki Takahiro)

• Fix potential coredump on missing public key in contrib/pgcrypto (Marti Raudsepp)

• Fix memory leak in contrib/xml2’s XPath query functions (Tom Lane)

• Update time zone data files to tzdata release 2010o for DST law changes in Fiji and Samoa; also
historical corrections for Hong Kong.

E.109. Release 8.1.22

Release Date: 2010-10-04

This release contains a variety of fixes from 8.1.21. For information about new features in the 8.1 major
release, see Section E.131.

The PostgreSQL community will stop releasing updates for the 8.1.X release series in November 2010.
Users are encouraged to update to a newer release branch soon.

2371

Appendix E. Release Notes

E.109.1. Migration to Version 8.1.22
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.18, see Section E.113.

E.109.2. Changes

• Use a separate interpreter for each calling SQL userid in PL/Perl and PL/Tcl (Tom Lane)

This change prevents security problems that can be caused by subverting Perl or Tcl code that will be
executed later in the same session under another SQL user identity (for example, within a SECURITY

DEFINER function). Most scripting languages offer numerous ways that that might be done, such as
redefining standard functions or operators called by the target function. Without this change, any SQL
user with Perl or Tcl language usage rights can do essentially anything with the SQL privileges of the
target function’s owner.

The cost of this change is that intentional communication among Perl and Tcl functions becomes more
difficult. To provide an escape hatch, PL/PerlU and PL/TclU functions continue to use only one inter-
preter per session. This is not considered a security issue since all such functions execute at the trust
level of a database superuser already.

It is likely that third-party procedural languages that claim to offer trusted execution have similar se-
curity issues. We advise contacting the authors of any PL you are depending on for security-critical
purposes.

Our thanks to Tim Bunce for pointing out this issue (CVE-2010-3433).

• Prevent possible crashes in pg_get_expr() by disallowing it from being called with an argument that
is not one of the system catalog columns it’s intended to be used with (Heikki Linnakangas, Tom Lane)

• Fix “cannot handle unplanned sub-select” error (Tom Lane)

This occurred when a sub-select contains a join alias reference that expands into an expression contain-
ing another sub-select.

• Prevent show_session_authorization() from crashing within autovacuum processes (Tom Lane)

• Defend against functions returning setof record where not all the returned rows are actually of the same
rowtype (Tom Lane)

• Fix possible failure when hashing a pass-by-reference function result (Tao Ma, Tom Lane)

• Take care to fsync the contents of lockfiles (both postmaster.pid and the socket lockfile) while
writing them (Tom Lane)

This omission could result in corrupted lockfile contents if the machine crashes shortly after postmaster
start. That could in turn prevent subsequent attempts to start the postmaster from succeeding, until the
lockfile is manually removed.

• Avoid recursion while assigning XIDs to heavily-nested subtransactions (Andres Freund, Robert Haas)

The original coding could result in a crash if there was limited stack space.

• Fix log_line_prefix’s %i escape, which could produce junk early in backend startup (Tom Lane)

2372

Appendix E. Release Notes

• Fix possible data corruption in ALTER TABLE ... SET TABLESPACE when archiving is enabled (Jeff
Davis)

• Allow CREATE DATABASE and ALTER DATABASE ... SET TABLESPACE to be interrupted by
query-cancel (Guillaume Lelarge)

• In PL/Python, defend against null pointer results from PyCObject_AsVoidPtr and
PyCObject_FromVoidPtr (Peter Eisentraut)

• Improve contrib/dblink’s handling of tables containing dropped columns (Tom Lane)

• Fix connection leak after “duplicate connection name” errors in contrib/dblink (Itagaki Takahiro)

• Fix contrib/dblink to handle connection names longer than 62 bytes correctly (Itagaki Takahiro)

• Update build infrastructure and documentation to reflect the source code repository’s move from CVS
to Git (Magnus Hagander and others)

• Update time zone data files to tzdata release 2010l for DST law changes in Egypt and Palestine; also
historical corrections for Finland.

This change also adds new names for two Micronesian timezones: Pacific/Chuuk is now preferred over
Pacific/Truk (and the preferred abbreviation is CHUT not TRUT) and Pacific/Pohnpei is preferred over
Pacific/Ponape.

E.110. Release 8.1.21

Release Date: 2010-05-17

This release contains a variety of fixes from 8.1.20. For information about new features in the 8.1 major
release, see Section E.131.

E.110.1. Migration to Version 8.1.21
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.18, see Section E.113.

E.110.2. Changes

• Enforce restrictions in plperl using an opmask applied to the whole interpreter, instead of using
Safe.pm (Tim Bunce, Andrew Dunstan)

Recent developments have convinced us that Safe.pm is too insecure to rely on for making plperl

trustable. This change removes use of Safe.pm altogether, in favor of using a separate interpreter with
an opcode mask that is always applied. Pleasant side effects of the change include that it is now possible

2373

Appendix E. Release Notes

to use Perl’s strict pragma in a natural way in plperl, and that Perl’s $a and $b variables work as
expected in sort routines, and that function compilation is significantly faster. (CVE-2010-1169)

• Prevent PL/Tcl from executing untrustworthy code from pltcl_modules (Tom)

PL/Tcl’s feature for autoloading Tcl code from a database table could be exploited for trojan-horse
attacks, because there was no restriction on who could create or insert into that table. This change
disables the feature unless pltcl_modules is owned by a superuser. (However, the permissions on the
table are not checked, so installations that really need a less-than-secure modules table can still grant
suitable privileges to trusted non-superusers.) Also, prevent loading code into the unrestricted “normal”
Tcl interpreter unless we are really going to execute a pltclu function. (CVE-2010-1170)

• Do not allow an unprivileged user to reset superuser-only parameter settings (Alvaro)

Previously, if an unprivileged user ran ALTER USER ... RESET ALL for himself, or ALTER

DATABASE ... RESET ALL for a database he owns, this would remove all special parameter settings
for the user or database, even ones that are only supposed to be changeable by a superuser. Now, the
ALTER will only remove the parameters that the user has permission to change.

• Avoid possible crash during backend shutdown if shutdown occurs when a CONTEXT addition would be
made to log entries (Tom)

In some cases the context-printing function would fail because the current transaction had already been
rolled back when it came time to print a log message.

• Update pl/perl’s ppport.h for modern Perl versions (Andrew)

• Fix assorted memory leaks in pl/python (Andreas Freund, Tom)

• Prevent infinite recursion in psql when expanding a variable that refers to itself (Tom)

• Ensure that contrib/pgstattuple functions respond to cancel interrupts promptly (Tatsuhito Kasa-
hara)

• Make server startup deal properly with the case that shmget() returns EINVAL for an existing shared
memory segment (Tom)

This behavior has been observed on BSD-derived kernels including OS X. It resulted in an entirely-
misleading startup failure complaining that the shared memory request size was too large.

• Update time zone data files to tzdata release 2010j for DST law changes in Argentina, Australian
Antarctic, Bangladesh, Mexico, Morocco, Pakistan, Palestine, Russia, Syria, Tunisia; also historical
corrections for Taiwan.

E.111. Release 8.1.20

Release Date: 2010-03-15

This release contains a variety of fixes from 8.1.19. For information about new features in the 8.1 major
release, see Section E.131.

2374

Appendix E. Release Notes

E.111.1. Migration to Version 8.1.20
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.18, see Section E.113.

E.111.2. Changes

• Add new configuration parameter ssl_renegotiation_limit to control how often we do session
key renegotiation for an SSL connection (Magnus)

This can be set to zero to disable renegotiation completely, which may be required if a broken SSL
library is used. In particular, some vendors are shipping stopgap patches for CVE-2009-3555 that cause
renegotiation attempts to fail.

• Fix possible crashes when trying to recover from a failure in subtransaction start (Tom)

• Fix server memory leak associated with use of savepoints and a client encoding different from server’s
encoding (Tom)

• Make substring() for bit types treat any negative length as meaning “all the rest of the string”
(Tom)

The previous coding treated only -1 that way, and would produce an invalid result value for other
negative values, possibly leading to a crash (CVE-2010-0442).

• Fix integer-to-bit-string conversions to handle the first fractional byte correctly when the output bit
width is wider than the given integer by something other than a multiple of 8 bits (Tom)

• Fix some cases of pathologically slow regular expression matching (Tom)

• Fix the STOP WAL LOCATION entry in backup history files to report the next WAL segment’s name
when the end location is exactly at a segment boundary (Itagaki Takahiro)

• Fix some more cases of temporary-file leakage (Heikki)

This corrects a problem introduced in the previous minor release. One case that failed is when a plpgsql
function returning set is called within another function’s exception handler.

• When reading pg_hba.conf and related files, do not treat @something as a file inclusion request if
the @ appears inside quote marks; also, never treat @ by itself as a file inclusion request (Tom)

This prevents erratic behavior if a role or database name starts with @. If you need to include a file
whose path name contains spaces, you can still do so, but you must write @"/path to/file" rather
than putting the quotes around the whole construct.

• Prevent infinite loop on some platforms if a directory is named as an inclusion target in pg_hba.conf

and related files (Tom)

• Fix psql’s numericlocale option to not format strings it shouldn’t in latex and troff output formats
(Heikki)

• Fix plpgsql failure in one case where a composite column is set to NULL (Tom)

• Add volatile markings in PL/Python to avoid possible compiler-specific misbehavior (Zdenek Ko-
tala)

• Ensure PL/Tcl initializes the Tcl interpreter fully (Tom)

2375

Appendix E. Release Notes

The only known symptom of this oversight is that the Tcl clock command misbehaves if using Tcl 8.5
or later.

• Prevent crash in contrib/dblink when too many key columns are specified to a
dblink_build_sql_* function (Rushabh Lathia, Joe Conway)

• Fix assorted crashes in contrib/xml2 caused by sloppy memory management (Tom)

• Update time zone data files to tzdata release 2010e for DST law changes in Bangladesh, Chile, Fiji,
Mexico, Paraguay, Samoa.

E.112. Release 8.1.19

Release Date: 2009-12-14

This release contains a variety of fixes from 8.1.18. For information about new features in the 8.1 major
release, see Section E.131.

E.112.1. Migration to Version 8.1.19
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.18, see Section E.113.

E.112.2. Changes

• Protect against indirect security threats caused by index functions changing session-local state (Gurjeet
Singh, Tom)

This change prevents allegedly-immutable index functions from possibly subverting a superuser’s ses-
sion (CVE-2009-4136).

• Reject SSL certificates containing an embedded null byte in the common name (CN) field (Magnus)

This prevents unintended matching of a certificate to a server or client name during SSL validation
(CVE-2009-4034).

• Fix possible crash during backend-startup-time cache initialization (Tom)

• Prevent signals from interrupting VACUUM at unsafe times (Alvaro)

This fix prevents a PANIC if a VACUUM FULL is canceled after it’s already committed its tuple move-
ments, as well as transient errors if a plain VACUUM is interrupted after having truncated the table.

• Fix possible crash due to integer overflow in hash table size calculation (Tom)

This could occur with extremely large planner estimates for the size of a hashjoin’s result.

• Fix very rare crash in inet/cidr comparisons (Chris Mikkelson)

2376

Appendix E. Release Notes

• Ensure that shared tuple-level locks held by prepared transactions are not ignored (Heikki)

• Fix premature drop of temporary files used for a cursor that is accessed within a subtransaction (Heikki)

• Fix PAM password processing to be more robust (Tom)

The previous code is known to fail with the combination of the Linux pam_krb5 PAM module with
Microsoft Active Directory as the domain controller. It might have problems elsewhere too, since it was
making unjustified assumptions about what arguments the PAM stack would pass to it.

• Fix processing of ownership dependencies during CREATE OR REPLACE FUNCTION (Tom)

• Ensure that Perl arrays are properly converted to PostgreSQL arrays when returned by a set-returning
PL/Perl function (Andrew Dunstan, Abhijit Menon-Sen)

This worked correctly already for non-set-returning functions.

• Fix rare crash in exception processing in PL/Python (Peter)

• Ensure psql’s flex module is compiled with the correct system header definitions (Tom)

This fixes build failures on platforms where --enable-largefile causes incompatible changes in
the generated code.

• Make the postmaster ignore any application_name parameter in connection request packets, to im-
prove compatibility with future libpq versions (Tom)

• Update time zone data files to tzdata release 2009s for DST law changes in Antarctica, Argentina,
Bangladesh, Fiji, Novokuznetsk, Pakistan, Palestine, Samoa, Syria; also historical corrections for Hong
Kong.

E.113. Release 8.1.18

Release Date: 2009-09-09

This release contains a variety of fixes from 8.1.17. For information about new features in the 8.1 major
release, see Section E.131.

E.113.1. Migration to Version 8.1.18
A dump/restore is not required for those running 8.1.X. However, if you have any hash indexes on
interval columns, you must REINDEX them after updating to 8.1.18. Also, if you are upgrading from a
version earlier than 8.1.15, see Section E.116.

E.113.2. Changes

• Disallow RESET ROLE and RESET SESSION AUTHORIZATION inside security-definer functions
(Tom, Heikki)

2377

Appendix E. Release Notes

This covers a case that was missed in the previous patch that disallowed SET ROLE and SET SESSION

AUTHORIZATION inside security-definer functions. (See CVE-2007-6600)

• Fix handling of sub-SELECTs appearing in the arguments of an outer-level aggregate function (Tom)

• Fix hash calculation for data type interval (Tom)

This corrects wrong results for hash joins on interval values. It also changes the contents of hash indexes
on interval columns. If you have any such indexes, you must REINDEX them after updating.

• Treat to_char(..., ’TH’) as an uppercase ordinal suffix with ’HH’/’HH12’ (Heikki)

It was previously handled as ’th’ (lowercase).

• Fix overflow for INTERVAL ’x ms’ when x is more than 2 million and integer datetimes are in use
(Alex Hunsaker)

• Fix calculation of distance between a point and a line segment (Tom)

This led to incorrect results from a number of geometric operators.

• Fix money data type to work in locales where currency amounts have no fractional digits, e.g. Japan
(Itagaki Takahiro)

• Properly round datetime input like 00:12:57.9999999999999999999999999999 (Tom)

• Fix poor choice of page split point in GiST R-tree operator classes (Teodor)

• Fix portability issues in plperl initialization (Andrew Dunstan)

• Fix pg_ctl to not go into an infinite loop if postgresql.conf is empty (Jeff Davis)

• Fix contrib/xml2’s xslt_process() to properly handle the maximum number of parameters
(twenty) (Tom)

• Improve robustness of libpq’s code to recover from errors during COPY FROM STDIN (Tom)

• Avoid including conflicting readline and editline header files when both libraries are installed (Zdenek
Kotala)

• Update time zone data files to tzdata release 2009l for DST law changes in Bangladesh, Egypt, Jordan,
Pakistan, Argentina/San_Luis, Cuba, Jordan (historical correction only), Mauritius, Morocco, Palestine,
Syria, Tunisia.

E.114. Release 8.1.17

Release Date: 2009-03-16

This release contains a variety of fixes from 8.1.16. For information about new features in the 8.1 major
release, see Section E.131.

2378

Appendix E. Release Notes

E.114.1. Migration to Version 8.1.17
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.15, see Section E.116.

E.114.2. Changes

• Prevent error recursion crashes when encoding conversion fails (Tom)

This change extends fixes made in the last two minor releases for related failure scenarios. The previous
fixes were narrowly tailored for the original problem reports, but we have now recognized that any error
thrown by an encoding conversion function could potentially lead to infinite recursion while trying to
report the error. The solution therefore is to disable translation and encoding conversion and report
the plain-ASCII form of any error message, if we find we have gotten into a recursive error reporting
situation. (CVE-2009-0922)

• Disallow CREATE CONVERSION with the wrong encodings for the specified conversion function
(Heikki)

This prevents one possible scenario for encoding conversion failure. The previous change is a backstop
to guard against other kinds of failures in the same area.

• Fix core dump when to_char() is given format codes that are inappropriate for the type of the data
argument (Tom)

• Fix decompilation of CASE WHEN with an implicit coercion (Tom)

This mistake could lead to Assert failures in an Assert-enabled build, or an “unexpected CASE WHEN
clause” error message in other cases, when trying to examine or dump a view.

• Fix possible misassignment of the owner of a TOAST table’s rowtype (Tom)

If CLUSTER or a rewriting variant of ALTER TABLE were executed by someone other than the table
owner, the pg_type entry for the table’s TOAST table would end up marked as owned by that someone.
This caused no immediate problems, since the permissions on the TOAST rowtype aren’t examined by
any ordinary database operation. However, it could lead to unexpected failures if one later tried to drop
the role that issued the command (in 8.1 or 8.2), or “owner of data type appears to be invalid” warnings
from pg_dump after having done so (in 8.3).

• Clean up PL/pgSQL error status variables fully at block exit (Ashesh Vashi and Dave Page)

This is not a problem for PL/pgSQL itself, but the omission could cause the PL/pgSQL Debugger to
crash while examining the state of a function.

• Add MUST (Mauritius Island Summer Time) to the default list of known timezone abbreviations (Xavier
Bugaud)

E.115. Release 8.1.16

Release Date: 2009-02-02

2379

Appendix E. Release Notes

This release contains a variety of fixes from 8.1.15. For information about new features in the 8.1 major
release, see Section E.131.

E.115.1. Migration to Version 8.1.16
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.15, see Section E.116.

E.115.2. Changes

• Fix crash in autovacuum (Alvaro)

The crash occurs only after vacuuming a whole database for anti-transaction-wraparound purposes,
which means that it occurs infrequently and is hard to track down.

• Improve handling of URLs in headline() function (Teodor)

• Improve handling of overlength headlines in headline() function (Teodor)

• Prevent possible Assert failure or misconversion if an encoding conversion is created with the wrong
conversion function for the specified pair of encodings (Tom, Heikki)

• Avoid unnecessary locking of small tables in VACUUM (Heikki)

• Ensure that the contents of a holdable cursor don’t depend on the contents of TOAST tables (Tom)

Previously, large field values in a cursor result might be represented as TOAST pointers, which would
fail if the referenced table got dropped before the cursor is read, or if the large value is deleted and then
vacuumed away. This cannot happen with an ordinary cursor, but it could with a cursor that is held past
its creating transaction.

• Fix uninitialized variables in contrib/tsearch2’s get_covers() function (Teodor)

• Fix configure script to properly report failure when unable to obtain linkage information for PL/Perl
(Andrew)

• Make all documentation reference pgsql-bugs and/or pgsql-hackers as appropriate, instead of the
now-decommissioned pgsql-ports and pgsql-patches mailing lists (Tom)

• Update time zone data files to tzdata release 2009a (for Kathmandu and historical DST corrections in
Switzerland, Cuba)

E.116. Release 8.1.15

Release Date: 2008-11-03

2380

Appendix E. Release Notes

This release contains a variety of fixes from 8.1.14. For information about new features in the 8.1 major
release, see Section E.131.

E.116.1. Migration to Version 8.1.15
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129. Also, if you were running a previous 8.1.X release, it is recommended
to REINDEX all GiST indexes after the upgrade.

E.116.2. Changes

• Fix GiST index corruption due to marking the wrong index entry “dead” after a deletion (Teodor)

This would result in index searches failing to find rows they should have found. Corrupted indexes can
be fixed with REINDEX.

• Fix backend crash when the client encoding cannot represent a localized error message (Tom)

We have addressed similar issues before, but it would still fail if the “character has no equivalent”
message itself couldn’t be converted. The fix is to disable localization and send the plain ASCII error
message when we detect such a situation.

• Fix possible crash when deeply nested functions are invoked from a trigger (Tom)

• Fix mis-expansion of rule queries when a sub-SELECT appears in a function call in FROM, a multi-row
VALUES list, or a RETURNING list (Tom)

The usual symptom of this problem is an “unrecognized node type” error.

• Ensure an error is reported when a newly-defined PL/pgSQL trigger function is invoked as a normal
function (Tom)

• Prevent possible collision of relfilenode numbers when moving a table to another tablespace with
ALTER SET TABLESPACE (Heikki)

The command tried to re-use the existing filename, instead of picking one that is known unused in the
destination directory.

• Fix incorrect tsearch2 headline generation when single query item matches first word of text (Sushant
Sinha)

• Fix improper display of fractional seconds in interval values when using a non-ISO datestyle in an
--enable-integer-datetimes build (Ron Mayer)

• Ensure SPI_getvalue and SPI_getbinval behave correctly when the passed tuple and tuple de-
scriptor have different numbers of columns (Tom)

This situation is normal when a table has had columns added or removed, but these two functions didn’t
handle it properly. The only likely consequence is an incorrect error indication.

• Fix ecpg’s parsing of CREATE ROLE (Michael)

• Fix recent breakage of pg_ctl restart (Tom)

2381

Appendix E. Release Notes

• Update time zone data files to tzdata release 2008i (for DST law changes in Argentina, Brazil, Mauri-
tius, Syria)

E.117. Release 8.1.14

Release Date: 2008-09-22

This release contains a variety of fixes from 8.1.13. For information about new features in the 8.1 major
release, see Section E.131.

E.117.1. Migration to Version 8.1.14
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.117.2. Changes

• Widen local lock counters from 32 to 64 bits (Tom)

This responds to reports that the counters could overflow in sufficiently long transactions, leading to
unexpected “lock is already held” errors.

• Fix possible duplicate output of tuples during a GiST index scan (Teodor)

• Add checks in executor startup to ensure that the tuples produced by an INSERT or UPDATE will match
the target table’s current rowtype (Tom)

ALTER COLUMN TYPE, followed by re-use of a previously cached plan, could produce this type of
situation. The check protects against data corruption and/or crashes that could ensue.

• Fix AT TIME ZONE to first try to interpret its timezone argument as a timezone abbreviation, and only
try it as a full timezone name if that fails, rather than the other way around as formerly (Tom)

The timestamp input functions have always resolved ambiguous zone names in this order. Making AT

TIME ZONE do so as well improves consistency, and fixes a compatibility bug introduced in 8.1: in
ambiguous cases we now behave the same as 8.0 and before did, since in the older versions AT TIME

ZONE accepted only abbreviations.

• Fix datetime input functions to correctly detect integer overflow when running on a 64-bit platform
(Tom)

• Improve performance of writing very long log messages to syslog (Tom)

• Fix bug in backwards scanning of a cursor on a SELECT DISTINCT ON query (Tom)

• Fix planner bug with nested sub-select expressions (Tom)

2382

Appendix E. Release Notes

If the outer sub-select has no direct dependency on the parent query, but the inner one does, the outer
value might not get recalculated for new parent query rows.

• Fix planner to estimate that GROUP BY expressions yielding boolean results always result in two groups,
regardless of the expressions’ contents (Tom)

This is very substantially more accurate than the regular GROUP BY estimate for certain boolean tests
like col IS NULL.

• Fix PL/pgSQL to not fail when a FOR loop’s target variable is a record containing composite-type fields
(Tom)

• Fix PL/Tcl to behave correctly with Tcl 8.5, and to be more careful about the encoding of data sent to
or from Tcl (Tom)

• Fix PL/Python to work with Python 2.5

This is a back-port of fixes made during the 8.2 development cycle.

• Improve pg_dump and pg_restore’s error reporting after failure to send a SQL command (Tom)

• Fix pg_ctl to properly preserve postmaster command-line arguments across a restart (Bruce)

• Update time zone data files to tzdata release 2008f (for DST law changes in Argentina, Bahamas, Brazil,
Mauritius, Morocco, Pakistan, Palestine, and Paraguay)

E.118. Release 8.1.13

Release Date: 2008-06-12

This release contains one serious and one minor bug fix over 8.1.12. For information about new features
in the 8.1 major release, see Section E.131.

E.118.1. Migration to Version 8.1.13
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.118.2. Changes

• Make pg_get_ruledef() parenthesize negative constants (Tom)

Before this fix, a negative constant in a view or rule might be dumped as, say, -42::integer, which is
subtly incorrect: it should be (-42)::integer due to operator precedence rules. Usually this would
make little difference, but it could interact with another recent patch to cause PostgreSQL to reject what
had been a valid SELECT DISTINCT view query. Since this could result in pg_dump output failing to

2383

Appendix E. Release Notes

reload, it is being treated as a high-priority fix. The only released versions in which dump output is
actually incorrect are 8.3.1 and 8.2.7.

• Make ALTER AGGREGATE ... OWNER TO update pg_shdepend (Tom)

This oversight could lead to problems if the aggregate was later involved in a DROP OWNED or
REASSIGN OWNED operation.

E.119. Release 8.1.12

Release Date: never released

This release contains a variety of fixes from 8.1.11. For information about new features in the 8.1 major
release, see Section E.131.

E.119.1. Migration to Version 8.1.12
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.119.2. Changes

• Fix ALTER TABLE ADD COLUMN ... PRIMARY KEY so that the new column is correctly checked to
see if it’s been initialized to all non-nulls (Brendan Jurd)

Previous versions neglected to check this requirement at all.

• Fix possible CREATE TABLE failure when inheriting the “same” constraint from multiple parent rela-
tions that inherited that constraint from a common ancestor (Tom)

• Fix conversions between ISO-8859-5 and other encodings to handle Cyrillic “Yo” characters (e and E

with two dots) (Sergey Burladyan)

• Fix a few datatype input functions that were allowing unused bytes in their results to contain uninitial-
ized, unpredictable values (Tom)

This could lead to failures in which two apparently identical literal values were not seen as equal,
resulting in the parser complaining about unmatched ORDER BY and DISTINCT expressions.

• Fix a corner case in regular-expression substring matching (substring(string from pattern))
(Tom)

The problem occurs when there is a match to the pattern overall but the user has specified a paren-
thesized subexpression and that subexpression hasn’t got a match. An example is substring(’foo’
from ’foo(bar)?’). This should return NULL, since (bar) isn’t matched, but it was mistakenly
returning the whole-pattern match instead (ie, foo).

2384

Appendix E. Release Notes

• Update time zone data files to tzdata release 2008c (for DST law changes in Morocco, Iraq, Choibalsan,
Pakistan, Syria, Cuba, Argentina/San_Luis, and Chile)

• Fix incorrect result from ecpg’s PGTYPEStimestamp_sub() function (Michael)

• Fix core dump in contrib/xml2’s xpath_table() function when the input query returns a NULL
value (Tom)

• Fix contrib/xml2’s makefile to not override CFLAGS (Tom)

• Fix DatumGetBool macro to not fail with gcc 4.3 (Tom)

This problem affects “old style” (V0) C functions that return boolean. The fix is already in 8.3, but the
need to back-patch it was not realized at the time.

• Fix longstanding LISTEN/NOTIFY race condition (Tom)

In rare cases a session that had just executed a LISTEN might not get a notification, even though one
would be expected because the concurrent transaction executing NOTIFY was observed to commit later.

A side effect of the fix is that a transaction that has executed a not-yet-committed LISTEN command will
not see any row in pg_listener for the LISTEN, should it choose to look; formerly it would have.
This behavior was never documented one way or the other, but it is possible that some applications
depend on the old behavior.

• Disallow LISTEN and UNLISTEN within a prepared transaction (Tom)

This was formerly allowed but trying to do it had various unpleasant consequences, notably that the
originating backend could not exit as long as an UNLISTEN remained uncommitted.

• Fix rare crash when an error occurs during a query using a hash index (Heikki)

• Fix input of datetime values for February 29 in years BC (Tom)

The former coding was mistaken about which years were leap years.

• Fix “unrecognized node type” error in some variants of ALTER OWNER (Tom)

• Fix pg_ctl to correctly extract the postmaster’s port number from command-line options (Itagaki
Takahiro, Tom)

Previously, pg_ctl start -w could try to contact the postmaster on the wrong port, leading to bogus
reports of startup failure.

• Use -fwrapv to defend against possible misoptimization in recent gcc versions (Tom)

This is known to be necessary when building PostgreSQL with gcc 4.3 or later.

• Fix display of constant expressions in ORDER BY and GROUP BY (Tom)

An explicitly casted constant would be shown incorrectly. This could for example lead to corruption of
a view definition during dump and reload.

• Fix libpq to handle NOTICE messages correctly during COPY OUT (Tom)

This failure has only been observed to occur when a user-defined datatype’s output routine issues a
NOTICE, but there is no guarantee it couldn’t happen due to other causes.

2385

Appendix E. Release Notes

E.120. Release 8.1.11

Release Date: 2008-01-07

This release contains a variety of fixes from 8.1.10, including fixes for significant security issues. For
information about new features in the 8.1 major release, see Section E.131.

This is the last 8.1.X release for which the PostgreSQL community will produce binary packages for
Windows. Windows users are encouraged to move to 8.2.X or later, since there are Windows-specific
fixes in 8.2.X that are impractical to back-port. 8.1.X will continue to be supported on other platforms.

E.120.1. Migration to Version 8.1.11
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.120.2. Changes

• Prevent functions in indexes from executing with the privileges of the user running VACUUM, ANALYZE,
etc (Tom)

Functions used in index expressions and partial-index predicates are evaluated whenever a new table
entry is made. It has long been understood that this poses a risk of trojan-horse code execution if one
modifies a table owned by an untrustworthy user. (Note that triggers, defaults, check constraints, etc.
pose the same type of risk.) But functions in indexes pose extra danger because they will be executed by
routine maintenance operations such as VACUUM FULL, which are commonly performed automatically
under a superuser account. For example, a nefarious user can execute code with superuser privileges by
setting up a trojan-horse index definition and waiting for the next routine vacuum. The fix arranges for
standard maintenance operations (including VACUUM, ANALYZE, REINDEX, and CLUSTER) to execute
as the table owner rather than the calling user, using the same privilege-switching mechanism already
used for SECURITY DEFINER functions. To prevent bypassing this security measure, execution of SET
SESSION AUTHORIZATION and SET ROLE is now forbidden within a SECURITY DEFINER context.
(CVE-2007-6600)

• Repair assorted bugs in the regular-expression package (Tom, Will Drewry)

Suitably crafted regular-expression patterns could cause crashes, infinite or near-infinite looping, and/or
massive memory consumption, all of which pose denial-of-service hazards for applications that ac-
cept regex search patterns from untrustworthy sources. (CVE-2007-4769, CVE-2007-4772, CVE-2007-
6067)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

The fix that appeared for this in 8.1.10 was incomplete, as it plugged the hole for only some dblink

functions. (CVE-2007-6601, CVE-2007-3278)

• Update time zone data files to tzdata release 2007k (in particular, recent Argentina changes) (Tom)

2386

Appendix E. Release Notes

• Improve planner’s handling of LIKE/regex estimation in non-C locales (Tom)

• Fix planner failure in some cases of WHERE false AND var IN (SELECT ...) (Tom)

• Preserve the tablespace of indexes that are rebuilt by ALTER TABLE ... ALTER COLUMN TYPE

(Tom)

• Make archive recovery always start a new WAL timeline, rather than only when a recovery stop time
was used (Simon)

This avoids a corner-case risk of trying to overwrite an existing archived copy of the last WAL segment,
and seems simpler and cleaner than the original definition.

• Make VACUUM not use all of maintenance_work_mem when the table is too small for it to be useful
(Alvaro)

• Fix potential crash in translate() when using a multibyte database encoding (Tom)

• Fix overflow in extract(epoch from interval) for intervals exceeding 68 years (Tom)

• Fix PL/Perl to not fail when a UTF-8 regular expression is used in a trusted function (Andrew)

• Fix PL/Perl to cope when platform’s Perl defines type bool as int rather than char (Tom)

While this could theoretically happen anywhere, no standard build of Perl did things this way ... until
Mac OS X 10.5.

• Fix PL/Python to not crash on long exception messages (Alvaro)

• Fix pg_dump to correctly handle inheritance child tables that have default expressions different from
their parent’s (Tom)

• Fix libpq crash when PGPASSFILE refers to a file that is not a plain file (Martin Pitt)

• ecpg parser fixes (Michael)

• Make contrib/pgcrypto defend against OpenSSL libraries that fail on keys longer than 128 bits;
which is the case at least on some Solaris versions (Marko Kreen)

• Make contrib/tablefunc’s crosstab() handle NULL rowid as a category in its own right, rather
than crashing (Joe)

• Fix tsvector and tsquery output routines to escape backslashes correctly (Teodor, Bruce)

• Fix crash of to_tsvector() on huge input strings (Teodor)

• Require a specific version of Autoconf to be used when re-generating the configure script (Peter)

This affects developers and packagers only. The change was made to prevent accidental use of untested
combinations of Autoconf and PostgreSQL versions. You can remove the version check if you really
want to use a different Autoconf version, but it’s your responsibility whether the result works or not.

E.121. Release 8.1.10

Release Date: 2007-09-17

2387

Appendix E. Release Notes

This release contains a variety of fixes from 8.1.9. For information about new features in the 8.1 major
release, see Section E.131.

E.121.1. Migration to Version 8.1.10
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.121.2. Changes

• Prevent index corruption when a transaction inserts rows and then aborts close to the end of a concurrent
VACUUM on the same table (Tom)

• Make CREATE DOMAIN ... DEFAULT NULL work properly (Tom)

• Allow the interval data type to accept input consisting only of milliseconds or microseconds (Neil)

• Speed up rtree index insertion (Teodor)

• Fix excessive logging of SSL error messages (Tom)

• Fix logging so that log messages are never interleaved when using the syslogger process (Andrew)

• Fix crash when log_min_error_statement logging runs out of memory (Tom)

• Fix incorrect handling of some foreign-key corner cases (Tom)

• Prevent REINDEX and CLUSTER from failing due to attempting to process temporary tables of other
sessions (Alvaro)

• Update the time zone database rules, particularly New Zealand’s upcoming changes (Tom)

• Windows socket improvements (Magnus)

• Suppress timezone name (%Z) in log timestamps on Windows because of possible encoding mismatches
(Tom)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

E.122. Release 8.1.9

Release Date: 2007-04-23

This release contains a variety of fixes from 8.1.8, including a security fix. For information about new
features in the 8.1 major release, see Section E.131.

2388

Appendix E. Release Notes

E.122.1. Migration to Version 8.1.9
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.122.2. Changes

• Support explicit placement of the temporary-table schema within search_path, and disable searching
it for functions and operators (Tom)

This is needed to allow a security-definer function to set a truly secure value of search_path. Without
it, an unprivileged SQL user can use temporary objects to execute code with the privileges of the
security-definer function (CVE-2007-2138). See CREATE FUNCTION for more information.

• /contrib/tsearch2 crash fixes (Teodor)

• Require COMMIT PREPARED to be executed in the same database as the transaction was prepared in
(Heikki)

• Fix potential-data-corruption bug in how VACUUM FULL handles UPDATE chains (Tom, Pavan Deolasee)

• Planner fixes, including improving outer join and bitmap scan selection logic (Tom)

• Fix PANIC during enlargement of a hash index (bug introduced in 8.1.6) (Tom)

• Fix POSIX-style timezone specs to follow new USA DST rules (Tom)

E.123. Release 8.1.8

Release Date: 2007-02-07

This release contains one fix from 8.1.7. For information about new features in the 8.1 major release, see
Section E.131.

E.123.1. Migration to Version 8.1.8
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.123.2. Changes

• Remove overly-restrictive check for type length in constraints and functional indexes(Tom)

2389

Appendix E. Release Notes

E.124. Release 8.1.7

Release Date: 2007-02-05

This release contains a variety of fixes from 8.1.6, including a security fix. For information about new
features in the 8.1 major release, see Section E.131.

E.124.1. Migration to Version 8.1.7
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.124.2. Changes

• Remove security vulnerabilities that allowed connected users to read backend memory (Tom)

The vulnerabilities involve suppressing the normal check that a SQL function returns the data type it’s
declared to, and changing the data type of a table column (CVE-2007-0555, CVE-2007-0556). These
errors can easily be exploited to cause a backend crash, and in principle might be used to read database
content that the user should not be able to access.

• Fix rare bug wherein btree index page splits could fail due to choosing an infeasible split point (Heikki
Linnakangas)

• Improve VACUUM performance for databases with many tables (Tom)

• Fix autovacuum to avoid leaving non-permanent transaction IDs in non-connectable databases (Alvaro)

This bug affects the 8.1 branch only.

• Fix for rare Assert() crash triggered by UNION (Tom)

• Tighten security of multi-byte character processing for UTF8 sequences over three bytes long (Tom)

• Fix bogus “permission denied” failures occurring on Windows due to attempts to fsync already-deleted
files (Magnus, Tom)

• Fix possible crashes when an already-in-use PL/pgSQL function is updated (Tom)

E.125. Release 8.1.6

Release Date: 2007-01-08

This release contains a variety of fixes from 8.1.5. For information about new features in the 8.1 major
release, see Section E.131.

2390

Appendix E. Release Notes

E.125.1. Migration to Version 8.1.6
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.125.2. Changes

• Improve handling of getaddrinfo() on AIX (Tom)

This fixes a problem with starting the statistics collector, among other things.

• Fix pg_restore to handle a tar-format backup that contains large objects (blobs) with comments (Tom)

• Fix “failed to re-find parent key” errors in VACUUM (Tom)

• Clean out pg_internal.init cache files during server restart (Simon)

This avoids a hazard that the cache files might contain stale data after PITR recovery.

• Fix race condition for truncation of a large relation across a gigabyte boundary by VACUUM (Tom)

• Fix bug causing needless deadlock errors on row-level locks (Tom)

• Fix bugs affecting multi-gigabyte hash indexes (Tom)

• Fix possible deadlock in Windows signal handling (Teodor)

• Fix error when constructing an ARRAY[] made up of multiple empty elements (Tom)

• Fix ecpg memory leak during connection (Michael)

• Fix for Darwin (OS X) compilation (Tom)

• to_number() and to_char(numeric) are now STABLE, not IMMUTABLE, for new initdb installs
(Tom)

This is because lc_numeric can potentially change the output of these functions.

• Improve index usage of regular expressions that use parentheses (Tom)

This improves psql \d performance also.

• Update timezone database

This affects Australian and Canadian daylight-savings rules in particular.

E.126. Release 8.1.5

Release Date: 2006-10-16

This release contains a variety of fixes from 8.1.4. For information about new features in the 8.1 major
release, see Section E.131.

2391

Appendix E. Release Notes

E.126.1. Migration to Version 8.1.5
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.126.2. Changes

• Disallow aggregate functions in UPDATE commands, except within sub-SELECTs (Tom)

The behavior of such an aggregate was unpredictable, and in 8.1.X could cause a crash, so it has been
disabled. The SQL standard does not allow this either.

• Fix core dump when an untyped literal is taken as ANYARRAY

• Fix core dump in duration logging for extended query protocol when a COMMIT or ROLLBACK is exe-
cuted

• Fix mishandling of AFTER triggers when query contains a SQL function returning multiple rows (Tom)

• Fix ALTER TABLE ... TYPE to recheck NOT NULL for USING clause (Tom)

• Fix string_to_array() to handle overlapping matches for the separator string

For example, string_to_array(’123xx456xxx789’, ’xx’).

• Fix to_timestamp() for AM/PM formats (Bruce)

• Fix autovacuum’s calculation that decides whether ANALYZE is needed (Alvaro)

• Fix corner cases in pattern matching for psql’s \d commands

• Fix index-corrupting bugs in /contrib/ltree (Teodor)

• Numerous robustness fixes in ecpg (Joachim Wieland)

• Fix backslash escaping in /contrib/dbmirror

• Minor fixes in /contrib/dblink and /contrib/tsearch2

• Efficiency improvements in hash tables and bitmap index scans (Tom)

• Fix instability of statistics collection on Windows (Tom, Andrew)

• Fix statement_timeout to use the proper units on Win32 (Bruce)

In previous Win32 8.1.X versions, the delay was off by a factor of 100.

• Fixes for MSVC and Borland C++ compilers (Hiroshi Saito)

• Fixes for AIX and Intel compilers (Tom)

• Fix rare bug in continuous archiving (Tom)

E.127. Release 8.1.4

Release Date: 2006-05-23

2392

Appendix E. Release Notes

This release contains a variety of fixes from 8.1.3, including patches for extremely serious security issues.
For information about new features in the 8.1 major release, see Section E.131.

E.127.1. Migration to Version 8.1.4
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

Full security against the SQL-injection attacks described in CVE-2006-2313 and CVE-2006-2314 might
require changes in application code. If you have applications that embed untrustworthy strings into SQL
commands, you should examine them as soon as possible to ensure that they are using recommended
escaping techniques. In most cases, applications should be using subroutines provided by libraries or
drivers (such as libpq’s PQescapeStringConn()) to perform string escaping, rather than relying on ad
hoc code to do it.

E.127.2. Changes

• Change the server to reject invalidly-encoded multibyte characters in all cases (Tatsuo, Tom)

While PostgreSQL has been moving in this direction for some time, the checks are now applied uni-
formly to all encodings and all textual input, and are now always errors not merely warnings. This
change defends against SQL-injection attacks of the type described in CVE-2006-2313.

• Reject unsafe uses of \’ in string literals

As a server-side defense against SQL-injection attacks of the type described in CVE-2006-2314, the
server now only accepts ” and not \’ as a representation of ASCII single quote in SQL string literals.
By default, \’ is rejected only when client_encoding is set to a client-only encoding (SJIS, BIG5,
GBK, GB18030, or UHC), which is the scenario in which SQL injection is possible. A new configu-
ration parameter backslash_quote is available to adjust this behavior when needed. Note that full
security against CVE-2006-2314 might require client-side changes; the purpose of backslash_quote
is in part to make it obvious that insecure clients are insecure.

• Modify libpq’s string-escaping routines to be aware of encoding considerations and
standard_conforming_strings

This fixes libpq-using applications for the security issues described in CVE-2006-2313 and CVE-
2006-2314, and also future-proofs them against the planned changeover to SQL-standard string lit-
eral syntax. Applications that use multiple PostgreSQL connections concurrently should migrate to
PQescapeStringConn() and PQescapeByteaConn() to ensure that escaping is done correctly for
the settings in use in each database connection. Applications that do string escaping “by hand” should
be modified to rely on library routines instead.

• Fix weak key selection in pgcrypto (Marko Kreen)

Errors in fortuna PRNG reseeding logic could cause a predictable session key to be selected by
pgp_sym_encrypt() in some cases. This only affects non-OpenSSL-using builds.

• Fix some incorrect encoding conversion functions

2393

Appendix E. Release Notes

win1251_to_iso, win866_to_iso, euc_tw_to_big5, euc_tw_to_mic, mic_to_euc_tw were
all broken to varying extents.

• Clean up stray remaining uses of \’ in strings (Bruce, Jan)

• Make autovacuum visible in pg_stat_activity (Alvaro)

• Disable full_page_writes (Tom)

In certain cases, having full_page_writes off would cause crash recovery to fail. A proper fix will
appear in 8.2; for now it’s just disabled.

• Various planner fixes, particularly for bitmap index scans and MIN/MAX optimization (Tom)

• Fix incorrect optimization in merge join (Tom)

Outer joins could sometimes emit multiple copies of unmatched rows.

• Fix crash from using and modifying a plpgsql function in the same transaction

• Fix WAL replay for case where a B-Tree index has been truncated

• Fix SIMILAR TO for patterns involving | (Tom)

• Fix SELECT INTO and CREATE TABLE AS to create tables in the default tablespace, not the base di-
rectory (Kris Jurka)

• Fix server to use custom DH SSL parameters correctly (Michael Fuhr)

• Improve qsort performance (Dann Corbit)

Currently this code is only used on Solaris.

• Fix for OS/X Bonjour on x86 systems (Ashley Clark)

• Fix various minor memory leaks

• Fix problem with password prompting on some Win32 systems (Robert Kinberg)

• Improve pg_dump’s handling of default values for domains

• Fix pg_dumpall to handle identically-named users and groups reasonably (only possible when dumping
from a pre-8.1 server) (Tom)

The user and group will be merged into a single role with LOGIN permission. Formerly the merged role
wouldn’t have LOGIN permission, making it unusable as a user.

• Fix pg_restore -n to work as documented (Tom)

E.128. Release 8.1.3

Release Date: 2006-02-14

This release contains a variety of fixes from 8.1.2, including one very serious security issue. For informa-
tion about new features in the 8.1 major release, see Section E.131.

2394

Appendix E. Release Notes

E.128.1. Migration to Version 8.1.3
A dump/restore is not required for those running 8.1.X. However, if you are upgrading from a version
earlier than 8.1.2, see Section E.129.

E.128.2. Changes

• Fix bug that allowed any logged-in user to SET ROLE to any other database user id (CVE-2006-0553)

Due to inadequate validity checking, a user could exploit the special case that SET ROLE normally
uses to restore the previous role setting after an error. This allowed ordinary users to acquire superuser
status, for example. The escalation-of-privilege risk exists only in 8.1.0-8.1.2. However, in all releases
back to 7.3 there is a related bug in SET SESSION AUTHORIZATION that allows unprivileged users to
crash the server, if it has been compiled with Asserts enabled (which is not the default). Thanks to Akio
Ishida for reporting this problem.

• Fix bug with row visibility logic in self-inserted rows (Tom)

Under rare circumstances a row inserted by the current command could be seen as already valid, when
it should not be. Repairs bug created in 8.0.4, 7.4.9, and 7.3.11 releases.

• Fix race condition that could lead to “file already exists” errors during pg_clog and pg_subtrans file
creation (Tom)

• Fix cases that could lead to crashes if a cache-invalidation message arrives at just the wrong time (Tom)

• Properly check DOMAIN constraints for UNKNOWN parameters in prepared statements (Neil)

• Ensure ALTER COLUMN TYPE will process FOREIGN KEY, UNIQUE, and PRIMARY KEY constraints in
the proper order (Nakano Yoshihisa)

• Fixes to allow restoring dumps that have cross-schema references to custom operators or operator
classes (Tom)

• Allow pg_restore to continue properly after a COPY failure; formerly it tried to treat the remaining COPY
data as SQL commands (Stephen Frost)

• Fix pg_ctl unregister crash when the data directory is not specified (Magnus)

• Fix libpq PQprint HTML tags (Christoph Zwerschke)

• Fix ecpg crash on AMD64 and PPC (Neil)

• Allow SETOF and %TYPE to be used together in function result type declarations

• Recover properly if error occurs during argument passing in PL/python (Neil)

• Fix memory leak in plperl_return_next (Neil)

• Fix PL/perl’s handling of locales on Win32 to match the backend (Andrew)

• Various optimizer fixes (Tom)

• Fix crash when log_min_messages is set to DEBUG3 or above in postgresql.conf on Win32
(Bruce)

• Fix pgxs -L library path specification for Win32, Cygwin, OS X, AIX (Bruce)

2395

Appendix E. Release Notes

• Check that SID is enabled while checking for Win32 admin privileges (Magnus)

• Properly reject out-of-range date inputs (Kris Jurka)

• Portability fix for testing presence of finite and isinf during configure (Tom)

• Improve speed of COPY IN via libpq, by avoiding a kernel call per data line (Alon Goldshuv)

• Improve speed of /contrib/tsearch2 index creation (Tom)

E.129. Release 8.1.2

Release Date: 2006-01-09

This release contains a variety of fixes from 8.1.1. For information about new features in the 8.1 major
release, see Section E.131.

E.129.1. Migration to Version 8.1.2
A dump/restore is not required for those running 8.1.X. However, you might need to REINDEX indexes on
textual columns after updating, if you are affected by the locale or plperl issues described below.

E.129.2. Changes

• Fix Windows code so that postmaster will continue rather than exit if there is no more room in Shmem-
BackendArray (Magnus)

The previous behavior could lead to a denial-of-service situation if too many connection requests arrive
close together. This applies only to the Windows port.

• Fix bug introduced in 8.0 that could allow ReadBuffer to return an already-used page as new, potentially
causing loss of recently-committed data (Tom)

• Fix for protocol-level Describe messages issued outside a transaction or in a failed transaction (Tom)

• Fix character string comparison for locales that consider different character combinations as equal, such
as Hungarian (Tom)

This might require REINDEX to fix existing indexes on textual columns.

• Set locale environment variables during postmaster startup to ensure that plperl won’t change the locale
later

This fixes a problem that occurred if the postmaster was started with environment variables specifying
a different locale than what initdb had been told. Under these conditions, any use of plperl was likely
to lead to corrupt indexes. You might need REINDEX to fix existing indexes on textual columns if this
has happened to you.

2396

Appendix E. Release Notes

• Allow more flexible relocation of installation directories (Tom)

Previous releases supported relocation only if all installation directory paths were the same except for
the last component.

• Prevent crashes caused by the use of ISO-8859-5 and ISO-8859-9 encodings (Tatsuo)

• Fix longstanding bug in strpos() and regular expression handling in certain rarely used Asian multi-byte
character sets (Tatsuo)

• Fix bug where COPY CSV mode considered any \. to terminate the copy data

The new code requires \. to appear alone on a line, as per documentation.

• Make COPY CSV mode quote a literal data value of \. to ensure it cannot be interpreted as the end-
of-data marker (Bruce)

• Various fixes for functions returning RECORDs (Tom)

• Fix processing of postgresql.conf so a final line with no newline is processed properly (Tom)

• Fix bug in /contrib/pgcrypto gen_salt, which caused it not to use all available salt space for MD5
and XDES algorithms (Marko Kreen, Solar Designer)

Salts for Blowfish and standard DES are unaffected.

• Fix autovacuum crash when processing expression indexes

• Fix /contrib/dblink to throw an error, rather than crashing, when the number of columns specified
is different from what’s actually returned by the query (Joe)

E.130. Release 8.1.1

Release Date: 2005-12-12

This release contains a variety of fixes from 8.1.0. For information about new features in the 8.1 major
release, see Section E.131.

E.130.1. Migration to Version 8.1.1
A dump/restore is not required for those running 8.1.X.

E.130.2. Changes

• Fix incorrect optimizations of outer-join conditions (Tom)

• Fix problems with wrong reported column names in cases involving sub-selects flattened by the opti-
mizer (Tom)

• Fix update failures in scenarios involving CHECK constraints, toasted columns, and indexes (Tom)

2397

Appendix E. Release Notes

• Fix bgwriter problems after recovering from errors (Tom)

The background writer was found to leak buffer pins after write errors. While not fatal in itself, this
might lead to mysterious blockages of later VACUUM commands.

• Prevent failure if client sends Bind protocol message when current transaction is already aborted

• /contrib/tsearch2 and /contrib/ltree fixes (Teodor)

• Fix problems with translated error messages in languages that require word reordering, such as Turkish;
also problems with unexpected truncation of output strings and wrong display of the smallest possible
bigint value (Andrew, Tom)

These problems only appeared on platforms that were using our port/snprintf.c code, which in-
cludes BSD variants if --enable-nls was given, and perhaps others. In addition, a different form
of the translated-error-message problem could appear on Windows depending on which version of
libintl was used.

• Re-allow AM/PM, HH, HH12, and D format specifiers for to_char(time) and to_char(interval).
(to_char(interval) should probably use HH24.) (Bruce)

• AIX, HPUX, and MSVC compile fixes (Tom, Hiroshi Saito)

• Optimizer improvements (Tom)

• Retry file reads and writes after Windows NO_SYSTEM_RESOURCES error (Qingqing Zhou)

• Prevent autovacuum from crashing during ANALYZE of expression index (Alvaro)

• Fix problems with ON COMMIT DELETE ROWS temp tables

• Fix problems when a trigger alters the output of a SELECT DISTINCT query

• Add 8.1.0 release note item on how to migrate invalid UTF-8 byte sequences (Paul Lindner)

E.131. Release 8.1

Release Date: 2005-11-08

E.131.1. Overview
Major changes in this release:

Improve concurrent access to the shared buffer cache (Tom)

Access to the shared buffer cache was identified as a significant scalability problem, particularly on
multi-CPU systems. In this release, the way that locking is done in the buffer manager has been
overhauled to reduce lock contention and improve scalability. The buffer manager has also been
changed to use a “clock sweep” replacement policy.

2398

Appendix E. Release Notes

Allow index scans to use an intermediate in-memory bitmap (Tom)

In previous releases, only a single index could be used to do lookups on a table. With this feature,
if a query has WHERE tab.col1 = 4 and tab.col2 = 9, and there is no multicolumn index on
col1 and col2, but there is an index on col1 and another on col2, it is possible to search both
indexes and combine the results in memory, then do heap fetches for only the rows matching both
the col1 and col2 restrictions. This is very useful in environments that have a lot of unstructured
queries where it is impossible to create indexes that match all possible access conditions. Bitmap
scans are useful even with a single index, as they reduce the amount of random access needed; a
bitmap index scan is efficient for retrieving fairly large fractions of the complete table, whereas plain
index scans are not.

Add two-phase commit (Heikki Linnakangas, Alvaro, Tom)

Two-phase commit allows transactions to be "prepared" on several computers, and once all computers
have successfully prepared their transactions (none failed), all transactions can be committed. Even
if a machine crashes after a prepare, the prepared transaction can be committed after the machine
is restarted. New syntax includes PREPARE TRANSACTION and COMMIT/ROLLBACK PREPARED. A
new system view pg_prepared_xacts has also been added.

Create a new role system that replaces users and groups (Stephen Frost)

Roles are a combination of users and groups. Like users, they can have login capability, and like
groups, a role can have other roles as members. Roles basically remove the distinction between users
and groups. For example, a role can:

• Have login capability (optionally)

• Own objects

• Hold access permissions for database objects

• Inherit permissions from other roles it is a member of

Once a user logs into a role, she obtains capabilities of the login role plus any inherited roles, and
can use SET ROLE to switch to other roles she is a member of. This feature is a generalization of
the SQL standard’s concept of roles. This change also replaces pg_shadow and pg_group by new
role-capable catalogs pg_authid and pg_auth_members. The old tables are redefined as read-only
views on the new role tables.

Automatically use indexes for MIN() and MAX() (Tom)

In previous releases, the only way to use an index for MIN() or MAX() was to rewrite the query as
SELECT col FROM tab ORDER BY col LIMIT 1. Index usage now happens automatically.

Move /contrib/pg_autovacuum into the main server (Alvaro)

Integrating autovacuum into the server allows it to be automatically started and stopped in sync with
the database server, and allows autovacuum to be configured from postgresql.conf.

Add shared row level locks using SELECT ... FOR SHARE (Alvaro)

While PostgreSQL’s MVCC locking allows SELECT to never be blocked by writers and therefore
does not need shared row locks for typical operations, shared locks are useful for applications that
require shared row locking. In particular this reduces the locking requirements imposed by referential
integrity checks.

2399

Appendix E. Release Notes

Add dependencies on shared objects, specifically roles (Alvaro)

This extension of the dependency mechanism prevents roles from being dropped while there are still
database objects they own. Formerly it was possible to accidentally “orphan” objects by deleting
their owner. While this could be recovered from, it was messy and unpleasant.

Improve performance for partitioned tables (Simon)

The new constraint_exclusion configuration parameter avoids lookups on child tables where
constraints indicate that no matching rows exist in the child table.

This allows for a basic type of table partitioning. If child tables store separate key ranges and this is
enforced using appropriate CHECK constraints, the optimizer will skip child table accesses when the
constraint guarantees no matching rows exist in the child table.

E.131.2. Migration to Version 8.1
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

The 8.0 release announced that the to_char() function for intervals would be removed in 8.1. However,
since no better API has been suggested, to_char(interval) has been enhanced in 8.1 and will remain
in the server.

Observe the following incompatibilities:

• add_missing_from is now false by default (Neil)

By default, we now generate an error if a table is used in a query without a FROM reference. The old
behavior is still available, but the parameter must be set to ’true’ to obtain it.

It might be necessary to set add_missing_from to true in order to load an existing dump file, if the
dump contains any views or rules created using the implicit-FROM syntax. This should be a one-time
annoyance, because PostgreSQL 8.1 will convert such views and rules to standard explicit-FROM syntax.
Subsequent dumps will therefore not have the problem.

• Cause input of a zero-length string (”) for float4/float8/oid to throw an error, rather than treating
it as a zero (Neil)

This change is consistent with the current handling of zero-length strings for integers. The schedule for
this change was announced in 8.0.

• default_with_oids is now false by default (Neil)

With this option set to false, user-created tables no longer have an OID column unless WITH OIDS

is specified in CREATE TABLE. Though OIDs have existed in all releases of PostgreSQL, their use is
limited because they are only four bytes long and the counter is shared across all installed databases.
The preferred way of uniquely identifying rows is via sequences and the SERIAL type, which have been
supported since PostgreSQL 6.4.

• Add E” syntax so eventually ordinary strings can treat backslashes literally (Bruce)

Currently PostgreSQL processes a backslash in a string literal as introducing a special escape sequence,
e.g. \n or \010. While this allows easy entry of special values, it is nonstandard and makes porting of
applications from other databases more difficult. For this reason, the PostgreSQL project is planning to
remove the special meaning of backslashes in strings. For backward compatibility and for users who

2400

Appendix E. Release Notes

want special backslash processing, a new string syntax has been created. This new string syntax is
formed by writing an E immediately preceding the single quote that starts the string, e.g. E’hi\n’.
While this release does not change the handling of backslashes in strings, it does add new configuration
parameters to help users migrate applications for future releases:

• standard_conforming_strings — does this release treat backslashes literally in ordinary
strings?

• escape_string_warning — warn about backslashes in ordinary (non-E) strings

The standard_conforming_strings value is read-only. Applications can retrieve the value to know
how backslashes are processed. (Presence of the parameter can also be taken as an indication that E”
string syntax is supported.) In a future release, standard_conforming_strings will be true, mean-
ing backslashes will be treated literally in non-E strings. To prepare for this change, use E” strings in
places that need special backslash processing, and turn on escape_string_warning to find addi-
tional strings that need to be converted to use E”. Also, use two single-quotes (”) to embed a literal
single-quote in a string, rather than the PostgreSQL-supported syntax of backslash single-quote (\’).
The former is standards-conforming and does not require the use of the E” string syntax. You can also
use the $$ string syntax, which does not treat backslashes specially.

• Make REINDEX DATABASE reindex all indexes in the database (Tom)

Formerly, REINDEX DATABASE reindexed only system tables. This new behavior seems more intuitive.
A new command REINDEX SYSTEM provides the old functionality of reindexing just the system tables.

• Read-only large object descriptors now obey MVCC snapshot semantics

When a large object is opened with INV_READ (and not INV_WRITE), the data read from the descriptor
will now reflect a “snapshot” of the large object’s state at the time of the transaction snapshot in use by
the query that called lo_open(). To obtain the old behavior of always returning the latest committed
data, include INV_WRITE in the mode flags for lo_open().

• Add proper dependencies for arguments of sequence functions (Tom)

In previous releases, sequence names passed to nextval(), currval(), and setval() were stored
as simple text strings, meaning that renaming or dropping a sequence used in a DEFAULT clause made
the clause invalid. This release stores all newly-created sequence function arguments as internal OIDs,
allowing them to track sequence renaming, and adding dependency information that prevents improper
sequence removal. It also makes such DEFAULT clauses immune to schema renaming and search path
changes.

Some applications might rely on the old behavior of run-time lookup for sequence names. This can still
be done by explicitly casting the argument to text, for example nextval(’myseq’::text).

Pre-8.1 database dumps loaded into 8.1 will use the old text-based representation and therefore will
not have the features of OID-stored arguments. However, it is possible to update a database containing
text-based DEFAULT clauses. First, save this query into a file, such as fixseq.sql:

SELECT ’ALTER TABLE ’ ||
pg_catalog.quote_ident(n.nspname) || ’.’ ||
pg_catalog.quote_ident(c.relname) ||
’ ALTER COLUMN ’ || pg_catalog.quote_ident(a.attname) ||
’ SET DEFAULT ’ ||
regexp_replace(d.adsrc,

$$val\(\((’[^’]*’)::text\)::regclass$$,
$$val(\1$$,

2401

Appendix E. Release Notes

’g’) ||
’;’

FROM pg_namespace n, pg_class c, pg_attribute a, pg_attrdef d
WHERE n.oid = c.relnamespace AND

c.oid = a.attrelid AND
a.attrelid = d.adrelid AND
a.attnum = d.adnum AND
d.adsrc ~ $$val\(\(’[^’]*’::text\)::regclass$$;

Next, run the query against a database to find what adjustments are required, like this for database db1:

psql -t -f fixseq.sql db1

This will show the ALTER TABLE commands needed to convert the database to the newer OID-based
representation. If the commands look reasonable, run this to update the database:

psql -t -f fixseq.sql db1 | psql -e db1

This process must be repeated in each database to be updated.

• In psql, treat unquoted \{digit}+ sequences as octal (Bruce)

In previous releases, \{digit}+ sequences were treated as decimal, and only \0{digit}+ were
treated as octal. This change was made for consistency.

• Remove grammar productions for prefix and postfix % and ^ operators (Tom)

These have never been documented and complicated the use of the modulus operator (%) with negative
numbers.

• Make &< and &> for polygons consistent with the box "over" operators (Tom)

• CREATE LANGUAGE can ignore the provided arguments in favor of information from pg_pltemplate

(Tom)

A new system catalog pg_pltemplate has been defined to carry information about the preferred
definitions of procedural languages (such as whether they have validator functions). When an entry
exists in this catalog for the language being created, CREATE LANGUAGE will ignore all its parameters
except the language name and instead use the catalog information. This measure was taken because
of increasing problems with obsolete language definitions being loaded by old dump files. As of 8.1,
pg_dump will dump procedural language definitions as just CREATE LANGUAGE name, relying on a
template entry to exist at load time. We expect this will be a more future-proof representation.

• Make pg_cancel_backend(int) return a boolean rather than an integer (Neil)

• Some users are having problems loading UTF-8 data into 8.1.X. This is because previous versions
allowed invalid UTF-8 byte sequences to be entered into the database, and this release properly accepts
only valid UTF-8 sequences. One way to correct a dumpfile is to run the command iconv -c -f

UTF-8 -t UTF-8 -o cleanfile.sql dumpfile.sql. The -c option removes invalid character
sequences. A diff of the two files will show the sequences that are invalid. iconv reads the entire input
file into memory so it might be necessary to use split to break up the dump into multiple smaller files
for processing.

E.131.3. Additional Changes
Below you will find a detailed account of the additional changes between PostgreSQL 8.1 and the previous
major release.

2402

Appendix E. Release Notes

E.131.3.1. Performance Improvements

• Improve GiST and R-tree index performance (Neil)

• Improve the optimizer, including auto-resizing of hash joins (Tom)

• Overhaul internal API in several areas

• Change WAL record CRCs from 64-bit to 32-bit (Tom)

We determined that the extra cost of computing 64-bit CRCs was significant, and the gain in reliability
too marginal to justify it.

• Prevent writing large empty gaps in WAL pages (Tom)

• Improve spinlock behavior on SMP machines, particularly Opterons (Tom)

• Allow nonconsecutive index columns to be used in a multicolumn index (Tom)

For example, this allows an index on columns a,b,c to be used in a query with WHERE a = 4 and c

= 10.

• Skip WAL logging for CREATE TABLE AS / SELECT INTO (Simon)

Since a crash during CREATE TABLE AS would cause the table to be dropped during recovery, there
is no reason to WAL log as the table is loaded. (Logging still happens if WAL archiving is enabled,
however.)

• Allow concurrent GiST index access (Teodor, Oleg)

• Add configuration parameter full_page_writes to control writing full pages to WAL (Bruce)

To prevent partial disk writes from corrupting the database, PostgreSQL writes a complete copy of each
database disk page to WAL the first time it is modified after a checkpoint. This option turns off that
functionality for more speed. This is safe to use with battery-backed disk caches where partial page
writes cannot happen.

• Use O_DIRECT if available when using O_SYNC for wal_sync_method (Itagaki Takahiro)

O_DIRECT causes disk writes to bypass the kernel cache, and for WAL writes, this improves perfor-
mance.

• Improve COPY FROM performance (Alon Goldshuv)

This was accomplished by reading COPY input in larger chunks, rather than character by character.

• Improve the performance of COUNT(), SUM, AVG(), STDDEV(), and VARIANCE() (Neil, Tom)

E.131.3.2. Server Changes

• Prevent problems due to transaction ID (XID) wraparound (Tom)

The server will now warn when the transaction counter approaches the wraparound point. If the counter
becomes too close to wraparound, the server will stop accepting queries. This ensures that data is not
lost before needed vacuuming is performed.

• Fix problems with object IDs (OIDs) conflicting with existing system objects after the OID counter has
wrapped around (Tom)

2403

Appendix E. Release Notes

• Add warning about the need to increase max_fsm_relations and max_fsm_pages during VACUUM

(Ron Mayer)

• Add temp_buffers configuration parameter to allow users to determine the size of the local buffer
area for temporary table access (Tom)

• Add session start time and client IP address to pg_stat_activity (Magnus)

• Adjust pg_stat views for bitmap scans (Tom)

The meanings of some of the fields have changed slightly.

• Enhance pg_locks view (Tom)

• Log queries for client-side PREPARE and EXECUTE (Simon)

• Allow Kerberos name and user name case sensitivity to be specified in postgresql.conf (Magnus)

• Add configuration parameter krb_server_hostname so that the server host name can be specified as
part of service principal (Todd Kover)

If not set, any service principal matching an entry in the keytab can be used. This is new Kerberos
matching behavior in this release.

• Add log_line_prefix options for millisecond timestamps (%m) and remote host (%h) (Ed L.)

• Add WAL logging for GiST indexes (Teodor, Oleg)

GiST indexes are now safe for crash and point-in-time recovery.

• Remove old *.backup files when we do pg_stop_backup() (Bruce)

This prevents a large number of *.backup files from existing in pg_xlog/.

• Add configuration parameters to control TCP/IP keep-alive times for idle, interval, and count (Oliver
Jowett)

These values can be changed to allow more rapid detection of lost client connections.

• Add per-user and per-database connection limits (Petr Jelinek)

Using ALTER USER and ALTER DATABASE, limits can now be enforced on the maximum number of
sessions that can concurrently connect as a specific user or to a specific database. Setting the limit to
zero disables user or database connections.

• Allow more than two gigabytes of shared memory and per-backend work memory on 64-bit machines
(Koichi Suzuki)

• New system catalog pg_pltemplate allows overriding obsolete procedural-language definitions in
dump files (Tom)

E.131.3.3. Query Changes

• Add temporary views (Koju Iijima, Neil)

• Fix HAVING without any aggregate functions or GROUP BY so that the query returns a single group
(Tom)

Previously, such a case would treat the HAVING clause the same as a WHERE clause. This was not per
spec.

2404

Appendix E. Release Notes

• Add USING clause to allow additional tables to be specified to DELETE (Euler Taveira de Oliveira, Neil)

In prior releases, there was no clear method for specifying additional tables to be used for joins in a
DELETE statement. UPDATE already has a FROM clause for this purpose.

• Add support for \x hex escapes in backend and ecpg strings (Bruce)

This is just like the standard C \x escape syntax. Octal escapes were already supported.

• Add BETWEEN SYMMETRIC query syntax (Pavel Stehule)

This feature allows BETWEEN comparisons without requiring the first value to be less than the second.
For example, 2 BETWEEN [ASYMMETRIC] 3 AND 1 returns false, while 2 BETWEEN SYMMETRIC 3

AND 1 returns true. BETWEEN ASYMMETRIC was already supported.

• Add NOWAIT option to SELECT ... FOR UPDATE/SHARE (Hans-Juergen Schoenig)

While the statement_timeout configuration parameter allows a query taking more than a certain
amount of time to be canceled, the NOWAIT option allows a query to be canceled as soon as a SELECT
... FOR UPDATE/SHARE command cannot immediately acquire a row lock.

E.131.3.4. Object Manipulation Changes

• Track dependencies of shared objects (Alvaro)

PostgreSQL allows global tables (users, databases, tablespaces) to reference information in multiple
databases. This addition adds dependency information for global tables, so, for example, user ownership
can be tracked across databases, so a user who owns something in any database can no longer be
removed. Dependency tracking already existed for database-local objects.

• Allow limited ALTER OWNER commands to be performed by the object owner (Stephen Frost)

Prior releases allowed only superusers to change object owners. Now, ownership can be transferred if
the user executing the command owns the object and would be able to create it as the new owner (that
is, the user is a member of the new owning role and that role has the CREATE permission that would
be needed to create the object afresh).

• Add ALTER object SET SCHEMA capability for some object types (tables, functions, types) (Bernd
Helmle)

This allows objects to be moved to different schemas.

• Add ALTER TABLE ENABLE/DISABLE TRIGGER to disable triggers (Satoshi Nagayasu)

E.131.3.5. Utility Command Changes

• Allow TRUNCATE to truncate multiple tables in a single command (Alvaro)

Because of referential integrity checks, it is not allowed to truncate a table that is part of a referential
integrity constraint. Using this new functionality, TRUNCATE can be used to truncate such tables, if both
tables involved in a referential integrity constraint are truncated in a single TRUNCATE command.

• Properly process carriage returns and line feeds in COPY CSV mode (Andrew)

2405

Appendix E. Release Notes

In release 8.0, carriage returns and line feeds in CSV COPY TO were processed in an inconsistent man-
ner. (This was documented on the TODO list.)

• Add COPY WITH CSV HEADER to allow a header line as the first line in COPY (Andrew)

This allows handling of the common CSV usage of placing the column names on the first line of the
data file. For COPY TO, the first line contains the column names, and for COPY FROM, the first line is
ignored.

• On Windows, display better sub-second precision in EXPLAIN ANALYZE (Magnus)

• Add trigger duration display to EXPLAIN ANALYZE (Tom)

Prior releases included trigger execution time as part of the total execution time, but did not show it
separately. It is now possible to see how much time is spent in each trigger.

• Add support for \x hex escapes in COPY (Sergey Ten)

Previous releases only supported octal escapes.

• Make SHOW ALL include variable descriptions (Matthias Schmidt)

SHOW varname still only displays the variable’s value and does not include the description.

• Make initdb create a new standard database called postgres, and convert utilities to use postgres

rather than template1 for standard lookups (Dave)

In prior releases, template1 was used both as a default connection for utilities like createuser, and as a
template for new databases. This caused CREATE DATABASE to sometimes fail, because a new database
cannot be created if anyone else is in the template database. With this change, the default connection
database is now postgres, meaning it is much less likely someone will be using template1 during
CREATE DATABASE.

• Create new reindexdb command-line utility by moving /contrib/reindexdb into the server (Euler
Taveira de Oliveira)

E.131.3.6. Data Type and Function Changes

• Add MAX() and MIN() aggregates for array types (Koju Iijima)

• Fix to_date() and to_timestamp() to behave reasonably when CC and YY fields are both used
(Karel Zak)

If the format specification contains CC and a year specification is YYY or longer, ignore the CC. If the
year specification is YY or shorter, interpret CC as the previous century.

• Add md5(bytea) (Abhijit Menon-Sen)

md5(text) already existed.

• Add support for numeric ^ numeric based on power(numeric, numeric)

The function already existed, but there was no operator assigned to it.

• Fix NUMERIC modulus by properly truncating the quotient during computation (Bruce)

In previous releases, modulus for large values sometimes returned negative results due to rounding of
the quotient.

2406

Appendix E. Release Notes

• Add a function lastval() (Dennis Björklund)

lastval() is a simplified version of currval(). It automatically determines the proper sequence
name based on the most recent nextval() or setval() call performed by the current session.

• Add to_timestamp(DOUBLE PRECISION) (Michael Glaesemann)

Converts Unix seconds since 1970 to a TIMESTAMP WITH TIMEZONE.

• Add pg_postmaster_start_time() function (Euler Taveira de Oliveira, Matthias Schmidt)

• Allow the full use of time zone names in AT TIME ZONE, not just the short list previously available
(Magnus)

Previously, only a predefined list of time zone names were supported by AT TIME ZONE. Now any
supported time zone name can be used, e.g.:

SELECT CURRENT_TIMESTAMP AT TIME ZONE ’Europe/London’;

In the above query, the time zone used is adjusted based on the daylight saving time rules that were in
effect on the supplied date.

• Add GREATEST() and LEAST() variadic functions (Pavel Stehule)

These functions take a variable number of arguments and return the greatest or least value among the
arguments.

• Add pg_column_size() (Mark Kirkwood)

This returns storage size of a column, which might be compressed.

• Add regexp_replace() (Atsushi Ogawa)

This allows regular expression replacement, like sed. An optional flag argument allows selection of
global (replace all) and case-insensitive modes.

• Fix interval division and multiplication (Bruce)

Previous versions sometimes returned unjustified results, like ’4 months’::interval / 5 return-
ing ’1 mon -6 days’.

• Fix roundoff behavior in timestamp, time, and interval output (Tom)

This fixes some cases in which the seconds field would be shown as 60 instead of incrementing the
higher-order fields.

• Add a separate day field to type interval so a one day interval can be distinguished from a 24 hour
interval (Michael Glaesemann)

Days that contain a daylight saving time adjustment are not 24 hours long, but typically 23 or 25 hours.
This change creates a conceptual distinction between intervals of “so many days” and intervals of “so
many hours”. Adding 1 day to a timestamp now gives the same local time on the next day even if a
daylight saving time adjustment occurs between, whereas adding 24 hours will give a different local
time when this happens. For example, under US DST rules:

’2005-04-03 00:00:00-05’ + ’1 day’ = ’2005-04-04 00:00:00-04’
’2005-04-03 00:00:00-05’ + ’24 hours’ = ’2005-04-04 01:00:00-04’

• Add justify_days() and justify_hours() (Michael Glaesemann)

These functions, respectively, adjust days to an appropriate number of full months and days, and adjust
hours to an appropriate number of full days and hours.

2407

Appendix E. Release Notes

• Move /contrib/dbsize into the backend, and rename some of the functions (Dave Page, Andreas
Pflug)

• pg_tablespace_size()

• pg_database_size()

• pg_relation_size()

• pg_total_relation_size()

• pg_size_pretty()

pg_total_relation_size() includes indexes and TOAST tables.

• Add functions for read-only file access to the cluster directory (Dave Page, Andreas Pflug)

• pg_stat_file()

• pg_read_file()

• pg_ls_dir()

• Add pg_reload_conf() to force reloading of the configuration files (Dave Page, Andreas Pflug)

• Add pg_rotate_logfile() to force rotation of the server log file (Dave Page, Andreas Pflug)

• Change pg_stat_* views to include TOAST tables (Tom)

E.131.3.7. Encoding and Locale Changes

• Rename some encodings to be more consistent and to follow international standards (Bruce)

• UNICODE is now UTF8

• ALT is now WIN866

• WIN is now WIN1251

• TCVN is now WIN1258

The original names still work.

• Add support for WIN1252 encoding (Roland Volkmann)

• Add support for four-byte UTF8 characters (John Hansen)

Previously only one, two, and three-byte UTF8 characters were supported. This is particularly important
for support for some Chinese character sets.

• Allow direct conversion between EUC_JP and SJIS to improve performance (Atsushi Ogawa)

• Allow the UTF8 encoding to work on Windows (Magnus)

This is done by mapping UTF8 to the Windows-native UTF16 implementation.

2408

Appendix E. Release Notes

E.131.3.8. General Server-Side Language Changes

• Fix ALTER LANGUAGE RENAME (Sergey Yatskevich)

• Allow function characteristics, like strictness and volatility, to be modified via ALTER FUNCTION (Neil)

• Increase the maximum number of function arguments to 100 (Tom)

• Allow SQL and PL/pgSQL functions to use OUT and INOUT parameters (Tom)

OUT is an alternate way for a function to return values. Instead of using RETURN, values can be returned
by assigning to parameters declared as OUT or INOUT. This is notationally simpler in some cases, par-
ticularly so when multiple values need to be returned. While returning multiple values from a function
was possible in previous releases, this greatly simplifies the process. (The feature will be extended to
other server-side languages in future releases.)

• Move language handler functions into the pg_catalog schema

This makes it easier to drop the public schema if desired.

• Add SPI_getnspname() to SPI (Neil)

E.131.3.9. PL/pgSQL Server-Side Language Changes

• Overhaul the memory management of PL/pgSQL functions (Neil)

The parsetree of each function is now stored in a separate memory context. This allows this memory to
be easily reclaimed when it is no longer needed.

• Check function syntax at CREATE FUNCTION time, rather than at runtime (Neil)

Previously, most syntax errors were reported only when the function was executed.

• Allow OPEN to open non-SELECT queries like EXPLAIN and SHOW (Tom)

• No longer require functions to issue a RETURN statement (Tom)

This is a byproduct of the newly added OUT and INOUT functionality. RETURN can be omitted when it
is not needed to provide the function’s return value.

• Add support for an optional INTO clause to PL/pgSQL’s EXECUTE statement (Pavel Stehule, Neil)

• Make CREATE TABLE AS set ROW_COUNT (Tom)

• Define SQLSTATE and SQLERRM to return the SQLSTATE and error message of the current exception
(Pavel Stehule, Neil)

These variables are only defined inside exception blocks.

• Allow the parameters to the RAISE statement to be expressions (Pavel Stehule, Neil)

• Add a loop CONTINUE statement (Pavel Stehule, Neil)

• Allow block and loop labels (Pavel Stehule)

2409

Appendix E. Release Notes

E.131.3.10. PL/Perl Server-Side Language Changes

• Allow large result sets to be returned efficiently (Abhijit Menon-Sen)

This allows functions to use return_next() to avoid building the entire result set in memory.

• Allow one-row-at-a-time retrieval of query results (Abhijit Menon-Sen)

This allows functions to use spi_query() and spi_fetchrow() to avoid accumulating the entire
result set in memory.

• Force PL/Perl to handle strings as UTF8 if the server encoding is UTF8 (David Kamholz)

• Add a validator function for PL/Perl (Andrew)

This allows syntax errors to be reported at definition time, rather than execution time.

• Allow PL/Perl to return a Perl array when the function returns an array type (Andrew)

This basically maps PostgreSQL arrays to Perl arrays.

• Allow Perl nonfatal warnings to generate NOTICE messages (Andrew)

• Allow Perl’s strict mode to be enabled (Andrew)

E.131.3.11. psql Changes

• Add \set ON_ERROR_ROLLBACK to allow statements in a transaction to error without affecting the
rest of the transaction (Greg Sabino Mullane)

This is basically implemented by wrapping every statement in a sub-transaction.

• Add support for \x hex strings in psql variables (Bruce)

Octal escapes were already supported.

• Add support for troff -ms output format (Roger Leigh)

• Allow the history file location to be controlled by HISTFILE (Andreas Seltenreich)

This allows configuration of per-database history storage.

• Prevent \x (expanded mode) from affecting the output of \d tablename (Neil)

• Add -L option to psql to log sessions (Lorne Sunley)

This option was added because some operating systems do not have simple command-line activity
logging functionality.

• Make \d show the tablespaces of indexes (Qingqing Zhou)

• Allow psql help (\h) to make a best guess on the proper help information (Greg Sabino Mullane)

This allows the user to just add \h to the front of the syntax error query and get help on the supported
syntax. Previously any additional query text beyond the command name had to be removed to use \h.

• Add \pset numericlocale to allow numbers to be output in a locale-aware format (Eugen Nedelcu)

For example, using C locale 100000 would be output as 100,000.0 while a European locale might
output this value as 100.000,0.

2410

Appendix E. Release Notes

• Make startup banner show both server version number and psql’s version number, when they are differ-
ent (Bruce)

Also, a warning will be shown if the server and psql are from different major releases.

E.131.3.12. pg_dump Changes

• Add -n / --schema switch to pg_restore (Richard van den Berg)

This allows just the objects in a specified schema to be restored.

• Allow pg_dump to dump large objects even in text mode (Tom)

With this change, large objects are now always dumped; the former -b switch is a no-op.

• Allow pg_dump to dump a consistent snapshot of large objects (Tom)

• Dump comments for large objects (Tom)

• Add --encoding to pg_dump (Magnus Hagander)

This allows a database to be dumped in an encoding that is different from the server’s encoding. This
is valuable when transferring the dump to a machine with a different encoding.

• Rely on pg_pltemplate for procedural languages (Tom)

If the call handler for a procedural language is in the pg_catalog schema, pg_dump does not dump
the handler. Instead, it dumps the language using just CREATE LANGUAGE name, relying on the
pg_pltemplate catalog to provide the language’s creation parameters at load time.

E.131.3.13. libpq Changes

• Add a PGPASSFILE environment variable to specify the password file’s filename (Andrew)

• Add lo_create(), that is similar to lo_creat() but allows the OID of the large object to be specified
(Tom)

• Make libpq consistently return an error to the client application on malloc() failure (Neil)

E.131.3.14. Source Code Changes

• Fix pgxs to support building against a relocated installation

• Add spinlock support for the Itanium processor using Intel compiler (Vikram Kalsi)

• Add Kerberos 5 support for Windows (Magnus)

• Add Chinese FAQ (laser@pgsqldb.com)

• Rename Rendezvous to Bonjour to match OS/X feature renaming (Bruce)

• Add support for fsync_writethrough on Darwin (Chris Campbell)

• Streamline the passing of information within the server, the optimizer, and the lock system (Tom)

2411

Appendix E. Release Notes

• Allow pg_config to be compiled using MSVC (Andrew)

This is required to build DBD::Pg using MSVC.

• Remove support for Kerberos V4 (Magnus)

Kerberos 4 had security vulnerabilities and is no longer maintained.

• Code cleanups (Coverity static analysis performed by EnterpriseDB)

• Modify postgresql.conf to use documentation defaults on/off rather than true/false (Bruce)

• Enhance pg_config to be able to report more build-time values (Tom)

• Allow libpq to be built thread-safe on Windows (Dave Page)

• Allow IPv6 connections to be used on Windows (Andrew)

• Add Server Administration documentation about I/O subsystem reliability (Bruce)

• Move private declarations from gist.h to gist_private.h (Neil)

In previous releases, gist.h contained both the public GiST API (intended for use by authors of GiST
index implementations) as well as some private declarations used by the implementation of GiST itself.
The latter have been moved to a separate file, gist_private.h. Most GiST index implementations
should be unaffected.

• Overhaul GiST memory management (Neil)

GiST methods are now always invoked in a short-lived memory context. Therefore, memory allocated
via palloc() will be reclaimed automatically, so GiST index implementations do not need to manually
release allocated memory via pfree().

E.131.3.15. Contrib Changes

• Add /contrib/pg_buffercache contrib module (Mark Kirkwood)

This displays the contents of the buffer cache, for debugging and performance tuning purposes.

• Remove /contrib/array because it is obsolete (Tom)

• Clean up the /contrib/lo module (Tom)

• Move /contrib/findoidjoins to /src/tools (Tom)

• Remove the <<, >>, &<, and &> operators from /contrib/cube

These operators were not useful.

• Improve /contrib/btree_gist (Janko Richter)

• Improve /contrib/pgbench (Tomoaki Sato, Tatsuo)

There is now a facility for testing with SQL command scripts given by the user, instead of only a
hard-wired command sequence.

• Improve /contrib/pgcrypto (Marko Kreen)

• Implementation of OpenPGP symmetric-key and public-key encryption

Both RSA and Elgamal public-key algorithms are supported.

2412

Appendix E. Release Notes

• Stand alone build: include SHA256/384/512 hashes, Fortuna PRNG

• OpenSSL build: support 3DES, use internal AES with OpenSSL < 0.9.7

• Take build parameters (OpenSSL, zlib) from configure result

There is no need to edit the Makefile anymore.

• Remove support for libmhash and libmcrypt

E.132. Release 8.0.26

Release Date: 2010-10-04

This release contains a variety of fixes from 8.0.25. For information about new features in the 8.0 major
release, see Section E.158.

This is expected to be the last PostgreSQL release in the 8.0.X series. Users are encouraged to update to
a newer release branch soon.

E.132.1. Migration to Version 8.0.26
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.22, see Section E.136.

E.132.2. Changes

• Use a separate interpreter for each calling SQL userid in PL/Perl and PL/Tcl (Tom Lane)

This change prevents security problems that can be caused by subverting Perl or Tcl code that will be
executed later in the same session under another SQL user identity (for example, within a SECURITY

DEFINER function). Most scripting languages offer numerous ways that that might be done, such as
redefining standard functions or operators called by the target function. Without this change, any SQL
user with Perl or Tcl language usage rights can do essentially anything with the SQL privileges of the
target function’s owner.

The cost of this change is that intentional communication among Perl and Tcl functions becomes more
difficult. To provide an escape hatch, PL/PerlU and PL/TclU functions continue to use only one inter-
preter per session. This is not considered a security issue since all such functions execute at the trust
level of a database superuser already.

It is likely that third-party procedural languages that claim to offer trusted execution have similar se-
curity issues. We advise contacting the authors of any PL you are depending on for security-critical
purposes.

2413

Appendix E. Release Notes

Our thanks to Tim Bunce for pointing out this issue (CVE-2010-3433).

• Prevent possible crashes in pg_get_expr() by disallowing it from being called with an argument that
is not one of the system catalog columns it’s intended to be used with (Heikki Linnakangas, Tom Lane)

• Fix “cannot handle unplanned sub-select” error (Tom Lane)

This occurred when a sub-select contains a join alias reference that expands into an expression contain-
ing another sub-select.

• Defend against functions returning setof record where not all the returned rows are actually of the same
rowtype (Tom Lane)

• Take care to fsync the contents of lockfiles (both postmaster.pid and the socket lockfile) while
writing them (Tom Lane)

This omission could result in corrupted lockfile contents if the machine crashes shortly after postmaster
start. That could in turn prevent subsequent attempts to start the postmaster from succeeding, until the
lockfile is manually removed.

• Avoid recursion while assigning XIDs to heavily-nested subtransactions (Andres Freund, Robert Haas)

The original coding could result in a crash if there was limited stack space.

• Fix log_line_prefix’s %i escape, which could produce junk early in backend startup (Tom Lane)

• Fix possible data corruption in ALTER TABLE ... SET TABLESPACE when archiving is enabled (Jeff
Davis)

• Allow CREATE DATABASE and ALTER DATABASE ... SET TABLESPACE to be interrupted by
query-cancel (Guillaume Lelarge)

• In PL/Python, defend against null pointer results from PyCObject_AsVoidPtr and
PyCObject_FromVoidPtr (Peter Eisentraut)

• Improve contrib/dblink’s handling of tables containing dropped columns (Tom Lane)

• Fix connection leak after “duplicate connection name” errors in contrib/dblink (Itagaki Takahiro)

• Fix contrib/dblink to handle connection names longer than 62 bytes correctly (Itagaki Takahiro)

• Update build infrastructure and documentation to reflect the source code repository’s move from CVS
to Git (Magnus Hagander and others)

• Update time zone data files to tzdata release 2010l for DST law changes in Egypt and Palestine; also
historical corrections for Finland.

This change also adds new names for two Micronesian timezones: Pacific/Chuuk is now preferred over
Pacific/Truk (and the preferred abbreviation is CHUT not TRUT) and Pacific/Pohnpei is preferred over
Pacific/Ponape.

E.133. Release 8.0.25

Release Date: 2010-05-17

2414

Appendix E. Release Notes

This release contains a variety of fixes from 8.0.24. For information about new features in the 8.0 major
release, see Section E.158.

The PostgreSQL community will stop releasing updates for the 8.0.X release series in July 2010. Users
are encouraged to update to a newer release branch soon.

E.133.1. Migration to Version 8.0.25
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.22, see Section E.136.

E.133.2. Changes

• Enforce restrictions in plperl using an opmask applied to the whole interpreter, instead of using
Safe.pm (Tim Bunce, Andrew Dunstan)

Recent developments have convinced us that Safe.pm is too insecure to rely on for making plperl

trustable. This change removes use of Safe.pm altogether, in favor of using a separate interpreter with
an opcode mask that is always applied. Pleasant side effects of the change include that it is now possible
to use Perl’s strict pragma in a natural way in plperl, and that Perl’s $a and $b variables work as
expected in sort routines, and that function compilation is significantly faster. (CVE-2010-1169)

• Prevent PL/Tcl from executing untrustworthy code from pltcl_modules (Tom)

PL/Tcl’s feature for autoloading Tcl code from a database table could be exploited for trojan-horse
attacks, because there was no restriction on who could create or insert into that table. This change
disables the feature unless pltcl_modules is owned by a superuser. (However, the permissions on the
table are not checked, so installations that really need a less-than-secure modules table can still grant
suitable privileges to trusted non-superusers.) Also, prevent loading code into the unrestricted “normal”
Tcl interpreter unless we are really going to execute a pltclu function. (CVE-2010-1170)

• Do not allow an unprivileged user to reset superuser-only parameter settings (Alvaro)

Previously, if an unprivileged user ran ALTER USER ... RESET ALL for himself, or ALTER

DATABASE ... RESET ALL for a database he owns, this would remove all special parameter settings
for the user or database, even ones that are only supposed to be changeable by a superuser. Now, the
ALTER will only remove the parameters that the user has permission to change.

• Avoid possible crash during backend shutdown if shutdown occurs when a CONTEXT addition would be
made to log entries (Tom)

In some cases the context-printing function would fail because the current transaction had already been
rolled back when it came time to print a log message.

• Update pl/perl’s ppport.h for modern Perl versions (Andrew)

• Fix assorted memory leaks in pl/python (Andreas Freund, Tom)

• Prevent infinite recursion in psql when expanding a variable that refers to itself (Tom)

• Ensure that contrib/pgstattuple functions respond to cancel interrupts promptly (Tatsuhito Kasa-
hara)

2415

Appendix E. Release Notes

• Make server startup deal properly with the case that shmget() returns EINVAL for an existing shared
memory segment (Tom)

This behavior has been observed on BSD-derived kernels including OS X. It resulted in an entirely-
misleading startup failure complaining that the shared memory request size was too large.

• Update time zone data files to tzdata release 2010j for DST law changes in Argentina, Australian
Antarctic, Bangladesh, Mexico, Morocco, Pakistan, Palestine, Russia, Syria, Tunisia; also historical
corrections for Taiwan.

E.134. Release 8.0.24

Release Date: 2010-03-15

This release contains a variety of fixes from 8.0.23. For information about new features in the 8.0 major
release, see Section E.158.

The PostgreSQL community will stop releasing updates for the 8.0.X release series in July 2010. Users
are encouraged to update to a newer release branch soon.

E.134.1. Migration to Version 8.0.24
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.22, see Section E.136.

E.134.2. Changes

• Add new configuration parameter ssl_renegotiation_limit to control how often we do session
key renegotiation for an SSL connection (Magnus)

This can be set to zero to disable renegotiation completely, which may be required if a broken SSL
library is used. In particular, some vendors are shipping stopgap patches for CVE-2009-3555 that cause
renegotiation attempts to fail.

• Fix possible crashes when trying to recover from a failure in subtransaction start (Tom)

• Fix server memory leak associated with use of savepoints and a client encoding different from server’s
encoding (Tom)

• Make substring() for bit types treat any negative length as meaning “all the rest of the string”
(Tom)

The previous coding treated only -1 that way, and would produce an invalid result value for other
negative values, possibly leading to a crash (CVE-2010-0442).

2416

Appendix E. Release Notes

• Fix integer-to-bit-string conversions to handle the first fractional byte correctly when the output bit
width is wider than the given integer by something other than a multiple of 8 bits (Tom)

• Fix some cases of pathologically slow regular expression matching (Tom)

• Fix the STOP WAL LOCATION entry in backup history files to report the next WAL segment’s name
when the end location is exactly at a segment boundary (Itagaki Takahiro)

• When reading pg_hba.conf and related files, do not treat @something as a file inclusion request if
the @ appears inside quote marks; also, never treat @ by itself as a file inclusion request (Tom)

This prevents erratic behavior if a role or database name starts with @. If you need to include a file
whose path name contains spaces, you can still do so, but you must write @"/path to/file" rather
than putting the quotes around the whole construct.

• Prevent infinite loop on some platforms if a directory is named as an inclusion target in pg_hba.conf

and related files (Tom)

• Fix plpgsql failure in one case where a composite column is set to NULL (Tom)

• Add volatile markings in PL/Python to avoid possible compiler-specific misbehavior (Zdenek Ko-
tala)

• Ensure PL/Tcl initializes the Tcl interpreter fully (Tom)

The only known symptom of this oversight is that the Tcl clock command misbehaves if using Tcl 8.5
or later.

• Prevent crash in contrib/dblink when too many key columns are specified to a
dblink_build_sql_* function (Rushabh Lathia, Joe Conway)

• Fix assorted crashes in contrib/xml2 caused by sloppy memory management (Tom)

• Update time zone data files to tzdata release 2010e for DST law changes in Bangladesh, Chile, Fiji,
Mexico, Paraguay, Samoa.

E.135. Release 8.0.23

Release Date: 2009-12-14

This release contains a variety of fixes from 8.0.22. For information about new features in the 8.0 major
release, see Section E.158.

E.135.1. Migration to Version 8.0.23
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.22, see Section E.136.

2417

Appendix E. Release Notes

E.135.2. Changes

• Protect against indirect security threats caused by index functions changing session-local state (Gurjeet
Singh, Tom)

This change prevents allegedly-immutable index functions from possibly subverting a superuser’s ses-
sion (CVE-2009-4136).

• Reject SSL certificates containing an embedded null byte in the common name (CN) field (Magnus)

This prevents unintended matching of a certificate to a server or client name during SSL validation
(CVE-2009-4034).

• Fix possible crash during backend-startup-time cache initialization (Tom)

• Prevent signals from interrupting VACUUM at unsafe times (Alvaro)

This fix prevents a PANIC if a VACUUM FULL is canceled after it’s already committed its tuple move-
ments, as well as transient errors if a plain VACUUM is interrupted after having truncated the table.

• Fix possible crash due to integer overflow in hash table size calculation (Tom)

This could occur with extremely large planner estimates for the size of a hashjoin’s result.

• Fix very rare crash in inet/cidr comparisons (Chris Mikkelson)

• Fix premature drop of temporary files used for a cursor that is accessed within a subtransaction (Heikki)

• Fix PAM password processing to be more robust (Tom)

The previous code is known to fail with the combination of the Linux pam_krb5 PAM module with
Microsoft Active Directory as the domain controller. It might have problems elsewhere too, since it was
making unjustified assumptions about what arguments the PAM stack would pass to it.

• Fix rare crash in exception processing in PL/Python (Peter)

• Ensure psql’s flex module is compiled with the correct system header definitions (Tom)

This fixes build failures on platforms where --enable-largefile causes incompatible changes in
the generated code.

• Make the postmaster ignore any application_name parameter in connection request packets, to im-
prove compatibility with future libpq versions (Tom)

• Update time zone data files to tzdata release 2009s for DST law changes in Antarctica, Argentina,
Bangladesh, Fiji, Novokuznetsk, Pakistan, Palestine, Samoa, Syria; also historical corrections for Hong
Kong.

E.136. Release 8.0.22

Release Date: 2009-09-09

2418

Appendix E. Release Notes

This release contains a variety of fixes from 8.0.21. For information about new features in the 8.0 major
release, see Section E.158.

E.136.1. Migration to Version 8.0.22
A dump/restore is not required for those running 8.0.X. However, if you have any hash indexes on
interval columns, you must REINDEX them after updating to 8.0.22. Also, if you are upgrading from a
version earlier than 8.0.6, see Section E.152.

E.136.2. Changes

• Disallow RESET ROLE and RESET SESSION AUTHORIZATION inside security-definer functions
(Tom, Heikki)

This covers a case that was missed in the previous patch that disallowed SET ROLE and SET SESSION

AUTHORIZATION inside security-definer functions. (See CVE-2007-6600)

• Fix handling of sub-SELECTs appearing in the arguments of an outer-level aggregate function (Tom)

• Fix hash calculation for data type interval (Tom)

This corrects wrong results for hash joins on interval values. It also changes the contents of hash indexes
on interval columns. If you have any such indexes, you must REINDEX them after updating.

• Treat to_char(..., ’TH’) as an uppercase ordinal suffix with ’HH’/’HH12’ (Heikki)

It was previously handled as ’th’ (lowercase).

• Fix overflow for INTERVAL ’x ms’ when x is more than 2 million and integer datetimes are in use
(Alex Hunsaker)

• Fix calculation of distance between a point and a line segment (Tom)

This led to incorrect results from a number of geometric operators.

• Fix money data type to work in locales where currency amounts have no fractional digits, e.g. Japan
(Itagaki Takahiro)

• Properly round datetime input like 00:12:57.9999999999999999999999999999 (Tom)

• Fix poor choice of page split point in GiST R-tree operator classes (Teodor)

• Fix portability issues in plperl initialization (Andrew Dunstan)

• Fix pg_ctl to not go into an infinite loop if postgresql.conf is empty (Jeff Davis)

• Fix contrib/xml2’s xslt_process() to properly handle the maximum number of parameters
(twenty) (Tom)

• Improve robustness of libpq’s code to recover from errors during COPY FROM STDIN (Tom)

• Avoid including conflicting readline and editline header files when both libraries are installed (Zdenek
Kotala)

2419

Appendix E. Release Notes

• Update time zone data files to tzdata release 2009l for DST law changes in Bangladesh, Egypt, Jordan,
Pakistan, Argentina/San_Luis, Cuba, Jordan (historical correction only), Mauritius, Morocco, Palestine,
Syria, Tunisia.

E.137. Release 8.0.21

Release Date: 2009-03-16

This release contains a variety of fixes from 8.0.20. For information about new features in the 8.0 major
release, see Section E.158.

E.137.1. Migration to Version 8.0.21
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.137.2. Changes

• Prevent error recursion crashes when encoding conversion fails (Tom)

This change extends fixes made in the last two minor releases for related failure scenarios. The previous
fixes were narrowly tailored for the original problem reports, but we have now recognized that any error
thrown by an encoding conversion function could potentially lead to infinite recursion while trying to
report the error. The solution therefore is to disable translation and encoding conversion and report
the plain-ASCII form of any error message, if we find we have gotten into a recursive error reporting
situation. (CVE-2009-0922)

• Disallow CREATE CONVERSION with the wrong encodings for the specified conversion function
(Heikki)

This prevents one possible scenario for encoding conversion failure. The previous change is a backstop
to guard against other kinds of failures in the same area.

• Fix core dump when to_char() is given format codes that are inappropriate for the type of the data
argument (Tom)

• Add MUST (Mauritius Island Summer Time) to the default list of known timezone abbreviations (Xavier
Bugaud)

2420

Appendix E. Release Notes

E.138. Release 8.0.20

Release Date: 2009-02-02

This release contains a variety of fixes from 8.0.19. For information about new features in the 8.0 major
release, see Section E.158.

E.138.1. Migration to Version 8.0.20
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.138.2. Changes

• Improve handling of URLs in headline() function (Teodor)

• Improve handling of overlength headlines in headline() function (Teodor)

• Prevent possible Assert failure or misconversion if an encoding conversion is created with the wrong
conversion function for the specified pair of encodings (Tom, Heikki)

• Avoid unnecessary locking of small tables in VACUUM (Heikki)

• Fix uninitialized variables in contrib/tsearch2’s get_covers() function (Teodor)

• Make all documentation reference pgsql-bugs and/or pgsql-hackers as appropriate, instead of the
now-decommissioned pgsql-ports and pgsql-patches mailing lists (Tom)

• Update time zone data files to tzdata release 2009a (for Kathmandu and historical DST corrections in
Switzerland, Cuba)

E.139. Release 8.0.19

Release Date: 2008-11-03

This release contains a variety of fixes from 8.0.18. For information about new features in the 8.0 major
release, see Section E.158.

E.139.1. Migration to Version 8.0.19
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

2421

Appendix E. Release Notes

E.139.2. Changes

• Fix backend crash when the client encoding cannot represent a localized error message (Tom)

We have addressed similar issues before, but it would still fail if the “character has no equivalent”
message itself couldn’t be converted. The fix is to disable localization and send the plain ASCII error
message when we detect such a situation.

• Fix possible crash when deeply nested functions are invoked from a trigger (Tom)

• Ensure an error is reported when a newly-defined PL/pgSQL trigger function is invoked as a normal
function (Tom)

• Fix incorrect tsearch2 headline generation when single query item matches first word of text (Sushant
Sinha)

• Fix improper display of fractional seconds in interval values when using a non-ISO datestyle in an
--enable-integer-datetimes build (Ron Mayer)

• Ensure SPI_getvalue and SPI_getbinval behave correctly when the passed tuple and tuple de-
scriptor have different numbers of columns (Tom)

This situation is normal when a table has had columns added or removed, but these two functions didn’t
handle it properly. The only likely consequence is an incorrect error indication.

• Fix ecpg’s parsing of CREATE USER (Michael)

• Fix recent breakage of pg_ctl restart (Tom)

• Update time zone data files to tzdata release 2008i (for DST law changes in Argentina, Brazil, Mauri-
tius, Syria)

E.140. Release 8.0.18

Release Date: 2008-09-22

This release contains a variety of fixes from 8.0.17. For information about new features in the 8.0 major
release, see Section E.158.

E.140.1. Migration to Version 8.0.18
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

2422

Appendix E. Release Notes

E.140.2. Changes

• Widen local lock counters from 32 to 64 bits (Tom)

This responds to reports that the counters could overflow in sufficiently long transactions, leading to
unexpected “lock is already held” errors.

• Add checks in executor startup to ensure that the tuples produced by an INSERT or UPDATE will match
the target table’s current rowtype (Tom)

ALTER COLUMN TYPE, followed by re-use of a previously cached plan, could produce this type of
situation. The check protects against data corruption and/or crashes that could ensue.

• Fix datetime input functions to correctly detect integer overflow when running on a 64-bit platform
(Tom)

• Improve performance of writing very long log messages to syslog (Tom)

• Fix bug in backwards scanning of a cursor on a SELECT DISTINCT ON query (Tom)

• Fix planner to estimate that GROUP BY expressions yielding boolean results always result in two groups,
regardless of the expressions’ contents (Tom)

This is very substantially more accurate than the regular GROUP BY estimate for certain boolean tests
like col IS NULL.

• Fix PL/Tcl to behave correctly with Tcl 8.5, and to be more careful about the encoding of data sent to
or from Tcl (Tom)

• Fix PL/Python to work with Python 2.5

This is a back-port of fixes made during the 8.2 development cycle.

• Improve pg_dump and pg_restore’s error reporting after failure to send a SQL command (Tom)

• Fix pg_ctl to properly preserve postmaster command-line arguments across a restart (Bruce)

• Update time zone data files to tzdata release 2008f (for DST law changes in Argentina, Bahamas, Brazil,
Mauritius, Morocco, Pakistan, Palestine, and Paraguay)

E.141. Release 8.0.17

Release Date: 2008-06-12

This release contains one serious bug fix over 8.0.16. For information about new features in the 8.0 major
release, see Section E.158.

E.141.1. Migration to Version 8.0.17
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

2423

Appendix E. Release Notes

E.141.2. Changes

• Make pg_get_ruledef() parenthesize negative constants (Tom)

Before this fix, a negative constant in a view or rule might be dumped as, say, -42::integer, which is
subtly incorrect: it should be (-42)::integer due to operator precedence rules. Usually this would
make little difference, but it could interact with another recent patch to cause PostgreSQL to reject what
had been a valid SELECT DISTINCT view query. Since this could result in pg_dump output failing to
reload, it is being treated as a high-priority fix. The only released versions in which dump output is
actually incorrect are 8.3.1 and 8.2.7.

E.142. Release 8.0.16

Release Date: never released

This release contains a variety of fixes from 8.0.15. For information about new features in the 8.0 major
release, see Section E.158.

E.142.1. Migration to Version 8.0.16
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.142.2. Changes

• Fix ALTER TABLE ADD COLUMN ... PRIMARY KEY so that the new column is correctly checked to
see if it’s been initialized to all non-nulls (Brendan Jurd)

Previous versions neglected to check this requirement at all.

• Fix possible CREATE TABLE failure when inheriting the “same” constraint from multiple parent rela-
tions that inherited that constraint from a common ancestor (Tom)

• Fix conversions between ISO-8859-5 and other encodings to handle Cyrillic “Yo” characters (e and E

with two dots) (Sergey Burladyan)

• Fix a few datatype input functions that were allowing unused bytes in their results to contain uninitial-
ized, unpredictable values (Tom)

This could lead to failures in which two apparently identical literal values were not seen as equal,
resulting in the parser complaining about unmatched ORDER BY and DISTINCT expressions.

• Fix a corner case in regular-expression substring matching (substring(string from pattern))
(Tom)

2424

Appendix E. Release Notes

The problem occurs when there is a match to the pattern overall but the user has specified a paren-
thesized subexpression and that subexpression hasn’t got a match. An example is substring(’foo’
from ’foo(bar)?’). This should return NULL, since (bar) isn’t matched, but it was mistakenly
returning the whole-pattern match instead (ie, foo).

• Update time zone data files to tzdata release 2008c (for DST law changes in Morocco, Iraq, Choibalsan,
Pakistan, Syria, Cuba, Argentina/San_Luis, and Chile)

• Fix incorrect result from ecpg’s PGTYPEStimestamp_sub() function (Michael)

• Fix core dump in contrib/xml2’s xpath_table() function when the input query returns a NULL
value (Tom)

• Fix contrib/xml2’s makefile to not override CFLAGS (Tom)

• Fix DatumGetBool macro to not fail with gcc 4.3 (Tom)

This problem affects “old style” (V0) C functions that return boolean. The fix is already in 8.3, but the
need to back-patch it was not realized at the time.

• Fix longstanding LISTEN/NOTIFY race condition (Tom)

In rare cases a session that had just executed a LISTEN might not get a notification, even though one
would be expected because the concurrent transaction executing NOTIFY was observed to commit later.

A side effect of the fix is that a transaction that has executed a not-yet-committed LISTEN command will
not see any row in pg_listener for the LISTEN, should it choose to look; formerly it would have.
This behavior was never documented one way or the other, but it is possible that some applications
depend on the old behavior.

• Fix rare crash when an error occurs during a query using a hash index (Heikki)

• Fix input of datetime values for February 29 in years BC (Tom)

The former coding was mistaken about which years were leap years.

• Fix “unrecognized node type” error in some variants of ALTER OWNER (Tom)

• Fix pg_ctl to correctly extract the postmaster’s port number from command-line options (Itagaki
Takahiro, Tom)

Previously, pg_ctl start -w could try to contact the postmaster on the wrong port, leading to bogus
reports of startup failure.

• Use -fwrapv to defend against possible misoptimization in recent gcc versions (Tom)

This is known to be necessary when building PostgreSQL with gcc 4.3 or later.

• Fix display of constant expressions in ORDER BY and GROUP BY (Tom)

An explicitly casted constant would be shown incorrectly. This could for example lead to corruption of
a view definition during dump and reload.

• Fix libpq to handle NOTICE messages correctly during COPY OUT (Tom)

This failure has only been observed to occur when a user-defined datatype’s output routine issues a
NOTICE, but there is no guarantee it couldn’t happen due to other causes.

2425

Appendix E. Release Notes

E.143. Release 8.0.15

Release Date: 2008-01-07

This release contains a variety of fixes from 8.0.14, including fixes for significant security issues. For
information about new features in the 8.0 major release, see Section E.158.

This is the last 8.0.X release for which the PostgreSQL community will produce binary packages for
Windows. Windows users are encouraged to move to 8.2.X or later, since there are Windows-specific
fixes in 8.2.X that are impractical to back-port. 8.0.X will continue to be supported on other platforms.

E.143.1. Migration to Version 8.0.15
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.143.2. Changes

• Prevent functions in indexes from executing with the privileges of the user running VACUUM, ANALYZE,
etc (Tom)

Functions used in index expressions and partial-index predicates are evaluated whenever a new table
entry is made. It has long been understood that this poses a risk of trojan-horse code execution if one
modifies a table owned by an untrustworthy user. (Note that triggers, defaults, check constraints, etc.
pose the same type of risk.) But functions in indexes pose extra danger because they will be executed by
routine maintenance operations such as VACUUM FULL, which are commonly performed automatically
under a superuser account. For example, a nefarious user can execute code with superuser privileges by
setting up a trojan-horse index definition and waiting for the next routine vacuum. The fix arranges for
standard maintenance operations (including VACUUM, ANALYZE, REINDEX, and CLUSTER) to execute
as the table owner rather than the calling user, using the same privilege-switching mechanism already
used for SECURITY DEFINER functions. To prevent bypassing this security measure, execution of SET
SESSION AUTHORIZATION and SET ROLE is now forbidden within a SECURITY DEFINER context.
(CVE-2007-6600)

• Repair assorted bugs in the regular-expression package (Tom, Will Drewry)

Suitably crafted regular-expression patterns could cause crashes, infinite or near-infinite looping, and/or
massive memory consumption, all of which pose denial-of-service hazards for applications that ac-
cept regex search patterns from untrustworthy sources. (CVE-2007-4769, CVE-2007-4772, CVE-2007-
6067)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

The fix that appeared for this in 8.0.14 was incomplete, as it plugged the hole for only some dblink

functions. (CVE-2007-6601, CVE-2007-3278)

• Update time zone data files to tzdata release 2007k (in particular, recent Argentina changes) (Tom)

2426

Appendix E. Release Notes

• Fix planner failure in some cases of WHERE false AND var IN (SELECT ...) (Tom)

• Preserve the tablespace of indexes that are rebuilt by ALTER TABLE ... ALTER COLUMN TYPE

(Tom)

• Make archive recovery always start a new WAL timeline, rather than only when a recovery stop time
was used (Simon)

This avoids a corner-case risk of trying to overwrite an existing archived copy of the last WAL segment,
and seems simpler and cleaner than the original definition.

• Make VACUUM not use all of maintenance_work_mem when the table is too small for it to be useful
(Alvaro)

• Fix potential crash in translate() when using a multibyte database encoding (Tom)

• Fix PL/Perl to cope when platform’s Perl defines type bool as int rather than char (Tom)

While this could theoretically happen anywhere, no standard build of Perl did things this way ... until
Mac OS X 10.5.

• Fix PL/Python to not crash on long exception messages (Alvaro)

• Fix pg_dump to correctly handle inheritance child tables that have default expressions different from
their parent’s (Tom)

• ecpg parser fixes (Michael)

• Make contrib/tablefunc’s crosstab() handle NULL rowid as a category in its own right, rather
than crashing (Joe)

• Fix tsvector and tsquery output routines to escape backslashes correctly (Teodor, Bruce)

• Fix crash of to_tsvector() on huge input strings (Teodor)

• Require a specific version of Autoconf to be used when re-generating the configure script (Peter)

This affects developers and packagers only. The change was made to prevent accidental use of untested
combinations of Autoconf and PostgreSQL versions. You can remove the version check if you really
want to use a different Autoconf version, but it’s your responsibility whether the result works or not.

E.144. Release 8.0.14

Release Date: 2007-09-17

This release contains a variety of fixes from 8.0.13. For information about new features in the 8.0 major
release, see Section E.158.

E.144.1. Migration to Version 8.0.14
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

2427

Appendix E. Release Notes

E.144.2. Changes

• Prevent index corruption when a transaction inserts rows and then aborts close to the end of a concurrent
VACUUM on the same table (Tom)

• Make CREATE DOMAIN ... DEFAULT NULL work properly (Tom)

• Fix excessive logging of SSL error messages (Tom)

• Fix logging so that log messages are never interleaved when using the syslogger process (Andrew)

• Fix crash when log_min_error_statement logging runs out of memory (Tom)

• Fix incorrect handling of some foreign-key corner cases (Tom)

• Prevent CLUSTER from failing due to attempting to process temporary tables of other sessions (Alvaro)

• Update the time zone database rules, particularly New Zealand’s upcoming changes (Tom)

• Windows socket improvements (Magnus)

• Suppress timezone name (%Z) in log timestamps on Windows because of possible encoding mismatches
(Tom)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

E.145. Release 8.0.13

Release Date: 2007-04-23

This release contains a variety of fixes from 8.0.12, including a security fix. For information about new
features in the 8.0 major release, see Section E.158.

E.145.1. Migration to Version 8.0.13
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.145.2. Changes

• Support explicit placement of the temporary-table schema within search_path, and disable searching
it for functions and operators (Tom)

This is needed to allow a security-definer function to set a truly secure value of search_path. Without
it, an unprivileged SQL user can use temporary objects to execute code with the privileges of the
security-definer function (CVE-2007-2138). See CREATE FUNCTION for more information.

2428

Appendix E. Release Notes

• /contrib/tsearch2 crash fixes (Teodor)

• Fix potential-data-corruption bug in how VACUUM FULL handles UPDATE chains (Tom, Pavan Deolasee)

• Fix PANIC during enlargement of a hash index (bug introduced in 8.0.10) (Tom)

• Fix POSIX-style timezone specs to follow new USA DST rules (Tom)

E.146. Release 8.0.12

Release Date: 2007-02-07

This release contains one fix from 8.0.11. For information about new features in the 8.0 major release, see
Section E.158.

E.146.1. Migration to Version 8.0.12
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.146.2. Changes

• Remove overly-restrictive check for type length in constraints and functional indexes(Tom)

E.147. Release 8.0.11

Release Date: 2007-02-05

This release contains a variety of fixes from 8.0.10, including a security fix. For information about new
features in the 8.0 major release, see Section E.158.

E.147.1. Migration to Version 8.0.11
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

2429

Appendix E. Release Notes

E.147.2. Changes

• Remove security vulnerabilities that allowed connected users to read backend memory (Tom)

The vulnerabilities involve suppressing the normal check that a SQL function returns the data type it’s
declared to, and changing the data type of a table column (CVE-2007-0555, CVE-2007-0556). These
errors can easily be exploited to cause a backend crash, and in principle might be used to read database
content that the user should not be able to access.

• Fix rare bug wherein btree index page splits could fail due to choosing an infeasible split point (Heikki
Linnakangas)

• Fix for rare Assert() crash triggered by UNION (Tom)

• Tighten security of multi-byte character processing for UTF8 sequences over three bytes long (Tom)

E.148. Release 8.0.10

Release Date: 2007-01-08

This release contains a variety of fixes from 8.0.9. For information about new features in the 8.0 major
release, see Section E.158.

E.148.1. Migration to Version 8.0.10
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.148.2. Changes

• Improve handling of getaddrinfo() on AIX (Tom)

This fixes a problem with starting the statistics collector, among other things.

• Fix “failed to re-find parent key” errors in VACUUM (Tom)

• Fix race condition for truncation of a large relation across a gigabyte boundary by VACUUM (Tom)

• Fix bugs affecting multi-gigabyte hash indexes (Tom)

• Fix possible deadlock in Windows signal handling (Teodor)

• Fix error when constructing an ARRAY[] made up of multiple empty elements (Tom)

• Fix ecpg memory leak during connection (Michael)

• to_number() and to_char(numeric) are now STABLE, not IMMUTABLE, for new initdb installs
(Tom)

2430

Appendix E. Release Notes

This is because lc_numeric can potentially change the output of these functions.

• Improve index usage of regular expressions that use parentheses (Tom)

This improves psql \d performance also.

• Update timezone database

This affects Australian and Canadian daylight-savings rules in particular.

E.149. Release 8.0.9

Release Date: 2006-10-16

This release contains a variety of fixes from 8.0.8. For information about new features in the 8.0 major
release, see Section E.158.

E.149.1. Migration to Version 8.0.9
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.149.2. Changes

• Fix crash when referencing NEW row values in rule WHERE expressions (Tom)

• Fix core dump when an untyped literal is taken as ANYARRAY

• Fix mishandling of AFTER triggers when query contains a SQL function returning multiple rows (Tom)

• Fix ALTER TABLE ... TYPE to recheck NOT NULL for USING clause (Tom)

• Fix string_to_array() to handle overlapping matches for the separator string

For example, string_to_array(’123xx456xxx789’, ’xx’).

• Fix corner cases in pattern matching for psql’s \d commands

• Fix index-corrupting bugs in /contrib/ltree (Teodor)

• Numerous robustness fixes in ecpg (Joachim Wieland)

• Fix backslash escaping in /contrib/dbmirror

• Fix instability of statistics collection on Win32 (Tom, Andrew)

• Fixes for AIX and Intel compilers (Tom)

2431

Appendix E. Release Notes

E.150. Release 8.0.8

Release Date: 2006-05-23

This release contains a variety of fixes from 8.0.7, including patches for extremely serious security issues.
For information about new features in the 8.0 major release, see Section E.158.

E.150.1. Migration to Version 8.0.8
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

Full security against the SQL-injection attacks described in CVE-2006-2313 and CVE-2006-2314 might
require changes in application code. If you have applications that embed untrustworthy strings into SQL
commands, you should examine them as soon as possible to ensure that they are using recommended
escaping techniques. In most cases, applications should be using subroutines provided by libraries or
drivers (such as libpq’s PQescapeStringConn()) to perform string escaping, rather than relying on ad
hoc code to do it.

E.150.2. Changes

• Change the server to reject invalidly-encoded multibyte characters in all cases (Tatsuo, Tom)

While PostgreSQL has been moving in this direction for some time, the checks are now applied uni-
formly to all encodings and all textual input, and are now always errors not merely warnings. This
change defends against SQL-injection attacks of the type described in CVE-2006-2313.

• Reject unsafe uses of \’ in string literals

As a server-side defense against SQL-injection attacks of the type described in CVE-2006-2314, the
server now only accepts ” and not \’ as a representation of ASCII single quote in SQL string literals.
By default, \’ is rejected only when client_encoding is set to a client-only encoding (SJIS, BIG5,
GBK, GB18030, or UHC), which is the scenario in which SQL injection is possible. A new configu-
ration parameter backslash_quote is available to adjust this behavior when needed. Note that full
security against CVE-2006-2314 might require client-side changes; the purpose of backslash_quote
is in part to make it obvious that insecure clients are insecure.

• Modify libpq’s string-escaping routines to be aware of encoding considerations and
standard_conforming_strings

This fixes libpq-using applications for the security issues described in CVE-2006-2313 and CVE-
2006-2314, and also future-proofs them against the planned changeover to SQL-standard string lit-
eral syntax. Applications that use multiple PostgreSQL connections concurrently should migrate to
PQescapeStringConn() and PQescapeByteaConn() to ensure that escaping is done correctly for
the settings in use in each database connection. Applications that do string escaping “by hand” should
be modified to rely on library routines instead.

• Fix some incorrect encoding conversion functions

2432

Appendix E. Release Notes

win1251_to_iso, alt_to_iso, euc_tw_to_big5, euc_tw_to_mic, mic_to_euc_tw were all
broken to varying extents.

• Clean up stray remaining uses of \’ in strings (Bruce, Jan)

• Fix bug that sometimes caused OR’d index scans to miss rows they should have returned

• Fix WAL replay for case where a btree index has been truncated

• Fix SIMILAR TO for patterns involving | (Tom)

• Fix SELECT INTO and CREATE TABLE AS to create tables in the default tablespace, not the base di-
rectory (Kris Jurka)

• Fix server to use custom DH SSL parameters correctly (Michael Fuhr)

• Fix for Bonjour on Intel Macs (Ashley Clark)

• Fix various minor memory leaks

• Fix problem with password prompting on some Win32 systems (Robert Kinberg)

E.151. Release 8.0.7

Release Date: 2006-02-14

This release contains a variety of fixes from 8.0.6. For information about new features in the 8.0 major
release, see Section E.158.

E.151.1. Migration to Version 8.0.7
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.6, see Section E.152.

E.151.2. Changes

• Fix potential crash in SET SESSION AUTHORIZATION (CVE-2006-0553)

An unprivileged user could crash the server process, resulting in momentary denial of service to other
users, if the server has been compiled with Asserts enabled (which is not the default). Thanks to Akio
Ishida for reporting this problem.

• Fix bug with row visibility logic in self-inserted rows (Tom)

Under rare circumstances a row inserted by the current command could be seen as already valid, when
it should not be. Repairs bug created in 8.0.4, 7.4.9, and 7.3.11 releases.

• Fix race condition that could lead to “file already exists” errors during pg_clog and pg_subtrans file
creation (Tom)

2433

Appendix E. Release Notes

• Fix cases that could lead to crashes if a cache-invalidation message arrives at just the wrong time (Tom)

• Properly check DOMAIN constraints for UNKNOWN parameters in prepared statements (Neil)

• Ensure ALTER COLUMN TYPE will process FOREIGN KEY, UNIQUE, and PRIMARY KEY constraints in
the proper order (Nakano Yoshihisa)

• Fixes to allow restoring dumps that have cross-schema references to custom operators or operator
classes (Tom)

• Allow pg_restore to continue properly after a COPY failure; formerly it tried to treat the remaining COPY
data as SQL commands (Stephen Frost)

• Fix pg_ctl unregister crash when the data directory is not specified (Magnus)

• Fix ecpg crash on AMD64 and PPC (Neil)

• Recover properly if error occurs during argument passing in PL/python (Neil)

• Fix PL/perl’s handling of locales on Win32 to match the backend (Andrew)

• Fix crash when log_min_messages is set to DEBUG3 or above in postgresql.conf on Win32
(Bruce)

• Fix pgxs -L library path specification for Win32, Cygwin, OS X, AIX (Bruce)

• Check that SID is enabled while checking for Win32 admin privileges (Magnus)

• Properly reject out-of-range date inputs (Kris Jurka)

• Portability fix for testing presence of finite and isinf during configure (Tom)

E.152. Release 8.0.6

Release Date: 2006-01-09

This release contains a variety of fixes from 8.0.5. For information about new features in the 8.0 major
release, see Section E.158.

E.152.1. Migration to Version 8.0.6
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.3, see Section E.155. Also, you might need to REINDEX indexes on textual columns after
updating, if you are affected by the locale or plperl issues described below.

E.152.2. Changes

• Fix Windows code so that postmaster will continue rather than exit if there is no more room in Shmem-
BackendArray (Magnus)

2434

Appendix E. Release Notes

The previous behavior could lead to a denial-of-service situation if too many connection requests arrive
close together. This applies only to the Windows port.

• Fix bug introduced in 8.0 that could allow ReadBuffer to return an already-used page as new, potentially
causing loss of recently-committed data (Tom)

• Fix for protocol-level Describe messages issued outside a transaction or in a failed transaction (Tom)

• Fix character string comparison for locales that consider different character combinations as equal, such
as Hungarian (Tom)

This might require REINDEX to fix existing indexes on textual columns.

• Set locale environment variables during postmaster startup to ensure that plperl won’t change the locale
later

This fixes a problem that occurred if the postmaster was started with environment variables specifying
a different locale than what initdb had been told. Under these conditions, any use of plperl was likely
to lead to corrupt indexes. You might need REINDEX to fix existing indexes on textual columns if this
has happened to you.

• Allow more flexible relocation of installation directories (Tom)

Previous releases supported relocation only if all installation directory paths were the same except for
the last component.

• Fix longstanding bug in strpos() and regular expression handling in certain rarely used Asian multi-byte
character sets (Tatsuo)

• Various fixes for functions returning RECORDs (Tom)

• Fix bug in /contrib/pgcrypto gen_salt, which caused it not to use all available salt space for MD5
and XDES algorithms (Marko Kreen, Solar Designer)

Salts for Blowfish and standard DES are unaffected.

• Fix /contrib/dblink to throw an error, rather than crashing, when the number of columns specified
is different from what’s actually returned by the query (Joe)

E.153. Release 8.0.5

Release Date: 2005-12-12

This release contains a variety of fixes from 8.0.4. For information about new features in the 8.0 major
release, see Section E.158.

E.153.1. Migration to Version 8.0.5
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.3, see Section E.155.

2435

Appendix E. Release Notes

E.153.2. Changes

• Fix race condition in transaction log management

There was a narrow window in which an I/O operation could be initiated for the wrong page, leading
to an Assert failure or data corruption.

• Fix bgwriter problems after recovering from errors (Tom)

The background writer was found to leak buffer pins after write errors. While not fatal in itself, this
might lead to mysterious blockages of later VACUUM commands.

• Prevent failure if client sends Bind protocol message when current transaction is already aborted

• /contrib/ltree fixes (Teodor)

• AIX and HPUX compile fixes (Tom)

• Retry file reads and writes after Windows NO_SYSTEM_RESOURCES error (Qingqing Zhou)

• Fix intermittent failure when log_line_prefix includes %i

• Fix psql performance issue with long scripts on Windows (Merlin Moncure)

• Fix missing updates of pg_group flat file

• Fix longstanding planning error for outer joins

This bug sometimes caused a bogus error “RIGHT JOIN is only supported with merge-joinable join
conditions”.

• Postpone timezone initialization until after postmaster.pid is created

This avoids confusing startup scripts that expect the pid file to appear quickly.

• Prevent core dump in pg_autovacuum when a table has been dropped

• Fix problems with whole-row references (foo.*) to subquery results

E.154. Release 8.0.4

Release Date: 2005-10-04

This release contains a variety of fixes from 8.0.3. For information about new features in the 8.0 major
release, see Section E.158.

E.154.1. Migration to Version 8.0.4
A dump/restore is not required for those running 8.0.X. However, if you are upgrading from a version
earlier than 8.0.3, see Section E.155.

2436

Appendix E. Release Notes

E.154.2. Changes

• Fix error that allowed VACUUM to remove ctid chains too soon, and add more checking in code that
follows ctid links

This fixes a long-standing problem that could cause crashes in very rare circumstances.

• Fix CHAR() to properly pad spaces to the specified length when using a multiple-byte character set
(Yoshiyuki Asaba)

In prior releases, the padding of CHAR() was incorrect because it only padded to the specified number
of bytes without considering how many characters were stored.

• Force a checkpoint before committing CREATE DATABASE

This should fix recent reports of “index is not a btree” failures when a crash occurs shortly after CREATE
DATABASE.

• Fix the sense of the test for read-only transaction in COPY

The code formerly prohibited COPY TO, where it should prohibit COPY FROM.

• Handle consecutive embedded newlines in COPY CSV-mode input

• Fix date_trunc(week) for dates near year end

• Fix planning problem with outer-join ON clauses that reference only the inner-side relation

• Further fixes for x FULL JOIN y ON true corner cases

• Fix overenthusiastic optimization of x IN (SELECT DISTINCT ...) and related cases

• Fix mis-planning of queries with small LIMIT values due to poorly thought out “fuzzy” cost comparison

• Make array_in and array_recv more paranoid about validating their OID parameter

• Fix missing rows in queries like UPDATE a=... WHERE a... with GiST index on column a

• Improve robustness of datetime parsing

• Improve checking for partially-written WAL pages

• Improve robustness of signal handling when SSL is enabled

• Improve MIPS and M68K spinlock code

• Don’t try to open more than max_files_per_process files during postmaster startup

• Various memory leakage fixes

• Various portability improvements

• Update timezone data files

• Improve handling of DLL load failures on Windows

• Improve random-number generation on Windows

• Make psql -f filename return a nonzero exit code when opening the file fails

• Change pg_dump to handle inherited check constraints more reliably

• Fix password prompting in pg_restore on Windows

• Fix PL/pgSQL to handle var := var correctly when the variable is of pass-by-reference type

2437

Appendix E. Release Notes

• Fix PL/Perl %_SHARED so it’s actually shared

• Fix contrib/pg_autovacuum to allow sleep intervals over 2000 sec

• Update contrib/tsearch2 to use current Snowball code

E.155. Release 8.0.3

Release Date: 2005-05-09

This release contains a variety of fixes from 8.0.2, including several security-related issues. For informa-
tion about new features in the 8.0 major release, see Section E.158.

E.155.1. Migration to Version 8.0.3
A dump/restore is not required for those running 8.0.X. However, it is one possible way of handling two
significant security problems that have been found in the initial contents of 8.0.X system catalogs. A
dump/initdb/reload sequence using 8.0.3’s initdb will automatically correct these problems.

The larger security problem is that the built-in character set encoding conversion functions can be invoked
from SQL commands by unprivileged users, but the functions were not designed for such use and are not
secure against malicious choices of arguments. The fix involves changing the declared parameter list of
these functions so that they can no longer be invoked from SQL commands. (This does not affect their
normal use by the encoding conversion machinery.)

The lesser problem is that the contrib/tsearch2 module creates several functions that are improperly
declared to return internal when they do not accept internal arguments. This breaks type safety for
all functions using internal arguments.

It is strongly recommended that all installations repair these errors, either by initdb or by following the
manual repair procedure given below. The errors at least allow unprivileged database users to crash their
server process, and might allow unprivileged users to gain the privileges of a database superuser.

If you wish not to do an initdb, perform the same manual repair procedures shown in the 7.4.8 release
notes.

E.155.2. Changes

• Change encoding function signature to prevent misuse

• Change contrib/tsearch2 to avoid unsafe use of INTERNAL function results

• Guard against incorrect second parameter to record_out

• Repair ancient race condition that allowed a transaction to be seen as committed for some purposes (eg
SELECT FOR UPDATE) slightly sooner than for other purposes

2438

Appendix E. Release Notes

This is an extremely serious bug since it could lead to apparent data inconsistencies being briefly visible
to applications.

• Repair race condition between relation extension and VACUUM

This could theoretically have caused loss of a page’s worth of freshly-inserted data, although the sce-
nario seems of very low probability. There are no known cases of it having caused more than an Assert
failure.

• Fix comparisons of TIME WITH TIME ZONE values

The comparison code was wrong in the case where the --enable-integer-datetimes configura-
tion switch had been used. NOTE: if you have an index on a TIME WITH TIME ZONE column, it will
need to be REINDEXed after installing this update, because the fix corrects the sort order of column
values.

• Fix EXTRACT(EPOCH) for TIME WITH TIME ZONE values

• Fix mis-display of negative fractional seconds in INTERVAL values

This error only occurred when the --enable-integer-datetimes configuration switch had been
used.

• Fix pg_dump to dump trigger names containing % correctly (Neil)

• Still more 64-bit fixes for contrib/intagg

• Prevent incorrect optimization of functions returning RECORD

• Prevent crash on COALESCE(NULL,NULL)

• Fix Borland makefile for libpq

• Fix contrib/btree_gist for timetz type (Teodor)

• Make pg_ctl check the PID found in postmaster.pid to see if it is still a live process

• Fix pg_dump/pg_restore problems caused by addition of dump timestamps

• Fix interaction between materializing holdable cursors and firing deferred triggers during transaction
commit

• Fix memory leak in SQL functions returning pass-by-reference data types

E.156. Release 8.0.2

Release Date: 2005-04-07

This release contains a variety of fixes from 8.0.1. For information about new features in the 8.0 major
release, see Section E.158.

2439

Appendix E. Release Notes

E.156.1. Migration to Version 8.0.2
A dump/restore is not required for those running 8.0.*. This release updates the major version number of
the PostgreSQL libraries, so it might be necessary to re-link some user applications if they cannot find the
properly-numbered shared library.

E.156.2. Changes

• Increment the major version number of all interface libraries (Bruce)

This should have been done in 8.0.0. It is required so 7.4.X versions of PostgreSQL client applications,
like psql, can be used on the same machine as 8.0.X applications. This might require re-linking user
applications that use these libraries.

• Add Windows-only wal_sync_method setting of fsync_writethrough (Magnus, Bruce)

This setting causes PostgreSQL to write through any disk-drive write cache when writing to WAL. This
behavior was formerly called fsync, but was renamed because it acts quite differently from fsync on
other platforms.

• Enable the wal_sync_method setting of open_datasync on Windows, and make it the default for
that platform (Magnus, Bruce)

Because the default is no longer fsync_writethrough, data loss is possible during a power failure
if the disk drive has write caching enabled. To turn off the write cache on Windows, from the Device
Manager, choose the drive properties, then Policies.

• New cache management algorithm 2Q replaces ARC (Tom)

This was done to avoid a pending US patent on ARC. The 2Q code might be a few percentage points
slower than ARC for some work loads. A better cache management algorithm will appear in 8.1.

• Planner adjustments to improve behavior on freshly-created tables (Tom)

• Allow plpgsql to assign to an element of an array that is initially NULL (Tom)

Formerly the array would remain NULL, but now it becomes a single-element array. The main SQL
engine was changed to handle UPDATE of a null array value this way in 8.0, but the similar case in
plpgsql was overlooked.

• Convert \r\n and \r to \n in plpython function bodies (Michael Fuhr)

This prevents syntax errors when plpython code is written on a Windows or Mac client.

• Allow SPI cursors to handle utility commands that return rows, such as EXPLAIN (Tom)

• Fix CLUSTER failure after ALTER TABLE SET WITHOUT OIDS (Tom)

• Reduce memory usage of ALTER TABLE ADD COLUMN (Neil)

• Fix ALTER LANGUAGE RENAME (Tom)

• Document the Windows-only register and unregister options of pg_ctl (Magnus)

• Ensure operations done during backend shutdown are counted by statistics collector

This is expected to resolve reports of pg_autovacuum not vacuuming the system catalogs often enough
— it was not being told about catalog deletions caused by temporary table removal during backend exit.

2440

Appendix E. Release Notes

• Change the Windows default for configuration parameter log_destination to eventlog (Magnus)

By default, a server running on Windows will now send log output to the Windows event logger rather
than standard error.

• Make Kerberos authentication work on Windows (Magnus)

• Allow ALTER DATABASE RENAME by superusers who aren’t flagged as having CREATEDB privilege
(Tom)

• Modify WAL log entries for CREATE and DROP DATABASE to not specify absolute paths (Tom)

This allows point-in-time recovery on a different machine with possibly different database location.
Note that CREATE TABLESPACE still poses a hazard in such situations.

• Fix crash from a backend exiting with an open transaction that created a table and opened a cursor on
it (Tom)

• Fix array_map() so it can call PL functions (Tom)

• Several contrib/tsearch2 and contrib/btree_gist fixes (Teodor)

• Fix crash of some contrib/pgcrypto functions on some platforms (Marko Kreen)

• Fix contrib/intagg for 64-bit platforms (Tom)

• Fix ecpg bugs in parsing of CREATE statement (Michael)

• Work around gcc bug on powerpc and amd64 causing problems in ecpg (Christof Petig)

• Do not use locale-aware versions of upper(), lower(), and initcap() when the locale is C (Bruce)

This allows these functions to work on platforms that generate errors for non-7-bit data when the locale
is C.

• Fix quote_ident() to quote names that match keywords (Tom)

• Fix to_date() to behave reasonably when CC and YY fields are both used (Karel)

• Prevent to_char(interval) from failing when given a zero-month interval (Tom)

• Fix wrong week returned by date_trunc(’week’) (Bruce)

date_trunc(’week’) returned the wrong year for the first few days of January in some years.

• Use the correct default mask length for class D addresses in INET data types (Tom)

E.157. Release 8.0.1

Release Date: 2005-01-31

This release contains a variety of fixes from 8.0.0, including several security-related issues. For informa-
tion about new features in the 8.0 major release, see Section E.158.

2441

Appendix E. Release Notes

E.157.1. Migration to Version 8.0.1
A dump/restore is not required for those running 8.0.0.

E.157.2. Changes

• Disallow LOAD to non-superusers

On platforms that will automatically execute initialization functions of a shared library (this includes at
least Windows and ELF-based Unixen), LOAD can be used to make the server execute arbitrary code.
Thanks to NGS Software for reporting this.

• Check that creator of an aggregate function has the right to execute the specified transition functions

This oversight made it possible to bypass denial of EXECUTE permission on a function.

• Fix security and 64-bit issues in contrib/intagg

• Add needed STRICT marking to some contrib functions (Kris Jurka)

• Avoid buffer overrun when plpgsql cursor declaration has too many parameters (Neil)

• Make ALTER TABLE ADD COLUMN enforce domain constraints in all cases

• Fix planning error for FULL and RIGHT outer joins

The result of the join was mistakenly supposed to be sorted the same as the left input. This could not
only deliver mis-sorted output to the user, but in case of nested merge joins could give outright wrong
answers.

• Improve planning of grouped aggregate queries

• ROLLBACK TO savepoint closes cursors created since the savepoint

• Fix inadequate backend stack size on Windows

• Avoid SHGetSpecialFolderPath() on Windows (Magnus)

• Fix some problems in running pg_autovacuum as a Windows service (Dave Page)

• Multiple minor bug fixes in pg_dump/pg_restore

• Fix ecpg segfault with named structs used in typedefs (Michael)

E.158. Release 8.0

Release Date: 2005-01-19

E.158.1. Overview
Major changes in this release:

2442

Appendix E. Release Notes

Microsoft Windows Native Server

This is the first PostgreSQL release to run natively on Microsoft Windows® as a server. It can run
as a Windows service. This release supports NT-based Windows releases like Windows 2000 SP4,
Windows XP, and Windows 2003. Older releases like Windows 95, Windows 98, and Windows
ME are not supported because these operating systems do not have the infrastructure to support
PostgreSQL. A separate installer project has been created to ease installation on Windows — see
http://www.postgresql.org/ftp/win32/.

Although tested throughout our release cycle, the Windows port does not have the benefit of years
of use in production environments that PostgreSQL has on Unix platforms. Therefore it should be
treated with the same level of caution as you would a new product.

Previous releases required the Unix emulation toolkit Cygwin in order to run the server on Windows
operating systems. PostgreSQL has supported native clients on Windows for many years.

Savepoints

Savepoints allow specific parts of a transaction to be aborted without affecting the remainder of the
transaction. Prior releases had no such capability; there was no way to recover from a statement
failure within a transaction except by aborting the whole transaction. This feature is valuable for
application writers who require error recovery within a complex transaction.

Point-In-Time Recovery

In previous releases there was no way to recover from disk drive failure except to restore from a
previous backup or use a standby replication server. Point-in-time recovery allows continuous backup
of the server. You can recover either to the point of failure or to some transaction in the past.

Tablespaces

Tablespaces allow administrators to select different file systems for storage of individual tables, in-
dexes, and databases. This improves performance and control over disk space usage. Prior releases
used initlocation and manual symlink management for such tasks.

Improved Buffer Management, CHECKPOINT, VACUUM

This release has a more intelligent buffer replacement strategy, which will make better use of avail-
able shared buffers and improve performance. The performance impact of vacuum and checkpoints
is also lessened.

Change Column Types

A column’s data type can now be changed with ALTER TABLE.

New Perl Server-Side Language

A new version of the plperl server-side language now supports a persistent shared storage area,
triggers, returning records and arrays of records, and SPI calls to access the database.

Comma-separated-value (CSV) support in COPY

COPY can now read and write comma-separated-value files. It has the flexibility to interpret nonstan-
dard quoting and separation characters too.

2443

Appendix E. Release Notes

E.158.2. Migration to Version 8.0
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

Observe the following incompatibilities:

• In READ COMMITTED serialization mode, volatile functions now see the results of concurrent trans-
actions committed up to the beginning of each statement within the function, rather than up to the
beginning of the interactive command that called the function.

• Functions declared STABLE or IMMUTABLE always use the snapshot of the calling query, and therefore
do not see the effects of actions taken after the calling query starts, whether in their own transaction
or other transactions. Such a function must be read-only, too, meaning that it cannot use any SQL
commands other than SELECT.

• Nondeferred AFTER triggers are now fired immediately after completion of the triggering query, rather
than upon finishing the current interactive command. This makes a difference when the triggering query
occurred within a function: the trigger is invoked before the function proceeds to its next operation.

• Server configuration parameters virtual_host and tcpip_socket have been replaced with a more
general parameter listen_addresses. Also, the server now listens on localhost by default, which
eliminates the need for the -i postmaster switch in many scenarios.

• Server configuration parameters SortMem and VacuumMem have been renamed to work_mem and
maintenance_work_mem to better reflect their use. The original names are still supported in SET and
SHOW.

• Server configuration parameters log_pid, log_timestamp, and log_source_port have been re-
placed with a more general parameter log_line_prefix.

• Server configuration parameter syslog has been replaced with a more logical log_destination
variable to control the log output destination.

• Server configuration parameter log_statement has been changed so it can selectively log just
database modification or data definition statements. Server configuration parameter log_duration
now prints only when log_statement prints the query.

• Server configuration parameter max_expr_depth parameter has been replaced with
max_stack_depth which measures the physical stack size rather than the expression nesting depth.
This helps prevent session termination due to stack overflow caused by recursive functions.

• The length() function no longer counts trailing spaces in CHAR(n) values.

• Casting an integer to BIT(N) selects the rightmost N bits of the integer, not the leftmost N bits as
before.

• Updating an element or slice of a NULL array value now produces a nonnull array result, namely an
array containing just the assigned-to positions.

• Syntax checking of array input values has been tightened up considerably. Junk that was previously
allowed in odd places with odd results now causes an error. Empty-string element values must now be
written as "", rather than writing nothing. Also changed behavior with respect to whitespace surround-
ing array elements: trailing whitespace is now ignored, for symmetry with leading whitespace (which
has always been ignored).

• Overflow in integer arithmetic operations is now detected and reported as an error.

2444

Appendix E. Release Notes

• The arithmetic operators associated with the single-byte "char" data type have been removed.

• The extract() function (also called date_part) now returns the proper year for BC dates. It pre-
viously returned one less than the correct year. The function now also returns the proper values for
millennium and century.

• CIDR values now must have their nonmasked bits be zero. For example, we no longer allow
204.248.199.1/31 as a CIDR value. Such values should never have been accepted by PostgreSQL
and will now be rejected.

• EXECUTE now returns a completion tag that matches the executed statement.

• psql’s \copy command now reads or writes to the query’s stdin/stdout, rather than psql’s
stdin/stdout. The previous behavior can be accessed via new pstdin/pstdout parameters.

• The JDBC client interface has been removed from the core distribution, and is now hosted at
http://jdbc.postgresql.org.

• The Tcl client interface has also been removed. There are several Tcl interfaces now hosted at
http://gborg.postgresql.org.

• The server now uses its own time zone database, rather than the one supplied by the operating system.
This will provide consistent behavior across all platforms. In most cases, there should be little noticeable
difference in time zone behavior, except that the time zone names used by SET/SHOW TimeZone might
be different from what your platform provides.

• Configure’s threading option no longer requires users to run tests or edit configuration files; threading
options are now detected automatically.

• Now that tablespaces have been implemented, initlocation has been removed.

• The API for user-defined GiST indexes has been changed. The Union and PickSplit methods are now
passed a pointer to a special GistEntryVector structure, rather than a bytea.

E.158.3. Deprecated Features
Some aspects of PostgreSQL’s behavior have been determined to be suboptimal. For the sake of backward
compatibility these have not been removed in 8.0, but they are considered deprecated and will be removed
in the next major release.

• The 8.1 release will remove the to_char() function for intervals.

• The server now warns of empty strings passed to oid/float4/float8 data types, but continues to
interpret them as zeroes as before. In the next major release, empty strings will be considered invalid
input for these data types.

• By default, tables in PostgreSQL 8.0 and earlier are created with OIDs. In the next release, this will
not be the case: to create a table that contains OIDs, the WITH OIDS clause must be specified or the
default_with_oids configuration parameter must be set. Users are encouraged to explicitly specify
WITH OIDS if their tables require OIDs for compatibility with future releases of PostgreSQL.

2445

Appendix E. Release Notes

E.158.4. Changes
Below you will find a detailed account of the changes between release 8.0 and the previous major release.

E.158.4.1. Performance Improvements

• Support cross-data-type index usage (Tom)

Before this change, many queries would not use an index if the data types did not match exactly. This
improvement makes index usage more intuitive and consistent.

• New buffer replacement strategy that improves caching (Jan)

Prior releases used a least-recently-used (LRU) cache to keep recently referenced pages in memory. The
LRU algorithm did not consider the number of times a specific cache entry was accessed, so large table
scans could force out useful cache pages. The new cache algorithm uses four separate lists to track most
recently used and most frequently used cache pages and dynamically optimize their replacement based
on the work load. This should lead to much more efficient use of the shared buffer cache. Administrators
who have tested shared buffer sizes in the past should retest with this new cache replacement policy.

• Add subprocess to write dirty buffers periodically to reduce checkpoint writes (Jan)

In previous releases, the checkpoint process, which runs every few minutes, would write all dirty buffers
to the operating system’s buffer cache then flush all dirty operating system buffers to disk. This resulted
in a periodic spike in disk usage that often hurt performance. The new code uses a background writer
to trickle disk writes at a steady pace so checkpoints have far fewer dirty pages to write to disk. Also,
the new code does not issue a global sync() call, but instead fsync()s just the files written since the
last checkpoint. This should improve performance and minimize degradation during checkpoints.

• Add ability to prolong vacuum to reduce performance impact (Jan)

On busy systems, VACUUM performs many I/O requests which can hurt performance for other users.
This release allows you to slow down VACUUM to reduce its impact on other users, though this increases
the total duration of VACUUM.

• Improve B-tree index performance for duplicate keys (Dmitry Tkach, Tom)

This improves the way indexes are scanned when many duplicate values exist in the index.

• Use dynamically-generated table size estimates while planning (Tom)

Formerly the planner estimated table sizes using the values seen by the last VACUUM or ANALYZE, both
as to physical table size (number of pages) and number of rows. Now, the current physical table size
is obtained from the kernel, and the number of rows is estimated by multiplying the table size by the
row density (rows per page) seen by the last VACUUM or ANALYZE. This should produce more reliable
estimates in cases where the table size has changed significantly since the last housekeeping command.

• Improved index usage with OR clauses (Tom)

This allows the optimizer to use indexes in statements with many OR clauses that would not have been
indexed in the past. It can also use multi-column indexes where the first column is specified and the
second column is part of an OR clause.

• Improve matching of partial index clauses (Tom)

The server is now smarter about using partial indexes in queries involving complex WHERE clauses.

2446

Appendix E. Release Notes

• Improve performance of the GEQO optimizer (Tom)

The GEQO optimizer is used to plan queries involving many tables (by default, twelve or more). This
release speeds up the way queries are analyzed to decrease time spent in optimization.

• Miscellaneous optimizer improvements

There is not room here to list all the minor improvements made, but numerous special cases work better
than in prior releases.

• Improve lookup speed for C functions (Tom)

This release uses a hash table to lookup information for dynamically loaded C functions. This improves
their speed so they perform nearly as quickly as functions that are built into the server executable.

• Add type-specific ANALYZE statistics capability (Mark Cave-Ayland)

This feature allows more flexibility in generating statistics for nonstandard data types.

• ANALYZE now collects statistics for expression indexes (Tom)

Expression indexes (also called functional indexes) allow users to index not just columns but the results
of expressions and function calls. With this release, the optimizer can gather and use statistics about the
contents of expression indexes. This will greatly improve the quality of planning for queries in which
an expression index is relevant.

• New two-stage sampling method for ANALYZE (Manfred Koizar)

This gives better statistics when the density of valid rows is very different in different regions of a table.

• Speed up TRUNCATE (Tom)

This buys back some of the performance loss observed in 7.4, while still keeping TRUNCATE transaction-
safe.

E.158.4.2. Server Changes

• Add WAL file archiving and point-in-time recovery (Simon Riggs)

• Add tablespaces so admins can control disk layout (Gavin)

• Add a built-in log rotation program (Andreas Pflug)

It is now possible to log server messages conveniently without relying on either syslog or an external
log rotation program.

• Add new read-only server configuration parameters to show server compile-time settings:
block_size, integer_datetimes, max_function_args, max_identifier_length,
max_index_keys (Joe)

• Make quoting of sameuser, samegroup, and all remove special meaning of these terms in
pg_hba.conf (Andrew)

• Use clearer IPv6 name ::1/128 for localhost in default pg_hba.conf (Andrew)

• Use CIDR format in pg_hba.conf examples (Andrew)

• Rename server configuration parameters SortMem and VacuumMem to work_mem and
maintenance_work_mem (Old names still supported) (Tom)

2447

Appendix E. Release Notes

This change was made to clarify that bulk operations such as index and foreign key creation use
maintenance_work_mem, while work_mem is for workspaces used during query execution.

• Allow logging of session disconnections using server configuration log_disconnections (Andrew)

• Add new server configuration parameter log_line_prefix to allow control of information emitted
in each log line (Andrew)

Available information includes user name, database name, remote IP address, and session start time.

• Remove server configuration parameters log_pid, log_timestamp, log_source_port; function-
ality superseded by log_line_prefix (Andrew)

• Replace the virtual_host and tcpip_socket parameters with a unified listen_addresses pa-
rameter (Andrew, Tom)

virtual_host could only specify a single IP address to listen on. listen_addresses allows mul-
tiple addresses to be specified.

• Listen on localhost by default, which eliminates the need for the -i postmaster switch in many scenarios
(Andrew)

Listening on localhost (127.0.0.1) opens no new security holes but allows configurations like Win-
dows and JDBC, which do not support local sockets, to work without special adjustments.

• Remove syslog server configuration parameter, and add more logical log_destination variable to
control log output location (Magnus)

• Change server configuration parameter log_statement to take values all, mod, ddl, or none to
select which queries are logged (Bruce)

This allows administrators to log only data definition changes or only data modification statements.

• Some logging-related configuration parameters could formerly be adjusted by ordinary users, but only
in the “more verbose” direction. They are now treated more strictly: only superusers can set them. How-
ever, a superuser can use ALTER USER to provide per-user settings of these values for non-superusers.
Also, it is now possible for superusers to set values of superuser-only configuration parameters via
PGOPTIONS.

• Allow configuration files to be placed outside the data directory (mlw)

By default, configuration files are kept in the cluster’s top directory. With this addition, configuration
files can be placed outside the data directory, easing administration.

• Plan prepared queries only when first executed so constants can be used for statistics (Oliver Jowett)

Prepared statements plan queries once and execute them many times. While prepared queries avoid
the overhead of re-planning on each use, the quality of the plan suffers from not knowing the exact
parameters to be used in the query. In this release, planning of unnamed prepared statements is delayed
until the first execution, and the actual parameter values of that execution are used as optimization hints.
This allows use of out-of-line parameter passing without incurring a performance penalty.

• Allow DECLARE CURSOR to take parameters (Oliver Jowett)

It is now useful to issue DECLARE CURSOR in a Parse message with parameters. The parameter values
sent at Bind time will be substituted into the execution of the cursor’s query.

• Fix hash joins and aggregates of inet and cidr data types (Tom)

2448

Appendix E. Release Notes

Release 7.4 handled hashing of mixed inet and cidr values incorrectly. (This bug did not exist in
prior releases because they wouldn’t try to hash either data type.)

• Make log_duration print only when log_statement prints the query (Ed L.)

E.158.4.3. Query Changes

• Add savepoints (nested transactions) (Alvaro)

• Unsupported isolation levels are now accepted and promoted to the nearest supported level (Peter)

The SQL specification states that if a database doesn’t support a specific isolation level, it should use
the next more restrictive level. This change complies with that recommendation.

• Allow BEGIN WORK to specify transaction isolation levels like START TRANSACTION does (Bruce)

• Fix table permission checking for cases in which rules generate a query type different from the origi-
nally submitted query (Tom)

• Implement dollar quoting to simplify single-quote usage (Andrew, Tom, David Fetter)

In previous releases, because single quotes had to be used to quote a function’s body, the use of single
quotes inside the function text required use of two single quotes or other error-prone notations. With
this release we add the ability to use "dollar quoting" to quote a block of text. The ability to use different
quoting delimiters at different nesting levels greatly simplifies the task of quoting correctly, especially
in complex functions. Dollar quoting can be used anywhere quoted text is needed.

• Make CASE val WHEN compval1 THEN ... evaluate val only once (Tom)

CASE no longer evaluates the tested expression multiple times. This has benefits when the expression is
complex or is volatile.

• Test HAVING before computing target list of an aggregate query (Tom)

Fixes improper failure of cases such as SELECT SUM(win)/SUM(lose) ... GROUP BY ...

HAVING SUM(lose) > 0. This should work but formerly could fail with divide-by-zero.

• Replace max_expr_depth parameter with max_stack_depth parameter, measured in kilobytes of
stack size (Tom)

This gives us a fairly bulletproof defense against crashing due to runaway recursive functions. Instead
of measuring the depth of expression nesting, we now directly measure the size of the execution stack.

• Allow arbitrary row expressions (Tom)

This release allows SQL expressions to contain arbitrary composite types, that is, row values. It also
allows functions to more easily take rows as arguments and return row values.

• Allow LIKE/ILIKE to be used as the operator in row and subselect comparisons (Fabien Coelho)

• Avoid locale-specific case conversion of basic ASCII letters in identifiers and keywords (Tom)

This solves the “Turkish problem” with mangling of words containing I and i. Folding of characters
outside the 7-bit-ASCII set is still locale-aware.

• Improve syntax error reporting (Fabien, Tom)

Syntax error reports are more useful than before.

2449

Appendix E. Release Notes

• Change EXECUTE to return a completion tag matching the executed statement (Kris Jurka)

Previous releases return an EXECUTE tag for any EXECUTE call. In this release, the tag returned will
reflect the command executed.

• Avoid emitting NATURAL CROSS JOIN in rule listings (Tom)

Such a clause makes no logical sense, but in some cases the rule decompiler formerly produced this
syntax.

E.158.4.4. Object Manipulation Changes

• Add COMMENT ON for casts, conversions, languages, operator classes, and large objects (Christopher)

• Add new server configuration parameter default_with_oids to control whether tables are created
with OIDs by default (Neil)

This allows administrators to control whether CREATE TABLE commands create tables with or without
OID columns by default. (Note: the current factory default setting for default_with_oids is TRUE,
but the default will become FALSE in future releases.)

• Add WITH / WITHOUT OIDS clause to CREATE TABLE AS (Neil)

• Allow ALTER TABLE DROP COLUMN to drop an OID column (ALTER TABLE SET WITHOUT OIDS

still works) (Tom)

• Allow composite types as table columns (Tom)

• Allow ALTER ... ADD COLUMN with defaults and NOT NULL constraints; works per SQL spec (Rod)

It is now possible for ADD COLUMN to create a column that is not initially filled with NULLs, but with
a specified default value.

• Add ALTER COLUMN TYPE to change column’s type (Rod)

It is now possible to alter a column’s data type without dropping and re-adding the column.

• Allow multiple ALTER actions in a single ALTER TABLE command (Rod)

This is particularly useful for ALTER commands that rewrite the table (which include ALTER COLUMN

TYPE and ADD COLUMN with a default). By grouping ALTER commands together, the table need be
rewritten only once.

• Allow ALTER TABLE to add SERIAL columns (Tom)

This falls out from the new capability of specifying defaults for new columns.

• Allow changing the owners of aggregates, conversions, databases, functions, operators, operator
classes, schemas, types, and tablespaces (Christopher, Euler Taveira de Oliveira)

Previously this required modifying the system tables directly.

• Allow temporary object creation to be limited to SECURITY DEFINER functions (Sean Chittenden)

• Add ALTER TABLE ... SET WITHOUT CLUSTER (Christopher)

Prior to this release, there was no way to clear an auto-cluster specification except to modify the system
tables.

2450

Appendix E. Release Notes

• Constraint/Index/SERIAL names are now table_column_type with numbers appended to guarantee
uniqueness within the schema (Tom)

The SQL specification states that such names should be unique within a schema.

• Add pg_get_serial_sequence() to return a SERIAL column’s sequence name (Christopher)

This allows automated scripts to reliably find the SERIAL sequence name.

• Warn when primary/foreign key data type mismatch requires costly lookup

• New ALTER INDEX command to allow moving of indexes between tablespaces (Gavin)

• Make ALTER TABLE OWNER change dependent sequence ownership too (Alvaro)

E.158.4.5. Utility Command Changes

• Allow CREATE SCHEMA to create triggers, indexes, and sequences (Neil)

• Add ALSO keyword to CREATE RULE (Fabien Coelho)

This allows ALSO to be added to rule creation to contrast it with INSTEAD rules.

• Add NOWAIT option to LOCK (Tatsuo)

This allows the LOCK command to fail if it would have to wait for the requested lock.

• Allow COPY to read and write comma-separated-value (CSV) files (Andrew, Bruce)

• Generate error if the COPY delimiter and NULL string conflict (Bruce)

• GRANT/REVOKE behavior follows the SQL spec more closely

• Avoid locking conflict between CREATE INDEX and CHECKPOINT (Tom)

In 7.3 and 7.4, a long-running B-tree index build could block concurrent CHECKPOINTs from complet-
ing, thereby causing WAL bloat because the WAL log could not be recycled.

• Database-wide ANALYZE does not hold locks across tables (Tom)

This reduces the potential for deadlocks against other backends that want exclusive locks on tables. To
get the benefit of this change, do not execute database-wide ANALYZE inside a transaction block (BEGIN
block); it must be able to commit and start a new transaction for each table.

• REINDEX does not exclusively lock the index’s parent table anymore

The index itself is still exclusively locked, but readers of the table can continue if they are not using the
particular index being rebuilt.

• Erase MD5 user passwords when a user is renamed (Bruce)

PostgreSQL uses the user name as salt when encrypting passwords via MD5. When a user’s name
is changed, the salt will no longer match the stored MD5 password, so the stored password becomes
useless. In this release a notice is generated and the password is cleared. A new password must then be
assigned if the user is to be able to log in with a password.

• New pg_ctl kill option for Windows (Andrew)

Windows does not have a kill command to send signals to backends so this capability was added to
pg_ctl.

2451

Appendix E. Release Notes

• Information schema improvements

• Add --pwfile option to initdb so the initial password can be set by GUI tools (Magnus)

• Detect locale/encoding mismatch in initdb (Peter)

• Add register command to pg_ctl to register Windows operating system service (Dave Page)

E.158.4.6. Data Type and Function Changes

• More complete support for composite types (row types) (Tom)

Composite values can be used in many places where only scalar values worked before.

• Reject nonrectangular array values as erroneous (Joe)

Formerly, array_in would silently build a surprising result.

• Overflow in integer arithmetic operations is now detected (Tom)

• The arithmetic operators associated with the single-byte "char" data type have been removed.

Formerly, the parser would select these operators in many situations where an “unable to select an
operator” error would be more appropriate, such as null * null. If you actually want to do arithmetic
on a "char" column, you can cast it to integer explicitly.

• Syntax checking of array input values considerably tightened up (Joe)

Junk that was previously allowed in odd places with odd results now causes an ERROR, for example,
non-whitespace after the closing right brace.

• Empty-string array element values must now be written as "", rather than writing nothing (Joe)

Formerly, both ways of writing an empty-string element value were allowed, but now a quoted empty
string is required. The case where nothing at all appears will probably be considered to be a NULL
element value in some future release.

• Array element trailing whitespace is now ignored (Joe)

Formerly leading whitespace was ignored, but trailing whitespace between an element value and the
delimiter or right brace was significant. Now trailing whitespace is also ignored.

• Emit array values with explicit array bounds when lower bound is not one (Joe)

• Accept YYYY-monthname-DD as a date string (Tom)

• Make netmask and hostmask functions return maximum-length mask length (Tom)

• Change factorial function to return numeric (Gavin)

Returning numeric allows the factorial function to work for a wider range of input values.

• to_char/to_date() date conversion improvements (Kurt Roeckx, Fabien Coelho)

• Make length() disregard trailing spaces in CHAR(n) (Gavin)

This change was made to improve consistency: trailing spaces are semantically insignificant in
CHAR(n) data, so they should not be counted by length().

• Warn about empty string being passed to OID/float4/float8 data types (Neil)

8.1 will throw an error instead.

2452

Appendix E. Release Notes

• Allow leading or trailing whitespace in int2/int4/int8/float4/float8 input routines (Neil)

• Better support for IEEE Infinity and NaN values in float4/float8 (Neil)

These should now work on all platforms that support IEEE-compliant floating point arithmetic.

• Add week option to date_trunc() (Robert Creager)

• Fix to_char for 1 BC (previously it returned 1 AD) (Bruce)

• Fix date_part(year) for BC dates (previously it returned one less than the correct year) (Bruce)

• Fix date_part() to return the proper millennium and century (Fabien Coelho)

In previous versions, the century and millennium results had a wrong number and started in the wrong
year, as compared to standard reckoning of such things.

• Add ceiling() as an alias for ceil(), and power() as an alias for pow() for standards compliance
(Neil)

• Change ln(), log(), power(), and sqrt() to emit the correct SQLSTATE error codes for certain
error conditions, as specified by SQL:2003 (Neil)

• Add width_bucket() function as defined by SQL:2003 (Neil)

• Add generate_series() functions to simplify working with numeric sets (Joe)

• Fix upper/lower/initcap() functions to work with multibyte encodings (Tom)

• Add boolean and bitwise integer AND/OR aggregates (Fabien Coelho)

• New session information functions to return network addresses for client and server (Sean Chittenden)

• Add function to determine the area of a closed path (Sean Chittenden)

• Add function to send cancel request to other backends (Magnus)

• Add interval plus datetime operators (Tom)

The reverse ordering, datetime plus interval, was already supported, but both are required by the
SQL standard.

• Casting an integer to BIT(N) selects the rightmost N bits of the integer (Tom)

In prior releases, the leftmost N bits were selected, but this was deemed unhelpful, not to mention
inconsistent with casting from bit to int.

• Require CIDR values to have all nonmasked bits be zero (Kevin Brintnall)

E.158.4.7. Server-Side Language Changes

• In READ COMMITTED serialization mode, volatile functions now see the results of concurrent trans-
actions committed up to the beginning of each statement within the function, rather than up to the
beginning of the interactive command that called the function.

• Functions declared STABLE or IMMUTABLE always use the snapshot of the calling query, and therefore
do not see the effects of actions taken after the calling query starts, whether in their own transaction
or other transactions. Such a function must be read-only, too, meaning that it cannot use any SQL
commands other than SELECT. There is a considerable performance gain from declaring a function
STABLE or IMMUTABLE rather than VOLATILE.

2453

Appendix E. Release Notes

• Nondeferred AFTER triggers are now fired immediately after completion of the triggering query, rather
than upon finishing the current interactive command. This makes a difference when the triggering query
occurred within a function: the trigger is invoked before the function proceeds to its next operation. For
example, if a function inserts a new row into a table, any nondeferred foreign key checks occur before
proceeding with the function.

• Allow function parameters to be declared with names (Dennis Björklund)

This allows better documentation of functions. Whether the names actually do anything depends on the
specific function language being used.

• Allow PL/pgSQL parameter names to be referenced in the function (Dennis Björklund)

This basically creates an automatic alias for each named parameter.

• Do minimal syntax checking of PL/pgSQL functions at creation time (Tom)

This allows us to catch simple syntax errors sooner.

• More support for composite types (row and record variables) in PL/pgSQL

For example, it now works to pass a rowtype variable to another function as a single variable.

• Default values for PL/pgSQL variables can now reference previously declared variables

• Improve parsing of PL/pgSQL FOR loops (Tom)

Parsing is now driven by presence of ".." rather than data type of FOR variable. This makes no differ-
ence for correct functions, but should result in more understandable error messages when a mistake is
made.

• Major overhaul of PL/Perl server-side language (Command Prompt, Andrew Dunstan)

• In PL/Tcl, SPI commands are now run in subtransactions. If an error occurs, the subtransaction is
cleaned up and the error is reported as an ordinary Tcl error, which can be trapped with catch. For-
merly, it was not possible to catch such errors.

• Accept ELSEIF in PL/pgSQL (Neil)

Previously PL/pgSQL only allowed ELSIF, but many people are accustomed to spelling this keyword
ELSEIF.

E.158.4.8. psql Changes

• Improve psql information display about database objects (Christopher)

• Allow psql to display group membership in \du and \dg (Markus Bertheau)

• Prevent psql \dn from showing temporary schemas (Bruce)

• Allow psql to handle tilde user expansion for file names (Zach Irmen)

• Allow psql to display fancy prompts, including color, via readline (Reece Hart, Chet Ramey)

• Make psql \copy match COPY command syntax fully (Tom)

• Show the location of syntax errors (Fabien Coelho, Tom)

• Add CLUSTER information to psql \d display (Bruce)

2454

Appendix E. Release Notes

• Change psql \copy stdin/stdout to read from command input/output (Bruce)

• Add pstdin/pstdout to read from psql’s stdin/stdout (Mark Feit)

• Add global psql configuration file, psqlrc.sample (Bruce)

This allows a central file where global psql startup commands can be stored.

• Have psql \d+ indicate if the table has an OID column (Neil)

• On Windows, use binary mode in psql when reading files so control-Z is not seen as end-of-file

• Have \dn+ show permissions and description for schemas (Dennis Björklund)

• Improve tab completion support (Stefan Kaltenbrunn, Greg Sabino Mullane)

• Allow boolean settings to be set using upper or lower case (Michael Paesold)

E.158.4.9. pg_dump Changes

• Use dependency information to improve the reliability of pg_dump (Tom)

This should solve the longstanding problems with related objects sometimes being dumped in the wrong
order.

• Have pg_dump output objects in alphabetical order if possible (Tom)

This should make it easier to identify changes between dump files.

• Allow pg_restore to ignore some SQL errors (Fabien Coelho)

This makes pg_restore’s behavior similar to the results of feeding a pg_dump output script to psql.
In most cases, ignoring errors and plowing ahead is the most useful thing to do. Also added was a
pg_restore option to give the old behavior of exiting on an error.

• pg_restore -l display now includes objects’ schema names

• New begin/end markers in pg_dump text output (Bruce)

• Add start/stop times for pg_dump/pg_dumpall in verbose mode (Bruce)

• Allow most pg_dump options in pg_dumpall (Christopher)

• Have pg_dump use ALTER OWNER rather than SET SESSION AUTHORIZATION by default (Christo-
pher)

E.158.4.10. libpq Changes

• Make libpq’s SIGPIPE handling thread-safe (Bruce)

• Add PQmbdsplen() which returns the display length of a character (Tatsuo)

• Add thread locking to SSL and Kerberos connections (Manfred Spraul)

• Allow PQoidValue(), PQcmdTuples(), and PQoidStatus() to work on EXECUTE commands
(Neil)

2455

Appendix E. Release Notes

• Add PQserverVersion() to provide more convenient access to the server version number (Greg
Sabino Mullane)

• Add PQprepare/PQsendPrepared() functions to support preparing statements without necessarily
specifying the data types of their parameters (Abhijit Menon-Sen)

• Many ECPG improvements, including SET DESCRIPTOR (Michael)

E.158.4.11. Source Code Changes

• Allow the database server to run natively on Windows (Claudio, Magnus, Andrew)

• Shell script commands converted to C versions for Windows support (Andrew)

• Create an extension makefile framework (Fabien Coelho, Peter)

This simplifies the task of building extensions outside the original source tree.

• Support relocatable installations (Bruce)

Directory paths for installed files (such as the /share directory) are now computed relative to the
actual location of the executables, so that an installation tree can be moved to another place without
reconfiguring and rebuilding.

• Use --with-docdir to choose installation location of documentation; also allow --infodir (Peter)

• Add --without-docdir to prevent installation of documentation (Peter)

• Upgrade to DocBook V4.2 SGML (Peter)

• New PostgreSQL CVS tag (Marc)

This was done to make it easier for organizations to manage their own copies of the PostgreSQL CVS
repository. File version stamps from the master repository will not get munged by checking into or out
of a copied repository.

• Clarify locking code (Manfred Koizar)

• Buffer manager cleanup (Neil)

• Decouple platform tests from CPU spinlock code (Bruce, Tom)

• Add inlined test-and-set code on PA-RISC for gcc (ViSolve, Tom)

• Improve i386 spinlock code (Manfred Spraul)

• Clean up spinlock assembly code to avoid warnings from newer gcc releases (Tom)

• Remove JDBC from source tree; now a separate project

• Remove the libpgtcl client interface; now a separate project

• More accurately estimate memory and file descriptor usage (Tom)

• Improvements to the Mac OS X startup scripts (Ray A.)

• New fsync() test program (Bruce)

• Major documentation improvements (Neil, Peter)

• Remove pg_encoding; not needed anymore

2456

Appendix E. Release Notes

• Remove pg_id; not needed anymore

• Remove initlocation; not needed anymore

• Auto-detect thread flags (no more manual testing) (Bruce)

• Use Olson’s public domain timezone library (Magnus)

• With threading enabled, use thread flags on Unixware for backend executables too (Bruce)

Unixware cannot mix threaded and nonthreaded object files in the same executable, so everything must
be compiled as threaded.

• psql now uses a flex-generated lexical analyzer to process command strings

• Reimplement the linked list data structure used throughout the backend (Neil)

This improves performance by allowing list append and length operations to be more efficient.

• Allow dynamically loaded modules to create their own server configuration parameters (Thomas Hall-
gren)

• New Brazilian version of FAQ (Euler Taveira de Oliveira)

• Add French FAQ (Guillaume Lelarge)

• New pgevent for Windows logging

• Make libpq and ECPG build as proper shared libraries on OS X (Tom)

E.158.4.12. Contrib Changes

• Overhaul of contrib/dblink (Joe)

• contrib/dbmirror improvements (Steven Singer)

• New contrib/xml2 (John Gray, Torchbox)

• Updated contrib/mysql

• New version of contrib/btree_gist (Teodor)

• New contrib/trgm, trigram matching for PostgreSQL (Teodor)

• Many contrib/tsearch2 improvements (Teodor)

• Add double metaphone to contrib/fuzzystrmatch (Andrew)

• Allow contrib/pg_autovacuum to run as a Windows service (Dave Page)

• Add functions to contrib/dbsize (Andreas Pflug)

• Removed contrib/pg_logger: obsoleted by integrated logging subprocess

• Removed contrib/rserv: obsoleted by various separate projects

2457

Appendix E. Release Notes

E.159. Release 7.4.30

Release Date: 2010-10-04

This release contains a variety of fixes from 7.4.29. For information about new features in the 7.4 major
release, see Section E.189.

This is expected to be the last PostgreSQL release in the 7.4.X series. Users are encouraged to update to
a newer release branch soon.

E.159.1. Migration to Version 7.4.30
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.26, see Section E.163.

E.159.2. Changes

• Use a separate interpreter for each calling SQL userid in PL/Perl and PL/Tcl (Tom Lane)

This change prevents security problems that can be caused by subverting Perl or Tcl code that will be
executed later in the same session under another SQL user identity (for example, within a SECURITY

DEFINER function). Most scripting languages offer numerous ways that that might be done, such as
redefining standard functions or operators called by the target function. Without this change, any SQL
user with Perl or Tcl language usage rights can do essentially anything with the SQL privileges of the
target function’s owner.

The cost of this change is that intentional communication among Perl and Tcl functions becomes more
difficult. To provide an escape hatch, PL/PerlU and PL/TclU functions continue to use only one inter-
preter per session. This is not considered a security issue since all such functions execute at the trust
level of a database superuser already.

It is likely that third-party procedural languages that claim to offer trusted execution have similar se-
curity issues. We advise contacting the authors of any PL you are depending on for security-critical
purposes.

Our thanks to Tim Bunce for pointing out this issue (CVE-2010-3433).

• Prevent possible crashes in pg_get_expr() by disallowing it from being called with an argument that
is not one of the system catalog columns it’s intended to be used with (Heikki Linnakangas, Tom Lane)

• Fix “cannot handle unplanned sub-select” error (Tom Lane)

This occurred when a sub-select contains a join alias reference that expands into an expression contain-
ing another sub-select.

• Take care to fsync the contents of lockfiles (both postmaster.pid and the socket lockfile) while
writing them (Tom Lane)

2458

Appendix E. Release Notes

This omission could result in corrupted lockfile contents if the machine crashes shortly after postmaster
start. That could in turn prevent subsequent attempts to start the postmaster from succeeding, until the
lockfile is manually removed.

• Improve contrib/dblink’s handling of tables containing dropped columns (Tom Lane)

• Fix connection leak after “duplicate connection name” errors in contrib/dblink (Itagaki Takahiro)

• Update build infrastructure and documentation to reflect the source code repository’s move from CVS
to Git (Magnus Hagander and others)

E.160. Release 7.4.29

Release Date: 2010-05-17

This release contains a variety of fixes from 7.4.28. For information about new features in the 7.4 major
release, see Section E.189.

The PostgreSQL community will stop releasing updates for the 7.4.X release series in July 2010. Users
are encouraged to update to a newer release branch soon.

E.160.1. Migration to Version 7.4.29
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.26, see Section E.163.

E.160.2. Changes

• Enforce restrictions in plperl using an opmask applied to the whole interpreter, instead of using
Safe.pm (Tim Bunce, Andrew Dunstan)

Recent developments have convinced us that Safe.pm is too insecure to rely on for making plperl

trustable. This change removes use of Safe.pm altogether, in favor of using a separate interpreter with
an opcode mask that is always applied. Pleasant side effects of the change include that it is now possible
to use Perl’s strict pragma in a natural way in plperl, and that Perl’s $a and $b variables work as
expected in sort routines, and that function compilation is significantly faster. (CVE-2010-1169)

• Prevent PL/Tcl from executing untrustworthy code from pltcl_modules (Tom)

PL/Tcl’s feature for autoloading Tcl code from a database table could be exploited for trojan-horse
attacks, because there was no restriction on who could create or insert into that table. This change
disables the feature unless pltcl_modules is owned by a superuser. (However, the permissions on the
table are not checked, so installations that really need a less-than-secure modules table can still grant
suitable privileges to trusted non-superusers.) Also, prevent loading code into the unrestricted “normal”
Tcl interpreter unless we are really going to execute a pltclu function. (CVE-2010-1170)

2459

Appendix E. Release Notes

• Do not allow an unprivileged user to reset superuser-only parameter settings (Alvaro)

Previously, if an unprivileged user ran ALTER USER ... RESET ALL for himself, or ALTER

DATABASE ... RESET ALL for a database he owns, this would remove all special parameter settings
for the user or database, even ones that are only supposed to be changeable by a superuser. Now, the
ALTER will only remove the parameters that the user has permission to change.

• Avoid possible crash during backend shutdown if shutdown occurs when a CONTEXT addition would be
made to log entries (Tom)

In some cases the context-printing function would fail because the current transaction had already been
rolled back when it came time to print a log message.

• Update pl/perl’s ppport.h for modern Perl versions (Andrew)

• Fix assorted memory leaks in pl/python (Andreas Freund, Tom)

• Ensure that contrib/pgstattuple functions respond to cancel interrupts promptly (Tatsuhito Kasa-
hara)

• Make server startup deal properly with the case that shmget() returns EINVAL for an existing shared
memory segment (Tom)

This behavior has been observed on BSD-derived kernels including OS X. It resulted in an entirely-
misleading startup failure complaining that the shared memory request size was too large.

E.161. Release 7.4.28

Release Date: 2010-03-15

This release contains a variety of fixes from 7.4.27. For information about new features in the 7.4 major
release, see Section E.189.

The PostgreSQL community will stop releasing updates for the 7.4.X release series in July 2010. Users
are encouraged to update to a newer release branch soon.

E.161.1. Migration to Version 7.4.28
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.26, see Section E.163.

E.161.2. Changes

• Add new configuration parameter ssl_renegotiation_limit to control how often we do session
key renegotiation for an SSL connection (Magnus)

2460

Appendix E. Release Notes

This can be set to zero to disable renegotiation completely, which may be required if a broken SSL
library is used. In particular, some vendors are shipping stopgap patches for CVE-2009-3555 that cause
renegotiation attempts to fail.

• Make substring() for bit types treat any negative length as meaning “all the rest of the string”
(Tom)

The previous coding treated only -1 that way, and would produce an invalid result value for other
negative values, possibly leading to a crash (CVE-2010-0442).

• Fix some cases of pathologically slow regular expression matching (Tom)

• When reading pg_hba.conf and related files, do not treat @something as a file inclusion request if
the @ appears inside quote marks; also, never treat @ by itself as a file inclusion request (Tom)

This prevents erratic behavior if a role or database name starts with @. If you need to include a file
whose path name contains spaces, you can still do so, but you must write @"/path to/file" rather
than putting the quotes around the whole construct.

• Prevent infinite loop on some platforms if a directory is named as an inclusion target in pg_hba.conf

and related files (Tom)

• Ensure PL/Tcl initializes the Tcl interpreter fully (Tom)

The only known symptom of this oversight is that the Tcl clock command misbehaves if using Tcl 8.5
or later.

• Prevent crash in contrib/dblink when too many key columns are specified to a
dblink_build_sql_* function (Rushabh Lathia, Joe Conway)

E.162. Release 7.4.27

Release Date: 2009-12-14

This release contains a variety of fixes from 7.4.26. For information about new features in the 7.4 major
release, see Section E.189.

E.162.1. Migration to Version 7.4.27
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.26, see Section E.163.

E.162.2. Changes

• Protect against indirect security threats caused by index functions changing session-local state (Gurjeet
Singh, Tom)

2461

Appendix E. Release Notes

This change prevents allegedly-immutable index functions from possibly subverting a superuser’s ses-
sion (CVE-2009-4136).

• Reject SSL certificates containing an embedded null byte in the common name (CN) field (Magnus)

This prevents unintended matching of a certificate to a server or client name during SSL validation
(CVE-2009-4034).

• Fix possible crash during backend-startup-time cache initialization (Tom)

• Prevent signals from interrupting VACUUM at unsafe times (Alvaro)

This fix prevents a PANIC if a VACUUM FULL is canceled after it’s already committed its tuple move-
ments, as well as transient errors if a plain VACUUM is interrupted after having truncated the table.

• Fix possible crash due to integer overflow in hash table size calculation (Tom)

This could occur with extremely large planner estimates for the size of a hashjoin’s result.

• Fix very rare crash in inet/cidr comparisons (Chris Mikkelson)

• Fix PAM password processing to be more robust (Tom)

The previous code is known to fail with the combination of the Linux pam_krb5 PAM module with
Microsoft Active Directory as the domain controller. It might have problems elsewhere too, since it was
making unjustified assumptions about what arguments the PAM stack would pass to it.

• Make the postmaster ignore any application_name parameter in connection request packets, to im-
prove compatibility with future libpq versions (Tom)

E.163. Release 7.4.26

Release Date: 2009-09-09

This release contains a variety of fixes from 7.4.25. For information about new features in the 7.4 major
release, see Section E.189.

E.163.1. Migration to Version 7.4.26
A dump/restore is not required for those running 7.4.X. However, if you have any hash indexes on
interval columns, you must REINDEX them after updating to 7.4.26. Also, if you are upgrading from a
version earlier than 7.4.11, see Section E.178.

E.163.2. Changes

• Disallow RESET ROLE and RESET SESSION AUTHORIZATION inside security-definer functions
(Tom, Heikki)

2462

Appendix E. Release Notes

This covers a case that was missed in the previous patch that disallowed SET ROLE and SET SESSION

AUTHORIZATION inside security-definer functions. (See CVE-2007-6600)

• Fix handling of sub-SELECTs appearing in the arguments of an outer-level aggregate function (Tom)

• Fix hash calculation for data type interval (Tom)

This corrects wrong results for hash joins on interval values. It also changes the contents of hash indexes
on interval columns. If you have any such indexes, you must REINDEX them after updating.

• Fix overflow for INTERVAL ’x ms’ when x is more than 2 million and integer datetimes are in use
(Alex Hunsaker)

• Fix calculation of distance between a point and a line segment (Tom)

This led to incorrect results from a number of geometric operators.

• Fix money data type to work in locales where currency amounts have no fractional digits, e.g. Japan
(Itagaki Takahiro)

• Properly round datetime input like 00:12:57.9999999999999999999999999999 (Tom)

• Fix poor choice of page split point in GiST R-tree operator classes (Teodor)

• Fix portability issues in plperl initialization (Andrew Dunstan)

• Improve robustness of libpq’s code to recover from errors during COPY FROM STDIN (Tom)

• Avoid including conflicting readline and editline header files when both libraries are installed (Zdenek
Kotala)

E.164. Release 7.4.25

Release Date: 2009-03-16

This release contains a variety of fixes from 7.4.24. For information about new features in the 7.4 major
release, see Section E.189.

E.164.1. Migration to Version 7.4.25
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.164.2. Changes

• Prevent error recursion crashes when encoding conversion fails (Tom)

This change extends fixes made in the last two minor releases for related failure scenarios. The previous
fixes were narrowly tailored for the original problem reports, but we have now recognized that any error

2463

Appendix E. Release Notes

thrown by an encoding conversion function could potentially lead to infinite recursion while trying to
report the error. The solution therefore is to disable translation and encoding conversion and report
the plain-ASCII form of any error message, if we find we have gotten into a recursive error reporting
situation. (CVE-2009-0922)

• Disallow CREATE CONVERSION with the wrong encodings for the specified conversion function
(Heikki)

This prevents one possible scenario for encoding conversion failure. The previous change is a backstop
to guard against other kinds of failures in the same area.

• Fix core dump when to_char() is given format codes that are inappropriate for the type of the data
argument (Tom)

• Add MUST (Mauritius Island Summer Time) to the default list of known timezone abbreviations (Xavier
Bugaud)

E.165. Release 7.4.24

Release Date: 2009-02-02

This release contains a variety of fixes from 7.4.23. For information about new features in the 7.4 major
release, see Section E.189.

E.165.1. Migration to Version 7.4.24
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.165.2. Changes

• Improve handling of URLs in headline() function (Teodor)

• Improve handling of overlength headlines in headline() function (Teodor)

• Prevent possible Assert failure or misconversion if an encoding conversion is created with the wrong
conversion function for the specified pair of encodings (Tom, Heikki)

• Avoid unnecessary locking of small tables in VACUUM (Heikki)

• Fix uninitialized variables in contrib/tsearch2’s get_covers() function (Teodor)

• Fix bug in to_char()’s handling of TH format codes (Andreas Scherbaum)

• Make all documentation reference pgsql-bugs and/or pgsql-hackers as appropriate, instead of the
now-decommissioned pgsql-ports and pgsql-patches mailing lists (Tom)

2464

Appendix E. Release Notes

E.166. Release 7.4.23

Release Date: 2008-11-03

This release contains a variety of fixes from 7.4.22. For information about new features in the 7.4 major
release, see Section E.189.

E.166.1. Migration to Version 7.4.23
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.166.2. Changes

• Fix backend crash when the client encoding cannot represent a localized error message (Tom)

We have addressed similar issues before, but it would still fail if the “character has no equivalent”
message itself couldn’t be converted. The fix is to disable localization and send the plain ASCII error
message when we detect such a situation.

• Fix incorrect tsearch2 headline generation when single query item matches first word of text (Sushant
Sinha)

• Fix improper display of fractional seconds in interval values when using a non-ISO datestyle in an
--enable-integer-datetimes build (Ron Mayer)

• Ensure SPI_getvalue and SPI_getbinval behave correctly when the passed tuple and tuple de-
scriptor have different numbers of columns (Tom)

This situation is normal when a table has had columns added or removed, but these two functions didn’t
handle it properly. The only likely consequence is an incorrect error indication.

• Fix ecpg’s parsing of CREATE USER (Michael)

E.167. Release 7.4.22

Release Date: 2008-09-22

This release contains a variety of fixes from 7.4.21. For information about new features in the 7.4 major
release, see Section E.189.

2465

Appendix E. Release Notes

E.167.1. Migration to Version 7.4.22
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.167.2. Changes

• Fix datetime input functions to correctly detect integer overflow when running on a 64-bit platform
(Tom)

• Improve performance of writing very long log messages to syslog (Tom)

• Fix bug in backwards scanning of a cursor on a SELECT DISTINCT ON query (Tom)

• Fix planner to estimate that GROUP BY expressions yielding boolean results always result in two groups,
regardless of the expressions’ contents (Tom)

This is very substantially more accurate than the regular GROUP BY estimate for certain boolean tests
like col IS NULL.

• Improve pg_dump and pg_restore’s error reporting after failure to send a SQL command (Tom)

E.168. Release 7.4.21

Release Date: 2008-06-12

This release contains one serious bug fix over 7.4.20. For information about new features in the 7.4 major
release, see Section E.189.

E.168.1. Migration to Version 7.4.21
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.168.2. Changes

• Make pg_get_ruledef() parenthesize negative constants (Tom)

Before this fix, a negative constant in a view or rule might be dumped as, say, -42::integer, which is
subtly incorrect: it should be (-42)::integer due to operator precedence rules. Usually this would
make little difference, but it could interact with another recent patch to cause PostgreSQL to reject what
had been a valid SELECT DISTINCT view query. Since this could result in pg_dump output failing to

2466

Appendix E. Release Notes

reload, it is being treated as a high-priority fix. The only released versions in which dump output is
actually incorrect are 8.3.1 and 8.2.7.

E.169. Release 7.4.20

Release Date: never released

This release contains a variety of fixes from 7.4.19. For information about new features in the 7.4 major
release, see Section E.189.

E.169.1. Migration to Version 7.4.20
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.169.2. Changes

• Fix conversions between ISO-8859-5 and other encodings to handle Cyrillic “Yo” characters (e and E

with two dots) (Sergey Burladyan)

• Fix a few datatype input functions that were allowing unused bytes in their results to contain uninitial-
ized, unpredictable values (Tom)

This could lead to failures in which two apparently identical literal values were not seen as equal,
resulting in the parser complaining about unmatched ORDER BY and DISTINCT expressions.

• Fix a corner case in regular-expression substring matching (substring(string from pattern))
(Tom)

The problem occurs when there is a match to the pattern overall but the user has specified a paren-
thesized subexpression and that subexpression hasn’t got a match. An example is substring(’foo’
from ’foo(bar)?’). This should return NULL, since (bar) isn’t matched, but it was mistakenly
returning the whole-pattern match instead (ie, foo).

• Fix incorrect result from ecpg’s PGTYPEStimestamp_sub() function (Michael)

• Fix DatumGetBool macro to not fail with gcc 4.3 (Tom)

This problem affects “old style” (V0) C functions that return boolean. The fix is already in 8.3, but the
need to back-patch it was not realized at the time.

• Fix longstanding LISTEN/NOTIFY race condition (Tom)

In rare cases a session that had just executed a LISTEN might not get a notification, even though one
would be expected because the concurrent transaction executing NOTIFY was observed to commit later.

2467

Appendix E. Release Notes

A side effect of the fix is that a transaction that has executed a not-yet-committed LISTEN command will
not see any row in pg_listener for the LISTEN, should it choose to look; formerly it would have.
This behavior was never documented one way or the other, but it is possible that some applications
depend on the old behavior.

• Fix display of constant expressions in ORDER BY and GROUP BY (Tom)

An explicitly casted constant would be shown incorrectly. This could for example lead to corruption of
a view definition during dump and reload.

• Fix libpq to handle NOTICE messages correctly during COPY OUT (Tom)

This failure has only been observed to occur when a user-defined datatype’s output routine issues a
NOTICE, but there is no guarantee it couldn’t happen due to other causes.

E.170. Release 7.4.19

Release Date: 2008-01-07

This release contains a variety of fixes from 7.4.18, including fixes for significant security issues. For
information about new features in the 7.4 major release, see Section E.189.

E.170.1. Migration to Version 7.4.19
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.170.2. Changes

• Prevent functions in indexes from executing with the privileges of the user running VACUUM, ANALYZE,
etc (Tom)

Functions used in index expressions and partial-index predicates are evaluated whenever a new table
entry is made. It has long been understood that this poses a risk of trojan-horse code execution if one
modifies a table owned by an untrustworthy user. (Note that triggers, defaults, check constraints, etc.
pose the same type of risk.) But functions in indexes pose extra danger because they will be executed by
routine maintenance operations such as VACUUM FULL, which are commonly performed automatically
under a superuser account. For example, a nefarious user can execute code with superuser privileges by
setting up a trojan-horse index definition and waiting for the next routine vacuum. The fix arranges for
standard maintenance operations (including VACUUM, ANALYZE, REINDEX, and CLUSTER) to execute
as the table owner rather than the calling user, using the same privilege-switching mechanism already
used for SECURITY DEFINER functions. To prevent bypassing this security measure, execution of SET
SESSION AUTHORIZATION and SET ROLE is now forbidden within a SECURITY DEFINER context.
(CVE-2007-6600)

2468

Appendix E. Release Notes

• Repair assorted bugs in the regular-expression package (Tom, Will Drewry)

Suitably crafted regular-expression patterns could cause crashes, infinite or near-infinite looping, and/or
massive memory consumption, all of which pose denial-of-service hazards for applications that ac-
cept regex search patterns from untrustworthy sources. (CVE-2007-4769, CVE-2007-4772, CVE-2007-
6067)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

The fix that appeared for this in 7.4.18 was incomplete, as it plugged the hole for only some dblink

functions. (CVE-2007-6601, CVE-2007-3278)

• Fix planner failure in some cases of WHERE false AND var IN (SELECT ...) (Tom)

• Fix potential crash in translate() when using a multibyte database encoding (Tom)

• Fix PL/Python to not crash on long exception messages (Alvaro)

• ecpg parser fixes (Michael)

• Make contrib/tablefunc’s crosstab() handle NULL rowid as a category in its own right, rather
than crashing (Joe)

• Fix tsvector and tsquery output routines to escape backslashes correctly (Teodor, Bruce)

• Fix crash of to_tsvector() on huge input strings (Teodor)

• Require a specific version of Autoconf to be used when re-generating the configure script (Peter)

This affects developers and packagers only. The change was made to prevent accidental use of untested
combinations of Autoconf and PostgreSQL versions. You can remove the version check if you really
want to use a different Autoconf version, but it’s your responsibility whether the result works or not.

E.171. Release 7.4.18

Release Date: 2007-09-17

This release contains fixes from 7.4.17. For information about new features in the 7.4 major release, see
Section E.189.

E.171.1. Migration to Version 7.4.18
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

2469

Appendix E. Release Notes

E.171.2. Changes

• Prevent index corruption when a transaction inserts rows and then aborts close to the end of a concurrent
VACUUM on the same table (Tom)

• Make CREATE DOMAIN ... DEFAULT NULL work properly (Tom)

• Fix excessive logging of SSL error messages (Tom)

• Fix crash when log_min_error_statement logging runs out of memory (Tom)

• Prevent CLUSTER from failing due to attempting to process temporary tables of other sessions (Alvaro)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

E.172. Release 7.4.17

Release Date: 2007-04-23

This release contains fixes from 7.4.16, including a security fix. For information about new features in the
7.4 major release, see Section E.189.

E.172.1. Migration to Version 7.4.17
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.172.2. Changes

• Support explicit placement of the temporary-table schema within search_path, and disable searching
it for functions and operators (Tom)

This is needed to allow a security-definer function to set a truly secure value of search_path. Without
it, an unprivileged SQL user can use temporary objects to execute code with the privileges of the
security-definer function (CVE-2007-2138). See CREATE FUNCTION for more information.

• /contrib/tsearch2 crash fixes (Teodor)

• Fix potential-data-corruption bug in how VACUUM FULL handles UPDATE chains (Tom, Pavan Deolasee)

• Fix PANIC during enlargement of a hash index (bug introduced in 7.4.15) (Tom)

2470

Appendix E. Release Notes

E.173. Release 7.4.16

Release Date: 2007-02-05

This release contains a variety of fixes from 7.4.15, including a security fix. For information about new
features in the 7.4 major release, see Section E.189.

E.173.1. Migration to Version 7.4.16
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.173.2. Changes

• Remove security vulnerability that allowed connected users to read backend memory (Tom)

The vulnerability involves suppressing the normal check that a SQL function returns the data type it’s
declared to, or changing the data type of a table column used in a SQL function (CVE-2007-0555). This
error can easily be exploited to cause a backend crash, and in principle might be used to read database
content that the user should not be able to access.

• Fix rare bug wherein btree index page splits could fail due to choosing an infeasible split point (Heikki
Linnakangas)

• Fix for rare Assert() crash triggered by UNION (Tom)

• Tighten security of multi-byte character processing for UTF8 sequences over three bytes long (Tom)

E.174. Release 7.4.15

Release Date: 2007-01-08

This release contains a variety of fixes from 7.4.14. For information about new features in the 7.4 major
release, see Section E.189.

E.174.1. Migration to Version 7.4.15
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

2471

Appendix E. Release Notes

E.174.2. Changes

• Improve handling of getaddrinfo() on AIX (Tom)

This fixes a problem with starting the statistics collector, among other things.

• Fix “failed to re-find parent key” errors in VACUUM (Tom)

• Fix bugs affecting multi-gigabyte hash indexes (Tom)

• Fix error when constructing an ARRAY[] made up of multiple empty elements (Tom)

• to_number() and to_char(numeric) are now STABLE, not IMMUTABLE, for new initdb installs
(Tom)

This is because lc_numeric can potentially change the output of these functions.

• Improve index usage of regular expressions that use parentheses (Tom)

This improves psql \d performance also.

E.175. Release 7.4.14

Release Date: 2006-10-16

This release contains a variety of fixes from 7.4.13. For information about new features in the 7.4 major
release, see Section E.189.

E.175.1. Migration to Version 7.4.14
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.175.2. Changes

• Fix core dump when an untyped literal is taken as ANYARRAY

• Fix string_to_array() to handle overlapping matches for the separator string

For example, string_to_array(’123xx456xxx789’, ’xx’).

• Fix corner cases in pattern matching for psql’s \d commands

• Fix index-corrupting bugs in /contrib/ltree (Teodor)

• Fix backslash escaping in /contrib/dbmirror

• Adjust regression tests for recent changes in US DST laws

2472

Appendix E. Release Notes

E.176. Release 7.4.13

Release Date: 2006-05-23

This release contains a variety of fixes from 7.4.12, including patches for extremely serious security issues.
For information about new features in the 7.4 major release, see Section E.189.

E.176.1. Migration to Version 7.4.13
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

Full security against the SQL-injection attacks described in CVE-2006-2313 and CVE-2006-2314 might
require changes in application code. If you have applications that embed untrustworthy strings into SQL
commands, you should examine them as soon as possible to ensure that they are using recommended
escaping techniques. In most cases, applications should be using subroutines provided by libraries or
drivers (such as libpq’s PQescapeStringConn()) to perform string escaping, rather than relying on ad
hoc code to do it.

E.176.2. Changes

• Change the server to reject invalidly-encoded multibyte characters in all cases (Tatsuo, Tom)

While PostgreSQL has been moving in this direction for some time, the checks are now applied uni-
formly to all encodings and all textual input, and are now always errors not merely warnings. This
change defends against SQL-injection attacks of the type described in CVE-2006-2313.

• Reject unsafe uses of \’ in string literals

As a server-side defense against SQL-injection attacks of the type described in CVE-2006-2314, the
server now only accepts ” and not \’ as a representation of ASCII single quote in SQL string literals.
By default, \’ is rejected only when client_encoding is set to a client-only encoding (SJIS, BIG5,
GBK, GB18030, or UHC), which is the scenario in which SQL injection is possible. A new configu-
ration parameter backslash_quote is available to adjust this behavior when needed. Note that full
security against CVE-2006-2314 might require client-side changes; the purpose of backslash_quote
is in part to make it obvious that insecure clients are insecure.

• Modify libpq’s string-escaping routines to be aware of encoding considerations and
standard_conforming_strings

This fixes libpq-using applications for the security issues described in CVE-2006-2313 and CVE-
2006-2314, and also future-proofs them against the planned changeover to SQL-standard string lit-
eral syntax. Applications that use multiple PostgreSQL connections concurrently should migrate to
PQescapeStringConn() and PQescapeByteaConn() to ensure that escaping is done correctly for
the settings in use in each database connection. Applications that do string escaping “by hand” should
be modified to rely on library routines instead.

• Fix some incorrect encoding conversion functions

2473

Appendix E. Release Notes

win1251_to_iso, alt_to_iso, euc_tw_to_big5, euc_tw_to_mic, mic_to_euc_tw were all
broken to varying extents.

• Clean up stray remaining uses of \’ in strings (Bruce, Jan)

• Fix bug that sometimes caused OR’d index scans to miss rows they should have returned

• Fix WAL replay for case where a btree index has been truncated

• Fix SIMILAR TO for patterns involving | (Tom)

• Fix server to use custom DH SSL parameters correctly (Michael Fuhr)

• Fix for Bonjour on Intel Macs (Ashley Clark)

• Fix various minor memory leaks

E.177. Release 7.4.12

Release Date: 2006-02-14

This release contains a variety of fixes from 7.4.11. For information about new features in the 7.4 major
release, see Section E.189.

E.177.1. Migration to Version 7.4.12
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.11, see Section E.178.

E.177.2. Changes

• Fix potential crash in SET SESSION AUTHORIZATION (CVE-2006-0553)

An unprivileged user could crash the server process, resulting in momentary denial of service to other
users, if the server has been compiled with Asserts enabled (which is not the default). Thanks to Akio
Ishida for reporting this problem.

• Fix bug with row visibility logic in self-inserted rows (Tom)

Under rare circumstances a row inserted by the current command could be seen as already valid, when
it should not be. Repairs bug created in 7.4.9 and 7.3.11 releases.

• Fix race condition that could lead to “file already exists” errors during pg_clog file creation (Tom)

• Properly check DOMAIN constraints for UNKNOWN parameters in prepared statements (Neil)

• Fix to allow restoring dumps that have cross-schema references to custom operators (Tom)

• Portability fix for testing presence of finite and isinf during configure (Tom)

2474

Appendix E. Release Notes

E.178. Release 7.4.11

Release Date: 2006-01-09

This release contains a variety of fixes from 7.4.10. For information about new features in the 7.4 major
release, see Section E.189.

E.178.1. Migration to Version 7.4.11
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.8, see Section E.181. Also, you might need to REINDEX indexes on textual columns after
updating, if you are affected by the locale or plperl issues described below.

E.178.2. Changes

• Fix for protocol-level Describe messages issued outside a transaction or in a failed transaction (Tom)

• Fix character string comparison for locales that consider different character combinations as equal, such
as Hungarian (Tom)

This might require REINDEX to fix existing indexes on textual columns.

• Set locale environment variables during postmaster startup to ensure that plperl won’t change the locale
later

This fixes a problem that occurred if the postmaster was started with environment variables specifying
a different locale than what initdb had been told. Under these conditions, any use of plperl was likely
to lead to corrupt indexes. You might need REINDEX to fix existing indexes on textual columns if this
has happened to you.

• Fix longstanding bug in strpos() and regular expression handling in certain rarely used Asian multi-byte
character sets (Tatsuo)

• Fix bug in /contrib/pgcrypto gen_salt, which caused it not to use all available salt space for MD5
and XDES algorithms (Marko Kreen, Solar Designer)

Salts for Blowfish and standard DES are unaffected.

• Fix /contrib/dblink to throw an error, rather than crashing, when the number of columns specified
is different from what’s actually returned by the query (Joe)

E.179. Release 7.4.10

Release Date: 2005-12-12

2475

Appendix E. Release Notes

This release contains a variety of fixes from 7.4.9. For information about new features in the 7.4 major
release, see Section E.189.

E.179.1. Migration to Version 7.4.10
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.8, see Section E.181.

E.179.2. Changes

• Fix race condition in transaction log management

There was a narrow window in which an I/O operation could be initiated for the wrong page, leading
to an Assert failure or data corruption.

• Prevent failure if client sends Bind protocol message when current transaction is already aborted

• /contrib/ltree fixes (Teodor)

• AIX and HPUX compile fixes (Tom)

• Fix longstanding planning error for outer joins

This bug sometimes caused a bogus error “RIGHT JOIN is only supported with merge-joinable join
conditions”.

• Prevent core dump in pg_autovacuum when a table has been dropped

E.180. Release 7.4.9

Release Date: 2005-10-04

This release contains a variety of fixes from 7.4.8. For information about new features in the 7.4 major
release, see Section E.189.

E.180.1. Migration to Version 7.4.9
A dump/restore is not required for those running 7.4.X. However, if you are upgrading from a version
earlier than 7.4.8, see Section E.181.

2476

Appendix E. Release Notes

E.180.2. Changes

• Fix error that allowed VACUUM to remove ctid chains too soon, and add more checking in code that
follows ctid links

This fixes a long-standing problem that could cause crashes in very rare circumstances.

• Fix CHAR() to properly pad spaces to the specified length when using a multiple-byte character set
(Yoshiyuki Asaba)

In prior releases, the padding of CHAR() was incorrect because it only padded to the specified number
of bytes without considering how many characters were stored.

• Fix the sense of the test for read-only transaction in COPY

The code formerly prohibited COPY TO, where it should prohibit COPY FROM.

• Fix planning problem with outer-join ON clauses that reference only the inner-side relation

• Further fixes for x FULL JOIN y ON true corner cases

• Make array_in and array_recv more paranoid about validating their OID parameter

• Fix missing rows in queries like UPDATE a=... WHERE a... with GiST index on column a

• Improve robustness of datetime parsing

• Improve checking for partially-written WAL pages

• Improve robustness of signal handling when SSL is enabled

• Don’t try to open more than max_files_per_process files during postmaster startup

• Various memory leakage fixes

• Various portability improvements

• Fix PL/pgSQL to handle var := var correctly when the variable is of pass-by-reference type

• Update contrib/tsearch2 to use current Snowball code

E.181. Release 7.4.8

Release Date: 2005-05-09

This release contains a variety of fixes from 7.4.7, including several security-related issues. For informa-
tion about new features in the 7.4 major release, see Section E.189.

E.181.1. Migration to Version 7.4.8
A dump/restore is not required for those running 7.4.X. However, it is one possible way of handling two
significant security problems that have been found in the initial contents of 7.4.X system catalogs. A
dump/initdb/reload sequence using 7.4.8’s initdb will automatically correct these problems.

2477

Appendix E. Release Notes

The larger security problem is that the built-in character set encoding conversion functions can be invoked
from SQL commands by unprivileged users, but the functions were not designed for such use and are not
secure against malicious choices of arguments. The fix involves changing the declared parameter list of
these functions so that they can no longer be invoked from SQL commands. (This does not affect their
normal use by the encoding conversion machinery.)

The lesser problem is that the contrib/tsearch2 module creates several functions that are misdeclared
to return internal when they do not accept internal arguments. This breaks type safety for all func-
tions using internal arguments.

It is strongly recommended that all installations repair these errors, either by initdb or by following the
manual repair procedures given below. The errors at least allow unprivileged database users to crash their
server process, and might allow unprivileged users to gain the privileges of a database superuser.

If you wish not to do an initdb, perform the following procedures instead. As the database superuser, do:

BEGIN;
UPDATE pg_proc SET proargtypes[3] = ’internal’::regtype
WHERE pronamespace = 11 AND pronargs = 5

AND proargtypes[2] = ’cstring’::regtype;
-- The command should report having updated 90 rows;
-- if not, rollback and investigate instead of committing!
COMMIT;

Next, if you have installed contrib/tsearch2, do:

BEGIN;
UPDATE pg_proc SET proargtypes[0] = ’internal’::regtype
WHERE oid IN (

’dex_init(text)’::regprocedure,
’snb_en_init(text)’::regprocedure,
’snb_ru_init(text)’::regprocedure,
’spell_init(text)’::regprocedure,
’syn_init(text)’::regprocedure

);
-- The command should report having updated 5 rows;
-- if not, rollback and investigate instead of committing!
COMMIT;

If this command fails with a message like “function "dex_init(text)" does not exist”, then either tsearch2
is not installed in this database, or you already did the update.

The above procedures must be carried out in each database of an installation, including template1, and
ideally including template0 as well. If you do not fix the template databases then any subsequently
created databases will contain the same errors. template1 can be fixed in the same way as any other
database, but fixing template0 requires additional steps. First, from any database issue:

UPDATE pg_database SET datallowconn = true WHERE datname = ’template0’;

Next connect to template0 and perform the above repair procedures. Finally, do:

-- re-freeze template0:
VACUUM FREEZE;
-- and protect it against future alterations:

2478

Appendix E. Release Notes

UPDATE pg_database SET datallowconn = false WHERE datname = ’template0’;

E.181.2. Changes

• Change encoding function signature to prevent misuse

• Change contrib/tsearch2 to avoid unsafe use of INTERNAL function results

• Repair ancient race condition that allowed a transaction to be seen as committed for some purposes (eg
SELECT FOR UPDATE) slightly sooner than for other purposes

This is an extremely serious bug since it could lead to apparent data inconsistencies being briefly visible
to applications.

• Repair race condition between relation extension and VACUUM

This could theoretically have caused loss of a page’s worth of freshly-inserted data, although the sce-
nario seems of very low probability. There are no known cases of it having caused more than an Assert
failure.

• Fix comparisons of TIME WITH TIME ZONE values

The comparison code was wrong in the case where the --enable-integer-datetimes configura-
tion switch had been used. NOTE: if you have an index on a TIME WITH TIME ZONE column, it will
need to be REINDEXed after installing this update, because the fix corrects the sort order of column
values.

• Fix EXTRACT(EPOCH) for TIME WITH TIME ZONE values

• Fix mis-display of negative fractional seconds in INTERVAL values

This error only occurred when the --enable-integer-datetimes configuration switch had been
used.

• Ensure operations done during backend shutdown are counted by statistics collector

This is expected to resolve reports of pg_autovacuum not vacuuming the system catalogs often enough
— it was not being told about catalog deletions caused by temporary table removal during backend exit.

• Additional buffer overrun checks in plpgsql (Neil)

• Fix pg_dump to dump trigger names containing % correctly (Neil)

• Fix contrib/pgcrypto for newer OpenSSL builds (Marko Kreen)

• Still more 64-bit fixes for contrib/intagg

• Prevent incorrect optimization of functions returning RECORD

• Prevent to_char(interval) from dumping core for month-related formats

• Prevent crash on COALESCE(NULL,NULL)

• Fix array_map to call PL functions correctly

• Fix permission checking in ALTER DATABASE RENAME

2479

Appendix E. Release Notes

• Fix ALTER LANGUAGE RENAME

• Make RemoveFromWaitQueue clean up after itself

This fixes a lock management error that would only be visible if a transaction was kicked out of a wait
for a lock (typically by query cancel) and then the holder of the lock released it within a very narrow
window.

• Fix problem with untyped parameter appearing in INSERT ... SELECT

• Fix CLUSTER failure after ALTER TABLE SET WITHOUT OIDS

E.182. Release 7.4.7

Release Date: 2005-01-31

This release contains a variety of fixes from 7.4.6, including several security-related issues. For informa-
tion about new features in the 7.4 major release, see Section E.189.

E.182.1. Migration to Version 7.4.7
A dump/restore is not required for those running 7.4.X.

E.182.2. Changes

• Disallow LOAD to non-superusers

On platforms that will automatically execute initialization functions of a shared library (this includes at
least Windows and ELF-based Unixen), LOAD can be used to make the server execute arbitrary code.
Thanks to NGS Software for reporting this.

• Check that creator of an aggregate function has the right to execute the specified transition functions

This oversight made it possible to bypass denial of EXECUTE permission on a function.

• Fix security and 64-bit issues in contrib/intagg

• Add needed STRICT marking to some contrib functions (Kris Jurka)

• Avoid buffer overrun when plpgsql cursor declaration has too many parameters (Neil)

• Fix planning error for FULL and RIGHT outer joins

The result of the join was mistakenly supposed to be sorted the same as the left input. This could not
only deliver mis-sorted output to the user, but in case of nested merge joins could give outright wrong
answers.

• Fix plperl for quote marks in tuple fields

• Fix display of negative intervals in SQL and GERMAN datestyles

2480

Appendix E. Release Notes

• Make age(timestamptz) do calculation in local timezone not GMT

E.183. Release 7.4.6

Release Date: 2004-10-22

This release contains a variety of fixes from 7.4.5. For information about new features in the 7.4 major
release, see Section E.189.

E.183.1. Migration to Version 7.4.6
A dump/restore is not required for those running 7.4.X.

E.183.2. Changes

• Repair possible failure to update hint bits on disk

Under rare circumstances this oversight could lead to “could not access transaction status” failures,
which qualifies it as a potential-data-loss bug.

• Ensure that hashed outer join does not miss tuples

Very large left joins using a hash join plan could fail to output unmatched left-side rows given just the
right data distribution.

• Disallow running pg_ctl as root

This is to guard against any possible security issues.

• Avoid using temp files in /tmp in make_oidjoins_check

This has been reported as a security issue, though it’s hardly worthy of concern since there is no reason
for non-developers to use this script anyway.

• Prevent forced backend shutdown from re-emitting prior command result

In rare cases, a client might think that its last command had succeeded when it really had been aborted
by forced database shutdown.

• Repair bug in pg_stat_get_backend_idset

This could lead to misbehavior in some of the system-statistics views.

• Fix small memory leak in postmaster

• Fix “expected both swapped tables to have TOAST tables” bug

This could arise in cases such as CLUSTER after ALTER TABLE DROP COLUMN.

• Prevent pg_ctl restart from adding -D multiple times

2481

Appendix E. Release Notes

• Fix problem with NULL values in GiST indexes

• :: is no longer interpreted as a variable in an ECPG prepare statement

E.184. Release 7.4.5

Release Date: 2004-08-18

This release contains one serious bug fix over 7.4.4. For information about new features in the 7.4 major
release, see Section E.189.

E.184.1. Migration to Version 7.4.5
A dump/restore is not required for those running 7.4.X.

E.184.2. Changes

• Repair possible crash during concurrent B-tree index insertions

This patch fixes a rare case in which concurrent insertions into a B-tree index could result in a server
panic. No permanent damage would result, but it’s still worth a re-release. The bug does not exist in
pre-7.4 releases.

E.185. Release 7.4.4

Release Date: 2004-08-16

This release contains a variety of fixes from 7.4.3. For information about new features in the 7.4 major
release, see Section E.189.

E.185.1. Migration to Version 7.4.4
A dump/restore is not required for those running 7.4.X.

2482

Appendix E. Release Notes

E.185.2. Changes

• Prevent possible loss of committed transactions during crash

Due to insufficient interlocking between transaction commit and checkpointing, it was possible for
transactions committed just before the most recent checkpoint to be lost, in whole or in part, following
a database crash and restart. This is a serious bug that has existed since PostgreSQL 7.1.

• Check HAVING restriction before evaluating result list of an aggregate plan

• Avoid crash when session’s current user ID is deleted

• Fix hashed crosstab for zero-rows case (Joe)

• Force cache update after renaming a column in a foreign key

• Pretty-print UNION queries correctly

• Make psql handle \r\n newlines properly in COPY IN

• pg_dump handled ACLs with grant options incorrectly

• Fix thread support for OS X and Solaris

• Updated JDBC driver (build 215) with various fixes

• ECPG fixes

• Translation updates (various contributors)

E.186. Release 7.4.3

Release Date: 2004-06-14

This release contains a variety of fixes from 7.4.2. For information about new features in the 7.4 major
release, see Section E.189.

E.186.1. Migration to Version 7.4.3
A dump/restore is not required for those running 7.4.X.

E.186.2. Changes

• Fix temporary memory leak when using non-hashed aggregates (Tom)

• ECPG fixes, including some for Informix compatibility (Michael)

• Fixes for compiling with thread-safety, particularly Solaris (Bruce)

2483

Appendix E. Release Notes

• Fix error in COPY IN termination when using the old network protocol (ljb)

• Several important fixes in pg_autovacuum, including fixes for large tables, unsigned oids, stability, temp
tables, and debug mode (Matthew T. O’Connor)

• Fix problem with reading tar-format dumps on NetBSD and BSD/OS (Bruce)

• Several JDBC fixes

• Fix ALTER SEQUENCE RESTART where last_value equals the restart value (Tom)

• Repair failure to recalculate nested sub-selects (Tom)

• Fix problems with non-constant expressions in LIMIT/OFFSET

• Support FULL JOIN with no join clause, such as X FULL JOIN Y ON TRUE (Tom)

• Fix another zero-column table bug (Tom)

• Improve handling of non-qualified identifiers in GROUP BY clauses in sub-selects (Tom)

Select-list aliases within the sub-select will now take precedence over names from outer query levels.

• Do not generate “NATURAL CROSS JOIN” when decompiling rules (Tom)

• Add checks for invalid field length in binary COPY (Tom)

This fixes a difficult-to-exploit security hole.

• Avoid locking conflict between ANALYZE and LISTEN/NOTIFY

• Numerous translation updates (various contributors)

E.187. Release 7.4.2

Release Date: 2004-03-08

This release contains a variety of fixes from 7.4.1. For information about new features in the 7.4 major
release, see Section E.189.

E.187.1. Migration to Version 7.4.2
A dump/restore is not required for those running 7.4.X. However, it might be advisable as the easiest
method of incorporating fixes for two errors that have been found in the initial contents of 7.4.X system
catalogs. A dump/initdb/reload sequence using 7.4.2’s initdb will automatically correct these problems.

The more severe of the two errors is that data type anyarray has the wrong alignment label; this is a
problem because the pg_statistic system catalog uses anyarray columns. The mislabeling can cause
planner misestimations and even crashes when planning queries that involve WHERE clauses on double-
aligned columns (such as float8 and timestamp). It is strongly recommended that all installations
repair this error, either by initdb or by following the manual repair procedure given below.

2484

Appendix E. Release Notes

The lesser error is that the system view pg_settings ought to be marked as having public update access,
to allow UPDATE pg_settings to be used as a substitute for SET. This can also be fixed either by initdb
or manually, but it is not necessary to fix unless you want to use UPDATE pg_settings.

If you wish not to do an initdb, the following procedure will work for fixing pg_statistic. As the
database superuser, do:

-- clear out old data in pg_statistic:
DELETE FROM pg_statistic;
VACUUM pg_statistic;
-- this should update 1 row:
UPDATE pg_type SET typalign = ’d’ WHERE oid = 2277;
-- this should update 6 rows:
UPDATE pg_attribute SET attalign = ’d’ WHERE atttypid = 2277;
--
-- At this point you MUST start a fresh backend to avoid a crash!
--
-- repopulate pg_statistic:
ANALYZE;

This can be done in a live database, but beware that all backends running in the altered database must be
restarted before it is safe to repopulate pg_statistic.

To repair the pg_settings error, simply do:

GRANT SELECT, UPDATE ON pg_settings TO PUBLIC;

The above procedures must be carried out in each database of an installation, including template1, and
ideally including template0 as well. If you do not fix the template databases then any subsequently
created databases will contain the same errors. template1 can be fixed in the same way as any other
database, but fixing template0 requires additional steps. First, from any database issue:

UPDATE pg_database SET datallowconn = true WHERE datname = ’template0’;

Next connect to template0 and perform the above repair procedures. Finally, do:

-- re-freeze template0:
VACUUM FREEZE;
-- and protect it against future alterations:
UPDATE pg_database SET datallowconn = false WHERE datname = ’template0’;

E.187.2. Changes
Release 7.4.2 incorporates all the fixes included in release 7.3.6, plus the following fixes:

• Fix pg_statistics alignment bug that could crash optimizer

See above for details about this problem.

2485

Appendix E. Release Notes

• Allow non-super users to update pg_settings

• Fix several optimizer bugs, most of which led to “variable not found in subplan target lists” errors

• Avoid out-of-memory failure during startup of large multiple index scan

• Fix multibyte problem that could lead to “out of memory” error during COPY IN

• Fix problems with SELECT INTO / CREATE TABLE AS from tables without OIDs

• Fix problems with alter_table regression test during parallel testing

• Fix problems with hitting open file limit, especially on OS X (Tom)

• Partial fix for Turkish-locale issues

initdb will succeed now in Turkish locale, but there are still some inconveniences associated with the
i/I problem.

• Make pg_dump set client encoding on restore

• Other minor pg_dump fixes

• Allow ecpg to again use C keywords as column names (Michael)

• Added ecpg WHENEVER NOT_FOUND to SELECT/INSERT/UPDATE/DELETE (Michael)

• Fix ecpg crash for queries calling set-returning functions (Michael)

• Various other ecpg fixes (Michael)

• Fixes for Borland compiler

• Thread build improvements (Bruce)

• Various other build fixes

• Various JDBC fixes

E.188. Release 7.4.1

Release Date: 2003-12-22

This release contains a variety of fixes from 7.4. For information about new features in the 7.4 major
release, see Section E.189.

E.188.1. Migration to Version 7.4.1
A dump/restore is not required for those running 7.4.

If you want to install the fixes in the information schema you need to reload it into the database. This
is either accomplished by initializing a new cluster by running initdb, or by running the following
sequence of SQL commands in each database (ideally including template1) as a superuser in psql, after
installing the new release:

2486

Appendix E. Release Notes

DROP SCHEMA information_schema CASCADE;
\i /usr/local/pgsql/share/information_schema.sql

Substitute your installation path in the second command.

E.188.2. Changes

• Fixed bug in CREATE SCHEMA parsing in ECPG (Michael)

• Fix compile error when --enable-thread-safety and --with-perl are used together (Peter)

• Fix for subqueries that used hash joins (Tom)

Certain subqueries that used hash joins would crash because of improperly shared structures.

• Fix free space map compaction bug (Tom)

This fixes a bug where compaction of the free space map could lead to a database server shutdown.

• Fix for Borland compiler build of libpq (Bruce)

• Fix netmask() and hostmask() to return the maximum-length masklen (Tom)

Fix these functions to return values consistent with pre-7.4 releases.

• Several contrib/pg_autovacuum fixes

Fixes include improper variable initialization, missing vacuum after TRUNCATE, and duration compu-
tation overflow for long vacuums.

• Allow compile of contrib/cube under Cygwin (Jason Tishler)

• Fix Solaris use of password file when no passwords are defined (Tom)

Fix crash on Solaris caused by use of any type of password authentication when no passwords were
defined.

• JDBC fix for thread problems, other fixes

• Fix for bytea index lookups (Joe)

• Fix information schema for bit data types (Peter)

• Force zero_damaged_pages to be on during recovery from WAL

• Prevent some obscure cases of “variable not in subplan target lists”

• Make PQescapeBytea and byteaout consistent with each other (Joe)

• Escape bytea output for bytes > 0x7e(Joe)

If different client encodings are used for bytea output and input, it is possible for bytea values to be
corrupted by the differing encodings. This fix escapes all bytes that might be affected.

• Added missing SPI_finish() calls to dblink’s get_tuple_of_interest() (Joe)

• New Czech FAQ

• Fix information schema view constraint_column_usage for foreign keys (Peter)

• ECPG fixes (Michael)

2487

Appendix E. Release Notes

• Fix bug with multiple IN subqueries and joins in the subqueries (Tom)

• Allow COUNT(’x’) to work (Tom)

• Install ECPG include files for Informix compatibility into separate directory (Peter)

Some names of ECPG include files for Informix compatibility conflicted with operating system include
files. By installing them in their own directory, name conflicts have been reduced.

• Fix SSL memory leak (Neil)

This release fixes a bug in 7.4 where SSL didn’t free all memory it allocated.

• Prevent pg_service.conf from using service name as default dbname (Bruce)

• Fix local ident authentication on FreeBSD (Tom)

E.189. Release 7.4

Release Date: 2003-11-17

E.189.1. Overview
Major changes in this release:

IN / NOT IN subqueries are now much more efficient

In previous releases, IN/NOT IN subqueries were joined to the upper query by sequentially scanning
the subquery looking for a match. The 7.4 code uses the same sophisticated techniques used by
ordinary joins and so is much faster. An IN will now usually be as fast as or faster than an equivalent
EXISTS subquery; this reverses the conventional wisdom that applied to previous releases.

Improved GROUP BY processing by using hash buckets

In previous releases, rows to be grouped had to be sorted first. The 7.4 code can do GROUP BYwithout
sorting, by accumulating results into a hash table with one entry per group. It will still use the sort
technique, however, if the hash table is estimated to be too large to fit in sort_mem.

New multikey hash join capability

In previous releases, hash joins could only occur on single keys. This release allows multicolumn
hash joins.

Queries using the explicit JOIN syntax are now better optimized

Prior releases evaluated queries using the explicit JOIN syntax only in the order implied by the
syntax. 7.4 allows full optimization of these queries, meaning the optimizer considers all possible
join orderings and chooses the most efficient. Outer joins, however, must still follow the declared
ordering.

2488

Appendix E. Release Notes

Faster and more powerful regular expression code

The entire regular expression module has been replaced with a new version by Henry Spencer, origi-
nally written for Tcl. The code greatly improves performance and supports several flavors of regular
expressions.

Function-inlining for simple SQL functions

Simple SQL functions can now be inlined by including their SQL in the main query. This improves
performance by eliminating per-call overhead. That means simple SQL functions now behave like
macros.

Full support for IPv6 connections and IPv6 address data types

Previous releases allowed only IPv4 connections, and the IP data types only supported IPv4 ad-
dresses. This release adds full IPv6 support in both of these areas.

Major improvements in SSL performance and reliability

Several people very familiar with the SSL API have overhauled our SSL code to improve SSL key
negotiation and error recovery.

Make free space map efficiently reuse empty index pages, and other free space management improvements

In previous releases, B-tree index pages that were left empty because of deleted rows could only be
reused by rows with index values similar to the rows originally indexed on that page. In 7.4, VACUUM
records empty index pages and allows them to be reused for any future index rows.

SQL-standard information schema

The information schema provides a standardized and stable way to access information about the
schema objects defined in a database.

Cursors conform more closely to the SQL standard

The commands FETCH and MOVE have been overhauled to conform more closely to the SQL standard.

Cursors can exist outside transactions

These cursors are also called holdable cursors.

New client-to-server protocol

The new protocol adds error codes, more status information, faster startup, better support for binary
data transmission, parameter values separated from SQL commands, prepared statements available
at the protocol level, and cleaner recovery from COPY failures. The older protocol is still supported
by both server and clients.

libpq and ECPG applications are now fully thread-safe

While previous libpq releases already supported threads, this release improves thread safety by fixing
some non-thread-safe code that was used during database connection startup. The configure option
--enable-thread-safety must be used to enable this feature.

New version of full-text indexing

A new full-text indexing suite is available in contrib/tsearch2.

New autovacuum tool

The new autovacuum tool in contrib/autovacuum monitors the database statistics tables for
INSERT/UPDATE/DELETE activity and automatically vacuums tables when needed.

2489

Appendix E. Release Notes

Array handling has been improved and moved into the server core

Many array limitations have been removed, and arrays behave more like fully-supported data types.

E.189.2. Migration to Version 7.4
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

Observe the following incompatibilities:

• The server-side autocommit setting was removed and reimplemented in client applications and lan-
guages. Server-side autocommit was causing too many problems with languages and applications that
wanted to control their own autocommit behavior, so autocommit was removed from the server and
added to individual client APIs as appropriate.

• Error message wording has changed substantially in this release. Significant effort was invested to
make the messages more consistent and user-oriented. If your applications try to detect different error
conditions by parsing the error message, you are strongly encouraged to use the new error code facility
instead.

• Inner joins using the explicit JOIN syntax might behave differently because they are now better opti-
mized.

• A number of server configuration parameters have been renamed for clarity, primarily those related to
logging.

• FETCH 0 or MOVE 0 now does nothing. In prior releases, FETCH 0 would fetch all remaining rows,
and MOVE 0 would move to the end of the cursor.

• FETCH and MOVE now return the actual number of rows fetched/moved, or zero if at the beginning/end
of the cursor. Prior releases would return the row count passed to the command, not the number of rows
actually fetched or moved.

• COPY now can process files that use carriage-return or carriage-return/line-feed end-of-line sequences.
Literal carriage-returns and line-feeds are no longer accepted in data values; use \r and \n instead.

• Trailing spaces are now trimmed when converting from type char(n) to varchar(n) or text. This
is what most people always expected to happen anyway.

• The data type float(p) now measures p in binary digits, not decimal digits. The new behavior follows
the SQL standard.

• Ambiguous date values now must match the ordering specified by the datestyle setting. In prior
releases, a date specification of 10/20/03 was interpreted as a date in October even if datestyle
specified that the day should be first. 7.4 will throw an error if a date specification is invalid for the
current setting of datestyle.

• The functions oidrand, oidsrand, and userfntest have been removed. These functions were de-
termined to be no longer useful.

• String literals specifying time-varying date/time values, such as ’now’ or ’today’ will no longer work
as expected in column default expressions; they now cause the time of the table creation to be the de-
fault, not the time of the insertion. Functions such as now(), current_timestamp, or current_date
should be used instead.

2490

Appendix E. Release Notes

In previous releases, there was special code so that strings such as ’now’ were interpreted at INSERT
time and not at table creation time, but this work around didn’t cover all cases. Release 7.4 now requires
that defaults be defined properly using functions such as now() or current_timestamp. These will
work in all situations.

• The dollar sign ($) is no longer allowed in operator names. It can instead be a non-first character in
identifiers. This was done to improve compatibility with other database systems, and to avoid syntax
problems when parameter placeholders ($n) are written adjacent to operators.

E.189.3. Changes
Below you will find a detailed account of the changes between release 7.4 and the previous major release.

E.189.3.1. Server Operation Changes

• Allow IPv6 server connections (Nigel Kukard, Johan Jordaan, Bruce, Tom, Kurt Roeckx, Andrew Dun-
stan)

• Fix SSL to handle errors cleanly (Nathan Mueller)

In prior releases, certain SSL API error reports were not handled correctly. This release fixes those
problems.

• SSL protocol security and performance improvements (Sean Chittenden)

SSL key renegotiation was happening too frequently, causing poor SSL performance. Also, initial key
handling was improved.

• Print lock information when a deadlock is detected (Tom)

This allows easier debugging of deadlock situations.

• Update /tmp socket modification times regularly to avoid their removal (Tom)

This should help prevent /tmp directory cleaner administration scripts from removing server socket
files.

• Enable PAM for Mac OS X (Aaron Hillegass)

• Make B-tree indexes fully WAL-safe (Tom)

In prior releases, under certain rare cases, a server crash could cause B-tree indexes to become corrupt.
This release removes those last few rare cases.

• Allow B-tree index compaction and empty page reuse (Tom)

• Fix inconsistent index lookups during split of first root page (Tom)

In prior releases, when a single-page index split into two pages, there was a brief period when another
database session could miss seeing an index entry. This release fixes that rare failure case.

• Improve free space map allocation logic (Tom)

• Preserve free space information between server restarts (Tom)

2491

Appendix E. Release Notes

In prior releases, the free space map was not saved when the postmaster was stopped, so newly started
servers had no free space information. This release saves the free space map, and reloads it when the
server is restarted.

• Add start time to pg_stat_activity (Neil)

• New code to detect corrupt disk pages; erase with zero_damaged_pages (Tom)

• New client/server protocol: faster, no username length limit, allow clean exit from COPY (Tom)

• Add transaction status, table ID, column ID to client/server protocol (Tom)

• Add binary I/O to client/server protocol (Tom)

• Remove autocommit server setting; move to client applications (Tom)

• New error message wording, error codes, and three levels of error detail (Tom, Joe, Peter)

E.189.3.2. Performance Improvements

• Add hashing for GROUP BY aggregates (Tom)

• Make nested-loop joins be smarter about multicolumn indexes (Tom)

• Allow multikey hash joins (Tom)

• Improve constant folding (Tom)

• Add ability to inline simple SQL functions (Tom)

• Reduce memory usage for queries using complex functions (Tom)

In prior releases, functions returning allocated memory would not free it until the query completed. This
release allows the freeing of function-allocated memory when the function call completes, reducing the
total memory used by functions.

• Improve GEQO optimizer performance (Tom)

This release fixes several inefficiencies in the way the GEQO optimizer manages potential query paths.

• Allow IN/NOT IN to be handled via hash tables (Tom)

• Improve NOT IN (subquery) performance (Tom)

• Allow most IN subqueries to be processed as joins (Tom)

• Pattern matching operations can use indexes regardless of locale (Peter)

There is no way for non-ASCII locales to use the standard indexes for LIKE comparisons. This release
adds a way to create a special index for LIKE.

• Allow the postmaster to preload libraries using preload_libraries (Joe)

For shared libraries that require a long time to load, this option is available so the library can be
preloaded in the postmaster and inherited by all database sessions.

• Improve optimizer cost computations, particularly for subqueries (Tom)

• Avoid sort when subquery ORDER BY matches upper query (Tom)

• Deduce that WHERE a.x = b.y AND b.y = 42 also means a.x = 42 (Tom)

2492

Appendix E. Release Notes

• Allow hash/merge joins on complex joins (Tom)

• Allow hash joins for more data types (Tom)

• Allow join optimization of explicit inner joins, disable with join_collapse_limit (Tom)

• Add parameter from_collapse_limit to control conversion of subqueries to joins (Tom)

• Use faster and more powerful regular expression code from Tcl (Henry Spencer, Tom)

• Use bit-mapped relation sets in the optimizer (Tom)

• Improve connection startup time (Tom)

The new client/server protocol requires fewer network packets to start a database session.

• Improve trigger/constraint performance (Stephan)

• Improve speed of col IN (const, const, const, ...) (Tom)

• Fix hash indexes which were broken in rare cases (Tom)

• Improve hash index concurrency and speed (Tom)

Prior releases suffered from poor hash index performance, particularly for high concurrency situations.
This release fixes that, and the development group is interested in reports comparing B-tree and hash
index performance.

• Align shared buffers on 32-byte boundary for copy speed improvement (Manfred Spraul)

Certain CPU’s perform faster data copies when addresses are 32-byte aligned.

• Data type numeric reimplemented for better performance (Tom)

numeric used to be stored in base 100. The new code uses base 10000, for significantly better perfor-
mance.

E.189.3.3. Server Configuration Changes

• Rename server parameter server_min_messages to log_min_messages (Bruce)

This was done so most parameters that control the server logs begin with log_.

• Rename show_*_stats to log_*_stats (Bruce)

• Rename show_source_port to log_source_port (Bruce)

• Rename hostname_lookup to log_hostname (Bruce)

• Add checkpoint_warning to warn of excessive checkpointing (Bruce)

In prior releases, it was difficult to determine if checkpoint was happening too frequently. This feature
adds a warning to the server logs when excessive checkpointing happens.

• New read-only server parameters for localization (Tom)

• Change debug server log messages to output as DEBUG rather than LOG (Bruce)

• Prevent server log variables from being turned off by non-superusers (Bruce)

This is a security feature so non-superusers cannot disable logging that was enabled by the administra-
tor.

2493

Appendix E. Release Notes

• log_min_messages/client_min_messages now controls debug_* output (Bruce)

This centralizes client debug information so all debug output can be sent to either the client or server
logs.

• Add Mac OS X Rendezvous server support (Chris Campbell)

This allows Mac OS X hosts to query the network for available PostgreSQL servers.

• Add ability to print only slow statements using log_min_duration_statement (Christopher)

This is an often requested debugging feature that allows administrators to see only slow queries in their
server logs.

• Allow pg_hba.conf to accept netmasks in CIDR format (Andrew Dunstan)

This allows administrators to merge the host IP address and netmask fields into a single CIDR field in
pg_hba.conf.

• New read-only parameter is_superuser (Tom)

• New parameter log_error_verbosity to control error detail (Tom)

This works with the new error reporting feature to supply additional error information like hints, file
names and line numbers.

• postgres --describe-config now dumps server config variables (Aizaz Ahmed, Peter)

This option is useful for administration tools that need to know the configuration variable names and
their minimums, maximums, defaults, and descriptions.

• Add new columns in pg_settings: context, type, source, min_val, max_val (Joe)

• Make default shared_buffers 1000 and max_connections 100, if possible (Tom)

Prior versions defaulted to 64 shared buffers so PostgreSQL would start on even very old systems.
This release tests the amount of shared memory allowed by the platform and selects more reasonable
default values if possible. Of course, users are still encouraged to evaluate their resource load and size
shared_buffers accordingly.

• New pg_hba.conf record type hostnossl to prevent SSL connections (Jon Jensen)

In prior releases, there was no way to prevent SSL connections if both the client and server supported
SSL. This option allows that capability.

• Remove parameter geqo_random_seed (Tom)

• Add server parameter regex_flavor to control regular expression processing (Tom)

• Make pg_ctl better handle nonstandard ports (Greg)

E.189.3.4. Query Changes

• New SQL-standard information schema (Peter)

• Add read-only transactions (Peter)

• Print key name and value in foreign-key violation messages (Dmitry Tkach)

• Allow users to see their own queries in pg_stat_activity (Kevin Brown)

2494

Appendix E. Release Notes

In prior releases, only the superuser could see query strings using pg_stat_activity. Now ordinary
users can see their own query strings.

• Fix aggregates in subqueries to match SQL standard (Tom)

The SQL standard says that an aggregate function appearing within a nested subquery belongs to the
outer query if its argument contains only outer-query variables. Prior PostgreSQL releases did not
handle this fine point correctly.

• Add option to prevent auto-addition of tables referenced in query (Nigel J. Andrews)

By default, tables mentioned in the query are automatically added to the FROM clause if they are not
already there. This is compatible with historic POSTGRES behavior but is contrary to the SQL standard.
This option allows selecting standard-compatible behavior.

• Allow UPDATE ... SET col = DEFAULT (Rod)

This allows UPDATE to set a column to its declared default value.

• Allow expressions to be used in LIMIT/OFFSET (Tom)

In prior releases, LIMIT/OFFSET could only use constants, not expressions.

• Implement CREATE TABLE AS EXECUTE (Neil, Peter)

E.189.3.5. Object Manipulation Changes

• Make CREATE SEQUENCE grammar more conforming to SQL:2003 (Neil)

• Add statement-level triggers (Neil)

While this allows a trigger to fire at the end of a statement, it does not allow the trigger to access all
rows modified by the statement. This capability is planned for a future release.

• Add check constraints for domains (Rod)

This greatly increases the usefulness of domains by allowing them to use check constraints.

• Add ALTER DOMAIN (Rod)

This allows manipulation of existing domains.

• Fix several zero-column table bugs (Tom)

PostgreSQL supports zero-column tables. This fixes various bugs that occur when using such tables.

• Have ALTER TABLE ... ADD PRIMARY KEY add not-null constraint (Rod)

In prior releases, ALTER TABLE ... ADD PRIMARY would add a unique index, but not a not-null
constraint. That is fixed in this release.

• Add ALTER TABLE ... WITHOUT OIDS (Rod)

This allows control over whether new and updated rows will have an OID column. This is most useful
for saving storage space.

• Add ALTER SEQUENCE to modify minimum, maximum, increment, cache, cycle values (Rod)

• Add ALTER TABLE ... CLUSTER ON (Alvaro Herrera)

2495

Appendix E. Release Notes

This command is used by pg_dump to record the cluster column for each table previously clustered.
This information is used by database-wide cluster to cluster all previously clustered tables.

• Improve automatic type casting for domains (Rod, Tom)

• Allow dollar signs in identifiers, except as first character (Tom)

• Disallow dollar signs in operator names, so x=$1 works (Tom)

• Allow copying table schema using LIKE subtable, also SQL:2003 feature INCLUDING DEFAULTS

(Rod)

• Add WITH GRANT OPTION clause to GRANT (Peter)

This enabled GRANT to give other users the ability to grant privileges on a object.

E.189.3.6. Utility Command Changes

• Add ON COMMIT clause to CREATE TABLE for temporary tables (Gavin)

This adds the ability for a table to be dropped or all rows deleted on transaction commit.

• Allow cursors outside transactions using WITH HOLD (Neil)

In previous releases, cursors were removed at the end of the transaction that created them. Cursors can
now be created with the WITH HOLD option, which allows them to continue to be accessed after the
creating transaction has committed.

• FETCH 0 and MOVE 0 now do nothing (Bruce)

In previous releases, FETCH 0 fetched all remaining rows, and MOVE 0 moved to the end of the cursor.

• Cause FETCH and MOVE to return the number of rows fetched/moved, or zero if at the beginning/end of
cursor, per SQL standard (Bruce)

In prior releases, the row count returned by FETCH and MOVE did not accurately reflect the number of
rows processed.

• Properly handle SCROLL with cursors, or report an error (Neil)

Allowing random access (both forward and backward scrolling) to some kinds of queries cannot be
done without some additional work. If SCROLL is specified when the cursor is created, this additional
work will be performed. Furthermore, if the cursor has been created with NO SCROLL, no random
access is allowed.

• Implement SQL-compatible options FIRST, LAST, ABSOLUTE n, RELATIVE n for FETCH and MOVE

(Tom)

• Allow EXPLAIN on DECLARE CURSOR (Tom)

• Allow CLUSTER to use index marked as pre-clustered by default (Alvaro Herrera)

• Allow CLUSTER to cluster all tables (Alvaro Herrera)

This allows all previously clustered tables in a database to be reclustered with a single command.

• Prevent CLUSTER on partial indexes (Tom)

• Allow DOS and Mac line-endings in COPY files (Bruce)

2496

Appendix E. Release Notes

• Disallow literal carriage return as a data value, backslash-carriage-return and \r are still allowed
(Bruce)

• COPY changes (binary, \.) (Tom)

• Recover from COPY failure cleanly (Tom)

• Prevent possible memory leaks in COPY (Tom)

• Make TRUNCATE transaction-safe (Rod)

TRUNCATE can now be used inside a transaction. If the transaction aborts, the changes made by the
TRUNCATE are automatically rolled back.

• Allow prepare/bind of utility commands like FETCH and EXPLAIN (Tom)

• Add EXPLAIN EXECUTE (Neil)

• Improve VACUUM performance on indexes by reducing WAL traffic (Tom)

• Functional indexes have been generalized into indexes on expressions (Tom)

In prior releases, functional indexes only supported a simple function applied to one or more column
names. This release allows any type of scalar expression.

• Have SHOW TRANSACTION ISOLATION match input to SET TRANSACTION ISOLATION (Tom)

• Have COMMENT ON DATABASE on nonlocal database generate a warning, rather than an error (Rod)

Database comments are stored in database-local tables so comments on a database have to be stored in
each database.

• Improve reliability of LISTEN/NOTIFY (Tom)

• Allow REINDEX to reliably reindex nonshared system catalog indexes (Tom)

This allows system tables to be reindexed without the requirement of a standalone session, which was
necessary in previous releases. The only tables that now require a standalone session for reindexing are
the global system tables pg_database, pg_shadow, and pg_group.

E.189.3.7. Data Type and Function Changes

• New server parameter extra_float_digits to control precision display of floating-point numbers
(Pedro Ferreira, Tom)

This controls output precision which was causing regression testing problems.

• Allow +1300 as a numeric time-zone specifier, for FJST (Tom)

• Remove rarely used functions oidrand, oidsrand, and userfntest functions (Neil)

• Add md5() function to main server, already in contrib/pgcrypto (Joe)

An MD5 function was frequently requested. For more complex encryption capabilities, use
contrib/pgcrypto.

• Increase date range of timestamp (John Cochran)

• Change EXTRACT(EPOCH FROM timestamp) so timestamp without time zone is assumed to
be in local time, not GMT (Tom)

2497

Appendix E. Release Notes

• Trap division by zero in case the operating system doesn’t prevent it (Tom)

• Change the numeric data type internally to base 10000 (Tom)

• New hostmask() function (Greg Wickham)

• Fixes for to_char() and to_timestamp() (Karel)

• Allow functions that can take any argument data type and return any data type, using anyelement and
anyarray (Joe)

This allows the creation of functions that can work with any data type.

• Arrays can now be specified as ARRAY[1,2,3], ARRAY[[’a’,’b’],[’c’,’d’]], or
ARRAY[ARRAY[ARRAY[2]]] (Joe)

• Allow proper comparisons for arrays, including ORDER BY and DISTINCT support (Joe)

• Allow indexes on array columns (Joe)

• Allow array concatenation with || (Joe)

• Allow WHERE qualification expr op ANY/SOME/ALL (array_expr) (Joe)

This allows arrays to behave like a list of values, for purposes like SELECT * FROM tab WHERE col

IN (array_val).

• New array functions array_append, array_cat, array_lower, array_prepend,
array_to_string, array_upper, string_to_array (Joe)

• Allow user defined aggregates to use polymorphic functions (Joe)

• Allow assignments to empty arrays (Joe)

• Allow 60 in seconds fields of time, timestamp, and interval input values (Tom)

Sixty-second values are needed for leap seconds.

• Allow cidr data type to be cast to text (Tom)

• Disallow invalid time zone names in SET TIMEZONE

• Trim trailing spaces when char is cast to varchar or text (Tom)

• Make float(p) measure the precision p in binary digits, not decimal digits (Tom)

• Add IPv6 support to the inet and cidr data types (Michael Graff)

• Add family() function to report whether address is IPv4 or IPv6 (Michael Graff)

• Have SHOW datestyle generate output similar to that used by SET datestyle (Tom)

• Make EXTRACT(TIMEZONE) and SET/SHOW TIME ZONE follow the SQL convention for the sign of
time zone offsets, i.e., positive is east from UTC (Tom)

• Fix date_trunc(’quarter’, ...) (Böjthe Zoltán)

Prior releases returned an incorrect value for this function call.

• Make initcap() more compatible with Oracle (Mike Nolan)

initcap() now uppercases a letter appearing after any non-alphanumeric character, rather than only
after whitespace.

• Allow only datestyle field order for date values not in ISO-8601 format (Greg)

2498

Appendix E. Release Notes

• Add new datestyle values MDY, DMY, and YMD to set input field order; honor US and European for
backward compatibility (Tom)

• String literals like ’now’ or ’today’ will no longer work as a column default. Use functions such as
now(), current_timestamp instead. (change required for prepared statements) (Tom)

• Treat NaN as larger than any other value in min()/max() (Tom)

NaN was already sorted after ordinary numeric values for most purposes, but min() and max() didn’t
get this right.

• Prevent interval from suppressing :00 seconds display

• New functions pg_get_triggerdef(prettyprint) and pg_conversion_is_visible()

(Christopher)

• Allow time to be specified as 040506 or 0405 (Tom)

• Input date order must now be YYYY-MM-DD (with 4-digit year) or match datestyle

• Make pg_get_constraintdef support unique, primary-key, and check constraints (Christopher)

E.189.3.8. Server-Side Language Changes

• Prevent PL/pgSQL crash when RETURN NEXT is used on a zero-row record variable (Tom)

• Make PL/Python’s spi_execute interface handle null values properly (Andrew Bosma)

• Allow PL/pgSQL to declare variables of composite types without %ROWTYPE (Tom)

• Fix PL/Python’s _quote() function to handle big integers

• Make PL/Python an untrusted language, now called plpythonu (Kevin Jacobs, Tom)

The Python language no longer supports a restricted execution environment, so the trusted version of
PL/Python was removed. If this situation changes, a version of PL/Python that can be used by non-
superusers will be readded.

• Allow polymorphic PL/pgSQL functions (Joe, Tom)

• Allow polymorphic SQL functions (Joe)

• Improved compiled function caching mechanism in PL/pgSQL with full support for polymorphism
(Joe)

• Add new parameter $0 in PL/pgSQL representing the function’s actual return type (Joe)

• Allow PL/Tcl and PL/Python to use the same trigger on multiple tables (Tom)

• Fixed PL/Tcl’s spi_prepare to accept fully qualified type names in the parameter type list (Jan)

E.189.3.9. psql Changes

• Add \pset pager always to always use pager (Greg)

This forces the pager to be used even if the number of rows is less than the screen height. This is
valuable for rows that wrap across several screen rows.

2499

Appendix E. Release Notes

• Improve tab completion (Rod, Ross Reedstrom, Ian Barwick)

• Reorder \? help into groupings (Harald Armin Massa, Bruce)

• Add backslash commands for listing schemas, casts, and conversions (Christopher)

• \encoding now changes based on the server parameter client_encoding (Tom)

In previous versions, \encoding was not aware of encoding changes made using SET

client_encoding.

• Save editor buffer into readline history (Ross)

When \e is used to edit a query, the result is saved in the readline history for retrieval using the up
arrow.

• Improve \d display (Christopher)

• Enhance HTML mode to be more standards-conforming (Greg)

• New \set AUTOCOMMIT off capability (Tom)

This takes the place of the removed server parameter autocommit.

• New \set VERBOSITY to control error detail (Tom)

This controls the new error reporting details.

• New prompt escape sequence %x to show transaction status (Tom)

• Long options for psql are now available on all platforms

E.189.3.10. pg_dump Changes

• Multiple pg_dump fixes, including tar format and large objects

• Allow pg_dump to dump specific schemas (Neil)

• Make pg_dump preserve column storage characteristics (Christopher)

This preserves ALTER TABLE ... SET STORAGE information.

• Make pg_dump preserve CLUSTER characteristics (Christopher)

• Have pg_dumpall use GRANT/REVOKE to dump database-level privileges (Tom)

• Allow pg_dumpall to support the options -a, -s, -x of pg_dump (Tom)

• Prevent pg_dump from lowercasing identifiers specified on the command line (Tom)

• pg_dump options --use-set-session-authorization and --no-reconnect now do nothing,
all dumps use SET SESSION AUTHORIZATION

pg_dump no longer reconnects to switch users, but instead always uses SET SESSION

AUTHORIZATION. This will reduce password prompting during restores.

• Long options for pg_dump are now available on all platforms

PostgreSQL now includes its own long-option processing routines.

2500

Appendix E. Release Notes

E.189.3.11. libpq Changes

• Add function PQfreemem for freeing memory on Windows, suggested for NOTIFY (Bruce)

Windows requires that memory allocated in a library be freed by a function in the same library, hence
free() doesn’t work for freeing memory allocated by libpq. PQfreemem is the proper way to free
libpq memory, especially on Windows, and is recommended for other platforms as well.

• Document service capability, and add sample file (Bruce)

This allows clients to look up connection information in a central file on the client machine.

• Make PQsetdbLogin have the same defaults as PQconnectdb (Tom)

• Allow libpq to cleanly fail when result sets are too large (Tom)

• Improve performance of function PQunescapeBytea (Ben Lamb)

• Allow thread-safe libpq with configure option --enable-thread-safety (Lee Kindness, Philip
Yarra)

• Allow function pqInternalNotice to accept a format string and arguments instead of just a prefor-
matted message (Tom, Sean Chittenden)

• Control SSL negotiation with sslmode values disable, allow, prefer, and require (Jon Jensen)

• Allow new error codes and levels of text (Tom)

• Allow access to the underlying table and column of a query result (Tom)

This is helpful for query-builder applications that want to know the underlying table and column names
associated with a specific result set.

• Allow access to the current transaction status (Tom)

• Add ability to pass binary data directly to the server (Tom)

• Add function PQexecPrepared and PQsendQueryPrepared functions which perform bind/execute
of previously prepared statements (Tom)

E.189.3.12. JDBC Changes

• Allow setNull on updateable result sets

• Allow executeBatch on a prepared statement (Barry)

• Support SSL connections (Barry)

• Handle schema names in result sets (Paul Sorenson)

• Add refcursor support (Nic Ferrier)

E.189.3.13. Miscellaneous Interface Changes

• Prevent possible memory leak or core dump during libpgtcl shutdown (Tom)

• Add Informix compatibility to ECPG (Michael)

2501

Appendix E. Release Notes

This allows ECPG to process embedded C programs that were written using certain Informix exten-
sions.

• Add type decimal to ECPG that is fixed length, for Informix (Michael)

• Allow thread-safe embedded SQL programs with configure option --enable-thread-safety

(Lee Kindness, Bruce)

This allows multiple threads to access the database at the same time.

• Moved Python client PyGreSQL to http://www.pygresql.org (Marc)

E.189.3.14. Source Code Changes

• Prevent need for separate platform geometry regression result files (Tom)

• Improved PPC locking primitive (Reinhard Max)

• New function palloc0 to allocate and clear memory (Bruce)

• Fix locking code for s390x CPU (64-bit) (Tom)

• Allow OpenBSD to use local ident credentials (William Ahern)

• Make query plan trees read-only to executor (Tom)

• Add Darwin startup scripts (David Wheeler)

• Allow libpq to compile with Borland C++ compiler (Lester Godwin, Karl Waclawek)

• Use our own version of getopt_long() if needed (Peter)

• Convert administration scripts to C (Peter)

• Bison >= 1.85 is now required to build the PostgreSQL grammar, if building from CVS

• Merge documentation into one book (Peter)

• Add Windows compatibility functions (Bruce)

• Allow client interfaces to compile under MinGW (Bruce)

• New ereport() function for error reporting (Tom)

• Support Intel compiler on Linux (Peter)

• Improve Linux startup scripts (Slawomir Sudnik, Darko Prenosil)

• Add support for AMD Opteron and Itanium (Jeffrey W. Baker, Bruce)

• Remove --enable-recode option from configure

This was no longer needed now that we have CREATE CONVERSION.

• Generate a compile error if spinlock code is not found (Bruce)

Platforms without spinlock code will now fail to compile, rather than silently using semaphores. This
failure can be disabled with a new configure option.

2502

Appendix E. Release Notes

E.189.3.15. Contrib Changes

• Change dbmirror license to BSD

• Improve earthdistance (Bruno Wolff III)

• Portability improvements to pgcrypto (Marko Kreen)

• Prevent crash in xml (John Gray, Michael Richards)

• Update oracle

• Update mysql

• Update cube (Bruno Wolff III)

• Update earthdistance to use cube (Bruno Wolff III)

• Update btree_gist (Oleg)

• New tsearch2 full-text search module (Oleg, Teodor)

• Add hash-based crosstab function to tablefuncs (Joe)

• Add serial column to order connectby() siblings in tablefuncs (Nabil Sayegh,Joe)

• Add named persistent connections to dblink (Shridhar Daithanka)

• New pg_autovacuum allows automatic VACUUM (Matthew T. O’Connor)

• Make pgbench honor environment variables PGHOST, PGPORT, PGUSER (Tatsuo)

• Improve intarray (Teodor Sigaev)

• Improve pgstattuple (Rod)

• Fix bug in metaphone() in fuzzystrmatch

• Improve adddepend (Rod)

• Update spi/timetravel (Böjthe Zoltán)

• Fix dbase -s option and improve non-ASCII handling (Thomas Behr, Márcio Smiderle)

• Remove array module because features now included by default (Joe)

E.190. Release 7.3.21

Release Date: 2008-01-07

This release contains a variety of fixes from 7.3.20, including fixes for significant security issues.

This is expected to be the last PostgreSQL release in the 7.3.X series. Users are encouraged to update to
a newer release branch soon.

2503

Appendix E. Release Notes

E.190.1. Migration to Version 7.3.21
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

E.190.2. Changes

• Prevent functions in indexes from executing with the privileges of the user running VACUUM, ANALYZE,
etc (Tom)

Functions used in index expressions and partial-index predicates are evaluated whenever a new table
entry is made. It has long been understood that this poses a risk of trojan-horse code execution if one
modifies a table owned by an untrustworthy user. (Note that triggers, defaults, check constraints, etc.
pose the same type of risk.) But functions in indexes pose extra danger because they will be executed by
routine maintenance operations such as VACUUM FULL, which are commonly performed automatically
under a superuser account. For example, a nefarious user can execute code with superuser privileges by
setting up a trojan-horse index definition and waiting for the next routine vacuum. The fix arranges for
standard maintenance operations (including VACUUM, ANALYZE, REINDEX, and CLUSTER) to execute
as the table owner rather than the calling user, using the same privilege-switching mechanism already
used for SECURITY DEFINER functions. To prevent bypassing this security measure, execution of SET
SESSION AUTHORIZATION and SET ROLE is now forbidden within a SECURITY DEFINER context.
(CVE-2007-6600)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

The fix that appeared for this in 7.3.20 was incomplete, as it plugged the hole for only some dblink

functions. (CVE-2007-6601, CVE-2007-3278)

• Fix potential crash in translate() when using a multibyte database encoding (Tom)

• Make contrib/tablefunc’s crosstab() handle NULL rowid as a category in its own right, rather
than crashing (Joe)

• Require a specific version of Autoconf to be used when re-generating the configure script (Peter)

This affects developers and packagers only. The change was made to prevent accidental use of untested
combinations of Autoconf and PostgreSQL versions. You can remove the version check if you really
want to use a different Autoconf version, but it’s your responsibility whether the result works or not.

E.191. Release 7.3.20

Release Date: 2007-09-17

This release contains fixes from 7.3.19.

2504

Appendix E. Release Notes

E.191.1. Migration to Version 7.3.20
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

E.191.2. Changes

• Prevent index corruption when a transaction inserts rows and then aborts close to the end of a concurrent
VACUUM on the same table (Tom)

• Make CREATE DOMAIN ... DEFAULT NULL work properly (Tom)

• Fix crash when log_min_error_statement logging runs out of memory (Tom)

• Require non-superusers who use /contrib/dblink to use only password authentication, as a security
measure (Joe)

E.192. Release 7.3.19

Release Date: 2007-04-23

This release contains fixes from 7.3.18, including a security fix.

E.192.1. Migration to Version 7.3.19
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

E.192.2. Changes

• Support explicit placement of the temporary-table schema within search_path, and disable searching
it for functions and operators (Tom)

This is needed to allow a security-definer function to set a truly secure value of search_path. Without
it, an unprivileged SQL user can use temporary objects to execute code with the privileges of the
security-definer function (CVE-2007-2138). See CREATE FUNCTION for more information.

• Fix potential-data-corruption bug in how VACUUM FULL handles UPDATE chains (Tom, Pavan Deolasee)

2505

Appendix E. Release Notes

E.193. Release 7.3.18

Release Date: 2007-02-05

This release contains a variety of fixes from 7.3.17, including a security fix.

E.193.1. Migration to Version 7.3.18
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

E.193.2. Changes

• Remove security vulnerability that allowed connected users to read backend memory (Tom)

The vulnerability involves changing the data type of a table column used in a SQL function (CVE-
2007-0555). This error can easily be exploited to cause a backend crash, and in principle might be used
to read database content that the user should not be able to access.

• Fix rare bug wherein btree index page splits could fail due to choosing an infeasible split point (Heikki
Linnakangas)

• Tighten security of multi-byte character processing for UTF8 sequences over three bytes long (Tom)

E.194. Release 7.3.17

Release Date: 2007-01-08

This release contains a variety of fixes from 7.3.16.

E.194.1. Migration to Version 7.3.17
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

2506

Appendix E. Release Notes

E.194.2. Changes

• to_number() and to_char(numeric) are now STABLE, not IMMUTABLE, for new initdb installs
(Tom)

This is because lc_numeric can potentially change the output of these functions.

• Improve index usage of regular expressions that use parentheses (Tom)

This improves psql \d performance also.

E.195. Release 7.3.16

Release Date: 2006-10-16

This release contains a variety of fixes from 7.3.15.

E.195.1. Migration to Version 7.3.16
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

E.195.2. Changes

• Fix corner cases in pattern matching for psql’s \d commands

• Fix index-corrupting bugs in /contrib/ltree (Teodor)

• Back-port 7.4 spinlock code to improve performance and support 64-bit architectures better

• Fix SSL-related memory leak in libpq

• Fix backslash escaping in /contrib/dbmirror

• Adjust regression tests for recent changes in US DST laws

E.196. Release 7.3.15

Release Date: 2006-05-23

This release contains a variety of fixes from 7.3.14, including patches for extremely serious security issues.

2507

Appendix E. Release Notes

E.196.1. Migration to Version 7.3.15
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

Full security against the SQL-injection attacks described in CVE-2006-2313 and CVE-2006-2314 might
require changes in application code. If you have applications that embed untrustworthy strings into SQL
commands, you should examine them as soon as possible to ensure that they are using recommended
escaping techniques. In most cases, applications should be using subroutines provided by libraries or
drivers (such as libpq’s PQescapeStringConn()) to perform string escaping, rather than relying on ad
hoc code to do it.

E.196.2. Changes

• Change the server to reject invalidly-encoded multibyte characters in all cases (Tatsuo, Tom)

While PostgreSQL has been moving in this direction for some time, the checks are now applied uni-
formly to all encodings and all textual input, and are now always errors not merely warnings. This
change defends against SQL-injection attacks of the type described in CVE-2006-2313.

• Reject unsafe uses of \’ in string literals

As a server-side defense against SQL-injection attacks of the type described in CVE-2006-2314, the
server now only accepts ” and not \’ as a representation of ASCII single quote in SQL string literals.
By default, \’ is rejected only when client_encoding is set to a client-only encoding (SJIS, BIG5,
GBK, GB18030, or UHC), which is the scenario in which SQL injection is possible. A new configu-
ration parameter backslash_quote is available to adjust this behavior when needed. Note that full
security against CVE-2006-2314 might require client-side changes; the purpose of backslash_quote
is in part to make it obvious that insecure clients are insecure.

• Modify libpq’s string-escaping routines to be aware of encoding considerations

This fixes libpq-using applications for the security issues described in CVE-2006-2313 and CVE-
2006-2314. Applications that use multiple PostgreSQL connections concurrently should migrate to
PQescapeStringConn() and PQescapeByteaConn() to ensure that escaping is done correctly for
the settings in use in each database connection. Applications that do string escaping “by hand” should
be modified to rely on library routines instead.

• Fix some incorrect encoding conversion functions

win1251_to_iso, alt_to_iso, euc_tw_to_big5, euc_tw_to_mic, mic_to_euc_tw were all
broken to varying extents.

• Clean up stray remaining uses of \’ in strings (Bruce, Jan)

• Fix server to use custom DH SSL parameters correctly (Michael Fuhr)

• Fix various minor memory leaks

2508

Appendix E. Release Notes

E.197. Release 7.3.14

Release Date: 2006-02-14

This release contains a variety of fixes from 7.3.13.

E.197.1. Migration to Version 7.3.14
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.13, see Section E.198.

E.197.2. Changes

• Fix potential crash in SET SESSION AUTHORIZATION (CVE-2006-0553)

An unprivileged user could crash the server process, resulting in momentary denial of service to other
users, if the server has been compiled with Asserts enabled (which is not the default). Thanks to Akio
Ishida for reporting this problem.

• Fix bug with row visibility logic in self-inserted rows (Tom)

Under rare circumstances a row inserted by the current command could be seen as already valid, when
it should not be. Repairs bug created in 7.3.11 release.

• Fix race condition that could lead to “file already exists” errors during pg_clog file creation (Tom)

• Fix to allow restoring dumps that have cross-schema references to custom operators (Tom)

• Portability fix for testing presence of finite and isinf during configure (Tom)

E.198. Release 7.3.13

Release Date: 2006-01-09

This release contains a variety of fixes from 7.3.12.

E.198.1. Migration to Version 7.3.13
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.10, see Section E.201. Also, you might need to REINDEX indexes on textual columns after
updating, if you are affected by the locale or plperl issues described below.

2509

Appendix E. Release Notes

E.198.2. Changes

• Fix character string comparison for locales that consider different character combinations as equal, such
as Hungarian (Tom)

This might require REINDEX to fix existing indexes on textual columns.

• Set locale environment variables during postmaster startup to ensure that plperl won’t change the locale
later

This fixes a problem that occurred if the postmaster was started with environment variables specifying
a different locale than what initdb had been told. Under these conditions, any use of plperl was likely
to lead to corrupt indexes. You might need REINDEX to fix existing indexes on textual columns if this
has happened to you.

• Fix longstanding bug in strpos() and regular expression handling in certain rarely used Asian multi-byte
character sets (Tatsuo)

• Fix bug in /contrib/pgcrypto gen_salt, which caused it not to use all available salt space for MD5
and XDES algorithms (Marko Kreen, Solar Designer)

Salts for Blowfish and standard DES are unaffected.

• Fix /contrib/dblink to throw an error, rather than crashing, when the number of columns specified
is different from what’s actually returned by the query (Joe)

E.199. Release 7.3.12

Release Date: 2005-12-12

This release contains a variety of fixes from 7.3.11.

E.199.1. Migration to Version 7.3.12
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.10, see Section E.201.

E.199.2. Changes

• Fix race condition in transaction log management

There was a narrow window in which an I/O operation could be initiated for the wrong page, leading
to an Assert failure or data corruption.

• /contrib/ltree fixes (Teodor)

2510

Appendix E. Release Notes

• Fix longstanding planning error for outer joins

This bug sometimes caused a bogus error “RIGHT JOIN is only supported with merge-joinable join
conditions”.

• Prevent core dump in pg_autovacuum when a table has been dropped

E.200. Release 7.3.11

Release Date: 2005-10-04

This release contains a variety of fixes from 7.3.10.

E.200.1. Migration to Version 7.3.11
A dump/restore is not required for those running 7.3.X. However, if you are upgrading from a version
earlier than 7.3.10, see Section E.201.

E.200.2. Changes

• Fix error that allowed VACUUM to remove ctid chains too soon, and add more checking in code that
follows ctid links

This fixes a long-standing problem that could cause crashes in very rare circumstances.

• Fix CHAR() to properly pad spaces to the specified length when using a multiple-byte character set
(Yoshiyuki Asaba)

In prior releases, the padding of CHAR() was incorrect because it only padded to the specified number
of bytes without considering how many characters were stored.

• Fix missing rows in queries like UPDATE a=... WHERE a... with GiST index on column a

• Improve checking for partially-written WAL pages

• Improve robustness of signal handling when SSL is enabled

• Various memory leakage fixes

• Various portability improvements

• Fix PL/pgSQL to handle var := var correctly when the variable is of pass-by-reference type

2511

Appendix E. Release Notes

E.201. Release 7.3.10

Release Date: 2005-05-09

This release contains a variety of fixes from 7.3.9, including several security-related issues.

E.201.1. Migration to Version 7.3.10
A dump/restore is not required for those running 7.3.X. However, it is one possible way of handling
a significant security problem that has been found in the initial contents of 7.3.X system catalogs. A
dump/initdb/reload sequence using 7.3.10’s initdb will automatically correct this problem.

The security problem is that the built-in character set encoding conversion functions can be invoked from
SQL commands by unprivileged users, but the functions were not designed for such use and are not secure
against malicious choices of arguments. The fix involves changing the declared parameter list of these
functions so that they can no longer be invoked from SQL commands. (This does not affect their normal
use by the encoding conversion machinery.) It is strongly recommended that all installations repair this
error, either by initdb or by following the manual repair procedure given below. The error at least allows
unprivileged database users to crash their server process, and might allow unprivileged users to gain the
privileges of a database superuser.

If you wish not to do an initdb, perform the following procedure instead. As the database superuser, do:

BEGIN;
UPDATE pg_proc SET proargtypes[3] = ’internal’::regtype
WHERE pronamespace = 11 AND pronargs = 5

AND proargtypes[2] = ’cstring’::regtype;
-- The command should report having updated 90 rows;
-- if not, rollback and investigate instead of committing!
COMMIT;

The above procedure must be carried out in each database of an installation, including template1, and
ideally including template0 as well. If you do not fix the template databases then any subsequently
created databases will contain the same error. template1 can be fixed in the same way as any other
database, but fixing template0 requires additional steps. First, from any database issue:

UPDATE pg_database SET datallowconn = true WHERE datname = ’template0’;

Next connect to template0 and perform the above repair procedure. Finally, do:

-- re-freeze template0:
VACUUM FREEZE;
-- and protect it against future alterations:
UPDATE pg_database SET datallowconn = false WHERE datname = ’template0’;

2512

Appendix E. Release Notes

E.201.2. Changes

• Change encoding function signature to prevent misuse

• Repair ancient race condition that allowed a transaction to be seen as committed for some purposes (eg
SELECT FOR UPDATE) slightly sooner than for other purposes

This is an extremely serious bug since it could lead to apparent data inconsistencies being briefly visible
to applications.

• Repair race condition between relation extension and VACUUM

This could theoretically have caused loss of a page’s worth of freshly-inserted data, although the sce-
nario seems of very low probability. There are no known cases of it having caused more than an Assert
failure.

• Fix comparisons of TIME WITH TIME ZONE values

The comparison code was wrong in the case where the --enable-integer-datetimes configura-
tion switch had been used. NOTE: if you have an index on a TIME WITH TIME ZONE column, it will
need to be REINDEXed after installing this update, because the fix corrects the sort order of column
values.

• Fix EXTRACT(EPOCH) for TIME WITH TIME ZONE values

• Fix mis-display of negative fractional seconds in INTERVAL values

This error only occurred when the --enable-integer-datetimes configuration switch had been
used.

• Additional buffer overrun checks in plpgsql (Neil)

• Fix pg_dump to dump trigger names containing % correctly (Neil)

• Prevent to_char(interval) from dumping core for month-related formats

• Fix contrib/pgcrypto for newer OpenSSL builds (Marko Kreen)

• Still more 64-bit fixes for contrib/intagg

• Prevent incorrect optimization of functions returning RECORD

E.202. Release 7.3.9

Release Date: 2005-01-31

This release contains a variety of fixes from 7.3.8, including several security-related issues.

E.202.1. Migration to Version 7.3.9
A dump/restore is not required for those running 7.3.X.

2513

Appendix E. Release Notes

E.202.2. Changes

• Disallow LOAD to non-superusers

On platforms that will automatically execute initialization functions of a shared library (this includes at
least Windows and ELF-based Unixen), LOAD can be used to make the server execute arbitrary code.
Thanks to NGS Software for reporting this.

• Check that creator of an aggregate function has the right to execute the specified transition functions

This oversight made it possible to bypass denial of EXECUTE permission on a function.

• Fix security and 64-bit issues in contrib/intagg

• Add needed STRICT marking to some contrib functions (Kris Jurka)

• Avoid buffer overrun when plpgsql cursor declaration has too many parameters (Neil)

• Fix planning error for FULL and RIGHT outer joins

The result of the join was mistakenly supposed to be sorted the same as the left input. This could not
only deliver mis-sorted output to the user, but in case of nested merge joins could give outright wrong
answers.

• Fix plperl for quote marks in tuple fields

• Fix display of negative intervals in SQL and GERMAN datestyles

E.203. Release 7.3.8

Release Date: 2004-10-22

This release contains a variety of fixes from 7.3.7.

E.203.1. Migration to Version 7.3.8
A dump/restore is not required for those running 7.3.X.

E.203.2. Changes

• Repair possible failure to update hint bits on disk

Under rare circumstances this oversight could lead to “could not access transaction status” failures,
which qualifies it as a potential-data-loss bug.

• Ensure that hashed outer join does not miss tuples

2514

Appendix E. Release Notes

Very large left joins using a hash join plan could fail to output unmatched left-side rows given just the
right data distribution.

• Disallow running pg_ctl as root

This is to guard against any possible security issues.

• Avoid using temp files in /tmp in make_oidjoins_check

This has been reported as a security issue, though it’s hardly worthy of concern since there is no reason
for non-developers to use this script anyway.

E.204. Release 7.3.7

Release Date: 2004-08-16

This release contains one critical fix over 7.3.6, and some minor items.

E.204.1. Migration to Version 7.3.7
A dump/restore is not required for those running 7.3.X.

E.204.2. Changes

• Prevent possible loss of committed transactions during crash

Due to insufficient interlocking between transaction commit and checkpointing, it was possible for
transactions committed just before the most recent checkpoint to be lost, in whole or in part, following
a database crash and restart. This is a serious bug that has existed since PostgreSQL 7.1.

• Remove asymmetrical word processing in tsearch (Teodor)

• Properly schema-qualify function names when pg_dump’ing a CAST

E.205. Release 7.3.6

Release Date: 2004-03-02

This release contains a variety of fixes from 7.3.5.

2515

Appendix E. Release Notes

E.205.1. Migration to Version 7.3.6
A dump/restore is not required for those running 7.3.*.

E.205.2. Changes

• Revert erroneous changes in rule permissions checking

A patch applied in 7.3.3 to fix a corner case in rule permissions checks turns out to have disabled rule-
related permissions checks in many not-so-corner cases. This would for example allow users to insert
into views they weren’t supposed to have permission to insert into. We have therefore reverted the 7.3.3
patch. The original bug will be fixed in 8.0.

• Repair incorrect order of operations in GetNewTransactionId()

This bug could result in failure under out-of-disk-space conditions, including inability to restart even
after disk space is freed.

• Ensure configure selects -fno-strict-aliasing even when an external value for CFLAGS is supplied

On some platforms, building with -fstrict-aliasing causes bugs.

• Make pg_restore handle 64-bit off_t correctly

This bug prevented proper restoration from archive files exceeding 4 GB.

• Make contrib/dblink not assume that local and remote type OIDs match (Joe)

• Quote connectby()’s start_with argument properly (Joe)

• Don’t crash when a rowtype argument to a plpgsql function is NULL

• Avoid generating invalid character encoding sequences in corner cases when planning LIKE operations

• Ensure text_position() cannot scan past end of source string in multibyte cases (Korea PostgreSQL
Users’ Group)

• Fix index optimization and selectivity estimates for LIKE operations on bytea columns (Joe)

E.206. Release 7.3.5

Release Date: 2003-12-03

This has a variety of fixes from 7.3.4.

E.206.1. Migration to Version 7.3.5
A dump/restore is not required for those running 7.3.*.

2516

Appendix E. Release Notes

E.206.2. Changes

• Force zero_damaged_pages to be on during recovery from WAL

• Prevent some obscure cases of “variable not in subplan target lists”

• Force stats processes to detach from shared memory, ensuring cleaner shutdown

• Make PQescapeBytea and byteaout consistent with each other (Joe)

• Added missing SPI_finish() calls to dblink’s get_tuple_of_interest() (Joe)

• Fix for possible foreign key violation when rule rewrites INSERT (Jan)

• Support qualified type names in PL/Tcl’s spi_prepare command (Jan)

• Make pg_dump handle a procedural language handler located in pg_catalog

• Make pg_dump handle cases where a custom opclass is in another schema

• Make pg_dump dump binary-compatible casts correctly (Jan)

• Fix insertion of expressions containing subqueries into rule bodies

• Fix incorrect argument processing in clusterdb script (Anand Ranganathan)

• Fix problems with dropped columns in plpython triggers

• Repair problems with to_char() reading past end of its input string (Karel)

• Fix GB18030 mapping errors (Tatsuo)

• Fix several problems with SSL error handling and asynchronous SSL I/O

• Remove ability to bind a list of values to a single parameter in JDBC (prevents possible SQL-injection
attacks)

• Fix some errors in HAVE_INT64_TIMESTAMP code paths

• Fix corner case for btree search in parallel with first root page split

E.207. Release 7.3.4

Release Date: 2003-07-24

This has a variety of fixes from 7.3.3.

E.207.1. Migration to Version 7.3.4
A dump/restore is not required for those running 7.3.*.

2517

Appendix E. Release Notes

E.207.2. Changes

• Repair breakage in timestamp-to-date conversion for dates before 2000

• Prevent rare possibility of server startup failure (Tom)

• Fix bugs in interval-to-time conversion (Tom)

• Add constraint names in a few places in pg_dump (Rod)

• Improve performance of functions with many parameters (Tom)

• Fix to_ascii() buffer overruns (Tom)

• Prevent restore of database comments from throwing an error (Tom)

• Work around buggy strxfrm() present in some Solaris releases (Tom)

• Properly escape jdbc setObject() strings to improve security (Barry)

E.208. Release 7.3.3

Release Date: 2003-05-22

This release contains a variety of fixes for version 7.3.2.

E.208.1. Migration to Version 7.3.3
A dump/restore is not required for those running version 7.3.*.

E.208.2. Changes

• Repair sometimes-incorrect computation of StartUpID after a crash

• Avoid slowness with lots of deferred triggers in one transaction (Stephan)

• Don’t lock referenced row when UPDATE doesn’t change foreign key’s value (Jan)

• Use -fPIC not -fpic on Sparc (Tom Callaway)

• Repair lack of schema-awareness in contrib/reindexdb

• Fix contrib/intarray error for zero-element result array (Teodor)

• Ensure createuser script will exit on control-C (Oliver)

• Fix errors when the type of a dropped column has itself been dropped

• CHECKPOINT does not cause database panic on failure in noncritical steps

• Accept 60 in seconds fields of timestamp, time, interval input values

2518

Appendix E. Release Notes

• Issue notice, not error, if TIMESTAMP, TIME, or INTERVAL precision too large

• Fix abstime-to-time cast function (fix is not applied unless you initdb)

• Fix pg_proc entry for timestampt_izone (fix is not applied unless you initdb)

• Make EXTRACT(EPOCH FROM timestamp without time zone) treat input as local time

• ’now’::timestamptz gave wrong answer if timezone changed earlier in transaction

• HAVE_INT64_TIMESTAMP code for time with timezone overwrote its input

• Accept GLOBAL TEMP/TEMPORARY as a synonym for TEMPORARY

• Avoid improper schema-privilege-check failure in foreign-key triggers

• Fix bugs in foreign-key triggers for SET DEFAULT action

• Fix incorrect time-qual check in row fetch for UPDATE and DELETE triggers

• Foreign-key clauses were parsed but ignored in ALTER TABLE ADD COLUMN

• Fix createlang script breakage for case where handler function already exists

• Fix misbehavior on zero-column tables in pg_dump, COPY, ANALYZE, other places

• Fix misbehavior of func_error() on type names containing ’%’

• Fix misbehavior of replace() on strings containing ’%’

• Regular-expression patterns containing certain multibyte characters failed

• Account correctly for NULLs in more cases in join size estimation

• Avoid conflict with system definition of isblank() function or macro

• Fix failure to convert large code point values in EUC_TW conversions (Tatsuo)

• Fix error recovery for SSL_read/SSL_write calls

• Don’t do early constant-folding of type coercion expressions

• Validate page header fields immediately after reading in any page

• Repair incorrect check for ungrouped variables in unnamed joins

• Fix buffer overrun in to_ascii (Guido Notari)

• contrib/ltree fixes (Teodor)

• Fix core dump in deadlock detection on machines where char is unsigned

• Avoid running out of buffers in many-way indexscan (bug introduced in 7.3)

• Fix planner’s selectivity estimation functions to handle domains properly

• Fix dbmirror memory-allocation bug (Steven Singer)

• Prevent infinite loop in ln(numeric) due to roundoff error

• GROUP BY got confused if there were multiple equal GROUP BY items

• Fix bad plan when inherited UPDATE/DELETE references another inherited table

• Prevent clustering on incomplete (partial or non-NULL-storing) indexes

• Service shutdown request at proper time if it arrives while still starting up

• Fix left-links in temporary indexes (could make backwards scans miss entries)

2519

Appendix E. Release Notes

• Fix incorrect handling of client_encoding setting in postgresql.conf (Tatsuo)

• Fix failure to respond to pg_ctl stop -m fast after Async_NotifyHandler runs

• Fix SPI for case where rule contains multiple statements of the same type

• Fix problem with checking for wrong type of access privilege in rule query

• Fix problem with EXCEPT in CREATE RULE

• Prevent problem with dropping temp tables having serial columns

• Fix replace_vars_with_subplan_refs failure in complex views

• Fix regexp slowness in single-byte encodings (Tatsuo)

• Allow qualified type names in CREATE CAST and DROP CAST

• Accept SETOF type[], which formerly had to be written SETOF _type

• Fix pg_dump core dump in some cases with procedural languages

• Force ISO datestyle in pg_dump output, for portability (Oliver)

• pg_dump failed to handle error return from lo_read (Oleg Drokin)

• pg_dumpall failed with groups having no members (Nick Eskelinen)

• pg_dumpall failed to recognize --globals-only switch

• pg_restore failed to restore blobs if -X disable-triggers is specified

• Repair intrafunction memory leak in plpgsql

• pltcl’s elog command dumped core if given wrong parameters (Ian Harding)

• plpython used wrong value of atttypmod (Brad McLean)

• Fix improper quoting of boolean values in Python interface (D’Arcy)

• Added addDataType() method to PGConnection interface for JDBC

• Fixed various problems with updateable ResultSets for JDBC (Shawn Green)

• Fixed various problems with DatabaseMetaData for JDBC (Kris Jurka, Peter Royal)

• Fixed problem with parsing table ACLs in JDBC

• Better error message for character set conversion problems in JDBC

E.209. Release 7.3.2

Release Date: 2003-02-04

This release contains a variety of fixes for version 7.3.1.

2520

Appendix E. Release Notes

E.209.1. Migration to Version 7.3.2
A dump/restore is not required for those running version 7.3.*.

E.209.2. Changes

• Restore creation of OID column in CREATE TABLE AS / SELECT INTO

• Fix pg_dump core dump when dumping views having comments

• Dump DEFERRABLE/INITIALLY DEFERRED constraints properly

• Fix UPDATE when child table’s column numbering differs from parent

• Increase default value of max_fsm_relations

• Fix problem when fetching backwards in a cursor for a single-row query

• Make backward fetch work properly with cursor on SELECT DISTINCT query

• Fix problems with loading pg_dump files containing contrib/lo usage

• Fix problem with all-numeric user names

• Fix possible memory leak and core dump during disconnect in libpgtcl

• Make plpython’s spi_execute command handle nulls properly (Andrew Bosma)

• Adjust plpython error reporting so that its regression test passes again

• Work with bison 1.875

• Handle mixed-case names properly in plpgsql’s %type (Neil)

• Fix core dump in pltcl when executing a query rewritten by a rule

• Repair array subscript overruns (per report from Yichen Xie)

• Reduce MAX_TIME_PRECISION from 13 to 10 in floating-point case

• Correctly case-fold variable names in per-database and per-user settings

• Fix coredump in plpgsql’s RETURN NEXT when SELECT into record returns no rows

• Fix outdated use of pg_type.typprtlen in python client interface

• Correctly handle fractional seconds in timestamps in JDBC driver

• Improve performance of getImportedKeys() in JDBC

• Make shared-library symlinks work standardly on HPUX (Giles)

• Repair inconsistent rounding behavior for timestamp, time, interval

• SSL negotiation fixes (Nathan Mueller)

• Make libpq’s ~/.pgpass feature work when connecting with PQconnectDB

• Update my2pg, ora2pg

• Translation updates

• Add casts between types lo and oid in contrib/lo

2521

Appendix E. Release Notes

• fastpath code now checks for privilege to call function

E.210. Release 7.3.1

Release Date: 2002-12-18

This release contains a variety of fixes for version 7.3.

E.210.1. Migration to Version 7.3.1
A dump/restore is not required for those running version 7.3. However, it should be noted that the main
PostgreSQL interface library, libpq, has a new major version number for this release, which might require
recompilation of client code in certain cases.

E.210.2. Changes

• Fix a core dump of COPY TO when client/server encodings don’t match (Tom)

• Allow pg_dump to work with pre-7.2 servers (Philip)

• contrib/adddepend fixes (Tom)

• Fix problem with deletion of per-user/per-database config settings (Tom)

• contrib/vacuumlo fix (Tom)

• Allow ’password’ encryption even when pg_shadow contains MD5 passwords (Bruce)

• contrib/dbmirror fix (Steven Singer)

• Optimizer fixes (Tom)

• contrib/tsearch fixes (Teodor Sigaev, Magnus)

• Allow locale names to be mixed case (Nicolai Tufar)

• Increment libpq library’s major version number (Bruce)

• pg_hba.conf error reporting fixes (Bruce, Neil)

• Add SCO Openserver 5.0.4 as a supported platform (Bruce)

• Prevent EXPLAIN from crashing server (Tom)

• SSL fixes (Nathan Mueller)

• Prevent composite column creation via ALTER TABLE (Tom)

2522

Appendix E. Release Notes

E.211. Release 7.3

Release Date: 2002-11-27

E.211.1. Overview
Major changes in this release:

Schemas

Schemas allow users to create objects in separate namespaces, so two people or applications can have
tables with the same name. There is also a public schema for shared tables. Table/index creation can
be restricted by removing privileges on the public schema.

Drop Column

PostgreSQL now supports the ALTER TABLE ... DROP COLUMN functionality.

Table Functions

Functions returning multiple rows and/or multiple columns are now much easier to use than before.
You can call such a “table function” in the SELECT FROM clause, treating its output like a table. Also,
PL/pgSQL functions can now return sets.

Prepared Queries

PostgreSQL now supports prepared queries, for improved performance.

Dependency Tracking

PostgreSQL now records object dependencies, which allows improvements in many areas. DROP
statements now take either CASCADE or RESTRICT to control whether dependent objects are also
dropped.

Privileges

Functions and procedural languages now have privileges, and functions can be defined to run with
the privileges of their creator.

Internationalization

Both multibyte and locale support are now always enabled.

Logging

A variety of logging options have been enhanced.

Interfaces

A large number of interfaces have been moved to http://gborg.postgresql.org where they can be de-
veloped and released independently.

Functions/Identifiers

By default, functions can now take up to 32 parameters, and identifiers can be up to 63 bytes long.
Also, OPAQUE is now deprecated: there are specific “pseudo-datatypes” to represent each of the for-
mer meanings of OPAQUE in function argument and result types.

2523

Appendix E. Release Notes

E.211.2. Migration to Version 7.3
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release. If
your application examines the system catalogs, additional changes will be required due to the introduction
of schemas in 7.3; for more information, see: http://developer.postgresql.org/~momjian/upgrade_tips_7.3.

Observe the following incompatibilities:

• Pre-6.3 clients are no longer supported.

• pg_hba.conf now has a column for the user name and additional features. Existing files need to be
adjusted.

• Several postgresql.conf logging parameters have been renamed.

• LIMIT #,# has been disabled; use LIMIT # OFFSET #.

• INSERT statements with column lists must specify a value for each specified column. For example,
INSERT INTO tab (col1, col2) VALUES (’val1’) is now invalid. It’s still allowed to supply
fewer columns than expected if the INSERT does not have a column list.

• serial columns are no longer automatically UNIQUE; thus, an index will not automatically be created.

• A SET command inside an aborted transaction is now rolled back.

• COPY no longer considers missing trailing columns to be null. All columns need to be specified. (How-
ever, one can achieve a similar effect by specifying a column list in the COPY command.)

• The data type timestamp is now equivalent to timestamp without time zone, instead of
timestamp with time zone.

• Pre-7.3 databases loaded into 7.3 will not have the new object dependencies for serial columns,
unique constraints, and foreign keys. See the directory contrib/adddepend/ for a detailed descrip-
tion and a script that will add such dependencies.

• An empty string (”) is no longer allowed as the input into an integer field. Formerly, it was silently
interpreted as 0.

E.211.3. Changes

E.211.3.1. Server Operation

• Add pg_locks view to show locks (Neil)

• Security fixes for password negotiation memory allocation (Neil)

• Remove support for version 0 FE/BE protocol (PostgreSQL 6.2 and earlier) (Tom)

• Reserve the last few backend slots for superusers, add parameter superuser_reserved_connections to
control this (Nigel J. Andrews)

2524

Appendix E. Release Notes

E.211.3.2. Performance

• Improve startup by calling localtime() only once (Tom)

• Cache system catalog information in flat files for faster startup (Tom)

• Improve caching of index information (Tom)

• Optimizer improvements (Tom, Fernando Nasser)

• Catalog caches now store failed lookups (Tom)

• Hash function improvements (Neil)

• Improve performance of query tokenization and network handling (Peter)

• Speed improvement for large object restore (Mario Weilguni)

• Mark expired index entries on first lookup, saving later heap fetches (Tom)

• Avoid excessive NULL bitmap padding (Manfred Koizar)

• Add BSD-licensed qsort() for Solaris, for performance (Bruce)

• Reduce per-row overhead by four bytes (Manfred Koizar)

• Fix GEQO optimizer bug (Neil Conway)

• Make WITHOUT OID actually save four bytes per row (Manfred Koizar)

• Add default_statistics_target variable to specify ANALYZE buckets (Neil)

• Use local buffer cache for temporary tables so no WAL overhead (Tom)

• Improve free space map performance on large tables (Stephen Marshall, Tom)

• Improved WAL write concurrency (Tom)

E.211.3.3. Privileges

• Add privileges on functions and procedural languages (Peter)

• Add OWNER to CREATE DATABASE so superusers can create databases on behalf of unprivileged
users (Gavin Sherry, Tom)

• Add new object privilege bits EXECUTE and USAGE (Tom)

• Add SET SESSION AUTHORIZATION DEFAULT and RESET SESSION AUTHORIZATION (Tom)

• Allow functions to be executed with the privilege of the function owner (Peter)

E.211.3.4. Server Configuration

• Server log messages now tagged with LOG, not DEBUG (Bruce)

• Add user column to pg_hba.conf (Bruce)

• Have log_connections output two lines in log file (Tom)

2525

Appendix E. Release Notes

• Remove debug_level from postgresql.conf, now server_min_messages (Bruce)

• New ALTER DATABASE/USER ... SET command for per-user/database initialization (Peter)

• New parameters server_min_messages and client_min_messages to control which messages are sent to
the server logs or client applications (Bruce)

• Allow pg_hba.conf to specify lists of users/databases separated by commas, group names prepended
with +, and file names prepended with @ (Bruce)

• Remove secondary password file capability and pg_password utility (Bruce)

• Add variable db_user_namespace for database-local user names (Bruce)

• SSL improvements (Bear Giles)

• Make encryption of stored passwords the default (Bruce)

• Allow pg_statistics to be reset by calling pg_stat_reset() (Christopher)

• Add log_duration parameter (Bruce)

• Rename debug_print_query to log_statement (Bruce)

• Rename show_query_stats to show_statement_stats (Bruce)

• Add param log_min_error_statement to print commands to logs on error (Gavin)

E.211.3.5. Queries

• Make cursors insensitive, meaning their contents do not change (Tom)

• Disable LIMIT #,# syntax; now only LIMIT # OFFSET # supported (Bruce)

• Increase identifier length to 63 (Neil, Bruce)

• UNION fixes for merging >= 3 columns of different lengths (Tom)

• Add DEFAULT key word to INSERT, e.g., INSERT ... (..., DEFAULT, ...) (Rod)

• Allow views to have default values using ALTER COLUMN ... SET DEFAULT (Neil)

• Fail on INSERTs with column lists that don’t supply all column values, e.g., INSERT INTO tab (col1,
col2) VALUES (’val1’); (Rod)

• Fix for join aliases (Tom)

• Fix for FULL OUTER JOINs (Tom)

• Improve reporting of invalid identifier and location (Tom, Gavin)

• Fix OPEN cursor(args) (Tom)

• Allow ’ctid’ to be used in a view and currtid(viewname) (Hiroshi)

• Fix for CREATE TABLE AS with UNION (Tom)

• SQL99 syntax improvements (Thomas)

• Add statement_timeout variable to cancel queries (Bruce)

• Allow prepared queries with PREPARE/EXECUTE (Neil)

2526

Appendix E. Release Notes

• Allow FOR UPDATE to appear after LIMIT/OFFSET (Bruce)

• Add variable autocommit (Tom, David Van Wie)

E.211.3.6. Object Manipulation

• Make equals signs optional in CREATE DATABASE (Gavin Sherry)

• Make ALTER TABLE OWNER change index ownership too (Neil)

• New ALTER TABLE tabname ALTER COLUMN colname SET STORAGE controls TOAST storage,
compression (John Gray)

• Add schema support, CREATE/DROP SCHEMA (Tom)

• Create schema for temporary tables (Tom)

• Add variable search_path for schema search (Tom)

• Add ALTER TABLE SET/DROP NOT NULL (Christopher)

• New CREATE FUNCTION volatility levels (Tom)

• Make rule names unique only per table (Tom)

• Add ’ON tablename’ clause to DROP RULE and COMMENT ON RULE (Tom)

• Add ALTER TRIGGER RENAME (Joe)

• New current_schema() and current_schemas() inquiry functions (Tom)

• Allow functions to return multiple rows (table functions) (Joe)

• Make WITH optional in CREATE DATABASE, for consistency (Bruce)

• Add object dependency tracking (Rod, Tom)

• Add RESTRICT/CASCADE to DROP commands (Rod)

• Add ALTER TABLE DROP for non-CHECK CONSTRAINT (Rod)

• Autodestroy sequence on DROP of table with SERIAL (Rod)

• Prevent column dropping if column is used by foreign key (Rod)

• Automatically drop constraints/functions when object is dropped (Rod)

• Add CREATE/DROP OPERATOR CLASS (Bill Studenmund, Tom)

• Add ALTER TABLE DROP COLUMN (Christopher, Tom, Hiroshi)

• Prevent inherited columns from being removed or renamed (Alvaro Herrera)

• Fix foreign key constraints to not error on intermediate database states (Stephan)

• Propagate column or table renaming to foreign key constraints

• Add CREATE OR REPLACE VIEW (Gavin, Neil, Tom)

• Add CREATE OR REPLACE RULE (Gavin, Neil, Tom)

• Have rules execute alphabetically, returning more predictable values (Tom)

• Triggers are now fired in alphabetical order (Tom)

2527

Appendix E. Release Notes

• Add /contrib/adddepend to handle pre-7.3 object dependencies (Rod)

• Allow better casting when inserting/updating values (Tom)

E.211.3.7. Utility Commands

• Have COPY TO output embedded carriage returns and newlines as \r and \n (Tom)

• Allow DELIMITER in COPY FROM to be 8-bit clean (Tatsuo)

• Make pg_dump use ALTER TABLE ADD PRIMARY KEY, for performance (Neil)

• Disable brackets in multistatement rules (Bruce)

• Disable VACUUM from being called inside a function (Bruce)

• Allow dropdb and other scripts to use identifiers with spaces (Bruce)

• Restrict database comment changes to the current database

• Allow comments on operators, independent of the underlying function (Rod)

• Rollback SET commands in aborted transactions (Tom)

• EXPLAIN now outputs as a query (Tom)

• Display condition expressions and sort keys in EXPLAIN (Tom)

• Add ’SET LOCAL var = value’ to set configuration variables for a single transaction (Tom)

• Allow ANALYZE to run in a transaction (Bruce)

• Improve COPY syntax using new WITH clauses, keep backward compatibility (Bruce)

• Fix pg_dump to consistently output tags in non-ASCII dumps (Bruce)

• Make foreign key constraints clearer in dump file (Rod)

• Add COMMENT ON CONSTRAINT (Rod)

• Allow COPY TO/FROM to specify column names (Brent Verner)

• Dump UNIQUE and PRIMARY KEY constraints as ALTER TABLE (Rod)

• Have SHOW output a query result (Joe)

• Generate failure on short COPY lines rather than pad NULLs (Neil)

• Fix CLUSTER to preserve all table attributes (Alvaro Herrera)

• New pg_settings table to view/modify GUC settings (Joe)

• Add smart quoting, portability improvements to pg_dump output (Peter)

• Dump serial columns out as SERIAL (Tom)

• Enable large file support, >2G for pg_dump (Peter, Philip Warner, Bruce)

• Disallow TRUNCATE on tables that are involved in referential constraints (Rod)

• Have TRUNCATE also auto-truncate the toast table of the relation (Tom)

• Add clusterdb utility that will auto-cluster an entire database based on previous CLUSTER operations
(Alvaro Herrera)

2528

Appendix E. Release Notes

• Overhaul pg_dumpall (Peter)

• Allow REINDEX of TOAST tables (Tom)

• Implemented START TRANSACTION, per SQL99 (Neil)

• Fix rare index corruption when a page split affects bulk delete (Tom)

• Fix ALTER TABLE ... ADD COLUMN for inheritance (Alvaro Herrera)

E.211.3.8. Data Types and Functions

• Fix factorial(0) to return 1 (Bruce)

• Date/time/timezone improvements (Thomas)

• Fix for array slice extraction (Tom)

• Fix extract/date_part to report proper microseconds for timestamp (Tatsuo)

• Allow text_substr() and bytea_substr() to read TOAST values more efficiently (John Gray)

• Add domain support (Rod)

• Make WITHOUT TIME ZONE the default for TIMESTAMP and TIME data types (Thomas)

• Allow alternate storage scheme of 64-bit integers for date/time types using --enable-integer-datetimes
in configure (Thomas)

• Make timezone(timestamptz) return timestamp rather than a string (Thomas)

• Allow fractional seconds in date/time types for dates prior to 1BC (Thomas)

• Limit timestamp data types to 6 decimal places of precision (Thomas)

• Change timezone conversion functions from timetz() to timezone() (Thomas)

• Add configuration variables datestyle and timezone (Tom)

• Add OVERLAY(), which allows substitution of a substring in a string (Thomas)

• Add SIMILAR TO (Thomas, Tom)

• Add regular expression SUBSTRING(string FROM pat FOR escape) (Thomas)

• Add LOCALTIME and LOCALTIMESTAMP functions (Thomas)

• Add named composite types using CREATE TYPE typename AS (column) (Joe)

• Allow composite type definition in the table alias clause (Joe)

• Add new API to simplify creation of C language table functions (Joe)

• Remove ODBC-compatible empty parentheses from calls to SQL99 functions for which these paren-
theses do not match the standard (Thomas)

• Allow macaddr data type to accept 12 hex digits with no separators (Mike Wyer)

• Add CREATE/DROP CAST (Peter)

• Add IS DISTINCT FROM operator (Thomas)

• Add SQL99 TREAT() function, synonym for CAST() (Thomas)

2529

Appendix E. Release Notes

• Add pg_backend_pid() to output backend pid (Bruce)

• Add IS OF / IS NOT OF type predicate (Thomas)

• Allow bit string constants without fully-specified length (Thomas)

• Allow conversion between 8-byte integers and bit strings (Thomas)

• Implement hex literal conversion to bit string literal (Thomas)

• Allow table functions to appear in the FROM clause (Joe)

• Increase maximum number of function parameters to 32 (Bruce)

• No longer automatically create index for SERIAL column (Tom)

• Add current_database() (Rod)

• Fix cash_words() to not overflow buffer (Tom)

• Add functions replace(), split_part(), to_hex() (Joe)

• Fix LIKE for bytea as a right-hand argument (Joe)

• Prevent crashes caused by SELECT cash_out(2) (Tom)

• Fix to_char(1,’FM999.99’) to return a period (Karel)

• Fix trigger/type/language functions returning OPAQUE to return proper type (Tom)

E.211.3.9. Internationalization

• Add additional encodings: Korean (JOHAB), Thai (WIN874), Vietnamese (TCVN), Arabic
(WIN1256), Simplified Chinese (GBK), Korean (UHC) (Eiji Tokuya)

• Enable locale support by default (Peter)

• Add locale variables (Peter)

• Escape byes >= 0x7f for multibyte in PQescapeBytea/PQunescapeBytea (Tatsuo)

• Add locale awareness to regular expression character classes

• Enable multibyte support by default (Tatsuo)

• Add GB18030 multibyte support (Bill Huang)

• Add CREATE/DROP CONVERSION, allowing loadable encodings (Tatsuo, Kaori)

• Add pg_conversion table (Tatsuo)

• Add SQL99 CONVERT() function (Tatsuo)

• pg_dumpall, pg_controldata, and pg_resetxlog now national-language aware (Peter)

• New and updated translations

E.211.3.10. Server-side Languages

• Allow recursive SQL function (Peter)

2530

Appendix E. Release Notes

• Change PL/Tcl build to use configured compiler and Makefile.shlib (Peter)

• Overhaul the PL/pgSQL FOUND variable to be more Oracle-compatible (Neil, Tom)

• Allow PL/pgSQL to handle quoted identifiers (Tom)

• Allow set-returning PL/pgSQL functions (Neil)

• Make PL/pgSQL schema-aware (Joe)

• Remove some memory leaks (Nigel J. Andrews, Tom)

E.211.3.11. psql

• Don’t lowercase psql \connect database name for 7.2.0 compatibility (Tom)

• Add psql \timing to time user queries (Greg Sabino Mullane)

• Have psql \d show index information (Greg Sabino Mullane)

• New psql \dD shows domains (Jonathan Eisler)

• Allow psql to show rules on views (Paul ?)

• Fix for psql variable substitution (Tom)

• Allow psql \d to show temporary table structure (Tom)

• Allow psql \d to show foreign keys (Rod)

• Fix \? to honor \pset pager (Bruce)

• Have psql reports its version number on startup (Tom)

• Allow \copy to specify column names (Tom)

E.211.3.12. libpq

• Add ~/.pgpass to store host/user password combinations (Alvaro Herrera)

• Add PQunescapeBytea() function to libpq (Patrick Welche)

• Fix for sending large queries over non-blocking connections (Bernhard Herzog)

• Fix for libpq using timers on Win9X (David Ford)

• Allow libpq notify to handle servers with different-length identifiers (Tom)

• Add libpq PQescapeString() and PQescapeBytea() to Windows (Bruce)

• Fix for SSL with non-blocking connections (Jack Bates)

• Add libpq connection timeout parameter (Denis A Ustimenko)

2531

Appendix E. Release Notes

E.211.3.13. JDBC

• Allow JDBC to compile with JDK 1.4 (Dave)

• Add JDBC 3 support (Barry)

• Allows JDBC to set loglevel by adding ?loglevel=X to the connection URL (Barry)

• Add Driver.info() message that prints out the version number (Barry)

• Add updateable result sets (Raghu Nidagal, Dave)

• Add support for callable statements (Paul Bethe)

• Add query cancel capability

• Add refresh row (Dave)

• Fix MD5 encryption handling for multibyte servers (Jun Kawai)

• Add support for prepared statements (Barry)

E.211.3.14. Miscellaneous Interfaces

• Fixed ECPG bug concerning octal numbers in single quotes (Michael)

• Move src/interfaces/libpgeasy to http://gborg.postgresql.org (Marc, Bruce)

• Improve Python interface (Elliot Lee, Andrew Johnson, Greg Copeland)

• Add libpgtcl connection close event (Gerhard Hintermayer)

• Move src/interfaces/libpq++ to http://gborg.postgresql.org (Marc, Bruce)

• Move src/interfaces/odbc to http://gborg.postgresql.org (Marc)

• Move src/interfaces/libpgeasy to http://gborg.postgresql.org (Marc, Bruce)

• Move src/interfaces/perl5 to http://gborg.postgresql.org (Marc, Bruce)

• Remove src/bin/pgaccess from main tree, now at http://www.pgaccess.org (Bruce)

• Add pg_on_connection_loss command to libpgtcl (Gerhard Hintermayer, Tom)

E.211.3.15. Source Code

• Fix for parallel make (Peter)

• AIX fixes for linking Tcl (Andreas Zeugswetter)

• Allow PL/Perl to build under Cygwin (Jason Tishler)

• Improve MIPS compiles (Peter, Oliver Elphick)

• Require Autoconf version 2.53 (Peter)

• Require readline and zlib by default in configure (Peter)

• Allow Solaris to use Intimate Shared Memory (ISM), for performance (Scott Brunza, P.J. Josh Rovero)

2532

Appendix E. Release Notes

• Always enable syslog in compile, remove --enable-syslog option (Tatsuo)

• Always enable multibyte in compile, remove --enable-multibyte option (Tatsuo)

• Always enable locale in compile, remove --enable-locale option (Peter)

• Fix for Win9x DLL creation (Magnus Naeslund)

• Fix for link() usage by WAL code on Windows, BeOS (Jason Tishler)

• Add sys/types.h to c.h, remove from main files (Peter, Bruce)

• Fix AIX hang on SMP machines (Tomoyuki Niijima)

• AIX SMP hang fix (Tomoyuki Niijima)

• Fix pre-1970 date handling on newer glibc libraries (Tom)

• Fix PowerPC SMP locking (Tom)

• Prevent gcc -ffast-math from being used (Peter, Tom)

• Bison >= 1.50 now required for developer builds

• Kerberos 5 support now builds with Heimdal (Peter)

• Add appendix in the User’s Guide which lists SQL features (Thomas)

• Improve loadable module linking to use RTLD_NOW (Tom)

• New error levels WARNING, INFO, LOG, DEBUG[1-5] (Bruce)

• New src/port directory holds replaced libc functions (Peter, Bruce)

• New pg_namespace system catalog for schemas (Tom)

• Add pg_class.relnamespace for schemas (Tom)

• Add pg_type.typnamespace for schemas (Tom)

• Add pg_proc.pronamespace for schemas (Tom)

• Restructure aggregates to have pg_proc entries (Tom)

• System relations now have their own namespace, pg_* test not required (Fernando Nasser)

• Rename TOAST index names to be *_index rather than *_idx (Neil)

• Add namespaces for operators, opclasses (Tom)

• Add additional checks to server control file (Thomas)

• New Polish FAQ (Marcin Mazurek)

• Add Posix semaphore support (Tom)

• Document need for reindex (Bruce)

• Rename some internal identifiers to simplify Windows compile (Jan, Katherine Ward)

• Add documentation on computing disk space (Bruce)

• Remove KSQO from GUC (Bruce)

• Fix memory leak in rtree (Kenneth Been)

• Modify a few error messages for consistency (Bruce)

• Remove unused system table columns (Peter)

2533

Appendix E. Release Notes

• Make system columns NOT NULL where appropriate (Tom)

• Clean up use of sprintf in favor of snprintf() (Neil, Jukka Holappa)

• Remove OPAQUE and create specific subtypes (Tom)

• Cleanups in array internal handling (Joe, Tom)

• Disallow pg_atoi(”) (Bruce)

• Remove parameter wal_files because WAL files are now recycled (Bruce)

• Add version numbers to heap pages (Tom)

E.211.3.16. Contrib

• Allow inet arrays in /contrib/array (Neil)

• GiST fixes (Teodor Sigaev, Neil)

• Upgrade /contrib/mysql

• Add /contrib/dbsize which shows table sizes without vacuum (Peter)

• Add /contrib/intagg, integer aggregator routines (mlw)

• Improve /contrib/oid2name (Neil, Bruce)

• Improve /contrib/tsearch (Oleg, Teodor Sigaev)

• Cleanups of /contrib/rserver (Alexey V. Borzov)

• Update /contrib/oracle conversion utility (Gilles Darold)

• Update /contrib/dblink (Joe)

• Improve options supported by /contrib/vacuumlo (Mario Weilguni)

• Improvements to /contrib/intarray (Oleg, Teodor Sigaev, Andrey Oktyabrski)

• Add /contrib/reindexdb utility (Shaun Thomas)

• Add indexing to /contrib/isbn_issn (Dan Weston)

• Add /contrib/dbmirror (Steven Singer)

• Improve /contrib/pgbench (Neil)

• Add /contrib/tablefunc table function examples (Joe)

• Add /contrib/ltree data type for tree structures (Teodor Sigaev, Oleg Bartunov)

• Move /contrib/pg_controldata, pg_resetxlog into main tree (Bruce)

• Fixes to /contrib/cube (Bruno Wolff)

• Improve /contrib/fulltextindex (Christopher)

2534

Appendix E. Release Notes

E.212. Release 7.2.8

Release Date: 2005-05-09

This release contains a variety of fixes from 7.2.7, including one security-related issue.

E.212.1. Migration to Version 7.2.8
A dump/restore is not required for those running 7.2.X.

E.212.2. Changes

• Repair ancient race condition that allowed a transaction to be seen as committed for some purposes (eg
SELECT FOR UPDATE) slightly sooner than for other purposes

This is an extremely serious bug since it could lead to apparent data inconsistencies being briefly visible
to applications.

• Repair race condition between relation extension and VACUUM

This could theoretically have caused loss of a page’s worth of freshly-inserted data, although the sce-
nario seems of very low probability. There are no known cases of it having caused more than an Assert
failure.

• Fix EXTRACT(EPOCH) for TIME WITH TIME ZONE values

• Additional buffer overrun checks in plpgsql (Neil)

• Fix pg_dump to dump index names and trigger names containing % correctly (Neil)

• Prevent to_char(interval) from dumping core for month-related formats

• Fix contrib/pgcrypto for newer OpenSSL builds (Marko Kreen)

E.213. Release 7.2.7

Release Date: 2005-01-31

This release contains a variety of fixes from 7.2.6, including several security-related issues.

E.213.1. Migration to Version 7.2.7
A dump/restore is not required for those running 7.2.X.

2535

Appendix E. Release Notes

E.213.2. Changes

• Disallow LOAD to non-superusers

On platforms that will automatically execute initialization functions of a shared library (this includes at
least Windows and ELF-based Unixen), LOAD can be used to make the server execute arbitrary code.
Thanks to NGS Software for reporting this.

• Add needed STRICT marking to some contrib functions (Kris Jurka)

• Avoid buffer overrun when plpgsql cursor declaration has too many parameters (Neil)

• Fix planning error for FULL and RIGHT outer joins

The result of the join was mistakenly supposed to be sorted the same as the left input. This could not
only deliver mis-sorted output to the user, but in case of nested merge joins could give outright wrong
answers.

• Fix display of negative intervals in SQL and GERMAN datestyles

E.214. Release 7.2.6

Release Date: 2004-10-22

This release contains a variety of fixes from 7.2.5.

E.214.1. Migration to Version 7.2.6
A dump/restore is not required for those running 7.2.X.

E.214.2. Changes

• Repair possible failure to update hint bits on disk

Under rare circumstances this oversight could lead to “could not access transaction status” failures,
which qualifies it as a potential-data-loss bug.

• Ensure that hashed outer join does not miss tuples

Very large left joins using a hash join plan could fail to output unmatched left-side rows given just the
right data distribution.

• Disallow running pg_ctl as root

This is to guard against any possible security issues.

• Avoid using temp files in /tmp in make_oidjoins_check

2536

Appendix E. Release Notes

This has been reported as a security issue, though it’s hardly worthy of concern since there is no reason
for non-developers to use this script anyway.

• Update to newer versions of Bison

E.215. Release 7.2.5

Release Date: 2004-08-16

This release contains a variety of fixes from 7.2.4.

E.215.1. Migration to Version 7.2.5
A dump/restore is not required for those running 7.2.X.

E.215.2. Changes

• Prevent possible loss of committed transactions during crash

Due to insufficient interlocking between transaction commit and checkpointing, it was possible for
transactions committed just before the most recent checkpoint to be lost, in whole or in part, following
a database crash and restart. This is a serious bug that has existed since PostgreSQL 7.1.

• Fix corner case for btree search in parallel with first root page split

• Fix buffer overrun in to_ascii (Guido Notari)

• Fix core dump in deadlock detection on machines where char is unsigned

• Fix failure to respond to pg_ctl stop -m fast after Async_NotifyHandler runs

• Repair memory leaks in pg_dump

• Avoid conflict with system definition of isblank() function or macro

E.216. Release 7.2.4

Release Date: 2003-01-30

This release contains a variety of fixes for version 7.2.3, including fixes to prevent possible data loss.

2537

Appendix E. Release Notes

E.216.1. Migration to Version 7.2.4
A dump/restore is not required for those running version 7.2.*.

E.216.2. Changes

• Fix some additional cases of VACUUM "No one parent tuple was found" error

• Prevent VACUUM from being called inside a function (Bruce)

• Ensure pg_clog updates are sync’d to disk before marking checkpoint complete

• Avoid integer overflow during large hash joins

• Make GROUP commands work when pg_group.grolist is large enough to be toasted

• Fix errors in datetime tables; some timezone names weren’t being recognized

• Fix integer overflows in circle_poly(), path_encode(), path_add() (Neil)

• Repair long-standing logic errors in lseg_eq(), lseg_ne(), lseg_center()

E.217. Release 7.2.3

Release Date: 2002-10-01

This release contains a variety of fixes for version 7.2.2, including fixes to prevent possible data loss.

E.217.1. Migration to Version 7.2.3
A dump/restore is not required for those running version 7.2.*.

E.217.2. Changes

• Prevent possible compressed transaction log loss (Tom)

• Prevent non-superuser from increasing most recent vacuum info (Tom)

• Handle pre-1970 date values in newer versions of glibc (Tom)

• Fix possible hang during server shutdown

• Prevent spinlock hangs on SMP PPC machines (Tomoyuki Niijima)

• Fix pg_dump to properly dump FULL JOIN USING (Tom)

2538

Appendix E. Release Notes

E.218. Release 7.2.2

Release Date: 2002-08-23

This release contains a variety of fixes for version 7.2.1.

E.218.1. Migration to Version 7.2.2
A dump/restore is not required for those running version 7.2.*.

E.218.2. Changes

• Allow EXECUTE of "CREATE TABLE AS ... SELECT" in PL/pgSQL (Tom)

• Fix for compressed transaction log id wraparound (Tom)

• Fix PQescapeBytea/PQunescapeBytea so that they handle bytes > 0x7f (Tatsuo)

• Fix for psql and pg_dump crashing when invoked with non-existent long options (Tatsuo)

• Fix crash when invoking geometric operators (Tom)

• Allow OPEN cursor(args) (Tom)

• Fix for rtree_gist index build (Teodor)

• Fix for dumping user-defined aggregates (Tom)

• contrib/intarray fixes (Oleg)

• Fix for complex UNION/EXCEPT/INTERSECT queries using parens (Tom)

• Fix to pg_convert (Tatsuo)

• Fix for crash with long DATA strings (Thomas, Neil)

• Fix for repeat(), lpad(), rpad() and long strings (Neil)

E.219. Release 7.2.1

Release Date: 2002-03-21

This release contains a variety of fixes for version 7.2.

2539

Appendix E. Release Notes

E.219.1. Migration to Version 7.2.1
A dump/restore is not required for those running version 7.2.

E.219.2. Changes

• Ensure that sequence counters do not go backwards after a crash (Tom)

• Fix pgaccess kanji-conversion key binding (Tatsuo)

• Optimizer improvements (Tom)

• Cash I/O improvements (Tom)

• New Russian FAQ

• Compile fix for missing AuthBlockSig (Heiko)

• Additional time zones and time zone fixes (Thomas)

• Allow psql \connect to handle mixed case database and user names (Tom)

• Return proper OID on command completion even with ON INSERT rules (Tom)

• Allow COPY FROM to use 8-bit DELIMITERS (Tatsuo)

• Fix bug in extract/date_part for milliseconds/microseconds (Tatsuo)

• Improve handling of multiple UNIONs with different lengths (Tom)

• contrib/btree_gist improvements (Teodor Sigaev)

• contrib/tsearch dictionary improvements, see README.tsearch for an additional installation step
(Thomas T. Thai, Teodor Sigaev)

• Fix for array subscripts handling (Tom)

• Allow EXECUTE of "CREATE TABLE AS ... SELECT" in PL/pgSQL (Tom)

E.220. Release 7.2

Release Date: 2002-02-04

E.220.1. Overview
This release improves PostgreSQL for use in high-volume applications.

Major changes in this release:

2540

Appendix E. Release Notes

VACUUM

Vacuuming no longer locks tables, thus allowing normal user access during the vacuum. A new
VACUUM FULL command does old-style vacuum by locking the table and shrinking the on-disk copy
of the table.

Transactions

There is no longer a problem with installations that exceed four billion transactions.

OIDs

OIDs are now optional. Users can now create tables without OIDs for cases where OID usage is
excessive.

Optimizer

The system now computes histogram column statistics during ANALYZE, allowing much better opti-
mizer choices.

Security

A new MD5 encryption option allows more secure storage and transfer of passwords. A new Unix-
domain socket authentication option is available on Linux and BSD systems.

Statistics

Administrators can use the new table access statistics module to get fine-grained information about
table and index usage.

Internationalization

Program and library messages can now be displayed in several languages.

E.220.2. Migration to Version 7.2
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

Observe the following incompatibilities:

• The semantics of the VACUUM command have changed in this release. You might wish to update your
maintenance procedures accordingly.

• In this release, comparisons using = NULL will always return false (or NULL, more precisely). Previous
releases automatically transformed this syntax to IS NULL. The old behavior can be re-enabled using
a postgresql.conf parameter.

• The pg_hba.conf and pg_ident.conf configuration is now only reloaded after receiving a SIGHUP
signal, not with each connection.

• The function octet_length() now returns the uncompressed data length.

• The date/time value ’current’ is no longer available. You will need to rewrite your applications.

• The timestamp(), time(), and interval() functions are no longer available. Instead of
timestamp(), use timestamp ’string’ or CAST.

The SELECT ... LIMIT #,# syntax will be removed in the next release. You should change your
queries to use separate LIMIT and OFFSET clauses, e.g. LIMIT 10 OFFSET 20.

2541

Appendix E. Release Notes

E.220.3. Changes

E.220.3.1. Server Operation

• Create temporary files in a separate directory (Bruce)

• Delete orphaned temporary files on postmaster startup (Bruce)

• Added unique indexes to some system tables (Tom)

• System table operator reorganization (Oleg Bartunov, Teodor Sigaev, Tom)

• Renamed pg_log to pg_clog (Tom)

• Enable SIGTERM, SIGQUIT to kill backends (Jan)

• Removed compile-time limit on number of backends (Tom)

• Better cleanup for semaphore resource failure (Tatsuo, Tom)

• Allow safe transaction ID wraparound (Tom)

• Removed OIDs from some system tables (Tom)

• Removed "triggered data change violation" error check (Tom)

• SPI portal creation of prepared/saved plans (Jan)

• Allow SPI column functions to work for system columns (Tom)

• Long value compression improvement (Tom)

• Statistics collector for table, index access (Jan)

• Truncate extra-long sequence names to a reasonable value (Tom)

• Measure transaction times in milliseconds (Thomas)

• Fix TID sequential scans (Hiroshi)

• Superuser ID now fixed at 1 (Peter E)

• New pg_ctl "reload" option (Tom)

E.220.3.2. Performance

• Optimizer improvements (Tom)

• New histogram column statistics for optimizer (Tom)

• Reuse write-ahead log files rather than discarding them (Tom)

• Cache improvements (Tom)

• IS NULL, IS NOT NULL optimizer improvement (Tom)

• Improve lock manager to reduce lock contention (Tom)

• Keep relcache entries for index access support functions (Tom)

• Allow better selectivity with NaN and infinities in NUMERIC (Tom)

2542

Appendix E. Release Notes

• R-tree performance improvements (Kenneth Been)

• B-tree splits more efficient (Tom)

E.220.3.3. Privileges

• Change UPDATE, DELETE privileges to be distinct (Peter E)

• New REFERENCES, TRIGGER privileges (Peter E)

• Allow GRANT/REVOKE to/from more than one user at a time (Peter E)

• New has_table_privilege() function (Joe Conway)

• Allow non-superuser to vacuum database (Tom)

• New SET SESSION AUTHORIZATION command (Peter E)

• Fix bug in privilege modifications on newly created tables (Tom)

• Disallow access to pg_statistic for non-superuser, add user-accessible views (Tom)

E.220.3.4. Client Authentication

• Fork postmaster before doing authentication to prevent hangs (Peter E)

• Add ident authentication over Unix domain sockets on Linux, *BSD (Helge Bahmann, Oliver Elphick,
Teodor Sigaev, Bruce)

• Add a password authentication method that uses MD5 encryption (Bruce)

• Allow encryption of stored passwords using MD5 (Bruce)

• PAM authentication (Dominic J. Eidson)

• Load pg_hba.conf and pg_ident.conf only on startup and SIGHUP (Bruce)

E.220.3.5. Server Configuration

• Interpretation of some time zone abbreviations as Australian rather than North American now settable
at run time (Bruce)

• New parameter to set default transaction isolation level (Peter E)

• New parameter to enable conversion of "expr = NULL" into "expr IS NULL", off by default (Peter E)

• New parameter to control memory usage by VACUUM (Tom)

• New parameter to set client authentication timeout (Tom)

• New parameter to set maximum number of open files (Tom)

2543

Appendix E. Release Notes

E.220.3.6. Queries

• Statements added by INSERT rules now execute after the INSERT (Jan)

• Prevent unadorned relation names in target list (Bruce)

• NULLs now sort after all normal values in ORDER BY (Tom)

• New IS UNKNOWN, IS NOT UNKNOWN Boolean tests (Tom)

• New SHARE UPDATE EXCLUSIVE lock mode (Tom)

• New EXPLAIN ANALYZE command that shows run times and row counts (Martijn van Oosterhout)

• Fix problem with LIMIT and subqueries (Tom)

• Fix for LIMIT, DISTINCT ON pushed into subqueries (Tom)

• Fix nested EXCEPT/INTERSECT (Tom)

E.220.3.7. Schema Manipulation

• Fix SERIAL in temporary tables (Bruce)

• Allow temporary sequences (Bruce)

• Sequences now use int8 internally (Tom)

• New SERIAL8 creates int8 columns with sequences, default still SERIAL4 (Tom)

• Make OIDs optional using WITHOUT OIDS (Tom)

• Add %TYPE syntax to CREATE TYPE (Ian Lance Taylor)

• Add ALTER TABLE / DROP CONSTRAINT for CHECK constraints (Christopher Kings-Lynne)

• New CREATE OR REPLACE FUNCTION to alter existing function (preserving the function OID)
(Gavin Sherry)

• Add ALTER TABLE / ADD [UNIQUE | PRIMARY] (Christopher Kings-Lynne)

• Allow column renaming in views

• Make ALTER TABLE / RENAME COLUMN update column names of indexes (Brent Verner)

• Fix for ALTER TABLE / ADD CONSTRAINT ... CHECK with inherited tables (Stephan Szabo)

• ALTER TABLE RENAME update foreign-key trigger arguments correctly (Brent Verner)

• DROP AGGREGATE and COMMENT ON AGGREGATE now accept an aggtype (Tom)

• Add automatic return type data casting for SQL functions (Tom)

• Allow GiST indexes to handle NULLs and multikey indexes (Oleg Bartunov, Teodor Sigaev, Tom)

• Enable partial indexes (Martijn van Oosterhout)

2544

Appendix E. Release Notes

E.220.3.8. Utility Commands

• Add RESET ALL, SHOW ALL (Marko Kreen)

• CREATE/ALTER USER/GROUP now allow options in any order (Vince)

• Add LOCK A, B, C functionality (Neil Padgett)

• New ENCRYPTED/UNENCRYPTED option to CREATE/ALTER USER (Bruce)

• New light-weight VACUUM does not lock table; old semantics are available as VACUUM FULL (Tom)

• Disable COPY TO/FROM on views (Bruce)

• COPY DELIMITERS string must be exactly one character (Tom)

• VACUUM warning about index tuples fewer than heap now only appears when appropriate (Martijn
van Oosterhout)

• Fix privilege checks for CREATE INDEX (Tom)

• Disallow inappropriate use of CREATE/DROP INDEX/TRIGGER/VIEW (Tom)

E.220.3.9. Data Types and Functions

• SUM(), AVG(), COUNT() now uses int8 internally for speed (Tom)

• Add convert(), convert2() (Tatsuo)

• New function bit_length() (Peter E)

• Make the "n" in CHAR(n)/VARCHAR(n) represents letters, not bytes (Tatsuo)

• CHAR(), VARCHAR() now reject strings that are too long (Peter E)

• BIT VARYING now rejects bit strings that are too long (Peter E)

• BIT now rejects bit strings that do not match declared size (Peter E)

• INET, CIDR text conversion functions (Alex Pilosov)

• INET, CIDR operators << and <<= indexable (Alex Pilosov)

• Bytea \### now requires valid three digit octal number

• Bytea comparison improvements, now supports =, <>, >, >=, <, and <=

• Bytea now supports B-tree indexes

• Bytea now supports LIKE, LIKE...ESCAPE, NOT LIKE, NOT LIKE...ESCAPE

• Bytea now supports concatenation

• New bytea functions: position, substring, trim, btrim, and length

• New encode() function mode, "escaped", converts minimally escaped bytea to/from text

• Add pg_database_encoding_max_length() (Tatsuo)

• Add pg_client_encoding() function (Tatsuo)

• now() returns time with millisecond precision (Thomas)

2545

Appendix E. Release Notes

• New TIMESTAMP WITHOUT TIMEZONE data type (Thomas)

• Add ISO date/time specification with "T", yyyy-mm-ddThh:mm:ss (Thomas)

• New xid/int comparison functions (Hiroshi)

• Add precision to TIME, TIMESTAMP, and INTERVAL data types (Thomas)

• Modify type coercion logic to attempt binary-compatible functions first (Tom)

• New encode() function installed by default (Marko Kreen)

• Improved to_*() conversion functions (Karel Zak)

• Optimize LIKE/ILIKE when using single-byte encodings (Tatsuo)

• New functions in contrib/pgcrypto: crypt(), hmac(), encrypt(), gen_salt() (Marko Kreen)

• Correct description of translate() function (Bruce)

• Add INTERVAL argument for SET TIME ZONE (Thomas)

• Add INTERVAL YEAR TO MONTH (etc.) syntax (Thomas)

• Optimize length functions when using single-byte encodings (Tatsuo)

• Fix path_inter, path_distance, path_length, dist_ppath to handle closed paths (Curtis Barrett, Tom)

• octet_length(text) now returns non-compressed length (Tatsuo, Bruce)

• Handle "July" full name in date/time literals (Greg Sabino Mullane)

• Some datatype() function calls now evaluated differently

• Add support for Julian and ISO time specifications (Thomas)

E.220.3.10. Internationalization

• National language support in psql, pg_dump, libpq, and server (Peter E)

• Message translations in Chinese (simplified, traditional), Czech, French, German, Hungarian, Russian,
Swedish (Peter E, Serguei A. Mokhov, Karel Zak, Weiping He, Zhenbang Wei, Kovacs Zoltan)

• Make trim, ltrim, rtrim, btrim, lpad, rpad, translate multibyte aware (Tatsuo)

• Add LATIN5,6,7,8,9,10 support (Tatsuo)

• Add ISO 8859-5,6,7,8 support (Tatsuo)

• Correct LATIN5 to mean ISO-8859-9, not ISO-8859-5 (Tatsuo)

• Make mic2ascii() non-ASCII aware (Tatsuo)

• Reject invalid multibyte character sequences (Tatsuo)

E.220.3.11. PL/pgSQL

• Now uses portals for SELECT loops, allowing huge result sets (Jan)

• CURSOR and REFCURSOR support (Jan)

2546

Appendix E. Release Notes

• Can now return open cursors (Jan)

• Add ELSEIF (Klaus Reger)

• Improve PL/pgSQL error reporting, including location of error (Tom)

• Allow IS or FOR key words in cursor declaration, for compatibility (Bruce)

• Fix for SELECT ... FOR UPDATE (Tom)

• Fix for PERFORM returning multiple rows (Tom)

• Make PL/pgSQL use the server’s type coercion code (Tom)

• Memory leak fix (Jan, Tom)

• Make trailing semicolon optional (Tom)

E.220.3.12. PL/Perl

• New untrusted PL/Perl (Alex Pilosov)

• PL/Perl is now built on some platforms even if libperl is not shared (Peter E)

E.220.3.13. PL/Tcl

• Now reports errorInfo (Vsevolod Lobko)

• Add spi_lastoid function (bob@redivi.com)

E.220.3.14. PL/Python

• ...is new (Andrew Bosma)

E.220.3.15. psql

• \d displays indexes in unique, primary groupings (Christopher Kings-Lynne)

• Allow trailing semicolons in backslash commands (Greg Sabino Mullane)

• Read password from /dev/tty if possible

• Force new password prompt when changing user and database (Tatsuo, Tom)

• Format the correct number of columns for Unicode (Patrice)

E.220.3.16. libpq

• New function PQescapeString() to escape quotes in command strings (Florian Weimer)

2547

Appendix E. Release Notes

• New function PQescapeBytea() escapes binary strings for use as SQL string literals

E.220.3.17. JDBC

• Return OID of INSERT (Ken K)

• Handle more data types (Ken K)

• Handle single quotes and newlines in strings (Ken K)

• Handle NULL variables (Ken K)

• Fix for time zone handling (Barry Lind)

• Improved Druid support

• Allow eight-bit characters with non-multibyte server (Barry Lind)

• Support BIT, BINARY types (Ned Wolpert)

• Reduce memory usage (Michael Stephens, Dave Cramer)

• Update DatabaseMetaData (Peter E)

• Add DatabaseMetaData.getCatalogs() (Peter E)

• Encoding fixes (Anders Bengtsson)

• Get/setCatalog methods (Jason Davies)

• DatabaseMetaData.getColumns() now returns column defaults (Jason Davies)

• DatabaseMetaData.getColumns() performance improvement (Jeroen van Vianen)

• Some JDBC1 and JDBC2 merging (Anders Bengtsson)

• Transaction performance improvements (Barry Lind)

• Array fixes (Greg Zoller)

• Serialize addition

• Fix batch processing (Rene Pijlman)

• ExecSQL method reorganization (Anders Bengtsson)

• GetColumn() fixes (Jeroen van Vianen)

• Fix isWriteable() function (Rene Pijlman)

• Improved passage of JDBC2 conformance tests (Rene Pijlman)

• Add bytea type capability (Barry Lind)

• Add isNullable() (Rene Pijlman)

• JDBC date/time test suite fixes (Liam Stewart)

• Fix for SELECT ’id’ AS xxx FROM table (Dave Cramer)

• Fix DatabaseMetaData to show precision properly (Mark Lillywhite)

• New getImported/getExported keys (Jason Davies)

• MD5 password encryption support (Jeremy Wohl)

2548

Appendix E. Release Notes

• Fix to actually use type cache (Ned Wolpert)

E.220.3.18. ODBC

• Remove query size limit (Hiroshi)

• Remove text field size limit (Hiroshi)

• Fix for SQLPrimaryKeys in multibyte mode (Hiroshi)

• Allow ODBC procedure calls (Hiroshi)

• Improve boolean handing (Aidan Mountford)

• Most configuration options now settable via DSN (Hiroshi)

• Multibyte, performance fixes (Hiroshi)

• Allow driver to be used with iODBC or unixODBC (Peter E)

• MD5 password encryption support (Bruce)

• Add more compatibility functions to odbc.sql (Peter E)

E.220.3.19. ECPG

• EXECUTE ... INTO implemented (Christof Petig)

• Multiple row descriptor support (e.g. CARDINALITY) (Christof Petig)

• Fix for GRANT parameters (Lee Kindness)

• Fix INITIALLY DEFERRED bug

• Various bug fixes (Michael, Christof Petig)

• Auto allocation for indicator variable arrays (int *ind_p=NULL)

• Auto allocation for string arrays (char **foo_pp=NULL)

• ECPGfree_auto_mem fixed

• All function names with external linkage are now prefixed by ECPG

• Fixes for arrays of structures (Michael)

E.220.3.20. Misc. Interfaces

• Python fix fetchone() (Gerhard Haring)

• Use UTF, Unicode in Tcl where appropriate (Vsevolod Lobko, Reinhard Max)

• Add Tcl COPY TO/FROM (ljb)

• Prevent output of default index op class in pg_dump (Tom)

• Fix libpgeasy memory leak (Bruce)

2549

Appendix E. Release Notes

E.220.3.21. Build and Install

• Configure, dynamic loader, and shared library fixes (Peter E)

• Fixes in QNX 4 port (Bernd Tegge)

• Fixes in Cygwin and Windows ports (Jason Tishler, Gerhard Haring, Dmitry Yurtaev, Darko Prenosil,
Mikhail Terekhov)

• Fix for Windows socket communication failures (Magnus, Mikhail Terekhov)

• Hurd compile fix (Oliver Elphick)

• BeOS fixes (Cyril Velter)

• Remove configure --enable-unicode-conversion, now enabled by multibyte (Tatsuo)

• AIX fixes (Tatsuo, Andreas)

• Fix parallel make (Peter E)

• Install SQL language manual pages into OS-specific directories (Peter E)

• Rename config.h to pg_config.h (Peter E)

• Reorganize installation layout of header files (Peter E)

E.220.3.22. Source Code

• Remove SEP_CHAR (Bruce)

• New GUC hooks (Tom)

• Merge GUC and command line handling (Marko Kreen)

• Remove EXTEND INDEX (Martijn van Oosterhout, Tom)

• New pgjindent utility to indent java code (Bruce)

• Remove define of true/false when compiling under C++ (Leandro Fanzone, Tom)

• pgindent fixes (Bruce, Tom)

• Replace strcasecmp() with strcmp() where appropriate (Peter E)

• Dynahash portability improvements (Tom)

• Add ’volatile’ usage in spinlock structures

• Improve signal handling logic (Tom)

E.220.3.23. Contrib

• New contrib/rtree_gist (Oleg Bartunov, Teodor Sigaev)

• New contrib/tsearch full-text indexing (Oleg, Teodor Sigaev)

• Add contrib/dblink for remote database access (Joe Conway)

2550

Appendix E. Release Notes

• contrib/ora2pg Oracle conversion utility (Gilles Darold)

• contrib/xml XML conversion utility (John Gray)

• contrib/fulltextindex fixes (Christopher Kings-Lynne)

• New contrib/fuzzystrmatch with levenshtein and metaphone, soundex merged (Joe Conway)

• Add contrib/intarray boolean queries, binary search, fixes (Oleg Bartunov)

• New pg_upgrade utility (Bruce)

• Add new pg_resetxlog options (Bruce, Tom)

E.221. Release 7.1.3

Release Date: 2001-08-15

E.221.1. Migration to Version 7.1.3
A dump/restore is not required for those running 7.1.X.

E.221.2. Changes

Remove unused WAL segments of large transactions (Tom)
Multiaction rule fix (Tom)
PL/pgSQL memory allocation fix (Jan)
VACUUM buffer fix (Tom)
Regression test fixes (Tom)
pg_dump fixes for GRANT/REVOKE/comments on views, user-defined types (Tom)
Fix subselects with DISTINCT ON or LIMIT (Tom)
BeOS fix
Disable COPY TO/FROM a view (Tom)
Cygwin build (Jason Tishler)

E.222. Release 7.1.2

Release Date: 2001-05-11

2551

Appendix E. Release Notes

This has one fix from 7.1.1.

E.222.1. Migration to Version 7.1.2
A dump/restore is not required for those running 7.1.X.

E.222.2. Changes

Fix PL/pgSQL SELECTs when returning no rows
Fix for psql backslash core dump
Referential integrity privilege fix
Optimizer fixes
pg_dump cleanups

E.223. Release 7.1.1

Release Date: 2001-05-05

This has a variety of fixes from 7.1.

E.223.1. Migration to Version 7.1.1
A dump/restore is not required for those running 7.1.

E.223.2. Changes

Fix for numeric MODULO operator (Tom)
pg_dump fixes (Philip)
pg_dump can dump 7.0 databases (Philip)
readline 4.2 fixes (Peter E)
JOIN fixes (Tom)
AIX, MSWIN, VAX, N32K fixes (Tom)
Multibytes fixes (Tom)
Unicode fixes (Tatsuo)
Optimizer improvements (Tom)
Fix for whole rows in functions (Tom)
Fix for pg_ctl and option strings with spaces (Peter E)
ODBC fixes (Hiroshi)
EXTRACT can now take string argument (Thomas)

2552

Appendix E. Release Notes

Python fixes (Darcy)

E.224. Release 7.1

Release Date: 2001-04-13

This release focuses on removing limitations that have existed in the PostgreSQL code for many years.

Major changes in this release:

Write-ahead Log (WAL)

To maintain database consistency in case of an operating system crash, previous releases of Post-
greSQL have forced all data modifications to disk before each transaction commit. With WAL, only
one log file must be flushed to disk, greatly improving performance. If you have been using -F in
previous releases to disable disk flushes, you might want to consider discontinuing its use.

TOAST

TOAST - Previous releases had a compiled-in row length limit, typically 8k - 32k. This limit made
storage of long text fields difficult. With TOAST, long rows of any length can be stored with good
performance.

Outer Joins

We now support outer joins. The UNION/NOT IN workaround for outer joins is no longer required.
We use the SQL92 outer join syntax.

Function Manager

The previous C function manager did not handle null values properly, nor did it support 64-bit CPU’s
(Alpha). The new function manager does. You can continue using your old custom functions, but you
might want to rewrite them in the future to use the new function manager call interface.

Complex Queries

A large number of complex queries that were unsupported in previous releases now work. Many
combinations of views, aggregates, UNION, LIMIT, cursors, subqueries, and inherited tables now
work properly. Inherited tables are now accessed by default. Subqueries in FROM are now supported.

E.224.1. Migration to Version 7.1
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release.

2553

Appendix E. Release Notes

E.224.2. Changes

Bug Fixes

Many multibyte/Unicode/locale fixes (Tatsuo and others)
More reliable ALTER TABLE RENAME (Tom)
Kerberos V fixes (David Wragg)
Fix for INSERT INTO...SELECT where targetlist has subqueries (Tom)
Prompt username/password on standard error (Bruce)
Large objects inv_read/inv_write fixes (Tom)
Fixes for to_char(), to_date(), to_ascii(), and to_timestamp() (Karel,

Daniel Baldoni)
Prevent query expressions from leaking memory (Tom)
Allow UPDATE of arrays elements (Tom)
Wake up lock waiters during cancel (Hiroshi)
Fix rare cursor crash when using hash join (Tom)
Fix for DROP TABLE/INDEX in rolled-back transaction (Hiroshi)
Fix psql crash from \l+ if MULTIBYTE enabled (Peter E)
Fix truncation of rule names during CREATE VIEW (Ross Reedstrom)
Fix PL/perl (Alex Kapranoff)
Disallow LOCK on views (Mark Hollomon)
Disallow INSERT/UPDATE/DELETE on views (Mark Hollomon)
Disallow DROP RULE, CREATE INDEX, TRUNCATE on views (Mark Hollomon)
Allow PL/pgSQL accept non-ASCII identifiers (Tatsuo)
Allow views to proper handle GROUP BY, aggregates, DISTINCT (Tom)
Fix rare failure with TRUNCATE command (Tom)
Allow UNION/INTERSECT/EXCEPT to be used with ALL, subqueries, views,

DISTINCT, ORDER BY, SELECT...INTO (Tom)
Fix parser failures during aborted transactions (Tom)
Allow temporary relations to properly clean up indexes (Bruce)
Fix VACUUM problem with moving rows in same page (Tom)
Modify pg_dump to better handle user-defined items in template1 (Philip)
Allow LIMIT in VIEW (Tom)
Require cursor FETCH to honor LIMIT (Tom)
Allow PRIMARY/FOREIGN Key definitions on inherited columns (Stephan)
Allow ORDER BY, LIMIT in subqueries (Tom)
Allow UNION in CREATE RULE (Tom)
Make ALTER/DROP TABLE rollback-able (Vadim, Tom)
Store initdb collation in pg_control so collation cannot be changed (Tom)
Fix INSERT...SELECT with rules (Tom)
Fix FOR UPDATE inside views and subselects (Tom)
Fix OVERLAPS operators conform to SQL92 spec regarding NULLs (Tom)
Fix lpad() and rpad() to handle length less than input string (Tom)
Fix use of NOTIFY in some rules (Tom)
Overhaul btree code (Tom)
Fix NOT NULL use in Pl/pgSQL variables (Tom)
Overhaul GIST code (Oleg)
Fix CLUSTER to preserve constraints and column default (Tom)
Improved deadlock detection handling (Tom)
Allow multiple SERIAL columns in a table (Tom)
Prevent occasional index corruption (Vadim)

2554

Appendix E. Release Notes

Enhancements

Add OUTER JOINs (Tom)
Function manager overhaul (Tom)
Allow ALTER TABLE RENAME on indexes (Tom)
Improve CLUSTER (Tom)
Improve ps status display for more platforms (Peter E, Marc)
Improve CREATE FUNCTION failure message (Ross)
JDBC improvements (Peter, Travis Bauer, Christopher Cain, William Webber,

Gunnar)
Grand Unified Configuration scheme/GUC. Many options can now be set in

data/postgresql.conf, postmaster/postgres flags, or SET commands (Peter E)
Improved handling of file descriptor cache (Tom)
New warning code about auto-created table alias entries (Bruce)
Overhaul initdb process (Tom, Peter E)
Overhaul of inherited tables; inherited tables now accessed by default;
new ONLY key word prevents it (Chris Bitmead, Tom)

ODBC cleanups/improvements (Nick Gorham, Stephan Szabo, Zoltan Kovacs,
Michael Fork)

Allow renaming of temp tables (Tom)
Overhaul memory manager contexts (Tom)
pg_dumpall uses CREATE USER or CREATE GROUP rather using COPY (Peter E)
Overhaul pg_dump (Philip Warner)
Allow pg_hba.conf secondary password file to specify only username (Peter E)
Allow TEMPORARY or TEMP key word when creating temporary tables (Bruce)
New memory leak checker (Karel)
New SET SESSION CHARACTERISTICS (Thomas)
Allow nested block comments (Thomas)
Add WITHOUT TIME ZONE type qualifier (Thomas)
New ALTER TABLE ADD CONSTRAINT (Stephan)
Use NUMERIC accumulators for INTEGER aggregates (Tom)
Overhaul aggregate code (Tom)
New VARIANCE and STDDEV() aggregates
Improve dependency ordering of pg_dump (Philip)
New pg_restore command (Philip)
New pg_dump tar output option (Philip)
New pg_dump of large objects (Philip)
New ESCAPE option to LIKE (Thomas)
New case-insensitive LIKE - ILIKE (Thomas)
Allow functional indexes to use binary-compatible type (Tom)
Allow SQL functions to be used in more contexts (Tom)
New pg_config utility (Peter E)
New PL/pgSQL EXECUTE command which allows dynamic SQL and utility statements

(Jan)
New PL/pgSQL GET DIAGNOSTICS statement for SPI value access (Jan)
New quote_identifiers() and quote_literal() functions (Jan)
New ALTER TABLE table OWNER TO user command (Mark Hollomon)
Allow subselects in FROM, i.e. FROM (SELECT ...) [AS] alias (Tom)
Update PyGreSQL to version 3.1 (D’Arcy)
Store tables as files named by OID (Vadim)
New SQL function setval(seq,val,bool) for use in pg_dump (Philip)
Require DROP VIEW to remove views, no DROP TABLE (Mark)
Allow DROP VIEW view1, view2 (Mark)

2555

Appendix E. Release Notes

Allow multiple objects in DROP INDEX, DROP RULE, and DROP TYPE (Tom)
Allow automatic conversion to/from Unicode (Tatsuo, Eiji)
New /contrib/pgcrypto hashing functions (Marko Kreen)
New pg_dumpall --globals-only option (Peter E)
New CHECKPOINT command for WAL which creates new WAL log file (Vadim)
New AT TIME ZONE syntax (Thomas)
Allow location of Unix domain socket to be configurable (David J. MacKenzie)
Allow postmaster to listen on a specific IP address (David J. MacKenzie)
Allow socket path name to be specified in hostname by using leading slash

(David J. MacKenzie)
Allow CREATE DATABASE to specify template database (Tom)
New utility to convert MySQL schema dumps to SQL92 and PostgreSQL (Thomas)
New /contrib/rserv replication toolkit (Vadim)
New file format for COPY BINARY (Tom)
New /contrib/oid2name to map numeric files to table names (B Palmer)
New "idle in transaction" ps status message (Marc)
Update to pgaccess 0.98.7 (Constantin Teodorescu)
pg_ctl now defaults to -w (wait) on shutdown, new -l (log) option
Add rudimentary dependency checking to pg_dump (Philip)

Types

Fix INET/CIDR type ordering and add new functions (Tom)
Make OID behave as an unsigned type (Tom)
Allow BIGINT as synonym for INT8 (Peter E)
New int2 and int8 comparison operators (Tom)
New BIT and BIT VARYING types (Adriaan Joubert, Tom, Peter E)
CHAR() no longer faster than VARCHAR() because of TOAST (Tom)
New GIST seg/cube examples (Gene Selkov)
Improved round(numeric) handling (Tom)
Fix CIDR output formatting (Tom)
New CIDR abbrev() function (Tom)

Performance

Write-Ahead Log (WAL) to provide crash recovery with less performance

overhead (Vadim)
ANALYZE stage of VACUUM no longer exclusively locks table (Bruce)
Reduced file seeks (Denis Perchine)
Improve BTREE code for duplicate keys (Tom)
Store all large objects in a single table (Denis Perchine, Tom)
Improve memory allocation performance (Karel, Tom)

Source Code

New function manager call conventions (Tom)
SGI portability fixes (David Kaelbling)
New configure --enable-syslog option (Peter E)
New BSDI README (Bruce)
configure script moved to top level, not /src (Peter E)
Makefile/configuration/compilation overhaul (Peter E)
New configure --with-python option (Peter E)
Solaris cleanups (Peter E)

2556

Appendix E. Release Notes

Overhaul /contrib Makefiles (Karel)
New OpenSSL configuration option (Magnus, Peter E)
AIX fixes (Andreas)
QNX fixes (Maurizio)
New heap_open(), heap_openr() API (Tom)
Remove colon and semi-colon operators (Thomas)
New pg_class.relkind value for views (Mark Hollomon)
Rename ichar() to chr() (Karel)
New documentation for btrim(), ascii(), chr(), repeat() (Karel)
Fixes for NT/Cygwin (Pete Forman)
AIX port fixes (Andreas)
New BeOS port (David Reid, Cyril Velter)
Add proofreader’s changes to docs (Addison-Wesley, Bruce)
New Alpha spinlock code (Adriaan Joubert, Compaq)
UnixWare port overhaul (Peter E)
New Darwin/Mac OS X port (Peter Bierman, Bruce Hartzler)
New FreeBSD Alpha port (Alfred)
Overhaul shared memory segments (Tom)
Add IBM S/390 support (Neale Ferguson)
Moved macmanuf to /contrib (Larry Rosenman)
Syslog improvements (Larry Rosenman)
New template0 database that contains no user additions (Tom)
New /contrib/cube and /contrib/seg GIST sample code (Gene Selkov)
Allow NetBSD’s libedit instead of readline (Peter)
Improved assembly language source code format (Bruce)
New contrib/pg_logger
New --template option to createdb
New contrib/pg_control utility (Oliver)
New FreeBSD tools ipc_check, start-scripts/freebsd

E.225. Release 7.0.3

Release Date: 2000-11-11

This has a variety of fixes from 7.0.2.

E.225.1. Migration to Version 7.0.3
A dump/restore is not required for those running 7.0.*.

2557

Appendix E. Release Notes

E.225.2. Changes

Jdbc fixes (Peter)
Large object fix (Tom)
Fix lean in COPY WITH OIDS leak (Tom)
Fix backwards-index-scan (Tom)
Fix SELECT ... FOR UPDATE so it checks for duplicate keys (Hiroshi)
Add --enable-syslog to configure (Marc)
Fix abort transaction at backend exit in rare cases (Tom)
Fix for psql \l+ when multibyte enabled (Tatsuo)
Allow PL/pgSQL to accept non ascii identifiers (Tatsuo)
Make vacuum always flush buffers (Tom)
Fix to allow cancel while waiting for a lock (Hiroshi)
Fix for memory allocation problem in user authentication code (Tom)
Remove bogus use of int4out() (Tom)
Fixes for multiple subqueries in COALESCE or BETWEEN (Tom)
Fix for failure of triggers on heap open in certain cases (Jeroen van

Vianen)
Fix for erroneous selectivity of not-equals (Tom)
Fix for erroneous use of strcmp() (Tom)
Fix for bug where storage manager accesses items beyond end of file

(Tom)
Fix to include kernel errno message in all smgr elog messages (Tom)
Fix for ’.’ not in PATH at build time (SL Baur)
Fix for out-of-file-descriptors error (Tom)
Fix to make pg_dump dump ’iscachable’ flag for functions (Tom)
Fix for subselect in targetlist of Append node (Tom)
Fix for mergejoin plans (Tom)
Fix TRUNCATE failure on relations with indexes (Tom)
Avoid database-wide restart on write error (Hiroshi)
Fix nodeMaterial to honor chgParam by recomputing its output (Tom)
Fix VACUUM problem with moving chain of update row versions when source

and destination of a row version lie on the same page (Tom)
Fix user.c CommandCounterIncrement (Tom)
Fix for AM/PM boundary problem in to_char() (Karel Zak)
Fix TIME aggregate handling (Tom)
Fix to_char() to avoid coredump on NULL input (Tom)
Buffer fix (Tom)
Fix for inserting/copying longer multibyte strings into char() data

types (Tatsuo)
Fix for crash of backend, on abort (Tom)

E.226. Release 7.0.2

Release Date: 2000-06-05

2558

Appendix E. Release Notes

This is a repackaging of 7.0.1 with added documentation.

E.226.1. Migration to Version 7.0.2
A dump/restore is not required for those running 7.*.

E.226.2. Changes

Added documentation to tarball.

E.227. Release 7.0.1

Release Date: 2000-06-01

This is a cleanup release for 7.0.

E.227.1. Migration to Version 7.0.1
A dump/restore is not required for those running 7.0.

E.227.2. Changes

Fix many CLUSTER failures (Tom)
Allow ALTER TABLE RENAME works on indexes (Tom)
Fix plpgsql to handle datetime->timestamp and timespan->interval (Bruce)
New configure --with-setproctitle switch to use setproctitle() (Marc, Bruce)
Fix the off by one errors in ResultSet from 6.5.3, and more.
jdbc ResultSet fixes (Joseph Shraibman)
optimizer tunings (Tom)
Fix create user for pgaccess
Fix for UNLISTEN failure
IRIX fixes (David Kaelbling)
QNX fixes (Andreas Kardos)
Reduce COPY IN lock level (Tom)
Change libpqeasy to use PQconnectdb() style parameters (Bruce)
Fix pg_dump to handle OID indexes (Tom)
Fix small memory leak (Tom)
Solaris fix for createdb/dropdb (Tatsuo)
Fix for non-blocking connections (Alfred Perlstein)

2559

Appendix E. Release Notes

Fix improper recovery after RENAME TABLE failures (Tom)
Copy pg_ident.conf.sample into /lib directory in install (Bruce)
Add SJIS UDC (NEC selection IBM kanji) support (Eiji Tokuya)
Fix too long syslog message (Tatsuo)
Fix problem with quoted indexes that are too long (Tom)
JDBC ResultSet.getTimestamp() fix (Gregory Krasnow & Floyd Marinescu)
ecpg changes (Michael)

E.228. Release 7.0

Release Date: 2000-05-08

This release contains improvements in many areas, demonstrating the continued growth of PostgreSQL.
There are more improvements and fixes in 7.0 than in any previous release. The developers have confi-
dence that this is the best release yet; we do our best to put out only solid releases, and this one is no
exception.

Major changes in this release:

Foreign Keys

Foreign keys are now implemented, with the exception of PARTIAL MATCH foreign keys. Many
users have been asking for this feature, and we are pleased to offer it.

Optimizer Overhaul

Continuing on work started a year ago, the optimizer has been improved, allowing better query plan
selection and faster performance with less memory usage.

Updated psql

psql, our interactive terminal monitor, has been updated with a variety of new features. See the psql
manual page for details.

Join Syntax

SQL92 join syntax is now supported, though only as INNER JOIN for this release. JOIN, NATURAL
JOIN, JOIN/USING, and JOIN/ON are available, as are column correlation names.

E.228.1. Migration to Version 7.0
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release of
PostgreSQL. For those upgrading from 6.5.*, you can instead use pg_upgrade to upgrade to this release;
however, a full dump/reload installation is always the most robust method for upgrades.

Interface and compatibility issues to consider for the new release include:

2560

Appendix E. Release Notes

• The date/time types datetime and timespan have been superseded by the SQL92-defined types
timestamp and interval. Although there has been some effort to ease the transition by allowing
PostgreSQL to recognize the deprecated type names and translate them to the new type names, this
mechanism cannot be completely transparent to your existing application.

• The optimizer has been substantially improved in the area of query cost estimation. In some cases,
this will result in decreased query times as the optimizer makes a better choice for the preferred plan.
However, in a small number of cases, usually involving pathological distributions of data, your query
times might go up. If you are dealing with large amounts of data, you might want to check your queries
to verify performance.

• The JDBC and ODBC interfaces have been upgraded and extended.

• The string function CHAR_LENGTH is now a native function. Previous versions translated this into a
call to LENGTH, which could result in ambiguity with other types implementing LENGTH such as the
geometric types.

E.228.2. Changes

Bug Fixes

Prevent function calls exceeding maximum number of arguments (Tom)
Improve CASE construct (Tom)
Fix SELECT coalesce(f1,0) FROM int4_tbl GROUP BY f1 (Tom)
Fix SELECT sentence.words[0] FROM sentence GROUP BY sentence.words[0] (Tom)
Fix GROUP BY scan bug (Tom)
Improvements in SQL grammar processing (Tom)
Fix for views involved in INSERT ... SELECT ... (Tom)
Fix for SELECT a/2, a/2 FROM test_missing_target GROUP BY a/2 (Tom)
Fix for subselects in INSERT ... SELECT (Tom)
Prevent INSERT ... SELECT ... ORDER BY (Tom)
Fixes for relations greater than 2GB, including vacuum
Improve propagating system table changes to other backends (Tom)
Improve propagating user table changes to other backends (Tom)
Fix handling of temp tables in complex situations (Bruce, Tom)
Allow table locking at table open, improving concurrent reliability (Tom)
Properly quote sequence names in pg_dump (Ross J. Reedstrom)
Prevent DROP DATABASE while others accessing
Prevent any rows from being returned by GROUP BY if no rows processed (Tom)
Fix SELECT COUNT(1) FROM table WHERE ...’ if no rows matching WHERE (Tom)
Fix pg_upgrade so it works for MVCC (Tom)
Fix for SELECT ... WHERE x IN (SELECT ... HAVING SUM(x) > 1) (Tom)
Fix for "f1 datetime DEFAULT ’now’" (Tom)
Fix problems with CURRENT_DATE used in DEFAULT (Tom)
Allow comment-only lines, and ;;; lines too. (Tom)
Improve recovery after failed disk writes, disk full (Hiroshi)
Fix cases where table is mentioned in FROM but not joined (Tom)
Allow HAVING clause without aggregate functions (Tom)
Fix for "--" comment and no trailing newline, as seen in perl interface
Improve pg_dump failure error reports (Bruce)
Allow sorts and hashes to exceed 2GB file sizes (Tom)

2561

Appendix E. Release Notes

Fix for pg_dump dumping of inherited rules (Tom)
Fix for NULL handling comparisons (Tom)
Fix inconsistent state caused by failed CREATE/DROP commands (Hiroshi)
Fix for dbname with dash
Prevent DROP INDEX from interfering with other backends (Tom)
Fix file descriptor leak in verify_password()
Fix for "Unable to identify an operator =$" problem
Fix ODBC so no segfault if CommLog and Debug enabled (Dirk Niggemann)
Fix for recursive exit call (Massimo)
Fix for extra-long timezones (Jeroen van Vianen)
Make pg_dump preserve primary key information (Peter E)
Prevent databases with single quotes (Peter E)
Prevent DROP DATABASE inside transaction (Peter E)
ecpg memory leak fixes (Stephen Birch)
Fix for SELECT null::text, SELECT int4fac(null) and SELECT 2 + (null) (Tom)
Y2K timestamp fix (Massimo)
Fix for VACUUM ’HEAP_MOVED_IN was not expected’ errors (Tom)
Fix for views with tables/columns containing spaces (Tom)
Prevent privileges on indexes (Peter E)
Fix for spinlock stuck problem when error is generated (Hiroshi)
Fix ipcclean on Linux
Fix handling of NULL constraint conditions (Tom)
Fix memory leak in odbc driver (Nick Gorham)
Fix for privilege check on UNION tables (Tom)
Fix to allow SELECT ’a’ LIKE ’a’ (Tom)
Fix for SELECT 1 + NULL (Tom)
Fixes to CHAR
Fix log() on numeric type (Tom)
Deprecate ’:’ and ’;’ operators
Allow vacuum of temporary tables
Disallow inherited columns with the same name as new columns
Recover or force failure when disk space is exhausted (Hiroshi)
Fix INSERT INTO ... SELECT with AS columns matching result columns
Fix INSERT ... SELECT ... GROUP BY groups by target columns not source columns (Tom)
Fix CREATE TABLE test (a char(5) DEFAULT text ”, b int4) with INSERT (Tom)
Fix UNION with LIMIT
Fix CREATE TABLE x AS SELECT 1 UNION SELECT 2
Fix CREATE TABLE test(col char(2) DEFAULT user)
Fix mismatched types in CREATE TABLE ... DEFAULT
Fix SELECT * FROM pg_class where oid in (0,-1)
Fix SELECT COUNT(’asdf’) FROM pg_class WHERE oid=12
Prevent user who can create databases can modifying pg_database table (Peter E)
Fix btree to give a useful elog when key > 1/2 (page - overhead) (Tom)
Fix INSERT of 0.0 into DECIMAL(4,4) field (Tom)

Enhancements

New CLI interface include file sqlcli.h, based on SQL3/SQL98
Remove all limits on query length, row length limit still exists (Tom)
Update jdbc protocol to 2.0 (Jens Glaser <jens@jens.de>)
Add TRUNCATE command to quickly truncate relation (Mike Mascari)
Fix to give super user and createdb user proper update catalog rights (Peter E)
Allow ecpg bool variables to have NULL values (Christof)

2562

Appendix E. Release Notes

Issue ecpg error if NULL value for variable with no NULL indicator (Christof)
Allow ^C to cancel COPY command (Massimo)
Add SET FSYNC and SHOW PG_OPTIONS commands(Massimo)
Function name overloading for dynamically-loaded C functions (Frankpitt)
Add CmdTuples() to libpq++(Vince)
New CREATE CONSTRAINT TRIGGER and SET CONSTRAINTS commands(Jan)
Allow CREATE FUNCTION/WITH clause to be used for all language types
configure --enable-debug adds -g (Peter E)
configure --disable-debug removes -g (Peter E)
Allow more complex default expressions (Tom)
First real FOREIGN KEY constraint trigger functionality (Jan)
Add FOREIGN KEY ... MATCH FULL ... ON DELETE CASCADE (Jan)
Add FOREIGN KEY ... MATCH <unspecified> referential actions (Don Baccus)
Allow WHERE restriction on ctid (physical heap location) (Hiroshi)
Move pginterface from contrib to interface directory, rename to pgeasy (Bruce)
Change pgeasy connectdb() parameter ordering (Bruce)
Require SELECT DISTINCT target list to have all ORDER BY columns (Tom)
Add Oracle’s COMMENT ON command (Mike Mascari <mascarim@yahoo.com>)
libpq’s PQsetNoticeProcessor function now returns previous hook(Peter E)
Prevent PQsetNoticeProcessor from being set to NULL (Peter E)
Make USING in COPY optional (Bruce)
Allow subselects in the target list (Tom)
Allow subselects on the left side of comparison operators (Tom)
New parallel regression test (Jan)
Change backend-side COPY to write files with permissions 644 not 666 (Tom)
Force permissions on PGDATA directory to be secure, even if it exists (Tom)
Added psql LASTOID variable to return last inserted oid (Peter E)
Allow concurrent vacuum and remove pg_vlock vacuum lock file (Tom)
Add privilege check for vacuum (Peter E)
New libpq functions to allow asynchronous connections: PQconnectStart(),
PQconnectPoll(), PQresetStart(), PQresetPoll(), PQsetenvStart(),
PQsetenvPoll(), PQsetenvAbort (Ewan Mellor)

New libpq PQsetenv() function (Ewan Mellor)
create/alter user extension (Peter E)
New postmaster.pid and postmaster.opts under $PGDATA (Tatsuo)
New scripts for create/drop user/db (Peter E)
Major psql overhaul (Peter E)
Add const to libpq interface (Peter E)
New libpq function PQoidValue (Peter E)
Show specific non-aggregate causing problem with GROUP BY (Tom)
Make changes to pg_shadow recreate pg_pwd file (Peter E)
Add aggregate(DISTINCT ...) (Tom)
Allow flag to control COPY input/output of NULLs (Peter E)
Make postgres user have a password by default (Peter E)
Add CREATE/ALTER/DROP GROUP (Peter E)
All administration scripts now support --long options (Peter E, Karel)
Vacuumdb script now supports --all option (Peter E)
ecpg new portable FETCH syntax
Add ecpg EXEC SQL IFDEF, EXEC SQL IFNDEF, EXEC SQL ELSE, EXEC SQL ELIF

and EXEC SQL ENDIF directives
Add pg_ctl script to control backend start-up (Tatsuo)
Add postmaster.opts.default file to store start-up flags (Tatsuo)
Allow --with-mb=SQL_ASCII

2563

Appendix E. Release Notes

Increase maximum number of index keys to 16 (Bruce)
Increase maximum number of function arguments to 16 (Bruce)
Allow configuration of maximum number of index keys and arguments (Bruce)
Allow unprivileged users to change their passwords (Peter E)
Password authentication enabled; required for new users (Peter E)
Disallow dropping a user who owns a database (Peter E)
Change initdb option --with-mb to --enable-multibyte
Add option for initdb to prompts for superuser password (Peter E)
Allow complex type casts like col::numeric(9,2) and col::int2::float8 (Tom)
Updated user interfaces on initdb, initlocation, pg_dump, ipcclean (Peter E)
New pg_char_to_encoding() and pg_encoding_to_char() functions (Tatsuo)
libpq non-blocking mode (Alfred Perlstein)
Improve conversion of types in casts that don’t specify a length
New plperl internal programming language (Mark Hollomon)
Allow COPY IN to read file that do not end with a newline (Tom)
Indicate when long identifiers are truncated (Tom)
Allow aggregates to use type equivalency (Peter E)
Add Oracle’s to_char(), to_date(), to_datetime(), to_timestamp(), to_number()

conversion functions (Karel Zak <zakkr@zf.jcu.cz>)
Add SELECT DISTINCT ON (expr [, expr ...]) targetlist ... (Tom)
Check to be sure ORDER BY is compatible with the DISTINCT operation (Tom)
Add NUMERIC and int8 types to ODBC
Improve EXPLAIN results for Append, Group, Agg, Unique (Tom)
Add ALTER TABLE ... ADD FOREIGN KEY (Stephan Szabo)
Allow SELECT .. FOR UPDATE in PL/pgSQL (Hiroshi)
Enable backward sequential scan even after reaching EOF (Hiroshi)
Add btree indexing of boolean values, >= and <= (Don Baccus)
Print current line number when COPY FROM fails (Massimo)
Recognize POSIX time zone e.g. "PST+8" and "GMT-8" (Thomas)
Add DEC as synonym for DECIMAL (Thomas)
Add SESSION_USER as SQL92 key word, same as CURRENT_USER (Thomas)
Implement SQL92 column aliases (aka correlation names) (Thomas)
Implement SQL92 join syntax (Thomas)
Make INTERVAL reserved word allowed as a column identifier (Thomas)
Implement REINDEX command (Hiroshi)
Accept ALL in aggregate function SUM(ALL col) (Tom)
Prevent GROUP BY from using column aliases (Tom)
New psql \encoding option (Tatsuo)
Allow PQrequestCancel() to terminate when in waiting-for-lock state (Hiroshi)
Allow negation of a negative number in all cases
Add ecpg descriptors (Christof, Michael)
Allow CREATE VIEW v AS SELECT f1::char(8) FROM tbl
Allow casts with length, like foo::char(8)
New libpq functions PQsetClientEncoding(), PQclientEncoding() (Tatsuo)
Add support for SJIS user defined characters (Tatsuo)
Larger views/rules supported
Make libpq’s PQconndefaults() thread-safe (Tom)
Disable // as comment to be ANSI conforming, should use -- (Tom)
Allow column aliases on views CREATE VIEW name (collist)
Fixes for views with subqueries (Tom)
Allow UPDATE table SET fld = (SELECT ...) (Tom)
SET command options no longer require quotes
Update pgaccess to 0.98.6

2564

Appendix E. Release Notes

New SET SEED command
New pg_options.sample file
New SET FSYNC command (Massimo)
Allow pg_descriptions when creating tables
Allow pg_descriptions when creating types, columns, and functions
Allow psql \copy to allow delimiters (Peter E)
Allow psql to print nulls as distinct from "" [null] (Peter E)

Types

Many array fixes (Tom)
Allow bare column names to be subscripted as arrays (Tom)
Improve type casting of int and float constants (Tom)
Cleanups for int8 inputs, range checking, and type conversion (Tom)
Fix for SELECT timespan(’21:11:26’::time) (Tom)
netmask(’x.x.x.x/0’) is 255.255.255.255 instead of 0.0.0.0 (Oleg Sharoiko)
Add btree index on NUMERIC (Jan)
Perl fix for large objects containing NUL characters (Douglas Thomson)
ODBC fix for large objects (free)
Fix indexing of cidr data type
Fix for Ethernet MAC addresses (macaddr type) comparisons
Fix for date/time types when overflows happened in computations (Tom)
Allow array on int8 (Peter E)
Fix for rounding/overflow of NUMERIC type, like NUMERIC(4,4) (Tom)
Allow NUMERIC arrays
Fix bugs in NUMERIC ceil() and floor() functions (Tom)
Make char_length()/octet_length including trailing blanks (Tom)
Made abstime/reltime use int4 instead of time_t (Peter E)
New lztext data type for compressed text fields
Revise code to handle coercion of int and float constants (Tom)
Start at new code to implement a BIT and BIT VARYING type (Adriaan Joubert)
NUMERIC now accepts scientific notation (Tom)
NUMERIC to int4 rounds (Tom)
Convert float4/8 to NUMERIC properly (Tom)
Allow type conversion with NUMERIC (Thomas)
Make ISO date style (2000-02-16 09:33) the default (Thomas)
Add NATIONAL CHAR [VARYING] (Thomas)
Allow NUMERIC round and trunc to accept negative scales (Tom)
New TIME WITH TIME ZONE type (Thomas)
Add MAX()/MIN() on time type (Thomas)
Add abs(), mod(), fac() for int8 (Thomas)
Rename functions to round(), sqrt(), cbrt(), pow() for float8 (Thomas)
Add transcendental math functions (e.g. sin(), acos()) for float8 (Thomas)
Add exp() and ln() for NUMERIC type
Rename NUMERIC power() to pow() (Thomas)
Improved TRANSLATE() function (Edwin Ramirez, Tom)
Allow X=-Y operators (Tom)
Allow SELECT float8(COUNT(*))/(SELECT COUNT(*) FROM t) FROM t GROUP BY f1; (Tom)
Allow LOCALE to use indexes in regular expression searches (Tom)
Allow creation of functional indexes to use default types

Performance

2565

Appendix E. Release Notes

Prevent exponential space consumption with many AND’s and OR’s (Tom)
Collect attribute selectivity values for system columns (Tom)
Reduce memory usage of aggregates (Tom)
Fix for LIKE optimization to use indexes with multibyte encodings (Tom)
Fix r-tree index optimizer selectivity (Thomas)
Improve optimizer selectivity computations and functions (Tom)
Optimize btree searching for cases where many equal keys exist (Tom)
Enable fast LIKE index processing only if index present (Tom)
Re-use free space on index pages with duplicates (Tom)
Improve hash join processing (Tom)
Prevent descending sort if result is already sorted(Hiroshi)
Allow commuting of index scan query qualifications (Tom)
Prefer index scans in cases where ORDER BY/GROUP BY is required (Tom)
Allocate large memory requests in fix-sized chunks for performance (Tom)
Fix vacuum’s performance by reducing memory allocation requests (Tom)
Implement constant-expression simplification (Bernard Frankpitt, Tom)
Use secondary columns to be used to determine start of index scan (Hiroshi)
Prevent quadruple use of disk space when doing internal sorting (Tom)
Faster sorting by calling fewer functions (Tom)
Create system indexes to match all system caches (Bruce, Hiroshi)
Make system caches use system indexes (Bruce)
Make all system indexes unique (Bruce)
Improve pg_statistics management for VACUUM speed improvement (Tom)
Flush backend cache less frequently (Tom, Hiroshi)
COPY now reuses previous memory allocation, improving performance (Tom)
Improve optimization cost estimation (Tom)
Improve optimizer estimate of range queries x > lowbound AND x < highbound (Tom)
Use DNF instead of CNF where appropriate (Tom, Taral)
Further cleanup for OR-of-AND WHERE-clauses (Tom)
Make use of index in OR clauses (x = 1 AND y = 2) OR (x = 2 AND y = 4) (Tom)
Smarter optimizer computations for random index page access (Tom)
New SET variable to control optimizer costs (Tom)
Optimizer queries based on LIMIT, OFFSET, and EXISTS qualifications (Tom)
Reduce optimizer internal housekeeping of join paths for speedup (Tom)
Major subquery speedup (Tom)
Fewer fsync writes when fsync is not disabled (Tom)
Improved LIKE optimizer estimates (Tom)
Prevent fsync in SELECT-only queries (Vadim)
Make index creation use psort code, because it is now faster (Tom)
Allow creation of sort temp tables > 1 Gig

Source Tree Changes

Fix for linux PPC compile
New generic expression-tree-walker subroutine (Tom)
Change form() to varargform() to prevent portability problems
Improved range checking for large integers on Alphas
Clean up #include in /include directory (Bruce)
Add scripts for checking includes (Bruce)
Remove un-needed #include’s from *.c files (Bruce)
Change #include’s to use <> and "" as appropriate (Bruce)
Enable Windows compilation of libpq
Alpha spinlock fix from Uncle George <gatgul@voicenet.com>

2566

Appendix E. Release Notes

Overhaul of optimizer data structures (Tom)
Fix to cygipc library (Yutaka Tanida)
Allow pgsql to work on newer Cygwin snapshots (Dan)
New catalog version number (Tom)
Add Linux ARM
Rename heap_replace to heap_update
Update for QNX (Dr. Andreas Kardos)
New platform-specific regression handling (Tom)
Rename oid8 -> oidvector and int28 -> int2vector (Bruce)
Included all yacc and lex files into the distribution (Peter E.)
Remove lextest, no longer needed (Peter E)
Fix for libpq and psql on Windows (Magnus)
Internally change datetime and timespan into timestamp and interval (Thomas)
Fix for plpgsql on BSD/OS
Add SQL_ASCII test case to the regression test (Tatsuo)
configure --with-mb now deprecated (Tatsuo)
NT fixes
NetBSD fixes (Johnny C. Lam <lamj@stat.cmu.edu>)
Fixes for Alpha compiles
New multibyte encodings

E.229. Release 6.5.3

Release Date: 1999-10-13

This is basically a cleanup release for 6.5.2. We have added a new PgAccess that was missing in 6.5.2,
and installed an NT-specific fix.

E.229.1. Migration to Version 6.5.3
A dump/restore is not required for those running 6.5.*.

E.229.2. Changes

Updated version of pgaccess 0.98
NT-specific patch
Fix dumping rules on inherited tables

2567

Appendix E. Release Notes

E.230. Release 6.5.2

Release Date: 1999-09-15

This is basically a cleanup release for 6.5.1. We have fixed a variety of problems reported by 6.5.1 users.

E.230.1. Migration to Version 6.5.2
A dump/restore is not required for those running 6.5.*.

E.230.2. Changes

subselect+CASE fixes(Tom)
Add SHLIB_LINK setting for solaris_i386 and solaris_sparc ports(Daren Sefcik)
Fixes for CASE in WHERE join clauses(Tom)
Fix BTScan abort(Tom)
Repair the check for redundant UNIQUE and PRIMARY KEY indexes(Thomas)
Improve it so that it checks for multicolumn constraints(Thomas)
Fix for Windows making problem with MB enabled(Hiroki Kataoka)
Allow BSD yacc and bison to compile pl code(Bruce)
Fix SET NAMES working
int8 fixes(Thomas)
Fix vacuum’s memory consumption(Hiroshi,Tatsuo)
Reduce the total memory consumption of vacuum(Tom)
Fix for timestamp(datetime)
Rule deparsing bugfixes(Tom)
Fix quoting problems in mkMakefile.tcldefs.sh.in and mkMakefile.tkdefs.sh.in(Tom)
This is to re-use space on index pages freed by vacuum(Vadim)
document -x for pg_dump(Bruce)
Fix for unary operators in rule deparser(Tom)
Comment out FileUnlink of excess segments during mdtruncate()(Tom)
IRIX linking fix from Yu Cao >yucao@falcon.kla-tencor.com<
Repair logic error in LIKE: should not return LIKE_ABORT
when reach end of pattern before end of text(Tom)

Repair incorrect cleanup of heap memory allocation during transaction abort(Tom)
Updated version of pgaccess 0.98

E.231. Release 6.5.1

Release Date: 1999-07-15

2568

Appendix E. Release Notes

This is basically a cleanup release for 6.5. We have fixed a variety of problems reported by 6.5 users.

E.231.1. Migration to Version 6.5.1
A dump/restore is not required for those running 6.5.

E.231.2. Changes

Add NT README file
Portability fixes for linux_ppc, IRIX, linux_alpha, OpenBSD, alpha
Remove QUERY_LIMIT, use SELECT...LIMIT
Fix for EXPLAIN on inheritance(Tom)
Patch to allow vacuum on multisegment tables(Hiroshi)
R-Tree optimizer selectivity fix(Tom)
ACL file descriptor leak fix(Atsushi Ogawa)
New expression subtree code(Tom)
Avoid disk writes for read-only transactions(Vadim)
Fix for removal of temp tables if last transaction was aborted(Bruce)
Fix to prevent too large row from being created(Bruce)
plpgsql fixes
Allow port numbers 32k - 64k(Bruce)
Add ^ precedence(Bruce)
Rename sort files called pg_temp to pg_sorttemp(Bruce)
Fix for microseconds in time values(Tom)
Tutorial source cleanup
New linux_m68k port
Fix for sorting of NULL’s in some cases(Tom)
Shared library dependencies fixed (Tom)
Fixed glitches affecting GROUP BY in subselects(Tom)
Fix some compiler warnings (Tomoaki Nishiyama)
Add Win1250 (Czech) support (Pavel Behal)

E.232. Release 6.5

Release Date: 1999-06-09

This release marks a major step in the development team’s mastery of the source code we inherited from
Berkeley. You will see we are now easily adding major features, thanks to the increasing size and experi-
ence of our world-wide development team.

Here is a brief summary of the more notable changes:

2569

Appendix E. Release Notes

Multiversion concurrency control(MVCC)

This removes our old table-level locking, and replaces it with a locking system that is superior to
most commercial database systems. In a traditional system, each row that is modified is locked until
committed, preventing reads by other users. MVCC uses the natural multiversion nature of Post-
greSQL to allow readers to continue reading consistent data during writer activity. Writers continue
to use the compact pg_log transaction system. This is all performed without having to allocate a lock
for every row like traditional database systems. So, basically, we no longer are restricted by simple
table-level locking; we have something better than row-level locking.

Hot backups from pg_dump

pg_dump takes advantage of the new MVCC features to give a consistent database dump/backup
while the database stays online and available for queries.

Numeric data type

We now have a true numeric data type, with user-specified precision.

Temporary tables

Temporary tables are guaranteed to have unique names within a database session, and are destroyed
on session exit.

New SQL features

We now have CASE, INTERSECT, and EXCEPT statement support. We have new LIMIT/OFFSET,
SET TRANSACTION ISOLATION LEVEL, SELECT ... FOR UPDATE, and an improved LOCK
TABLE command.

Speedups

We continue to speed up PostgreSQL, thanks to the variety of talents within our team. We have sped
up memory allocation, optimization, table joins, and row transfer routines.

Ports

We continue to expand our port list, this time including Windows NT/ix86 and NetBSD/arm32.

Interfaces

Most interfaces have new versions, and existing functionality has been improved.

Documentation

New and updated material is present throughout the documentation. New FAQs have been con-
tributed for SGI and AIX platforms. The Tutorial has introductory information on SQL from Stefan
Simkovics. For the User’s Guide, there are reference pages covering the postmaster and more utility
programs, and a new appendix contains details on date/time behavior. The Administrator’s Guide
has a new chapter on troubleshooting from Tom Lane. And the Programmer’s Guide has a descrip-
tion of query processing, also from Stefan, and details on obtaining the PostgreSQL source tree via
anonymous CVS and CVSup.

2570

Appendix E. Release Notes

E.232.1. Migration to Version 6.5
A dump/restore using pg_dump is required for those wishing to migrate data from any previous release of
PostgreSQL. pg_upgrade can not be used to upgrade to this release because the on-disk structure of the
tables has changed compared to previous releases.

The new Multiversion Concurrency Control (MVCC) features can give somewhat different behaviors in
multiuser environments. Read and understand the following section to ensure that your existing applica-
tions will give you the behavior you need.

E.232.1.1. Multiversion Concurrency Control

Because readers in 6.5 don’t lock data, regardless of transaction isolation level, data read by one transac-
tion can be overwritten by another. In other words, if a row is returned by SELECT it doesn’t mean that
this row really exists at the time it is returned (i.e. sometime after the statement or transaction began)
nor that the row is protected from being deleted or updated by concurrent transactions before the current
transaction does a commit or rollback.

To ensure the actual existence of a row and protect it against concurrent updates one must use SELECT

FOR UPDATE or an appropriate LOCK TABLE statement. This should be taken into account when porting
applications from previous releases of PostgreSQL and other environments.

Keep the above in mind if you are using contrib/refint.* triggers for referential integrity. Additional
techniques are required now. One way is to use LOCK parent_table IN SHARE ROW EXCLUSIVE
MODE command if a transaction is going to update/delete a primary key and use LOCK parent_table
IN SHARE MODE command if a transaction is going to update/insert a foreign key.

Note: Note that if you run a transaction in SERIALIZABLE mode then you must
execute the LOCK commands above before execution of any DML statement
(SELECT/INSERT/DELETE/UPDATE/FETCH/COPY_TO) in the transaction.

These inconveniences will disappear in the future when the ability to read dirty (uncommitted) data (re-
gardless of isolation level) and true referential integrity will be implemented.

E.232.2. Changes

Bug Fixes

Fix text<->float8 and text<->float4 conversion functions(Thomas)
Fix for creating tables with mixed-case constraints(Billy)
Change exp()/pow() behavior to generate error on underflow/overflow(Jan)
Fix bug in pg_dump -z
Memory overrun cleanups(Tatsuo)
Fix for lo_import crash(Tatsuo)
Adjust handling of data type names to suppress double quotes(Thomas)
Use type coercion for matching columns and DEFAULT(Thomas)

2571

Appendix E. Release Notes

Fix deadlock so it only checks once after one second of sleep(Bruce)
Fixes for aggregates and PL/pgsql(Hiroshi)
Fix for subquery crash(Vadim)
Fix for libpq function PQfnumber and case-insensitive names(Bahman Rafatjoo)
Fix for large object write-in-middle, no extra block, memory consumption(Tatsuo)
Fix for pg_dump -d or -D and quote special characters in INSERT
Repair serious problems with dynahash(Tom)
Fix INET/CIDR portability problems
Fix problem with selectivity error in ALTER TABLE ADD COLUMN(Bruce)
Fix executor so mergejoin of different column types works(Tom)
Fix for Alpha OR selectivity bug
Fix OR index selectivity problem(Bruce)
Fix so \d shows proper length for char()/varchar()(Ryan)
Fix tutorial code(Clark)
Improve destroyuser checking(Oliver)
Fix for Kerberos(Rodney McDuff)
Fix for dropping database while dirty buffers(Bruce)
Fix so sequence nextval() can be case-sensitive(Bruce)
Fix !!= operator
Drop buffers before destroying database files(Bruce)
Fix case where executor evaluates functions twice(Tatsuo)
Allow sequence nextval actions to be case-sensitive(Bruce)
Fix optimizer indexing not working for negative numbers(Bruce)
Fix for memory leak in executor with fjIsNull
Fix for aggregate memory leaks(Erik Riedel)
Allow user name containing a dash to grant privileges
Cleanup of NULL in inet types
Clean up system table bugs(Tom)
Fix problems of PAGER and \? command(Masaaki Sakaida)
Reduce default multisegment file size limit to 1GB(Peter)
Fix for dumping of CREATE OPERATOR(Tom)
Fix for backward scanning of cursors(Hiroshi Inoue)
Fix for COPY FROM STDIN when using \i(Tom)
Fix for subselect is compared inside an expression(Jan)
Fix handling of error reporting while returning rows(Tom)
Fix problems with reference to array types(Tom,Jan)
Prevent UPDATE SET oid(Jan)
Fix pg_dump so -t option can handle case-sensitive tablenames
Fixes for GROUP BY in special cases(Tom, Jan)
Fix for memory leak in failed queries(Tom)
DEFAULT now supports mixed-case identifiers(Tom)
Fix for multisegment uses of DROP/RENAME table, indexes(Ole Gjerde)
Disable use of pg_dump with both -o and -d options(Bruce)
Allow pg_dump to properly dump group privileges(Bruce)
Fix GROUP BY in INSERT INTO table SELECT * FROM table2(Jan)
Fix for computations in views(Jan)
Fix for aggregates on array indexes(Tom)
Fix for DEFAULT handles single quotes in value requiring too many quotes
Fix security problem with non-super users importing/exporting large objects(Tom)
Rollback of transaction that creates table cleaned up properly(Tom)
Fix to allow long table and column names to generate proper serial names(Tom)

Enhancements

2572

Appendix E. Release Notes

Add "vacuumdb" utility
Speed up libpq by allocating memory better(Tom)
EXPLAIN all indexes used(Tom)
Implement CASE, COALESCE, NULLIF expression(Thomas)
New pg_dump table output format(Constantin)
Add string min()/max() functions(Thomas)
Extend new type coercion techniques to aggregates(Thomas)
New moddatetime contrib(Terry)
Update to pgaccess 0.96(Constantin)
Add routines for single-byte "char" type(Thomas)
Improved substr() function(Thomas)
Improved multibyte handling(Tatsuo)
Multiversion concurrency control/MVCC(Vadim)
New Serialized mode(Vadim)
Fix for tables over 2gigs(Peter)
New SET TRANSACTION ISOLATION LEVEL(Vadim)
New LOCK TABLE IN ... MODE(Vadim)
Update ODBC driver(Byron)
New NUMERIC data type(Jan)
New SELECT FOR UPDATE(Vadim)
Handle "NaN" and "Infinity" for input values(Jan)
Improved date/year handling(Thomas)
Improved handling of backend connections(Magnus)
New options ELOG_TIMESTAMPS and USE_SYSLOG options for log files(Massimo)
New TCL_ARRAYS option(Massimo)
New INTERSECT and EXCEPT(Stefan)
New pg_index.indisprimary for primary key tracking(D’Arcy)
New pg_dump option to allow dropping of tables before creation(Brook)
Speedup of row output routines(Tom)
New READ COMMITTED isolation level(Vadim)
New TEMP tables/indexes(Bruce)
Prevent sorting if result is already sorted(Jan)
New memory allocation optimization(Jan)
Allow psql to do \p\g(Bruce)
Allow multiple rule actions(Jan)
Added LIMIT/OFFSET functionality(Jan)
Improve optimizer when joining a large number of tables(Bruce)
New intro to SQL from S. Simkovics’ Master’s Thesis (Stefan, Thomas)
New intro to backend processing from S. Simkovics’ Master’s Thesis (Stefan)
Improved int8 support(Ryan Bradetich, Thomas, Tom)
New routines to convert between int8 and text/varchar types(Thomas)
New bushy plans, where meta-tables are joined(Bruce)
Enable right-hand queries by default(Bruce)
Allow reliable maximum number of backends to be set at configure time

(--with-maxbackends and postmaster switch (-N backends))(Tom)
GEQO default now 10 tables because of optimizer speedups(Tom)
Allow NULL=Var for MS-SQL portability(Michael, Bruce)
Modify contrib check_primary_key() so either "automatic" or "dependent"(Anand)
Allow psql \d on a view show query(Ryan)
Speedup for LIKE(Bruce)
Ecpg fixes/features, see src/interfaces/ecpg/ChangeLog file(Michael)
JDBC fixes/features, see src/interfaces/jdbc/CHANGELOG(Peter)

2573

Appendix E. Release Notes

Make % operator have precedence like /(Bruce)
Add new postgres -O option to allow system table structure changes(Bruce)
Update contrib/pginterface/findoidjoins script(Tom)
Major speedup in vacuum of deleted rows with indexes(Vadim)
Allow non-SQL functions to run different versions based on arguments(Tom)
Add -E option that shows actual queries sent by \dt and friends(Masaaki Sakaida)
Add version number in start-up banners for psql(Masaaki Sakaida)
New contrib/vacuumlo removes large objects not referenced(Peter)
New initialization for table sizes so non-vacuumed tables perform better(Tom)
Improve error messages when a connection is rejected(Tom)
Support for arrays of char() and varchar() fields(Massimo)
Overhaul of hash code to increase reliability and performance(Tom)
Update to PyGreSQL 2.4(D’Arcy)
Changed debug options so -d4 and -d5 produce different node displays(Jan)
New pg_options: pretty_plan, pretty_parse, pretty_rewritten(Jan)
Better optimization statistics for system table access(Tom)
Better handling of non-default block sizes(Massimo)
Improve GEQO optimizer memory consumption(Tom)
UNION now supports ORDER BY of columns not in target list(Jan)
Major libpq++ improvements(Vince Vielhaber)
pg_dump now uses -z(ACL’s) as default(Bruce)
backend cache, memory speedups(Tom)
have pg_dump do everything in one snapshot transaction(Vadim)
fix for large object memory leakage, fix for pg_dumping(Tom)
INET type now respects netmask for comparisons
Make VACUUM ANALYZE only use a readlock(Vadim)
Allow VIEWs on UNIONS(Jan)
pg_dump now can generate consistent snapshots on active databases(Vadim)

Source Tree Changes

Improve port matching(Tom)
Portability fixes for SunOS
Add Windows NT backend port and enable dynamic loading(Magnus and Daniel Horak)
New port to Cobalt Qube(Mips) running Linux(Tatsuo)
Port to NetBSD/m68k(Mr. Mutsuki Nakajima)
Port to NetBSD/sun3(Mr. Mutsuki Nakajima)
Port to NetBSD/macppc(Toshimi Aoki)
Fix for tcl/tk configuration(Vince)
Removed CURRENT key word for rule queries(Jan)
NT dynamic loading now works(Daniel Horak)
Add ARM32 support(Andrew McMurry)
Better support for HP-UX 11 and UnixWare
Improve file handling to be more uniform, prevent file descriptor leak(Tom)
New install commands for plpgsql(Jan)

2574

Appendix E. Release Notes

E.233. Release 6.4.2

Release Date: 1998-12-20

The 6.4.1 release was improperly packaged. This also has one additional bug fix.

E.233.1. Migration to Version 6.4.2
A dump/restore is not required for those running 6.4.*.

E.233.2. Changes

Fix for datetime constant problem on some platforms(Thomas)

E.234. Release 6.4.1

Release Date: 1998-12-18

This is basically a cleanup release for 6.4. We have fixed a variety of problems reported by 6.4 users.

E.234.1. Migration to Version 6.4.1
A dump/restore is not required for those running 6.4.

E.234.2. Changes

Add pg_dump -N flag to force double quotes around identifiers. This is
the default(Thomas)

Fix for NOT in where clause causing crash(Bruce)
EXPLAIN VERBOSE coredump fix(Vadim)
Fix shared-library problems on Linux
Fix test for table existence to allow mixed-case and whitespace in

the table name(Thomas)
Fix a couple of pg_dump bugs
Configure matches template/.similar entries better(Tom)
Change builtin function names from SPI_* to spi_*
OR WHERE clause fix(Vadim)

2575

Appendix E. Release Notes

Fixes for mixed-case table names(Billy)
contrib/linux/postgres.init.csh/sh fix(Thomas)
libpq memory overrun fix
SunOS fixes(Tom)
Change exp() behavior to generate error on underflow(Thomas)
pg_dump fixes for memory leak, inheritance constraints, layout change
update pgaccess to 0.93
Fix prototype for 64-bit platforms
Multibyte fixes(Tatsuo)
New ecpg man page
Fix memory overruns(Tatsuo)
Fix for lo_import() crash(Bruce)
Better search for install program(Tom)
Timezone fixes(Tom)
HP-UX fixes(Tom)
Use implicit type coercion for matching DEFAULT values(Thomas)
Add routines to help with single-byte (internal) character type(Thomas)
Compilation of libpq for Windows fixes(Magnus)
Upgrade to PyGreSQL 2.2(D’Arcy)

E.235. Release 6.4

Release Date: 1998-10-30

There are many new features and improvements in this release. Thanks to our developers and maintainers,
nearly every aspect of the system has received some attention since the previous release. Here is a brief,
incomplete summary:

• Views and rules are now functional thanks to extensive new code in the rewrite rules system from Jan
Wieck. He also wrote a chapter on it for the Programmer’s Guide.

• Jan also contributed a second procedural language, PL/pgSQL, to go with the original PL/pgTCL pro-
cedural language he contributed last release.

• We have optional multiple-byte character set support from Tatsuo Ishii to complement our existing
locale support.

• Client/server communications has been cleaned up, with better support for asynchronous messages and
interrupts thanks to Tom Lane.

• The parser will now perform automatic type coercion to match arguments to available operators and
functions, and to match columns and expressions with target columns. This uses a generic mechanism
which supports the type extensibility features of PostgreSQL. There is a new chapter in the User’s
Guide which covers this topic.

2576

Appendix E. Release Notes

• Three new data types have been added. Two types, inet and cidr, support various forms of IP network,
subnet, and machine addressing. There is now an 8-byte integer type available on some platforms. See
the chapter on data types in the User’s Guide for details. A fourth type, serial, is now supported by
the parser as an amalgam of the int4 type, a sequence, and a unique index.

• Several more SQL92-compatible syntax features have been added, including INSERT DEFAULT

VALUES

• The automatic configuration and installation system has received some attention, and should be more
robust for more platforms than it has ever been.

E.235.1. Migration to Version 6.4
A dump/restore using pg_dump or pg_dumpall is required for those wishing to migrate data from any
previous release of PostgreSQL.

E.235.2. Changes

Bug Fixes

Fix for a tiny memory leak in PQsetdb/PQfinish(Bryan)
Remove char2-16 data types, use char/varchar(Darren)
Pqfn not handles a NOTICE message(Anders)
Reduced busywaiting overhead for spinlocks with many backends (dg)
Stuck spinlock detection (dg)
Fix up "ISO-style" timespan decoding and encoding(Thomas)
Fix problem with table drop after rollback of transaction(Vadim)
Change error message and remove non-functional update message(Vadim)
Fix for COPY array checking
Fix for SELECT 1 UNION SELECT NULL
Fix for buffer leaks in large object calls(Pascal)
Change owner from oid to int4 type(Bruce)
Fix a bug in the oracle compatibility functions btrim() ltrim() and rtrim()
Fix for shared invalidation cache overflow(Massimo)
Prevent file descriptor leaks in failed COPY’s(Bruce)
Fix memory leak in libpgtcl’s pg_select(Constantin)
Fix problems with username/passwords over 8 characters(Tom)
Fix problems with handling of asynchronous NOTIFY in backend(Tom)
Fix of many bad system table entries(Tom)

Enhancements

Upgrade ecpg and ecpglib,see src/interfaces/ecpc/ChangeLog(Michael)
Show the index used in an EXPLAIN(Zeugswetter)
EXPLAIN invokes rule system and shows plan(s) for rewritten queries(Jan)
Multibyte awareness of many data types and functions, via configure(Tatsuo)
New configure --with-mb option(Tatsuo)
New initdb --pgencoding option(Tatsuo)

2577

Appendix E. Release Notes

New createdb -E multibyte option(Tatsuo)
Select version(); now returns PostgreSQL version(Jeroen)
libpq now allows asynchronous clients(Tom)
Allow cancel from client of backend query(Tom)
psql now cancels query with Control-C(Tom)
libpq users need not issue dummy queries to get NOTIFY messages(Tom)
NOTIFY now sends sender’s PID, so you can tell whether it was your own(Tom)
PGresult struct now includes associated error message, if any(Tom)
Define "tz_hour" and "tz_minute" arguments to date_part()(Thomas)
Add routines to convert between varchar and bpchar(Thomas)
Add routines to allow sizing of varchar and bpchar into target columns(Thomas)
Add bit flags to support timezonehour and minute in data retrieval(Thomas)
Allow more variations on valid floating point numbers (e.g. ".1", "1e6")(Thomas)
Fixes for unary minus parsing with leading spaces(Thomas)
Implement TIMEZONE_HOUR, TIMEZONE_MINUTE per SQL92 specs(Thomas)
Check for and properly ignore FOREIGN KEY column constraints(Thomas)
Define USER as synonym for CURRENT_USER per SQL92 specs(Thomas)
Enable HAVING clause but no fixes elsewhere yet.
Make "char" type a synonym for "char(1)" (actually implemented as bpchar)(Thomas)
Save string type if specified for DEFAULT clause handling(Thomas)
Coerce operations involving different data types(Thomas)
Allow some index use for columns of different types(Thomas)
Add capabilities for automatic type conversion(Thomas)
Cleanups for large objects, so file is truncated on open(Peter)
Readline cleanups(Tom)
Allow psql \f \ to make spaces as delimiter(Bruce)
Pass pg_attribute.atttypmod to the frontend for column field lengths(Tom,Bruce)
Msql compatibility library in /contrib(Aldrin)
Remove the requirement that ORDER/GROUP BY clause identifiers be
included in the target list(David)
Convert columns to match columns in UNION clauses(Thomas)
Remove fork()/exec() and only do fork()(Bruce)
Jdbc cleanups(Peter)
Show backend status on ps command line(only works on some platforms)(Bruce)
Pg_hba.conf now has a sameuser option in the database field
Make lo_unlink take oid param, not int4
New DISABLE_COMPLEX_MACRO for compilers that cannot handle our macros(Bruce)
Libpgtcl now handles NOTIFY as a Tcl event, need not send dummy queries(Tom)
libpgtcl cleanups(Tom)
Add -error option to libpgtcl’s pg_result command(Tom)
New locale patch, see docs/README/locale(Oleg)
Fix for pg_dump so CONSTRAINT and CHECK syntax is correct(ccb)
New contrib/lo code for large object orphan removal(Peter)
New psql command "SET CLIENT_ENCODING TO ’encoding’" for multibytes
feature, see /doc/README.mb(Tatsuo)
contrib/noupdate code to revoke update permission on a column
libpq can now be compiled on Windows(Magnus)
Add PQsetdbLogin() in libpq
New 8-byte integer type, checked by configure for OS support(Thomas)
Better support for quoted table/column names(Thomas)
Surround table and column names with double-quotes in pg_dump(Thomas)
PQreset() now works with passwords(Tom)
Handle case of GROUP BY target list column number out of range(David)

2578

Appendix E. Release Notes

Allow UNION in subselects
Add auto-size to screen to \d? commands(Bruce)
Use UNION to show all \d? results in one query(Bruce)
Add \d? field search feature(Bruce)
Pg_dump issues fewer \connect requests(Tom)
Make pg_dump -z flag work better, document it in manual page(Tom)
Add HAVING clause with full support for subselects and unions(Stephan)
Full text indexing routines in contrib/fulltextindex(Maarten)
Transaction ids now stored in shared memory(Vadim)
New PGCLIENTENCODING when issuing COPY command(Tatsuo)
Support for SQL92 syntax "SET NAMES"(Tatsuo)
Support for LATIN2-5(Tatsuo)
Add UNICODE regression test case(Tatsuo)
Lock manager cleanup, new locking modes for LLL(Vadim)
Allow index use with OR clauses(Bruce)
Allows "SELECT NULL ORDER BY 1;"
Explain VERBOSE prints the plan, and now pretty-prints the plan to
the postmaster log file(Bruce)
Add indexes display to \d command(Bruce)
Allow GROUP BY on functions(David)
New pg_class.relkind for large objects(Bruce)
New way to send libpq NOTICE messages to a different location(Tom)
New \w write command to psql(Bruce)
New /contrib/findoidjoins scans oid columns to find join relationships(Bruce)
Allow binary-compatible indexes to be considered when checking for valid
Indexes for restriction clauses containing a constant(Thomas)
New ISBN/ISSN code in /contrib/isbn_issn
Allow NOT LIKE, IN, NOT IN, BETWEEN, and NOT BETWEEN constraint(Thomas)
New rewrite system fixes many problems with rules and views(Jan)

* Rules on relations work

* Event qualifications on insert/update/delete work

* New OLD variable to reference CURRENT, CURRENT will be remove in future

* Update rules can reference NEW and OLD in rule qualifications/actions

* Insert/update/delete rules on views work

* Multiple rule actions are now supported, surrounded by parentheses

* Regular users can create views/rules on tables they have RULE permits

* Rules and views inherit the privileges of the creator

* No rules at the column level

* No UPDATE NEW/OLD rules

* New pg_tables, pg_indexes, pg_rules and pg_views system views

* Only a single action on SELECT rules

* Total rewrite overhaul, perhaps for 6.5

* handle subselects

* handle aggregates on views

* handle insert into select from view works
System indexes are now multikey(Bruce)
Oidint2, oidint4, and oidname types are removed(Bruce)
Use system cache for more system table lookups(Bruce)
New backend programming language PL/pgSQL in backend/pl(Jan)
New SERIAL data type, auto-creates sequence/index(Thomas)
Enable assert checking without a recompile(Massimo)
User lock enhancements(Massimo)
New setval() command to set sequence value(Massimo)

2579

Appendix E. Release Notes

Auto-remove unix socket file on start-up if no postmaster running(Massimo)
Conditional trace package(Massimo)
New UNLISTEN command(Massimo)
psql and libpq now compile under Windows using win32.mak(Magnus)
Lo_read no longer stores trailing NULL(Bruce)
Identifiers are now truncated to 31 characters internally(Bruce)
Createuser options now available on the command line
Code for 64-bit integer supported added, configure tested, int8 type(Thomas)
Prevent file descriptor leaf from failed COPY(Bruce)
New pg_upgrade command(Bruce)
Updated /contrib directories(Massimo)
New CREATE TABLE DEFAULT VALUES statement available(Thomas)
New INSERT INTO TABLE DEFAULT VALUES statement available(Thomas)
New DECLARE and FETCH feature(Thomas)
libpq’s internal structures now not exported(Tom)
Allow up to 8 key indexes(Bruce)
Remove ARCHIVE key word, that is no longer used(Thomas)
pg_dump -n flag to suppress quotes around indentifiers
disable system columns for views(Jan)
new INET and CIDR types for network addresses(TomH, Paul)
no more double quotes in psql output
pg_dump now dumps views(Terry)
new SET QUERY_LIMIT(Tatsuo,Jan)

Source Tree Changes

/contrib cleanup(Jun)
Inline some small functions called for every row(Bruce)
Alpha/linux fixes
HP-UX cleanups(Tom)
Multibyte regression tests(Soonmyung.)
Remove --disabled options from configure
Define PGDOC to use POSTGRESDIR by default
Make regression optional
Remove extra braces code to pgindent(Bruce)
Add bsdi shared library support(Bruce)
New --without-CXX support configure option(Brook)
New FAQ_CVS
Update backend flowchart in tools/backend(Bruce)
Change atttypmod from int16 to int32(Bruce, Tom)
Getrusage() fix for platforms that do not have it(Tom)
Add PQconnectdb, PGUSER, PGPASSWORD to libpq man page
NS32K platform fixes(Phil Nelson, John Buller)
SCO 7/UnixWare 2.x fixes(Billy,others)
Sparc/Solaris 2.5 fixes(Ryan)
Pgbuiltin.3 is obsolete, move to doc files(Thomas)
Even more documentation(Thomas)
Nextstep support(Jacek)
Aix support(David)
pginterface manual page(Bruce)
shared libraries all have version numbers
merged all OS-specific shared library defines into one file
smarter TCL/TK configuration checking(Billy)

2580

Appendix E. Release Notes

smarter perl configuration(Brook)
configure uses supplied install-sh if no install script found(Tom)
new Makefile.shlib for shared library configuration(Tom)

E.236. Release 6.3.2

Release Date: 1998-04-07

This is a bug-fix release for 6.3.x. Refer to the release notes for version 6.3 for a more complete summary
of new features.

Summary:

• Repairs automatic configuration support for some platforms, including Linux, from breakage inadver-
tently introduced in version 6.3.1.

• Correctly handles function calls on the left side of BETWEEN and LIKE clauses.

A dump/restore is NOT required for those running 6.3 or 6.3.1. A make distclean, make, and make

install is all that is required. This last step should be performed while the postmaster is not running.
You should re-link any custom applications that use PostgreSQL libraries.

For upgrades from pre-6.3 installations, refer to the installation and migration instructions for version 6.3.

E.236.1. Changes

Configure detection improvements for tcl/tk(Brook Milligan, Alvin)
Manual page improvements(Bruce)
BETWEEN and LIKE fix(Thomas)
fix for psql \connect used by pg_dump(Oliver Elphick)
New odbc driver
pgaccess, version 0.86
qsort removed, now uses libc version, cleanups(Jeroen)
fix for buffer over-runs detected(Maurice Gittens)
fix for buffer overrun in libpgtcl(Randy Kunkee)
fix for UNION with DISTINCT or ORDER BY(Bruce)
gettimeofday configure check(Doug Winterburn)
Fix "indexes not used" bug(Vadim)
docs additions(Thomas)
Fix for backend memory leak(Bruce)
libreadline cleanup(Erwan MAS)
Remove DISTDIR(Bruce)
Makefile dependency cleanup(Jeroen van Vianen)

2581

Appendix E. Release Notes

ASSERT fixes(Bruce)

E.237. Release 6.3.1

Release Date: 1998-03-23

Summary:

• Additional support for multibyte character sets.

• Repair byte ordering for mixed-endian clients and servers.

• Minor updates to allowed SQL syntax.

• Improvements to the configuration autodetection for installation.

A dump/restore is NOT required for those running 6.3. A make distclean, make, and make install

is all that is required. This last step should be performed while the postmaster is not running. You should
re-link any custom applications that use PostgreSQL libraries.

For upgrades from pre-6.3 installations, refer to the installation and migration instructions for version 6.3.

E.237.1. Changes

ecpg cleanup/fixes, now version 1.1(Michael Meskes)
pg_user cleanup(Bruce)
large object fix for pg_dump and tclsh (alvin)
LIKE fix for multiple adjacent underscores
fix for redefining builtin functions(Thomas)
ultrix4 cleanup
upgrade to pg_access 0.83
updated CLUSTER manual page
multibyte character set support, see doc/README.mb(Tatsuo)
configure --with-pgport fix
pg_ident fix
big-endian fix for backend communications(Kataoka)
SUBSTR() and substring() fix(Jan)
several jdbc fixes(Peter)
libpgtcl improvements, see libptcl/README(Randy Kunkee)
Fix for "Datasize = 0" error(Vadim)
Prevent \do from wrapping(Bruce)
Remove duplicate Russian character set entries
Sunos4 cleanup

2582

Appendix E. Release Notes

Allow optional TABLE key word in LOCK and SELECT INTO(Thomas)
CREATE SEQUENCE options to allow a negative integer(Thomas)
Add "PASSWORD" as an allowed column identifier(Thomas)
Add checks for UNION target fields(Bruce)
Fix Alpha port(Dwayne Bailey)
Fix for text arrays containing quotes(Doug Gibson)
Solaris compile fix(Albert Chin-A-Young)
Better identify tcl and tk libs and includes(Bruce)

E.238. Release 6.3

Release Date: 1998-03-01

There are many new features and improvements in this release. Here is a brief, incomplete summary:

• Many new SQL features, including full SQL92 subselect capability (everything is here but target-list
subselects).

• Support for client-side environment variables to specify time zone and date style.

• Socket interface for client/server connection. This is the default now so you might need to start post-
master with the -i flag.

• Better password authorization mechanisms. Default table privileges have changed.

• Old-style time travel has been removed. Performance has been improved.

Note: Bruce Momjian wrote the following notes to introduce the new release.

There are some general 6.3 issues that I want to mention. These are only the big items that cannot be
described in one sentence. A review of the detailed changes list is still needed.

First, we now have subselects. Now that we have them, I would like to mention that without subselects,
SQL is a very limited language. Subselects are a major feature, and you should review your code for
places where subselects provide a better solution for your queries. I think you will find that there are more
uses for subselects than you might think. Vadim has put us on the big SQL map with subselects, and fully
functional ones too. The only thing you cannot do with subselects is to use them in the target list.

Second, 6.3 uses Unix domain sockets rather than TCP/IP by default. To enable connections from other
machines, you have to use the new postmaster -i option, and of course edit pg_hba.conf. Also, for this
reason, the format of pg_hba.conf has changed.

2583

Appendix E. Release Notes

Third, char() fields will now allow faster access than varchar() or text. Specifically, the text and
varchar() have a penalty for access to any columns after the first column of this type. char() used to
also have this access penalty, but it no longer does. This might suggest that you redesign some of your
tables, especially if you have short character columns that you have defined as varchar() or text. This
and other changes make 6.3 even faster than earlier releases.

We now have passwords definable independent of any Unix file. There are new SQL USER commands.
See the Administrator’s Guide for more information. There is a new table, pg_shadow, which is used to
store user information and user passwords, and it by default only SELECT-able by the postgres super-user.
pg_user is now a view of pg_shadow, and is SELECT-able by PUBLIC. You should keep using pg_user
in your application without changes.

User-created tables now no longer have SELECT privilege to PUBLIC by default. This was done because
the ANSI standard requires it. You can of course GRANT any privileges you want after the table is created.
System tables continue to be SELECT-able by PUBLIC.

We also have real deadlock detection code. No more sixty-second timeouts. And the new locking code
implements a FIFO better, so there should be less resource starvation during heavy use.

Many complaints have been made about inadequate documentation in previous releases. Thomas has put
much effort into many new manuals for this release. Check out the doc/ directory.

For performance reasons, time travel is gone, but can be implemented using triggers (see
pgsql/contrib/spi/README). Please check out the new \d command for types, operators, etc. Also,
views have their own privileges now, not based on the underlying tables, so privileges on them have to be
set separately. Check /pgsql/interfaces for some new ways to talk to PostgreSQL.

This is the first release that really required an explanation for existing users. In many ways, this was
necessary because the new release removes many limitations, and the work-arounds people were using
are no longer needed.

E.238.1. Migration to Version 6.3
A dump/restore using pg_dump or pg_dumpall is required for those wishing to migrate data from any
previous release of PostgreSQL.

E.238.2. Changes

Bug Fixes

Fix binary cursors broken by MOVE implementation(Vadim)
Fix for tcl library crash(Jan)
Fix for array handling, from Gerhard Hintermayer
Fix acl error, and remove duplicate pqtrace(Bruce)
Fix psql \e for empty file(Bruce)
Fix for textcat on varchar() fields(Bruce)
Fix for DBT Sendproc (Zeugswetter Andres)
Fix vacuum analyze syntax problem(Bruce)
Fix for international identifiers(Tatsuo)
Fix aggregates on inherited tables(Bruce)

2584

Appendix E. Release Notes

Fix substr() for out-of-bounds data
Fix for select 1=1 or 2=2, select 1=1 and 2=2, and select sum(2+2)(Bruce)
Fix notty output to show status result. -q option still turns it off(Bruce)
Fix for count(*), aggs with views and multiple tables and sum(3)(Bruce)
Fix cluster(Bruce)
Fix for PQtrace start/stop several times(Bruce)
Fix a variety of locking problems like newer lock waiters getting

lock before older waiters, and having readlock people not share
locks if a writer is waiting for a lock, and waiting writers not
getting priority over waiting readers(Bruce)

Fix crashes in psql when executing queries from external files(James)
Fix problem with multiple order by columns, with the first one having

NULL values(Jeroen)
Use correct hash table support functions for float8 and int4(Thomas)
Re-enable JOIN= option in CREATE OPERATOR statement (Thomas)
Change precedence for boolean operators to match expected behavior(Thomas)
Generate elog(ERROR) on over-large integer(Bruce)
Allow multiple-argument functions in constraint clauses(Thomas)
Check boolean input literals for ’true’,’false’,’yes’,’no’,’1’,’0’

and throw elog(ERROR) if unrecognized(Thomas)
Major large objects fix
Fix for GROUP BY showing duplicates(Vadim)
Fix for index scans in MergeJoin(Vadim)

Enhancements

Subselects with EXISTS, IN, ALL, ANY key words (Vadim, Bruce, Thomas)
New User Manual(Thomas, others)
Speedup by inlining some frequently-called functions
Real deadlock detection, no more timeouts(Bruce)
Add SQL92 "constants" CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,

CURRENT_USER(Thomas)
Modify constraint syntax to be SQL92-compliant(Thomas)
Implement SQL92 PRIMARY KEY and UNIQUE clauses using indexes(Thomas)
Recognize SQL92 syntax for FOREIGN KEY. Throw elog notice(Thomas)
Allow NOT NULL UNIQUE constraint clause (each allowed separately before)(Thomas)
Allow PostgreSQL-style casting ("::") of non-constants(Thomas)
Add support for SQL3 TRUE and FALSE boolean constants(Thomas)
Support SQL92 syntax for IS TRUE/IS FALSE/IS NOT TRUE/IS NOT FALSE(Thomas)
Allow shorter strings for boolean literals (e.g. "t", "tr", "tru")(Thomas)
Allow SQL92 delimited identifiers(Thomas)
Implement SQL92 binary and hexadecimal string decoding (b’10’ and x’1F’)(Thomas)
Support SQL92 syntax for type coercion of literal strings

(e.g. "DATETIME ’now’")(Thomas)
Add conversions for int2, int4, and OID types to and from text(Thomas)
Use shared lock when building indexes(Vadim)
Free memory allocated for an user query inside transaction block after

this query is done, was turned off in <= 6.2.1(Vadim)
New SQL statement CREATE PROCEDURAL LANGUAGE(Jan)
New PostgreSQL Procedural Language (PL) backend interface(Jan)
Rename pg_dump -H option to -h(Bruce)
Add Java support for passwords, European dates(Peter)
Use indexes for LIKE and ~, !~ operations(Bruce)

2585

Appendix E. Release Notes

Add hash functions for datetime and timespan(Thomas)
Time Travel removed(Vadim, Bruce)
Add paging for \d and \z, and fix \i(Bruce)
Add Unix domain socket support to backend and to frontend library(Goran)
Implement CREATE DATABASE/WITH LOCATION and initlocation utility(Thomas)
Allow more SQL92 and/or PostgreSQL reserved words as column identifiers(Thomas)
Augment support for SQL92 SET TIME ZONE...(Thomas)
SET/SHOW/RESET TIME ZONE uses TZ backend environment variable(Thomas)
Implement SET keyword = DEFAULT and SET TIME ZONE DEFAULT(Thomas)
Enable SET TIME ZONE using TZ environment variable(Thomas)
Add PGDATESTYLE environment variable to frontend and backend initialization(Thomas)
Add PGTZ, PGCOSTHEAP, PGCOSTINDEX, PGRPLANS, PGGEQO

frontend library initialization environment variables(Thomas)
Regression tests time zone automatically set with "setenv PGTZ PST8PDT"(Thomas)
Add pg_description table for info on tables, columns, operators, types, and

aggregates(Bruce)
Increase 16 char limit on system table/index names to 32 characters(Bruce)
Rename system indexes(Bruce)
Add ’GERMAN’ option to SET DATESTYLE(Thomas)
Define an "ISO-style" timespan output format with "hh:mm:ss" fields(Thomas)
Allow fractional values for delta times (e.g. ’2.5 days’)(Thomas)
Validate numeric input more carefully for delta times(Thomas)
Implement day of year as possible input to date_part()(Thomas)
Define timespan_finite() and text_timespan() functions(Thomas)
Remove archive stuff(Bruce)
Allow for a pg_password authentication database that is separate from

the system password file(Todd)
Dump ACLs, GRANT, REVOKE privileges(Matt)
Define text, varchar, and bpchar string length functions(Thomas)
Fix Query handling for inheritance, and cost computations(Bruce)
Implement CREATE TABLE/AS SELECT (alternative to SELECT/INTO)(Thomas)
Allow NOT, IS NULL, IS NOT NULL in constraints(Thomas)
Implement UNIONs for SELECT(Bruce)
Add UNION, GROUP, DISTINCT to INSERT(Bruce)
varchar() stores only necessary bytes on disk(Bruce)
Fix for BLOBs(Peter)
Mega-Patch for JDBC...see README_6.3 for list of changes(Peter)
Remove unused "option" from PQconnectdb()
New LOCK command and lock manual page describing deadlocks(Bruce)
Add new psql \da, \dd, \df, \do, \dS, and \dT commands(Bruce)
Enhance psql \z to show sequences(Bruce)
Show NOT NULL and DEFAULT in psql \d table(Bruce)
New psql .psqlrc file start-up(Andrew)
Modify sample start-up script in contrib/linux to show syslog(Thomas)
New types for IP and MAC addresses in contrib/ip_and_mac(TomH)
Unix system time conversions with date/time types in contrib/unixdate(Thomas)
Update of contrib stuff(Massimo)
Add Unix socket support to DBD::Pg(Goran)
New python interface (PyGreSQL 2.0)(D’Arcy)
New frontend/backend protocol has a version number, network byte order(Phil)
Security features in pg_hba.conf enhanced and documented, many cleanups(Phil)
CHAR() now faster access than VARCHAR() or TEXT
ecpg embedded SQL preprocessor

2586

Appendix E. Release Notes

Reduce system column overhead(Vadmin)
Remove pg_time table(Vadim)
Add pg_type attribute to identify types that need length (bpchar, varchar)
Add report of offending line when COPY command fails
Allow VIEW privileges to be set separately from the underlying tables.

For security, use GRANT/REVOKE on views as appropriate(Jan)
Tables now have no default GRANT SELECT TO PUBLIC. You must

explicitly grant such privileges.
Clean up tutorial examples(Darren)

Source Tree Changes

Add new html development tools, and flow chart in /tools/backend
Fix for SCO compiles
Stratus computer port Robert Gillies
Added support for shlib for BSD44_derived & i386_solaris
Make configure more automated(Brook)
Add script to check regression test results
Break parser functions into smaller files, group together(Bruce)
Rename heap_create to heap_create_and_catalog, rename heap_creatr

to heap_create()(Bruce)
Sparc/Linux patch for locking(TomS)
Remove PORTNAME and reorganize port-specific stuff(Marc)
Add optimizer README file(Bruce)
Remove some recursion in optimizer and clean up some code there(Bruce)
Fix for NetBSD locking(Henry)
Fix for libptcl make(Tatsuo)
AIX patch(Darren)
Change IS TRUE, IS FALSE, ... to expressions using "=" rather than

function calls to istrue() or isfalse() to allow optimization(Thomas)
Various fixes NetBSD/Sparc related(TomH)
Alpha linux locking(Travis,Ryan)
Change elog(WARN) to elog(ERROR)(Bruce)
FAQ for FreeBSD(Marc)
Bring in the PostODBC source tree as part of our standard distribution(Marc)
A minor patch for HP/UX 10 vs 9(Stan)
New pg_attribute.atttypmod for type-specific info like varchar length(Bruce)
UnixWare patches(Billy)
New i386 ’lock’ for spinlock asm(Billy)
Support for multiplexed backends is removed
Start an OpenBSD port
Start an AUX port
Start a Cygnus port
Add string functions to regression suite(Thomas)
Expand a few function names formerly truncated to 16 characters(Thomas)
Remove un-needed malloc() calls and replace with palloc()(Bruce)

2587

Appendix E. Release Notes

E.239. Release 6.2.1

Release Date: 1997-10-17

6.2.1 is a bug-fix and usability release on 6.2.

Summary:

• Allow strings to span lines, per SQL92.

• Include example trigger function for inserting user names on table updates.

This is a minor bug-fix release on 6.2. For upgrades from pre-6.2 systems, a full dump/reload is required.
Refer to the 6.2 release notes for instructions.

E.239.1. Migration from version 6.2 to version 6.2.1
This is a minor bug-fix release. A dump/reload is not required from version 6.2, but is required from any
release prior to 6.2.

In upgrading from version 6.2, if you choose to dump/reload you will find that avg(money) is now calcu-
lated correctly. All other bug fixes take effect upon updating the executables.

Another way to avoid dump/reload is to use the following SQL command from psql to update the existing
system table:

update pg_aggregate set aggfinalfn = ’cash_div_flt8’
where aggname = ’avg’ and aggbasetype = 790;

This will need to be done to every existing database, including template1.

E.239.2. Changes

Allow TIME and TYPE column names(Thomas)
Allow larger range of true/false as boolean values(Thomas)
Support output of "now" and "current"(Thomas)
Handle DEFAULT with INSERT of NULL properly(Vadim)
Fix for relation reference counts problem in buffer manager(Vadim)
Allow strings to span lines, like ANSI(Thomas)
Fix for backward cursor with ORDER BY(Vadim)
Fix avg(cash) computation(Thomas)
Fix for specifying a column twice in ORDER/GROUP BY(Vadim)
Documented new libpq function to return affected rows, PQcmdTuples(Bruce)
Trigger function for inserting user names for INSERT/UPDATE(Brook Milligan)

2588

Appendix E. Release Notes

E.240. Release 6.2

Release Date: 1997-10-02

A dump/restore is required for those wishing to migrate data from previous releases of PostgreSQL.

E.240.1. Migration from version 6.1 to version 6.2
This migration requires a complete dump of the 6.1 database and a restore of the database in 6.2.

Note that the pg_dump and pg_dumpall utility from 6.2 should be used to dump the 6.1 database.

E.240.2. Migration from version 1.x to version 6.2
Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output format
was improved from the 1.02 release.

E.240.3. Changes

Bug Fixes

Fix problems with pg_dump for inheritance, sequences, archive tables(Bruce)
Fix compile errors on overflow due to shifts, unsigned, and bad prototypes

from Solaris(Diab Jerius)
Fix bugs in geometric line arithmetic (bad intersection calculations)(Thomas)
Check for geometric intersections at endpoints to avoid rounding ugliness(Thomas)
Catch non-functional delete attempts(Vadim)
Change time function names to be more consistent(Michael Reifenberg)
Check for zero divides(Michael Reifenberg)
Fix very old bug which made rows changed/inserted by a command

visible to the command itself (so we had multiple update of
updated rows, etc.)(Vadim)

Fix for SELECT null, ’fail’ FROM pg_am (Patrick)
SELECT NULL as EMPTY_FIELD now allowed(Patrick)
Remove un-needed signal stuff from contrib/pginterface
Fix OR (where x != 1 or x isnull didn’t return rows with x NULL) (Vadim)
Fix time_cmp function (Vadim)
Fix handling of functions with non-attribute first argument in

WHERE clauses (Vadim)
Fix GROUP BY when order of entries is different from order

in target list (Vadim)
Fix pg_dump for aggregates without sfunc1 (Vadim)

Enhancements

Default genetic optimizer GEQO parameter is now 8(Bruce)

2589

Appendix E. Release Notes

Allow use parameters in target list having aggregates in functions(Vadim)
Added JDBC driver as an interface(Adrian & Peter)
pg_password utility
Return number of rows inserted/affected by INSERT/UPDATE/DELETE etc.(Vadim)
Triggers implemented with CREATE TRIGGER (SQL3)(Vadim)
SPI (Server Programming Interface) allows execution of queries inside

C-functions (Vadim)
NOT NULL implemented (SQL92)(Robson Paniago de Miranda)
Include reserved words for string handling, outer joins, and unions(Thomas)
Implement extended comments ("/* ... */") using exclusive states(Thomas)
Add "//" single-line comments(Bruce)
Remove some restrictions on characters in operator names(Thomas)
DEFAULT and CONSTRAINT for tables implemented (SQL92)(Vadim & Thomas)
Add text concatenation operator and function (SQL92)(Thomas)
Support WITH TIME ZONE syntax (SQL92)(Thomas)
Support INTERVAL unit TO unit syntax (SQL92)(Thomas)
Define types DOUBLE PRECISION, INTERVAL, CHARACTER,

and CHARACTER VARYING (SQL92)(Thomas)
Define type FLOAT(p) and rudimentary DECIMAL(p,s), NUMERIC(p,s) (SQL92)(Thomas)
Define EXTRACT(), POSITION(), SUBSTRING(), and TRIM() (SQL92)(Thomas)
Define CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP (SQL92)(Thomas)
Add syntax and warnings for UNION, HAVING, INNER and OUTER JOIN (SQL92)(Thomas)
Add more reserved words, mostly for SQL92 compliance(Thomas)
Allow hh:mm:ss time entry for timespan/reltime types(Thomas)
Add center() routines for lseg, path, polygon(Thomas)
Add distance() routines for circle-polygon, polygon-polygon(Thomas)
Check explicitly for points and polygons contained within polygons

using an axis-crossing algorithm(Thomas)
Add routine to convert circle-box(Thomas)
Merge conflicting operators for different geometric data types(Thomas)
Replace distance operator "<===>" with "<->"(Thomas)
Replace "above" operator "!^" with ">^" and "below" operator "!|" with "<^"(Thomas)
Add routines for text trimming on both ends, substring, and string position(Thomas)
Added conversion routines circle(box) and poly(circle)(Thomas)
Allow internal sorts to be stored in memory rather than in files(Bruce & Vadim)
Allow functions and operators on internally-identical types to succeed(Bruce)
Speed up backend start-up after profiling analysis(Bruce)
Inline frequently called functions for performance(Bruce)
Reduce open() calls(Bruce)
psql: Add PAGER for \h and \?,\C fix
Fix for psql pager when no tty(Bruce)
New entab utility(Bruce)
General trigger functions for referential integrity (Vadim)
General trigger functions for time travel (Vadim)
General trigger functions for AUTOINCREMENT/IDENTITY feature (Vadim)
MOVE implementation (Vadim)

Source Tree Changes

HP-UX 10 patches (Vladimir Turin)
Added SCO support, (Daniel Harris)
MkLinux patches (Tatsuo Ishii)
Change geometric box terminology from "length" to "width"(Thomas)

2590

Appendix E. Release Notes

Deprecate temporary unstored slope fields in geometric code(Thomas)
Remove restart instructions from INSTALL(Bruce)
Look in /usr/ucb first for install(Bruce)
Fix c++ copy example code(Thomas)
Add -o to psql manual page(Bruce)
Prevent relname unallocated string length from being copied into database(Bruce)
Cleanup for NAMEDATALEN use(Bruce)
Fix pg_proc names over 15 chars in output(Bruce)
Add strNcpy() function(Bruce)
remove some (void) casts that are unnecessary(Bruce)
new interfaces directory(Marc)
Replace fopen() calls with calls to fd.c functions(Bruce)
Make functions static where possible(Bruce)
enclose unused functions in #ifdef NOT_USED(Bruce)
Remove call to difftime() in timestamp support to fix SunOS(Bruce & Thomas)
Changes for Digital Unix
Portability fix for pg_dumpall(Bruce)
Rename pg_attribute.attnvals to attdispersion(Bruce)
"intro/unix" manual page now "pgintro"(Bruce)
"built-in" manual page now "pgbuiltin"(Bruce)
"drop" manual page now "drop_table"(Bruce)
Add "create_trigger", "drop_trigger" manual pages(Thomas)
Add constraints regression test(Vadim & Thomas)
Add comments syntax regression test(Thomas)
Add PGINDENT and support program(Bruce)
Massive commit to run PGINDENT on all *.c and *.h files(Bruce)
Files moved to /src/tools directory(Bruce)
SPI and Trigger programming guides (Vadim & D’Arcy)

E.241. Release 6.1.1

Release Date: 1997-07-22

E.241.1. Migration from version 6.1 to version 6.1.1
This is a minor bug-fix release. A dump/reload is not required from version 6.1, but is required from any
release prior to 6.1. Refer to the release notes for 6.1 for more details.

E.241.2. Changes

fix for SET with options (Thomas)
allow pg_dump/pg_dumpall to preserve ownership of all tables/objects(Bruce)

2591

Appendix E. Release Notes

new psql \connect option allows changing usernames without changing databases
fix for initdb --debug option(Yoshihiko Ichikawa))
lextest cleanup(Bruce)
hash fixes(Vadim)
fix date/time month boundary arithmetic(Thomas)
fix timezone daylight handling for some ports(Thomas, Bruce, Tatsuo)
timestamp overhauled to use standard functions(Thomas)
other code cleanup in date/time routines(Thomas)
psql’s \d now case-insensitive(Bruce)
psql’s backslash commands can now have trailing semicolon(Bruce)
fix memory leak in psql when using \g(Bruce)
major fix for endian handling of communication to server(Thomas, Tatsuo)
Fix for Solaris assembler and include files(Yoshihiko Ichikawa)
allow underscores in usernames(Bruce)
pg_dumpall now returns proper status, portability fix(Bruce)

E.242. Release 6.1

Release Date: 1997-06-08

The regression tests have been adapted and extensively modified for the 6.1 release of PostgreSQL.

Three new data types (datetime, timespan, and circle) have been added to the native set of Post-
greSQL types. Points, boxes, paths, and polygons have had their output formats made consistent across
the data types. The polygon output in misc.out has only been spot-checked for correctness relative to the
original regression output.

PostgreSQL 6.1 introduces a new, alternate optimizer which uses genetic algorithms. These algorithms
introduce a random behavior in the ordering of query results when the query contains multiple qualifiers
or multiple tables (giving the optimizer a choice on order of evaluation). Several regression tests have been
modified to explicitly order the results, and hence are insensitive to optimizer choices. A few regression
tests are for data types which are inherently unordered (e.g. points and time intervals) and tests involving
those types are explicitly bracketed with set geqo to ’off’ and reset geqo.

The interpretation of array specifiers (the curly braces around atomic values) appears to have changed
sometime after the original regression tests were generated. The current ./expected/*.out files reflect
this new interpretation, which might not be correct!

The float8 regression test fails on at least some platforms. This is due to differences in implementations
of pow() and exp() and the signaling mechanisms used for overflow and underflow conditions.

The “random” results in the random test should cause the “random” test to be “failed”, since the regression
tests are evaluated using a simple diff. However, “random” does not seem to produce random results on
my test machine (Linux/gcc/i686).

2592

Appendix E. Release Notes

E.242.1. Migration to Version 6.1
This migration requires a complete dump of the 6.0 database and a restore of the database in 6.1.

Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output format
was improved from the 1.02 release.

E.242.2. Changes

Bug Fixes

packet length checking in library routines
lock manager priority patch
check for under/over flow of float8(Bruce)
multitable join fix(Vadim)
SIGPIPE crash fix(Darren)
large object fixes(Sven)
allow btree indexes to handle NULLs(Vadim)
timezone fixes(D’Arcy)
select SUM(x) can return NULL on no rows(Thomas)
internal optimizer, executor bug fixes(Vadim)
fix problem where inner loop in < or <= has no rows(Vadim)
prevent re-commuting join index clauses(Vadim)
fix join clauses for multiple tables(Vadim)
fix hash, hashjoin for arrays(Vadim)
fix btree for abstime type(Vadim)
large object fixes(Raymond)
fix buffer leak in hash indexes (Vadim)
fix rtree for use in inner scan (Vadim)
fix gist for use in inner scan, cleanups (Vadim, Andrea)
avoid unnecessary local buffers allocation (Vadim, Massimo)
fix local buffers leak in transaction aborts (Vadim)
fix file manager memmory leaks, cleanups (Vadim, Massimo)
fix storage manager memmory leaks (Vadim)
fix btree duplicates handling (Vadim)
fix deleted rows reincarnation caused by vacuum (Vadim)
fix SELECT varchar()/char() INTO TABLE made zero-length fields(Bruce)
many psql, pg_dump, and libpq memory leaks fixed using Purify (Igor)

Enhancements

attribute optimization statistics(Bruce)
much faster new btree bulk load code(Paul)
BTREE UNIQUE added to bulk load code(Vadim)
new lock debug code(Massimo)
massive changes to libpg++(Leo)
new GEQO optimizer speeds table multitable optimization(Martin)
new WARN message for non-unique insert into unique key(Marc)
update x=-3, no spaces, now valid(Bruce)
remove case-sensitive identifier handling(Bruce,Thomas,Dan)
debug backend now pretty-prints tree(Darren)

2593

Appendix E. Release Notes

new Oracle character functions(Edmund)
new plaintext password functions(Dan)
no such class or insufficient privilege changed to distinct messages(Dan)
new ANSI timestamp function(Dan)
new ANSI Time and Date types (Thomas)
move large chunks of data in backend(Martin)
multicolumn btree indexes(Vadim)
new SET var TO value command(Martin)
update transaction status on reads(Dan)
new locale settings for character types(Oleg)
new SEQUENCE serial number generator(Vadim)
GROUP BY function now possible(Vadim)
re-organize regression test(Thomas,Marc)
new optimizer operation weights(Vadim)
new psql \z grant/permit option(Marc)
new MONEY data type(D’Arcy,Thomas)
tcp socket communication speed improved(Vadim)
new VACUUM option for attribute statistics, and for certain columns (Vadim)
many geometric type improvements(Thomas,Keith)
additional regression tests(Thomas)
new datestyle variable(Thomas,Vadim,Martin)
more comparison operators for sorting types(Thomas)
new conversion functions(Thomas)
new more compact btree format(Vadim)
allow pg_dumpall to preserve database ownership(Bruce)
new SET GEQO=# and R_PLANS variable(Vadim)
old (!GEQO) optimizer can use right-sided plans (Vadim)
typechecking improvement in SQL parser(Bruce)
new SET, SHOW, RESET commands(Thomas,Vadim)
new \connect database USER option
new destroydb -i option (Igor)
new \dt and \di psql commands (Darren)
SELECT "\n" now escapes newline (A. Duursma)
new geometry conversion functions from old format (Thomas)

Source tree changes

new configuration script(Marc)
readline configuration option added(Marc)
OS-specific configuration options removed(Marc)
new OS-specific template files(Marc)
no more need to edit Makefile.global(Marc)
re-arrange include files(Marc)
nextstep patches (Gregor Hoffleit)
removed Windows-specific code(Bruce)
removed postmaster -e option, now only postgres -e option (Bruce)
merge duplicate library code in front/backends(Martin)
now works with eBones, international Kerberos(Jun)
more shared library support
c++ include file cleanup(Bruce)
warn about buggy flex(Bruce)
DG/UX, Ultrix, IRIX, AIX portability fixes

2594

Appendix E. Release Notes

E.243. Release 6.0

Release Date: 1997-01-29

A dump/restore is required for those wishing to migrate data from previous releases of PostgreSQL.

E.243.1. Migration from version 1.09 to version 6.0
This migration requires a complete dump of the 1.09 database and a restore of the database in 6.0.

E.243.2. Migration from pre-1.09 to version 6.0
Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output format
was improved from the 1.02 release.

E.243.3. Changes

Bug Fixes

ALTER TABLE bug - running postgres process needs to re-read table definition
Allow vacuum to be run on one table or entire database(Bruce)
Array fixes
Fix array over-runs of memory writes(Kurt)
Fix elusive btree range/non-range bug(Dan)
Fix for hash indexes on some types like time and date
Fix for pg_log size explosion
Fix permissions on lo_export()(Bruce)
Fix uninitialized reads of memory(Kurt)
Fixed ALTER TABLE ... char(3) bug(Bruce)
Fixed a few small memory leaks
Fixed EXPLAIN handling of options and changed full_path option name
Fixed output of group acl privileges
Memory leaks (hunt and destroy with tools like Purify(Kurt)
Minor improvements to rules system
NOTIFY fixes
New asserts for run-checking
Overhauled parser/analyze code to properly report errors and increase speed
Pg_dump -d now handles NULL’s properly(Bruce)
Prevent SELECT NULL from crashing server (Bruce)
Properly report errors when INSERT ... SELECT columns did not match
Properly report errors when insert column names were not correct

2595

Appendix E. Release Notes

psql \g filename now works(Bruce)
psql fixed problem with multiple statements on one line with multiple outputs
Removed duplicate system OIDs
SELECT * INTO TABLE . GROUP/ORDER BY gives unlink error if table exists(Bruce)
Several fixes for queries that crashed the backend
Starting quote in insert string errors(Bruce)
Submitting an empty query now returns empty status, not just " " query(Bruce)

Enhancements

Add EXPLAIN manual page(Bruce)
Add UNIQUE index capability(Dan)
Add hostname/user level access control rather than just hostname and user
Add synonym of != for <>(Bruce)
Allow "select oid,* from table"
Allow BY,ORDER BY to specify columns by number, or by non-alias table.column(Bruce)
Allow COPY from the frontend(Bryan)
Allow GROUP BY to use alias column name(Bruce)
Allow actual compression, not just reuse on the same page(Vadim)
Allow installation-configuration option to auto-add all local users(Bryan)
Allow libpq to distinguish between text value ” and null(Bruce)
Allow non-postgres users with createdb privs to destroydb’s
Allow restriction on who can create C functions(Bryan)
Allow restriction on who can do backend COPY(Bryan)
Can shrink tables, pg_time and pg_log(Vadim & Erich)
Change debug level 2 to print queries only, changed debug heading layout(Bruce)
Change default decimal constant representation from float4 to float8(Bruce)
European date format now set when postmaster is started
Execute lowercase function names if not found with exact case
Fixes for aggregate/GROUP processing, allow ’select sum(func(x),sum(x+y) from z’
Gist now included in the distribution(Marc)
Idend authentication of local users(Bryan)
Implement BETWEEN qualifier(Bruce)
Implement IN qualifier(Bruce)
libpq has PQgetisnull()(Bruce)
libpq++ improvements
New options to initdb(Bryan)
Pg_dump allow dump of OIDs(Bruce)
Pg_dump create indexes after tables are loaded for speed(Bruce)
Pg_dumpall dumps all databases, and the user table
Pginterface additions for NULL values(Bruce)
Prevent postmaster from being run as root
psql \h and \? is now readable(Bruce)
psql allow backslashed, semicolons anywhere on the line(Bruce)
psql changed command prompt for lines in query or in quotes(Bruce)
psql char(3) now displays as (bp)char in \d output(Bruce)
psql return code now more accurate(Bryan?)
psql updated help syntax(Bruce)
Re-visit and fix vacuum(Vadim)
Reduce size of regression diffs, remove timezone name difference(Bruce)
Remove compile-time parameters to enable binary distributions(Bryan)
Reverse meaning of HBA masks(Bryan)
Secure Authentication of local users(Bryan)

2596

Appendix E. Release Notes

Speed up vacuum(Vadim)
Vacuum now had VERBOSE option(Bruce)

Source tree changes

All functions now have prototypes that are compared against the calls
Allow asserts to be disabled easily from Makefile.global(Bruce)
Change oid constants used in code to #define names
Decoupled sparc and solaris defines(Kurt)
Gcc -Wall compiles cleanly with warnings only from unfixable constructs
Major include file reorganization/reduction(Marc)
Make now stops on compile failure(Bryan)
Makefile restructuring(Bryan, Marc)
Merge bsdi_2_1 to bsdi(Bruce)
Monitor program removed
Name change from Postgres95 to PostgreSQL
New config.h file(Marc, Bryan)
PG_VERSION now set to 6.0 and used by postmaster
Portability additions, including Ultrix, DG/UX, AIX, and Solaris
Reduced the number of #define’s, centralized #define’s
Remove duplicate OIDS in system tables(Dan)
Remove duplicate system catalog info or report mismatches(Dan)
Removed many os-specific #define’s
Restructured object file generation/location(Bryan, Marc)
Restructured port-specific file locations(Bryan, Marc)
Unused/uninitialized variables corrected

E.244. Release 1.09

Release Date: 1996-11-04

Sorry, we didn’t keep track of changes from 1.02 to 1.09. Some of the changes listed in 6.0 were actually
included in the 1.02.1 to 1.09 releases.

E.245. Release 1.02

Release Date: 1996-08-01

2597

Appendix E. Release Notes

E.245.1. Migration from version 1.02 to version 1.02.1
Here is a new migration file for 1.02.1. It includes the ’copy’ change and a script to convert old ASCII
files.

Note: The following notes are for the benefit of users who want to migrate databases from Postgres95
1.01 and 1.02 to Postgres95 1.02.1.

If you are starting afresh with Postgres95 1.02.1 and do not need to migrate old databases, you do
not need to read any further.

In order to upgrade older Postgres95 version 1.01 or 1.02 databases to version 1.02.1, the following steps
are required:

1. Start up a new 1.02.1 postmaster

2. Add the new built-in functions and operators of 1.02.1 to 1.01 or 1.02 databases. This is done by run-
ning the new 1.02.1 server against your own 1.01 or 1.02 database and applying the queries attached
at the end of the file. This can be done easily through psql. If your 1.01 or 1.02 database is named
testdb and you have cut the commands from the end of this file and saved them in addfunc.sql:

% psql testdb -f addfunc.sql

Those upgrading 1.02 databases will get a warning when executing the last two statements in the file
because they are already present in 1.02. This is not a cause for concern.

E.245.2. Dump/Reload Procedure
If you are trying to reload a pg_dump or text-mode, copy tablename to stdout generated with a
previous version, you will need to run the attached sed script on the ASCII file before loading it into the
database. The old format used ’.’ as end-of-data, while ’\.’ is now the end-of-data marker. Also, empty
strings are now loaded in as ” rather than NULL. See the copy manual page for full details.

sed ’s/^\.$/\\./g’ <in_file >out_file

If you are loading an older binary copy or non-stdout copy, there is no end-of-data character, and hence
no conversion necessary.

-- following lines added by agc to reflect the case-insensitive
-- regexp searching for varchar (in 1.02), and bpchar (in 1.02.1)
create operator ~* (leftarg = bpchar, rightarg = text, procedure = texticregexeq);
create operator !~* (leftarg = bpchar, rightarg = text, procedure = texticregexne);
create operator ~* (leftarg = varchar, rightarg = text, procedure = texticregexeq);
create operator !~* (leftarg = varchar, rightarg = text, procedure = texticregexne);

2598

Appendix E. Release Notes

E.245.3. Changes

Source code maintenance and development

* worldwide team of volunteers

* the source tree now in CVS at ftp.ki.net

Enhancements

* psql (and underlying libpq library) now has many more options for
formatting output, including HTML

* pg_dump now output the schema and/or the data, with many fixes to
enhance completeness.

* psql used in place of monitor in administration shell scripts.
monitor to be deprecated in next release.

* date/time functions enhanced

* NULL insert/update/comparison fixed/enhanced

* TCL/TK lib and shell fixed to work with both tck7.4/tk4.0 and tcl7.5/tk4.1

Bug Fixes (almost too numerous to mention)

* indexes

* storage management

* check for NULL pointer before dereferencing

* Makefile fixes

New Ports

* added SolarisX86 port

* added BSD/OS 2.1 port

* added DG/UX port

E.246. Release 1.01

Release Date: 1996-02-23

E.246.1. Migration from version 1.0 to version 1.01
The following notes are for the benefit of users who want to migrate databases from Postgres95 1.0 to
Postgres95 1.01.

If you are starting afresh with Postgres95 1.01 and do not need to migrate old databases, you do not need
to read any further.

In order to Postgres95 version 1.01 with databases created with Postgres95 version 1.0, the following
steps are required:

1. Set the definition of NAMEDATALEN in src/Makefile.global to 16 and OIDNAMELEN to 20.

2599

Appendix E. Release Notes

2. Decide whether you want to use Host based authentication.

a. If you do, you must create a file name pg_hba in your top-level data directory (typically the
value of your $PGDATA). src/libpq/pg_hba shows an example syntax.

b. If you do not want host-based authentication, you can comment out the line:

HBA = 1

in src/Makefile.global

Note that host-based authentication is turned on by default, and if you do not take steps A
or B above, the out-of-the-box 1.01 will not allow you to connect to 1.0 databases.

3. Compile and install 1.01, but DO NOT do the initdb step.

4. Before doing anything else, terminate your 1.0 postmaster, and backup your existing $PGDATA direc-
tory.

5. Set your PGDATA environment variable to your 1.0 databases, but set up path up so that 1.01 binaries
are being used.

6. Modify the file $PGDATA/PG_VERSION from 5.0 to 5.1

7. Start up a new 1.01 postmaster

8. Add the new built-in functions and operators of 1.01 to 1.0 databases. This is done by running the
new 1.01 server against your own 1.0 database and applying the queries attached and saving in the
file 1.0_to_1.01.sql. This can be done easily through psql. If your 1.0 database is name testdb:

% psql testdb -f 1.0_to_1.01.sql

and then execute the following commands (cut and paste from here):

-- add builtin functions that are new to 1.01

create function int4eqoid (int4, oid) returns bool as ’foo’
language ’internal’;
create function oideqint4 (oid, int4) returns bool as ’foo’
language ’internal’;
create function char2icregexeq (char2, text) returns bool as ’foo’
language ’internal’;
create function char2icregexne (char2, text) returns bool as ’foo’
language ’internal’;
create function char4icregexeq (char4, text) returns bool as ’foo’
language ’internal’;
create function char4icregexne (char4, text) returns bool as ’foo’
language ’internal’;
create function char8icregexeq (char8, text) returns bool as ’foo’
language ’internal’;
create function char8icregexne (char8, text) returns bool as ’foo’
language ’internal’;
create function char16icregexeq (char16, text) returns bool as ’foo’
language ’internal’;
create function char16icregexne (char16, text) returns bool as ’foo’
language ’internal’;
create function texticregexeq (text, text) returns bool as ’foo’
language ’internal’;
create function texticregexne (text, text) returns bool as ’foo’
language ’internal’;

2600

Appendix E. Release Notes

-- add builtin functions that are new to 1.01

create operator = (leftarg = int4, rightarg = oid, procedure = int4eqoid);
create operator = (leftarg = oid, rightarg = int4, procedure = oideqint4);
create operator ~* (leftarg = char2, rightarg = text, procedure = char2icregexeq);
create operator !~* (leftarg = char2, rightarg = text, procedure = char2icregexne);
create operator ~* (leftarg = char4, rightarg = text, procedure = char4icregexeq);
create operator !~* (leftarg = char4, rightarg = text, procedure = char4icregexne);
create operator ~* (leftarg = char8, rightarg = text, procedure = char8icregexeq);
create operator !~* (leftarg = char8, rightarg = text, procedure = char8icregexne);
create operator ~* (leftarg = char16, rightarg = text, procedure = char16icregexeq);
create operator !~* (leftarg = char16, rightarg = text, procedure = char16icregexne);
create operator ~* (leftarg = text, rightarg = text, procedure = texticregexeq);
create operator !~* (leftarg = text, rightarg = text, procedure = texticregexne);

E.246.2. Changes

Incompatibilities:

* 1.01 is backwards compatible with 1.0 database provided the user
follow the steps outlined in the MIGRATION_from_1.0_to_1.01 file.
If those steps are not taken, 1.01 is not compatible with 1.0 database.

Enhancements:

* added PQdisplayTuples() to libpq and changed monitor and psql to use it

* added NeXT port (requires SysVIPC implementation)

* added CAST .. AS ... syntax

* added ASC and DESC key words

* added ’internal’ as a possible language for CREATE FUNCTION
internal functions are C functions which have been statically linked
into the postgres backend.

* a new type "name" has been added for system identifiers (table names,
attribute names, etc.) This replaces the old char16 type. The
of name is set by the NAMEDATALEN #define in src/Makefile.global

* a readable reference manual that describes the query language.

* added host-based access control. A configuration file ($PGDATA/pg_hba)
is used to hold the configuration data. If host-based access control
is not desired, comment out HBA=1 in src/Makefile.global.

* changed regex handling to be uniform use of Henry Spencer’s regex code
regardless of platform. The regex code is included in the distribution

* added functions and operators for case-insensitive regular expressions.
The operators are ~* and !~*.

* pg_dump uses COPY instead of SELECT loop for better performance

Bug fixes:

* fixed an optimizer bug that was causing core dumps when
functions calls were used in comparisons in the WHERE clause

* changed all uses of getuid to geteuid so that effective uids are used

* psql now returns non-zero status on errors when using -c

* applied public patches 1-14

2601

Appendix E. Release Notes

E.247. Release 1.0

Release Date: 1995-09-05

E.247.1. Changes

Copyright change:

* The copyright of Postgres 1.0 has been loosened to be freely modifiable
and modifiable for any purpose. Please read the COPYRIGHT file.
Thanks to Professor Michael Stonebraker for making this possible.

Incompatibilities:

* date formats have to be MM-DD-YYYY (or DD-MM-YYYY if you’re using
EUROPEAN STYLE). This follows SQL-92 specs.

* "delimiters" is now a key word

Enhancements:

* sql LIKE syntax has been added

* copy command now takes an optional USING DELIMITER specification.
delimiters can be any single-character string.

* IRIX 5.3 port has been added.
Thanks to Paul Walmsley and others.

* updated pg_dump to work with new libpq

* \d has been added psql
Thanks to Keith Parks

* regexp performance for architectures that use POSIX regex has been
improved due to caching of precompiled patterns.
Thanks to Alistair Crooks

* a new version of libpq++
Thanks to William Wanders

Bug fixes:

* arbitrary userids can be specified in the createuser script

* \c to connect to other databases in psql now works.

* bad pg_proc entry for float4inc() is fixed

* users with usecreatedb field set can now create databases without
having to be usesuper

* remove access control entries when the entry no longer has any
privileges

* fixed non-portable datetimes implementation

* added kerberos flags to the src/backend/Makefile

* libpq now works with kerberos

* typographic errors in the user manual have been corrected.

* btrees with multiple index never worked, now we tell you they don’t

2602

Appendix E. Release Notes

work when you try to use them

E.248. Postgres95 Release 0.03

Release Date: 1995-07-21

E.248.1. Changes

Incompatible changes:

* BETA-0.3 IS INCOMPATIBLE WITH DATABASES CREATED WITH PREVIOUS VERSIONS
(due to system catalog changes and indexing structure changes).

* double-quote (") is deprecated as a quoting character for string literals;
you need to convert them to single quotes (’).

* name of aggregates (eg. int4sum) are renamed in accordance with the
SQL standard (eg. sum).

* CHANGE ACL syntax is replaced by GRANT/REVOKE syntax.

* float literals (eg. 3.14) are now of type float4 (instead of float8 in
previous releases); you might have to do typecasting if you depend on it
being of type float8. If you neglect to do the typecasting and you assign
a float literal to a field of type float8, you might get incorrect values
stored!

* LIBPQ has been totally revamped so that frontend applications
can connect to multiple backends

* the usesysid field in pg_user has been changed from int2 to int4 to
allow wider range of Unix user ids.

* the netbsd/freebsd/bsd o/s ports have been consolidated into a
single BSD44_derived port. (thanks to Alistair Crooks)

SQL standard-compliance (the following details changes that makes postgres95
more compliant to the SQL-92 standard):

* the following SQL types are now built-in: smallint, int(eger), float, real,
char(N), varchar(N), date and time.

The following are aliases to existing postgres types:
smallint -> int2
integer, int -> int4
float, real -> float4

char(N) and varchar(N) are implemented as truncated text types. In
addition, char(N) does blank-padding.

* single-quote (’) is used for quoting string literals; ” (in addition to
\’) is supported as means of inserting a single quote in a string

* SQL standard aggregate names (MAX, MIN, AVG, SUM, COUNT) are used
(Also, aggregates can now be overloaded, i.e. you can define your
own MAX aggregate to take in a user-defined type.)

2603

Appendix E. Release Notes

* CHANGE ACL removed. GRANT/REVOKE syntax added.
- Privileges can be given to a group using the "GROUP" key word.

For example:
GRANT SELECT ON foobar TO GROUP my_group;

The key word ’PUBLIC’ is also supported to mean all users.

Privileges can only be granted or revoked to one user or group
at a time.

"WITH GRANT OPTION" is not supported. Only class owners can change
access control

- The default access control is to grant users readonly access.
You must explicitly grant insert/update access to users. To change
this, modify the line in

src/backend/utils/acl.h
that defines ACL_WORLD_DEFAULT

Bug fixes:

* the bug where aggregates of empty tables were not run has been fixed. Now,
aggregates run on empty tables will return the initial conditions of the
aggregates. Thus, COUNT of an empty table will now properly return 0.
MAX/MIN of an empty table will return a row of value NULL.

* allow the use of \; inside the monitor

* the LISTEN/NOTIFY asynchronous notification mechanism now work

* NOTIFY in rule action bodies now work

* hash indexes work, and access methods in general should perform better.
creation of large btree indexes should be much faster. (thanks to Paul
Aoki)

Other changes and enhancements:

* addition of an EXPLAIN statement used for explaining the query execution
plan (eg. "EXPLAIN SELECT * FROM EMP" prints out the execution plan for
the query).

* WARN and NOTICE messages no longer have timestamps on them. To turn on
timestamps of error messages, uncomment the line in
src/backend/utils/elog.h:

/* define ELOG_TIMESTAMPS */

* On an access control violation, the message
"Either no such class or insufficient privilege"

will be given. This is the same message that is returned when
a class is not found. This dissuades non-privileged users from
guessing the existence of privileged classes.

* some additional system catalog changes have been made that are not
visible to the user.

libpgtcl changes:

* The -oid option has been added to the "pg_result" tcl command.
pg_result -oid returns oid of the last row inserted. If the
last command was not an INSERT, then pg_result -oid returns "".

* the large object interface is available as pg_lo* tcl commands:
pg_lo_open, pg_lo_close, pg_lo_creat, etc.

Portability enhancements and New Ports:

2604

Appendix E. Release Notes

* flex/lex problems have been cleared up. Now, you should be able to use
flex instead of lex on any platforms. We no longer make assumptions of
what lexer you use based on the platform you use.

* The Linux-ELF port is now supported. Various configuration have been
tested: The following configuration is known to work:

kernel 1.2.10, gcc 2.6.3, libc 4.7.2, flex 2.5.2, bison 1.24
with everything in ELF format,

New utilities:

* ipcclean added to the distribution
ipcclean usually does not need to be run, but if your backend crashes
and leaves shared memory segments hanging around, ipcclean will
clean them up for you.

New documentation:

* the user manual has been revised and libpq documentation added.

E.249. Postgres95 Release 0.02

Release Date: 1995-05-25

E.249.1. Changes

Incompatible changes:

* The SQL statement for creating a database is ’CREATE DATABASE’ instead
of ’CREATEDB’. Similarly, dropping a database is ’DROP DATABASE’ instead
of ’DESTROYDB’. However, the names of the executables ’createdb’ and
’destroydb’ remain the same.

New tools:

* pgperl - a Perl (4.036) interface to Postgres95

* pg_dump - a utility for dumping out a postgres database into a
script file containing query commands. The script files are in a ASCII
format and can be used to reconstruct the database, even on other
machines and other architectures. (Also good for converting
a Postgres 4.2 database to Postgres95 database.)

The following ports have been incorporated into postgres95-beta-0.02:

* the NetBSD port by Alistair Crooks

* the AIX port by Mike Tung

* the Windows NT port by Jon Forrest (more stuff but not done yet)

* the Linux ELF port by Brian Gallew

The following bugs have been fixed in postgres95-beta-0.02:

2605

Appendix E. Release Notes

* new lines not escaped in COPY OUT and problem with COPY OUT when first
attribute is a ’.’

* cannot type return to use the default user id in createuser

* SELECT DISTINCT on big tables crashes

* Linux installation problems

* monitor doesn’t allow use of ’localhost’ as PGHOST

* psql core dumps when doing \c or \l

* the "pgtclsh" target missing from src/bin/pgtclsh/Makefile

* libpgtcl has a hard-wired default port number

* SELECT DISTINCT INTO TABLE hangs

* CREATE TYPE doesn’t accept ’variable’ as the internallength

* wrong result using more than 1 aggregate in a SELECT

E.250. Postgres95 Release 0.01

Release Date: 1995-05-01

Initial release.

2606

Appendix F. Additional Supplied Modules
This appendix and the next one contain information regarding the modules that can be found in the
contrib directory of the PostgreSQL distribution. These include porting tools, analysis utilities, and
plug-in features that are not part of the core PostgreSQL system, mainly because they address a limited
audience or are too experimental to be part of the main source tree. This does not preclude their usefulness.

This appendix covers extensions and other server plug-in modules found in contrib. Appendix G covers
utility programs.

When building from the source distribution, these components are not built automatically, unless you build
the "world" target (see step 2). You can build and install all of them by running:

gmake

gmake install

in the contrib directory of a configured source tree; or to build and install just one selected module, do
the same in that module’s subdirectory. Many of the modules have regression tests, which can be executed
by running:

gmake check

before installation or

gmake installcheck

once you have a PostgreSQL server running.

If you are using a pre-packaged version of PostgreSQL, these modules are typically made available as a
separate subpackage, such as postgresql-contrib.

Many modules supply new user-defined functions, operators, or types. To make use of one of these mod-
ules, after you have installed the code you need to register the new SQL objects in the database system.
In PostgreSQL 9.1 and later, this is done by executing a CREATE EXTENSION command. In a fresh
database, you can simply do

CREATE EXTENSION module_name;

This command must be run by a database superuser. This registers the new SQL objects in the current
database only, so you need to run this command in each database that you want the module’s facilities
to be available in. Alternatively, run it in database template1 so that the extension will be copied into
subsequently-created databases by default.

Many modules allow you to install their objects in a schema of your choice. To do that, add SCHEMA

schema_name to the CREATE EXTENSION command. By default, the objects will be placed in your current
creation target schema, typically public.

If your database was brought forward by dump and reload from a pre-9.1 version of PostgreSQL, and you
had been using the pre-9.1 version of the module in it, you should instead do

CREATE EXTENSION module_name FROM unpackaged;

2607

Appendix F. Additional Supplied Modules

This will update the pre-9.1 objects of the module into a proper extension object. Future updates to the
module will be managed by ALTER EXTENSION. For more information about extension updates, see
Section 35.15.

Note, however, that some of these modules are not “extensions” in this sense, but are loaded into the
server in some other way, for instance by way of shared_preload_libraries. See the documentation of each
module for details.

F.1. adminpack
adminpack provides a number of support functions which pgAdmin and other administration and man-
agement tools can use to provide additional functionality, such as remote management of server log files.

F.1.1. Functions Implemented
The functions implemented by adminpack can only be run by a superuser. Here’s a list of these functions:

int8 pg_catalog.pg_file_write(fname text, data text, append bool)
bool pg_catalog.pg_file_rename(oldname text, newname text, archivename text)
bool pg_catalog.pg_file_rename(oldname text, newname text)
bool pg_catalog.pg_file_unlink(fname text)
setof record pg_catalog.pg_logdir_ls()

/* Renaming of existing backend functions for pgAdmin compatibility */
int8 pg_catalog.pg_file_read(fname text, data text, append bool)
bigint pg_catalog.pg_file_length(text)
int4 pg_catalog.pg_logfile_rotate()

F.2. auth_delay
auth_delay causes the server to pause briefly before reporting authentication failure, to make brute-
force attacks on database passwords more difficult. Note that it does nothing to prevent denial-of-service
attacks, and may even exacerbate them, since processes that are waiting before reporting authentication
failure will still consume connection slots.

In order to function, this module must be loaded via shared_preload_libraries in postgresql.conf.

F.2.1. Configuration Parameters

auth_delay.milliseconds (int)

The number of milliseconds to wait before reporting an authentication failure. The default is 0.

These parameters must be set in postgresql.conf. Typical usage might be:

2608

Appendix F. Additional Supplied Modules

postgresql.conf
shared_preload_libraries = ’auth_delay’

auth_delay.milliseconds = ’500’

F.2.2. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

F.3. auto_explain
The auto_explain module provides a means for logging execution plans of slow statements automati-
cally, without having to run EXPLAIN by hand. This is especially helpful for tracking down un-optimized
queries in large applications.

The module provides no SQL-accessible functions. To use it, simply load it into the server. You can load
it into an individual session:

LOAD ’auto_explain’;

(You must be superuser to do that.) More typical usage is to preload it into all sessions by including
auto_explain in shared_preload_libraries in postgresql.conf. Then you can track unexpectedly
slow queries no matter when they happen. Of course there is a price in overhead for that.

F.3.1. Configuration Parameters
There are several configuration parameters that control the behavior of auto_explain. Note that the
default behavior is to do nothing, so you must set at least auto_explain.log_min_duration if you
want any results.

auto_explain.log_min_duration (integer)

auto_explain.log_min_duration is the minimum statement execution time, in milliseconds,
that will cause the statement’s plan to be logged. Setting this to zero logs all plans. Minus-one (the
default) disables logging of plans. For example, if you set it to 250ms then all statements that run
250ms or longer will be logged. Only superusers can change this setting.

auto_explain.log_analyze (boolean)

auto_explain.log_analyze causes EXPLAIN ANALYZE output, rather than just EXPLAIN out-
put, to be printed when an execution plan is logged. This parameter is off by default. Only superusers
can change this setting.

Note: When this parameter is on, per-plan-node timing occurs for all statements executed,
whether or not they run long enough to actually get logged. This can have an extremely neg-
ative impact on performance.

2609

Appendix F. Additional Supplied Modules

auto_explain.log_verbose (boolean)

auto_explain.log_verbose causes EXPLAIN VERBOSE output, rather than just EXPLAIN out-
put, to be printed when an execution plan is logged. This parameter is off by default. Only superusers
can change this setting.

auto_explain.log_buffers (boolean)

auto_explain.log_buffers causes EXPLAIN (ANALYZE, BUFFERS) output, rather
than just EXPLAIN output, to be printed when an execution plan is logged. This parameter
is off by default. Only superusers can change this setting. This parameter has no effect unless
auto_explain.log_analyze parameter is set.

auto_explain.log_format (enum)

auto_explain.log_format selects the EXPLAIN output format to be used. The allowed values
are text, xml, json, and yaml. The default is text. Only superusers can change this setting.

auto_explain.log_timing (boolean)

auto_explain.log_timing causes EXPLAIN (ANALYZE, TIMING off) output, rather than
just EXPLAIN (ANALYZE) output. The overhead of repeatedly reading the system clock can slow
down the query significantly on some systems, so it may be useful to set this parameter to FALSE

when only actual row counts, and not exact times, are needed. This parameter is only effective when
auto_explain.log_analyze is also enabled. It defaults to TRUE.

auto_explain.log_nested_statements (boolean)

auto_explain.log_nested_statements causes nested statements (statements executed inside
a function) to be considered for logging. When it is off, only top-level query plans are logged. This
parameter is off by default. Only superusers can change this setting.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = ’auto_explain’

auto_explain.log_min_duration = ’3s’

F.3.2. Example
postgres=# LOAD ’auto_explain’;
postgres=# SET auto_explain.log_min_duration = 0;
postgres=# SELECT count(*)

FROM pg_class, pg_index
WHERE oid = indrelid AND indisunique;

This might produce log output such as:

LOG: duration: 3.651 ms plan:
Query Text: SELECT count(*)

FROM pg_class, pg_index
WHERE oid = indrelid AND indisunique;

Aggregate (cost=16.79..16.80 rows=1 width=0) (actual time=3.626..3.627 rows=1 loops=1)

2610

Appendix F. Additional Supplied Modules

-> Hash Join (cost=4.17..16.55 rows=92 width=0) (actual time=3.349..3.594 rows=92 loops=1)
Hash Cond: (pg_class.oid = pg_index.indrelid)
-> Seq Scan on pg_class (cost=0.00..9.55 rows=255 width=4) (actual time=0.016..0.140 rows=255 loops=1)
-> Hash (cost=3.02..3.02 rows=92 width=4) (actual time=3.238..3.238 rows=92 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 4kB
-> Seq Scan on pg_index (cost=0.00..3.02 rows=92 width=4) (actual time=0.008..3.187 rows=92 loops=1)

Filter: indisunique

F.3.3. Author
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>

F.4. btree_gin
btree_gin provides sample GIN operator classes that implement B-tree equivalent behavior for the
data types int2, int4, int8, float4, float8, timestamp with time zone, timestamp without

time zone, time with time zone, time without time zone, date, interval, oid, money,
"char", varchar, text, bytea, bit, varbit, macaddr, inet, and cidr.

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
are useful for GIN testing and as a base for developing other GIN operator classes. Also, for queries that
test both a GIN-indexable column and a B-tree-indexable column, it might be more efficient to create a
multicolumn GIN index that uses one of these operator classes than to create two separate indexes that
would have to be combined via bitmap ANDing.

F.4.1. Example Usage
CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING gin (a);
-- query
SELECT * FROM test WHERE a < 10;

F.4.2. Authors
Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov (<oleg@sai.msu.su>). See
http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin for additional information.

2611

Appendix F. Additional Supplied Modules

F.5. btree_gist
btree_gist provides GiST index operator classes that implement B-tree equivalent behavior for the
data types int2, int4, int8, float4, float8, numeric, timestamp with time zone, timestamp
without time zone, time with time zone, time without time zone, date, interval, oid,
money, char, varchar, text, bytea, bit, varbit, macaddr, inet, and cidr.

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
provide some other features that are not available with a B-tree index, as described below. Also, these
operator classes are useful when a multicolumn GiST index is needed, wherein some of the columns are
of data types that are only indexable with GiST but other columns are just simple data types. Lastly, these
operator classes are useful for GiST testing and as a base for developing other GiST operator classes.

In addition to the typical B-tree search operators, btree_gist also provides index support for <> (“not
equals”). This may be useful in combination with an exclusion constraint, as described below.

Also, for data types for which there is a natural distance metric, btree_gist defines a distance operator
<->, and provides GiST index support for nearest-neighbor searches using this operator. Distance opera-
tors are provided for int2, int4, int8, float4, float8, timestamp with time zone, timestamp
without time zone, time without time zone, date, interval, oid, and money.

F.5.1. Example Usage
Simple example using btree_gist instead of btree:

CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING gist (a);
-- query
SELECT * FROM test WHERE a < 10;
-- nearest-neighbor search: find the ten entries closest to "42"
SELECT *, a <-> 42 AS dist FROM test ORDER BY a <-> 42 LIMIT 10;

Use an exclusion constraint to enforce the rule that a cage at a zoo can contain only one kind of animal:

=> CREATE TABLE zoo (
cage INTEGER,
animal TEXT,
EXCLUDE USING gist (cage WITH =, animal WITH <>)

);

=> INSERT INTO zoo VALUES(123, ’zebra’);
INSERT 0 1
=> INSERT INTO zoo VALUES(123, ’zebra’);
INSERT 0 1
=> INSERT INTO zoo VALUES(123, ’lion’);
ERROR: conflicting key value violates exclusion constraint "zoo_cage_animal_excl"
DETAIL: Key (cage, animal)=(123, lion) conflicts with existing key (cage, animal)=(123, zebra).
=> INSERT INTO zoo VALUES(124, ’lion’);
INSERT 0 1

2612

Appendix F. Additional Supplied Modules

F.5.2. Authors
Teodor Sigaev (<teodor@stack.net>) , Oleg Bartunov (<oleg@sai.msu.su>), and Janko Richter
(<jankorichter@yahoo.de>). See http://www.sai.msu.su/~megera/postgres/gist/ for additional infor-
mation.

F.6. chkpass
This module implements a data type chkpass that is designed for storing encrypted passwords. Each
password is automatically converted to encrypted form upon entry, and is always stored encrypted. To
compare, simply compare against a clear text password and the comparison function will encrypt it before
comparing.

There are provisions in the code to report an error if the password is determined to be easily crackable.
However, this is currently just a stub that does nothing.

If you precede an input string with a colon, it is assumed to be an already-encrypted password, and is
stored without further encryption. This allows entry of previously-encrypted passwords.

On output, a colon is prepended. This makes it possible to dump and reload passwords without re-
encrypting them. If you want the encrypted password without the colon then use the raw() function.
This allows you to use the type with things like Apache’s Auth_PostgreSQL module.

The encryption uses the standard Unix function crypt(), and so it suffers from all the usual limitations
of that function; notably that only the first eight characters of a password are considered.

Note that the chkpass data type is not indexable.

Sample usage:

test=# create table test (p chkpass);
CREATE TABLE
test=# insert into test values (’hello’);
INSERT 0 1
test=# select * from test;

p

:dVGkpXdOrE3ko

(1 row)

test=# select raw(p) from test;
raw

dVGkpXdOrE3ko

(1 row)

test=# select p = ’hello’ from test;
?column?

t

(1 row)

2613

Appendix F. Additional Supplied Modules

test=# select p = ’goodbye’ from test;
?column?

f

(1 row)

F.6.1. Author
D’Arcy J.M. Cain (<darcy@druid.net>)

F.7. citext
The citext module provides a case-insensitive character string type, citext. Essentially, it internally
calls lower when comparing values. Otherwise, it behaves almost exactly like text.

F.7.1. Rationale
The standard approach to doing case-insensitive matches in PostgreSQL has been to use the lower func-
tion when comparing values, for example

SELECT * FROM tab WHERE lower(col) = LOWER(?);

This works reasonably well, but has a number of drawbacks:

• It makes your SQL statements verbose, and you always have to remember to use lower on both the
column and the query value.

• It won’t use an index, unless you create a functional index using lower.

• If you declare a column as UNIQUE or PRIMARY KEY, the implicitly generated index is case-sensitive.
So it’s useless for case-insensitive searches, and it won’t enforce uniqueness case-insensitively.

The citext data type allows you to eliminate calls to lower in SQL queries, and allows a primary key
to be case-insensitive. citext is locale-aware, just like text, which means that the matching of upper
case and lower case characters is dependent on the rules of the database’s LC_CTYPE setting. Again, this
behavior is identical to the use of lower in queries. But because it’s done transparently by the data type,
you don’t have to remember to do anything special in your queries.

F.7.2. How to Use It
Here’s a simple example of usage:

CREATE TABLE users (
nick CITEXT PRIMARY KEY,
pass TEXT NOT NULL

2614

Appendix F. Additional Supplied Modules

);

INSERT INTO users VALUES (’larry’, md5(random()::text));
INSERT INTO users VALUES (’Tom’, md5(random()::text));
INSERT INTO users VALUES (’Damian’, md5(random()::text));
INSERT INTO users VALUES (’NEAL’, md5(random()::text));
INSERT INTO users VALUES (’Bjørn’, md5(random()::text));

SELECT * FROM users WHERE nick = ’Larry’;

The SELECT statement will return one tuple, even though the nick column was set to larry and the
query was for Larry.

F.7.3. String Comparison Behavior
citext performs comparisons by converting each string to lower case (as though lower were called) and
then comparing the results normally. Thus, for example, two strings are considered equal if lower would
produce identical results for them.

In order to emulate a case-insensitive collation as closely as possible, there are citext-specific versions of
a number of string-processing operators and functions. So, for example, the regular expression operators ~
and ~* exhibit the same behavior when applied to citext: they both match case-insensitively. The same
is true for !~ and !~*, as well as for the LIKE operators ~~ and ~~*, and !~~ and !~~*. If you’d like to
match case-sensitively, you can cast the operator’s arguments to text.

Similarly, all of the following functions perform matching case-insensitively if their arguments are
citext:

• regexp_replace()

• regexp_split_to_array()

• regexp_split_to_table()

• replace()

• split_part()

• strpos()

• translate()

For the regexp functions, if you want to match case-sensitively, you can specify the “c” flag to force a
case-sensitive match. Otherwise, you must cast to text before using one of these functions if you want
case-sensitive behavior.

F.7.4. Limitations

• citext’s case-folding behavior depends on the LC_CTYPE setting of your database. How it compares
values is therefore determined when the database is created. It is not truly case-insensitive in the terms
defined by the Unicode standard. Effectively, what this means is that, as long as you’re happy with your

2615

Appendix F. Additional Supplied Modules

collation, you should be happy with citext’s comparisons. But if you have data in different languages
stored in your database, users of one language may find their query results are not as expected if the
collation is for another language.

• As of PostgreSQL 9.1, you can attach a COLLATE specification to citext columns or data values.
Currently, citext operators will honor a non-default COLLATE specification while comparing case-
folded strings, but the initial folding to lower case is always done according to the database’s LC_CTYPE
setting (that is, as though COLLATE "default" were given). This may be changed in a future release
so that both steps follow the input COLLATE specification.

• citext is not as efficient as text because the operator functions and the B-tree comparison functions
must make copies of the data and convert it to lower case for comparisons. It is, however, slightly more
efficient than using lower to get case-insensitive matching.

• citext doesn’t help much if you need data to compare case-sensitively in some contexts and case-
insensitively in other contexts. The standard answer is to use the text type and manually use the
lower function when you need to compare case-insensitively; this works all right if case-insensitive
comparison is needed only infrequently. If you need case-insensitive behavior most of the time and
case-sensitive infrequently, consider storing the data as citext and explicitly casting the column to
text when you want case-sensitive comparison. In either situation, you will need two indexes if you
want both types of searches to be fast.

• The schema containing the citext operators must be in the current search_path (typically public);
if it is not, the normal case-sensitive text operators will be invoked instead.

F.7.5. Author
David E. Wheeler <david@kineticode.com>

Inspired by the original citext module by Donald Fraser.

F.8. cube
This module implements a data type cube for representing multidimensional cubes.

F.8.1. Syntax
Table F-1 shows the valid external representations for the cube type. x, y, etc. denote floating-point
numbers.

Table F-1. Cube External Representations

x A one-dimensional point (or, zero-length
one-dimensional interval)

(x) Same as above

2616

Appendix F. Additional Supplied Modules

x1,x2,...,xn A point in n-dimensional space, represented
internally as a zero-volume cube

(x1,x2,...,xn) Same as above

(x),(y) A one-dimensional interval starting at x and
ending at y or vice versa; the order does not matter

[(x),(y)] Same as above

(x1,...,xn),(y1,...,yn) An n-dimensional cube represented by a pair of its
diagonally opposite corners

[(x1,...,xn),(y1,...,yn)] Same as above

It does not matter which order the opposite corners of a cube are entered in. The cube functions automat-
ically swap values if needed to create a uniform “lower left — upper right” internal representation.

White space is ignored, so [(x),(y)] is the same as [(x), (y)].

F.8.2. Precision
Values are stored internally as 64-bit floating point numbers. This means that numbers with more than
about 16 significant digits will be truncated.

F.8.3. Usage
The cube module includes a GiST index operator class for cube values. The operators supported by the
GiST operator class are shown in Table F-2.

Table F-2. Cube GiST Operators

Operator Description
a = b The cubes a and b are identical.

a && b The cubes a and b overlap.

a @> b The cube a contains the cube b.

a <@ b The cube a is contained in the cube b.

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names are
reversed from the convention formerly followed by the core geometric data types!)

The standard B-tree operators are also provided, for example

Operator Description
[a, b] < [c, d] Less than

[a, b] > [c, d] Greater than

2617

Appendix F. Additional Supplied Modules

These operators do not make a lot of sense for any practical purpose but sorting. These operators first
compare (a) to (c), and if these are equal, compare (b) to (d). That results in reasonably good sorting in
most cases, which is useful if you want to use ORDER BY with this type.

Table F-3 shows the available functions.

Table F-3. Cube Functions

cube(float8) returns cube Makes a one dimensional cube with both
coordinates the same. cube(1) == ’(1)’

cube(float8, float8) returns cube Makes a one dimensional cube. cube(1,2) ==

’(1),(2)’

cube(float8[]) returns cube Makes a zero-volume cube using the coordinates
defined by the array. cube(ARRAY[1,2]) ==

’(1,2)’

cube(float8[], float8[]) returns cube Makes a cube with upper right and lower left
coordinates as defined by the two arrays, which
must be of the same length.
cube(’{1,2}’::float[],

’{3,4}’::float[]) == ’(1,2),(3,4)’

cube(cube, float8) returns cube Makes a new cube by adding a dimension on to an
existing cube with the same values for both parts
of the new coordinate. This is useful for building
cubes piece by piece from calculated values.
cube(’(1)’,2) == ’(1,2),(1,2)’

cube(cube, float8, float8) returns

cube

Makes a new cube by adding a dimension on to an
existing cube. This is useful for building cubes
piece by piece from calculated values.
cube(’(1,2)’,3,4) == ’(1,3),(2,4)’

cube_dim(cube) returns int Returns the number of dimensions of the cube

cube_ll_coord(cube, int) returns

double

Returns the n’th coordinate value for the lower left
corner of a cube

cube_ur_coord(cube, int) returns

double

Returns the n’th coordinate value for the upper
right corner of a cube

cube_is_point(cube) returns bool Returns true if a cube is a point, that is, the two
defining corners are the same.

cube_distance(cube, cube) returns

double

Returns the distance between two cubes. If both
cubes are points, this is the normal distance
function.

2618

Appendix F. Additional Supplied Modules

cube_subset(cube, int[]) returns cube Makes a new cube from an existing cube, using a
list of dimension indexes from an array. Can be
used to find both the LL and UR coordinates of a
single dimension, e.g.
cube_subset(cube(’(1,3,5),(6,7,8)’),

ARRAY[2]) = ’(3),(7)’. Or can be used to
drop dimensions, or reorder them as desired, e.g.
cube_subset(cube(’(1,3,5),(6,7,8)’),

ARRAY[3,2,1,1]) = ’(5, 3, 1, 1),(8,

7, 6, 6)’.

cube_union(cube, cube) returns cube Produces the union of two cubes

cube_inter(cube, cube) returns cube Produces the intersection of two cubes

cube_enlarge(cube c, double r, int n)

returns cube

Increases the size of a cube by a specified radius in
at least n dimensions. If the radius is negative the
cube is shrunk instead. This is useful for creating
bounding boxes around a point for searching for
nearby points. All defined dimensions are changed
by the radius r. LL coordinates are decreased by r
and UR coordinates are increased by r. If a LL
coordinate is increased to larger than the
corresponding UR coordinate (this can only
happen when r < 0) than both coordinates are set
to their average. If n is greater than the number of
defined dimensions and the cube is being increased
(r >= 0) then 0 is used as the base for the extra
coordinates.

F.8.4. Defaults
I believe this union:

select cube_union(’(0,5,2),(2,3,1)’, ’0’);
cube_union

(0, 0, 0),(2, 5, 2)
(1 row)

does not contradict common sense, neither does the intersection

select cube_inter(’(0,-1),(1,1)’, ’(-2),(2)’);
cube_inter

(0, 0),(1, 0)
(1 row)

2619

Appendix F. Additional Supplied Modules

In all binary operations on differently-dimensioned cubes, I assume the lower-dimensional one to be a
Cartesian projection, i. e., having zeroes in place of coordinates omitted in the string representation. The
above examples are equivalent to:

cube_union(’(0,5,2),(2,3,1)’,’(0,0,0),(0,0,0)’);
cube_inter(’(0,-1),(1,1)’,’(-2,0),(2,0)’);

The following containment predicate uses the point syntax, while in fact the second argument is internally
represented by a box. This syntax makes it unnecessary to define a separate point type and functions for
(box,point) predicates.

select cube_contains(’(0,0),(1,1)’, ’0.5,0.5’);
cube_contains

t
(1 row)

F.8.5. Notes
For examples of usage, see the regression test sql/cube.sql.

To make it harder for people to break things, there is a limit of 100 on the number of dimensions of cubes.
This is set in cubedata.h if you need something bigger.

F.8.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science Di-
vision, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (http://db.cs.berkeley.edu/jmh/) for
elucidating the gist of the GiST (http://gist.cs.berkeley.edu/), and to his former student,
Andy Dong (http://best.me.berkeley.edu/~adong/), for his example written for Illustra,
http://best.berkeley.edu/~adong/rtree/index.html. I am also grateful to all Postgres developers, present
and past, for enabling myself to create my own world and live undisturbed in it. And I would like to
acknowledge my gratitude to Argonne Lab and to the U.S. Department of Energy for the years of faithful
support of my database research.

Minor updates to this package were made by Bruno Wolff III <bruno@wolff.to> in August/September
of 2002. These include changing the precision from single precision to double precision and adding some
new functions.

Additional updates were made by Joshua Reich <josh@root.net> in July 2006. These include
cube(float8[], float8[]) and cleaning up the code to use the V1 call protocol instead of the
deprecated V0 protocol.

2620

F.9. dblink
dblink is a module which supports connections to other PostgreSQL databases from within a database
session.

dblink_connect

Name
dblink_connect — opens a persistent connection to a remote database

Synopsis
dblink_connect(text connstr) returns text
dblink_connect(text connname, text connstr) returns text

Description
dblink_connect() establishes a connection to a remote PostgreSQL database. The server and database
to be contacted are identified through a standard libpq connection string. Optionally, a name can be as-
signed to the connection. Multiple named connections can be open at once, but only one unnamed con-
nection is permitted at a time. The connection will persist until closed or until the database session is
ended.

The connection string may also be the name of an existing foreign server. It is recommended to use the
postgresql_fdw_validator when defining the corresponding foreign-data wrapper. See the example
below, as well as the following: CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE
USER MAPPING

Arguments

conname

The name to use for this connection; if omitted, an unnamed connection is opened, replacing any
existing unnamed connection.

connstr

libpq-style connection info string, for example hostaddr=127.0.0.1 port=5432

dbname=mydb user=postgres password=mypasswd. For details see PQconnectdb in Section
31.1.

2621

dblink_connect

Return Value
Returns status, which is always OK (since any error causes the function to throw an error instead of return-
ing).

Notes
Only superusers may use dblink_connect to create non-password-authenticated connections. If non-
superusers need this capability, use dblink_connect_u instead.

It is unwise to choose connection names that contain equal signs, as this opens a risk of confusion with
connection info strings in other dblink functions.

Examples
SELECT dblink_connect(’dbname=postgres’);
dblink_connect

OK

(1 row)

SELECT dblink_connect(’myconn’, ’dbname=postgres’);
dblink_connect

OK

(1 row)

-- FOREIGN DATA WRAPPER functionality
-- Note: local connection must require password authentication for this to work properly
-- Otherwise, you will receive the following error from dblink_connect():
-- --
-- ERROR: password is required
-- DETAIL: Non-superuser cannot connect if the server does not request a password.
-- HINT: Target server’s authentication method must be changed.
CREATE USER dblink_regression_test WITH PASSWORD ’secret’;
CREATE FOREIGN DATA WRAPPER postgresql VALIDATOR postgresql_fdw_validator;
CREATE SERVER fdtest FOREIGN DATA WRAPPER postgresql OPTIONS (hostaddr ’127.0.0.1’, dbname ’contrib_regression’);

CREATE USER MAPPING FOR dblink_regression_test SERVER fdtest OPTIONS (user ’dblink_regression_test’, password ’secret’);
GRANT USAGE ON FOREIGN SERVER fdtest TO dblink_regression_test;
GRANT SELECT ON TABLE foo TO dblink_regression_test;

\set ORIGINAL_USER :USER
\c - dblink_regression_test
SELECT dblink_connect(’myconn’, ’fdtest’);
dblink_connect

OK

(1 row)

2622

dblink_connect

SELECT * FROM dblink(’myconn’,’SELECT * FROM foo’) AS t(a int, b text, c text[]);
a | b | c
----+---+---------------
0 | a | {a0,b0,c0}
1 | b | {a1,b1,c1}
2 | c | {a2,b2,c2}
3 | d | {a3,b3,c3}
4 | e | {a4,b4,c4}
5 | f | {a5,b5,c5}
6 | g | {a6,b6,c6}
7 | h | {a7,b7,c7}
8 | i | {a8,b8,c8}
9 | j | {a9,b9,c9}

10 | k | {a10,b10,c10}
(11 rows)

\c - :ORIGINAL_USER
REVOKE USAGE ON FOREIGN SERVER fdtest FROM dblink_regression_test;
REVOKE SELECT ON TABLE foo FROM dblink_regression_test;
DROP USER MAPPING FOR dblink_regression_test SERVER fdtest;
DROP USER dblink_regression_test;
DROP SERVER fdtest;
DROP FOREIGN DATA WRAPPER postgresql;

2623

dblink_connect_u

Name
dblink_connect_u — opens a persistent connection to a remote database, insecurely

Synopsis
dblink_connect_u(text connstr) returns text
dblink_connect_u(text connname, text connstr) returns text

Description
dblink_connect_u() is identical to dblink_connect(), except that it will allow non-superusers to
connect using any authentication method.

If the remote server selects an authentication method that does not involve a password, then impersonation
and subsequent escalation of privileges can occur, because the session will appear to have originated
from the user as which the local PostgreSQL server runs. Also, even if the remote server does demand a
password, it is possible for the password to be supplied from the server environment, such as a ~/.pgpass
file belonging to the server’s user. This opens not only a risk of impersonation, but the possibility of
exposing a password to an untrustworthy remote server. Therefore, dblink_connect_u() is initially
installed with all privileges revoked from PUBLIC, making it un-callable except by superusers. In some
situations it may be appropriate to grant EXECUTE permission for dblink_connect_u() to specific
users who are considered trustworthy, but this should be done with care. It is also recommended that any
~/.pgpass file belonging to the server’s user not contain any records specifying a wildcard host name.

For further details see dblink_connect().

2624

dblink_disconnect

Name
dblink_disconnect — closes a persistent connection to a remote database

Synopsis
dblink_disconnect() returns text
dblink_disconnect(text connname) returns text

Description
dblink_disconnect() closes a connection previously opened by dblink_connect(). The form with
no arguments closes an unnamed connection.

Arguments

conname

The name of a named connection to be closed.

Return Value
Returns status, which is always OK (since any error causes the function to throw an error instead of return-
ing).

Examples
SELECT dblink_disconnect();
dblink_disconnect

OK

(1 row)

SELECT dblink_disconnect(’myconn’);
dblink_disconnect

OK

(1 row)

2625

dblink

Name
dblink — executes a query in a remote database

Synopsis
dblink(text connname, text sql [, bool fail_on_error]) returns setof record
dblink(text connstr, text sql [, bool fail_on_error]) returns setof record
dblink(text sql [, bool fail_on_error]) returns setof record

Description
dblink executes a query (usually a SELECT, but it can be any SQL statement that returns rows) in a
remote database.

When two text arguments are given, the first one is first looked up as a persistent connection’s name;
if found, the command is executed on that connection. If not found, the first argument is treated as a
connection info string as for dblink_connect, and the indicated connection is made just for the duration
of this command.

Arguments

conname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL query that you wish to execute in the remote database, for example select * from foo.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function returns no rows.

Return Value
The function returns the row(s) produced by the query. Since dblink can be used with any query, it is
declared to return record, rather than specifying any particular set of columns. This means that you must

2626

dblink

specify the expected set of columns in the calling query — otherwise PostgreSQL would not know what
to expect. Here is an example:

SELECT *
FROM dblink(’dbname=mydb’, ’select proname, prosrc from pg_proc’)
AS t1(proname name, prosrc text)

WHERE proname LIKE ’bytea%’;

The “alias” part of the FROM clause must specify the column names and types that the function will return.
(Specifying column names in an alias is actually standard SQL syntax, but specifying column types is a
PostgreSQL extension.) This allows the system to understand what * should expand to, and what proname
in the WHERE clause refers to, in advance of trying to execute the function. At run time, an error will be
thrown if the actual query result from the remote database does not have the same number of columns
shown in the FROM clause. The column names need not match, however, and dblink does not insist on
exact type matches either. It will succeed so long as the returned data strings are valid input for the column
type declared in the FROM clause.

Notes
A convenient way to use dblink with predetermined queries is to create a view. This allows the column
type information to be buried in the view, instead of having to spell it out in every query. For example,

CREATE VIEW myremote_pg_proc AS
SELECT *
FROM dblink(’dbname=postgres’, ’select proname, prosrc from pg_proc’)
AS t1(proname name, prosrc text);

SELECT * FROM myremote_pg_proc WHERE proname LIKE ’bytea%’;

Examples
SELECT * FROM dblink(’dbname=postgres’, ’select proname, prosrc from pg_proc’)
AS t1(proname name, prosrc text) WHERE proname LIKE ’bytea%’;
proname | prosrc

------------+------------
byteacat | byteacat
byteaeq | byteaeq
bytealt | bytealt
byteale | byteale
byteagt | byteagt
byteage | byteage
byteane | byteane
byteacmp | byteacmp
bytealike | bytealike
byteanlike | byteanlike
byteain | byteain
byteaout | byteaout

2627

dblink

(12 rows)

SELECT dblink_connect(’dbname=postgres’);
dblink_connect

OK

(1 row)

SELECT * FROM dblink(’select proname, prosrc from pg_proc’)
AS t1(proname name, prosrc text) WHERE proname LIKE ’bytea%’;
proname | prosrc

------------+------------
byteacat | byteacat
byteaeq | byteaeq
bytealt | bytealt
byteale | byteale
byteagt | byteagt
byteage | byteage
byteane | byteane
byteacmp | byteacmp
bytealike | bytealike
byteanlike | byteanlike
byteain | byteain
byteaout | byteaout

(12 rows)

SELECT dblink_connect(’myconn’, ’dbname=regression’);
dblink_connect

OK

(1 row)

SELECT * FROM dblink(’myconn’, ’select proname, prosrc from pg_proc’)
AS t1(proname name, prosrc text) WHERE proname LIKE ’bytea%’;
proname | prosrc

------------+------------
bytearecv | bytearecv
byteasend | byteasend
byteale | byteale
byteagt | byteagt
byteage | byteage
byteane | byteane
byteacmp | byteacmp
bytealike | bytealike
byteanlike | byteanlike
byteacat | byteacat
byteaeq | byteaeq
bytealt | bytealt
byteain | byteain
byteaout | byteaout

(14 rows)

2628

dblink_exec

Name
dblink_exec — executes a command in a remote database

Synopsis
dblink_exec(text connname, text sql [, bool fail_on_error]) returns text
dblink_exec(text connstr, text sql [, bool fail_on_error]) returns text
dblink_exec(text sql [, bool fail_on_error]) returns text

Description
dblink_exec executes a command (that is, any SQL statement that doesn’t return rows) in a remote
database.

When two text arguments are given, the first one is first looked up as a persistent connection’s name;
if found, the command is executed on that connection. If not found, the first argument is treated as a
connection info string as for dblink_connect, and the indicated connection is made just for the duration
of this command.

Arguments

conname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL command that you wish to execute in the remote database, for example insert into

foo values(0,’a’,’{"a0","b0","c0"}’).

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function’s return value is set to ERROR.

Return Value
Returns status, either the command’s status string or ERROR.

2629

dblink_exec

Examples
SELECT dblink_connect(’dbname=dblink_test_standby’);
dblink_connect

OK

(1 row)

SELECT dblink_exec(’insert into foo values(21,”z”,”{"a0","b0","c0"}”);’);
dblink_exec

INSERT 943366 1

(1 row)

SELECT dblink_connect(’myconn’, ’dbname=regression’);
dblink_connect

OK

(1 row)

SELECT dblink_exec(’myconn’, ’insert into foo values(21,”z”,”{"a0","b0","c0"}”);’);
dblink_exec

INSERT 6432584 1

(1 row)

SELECT dblink_exec(’myconn’, ’insert into pg_class values (”foo”)’,false);
NOTICE: sql error
DETAIL: ERROR: null value in column "relnamespace" violates not-null constraint

dblink_exec

ERROR

(1 row)

2630

dblink_open

Name
dblink_open — opens a cursor in a remote database

Synopsis
dblink_open(text cursorname, text sql [, bool fail_on_error]) returns text
dblink_open(text connname, text cursorname, text sql [, bool fail_on_error]) returns text

Description
dblink_open() opens a cursor in a remote database. The cursor can subsequently be manipulated with
dblink_fetch() and dblink_close().

Arguments

conname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name to assign to this cursor.

sql

The SELECT statement that you wish to execute in the remote database, for example select *
from pg_class.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function’s return value is set to ERROR.

Return Value
Returns status, either OK or ERROR.

Notes
Since a cursor can only persist within a transaction, dblink_open starts an explicit transaction block
(BEGIN) on the remote side, if the remote side was not already within a transaction. This transaction will
be closed again when the matching dblink_close is executed. Note that if you use dblink_exec

2631

dblink_open

to change data between dblink_open and dblink_close, and then an error occurs or you use
dblink_disconnect before dblink_close, your change will be lost because the transaction will be
aborted.

Examples
SELECT dblink_connect(’dbname=postgres’);
dblink_connect

OK

(1 row)

SELECT dblink_open(’foo’, ’select proname, prosrc from pg_proc’);
dblink_open

OK

(1 row)

2632

dblink_fetch

Name
dblink_fetch — returns rows from an open cursor in a remote database

Synopsis
dblink_fetch(text cursorname, int howmany [, bool fail_on_error]) returns setof record
dblink_fetch(text connname, text cursorname, int howmany [, bool fail_on_error]) returns setof record

Description
dblink_fetch fetches rows from a cursor previously established by dblink_open.

Arguments

conname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to fetch from.

howmany

The maximum number of rows to retrieve. The next howmany rows are fetched, starting at the current
cursor position, moving forward. Once the cursor has reached its end, no more rows are produced.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function returns no rows.

Return Value
The function returns the row(s) fetched from the cursor. To use this function, you will need to specify the
expected set of columns, as previously discussed for dblink.

Notes
On a mismatch between the number of return columns specified in the FROM clause, and the actual number
of columns returned by the remote cursor, an error will be thrown. In this event, the remote cursor is still

2633

dblink_fetch

advanced by as many rows as it would have been if the error had not occurred. The same is true for any
other error occurring in the local query after the remote FETCH has been done.

Examples
SELECT dblink_connect(’dbname=postgres’);
dblink_connect

OK

(1 row)

SELECT dblink_open(’foo’, ’select proname, prosrc from pg_proc where proname like ”bytea%”’);
dblink_open

OK

(1 row)

SELECT * FROM dblink_fetch(’foo’, 5) AS (funcname name, source text);
funcname | source

----------+----------
byteacat | byteacat
byteacmp | byteacmp
byteaeq | byteaeq
byteage | byteage
byteagt | byteagt

(5 rows)

SELECT * FROM dblink_fetch(’foo’, 5) AS (funcname name, source text);
funcname | source

-----------+-----------
byteain | byteain
byteale | byteale
bytealike | bytealike
bytealt | bytealt
byteane | byteane

(5 rows)

SELECT * FROM dblink_fetch(’foo’, 5) AS (funcname name, source text);
funcname | source

------------+------------
byteanlike | byteanlike
byteaout | byteaout

(2 rows)

SELECT * FROM dblink_fetch(’foo’, 5) AS (funcname name, source text);
funcname | source

----------+--------
(0 rows)

2634

dblink_close

Name
dblink_close — closes a cursor in a remote database

Synopsis
dblink_close(text cursorname [, bool fail_on_error]) returns text
dblink_close(text connname, text cursorname [, bool fail_on_error]) returns text

Description
dblink_close closes a cursor previously opened with dblink_open.

Arguments

conname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to close.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function’s return value is set to ERROR.

Return Value
Returns status, either OK or ERROR.

Notes
If dblink_open started an explicit transaction block, and this is the last remaining open cursor in this
connection, dblink_close will issue the matching COMMIT.

Examples
SELECT dblink_connect(’dbname=postgres’);
dblink_connect

2635

dblink_close

OK

(1 row)

SELECT dblink_open(’foo’, ’select proname, prosrc from pg_proc’);
dblink_open

OK

(1 row)

SELECT dblink_close(’foo’);
dblink_close

OK

(1 row)

2636

dblink_get_connections

Name
dblink_get_connections — returns the names of all open named dblink connections

Synopsis
dblink_get_connections() returns text[]

Description
dblink_get_connections returns an array of the names of all open named dblink connections.

Return Value
Returns a text array of connection names, or NULL if none.

Examples
SELECT dblink_get_connections();

2637

dblink_error_message

Name
dblink_error_message — gets last error message on the named connection

Synopsis
dblink_error_message(text connname) returns text

Description
dblink_error_message fetches the most recent remote error message for a given connection.

Arguments

conname

Name of the connection to use.

Return Value
Returns last error message, or an empty string if there has been no error in this connection.

Examples
SELECT dblink_error_message(’dtest1’);

2638

dblink_send_query

Name
dblink_send_query — sends an async query to a remote database

Synopsis
dblink_send_query(text connname, text sql) returns int

Description
dblink_send_query sends a query to be executed asynchronously, that is, without immediately waiting
for the result. There must not be an async query already in progress on the connection.

After successfully dispatching an async query, completion status can be checked with dblink_is_busy,
and the results are ultimately collected with dblink_get_result. It is also possible to attempt to cancel
an active async query using dblink_cancel_query.

Arguments

conname

Name of the connection to use.

sql

The SQL statement that you wish to execute in the remote database, for example select * from

pg_class.

Return Value
Returns 1 if the query was successfully dispatched, 0 otherwise.

Examples
SELECT dblink_send_query(’dtest1’, ’SELECT * FROM foo WHERE f1 < 3’);

2639

dblink_is_busy

Name
dblink_is_busy — checks if connection is busy with an async query

Synopsis
dblink_is_busy(text connname) returns int

Description
dblink_is_busy tests whether an async query is in progress.

Arguments

conname

Name of the connection to check.

Return Value
Returns 1 if connection is busy, 0 if it is not busy. If this function returns 0, it is guaranteed that
dblink_get_result will not block.

Examples
SELECT dblink_is_busy(’dtest1’);

2640

dblink_get_notify

Name
dblink_get_notify — retrieve async notifications on a connection

Synopsis
dblink_get_notify() returns setof (notify_name text, be_pid int, extra text)
dblink_get_notify(text connname) returns setof (notify_name text, be_pid int, extra text)

Description
dblink_get_notify retrieves notifications on either the unnamed connection, or on a named connection
if specified. To receive notifications via dblink, LISTEN must first be issued, using dblink_exec. For
details see LISTEN and NOTIFY.

Arguments

conname

The name of a named connection to get notifications on.

Return Value
Returns setof (notify_name text, be_pid int, extra text), or an empty set if none.

Examples
SELECT dblink_exec(’LISTEN virtual’);
dblink_exec

LISTEN

(1 row)

SELECT * FROM dblink_get_notify();
notify_name | be_pid | extra

-------------+--------+-------
(0 rows)

NOTIFY virtual;
NOTIFY

2641

dblink_get_notify

SELECT * FROM dblink_get_notify();
notify_name | be_pid | extra

-------------+--------+-------
virtual | 1229 |

(1 row)

2642

dblink_get_result

Name
dblink_get_result — gets an async query result

Synopsis
dblink_get_result(text connname [, bool fail_on_error]) returns setof record

Description
dblink_get_result collects the results of an asynchronous query previously sent with
dblink_send_query. If the query is not already completed, dblink_get_result will wait until it is.

Arguments

conname

Name of the connection to use.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function returns no rows.

Return Value
For an async query (that is, a SQL statement returning rows), the function returns the row(s) produced
by the query. To use this function, you will need to specify the expected set of columns, as previously
discussed for dblink.

For an async command (that is, a SQL statement not returning rows), the function returns a single row
with a single text column containing the command’s status string. It is still necessary to specify that the
result will have a single text column in the calling FROM clause.

Notes
This function must be called if dblink_send_query returned 1. It must be called once for each query
sent, and one additional time to obtain an empty set result, before the connection can be used again.

When using dblink_send_query and dblink_get_result, dblink fetches the entire remote query
result before returning any of it to the local query processor. If the query returns a large number of rows,
this can result in transient memory bloat in the local session. It may be better to open such a query as a

2643

dblink_get_result

cursor with dblink_open and then fetch a manageable number of rows at a time. Alternatively, use plain
dblink(), which avoids memory bloat by spooling large result sets to disk.

Examples
contrib_regression=# SELECT dblink_connect(’dtest1’, ’dbname=contrib_regression’);
dblink_connect

OK
(1 row)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query(’dtest1’, ’select * from foo where f1 < 3’) AS t1;
t1

1

(1 row)

contrib_regression=# SELECT * FROM dblink_get_result(’dtest1’) AS t1(f1 int, f2 text, f3 text[]);
f1 | f2 | f3

----+----+------------
0 | a | {a0,b0,c0}
1 | b | {a1,b1,c1}
2 | c | {a2,b2,c2}

(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result(’dtest1’) AS t1(f1 int, f2 text, f3 text[]);
f1 | f2 | f3

----+----+----
(0 rows)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query(’dtest1’, ’select * from foo where f1 < 3; select * from foo where f1 > 6’) AS t1;
t1

1

(1 row)

contrib_regression=# SELECT * FROM dblink_get_result(’dtest1’) AS t1(f1 int, f2 text, f3 text[]);
f1 | f2 | f3

----+----+------------
0 | a | {a0,b0,c0}
1 | b | {a1,b1,c1}
2 | c | {a2,b2,c2}

(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result(’dtest1’) AS t1(f1 int, f2 text, f3 text[]);
f1 | f2 | f3

----+----+---------------
7 | h | {a7,b7,c7}
8 | i | {a8,b8,c8}

2644

dblink_get_result

9 | j | {a9,b9,c9}
10 | k | {a10,b10,c10}
(4 rows)

contrib_regression=# SELECT * FROM dblink_get_result(’dtest1’) AS t1(f1 int, f2 text, f3 text[]);
f1 | f2 | f3
----+----+----
(0 rows)

2645

dblink_cancel_query

Name
dblink_cancel_query — cancels any active query on the named connection

Synopsis
dblink_cancel_query(text connname) returns text

Description
dblink_cancel_query attempts to cancel any query that is in progress on the named connection. Note
that this is not certain to succeed (since, for example, the remote query might already have finished). A
cancel request simply improves the odds that the query will fail soon. You must still complete the normal
query protocol, for example by calling dblink_get_result.

Arguments

conname

Name of the connection to use.

Return Value
Returns OK if the cancel request has been sent, or the text of an error message on failure.

Examples
SELECT dblink_cancel_query(’dtest1’);

2646

dblink_get_pkey

Name
dblink_get_pkey — returns the positions and field names of a relation’s primary key fields

Synopsis
dblink_get_pkey(text relname) returns setof dblink_pkey_results

Description
dblink_get_pkey provides information about the primary key of a relation in the local database. This
is sometimes useful in generating queries to be sent to remote databases.

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

Return Value
Returns one row for each primary key field, or no rows if the relation has no primary key. The result row
type is defined as

CREATE TYPE dblink_pkey_results AS (position int, colname text);

The position column simply runs from 1 to N ; it is the number of the field within the primary key, not
the number within the table’s columns.

Examples
CREATE TABLE foobar (

f1 int,
f2 int,
f3 int,
PRIMARY KEY (f1, f2, f3)

);
CREATE TABLE

2647

dblink_get_pkey

SELECT * FROM dblink_get_pkey(’foobar’);
position | colname
----------+---------

1 | f1
2 | f2
3 | f3

(3 rows)

2648

dblink_build_sql_insert

Name
dblink_build_sql_insert — builds an INSERT statement using a local tuple, replacing the
primary key field values with alternative supplied values

Synopsis
dblink_build_sql_insert(text relname,

int2vector primary_key_attnums,
integer num_primary_key_atts,
text[] src_pk_att_vals_array,
text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_insert can be useful in doing selective replication of a local table to a remote
database. It selects a row from the local table based on primary key, and then builds a SQL INSERT

command that will duplicate that row, but with the primary key values replaced by the values in the last
argument. (To make an exact copy of the row, just specify the same values for the last two arguments.)

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting INSERT command. Each field is repre-
sented in text form.

2649

dblink_build_sql_insert

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical col-
umn numbers, corresponding to the column’s position in SELECT * FROM relname. Previous versions
interpreted the numbers as physical column positions. There is a difference if any column(s) to the left of
the indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_insert(’foo’, ’1 2’, 2, ’{"1", "a"}’, ’{"1", "b”a"}’);

dblink_build_sql_insert
--
INSERT INTO foo(f1,f2,f3) VALUES(’1’,’b”a’,’1’)

(1 row)

2650

dblink_build_sql_delete

Name
dblink_build_sql_delete — builds a DELETE statement using supplied values for primary key
field values

Synopsis
dblink_build_sql_delete(text relname,

int2vector primary_key_attnums,
integer num_primary_key_atts,
text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_delete can be useful in doing selective replication of a local table to a remote
database. It builds a SQL DELETE command that will delete the row with the given primary key values.

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

tgt_pk_att_vals_array

Values of the primary key fields to be used in the resulting DELETE command. Each field is repre-
sented in text form.

Return Value
Returns the requested SQL statement as text.

2651

dblink_build_sql_delete

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical col-
umn numbers, corresponding to the column’s position in SELECT * FROM relname. Previous versions
interpreted the numbers as physical column positions. There is a difference if any column(s) to the left of
the indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_delete(’"MyFoo"’, ’1 2’, 2, ’{"1", "b"}’);

dblink_build_sql_delete

DELETE FROM "MyFoo" WHERE f1=’1’ AND f2=’b’

(1 row)

2652

dblink_build_sql_update

Name
dblink_build_sql_update — builds an UPDATE statement using a local tuple, replacing the
primary key field values with alternative supplied values

Synopsis
dblink_build_sql_update(text relname,

int2vector primary_key_attnums,
integer num_primary_key_atts,
text[] src_pk_att_vals_array,
text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_update can be useful in doing selective replication of a local table to a remote
database. It selects a row from the local table based on primary key, and then builds a SQL UPDATE

command that will duplicate that row, but with the primary key values replaced by the values in the last
argument. (To make an exact copy of the row, just specify the same values for the last two arguments.)
The UPDATE command always assigns all fields of the row — the main difference between this and
dblink_build_sql_insert is that it’s assumed that the target row already exists in the remote table.

Arguments

relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name
is mixed-case or contains special characters, for example "FooBar"; without quotes, the string will
be folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting UPDATE command. Each field is repre-
sented in text form.

2653

dblink_build_sql_update

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical col-
umn numbers, corresponding to the column’s position in SELECT * FROM relname. Previous versions
interpreted the numbers as physical column positions. There is a difference if any column(s) to the left of
the indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_update(’foo’, ’1 2’, 2, ’{"1", "a"}’, ’{"1", "b"}’);

dblink_build_sql_update

UPDATE foo SET f1=’1’,f2=’b’,f3=’1’ WHERE f1=’1’ AND f2=’b’

(1 row)

2654

Appendix F. Additional Supplied Modules

F.10. dict_int
dict_int is an example of an add-on dictionary template for full-text search. The motivation for this
example dictionary is to control the indexing of integers (signed and unsigned), allowing such numbers to
be indexed while preventing excessive growth in the number of unique words, which greatly affects the
performance of searching.

F.10.1. Configuration
The dictionary accepts two options:

• The maxlen parameter specifies the maximum number of digits allowed in an integer word. The default
value is 6.

• The rejectlong parameter specifies whether an overlength integer should be truncated or ignored.
If rejectlong is false (the default), the dictionary returns the first maxlen digits of the integer. If
rejectlong is true, the dictionary treats an overlength integer as a stop word, so that it will not be
indexed. Note that this also means that such an integer cannot be searched for.

F.10.2. Usage
Installing the dict_int extension creates a text search template intdict_template and a dictionary
intdict based on it, with the default parameters. You can alter the parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY intdict (MAXLEN = 4, REJECTLONG = true);
ALTER TEXT SEARCH DICTIONARY

or create new dictionaries based on the template.

To test the dictionary, you can try

mydb# select ts_lexize(’intdict’, ’12345678’);
ts_lexize

{123456}

but real-world usage will involve including it in a text search configuration as described in Chapter 12.
That might look like this:

ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR int, uint WITH intdict;

2655

Appendix F. Additional Supplied Modules

F.11. dict_xsyn
dict_xsyn (Extended Synonym Dictionary) is an example of an add-on dictionary template for full-text
search. This dictionary type replaces words with groups of their synonyms, and so makes it possible to
search for a word using any of its synonyms.

F.11.1. Configuration
A dict_xsyn dictionary accepts the following options:

• matchorig controls whether the original word is accepted by the dictionary. Default is true.

• matchsynonyms controls whether the synonyms are accepted by the dictionary. Default is false.

• keeporig controls whether the original word is included in the dictionary’s output. Default is true.

• keepsynonyms controls whether the synonyms are included in the dictionary’s output. Default is true.

• rules is the base name of the file containing the list of synonyms. This file must be stored in
$SHAREDIR/tsearch_data/ (where $SHAREDIR means the PostgreSQL installation’s shared-data
directory). Its name must end in .rules (which is not to be included in the rules parameter).

The rules file has the following format:

• Each line represents a group of synonyms for a single word, which is given first on the line. Synonyms
are separated by whitespace, thus:

word syn1 syn2 syn3

• The sharp (#) sign is a comment delimiter. It may appear at any position in a line. The rest of the line
will be skipped.

Look at xsyn_sample.rules, which is installed in $SHAREDIR/tsearch_data/, for an example.

F.11.2. Usage
Installing the dict_xsyn extension creates a text search template xsyn_template and a dictionary
xsyn based on it, with default parameters. You can alter the parameters, for example

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES=’my_rules’, KEEPORIG=false);
ALTER TEXT SEARCH DICTIONARY

or create new dictionaries based on the template.

To test the dictionary, you can try

mydb=# SELECT ts_lexize(’xsyn’, ’word’);
ts_lexize

{syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES=’my_rules’, KEEPORIG=true);
ALTER TEXT SEARCH DICTIONARY

2656

Appendix F. Additional Supplied Modules

mydb=# SELECT ts_lexize(’xsyn’, ’word’);
ts_lexize

{word,syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES=’my_rules’, KEEPORIG=false, MATCHSYNONYMS=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize(’xsyn’, ’syn1’);
ts_lexize

{syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES=’my_rules’, KEEPORIG=true, MATCHORIG=false, KEEPSYNONYMS=false);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize(’xsyn’, ’syn1’);
ts_lexize

{word}

Real-world usage will involve including it in a text search configuration as described in Chapter 12. That
might look like this:

ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR word, asciiword WITH xsyn, english_stem;

F.12. dummy_seclabel
The dummy_seclabel module exists only to support regression testing of the SECURITY LABEL state-
ment. It is not intended to be used in production.

F.12.1. Rationale
The SECURITY LABEL statement allows the user to assign security labels to database objects; however,
security labels can only be assigned when specifically allowed by a loadable module, so this module is
provided to allow proper regression testing.

Security label providers intended to be used in production will typically be dependent on a platform-
specific feature such as SE-Linux. This module is platform-independent, and therefore better-suited to
regression testing.

2657

Appendix F. Additional Supplied Modules

F.12.2. Usage
Here’s a simple example of usage:

postgresql.conf
shared_preload_libraries = ’dummy_seclabel’

postgres=# CREATE TABLE t (a int, b text);
CREATE TABLE
postgres=# SECURITY LABEL ON TABLE t IS ’classified’;
SECURITY LABEL

The dummy_seclabel module provides only four hardcoded labels: unclassified, classified,
secret, and top secret. It does not allow any other strings as security labels.

These labels are not used to enforce access controls. They are only used to check whether the SECURITY
LABEL statement works as expected, or not.

F.12.3. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

F.13. earthdistance
The earthdistance module provides two different approaches to calculating great circle distances on
the surface of the Earth. The one described first depends on the cube module (which must be installed
before earthdistance can be installed). The second one is based on the built-in point data type, using
longitude and latitude for the coordinates.

In this module, the Earth is assumed to be perfectly spherical. (If that’s too inaccurate for you, you might
want to look at the PostGIS1 project.)

F.13.1. Cube-based Earth Distances
Data is stored in cubes that are points (both corners are the same) using 3 coordinates representing the x,
y, and z distance from the center of the Earth. A domain earth over cube is provided, which includes
constraint checks that the value meets these restrictions and is reasonably close to the actual surface of the
Earth.

The radius of the Earth is obtained from the earth() function. It is given in meters. But by changing this
one function you can change the module to use some other units, or to use a different value of the radius
that you feel is more appropriate.

This package has applications to astronomical databases as well. Astronomers will probably want to
change earth() to return a radius of 180/pi() so that distances are in degrees.

1. http://www.postgis.org/

2658

Appendix F. Additional Supplied Modules

Functions are provided to support input in latitude and longitude (in degrees), to support output of latitude
and longitude, to calculate the great circle distance between two points and to easily specify a bounding
box usable for index searches.

The provided functions are shown in Table F-4.

Table F-4. Cube-based Earthdistance Functions

Function Returns Description
earth() float8 Returns the assumed radius of

the Earth.

sec_to_gc(float8) float8 Converts the normal straight line
(secant) distance between two
points on the surface of the Earth
to the great circle distance
between them.

gc_to_sec(float8) float8 Converts the great circle distance
between two points on the
surface of the Earth to the normal
straight line (secant) distance
between them.

ll_to_earth(float8,

float8)

earth Returns the location of a point on
the surface of the Earth given its
latitude (argument 1) and
longitude (argument 2) in
degrees.

latitude(earth) float8 Returns the latitude in degrees of
a point on the surface of the
Earth.

longitude(earth) float8 Returns the longitude in degrees
of a point on the surface of the
Earth.

earth_distance(earth,

earth)

float8 Returns the great circle distance
between two points on the
surface of the Earth.

earth_box(earth, float8) cube Returns a box suitable for an
indexed search using the cube
@> operator for points within a
given great circle distance of a
location. Some points in this box
are further than the specified
great circle distance from the
location, so a second check using
earth_distance should be
included in the query.

2659

Appendix F. Additional Supplied Modules

F.13.2. Point-based Earth Distances
The second part of the module relies on representing Earth locations as values of type point, in which the
first component is taken to represent longitude in degrees, and the second component is taken to represent
latitude in degrees. Points are taken as (longitude, latitude) and not vice versa because longitude is closer
to the intuitive idea of x-axis and latitude to y-axis.

A single operator is provided, shown in Table F-5.

Table F-5. Point-based Earthdistance Operators

Operator Returns Description
point <@> point float8 Gives the distance in statute

miles between two points on the
Earth’s surface.

Note that unlike the cube-based part of the module, units are hardwired here: changing the earth()

function will not affect the results of this operator.

One disadvantage of the longitude/latitude representation is that you need to be careful about the edge
conditions near the poles and near +/- 180 degrees of longitude. The cube-based representation avoids
these discontinuities.

F.14. file_fdw
The file_fdw module provides the foreign-data wrapper file_fdw, which can be used to access data
files in the server’s file system. Data files must be in a format that can be read by COPY FROM; see COPY
for details.

A foreign table created using this wrapper can have the following options:

filename

Specifies the file to be read. Required. Must be an absolute path name.

format

Specifies the file’s format, the same as COPY’s FORMAT option.

header

Specifies whether the file has a header line, the same as COPY’s HEADER option.

delimiter

Specifies the file’s delimiter character, the same as COPY’s DELIMITER option.

quote

Specifies the file’s quote character, the same as COPY’s QUOTE option.

escape

Specifies the file’s escape character, the same as COPY’s ESCAPE option.

2660

Appendix F. Additional Supplied Modules

null

Specifies the file’s null string, the same as COPY’s NULL option.

encoding

Specifies the file’s encoding, the same as COPY’s ENCODING option.

A column of a foreign table created using this wrapper can have the following options:

force_not_null

This is a Boolean option. If true, it specifies that values of the column should not be matched against
the null string (that is, the file-level null option). This has the same effect as listing the column in
COPY’s FORCE_NOT_NULL option.

COPY’s OIDS and FORCE_QUOTE options are currently not supported by file_fdw.

These options can only be specified for a foreign table or its columns, not in the options of the file_fdw
foreign-data wrapper, nor in the options of a server or user mapping using the wrapper.

Changing table-level options requires superuser privileges, for security reasons: only a superuser should
be able to determine which file is read. In principle non-superusers could be allowed to change the other
options, but that’s not supported at present.

For a foreign table using file_fdw, EXPLAIN shows the name of the file to be read. Unless COSTS OFF

is specified, the file size (in bytes) is shown as well.

Example F-1. Create a Foreign Table for PostgreSQL CSV Logs

One of the obvious uses for the file_fdw is to make the PostgreSQL activity log available as a table for
querying. To do this, first you must be logging to a CSV file, which here we will call pglog.csv. First,
install file_fdw as an extension:

CREATE EXTENSION file_fdw;

Then create a foreign server:
CREATE SERVER pglog FOREIGN DATA WRAPPER file_fdw;

Now you are ready to create the foreign data table. Using the CREATE FOREIGN TABLE command, you
will need to define the columns for the table, the CSV file name, and its format:

CREATE FOREIGN TABLE pglog (
log_time timestamp(3) with time zone,
user_name text,
database_name text,
process_id integer,
connection_from text,
session_id text,
session_line_num bigint,
command_tag text,
session_start_time timestamp with time zone,
virtual_transaction_id text,
transaction_id bigint,
error_severity text,
sql_state_code text,
message text,
detail text,

2661

Appendix F. Additional Supplied Modules

hint text,
internal_query text,
internal_query_pos integer,
context text,
query text,
query_pos integer,
location text,
application_name text

) SERVER pglog
OPTIONS (filename ’/home/josh/9.1/data/pg_log/pglog.csv’, format ’csv’);

That’s it — now you can query your log directly. In production, of course, you would need to define some
way to adjust to log rotation.

F.15. fuzzystrmatch
The fuzzystrmatch module provides several functions to determine similarities and distance between
strings.

Caution
At present, the soundex, metaphone, dmetaphone, and dmetaphone_alt functions
do not work well with multibyte encodings (such as UTF-8).

F.15.1. Soundex
The Soundex system is a method of matching similar-sounding names by converting them to the same
code. It was initially used by the United States Census in 1880, 1900, and 1910. Note that Soundex is not
very useful for non-English names.

The fuzzystrmatch module provides two functions for working with Soundex codes:

soundex(text) returns text
difference(text, text) returns int

The soundex function converts a string to its Soundex code. The difference function converts two
strings to their Soundex codes and then reports the number of matching code positions. Since Soundex
codes have four characters, the result ranges from zero to four, with zero being no match and four being
an exact match. (Thus, the function is misnamed — similarity would have been a better name.)

Here are some usage examples:

SELECT soundex(’hello world!’);

SELECT soundex(’Anne’), soundex(’Ann’), difference(’Anne’, ’Ann’);
SELECT soundex(’Anne’), soundex(’Andrew’), difference(’Anne’, ’Andrew’);
SELECT soundex(’Anne’), soundex(’Margaret’), difference(’Anne’, ’Margaret’);

2662

Appendix F. Additional Supplied Modules

CREATE TABLE s (nm text);

INSERT INTO s VALUES (’john’);
INSERT INTO s VALUES (’joan’);
INSERT INTO s VALUES (’wobbly’);
INSERT INTO s VALUES (’jack’);

SELECT * FROM s WHERE soundex(nm) = soundex(’john’);

SELECT * FROM s WHERE difference(s.nm, ’john’) > 2;

F.15.2. Levenshtein
This function calculates the Levenshtein distance between two strings:

levenshtein(text source, text target, int ins_cost, int del_cost, int sub_cost) returns int
levenshtein(text source, text target) returns int
levenshtein_less_equal(text source, text target, int ins_cost, int del_cost, int sub_cost, int max_d) returns int
levenshtein_less_equal(text source, text target, int max_d) returns int

Both source and target can be any non-null string, with a maximum of 255 bytes. The cost parameters
specify how much to charge for a character insertion, deletion, or substitution, respectively. You can
omit the cost parameters, as in the second version of the function; in that case they all default to 1.
levenshtein_less_equal is accelerated version of levenshtein function for low values of distance. If
actual distance is less or equal then max_d, then levenshtein_less_equal returns accurate value of
it. Otherwise this function returns value which is greater than max_d.

Examples:

test=# SELECT levenshtein(’GUMBO’, ’GAMBOL’);
levenshtein

2

(1 row)

test=# SELECT levenshtein(’GUMBO’, ’GAMBOL’, 2,1,1);
levenshtein

3

(1 row)

test=# SELECT levenshtein_less_equal(’extensive’, ’exhaustive’,2);
levenshtein_less_equal

3

(1 row)

test=# SELECT levenshtein_less_equal(’extensive’, ’exhaustive’,4);
levenshtein_less_equal

4

2663

Appendix F. Additional Supplied Modules

(1 row)

F.15.3. Metaphone
Metaphone, like Soundex, is based on the idea of constructing a representative code for an input string.
Two strings are then deemed similar if they have the same codes.

This function calculates the metaphone code of an input string:

metaphone(text source, int max_output_length) returns text

source has to be a non-null string with a maximum of 255 characters. max_output_length sets the
maximum length of the output metaphone code; if longer, the output is truncated to this length.

Example:

test=# SELECT metaphone(’GUMBO’, 4);
metaphone

KM

(1 row)

F.15.4. Double Metaphone
The Double Metaphone system computes two “sounds like” strings for a given input string — a “primary”
and an “alternate”. In most cases they are the same, but for non-English names especially they can be a
bit different, depending on pronunciation. These functions compute the primary and alternate codes:

dmetaphone(text source) returns text
dmetaphone_alt(text source) returns text

There is no length limit on the input strings.

Example:

test=# select dmetaphone(’gumbo’);
dmetaphone

KMP

(1 row)

F.16. hstore
This module implements the hstore data type for storing sets of key/value pairs within a single Post-
greSQL value. This can be useful in various scenarios, such as rows with many attributes that are rarely
examined, or semi-structured data. Keys and values are simply text strings.

2664

Appendix F. Additional Supplied Modules

F.16.1. hstore External Representation
The text representation of an hstore, used for input and output, includes zero or more key => value

pairs separated by commas. Some examples:

k => v
foo => bar, baz => whatever
"1-a" => "anything at all"

The order of the pairs is not significant (and may not be reproduced on output). Whitespace between pairs
or around the => sign is ignored. Double-quote keys and values that include whitespace, commas, =s or
>s. To include a double quote or a backslash in a key or value, escape it with a backslash.

Each key in an hstore is unique. If you declare an hstore with duplicate keys, only one will be stored
in the hstore and there is no guarantee as to which will be kept:

SELECT ’a=>1,a=>2’::hstore;
hstore

"a"=>"1"

A value (but not a key) can be an SQL NULL. For example:

key => NULL

The NULL keyword is case-insensitive. Double-quote the NULL to treat it as the ordinary string “NULL”.

Note: Keep in mind that the hstore text format, when used for input, applies before any required
quoting or escaping. If you are passing an hstore literal via a parameter, then no additional process-
ing is needed. But if you’re passing it as a quoted literal constant, then any single-quote characters
and (depending on the setting of the standard_conforming_strings configuration parameter) back-
slash characters need to be escaped correctly. See Section 4.1.2.1 for more on the handling of string
constants.

On output, double quotes always surround keys and values, even when it’s not strictly necessary.

F.16.2. hstore Operators and Functions
The operators provided by the hstore module are shown in Table F-6, the functions in Table F-7.

Table F-6. hstore Operators

Operator Description Example Result
hstore -> text get value for key (NULL

if not present)
’a=>x,

b=>y’::hstore ->

’a’

x

2665

Appendix F. Additional Supplied Modules

Operator Description Example Result
hstore -> text[] get values for keys

(NULL if not present)
’a=>x, b=>y,

c=>z’::hstore ->

ARRAY[’c’,’a’]

{"z","x"}

hstore || hstore concatenate hstores ’a=>b,

c=>d’::hstore ||

’c=>x,

d=>q’::hstore

"a"=>"b",

"c"=>"x",

"d"=>"q"

hstore ? text does hstore contain
key?

’a=>1’::hstore ?

’a’

t

hstore ?& text[] does hstore contain all
specified keys?

’a=>1,b=>2’::hstore

?& ARRAY[’a’,’b’]

t

hstore ?| text[] does hstore contain
any of the specified
keys?

’a=>1,b=>2’::hstore

?| ARRAY[’b’,’c’]

t

hstore @> hstore does left operand
contain right?

’a=>b, b=>1,

c=>NULL’::hstore

@> ’b=>1’

t

hstore <@ hstore is left operand contained
in right?

’a=>c’::hstore <@

’a=>b, b=>1,

c=>NULL’

f

hstore - text delete key from left
operand

’a=>1, b=>2,

c=>3’::hstore -

’b’::text

"a"=>"1",

"c"=>"3"

hstore - text[] delete keys from left
operand

’a=>1, b=>2,

c=>3’::hstore -

ARRAY[’a’,’b’]

"c"=>"3"

hstore - hstore delete matching pairs
from left operand

’a=>1, b=>2,

c=>3’::hstore -

’a=>4,

b=>2’::hstore

"a"=>"1",

"c"=>"3"

record #= hstore replace fields in record

with matching values
from hstore

see Examples section

%% hstore convert hstore to array
of alternating keys and
values

%% ’a=>foo,

b=>bar’::hstore

{a,foo,b,bar}

%# hstore convert hstore to
two-dimensional
key/value array

%# ’a=>foo,

b=>bar’::hstore

{{a,foo},{b,bar}}

Note: Prior to PostgreSQL 8.2, the containment operators @> and <@ were called @ and ~, respec-
tively. These names are still available, but are deprecated and will eventually be removed. Notice that
the old names are reversed from the convention formerly followed by the core geometric data types!

2666

Appendix F. Additional Supplied Modules

Table F-7. hstore Functions

Function Return Type Description Example Result
hstore(record) hstore construct an

hstore from a
record or row

hstore(ROW(1,2))f1=>1,f2=>2

hstore(text[]) hstore construct an
hstore from an
array, which may
be either a
key/value array, or
a two-dimensional
array

hstore(ARRAY[’a’,’1’,’b’,’2’])

||

hstore(ARRAY[[’c’,’3’],[’d’,’4’]])

a=>1, b=>2,

c=>3, d=>4

hstore(text[],

text[])

hstore construct an
hstore from
separate key and
value arrays

hstore(ARRAY[’a’,’b’],

ARRAY[’1’,’2’])

"a"=>"1","b"=>"2"

hstore(text,

text)

hstore make single-item
hstore

hstore(’a’,

’b’)

"a"=>"b"

akeys(hstore) text[] get hstore’s keys
as an array

akeys(’a=>1,b=>2’){a,b}

skeys(hstore) setof text get hstore’s keys
as a set

skeys(’a=>1,b=>2’)a b

avals(hstore) text[] get hstore’s
values as an array

avals(’a=>1,b=>2’){1,2}

svals(hstore) setof text get hstore’s
values as a set

svals(’a=>1,b=>2’)1 2

hstore_to_array(hstore)text[] get hstore’s keys
and values as an
array of alternating
keys and values

hstore_to_array(’a=>1,b=>2’){a,1,b,2}

hstore_to_matrix(hstore)text[] get hstore’s keys
and values as a
two-dimensional
array

hstore_to_matrix(’a=>1,b=>2’){{a,1},{b,2}}

slice(hstore,

text[])

hstore extract a subset of
an hstore

slice(’a=>1,b=>2,c=>3’::hstore,

ARRAY[’b’,’c’,’x’])

"b"=>"2",

"c"=>"3"

each(hstore) setof(key

text, value

text)

get hstore’s keys
and values as a set

select * from

each(’a=>1,b=>2’)

key | value

-----+-------

a | 1

b | 2

2667

Appendix F. Additional Supplied Modules

Function Return Type Description Example Result
exist(hstore,text)boolean does hstore

contain key?
exist(’a=>1’,’a’)t

defined(hstore,text)boolean does hstore
contain non-NULL
value for key?

defined(’a=>NULL’,’a’)f

delete(hstore,text)hstore delete pair with
matching key

delete(’a=>1,b=>2’,’b’)"a"=>"1"

delete(hstore,text[])hstore delete pairs with
matching keys

delete(’a=>1,b=>2,c=>3’,ARRAY[’a’,’b’])"c"=>"3"

delete(hstore,hstore)hstore delete pairs
matching those in
the second
argument

delete(’a=>1,b=>2’,’a=>4,b=>2’::hstore)"a"=>"1"

populate_record(record,hstore)record replace fields in
record with
matching values
from hstore

see Examples
section

Note: The function populate_record is actually declared with anyelement, not record, as its first
argument, but it will reject non-record types with a run-time error.

F.16.3. Indexes
hstore has GiST and GIN index support for the @>, ?, ?& and ?| operators. For example:

CREATE INDEX hidx ON testhstore USING GIST (h);

CREATE INDEX hidx ON testhstore USING GIN (h);

hstore also supports btree or hash indexes for the = operator. This allows hstore columns to be
declared UNIQUE, or to be used in GROUP BY, ORDER BY or DISTINCT expressions. The sort ordering for
hstore values is not particularly useful, but these indexes may be useful for equivalence lookups. Create
indexes for = comparisons as follows:

CREATE INDEX hidx ON testhstore USING BTREE (h);

CREATE INDEX hidx ON testhstore USING HASH (h);

2668

Appendix F. Additional Supplied Modules

F.16.4. Examples
Add a key, or update an existing key with a new value:

UPDATE tab SET h = h || hstore(’c’, ’3’);

Delete a key:

UPDATE tab SET h = delete(h, ’k1’);

Convert a record to an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, ’foo’, ’bar’);

SELECT hstore(t) FROM test AS t;
hstore

"col1"=>"123", "col2"=>"foo", "col3"=>"bar"

(1 row)

Convert an hstore to a predefined record type:

CREATE TABLE test (col1 integer, col2 text, col3 text);

SELECT * FROM populate_record(null::test,
’"col1"=>"456", "col2"=>"zzz"’);

col1 | col2 | col3
------+------+------
456 | zzz |

(1 row)

Modify an existing record using the values from an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, ’foo’, ’bar’);

SELECT (r).* FROM (SELECT t #= ’"col3"=>"baz"’ AS r FROM test t) s;
col1 | col2 | col3

------+------+------
123 | foo | baz

(1 row)

2669

Appendix F. Additional Supplied Modules

F.16.5. Statistics
The hstore type, because of its intrinsic liberality, could contain a lot of different keys. Checking for valid
keys is the task of the application. The following examples demonstrate several techniques for checking
keys and obtaining statistics.

Simple example:

SELECT * FROM each(’aaa=>bq, b=>NULL, ""=>1’);

Using a table:

SELECT (each(h)).key, (each(h)).value INTO stat FROM testhstore;

Online statistics:

SELECT key, count(*) FROM
(SELECT (each(h)).key FROM testhstore) AS stat
GROUP BY key
ORDER BY count DESC, key;
key | count

-----------+-------
line | 883
query | 207
pos | 203
node | 202
space | 197
status | 195
public | 194
title | 190
org | 189

...................

F.16.6. Compatibility
As of PostgreSQL 9.0, hstore uses a different internal representation than previous versions. This
presents no obstacle for dump/restore upgrades since the text representation (used in the dump) is un-
changed.

In the event of a binary upgrade, upward compatibility is maintained by having the new code recognize
old-format data. This will entail a slight performance penalty when processing data that has not yet been
modified by the new code. It is possible to force an upgrade of all values in a table column by doing an
UPDATE statement as follows:

UPDATE tablename SET hstorecol = hstorecol || ”;

2670

Appendix F. Additional Supplied Modules

Another way to do it is:

ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || ”;

The ALTER TABLE method requires an exclusive lock on the table, but does not result in bloating the table
with old row versions.

F.16.7. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd., Russia

Additional enhancements by Andrew Gierth <andrew@tao11.riddles.org.uk>, United Kingdom

F.17. intagg
The intagg module provides an integer aggregator and an enumerator. intagg is now obsolete, because
there are built-in functions that provide a superset of its capabilities. However, the module is still provided
as a compatibility wrapper around the built-in functions.

F.17.1. Functions
The aggregator is an aggregate function int_array_aggregate(integer) that produces an integer
array containing exactly the integers it is fed. This is a wrapper around array_agg, which does the same
thing for any array type.

The enumerator is a function int_array_enum(integer[]) that returns setof integer. It is essen-
tially the reverse operation of the aggregator: given an array of integers, expand it into a set of rows. This
is a wrapper around unnest, which does the same thing for any array type.

F.17.2. Sample Uses
Many database systems have the notion of a one to many table. Such a table usually sits between two
indexed tables, for example:

CREATE TABLE left (id INT PRIMARY KEY, ...);
CREATE TABLE right (id INT PRIMARY KEY, ...);
CREATE TABLE one_to_many(left INT REFERENCES left, right INT REFERENCES right);

It is typically used like this:

SELECT right.* from right JOIN one_to_many ON (right.id = one_to_many.right)
WHERE one_to_many.left = item;

This will return all the items in the right hand table for an entry in the left hand table. This is a very
common construct in SQL.

2671

Appendix F. Additional Supplied Modules

Now, this methodology can be cumbersome with a very large number of entries in the one_to_many

table. Often, a join like this would result in an index scan and a fetch for each right hand entry in the table
for a particular left hand entry. If you have a very dynamic system, there is not much you can do. However,
if you have some data which is fairly static, you can create a summary table with the aggregator.

CREATE TABLE summary AS
SELECT left, int_array_aggregate(right) AS right
FROM one_to_many
GROUP BY left;

This will create a table with one row per left item, and an array of right items. Now this is pretty useless
without some way of using the array; that’s why there is an array enumerator. You can do

SELECT left, int_array_enum(right) FROM summary WHERE left = item;

The above query using int_array_enum produces the same results as

SELECT left, right FROM one_to_many WHERE left = item;

The difference is that the query against the summary table has to get only one row from the table, whereas
the direct query against one_to_many must index scan and fetch a row for each entry.

On one system, an EXPLAIN showed a query with a cost of 8488 was reduced to a cost of 329. The original
query was a join involving the one_to_many table, which was replaced by:

SELECT right, count(right) FROM
(SELECT left, int_array_enum(right) AS right
FROM summary JOIN (SELECT left FROM left_table WHERE left = item) AS lefts

ON (summary.left = lefts.left)
) AS list
GROUP BY right
ORDER BY count DESC;

F.18. intarray
The intarray module provides a number of useful functions and operators for manipulating null-free
arrays of integers. There is also support for indexed searches using some of the operators.

All of these operations will throw an error if a supplied array contains any NULL elements.

Many of these operations are only sensible for one-dimensional arrays. Although they will accept input
arrays of more dimensions, the data is treated as though it were a linear array in storage order.

F.18.1. intarray Functions and Operators
The functions provided by the intarray module are shown in Table F-8, the operators in Table F-9.

2672

Appendix F. Additional Supplied Modules

Table F-8. intarray Functions

Function Return Type Description Example Result
icount(int[]) int number of

elements in array
icount(’{1,2,3}’::int[])3

sort(int[],

text dir)

int[] sort array — dir

must be asc or
desc

sort(’{1,2,3}’::int[],

’desc’)

{3,2,1}

sort(int[]) int[] sort in ascending
order

sort(array[11,77,44]){11,44,77}

sort_asc(int[]) int[] sort in ascending
order

sort_desc(int[])int[] sort in descending
order

uniq(int[]) int[] remove adjacent
duplicates

uniq(sort(’{1,2,3,2,1}’::int[])){1,2,3}

idx(int[], int

item)

int index of first
element matching
item (0 if none)

idx(array[11,22,33,22,11],

22)

2

subarray(int[],

int start, int

len)

int[] portion of array
starting at position
start, len
elements

subarray(’{1,2,3,2,1}’::int[],

2, 3)

{2,3,2}

subarray(int[],

int start)

int[] portion of array
starting at position
start

subarray(’{1,2,3,2,1}’::int[],

2)

{2,3,2,1}

intset(int) int[] make
single-element
array

intset(42) {42}

Table F-9. intarray Operators

Operator Returns Description
int[] && int[] boolean overlap — true if arrays have at

least one common element

int[] @> int[] boolean contains — true if left array
contains right array

int[] <@ int[] boolean contained — true if left array is
contained in right array

int[] int number of elements in array

int[] # int int index (same as idx function)

int[] + int int[] push element onto array (add it
to end of array)

2673

Appendix F. Additional Supplied Modules

Operator Returns Description
int[] + int[] int[] array concatenation (right array

added to the end of left one)

int[] - int int[] remove entries matching right
argument from array

int[] - int[] int[] remove elements of right array
from left

int[] | int int[] union of arguments

int[] | int[] int[] union of arrays

int[] & int[] int[] intersection of arrays

int[] @@ query_int boolean true if array satisfies query (see
below)

query_int ~~ int[] boolean true if array satisfies query
(commutator of @@)

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names are
reversed from the convention formerly followed by the core geometric data types!)

The operators &&, @> and <@ are equivalent to PostgreSQL’s built-in operators of the same names, except
that they work only on integer arrays that do not contain nulls, while the built-in operators work for any
array type. This restriction makes them faster than the built-in operators in many cases.

The @@ and ~~ operators test whether an array satisfies a query, which is expressed as a value of a special-
ized data type query_int. A query consists of integer values that are checked against the elements of the
array, possibly combined using the operators & (AND), | (OR), and ! (NOT). Parentheses can be used as
needed. For example, the query 1&(2|3) matches arrays that contain 1 and also contain either 2 or 3.

F.18.2. Index Support
intarray provides index support for the &&, @>, <@, and @@ operators, as well as regular array equality.

Two GiST index operator classes are provided: gist__int_ops (used by default) is suitable for small- to
medium-size data sets, while gist__intbig_ops uses a larger signature and is more suitable for index-
ing large data sets (i.e., columns containing a large number of distinct array values). The implementation
uses an RD-tree data structure with built-in lossy compression.

There is also a non-default GIN operator class gin__int_ops supporting the same operators.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere. As a rule of thumb, a GIN index is faster to search than a GiST
index, but slower to build or update; so GIN is better suited for static data and GiST for often-updated
data.

F.18.3. Example
-- a message can be in one or more “sections”

2674

Appendix F. Additional Supplied Modules

CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);

-- create specialized index
CREATE INDEX message_rdtree_idx ON message USING GIST (sections gist__int_ops);

-- select messages in section 1 OR 2 - OVERLAP operator
SELECT message.mid FROM message WHERE message.sections && ’{1,2}’;

-- select messages in sections 1 AND 2 - CONTAINS operator
SELECT message.mid FROM message WHERE message.sections @> ’{1,2}’;

-- the same, using QUERY operator
SELECT message.mid FROM message WHERE message.sections @@ ’1&2’::query_int;

F.18.4. Benchmark
The source directory contrib/intarray/bench contains a benchmark test suite. To run:

cd .../bench
createdb TEST
psql TEST < ../_int.sql
./create_test.pl | psql TEST
./bench.pl

The bench.pl script has numerous options, which are displayed when it is run without any arguments.

F.18.5. Authors
All work was done by Teodor Sigaev (<teodor@sigaev.ru>) and Oleg Bartunov
(<oleg@sai.msu.su>). See http://www.sai.msu.su/~megera/postgres/gist/ for additional information.
Andrey Oktyabrski did a great work on adding new functions and operations.

F.19. isn
The isnmodule provides data types for the following international product numbering standards: EAN13,
UPC, ISBN (books), ISMN (music), and ISSN (serials). Numbers are validated on input according to
a hard-coded list of prefixes; this list of prefixes is also used to hyphenate numbers on output. Since
new prefixes are assigned from time to time, the list of prefixes may be out of date. It is hoped that a
future version of this module will obtained the prefix list from one or more tables that can be easily
updated by users as needed; however, at present, the list can only be updated by modifying the source
code and recompiling. Alternatively, prefix validation and hyphenation support may be dropped from a
future version of this module.

2675

Appendix F. Additional Supplied Modules

F.19.1. Data Types
Table F-10 shows the data types provided by the isn module.

Table F-10. isn Data Types

Data Type Description
EAN13 European Article Numbers, always displayed in

the EAN13 display format

ISBN13 International Standard Book Numbers to be
displayed in the new EAN13 display format

ISMN13 International Standard Music Numbers to be
displayed in the new EAN13 display format

ISSN13 International Standard Serial Numbers to be
displayed in the new EAN13 display format

ISBN International Standard Book Numbers to be
displayed in the old short display format

ISMN International Standard Music Numbers to be
displayed in the old short display format

ISSN International Standard Serial Numbers to be
displayed in the old short display format

UPC Universal Product Codes

Some notes:

1. ISBN13, ISMN13, ISSN13 numbers are all EAN13 numbers.

2. EAN13 numbers aren’t always ISBN13, ISMN13 or ISSN13 (some are).

3. Some ISBN13 numbers can be displayed as ISBN.

4. Some ISMN13 numbers can be displayed as ISMN.

5. Some ISSN13 numbers can be displayed as ISSN.

6. UPC numbers are a subset of the EAN13 numbers (they are basically EAN13 without the first 0
digit).

7. All UPC, ISBN, ISMN and ISSN numbers can be represented as EAN13 numbers.

Internally, all these types use the same representation (a 64-bit integer), and all are interchangeable. Mul-
tiple types are provided to control display formatting and to permit tighter validity checking of input that
is supposed to denote one particular type of number.

The ISBN, ISMN, and ISSN types will display the short version of the number (ISxN 10) whenever it’s
possible, and will show ISxN 13 format for numbers that do not fit in the short version. The EAN13,
ISBN13, ISMN13 and ISSN13 types will always display the long version of the ISxN (EAN13).

2676

Appendix F. Additional Supplied Modules

F.19.2. Casts
The isn module provides the following pairs of type casts:

• ISBN13 <=> EAN13

• ISMN13 <=> EAN13

• ISSN13 <=> EAN13

• ISBN <=> EAN13

• ISMN <=> EAN13

• ISSN <=> EAN13

• UPC <=> EAN13

• ISBN <=> ISBN13

• ISMN <=> ISMN13

• ISSN <=> ISSN13

When casting from EAN13 to another type, there is a run-time check that the value is within the domain
of the other type, and an error is thrown if not. The other casts are simply relabelings that will always
succeed.

F.19.3. Functions and Operators
The isn module provides the standard comparison operators, plus B-tree and hash indexing support for
all these data types. In addition there are several specialized functions; shown in Table F-11. In this table,
isn means any one of the module’s data types.

Table F-11. isn Functions

Function Returns Description
isn_weak(boolean) boolean Sets the weak input mode

(returns new setting)

isn_weak() boolean Gets the current status of the
weak mode

make_valid(isn) isn Validates an invalid number
(clears the invalid flag)

is_valid(isn) boolean Checks for the presence of the
invalid flag

Weak mode is used to be able to insert invalid data into a table. Invalid means the check digit is wrong,
not that there are missing numbers.

Why would you want to use the weak mode? Well, it could be that you have a huge collection of ISBN
numbers, and that there are so many of them that for weird reasons some have the wrong check digit
(perhaps the numbers were scanned from a printed list and the OCR got the numbers wrong, perhaps the
numbers were manually captured... who knows). Anyway, the point is you might want to clean the mess

2677

Appendix F. Additional Supplied Modules

up, but you still want to be able to have all the numbers in your database and maybe use an external tool
to locate the invalid numbers in the database so you can verify the information and validate it more easily;
so for example you’d want to select all the invalid numbers in the table.

When you insert invalid numbers in a table using the weak mode, the number will be inserted with the
corrected check digit, but it will be displayed with an exclamation mark (!) at the end, for example
0-11-000322-5!. This invalid marker can be checked with the is_valid function and cleared with the
make_valid function.

You can also force the insertion of invalid numbers even when not in the weak mode, by appending the !
character at the end of the number.

Another special feature is that during input, you can write ? in place of the check digit, and the correct
check digit will be inserted automatically.

F.19.4. Examples
--Using the types directly:
SELECT isbn(’978-0-393-04002-9’);
SELECT isbn13(’0901690546’);
SELECT issn(’1436-4522’);

--Casting types:
-- note that you can only cast from ean13 to another type when the
-- number would be valid in the realm of the target type;
-- thus, the following will NOT work: select isbn(ean13(’0220356483481’));
-- but these will:
SELECT upc(ean13(’0220356483481’));
SELECT ean13(upc(’220356483481’));

--Create a table with a single column to hold ISBN numbers:
CREATE TABLE test (id isbn);
INSERT INTO test VALUES(’9780393040029’);

--Automatically calculate check digits (observe the ’?’):
INSERT INTO test VALUES(’220500896?’);
INSERT INTO test VALUES(’978055215372?’);

SELECT issn(’3251231?’);
SELECT ismn(’979047213542?’);

--Using the weak mode:
SELECT isn_weak(true);
INSERT INTO test VALUES(’978-0-11-000533-4’);
INSERT INTO test VALUES(’9780141219307’);
INSERT INTO test VALUES(’2-205-00876-X’);
SELECT isn_weak(false);

SELECT id FROM test WHERE NOT is_valid(id);
UPDATE test SET id = make_valid(id) WHERE id = ’2-205-00876-X!’;

SELECT * FROM test;

2678

Appendix F. Additional Supplied Modules

SELECT isbn13(id) FROM test;

F.19.5. Bibliography
The information to implement this module was collected from several sites, including:

• http://www.isbn-international.org/

• http://www.issn.org/

• http://www.ismn-international.org/

• http://www.wikipedia.org/

The prefixes used for hyphenation were also compiled from:

• http://www.gs1.org/productssolutions/idkeys/support/prefix_list.html

• http://www.isbn-international.org/en/identifiers.html

• http://www.ismn-international.org/ranges.html

Care was taken during the creation of the algorithms and they were meticulously verified against the
suggested algorithms in the official ISBN, ISMN, ISSN User Manuals.

F.19.6. Author
Germán Méndez Bravo (Kronuz), 2004 - 2006

This module was inspired by Garrett A. Wollman’s isbn_issn code.

F.20. lo
The lo module provides support for managing Large Objects (also called LOs or BLOBs). This includes
a data type lo and a trigger lo_manage.

F.20.1. Rationale
One of the problems with the JDBC driver (and this affects the ODBC driver also), is that the specification
assumes that references to BLOBs (Binary Large OBjects) are stored within a table, and if that entry is
changed, the associated BLOB is deleted from the database.

As PostgreSQL stands, this doesn’t occur. Large objects are treated as objects in their own right; a table
entry can reference a large object by OID, but there can be multiple table entries referencing the same
large object OID, so the system doesn’t delete the large object just because you change or remove one
such entry.

2679

Appendix F. Additional Supplied Modules

Now this is fine for PostgreSQL-specific applications, but standard code using JDBC or ODBC won’t
delete the objects, resulting in orphan objects — objects that are not referenced by anything, and simply
occupy disk space.

The lo module allows fixing this by attaching a trigger to tables that contain LO reference columns. The
trigger essentially just does a lo_unlink whenever you delete or modify a value referencing a large
object. When you use this trigger, you are assuming that there is only one database reference to any large
object that is referenced in a trigger-controlled column!

The module also provides a data type lo, which is really just a domain of the oid type. This is useful
for differentiating database columns that hold large object references from those that are OIDs of other
things. You don’t have to use the lo type to use the trigger, but it may be convenient to use it to keep track
of which columns in your database represent large objects that you are managing with the trigger. It is
also rumored that the ODBC driver gets confused if you don’t use lo for BLOB columns.

F.20.2. How to Use It
Here’s a simple example of usage:

CREATE TABLE image (title TEXT, raster lo);

CREATE TRIGGER t_raster BEFORE UPDATE OR DELETE ON image
FOR EACH ROW EXECUTE PROCEDURE lo_manage(raster);

For each column that will contain unique references to large objects, create a BEFORE UPDATE OR

DELETE trigger, and give the column name as the sole trigger argument. If you need multiple lo columns
in the same table, create a separate trigger for each one, remembering to give a different name to each
trigger on the same table.

F.20.3. Limitations

• Dropping a table will still orphan any objects it contains, as the trigger is not executed. You can avoid
this by preceding the DROP TABLE with DELETE FROM table.

TRUNCATE has the same hazard.

If you already have, or suspect you have, orphaned large objects, see the vacuumlo module to help you
clean them up. It’s a good idea to run vacuumlo occasionally as a back-stop to the lo_manage trigger.

• Some frontends may create their own tables, and will not create the associated trigger(s). Also, users
may not remember (or know) to create the triggers.

F.20.4. Author
Peter Mount <peter@retep.org.uk>

2680

Appendix F. Additional Supplied Modules

F.21. ltree
This module implements a data type ltree for representing labels of data stored in a hierarchical tree-like
structure. Extensive facilities for searching through label trees are provided.

F.21.1. Definitions
A label is a sequence of alphanumeric characters and underscores (for example, in C locale the characters
A-Za-z0-9_ are allowed). Labels must be less than 256 bytes long.

Examples: 42, Personal_Services

A label path is a sequence of zero or more labels separated by dots, for example L1.L2.L3, representing
a path from the root of a hierarchical tree to a particular node. The length of a label path must be less than
65Kb, but keeping it under 2Kb is preferable. In practice this is not a major limitation; for example, the
longest label path in the DMOZ catalogue (http://www.dmoz.org) is about 240 bytes.

Example: Top.Countries.Europe.Russia

The ltree module provides several data types:

• ltree stores a label path.

• lquery represents a regular-expression-like pattern for matching ltree values. A simple word
matches that label within a path. A star symbol (*) matches zero or more labels. For example:

foo Match the exact label path foo

.foo. Match any label path containing the label foo

*.foo Match any label path whose last label is foo

Star symbols can also be quantified to restrict how many labels they can match:

*{n} Match exactly n labels

*{n,} Match at least n labels

*{n,m} Match at least n but not more than m labels

*{,m} Match at most m labels -- same as *{0,m}

There are several modifiers that can be put at the end of a non-star label in lquery to make it match
more than just the exact match:

@ Match case-insensitively, for example a@ matches A

* Match any label with this prefix, for example foo* matches foobar

% Match initial underscore-separated words

The behavior of % is a bit complicated. It tries to match words rather than the entire label. For example
foo_bar% matches foo_bar_baz but not foo_barbaz. If combined with *, prefix matching applies
to each word separately, for example foo_bar%* matches foo1_bar2_baz but not foo1_br2_baz.

Also, you can write several possibly-modified labels separated with | (OR) to match any of those labels,
and you can put ! (NOT) at the start to match any label that doesn’t match any of the alternatives.

Here’s an annotated example of lquery:

Top.*{0,2}.sport*@.!football|tennis.Russ*|Spain
a. b. c. d. e.

This query will match any label path that:

a. begins with the label Top

2681

Appendix F. Additional Supplied Modules

b. and next has zero to two labels before

c. a label beginning with the case-insensitive prefix sport

d. then a label not matching football nor tennis

e. and then ends with a label beginning with Russ or exactly matching Spain.

• ltxtquery represents a full-text-search-like pattern for matching ltree values. An ltxtquery value
contains words, possibly with the modifiers @, *, % at the end; the modifiers have the same meanings
as in lquery. Words can be combined with & (AND), | (OR), ! (NOT), and parentheses. The key
difference from lquery is that ltxtquery matches words without regard to their position in the label
path.

Here’s an example ltxtquery:

Europe & Russia*@ & !Transportation

This will match paths that contain the label Europe and any label beginning with Russia (case-
insensitive), but not paths containing the label Transportation. The location of these words within
the path is not important. Also, when % is used, the word can be matched to any underscore-separated
word within a label, regardless of position.

Note: ltxtquery allows whitespace between symbols, but ltree and lquery do not.

F.21.2. Operators and Functions
Type ltree has the usual comparison operators =, <>, <, >, <=, >=. Comparison sorts in the order of a
tree traversal, with the children of a node sorted by label text. In addition, the specialized operators shown
in Table F-12 are available.

Table F-12. ltree Operators

Operator Returns Description
ltree @> ltree boolean is left argument an ancestor of

right (or equal)?

ltree <@ ltree boolean is left argument a descendant of
right (or equal)?

ltree ~ lquery boolean does ltree match lquery?

lquery ~ ltree boolean does ltree match lquery?

ltree ? lquery[] boolean does ltree match any lquery

in array?

lquery[] ? ltree boolean does ltree match any lquery

in array?

ltree @ ltxtquery boolean does ltree match ltxtquery?

ltxtquery @ ltree boolean does ltree match ltxtquery?

ltree || ltree ltree concatenate ltree paths

2682

Appendix F. Additional Supplied Modules

Operator Returns Description
ltree || text ltree convert text to ltree and

concatenate

text || ltree ltree convert text to ltree and
concatenate

ltree[] @> ltree boolean does array contain an ancestor of
ltree?

ltree <@ ltree[] boolean does array contain an ancestor of
ltree?

ltree[] <@ ltree boolean does array contain a descendant
of ltree?

ltree @> ltree[] boolean does array contain a descendant
of ltree?

ltree[] ~ lquery boolean does array contain any path
matching lquery?

lquery ~ ltree[] boolean does array contain any path
matching lquery?

ltree[] ? lquery[] boolean does ltree array contain any
path matching any lquery?

lquery[] ? ltree[] boolean does ltree array contain any
path matching any lquery?

ltree[] @ ltxtquery boolean does array contain any path
matching ltxtquery?

ltxtquery @ ltree[] boolean does array contain any path
matching ltxtquery?

ltree[] ?@> ltree ltree first array entry that is an
ancestor of ltree; NULL if
none

ltree[] ?<@ ltree ltree first array entry that is a
descendant of ltree; NULL if
none

ltree[] ?~ lquery ltree first array entry that matches
lquery; NULL if none

ltree[] ?@ ltxtquery ltree first array entry that matches
ltxtquery; NULL if none

The operators <@, @>, @ and ~ have analogues ^<@, ^@>, ^@, ^~, which are the same except they do not
use indexes. These are useful only for testing purposes.

The available functions are shown in Table F-13.

Table F-13. ltree Functions

Function Return Type Description Example Result

2683

Appendix F. Additional Supplied Modules

Function Return Type Description Example Result
subltree(ltree,

int start, int

end)

ltree subpath of ltree
from position
start to position
end-1 (counting
from 0)

subltree(’Top.Child1.Child2’,1,2)Child1

subpath(ltree,

int offset,

int len)

ltree subpath of ltree
starting at position
offset, length
len. If offset is
negative, subpath
starts that far from
the end of the path.
If len is negative,
leaves that many
labels off the end
of the path.

subpath(’Top.Child1.Child2’,0,2)Top.Child1

subpath(ltree,

int offset)

ltree subpath of ltree
starting at position
offset, extending
to end of path. If
offset is
negative, subpath
starts that far from
the end of the path.

subpath(’Top.Child1.Child2’,1)Child1.Child2

nlevel(ltree) integer number of labels in
path

nlevel(’Top.Child1.Child2’)3

index(ltree a,

ltree b)

integer position of first
occurrence of b in
a; -1 if not found

index(’0.1.2.3.5.4.5.6.8.5.6.8’,’5.6’)6

index(ltree a,

ltree b, int

offset)

integer position of first
occurrence of b in
a, searching
starting at offset;
negative offset
means start
-offset labels
from the end of the
path

index(’0.1.2.3.5.4.5.6.8.5.6.8’,’5.6’,-4)9

text2ltree(text)ltree cast text to
ltree

ltree2text(ltree)text cast ltree to
text

2684

Appendix F. Additional Supplied Modules

Function Return Type Description Example Result
lca(ltree,

ltree, ...)

ltree lowest common
ancestor, i.e.,
longest common
prefix of paths (up
to 8 arguments
supported)

lca(’1.2.2.3’,’1.2.3.4.5.6’)1.2

lca(ltree[]) ltree lowest common
ancestor, i.e.,
longest common
prefix of paths

lca(array[’1.2.2.3’::ltree,’1.2.3’])1.2

F.21.3. Indexes
ltree supports several types of indexes that can speed up the indicated operators:

• B-tree index over ltree: <, <=, =, >=, >

• GiST index over ltree: <, <=, =, >=, >, @>, <@, @, ~, ?

Example of creating such an index:

CREATE INDEX path_gist_idx ON test USING GIST (path);

• GiST index over ltree[]: ltree[] <@ ltree, ltree @> ltree[], @, ~, ?

Example of creating such an index:

CREATE INDEX path_gist_idx ON test USING GIST (array_path);

Note: This index type is lossy.

F.21.4. Example
This example uses the following data (also available in file contrib/ltree/ltreetest.sql in the
source distribution):

CREATE TABLE test (path ltree);
INSERT INTO test VALUES (’Top’);
INSERT INTO test VALUES (’Top.Science’);
INSERT INTO test VALUES (’Top.Science.Astronomy’);
INSERT INTO test VALUES (’Top.Science.Astronomy.Astrophysics’);
INSERT INTO test VALUES (’Top.Science.Astronomy.Cosmology’);
INSERT INTO test VALUES (’Top.Hobbies’);
INSERT INTO test VALUES (’Top.Hobbies.Amateurs_Astronomy’);
INSERT INTO test VALUES (’Top.Collections’);
INSERT INTO test VALUES (’Top.Collections.Pictures’);
INSERT INTO test VALUES (’Top.Collections.Pictures.Astronomy’);
INSERT INTO test VALUES (’Top.Collections.Pictures.Astronomy.Stars’);
INSERT INTO test VALUES (’Top.Collections.Pictures.Astronomy.Galaxies’);
INSERT INTO test VALUES (’Top.Collections.Pictures.Astronomy.Astronauts’);

2685

Appendix F. Additional Supplied Modules

CREATE INDEX path_gist_idx ON test USING gist(path);
CREATE INDEX path_idx ON test USING btree(path);

Now, we have a table test populated with data describing the hierarchy shown below:

Top
/ | \

Science Hobbies Collections
/ | \

Astronomy Amateurs_Astronomy Pictures
/ \ |

Astrophysics Cosmology Astronomy
/ | \

Galaxies Stars Astronauts

We can do inheritance:

ltreetest=> SELECT path FROM test WHERE path <@ ’Top.Science’;
path

Top.Science
Top.Science.Astronomy
Top.Science.Astronomy.Astrophysics
Top.Science.Astronomy.Cosmology

(4 rows)

Here are some examples of path matching:

ltreetest=> SELECT path FROM test WHERE path ~ ’*.Astronomy.*’;
path

Top.Science.Astronomy
Top.Science.Astronomy.Astrophysics
Top.Science.Astronomy.Cosmology
Top.Collections.Pictures.Astronomy
Top.Collections.Pictures.Astronomy.Stars
Top.Collections.Pictures.Astronomy.Galaxies
Top.Collections.Pictures.Astronomy.Astronauts

(7 rows)

ltreetest=> SELECT path FROM test WHERE path ~ ’*.!pictures@.*.Astronomy.*’;
path

Top.Science.Astronomy
Top.Science.Astronomy.Astrophysics
Top.Science.Astronomy.Cosmology

(3 rows)

Here are some examples of full text search:

ltreetest=> SELECT path FROM test WHERE path @ ’Astro*% & !pictures@’;

2686

Appendix F. Additional Supplied Modules

path

Top.Science.Astronomy
Top.Science.Astronomy.Astrophysics
Top.Science.Astronomy.Cosmology
Top.Hobbies.Amateurs_Astronomy

(4 rows)

ltreetest=> SELECT path FROM test WHERE path @ ’Astro* & !pictures@’;
path

Top.Science.Astronomy
Top.Science.Astronomy.Astrophysics
Top.Science.Astronomy.Cosmology

(3 rows)

Path construction using functions:

ltreetest=> SELECT subpath(path,0,2)||’Space’||subpath(path,2) FROM test WHERE path <@ ’Top.Science.Astronomy’;
?column?

--
Top.Science.Space.Astronomy
Top.Science.Space.Astronomy.Astrophysics
Top.Science.Space.Astronomy.Cosmology

(3 rows)

We could simplify this by creating a SQL function that inserts a label at a specified position in a path:

CREATE FUNCTION ins_label(ltree, int, text) RETURNS ltree
AS ’select subpath($1,0,$2) || $3 || subpath($1,$2);’
LANGUAGE SQL IMMUTABLE;

ltreetest=> SELECT ins_label(path,2,’Space’) FROM test WHERE path <@ ’Top.Science.Astronomy’;
ins_label

--
Top.Science.Space.Astronomy
Top.Science.Space.Astronomy.Astrophysics
Top.Science.Space.Astronomy.Cosmology

(3 rows)

F.21.5. Authors
All work was done by Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov
(<oleg@sai.msu.su>). See http://www.sai.msu.su/~megera/postgres/gist/ for additional information.
Authors would like to thank Eugeny Rodichev for helpful discussions. Comments and bug reports are
welcome.

2687

Appendix F. Additional Supplied Modules

F.22. pageinspect
The pageinspect module provides functions that allow you to inspect the contents of database pages at a
low level, which is useful for debugging purposes. All of these functions may be used only by superusers.

F.22.1. Functions

get_raw_page(relname text, fork text, blkno int) returns bytea

get_raw_page reads the specified block of the named table and returns a copy as a bytea value.
This allows a single time-consistent copy of the block to be obtained. fork should be ’main’ for
the main data fork, or ’fsm’ for the free space map, or ’vm’ for the visibility map.

get_raw_page(relname text, blkno int) returns bytea

A shorthand version of get_raw_page, for reading from the main fork. Equivalent to
get_raw_page(relname, ’main’, blkno)

page_header(page bytea) returns record

page_header shows fields that are common to all PostgreSQL heap and index pages.

A page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM page_header(get_raw_page(’pg_class’, 0));
lsn | tli | flags | lower | upper | special | pagesize | version | prune_xid

-----------+-----+-------+-------+-------+---------+----------+---------+-----------
0/24A1B50 | 1 | 1 | 232 | 368 | 8192 | 8192 | 4 | 0

The returned columns correspond to the fields in the PageHeaderData struct. See
src/include/storage/bufpage.h for details.

heap_page_items(page bytea) returns setof record

heap_page_items shows all line pointers on a heap page. For those line pointers that are in use,
tuple headers are also shown. All tuples are shown, whether or not the tuples were visible to an
MVCC snapshot at the time the raw page was copied.

A heap page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM heap_page_items(get_raw_page(’pg_class’, 0));

See src/include/storage/itemid.h and src/include/access/htup.h for explanations of
the fields returned.

bt_metap(relname text) returns record

bt_metap returns information about a B-tree index’s metapage. For example:

test=# SELECT * FROM bt_metap(’pg_cast_oid_index’);
-[RECORD 1]-----
magic | 340322
version | 2
root | 1
level | 0
fastroot | 1
fastlevel | 0

2688

Appendix F. Additional Supplied Modules

bt_page_stats(relname text, blkno int) returns record

bt_page_stats returns summary information about single pages of B-tree indexes. For example:

test=# SELECT * FROM bt_page_stats(’pg_cast_oid_index’, 1);
-[RECORD 1]-+-----
blkno | 1
type | l
live_items | 256
dead_items | 0
avg_item_size | 12
page_size | 8192
free_size | 4056
btpo_prev | 0
btpo_next | 0
btpo | 0
btpo_flags | 3

bt_page_items(relname text, blkno int) returns setof record

bt_page_items returns detailed information about all of the items on a B-tree index page. For
example:

test=# SELECT * FROM bt_page_items(’pg_cast_oid_index’, 1);
itemoffset | ctid | itemlen | nulls | vars | data

------------+---------+---------+-------+------+-------------
1 | (0,1) | 12 | f | f | 23 27 00 00
2 | (0,2) | 12 | f | f | 24 27 00 00
3 | (0,3) | 12 | f | f | 25 27 00 00
4 | (0,4) | 12 | f | f | 26 27 00 00
5 | (0,5) | 12 | f | f | 27 27 00 00
6 | (0,6) | 12 | f | f | 28 27 00 00
7 | (0,7) | 12 | f | f | 29 27 00 00
8 | (0,8) | 12 | f | f | 2a 27 00 00

fsm_page_contents(page bytea) returns text

fsm_page_contents shows the internal node structure of a FSM page. The output is a multiline
string, with one line per node in the binary tree within the page. Only those nodes that are not zero
are printed. The so-called "next" pointer, which points to the next slot to be returned from the page,
is also printed.

See src/backend/storage/freespace/README for more information on the structure of an
FSM page.

F.23. passwordcheck
The passwordcheck module checks users’ passwords whenever they are set with CREATE ROLE or
ALTER ROLE. If a password is considered too weak, it will be rejected and the command will terminate
with an error.

To enable this module, add ’$libdir/passwordcheck’ to shared_preload_libraries in
postgresql.conf, then restart the server.

2689

Appendix F. Additional Supplied Modules

You can adapt this module to your needs by changing the source code. For example, you can use CrackLib2

to check passwords — this only requires uncommenting two lines in the Makefile and rebuilding the
module. (We cannot include CrackLib by default for license reasons.) Without CrackLib, the module
enforces a few simple rules for password strength, which you can modify or extend as you see fit.

Caution
To prevent unencrypted passwords from being sent across the network, written to
the server log or otherwise stolen by a database administrator, PostgreSQL allows
the user to supply pre-encrypted passwords. Many client programs make use of this
functionality and encrypt the password before sending it to the server.

This limits the usefulness of the passwordcheck module, because in that case it
can only try to guess the password. For this reason, passwordcheck is not recom-
mended if your security requirements are high. It is more secure to use an external
authentication method such as Kerberos (see Chapter 19) than to rely on pass-
words within the database.

Alternatively, you could modify passwordcheck to reject pre-encrypted passwords,
but forcing users to set their passwords in clear text carries its own security risks.

F.24. pg_buffercache
The pg_buffercache module provides a means for examining what’s happening in the shared buffer
cache in real time.

The module provides a C function pg_buffercache_pages that returns a set of records, plus a view
pg_buffercache that wraps the function for convenient use.

By default public access is revoked from both of these, just in case there are security issues lurking.

F.24.1. The pg_buffercache View
The definitions of the columns exposed by the view are shown in Table F-14.

Table F-14. pg_buffercache Columns

Name Type References Description
bufferid integer ID, in the range

1..shared_buffers

relfilenode oid pg_class.relfilenodeFilenode number of the
relation

reltablespace oid pg_tablespace.oid Tablespace OID of the
relation

reldatabase oid pg_database.oid Database OID of the
relation

2. http://sourceforge.net/projects/cracklib/

2690

Appendix F. Additional Supplied Modules

Name Type References Description
relblocknumber bigint Page number within the

relation

relforknumber smallint Fork number within the
relation; see
include/storage/relfilenode.h

isdirty boolean Is the page dirty?

usagecount smallint Clock-sweep access
count

There is one row for each buffer in the shared cache. Unused buffers are shown with all fields null except
bufferid. Shared system catalogs are shown as belonging to database zero.

Because the cache is shared by all the databases, there will normally be pages from relations not belonging
to the current database. This means that there may not be matching join rows in pg_class for some rows,
or that there could even be incorrect joins. If you are trying to join against pg_class, it’s a good idea to
restrict the join to rows having reldatabase equal to the current database’s OID or zero.

When the pg_buffercache view is accessed, internal buffer manager locks are taken for long enough to
copy all the buffer state data that the view will display. This ensures that the view produces a consistent
set of results, while not blocking normal buffer activity longer than necessary. Nonetheless there could be
some impact on database performance if this view is read often.

F.24.2. Sample Output
regression=# SELECT c.relname, count(*) AS buffers

FROM pg_buffercache b INNER JOIN pg_class c
ON b.relfilenode = pg_relation_filenode(c.oid) AND

b.reldatabase IN (0, (SELECT oid FROM pg_database
WHERE datname = current_database()))

GROUP BY c.relname
ORDER BY 2 DESC
LIMIT 10;

relname | buffers
---------------------------------+---------
tenk2 | 345
tenk1 | 141
pg_proc | 46
pg_class | 45
pg_attribute | 43
pg_class_relname_nsp_index | 30
pg_proc_proname_args_nsp_index | 28
pg_attribute_relid_attnam_index | 26
pg_depend | 22
pg_depend_reference_index | 20

(10 rows)

2691

Appendix F. Additional Supplied Modules

F.24.3. Authors
Mark Kirkwood <markir@paradise.net.nz>

Design suggestions: Neil Conway <neilc@samurai.com>

Debugging advice: Tom Lane <tgl@sss.pgh.pa.us>

F.25. pgcrypto
The pgcrypto module provides cryptographic functions for PostgreSQL.

F.25.1. General Hashing Functions

F.25.1.1. digest()

digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea

Computes a binary hash of the given data. type is the algorithm to use. Standard algorithms are md5,
sha1, sha224, sha256, sha384 and sha512. If pgcrypto was built with OpenSSL, more algorithms
are available, as detailed in Table F-18.

If you want the digest as a hexadecimal string, use encode() on the result. For example:

CREATE OR REPLACE FUNCTION sha1(bytea) returns text AS $$
SELECT encode(digest($1, ’sha1’), ’hex’)

$$ LANGUAGE SQL STRICT IMMUTABLE;

F.25.1.2. hmac()

hmac(data text, key text, type text) returns bytea
hmac(data bytea, key text, type text) returns bytea

Calculates hashed MAC for data with key key. type is the same as in digest().

This is similar to digest() but the hash can only be recalculated knowing the key. This prevents the
scenario of someone altering data and also changing the hash to match.

If the key is larger than the hash block size it will first be hashed and the result will be used as key.

2692

Appendix F. Additional Supplied Modules

F.25.2. Password Hashing Functions
The functions crypt() and gen_salt() are specifically designed for hashing passwords. crypt() does
the hashing and gen_salt() prepares algorithm parameters for it.

The algorithms in crypt() differ from usual hashing algorithms like MD5 or SHA1 in the following
respects:

1. They are slow. As the amount of data is so small, this is the only way to make brute-forcing passwords
hard.

2. They use a random value, called the salt, so that users having the same password will have different
encrypted passwords. This is also an additional defense against reversing the algorithm.

3. They include the algorithm type in the result, so passwords hashed with different algorithms can
co-exist.

4. Some of them are adaptive — that means when computers get faster, you can tune the algorithm to
be slower, without introducing incompatibility with existing passwords.

Table F-15 lists the algorithms supported by the crypt() function.

Table F-15. Supported Algorithms for crypt()

Algorithm Max Password
Length

Adaptive? Salt Bits Description

bf 72 yes 128 Blowfish-based,
variant 2a

md5 unlimited no 48 MD5-based crypt

xdes 8 yes 24 Extended DES

des 8 no 12 Original UNIX
crypt

F.25.2.1. crypt()

crypt(password text, salt text) returns text

Calculates a crypt(3)-style hash of password. When storing a new password, you need to use
gen_salt() to generate a new salt value. To check a password, pass the stored hash value as salt,
and test whether the result matches the stored value.

Example of setting a new password:

UPDATE ... SET pswhash = crypt(’new password’, gen_salt(’md5’));

Example of authentication:

SELECT pswhash = crypt(’entered password’, pswhash) FROM ... ;

This returns true if the entered password is correct.

2693

Appendix F. Additional Supplied Modules

F.25.2.2. gen_salt()

gen_salt(type text [, iter_count integer]) returns text

Generates a new random salt string for use in crypt(). The salt string also tells crypt()which algorithm
to use.

The type parameter specifies the hashing algorithm. The accepted types are: des, xdes, md5 and bf.

The iter_count parameter lets the user specify the iteration count, for algorithms that have one. The
higher the count, the more time it takes to hash the password and therefore the more time to break it.
Although with too high a count the time to calculate a hash may be several years — which is somewhat
impractical. If the iter_count parameter is omitted, the default iteration count is used. Allowed values
for iter_count depend on the algorithm and are shown in Table F-16.

Table F-16. Iteration Counts for crypt()

Algorithm Default Min Max
xdes 725 1 16777215

bf 6 4 31

For xdes there is an additional limitation that the iteration count must be an odd number.

To pick an appropriate iteration count, consider that the original DES crypt was designed to have the speed
of 4 hashes per second on the hardware of that time. Slower than 4 hashes per second would probably
dampen usability. Faster than 100 hashes per second is probably too fast.

Table F-17 gives an overview of the relative slowness of different hashing algorithms. The table shows
how much time it would take to try all combinations of characters in an 8-character password, assuming
that the password contains either only lower case letters, or upper- and lower-case letters and numbers. In
the crypt-bf entries, the number after a slash is the iter_count parameter of gen_salt.

Table F-17. Hash Algorithm Speeds

Algorithm Hashes/sec For [a-z] For [A-Za-z0-9]
crypt-bf/8 28 246 years 251322 years

crypt-bf/7 57 121 years 123457 years

crypt-bf/6 112 62 years 62831 years

crypt-bf/5 211 33 years 33351 years

crypt-md5 2681 2.6 years 2625 years

crypt-des 362837 7 days 19 years

sha1 590223 4 days 12 years

md5 2345086 1 day 3 years

Notes:

• The machine used is a 1.5GHz Pentium 4.

• crypt-des and crypt-md5 algorithm numbers are taken from John the Ripper v1.6.38 -test output.

2694

Appendix F. Additional Supplied Modules

• md5 numbers are from mdcrack 1.2.

• sha1 numbers are from lcrack-20031130-beta.

• crypt-bf numbers are taken using a simple program that loops over 1000 8-character passwords. That
way I can show the speed with different numbers of iterations. For reference: john -test shows 213
loops/sec for crypt-bf/5. (The very small difference in results is in accordance with the fact that the
crypt-bf implementation in pgcrypto is the same one used in John the Ripper.)

Note that “try all combinations” is not a realistic exercise. Usually password cracking is done with the
help of dictionaries, which contain both regular words and various mutations of them. So, even somewhat
word-like passwords could be cracked much faster than the above numbers suggest, while a 6-character
non-word-like password may escape cracking. Or not.

F.25.3. PGP Encryption Functions
The functions here implement the encryption part of the OpenPGP (RFC 4880) standard. Supported are
both symmetric-key and public-key encryption.

An encrypted PGP message consists of 2 parts, or packets:

• Packet containing a session key — either symmetric-key or public-key encrypted.

• Packet containing data encrypted with the session key.

When encrypting with a symmetric key (i.e., a password):

1. The given password is hashed using a String2Key (S2K) algorithm. This is rather similar to crypt()
algorithms — purposefully slow and with random salt — but it produces a full-length binary key.

2. If a separate session key is requested, a new random key will be generated. Otherwise the S2K key
will be used directly as the session key.

3. If the S2K key is to be used directly, then only S2K settings will be put into the session key packet.
Otherwise the session key will be encrypted with the S2K key and put into the session key packet.

When encrypting with a public key:

1. A new random session key is generated.

2. It is encrypted using the public key and put into the session key packet.

In either case the data to be encrypted is processed as follows:

1. Optional data-manipulation: compression, conversion to UTF-8, and/or conversion of line-endings.

2. The data is prefixed with a block of random bytes. This is equivalent to using a random IV.

3. An SHA1 hash of the random prefix and data is appended.

4. All this is encrypted with the session key and placed in the data packet.

2695

Appendix F. Additional Supplied Modules

F.25.3.1. pgp_sym_encrypt()

pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text]) returns bytea

Encrypt data with a symmetric PGP key psw. The options parameter can contain option settings, as
described below.

F.25.3.2. pgp_sym_decrypt()

pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text
pgp_sym_decrypt_bytea(msg bytea, psw text [, options text]) returns bytea

Decrypt a symmetric-key-encrypted PGP message.

Decrypting bytea data with pgp_sym_decrypt is disallowed. This is to avoid outputting invalid char-
acter data. Decrypting originally textual data with pgp_sym_decrypt_bytea is fine.

The options parameter can contain option settings, as described below.

F.25.3.3. pgp_pub_encrypt()

pgp_pub_encrypt(data text, key bytea [, options text]) returns bytea
pgp_pub_encrypt_bytea(data bytea, key bytea [, options text]) returns bytea

Encrypt data with a public PGP key key. Giving this function a secret key will produce a error.

The options parameter can contain option settings, as described below.

F.25.3.4. pgp_pub_decrypt()

pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text]]) returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options text]]) returns bytea

Decrypt a public-key-encrypted message. key must be the secret key corresponding to the public key that
was used to encrypt. If the secret key is password-protected, you must give the password in psw. If there
is no password, but you want to specify options, you need to give an empty password.

Decrypting bytea data with pgp_pub_decrypt is disallowed. This is to avoid outputting invalid char-
acter data. Decrypting originally textual data with pgp_pub_decrypt_bytea is fine.

The options parameter can contain option settings, as described below.

F.25.3.5. pgp_key_id()

pgp_key_id(bytea) returns text

pgp_key_id extracts the key ID of a PGP public or secret key. Or it gives the key ID that was used for
encrypting the data, if given an encrypted message.

2696

Appendix F. Additional Supplied Modules

It can return 2 special key IDs:

• SYMKEY

The message is encrypted with a symmetric key.

• ANYKEY

The message is public-key encrypted, but the key ID has been removed. That means you will need to try
all your secret keys on it to see which one decrypts it. pgcrypto itself does not produce such messages.

Note that different keys may have the same ID. This is rare but a normal event. The client application
should then try to decrypt with each one, to see which fits — like handling ANYKEY.

F.25.3.6. armor(), dearmor()

armor(data bytea) returns text
dearmor(data text) returns bytea

These functions wrap/unwrap binary data into PGP ASCII-armor format, which is basically Base64 with
CRC and additional formatting.

F.25.3.7. Options for PGP Functions

Options are named to be similar to GnuPG. An option’s value should be given after an equal sign; separate
options from each other with commas. For example:

pgp_sym_encrypt(data, psw, ’compress-algo=1, cipher-algo=aes256’)

All of the options except convert-crlf apply only to encrypt functions. Decrypt functions get the
parameters from the PGP data.

The most interesting options are probably compress-algo and unicode-mode. The rest should have
reasonable defaults.

F.25.3.7.1. cipher-algo

Which cipher algorithm to use.

Values: bf, aes128, aes192, aes256 (OpenSSL-only: 3des, cast5)
Default: aes128
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.7.2. compress-algo

Which compression algorithm to use. Only available if PostgreSQL was built with zlib.

Values:
0 - no compression

2697

Appendix F. Additional Supplied Modules

1 - ZIP compression
2 - ZLIB compression (= ZIP plus meta-data and block CRCs)

Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.7.3. compress-level

How much to compress. Higher levels compress smaller but are slower. 0 disables compression.

Values: 0, 1-9
Default: 6
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.7.4. convert-crlf

Whether to convert \n into \r\n when encrypting and \r\n to \n when decrypting. RFC 4880 specifies
that text data should be stored using \r\n line-feeds. Use this to get fully RFC-compliant behavior.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt, pgp_sym_decrypt, pgp_pub_decrypt

F.25.3.7.5. disable-mdc

Do not protect data with SHA-1. The only good reason to use this option is to achieve compatibility with
ancient PGP products, predating the addition of SHA-1 protected packets to RFC 4880. Recent gnupg.org
and pgp.com software supports it fine.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.7.6. enable-session-key

Use separate session key. Public-key encryption always uses a separate session key; this is for symmetric-
key encryption, which by default uses the S2K key directly.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt

2698

Appendix F. Additional Supplied Modules

F.25.3.7.7. s2k-mode

Which S2K algorithm to use.

Values:
0 - Without salt. Dangerous!
1 - With salt but with fixed iteration count.
3 - Variable iteration count.

Default: 3
Applies to: pgp_sym_encrypt

F.25.3.7.8. s2k-digest-algo

Which digest algorithm to use in S2K calculation.

Values: md5, sha1
Default: sha1
Applies to: pgp_sym_encrypt

F.25.3.7.9. s2k-cipher-algo

Which cipher to use for encrypting separate session key.

Values: bf, aes, aes128, aes192, aes256
Default: use cipher-algo
Applies to: pgp_sym_encrypt

F.25.3.7.10. unicode-mode

Whether to convert textual data from database internal encoding to UTF-8 and back. If your database
already is UTF-8, no conversion will be done, but the message will be tagged as UTF-8. Without this
option it will not be.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.25.3.8. Generating PGP Keys with GnuPG

To generate a new key:

gpg --gen-key

The preferred key type is “DSA and Elgamal”.

2699

Appendix F. Additional Supplied Modules

For RSA encryption you must create either DSA or RSA sign-only key as master and then add an RSA
encryption subkey with gpg --edit-key.

To list keys:

gpg --list-secret-keys

To export a public key in ASCII-armor format:

gpg -a --export KEYID > public.key

To export a secret key in ASCII-armor format:

gpg -a --export-secret-keys KEYID > secret.key

You need to use dearmor() on these keys before giving them to the PGP functions. Or if you can handle
binary data, you can drop -a from the command.

For more details see man gpg, The GNU Privacy Handbook3 and other documentation on
http://www.gnupg.org.

F.25.3.9. Limitations of PGP Code

• No support for signing. That also means that it is not checked whether the encryption subkey belongs
to the master key.

• No support for encryption key as master key. As such practice is generally discouraged, this should not
be a problem.

• No support for several subkeys. This may seem like a problem, as this is common practice. On the
other hand, you should not use your regular GPG/PGP keys with pgcrypto, but create new ones, as
the usage scenario is rather different.

F.25.4. Raw Encryption Functions
These functions only run a cipher over data; they don’t have any advanced features of PGP encryption.
Therefore they have some major problems:

1. They use user key directly as cipher key.

2. They don’t provide any integrity checking, to see if the encrypted data was modified.

3. They expect that users manage all encryption parameters themselves, even IV.

4. They don’t handle text.

3. http://www.gnupg.org/gph/en/manual.html

2700

Appendix F. Additional Supplied Modules

So, with the introduction of PGP encryption, usage of raw encryption functions is discouraged.

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea

encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea

Encrypt/decrypt data using the cipher method specified by type. The syntax of the type string is:

algorithm [- mode] [/pad: padding]

where algorithm is one of:

• bf — Blowfish

• aes — AES (Rijndael-128)

and mode is one of:

• cbc — next block depends on previous (default)

• ecb — each block is encrypted separately (for testing only)

and padding is one of:

• pkcs — data may be any length (default)

• none — data must be multiple of cipher block size

So, for example, these are equivalent:

encrypt(data, ’fooz’, ’bf’)
encrypt(data, ’fooz’, ’bf-cbc/pad:pkcs’)

In encrypt_iv and decrypt_iv, the iv parameter is the initial value for the CBC mode; it is ignored for
ECB. It is clipped or padded with zeroes if not exactly block size. It defaults to all zeroes in the functions
without this parameter.

F.25.5. Random-Data Functions
gen_random_bytes(count integer) returns bytea

Returns count cryptographically strong random bytes. At most 1024 bytes can be extracted at a time.
This is to avoid draining the randomness generator pool.

2701

Appendix F. Additional Supplied Modules

F.25.6. Notes

F.25.6.1. Configuration

pgcrypto configures itself according to the findings of the main PostgreSQL configure script. The
options that affect it are --with-zlib and --with-openssl.

When compiled with zlib, PGP encryption functions are able to compress data before encrypting.

When compiled with OpenSSL, there will be more algorithms available. Also public-key encryption func-
tions will be faster as OpenSSL has more optimized BIGNUM functions.

Table F-18. Summary of Functionality with and without OpenSSL

Functionality Built-in With OpenSSL
MD5 yes yes

SHA1 yes yes

SHA224/256/384/512 yes yes (Note 1)

Other digest algorithms no yes (Note 2)

Blowfish yes yes

AES yes yes (Note 3)

DES/3DES/CAST5 no yes

Raw encryption yes yes

PGP Symmetric encryption yes yes

PGP Public-Key encryption yes yes

Notes:

1. SHA2 algorithms were added to OpenSSL in version 0.9.8. For older versions, pgcrypto will use
built-in code.

2. Any digest algorithm OpenSSL supports is automatically picked up. This is not possible with ciphers,
which need to be supported explicitly.

3. AES is included in OpenSSL since version 0.9.7. For older versions, pgcrypto will use built-in
code.

F.25.6.2. NULL Handling

As is standard in SQL, all functions return NULL, if any of the arguments are NULL. This may create
security risks on careless usage.

F.25.6.3. Security Limitations

All pgcrypto functions run inside the database server. That means that all the data and passwords move
between pgcrypto and client applications in clear text. Thus you must:

2702

Appendix F. Additional Supplied Modules

1. Connect locally or use SSL connections.

2. Trust both system and database administrator.

If you cannot, then better do crypto inside client application.

F.25.6.4. Useful Reading

• http://www.gnupg.org/gph/en/manual.html

The GNU Privacy Handbook.

• http://www.openwall.com/crypt/

Describes the crypt-blowfish algorithm.

• http://www.stack.nl/~galactus/remailers/passphrase-faq.html

How to choose a good password.

• http://world.std.com/~reinhold/diceware.html

Interesting idea for picking passwords.

• http://www.interhack.net/people/cmcurtin/snake-oil-faq.html

Describes good and bad cryptography.

F.25.6.5. Technical References

• http://www.ietf.org/rfc/rfc4880.txt

OpenPGP message format.

• http://www.ietf.org/rfc/rfc1321.txt

The MD5 Message-Digest Algorithm.

• http://www.ietf.org/rfc/rfc2104.txt

HMAC: Keyed-Hashing for Message Authentication.

• http://www.usenix.org/events/usenix99/provos.html

Comparison of crypt-des, crypt-md5 and bcrypt algorithms.

• http://csrc.nist.gov/cryptval/des.htm

Standards for DES, 3DES and AES.

• http://en.wikipedia.org/wiki/Fortuna_(PRNG)

Description of Fortuna CSPRNG.

• http://jlcooke.ca/random/

Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.

• http://research.cyber.ee/~lipmaa/crypto/

Collection of cryptology pointers.

2703

Appendix F. Additional Supplied Modules

F.25.7. Author
Marko Kreen <markokr@gmail.com>

pgcrypto uses code from the following sources:

Algorithm Author Source origin
DES crypt David Burren and others FreeBSD libcrypt

MD5 crypt Poul-Henning Kamp FreeBSD libcrypt

Blowfish crypt Solar Designer www.openwall.com

Blowfish cipher Simon Tatham PuTTY

Rijndael cipher Brian Gladman OpenBSD sys/crypto

MD5 and SHA1 WIDE Project KAME kame/sys/crypto

SHA256/384/512 Aaron D. Gifford OpenBSD sys/crypto

BIGNUM math Michael J. Fromberger dartmouth.edu/~sting/sw/imath

F.26. pg_freespacemap
The pg_freespacemap module provides a means for examining the free space map (FSM). It provides a
function called pg_freespace, or two overloaded functions, to be precise. The functions show the value
recorded in the free space map for a given page, or for all pages in the relation.

By default public access is revoked from the functions, just in case there are security issues lurking.

F.26.1. Functions

pg_freespace(rel regclass IN, blkno bigint IN) returns int2

Returns the amount of free space on the page of the relation, specified by blkno, according to the
FSM.

pg_freespace(rel regclass IN, blkno OUT bigint, avail OUT int2)

Displays the amount of free space on each page of the relation, according to the FSM. A set of
(blkno bigint, avail int2) tuples is returned, one tuple for each page in the relation.

The values stored in the free space map are not exact. They’re rounded to precision of 1/256th of BLCKSZ
(32 bytes with default BLCKSZ), and they’re not kept fully up-to-date as tuples are inserted and updated.

For indexes, what is tracked is entirely-unused pages, rather than free space within pages. Therefore, the
values are not meaningful, just whether a page is full or empty.

NOTE: The interface was changed in version 8.4, to reflect the new FSM implementation introduced in
the same version.

2704

Appendix F. Additional Supplied Modules

F.26.2. Sample Output
postgres=# SELECT * FROM pg_freespace(’foo’);
blkno | avail

-------+-------
0 | 0
1 | 0
2 | 0
3 | 32
4 | 704
5 | 704
6 | 704
7 | 1216
8 | 704
9 | 704

10 | 704
11 | 704
12 | 704
13 | 704
14 | 704
15 | 704
16 | 704
17 | 704
18 | 704
19 | 3648

(20 rows)

postgres=# SELECT * FROM pg_freespace(’foo’, 7);
pg_freespace

1216

(1 row)

F.26.3. Author
Original version by Mark Kirkwood <markir@paradise.net.nz>. Rewritten in version 8.4 to suit new
FSM implementation by Heikki Linnakangas <heikki@enterprisedb.com>

F.27. pgrowlocks
The pgrowlocks module provides a function to show row locking information for a specified table.

F.27.1. Overview
pgrowlocks(text) returns setof record

2705

Appendix F. Additional Supplied Modules

The parameter is the name of a table. The result is a set of records, with one row for each locked row
within the table. The output columns are shown in Table F-19.

Table F-19. pgrowlocks Output Columns

Name Type Description
locked_row tid Tuple ID (TID) of locked row

lock_type text Shared for shared lock, or
Exclusive for exclusive lock

locker xid Transaction ID of locker, or
multixact ID if multitransaction

multi boolean True if locker is a
multitransaction

xids xid[] Transaction IDs of lockers (more
than one if multitransaction)

pids integer[] Process IDs of locking backends
(more than one if
multitransaction)

pgrowlocks takes AccessShareLock for the target table and reads each row one by one to collect the
row locking information. This is not very speedy for a large table. Note that:

1. If the table as a whole is exclusive-locked by someone else, pgrowlocks will be blocked.

2. pgrowlocks is not guaranteed to produce a self-consistent snapshot. It is possible that a new row
lock is taken, or an old lock is freed, during its execution.

pgrowlocks does not show the contents of locked rows. If you want to take a look at the row contents at
the same time, you could do something like this:

SELECT * FROM accounts AS a, pgrowlocks(’accounts’) AS p
WHERE p.locked_row = a.ctid;

Be aware however that (as of PostgreSQL 8.3) such a query will be very inefficient.

F.27.2. Sample Output
test=# SELECT * FROM pgrowlocks(’t1’);
locked_row | lock_type | locker | multi | xids | pids

------------+-----------+--------+-------+-----------+---------------
(0,1) | Shared | 19 | t | {804,805} | {29066,29068}
(0,2) | Shared | 19 | t | {804,805} | {29066,29068}
(0,3) | Exclusive | 804 | f | {804} | {29066}
(0,4) | Exclusive | 804 | f | {804} | {29066}

(4 rows)

2706

Appendix F. Additional Supplied Modules

F.27.3. Author
Tatsuo Ishii

F.28. pg_stat_statements
The pg_stat_statements module provides a means for tracking execution statistics of all SQL state-
ments executed by a server.

The module must be loaded by adding pg_stat_statements to shared_preload_libraries in
postgresql.conf, because it requires additional shared memory. This means that a server restart is
needed to add or remove the module.

F.28.1. The pg_stat_statements View
The statistics gathered by the module are made available via a system view named
pg_stat_statements. This view contains one row for each distinct query, database ID, and user ID
(up to the maximum number of distinct statements that the module can track). The columns of the view
are shown in Table F-20.

Table F-20. pg_stat_statements Columns

Name Type References Description
userid oid pg_authid.oid OID of user who

executed the statement

dbid oid pg_database.oid OID of database in
which the statement was
executed

query text Text of a representative
statement (up to
track_activity_query_size
bytes)

calls bigint Number of times
executed

total_time double precision Total time spent in the
statement, in
milliseconds

rows bigint Total number of rows
retrieved or affected by
the statement

shared_blks_hit bigint Total number of shared
block cache hits by the
statement

2707

Appendix F. Additional Supplied Modules

Name Type References Description
shared_blks_read bigint Total number of shared

blocks read by the
statement

shared_blks_dirtied bigint Total number of shared
blocks dirtied by the
statement

shared_blks_written bigint Total number of shared
blocks written by the
statement

local_blks_hit bigint Total number of local
block cache hits by the
statement

local_blks_read bigint Total number of local
blocks read by the
statement

local_blks_dirtied bigint Total number of local
blocks dirtied by the
statement

local_blks_written bigint Total number of local
blocks written by the
statement

temp_blks_read bigint Total number of temp
blocks read by the
statement

temp_blks_written bigint Total number of temp
blocks written by the
statement

blk_read_time double precision Total time the statement
spent reading blocks, in
milliseconds (if
track_io_timing is
enabled, otherwise zero)

blk_write_time double precision Total time the statement
spent writing blocks, in
milliseconds (if
track_io_timing is
enabled, otherwise zero)

This view, and the function pg_stat_statements_reset, are available only in databases they have
been specifically installed into by installing the pg_stat_statements extension. However, statistics
are tracked across all databases of the server whenever the pg_stat_statements module is loaded into
the server, regardless of presence of the view.

2708

Appendix F. Additional Supplied Modules

For security reasons, non-superusers are not allowed to see the text of queries executed by other users.
They can see the statistics, however, if the view has been installed in their database.

Plannable queries (that is, SELECT, INSERT, UPDATE, and DELETE) are combined into a single
pg_stat_statements entry whenever they have identical query structures according to an internal
hash calculation. Typically, two queries will be considered the same for this purpose if they are
semantically equivalent except for the values of literal constants appearing in the query. Utility
commands (that is, all other commands) are compared strictly on the basis of their textual query strings,
however.

When a constant’s value has been ignored for purposes of matching the query to other queries, the constant
is replaced by ? in the pg_stat_statements display. The rest of the query text is that of the first query
that had the particular hash value associated with the pg_stat_statements entry.

In some cases, queries with visibly different texts might get merged into a single pg_stat_statements
entry. Normally this will happen only for semantically equivalent queries, but there is a small chance of
hash collisions causing unrelated queries to be merged into one entry. (This cannot happen for queries
belonging to different users or databases, however.)

Since the hash value is computed on the post-parse-analysis representation of the queries, the opposite is
also possible: queries with identical texts might appear as separate entries, if they have different meanings
as a result of factors such as different search_path settings.

F.28.2. Functions

pg_stat_statements_reset() returns void

pg_stat_statements_reset discards all statistics gathered so far by pg_stat_statements.
By default, this function can only be executed by superusers.

F.28.3. Configuration Parameters

pg_stat_statements.max (integer)

pg_stat_statements.max is the maximum number of statements tracked by the module (i.e., the
maximum number of rows in the pg_stat_statements view). If more distinct statements than that
are observed, information about the least-executed statements is discarded. The default value is 1000.
This parameter can only be set at server start.

pg_stat_statements.track (enum)

pg_stat_statements.track controls which statements are counted by the module. Specify top

to track top-level statements (those issued directly by clients), all to also track nested statements
(such as statements invoked within functions), or none to disable statement statistics collection. The
default value is top. Only superusers can change this setting.

pg_stat_statements.track_utility (boolean)

pg_stat_statements.track_utility controls whether utility commands are tracked by the
module. Utility commands are all those other than SELECT, INSERT, UPDATE and DELETE. The
default value is on. Only superusers can change this setting.

2709

Appendix F. Additional Supplied Modules

pg_stat_statements.save (boolean)

pg_stat_statements.save specifies whether to save statement statistics across server
shutdowns. If it is off then statistics are not saved at shutdown nor reloaded at server start. The
default value is on. This parameter can only be set in the postgresql.conf file or on the server
command line.

The module requires additional shared memory amounting to about pg_stat_statements.max *
track_activity_query_size bytes. Note that this memory is consumed whenever the module is loaded,
even if pg_stat_statements.track is set to none.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = ’pg_stat_statements’

pg_stat_statements.max = 10000
pg_stat_statements.track = all

F.28.4. Sample Output
bench=# SELECT pg_stat_statements_reset();

$ pgbench -i bench
$ pgbench -c10 -t300 bench

bench=# \x
bench=# SELECT query, calls, total_time, rows, 100.0 * shared_blks_hit /

nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
FROM pg_stat_statements ORDER BY total_time DESC LIMIT 5;

-[RECORD 1]---
query | UPDATE pgbench_branches SET bbalance = bbalance + ? WHERE bid = ?;
calls | 3000
total_time | 9609.00100000002
rows | 2836
hit_percent | 99.9778970000200936
-[RECORD 2]---
query | UPDATE pgbench_tellers SET tbalance = tbalance + ? WHERE tid = ?;
calls | 3000
total_time | 8015.156
rows | 2990
hit_percent | 99.9731126579631345
-[RECORD 3]---
query | copy pgbench_accounts from stdin
calls | 1
total_time | 310.624
rows | 100000
hit_percent | 0.30395136778115501520
-[RECORD 4]---
query | UPDATE pgbench_accounts SET abalance = abalance + ? WHERE aid = ?;

2710

Appendix F. Additional Supplied Modules

calls | 3000
total_time | 271.741999999997
rows | 3000
hit_percent | 93.7968855088209426
-[RECORD 5]---
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_time | 81.42
rows | 0
hit_percent | 34.4947735191637631

F.28.5. Authors
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>. Query normalization added by Peter Ge-
oghegan <peter@2ndquadrant.com>.

F.29. pgstattuple
The pgstattuple module provides various functions to obtain tuple-level statistics.

F.29.1. Functions

pgstattuple(text) returns record

pgstattuple returns a relation’s physical length, percentage of “dead” tuples, and other info. This
may help users to determine whether vacuum is necessary or not. The argument is the target relation’s
name (optionally schema-qualified). For example:

test=> SELECT * FROM pgstattuple(’pg_catalog.pg_proc’);
-[RECORD 1]------+-------
table_len | 458752
tuple_count | 1470
tuple_len | 438896
tuple_percent | 95.67
dead_tuple_count | 11
dead_tuple_len | 3157
dead_tuple_percent | 0.69
free_space | 8932
free_percent | 1.95

The output columns are described in Table F-21.

Table F-21. pgstattuple Output Columns

Column Type Description
table_len bigint Physical relation length in

bytes

2711

Appendix F. Additional Supplied Modules

Column Type Description
tuple_count bigint Number of live tuples

tuple_len bigint Total length of live tuples in
bytes

tuple_percent float8 Percentage of live tuples

dead_tuple_count bigint Number of dead tuples

dead_tuple_len bigint Total length of dead tuples in
bytes

dead_tuple_percent float8 Percentage of dead tuples

free_space bigint Total free space in bytes

free_percent float8 Percentage of free space

pgstattuple acquires only a read lock on the relation. So the results do not reflect an instantaneous
snapshot; concurrent updates will affect them.

pgstattuple judges a tuple is “dead” if HeapTupleSatisfiesNow returns false.

pgstattuple(oid) returns record

This is the same as pgstattuple(text), except that the target relation is specified by OID.

pgstatindex(text) returns record

pgstatindex returns a record showing information about a B-tree index. For example:

test=> SELECT * FROM pgstatindex(’pg_cast_oid_index’);
-[RECORD 1]------+------
version | 2
tree_level | 0
index_size | 8192
root_block_no | 1
internal_pages | 0
leaf_pages | 1
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 50.27
leaf_fragmentation | 0

The output columns are:

Column Type Description
version integer B-tree version number

tree_level integer Tree level of the root page

index_size bigint Total number of pages in index

root_block_no bigint Location of root block

internal_pages bigint Number of “internal”
(upper-level) pages

leaf_pages bigint Number of leaf pages

empty_pages bigint Number of empty pages

deleted_pages bigint Number of deleted pages

2712

Appendix F. Additional Supplied Modules

Column Type Description
avg_leaf_density float8 Average density of leaf pages

leaf_fragmentation float8 Leaf page fragmentation

As with pgstattuple, the results are accumulated page-by-page, and should not be expected to
represent an instantaneous snapshot of the whole index.

pg_relpages(text) returns bigint

pg_relpages returns the number of pages in the relation.

F.29.2. Authors
Tatsuo Ishii and Satoshi Nagayasu

F.30. pg_trgm
The pg_trgm module provides functions and operators for determining the similarity of ASCII alphanu-
meric text based on trigram matching, as well as index operator classes that support fast searching for
similar strings.

F.30.1. Trigram (or Trigraph) Concepts
A trigram is a group of three consecutive characters taken from a string. We can measure the similarity of
two strings by counting the number of trigrams they share. This simple idea turns out to be very effective
for measuring the similarity of words in many natural languages.

Note: A string is considered to have two spaces prefixed and one space suffixed when determining
the set of trigrams contained in the string. For example, the set of trigrams in the string “cat” is “ c”,
“ ca”, “cat”, and “at ”.

F.30.2. Functions and Operators
The functions provided by the pg_trgm module are shown in Table F-22, the operators in Table F-23.

Table F-22. pg_trgm Functions

Function Returns Description

2713

Appendix F. Additional Supplied Modules

Function Returns Description
similarity(text, text) real Returns a number that indicates

how similar the two arguments
are. The range of the result is
zero (indicating that the two
strings are completely dissimilar)
to one (indicating that the two
strings are identical).

show_trgm(text) text[] Returns an array of all the
trigrams in the given string. (In
practice this is seldom useful
except for debugging.)

show_limit() real Returns the current similarity
threshold used by the % operator.
This sets the minimum similarity
between two words for them to
be considered similar enough to
be misspellings of each other, for
example.

set_limit(real) real Sets the current similarity
threshold that is used by the %
operator. The threshold must be
between 0 and 1 (default is 0.3).
Returns the same value passed
in.

Table F-23. pg_trgm Operators

Operator Returns Description
text % text boolean Returns true if its arguments

have a similarity that is greater
than the current similarity
threshold set by set_limit.

text <-> text real Returns the “distance” between
the arguments, that is one minus
the similarity() value.

F.30.3. Index Support
The pg_trgm module provides GiST and GIN index operator classes that allow you to create an index
over a text column for the purpose of very fast similarity searches. These index types support the above-
described similarity operators, and additionally support trigram-based index searches for LIKE and ILIKE
queries. (These indexes do not support equality nor simple comparison operators, so you may need a
regular B-tree index too.)

2714

Appendix F. Additional Supplied Modules

Example:

CREATE TABLE test_trgm (t text);
CREATE INDEX trgm_idx ON test_trgm USING gist (t gist_trgm_ops);

or

CREATE INDEX trgm_idx ON test_trgm USING gin (t gin_trgm_ops);

At this point, you will have an index on the t column that you can use for similarity searching. A typical
query is

SELECT t, similarity(t, ’word’) AS sml
FROM test_trgm
WHERE t % ’word’
ORDER BY sml DESC, t;

This will return all values in the text column that are sufficiently similar to word, sorted from best match
to worst. The index will be used to make this a fast operation even over very large data sets.

A variant of the above query is

SELECT t, t <-> ’word’ AS dist
FROM test_trgm
ORDER BY dist LIMIT 10;

This can be implemented quite efficiently by GiST indexes, but not by GIN indexes. It will usually beat
the first formulation when only a small number of the closest matches is wanted.

Beginning in PostgreSQL 9.1, these index types also support index searches for LIKE and ILIKE, for
example

SELECT * FROM test_trgm WHERE t LIKE ’%foo%bar’;

The index search works by extracting trigrams from the search string and then looking these up in the
index. The more trigrams in the search string, the more effective the index search is. Unlike B-tree based
searches, the search string need not be left-anchored.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere. As a rule of thumb, a GIN index is faster to search than a GiST
index, but slower to build or update; so GIN is better suited for static data and GiST for often-updated
data.

F.30.4. Text Search Integration
Trigram matching is a very useful tool when used in conjunction with a full text index. In particular it
can help to recognize misspelled input words that will not be matched directly by the full text search
mechanism.

The first step is to generate an auxiliary table containing all the unique words in the documents:

CREATE TABLE words AS SELECT word FROM

2715

Appendix F. Additional Supplied Modules

ts_stat(’SELECT to_tsvector(”simple”, bodytext) FROM documents’);

where documents is a table that has a text field bodytext that we wish to search. The reason for using
the simple configuration with the to_tsvector function, instead of using a language-specific configu-
ration, is that we want a list of the original (unstemmed) words.

Next, create a trigram index on the word column:

CREATE INDEX words_idx ON words USING gin(word gin_trgm_ops);

Now, a SELECT query similar to the previous example can be used to suggest spellings for misspelled
words in user search terms. A useful extra test is to require that the selected words are also of similar
length to the misspelled word.

Note: Since the words table has been generated as a separate, static table, it will need to be period-
ically regenerated so that it remains reasonably up-to-date with the document collection. Keeping it
exactly current is usually unnecessary.

F.30.5. References
GiST Development Site http://www.sai.msu.su/~megera/postgres/gist/

Tsearch2 Development Site http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

F.30.6. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd.,Russia

Documentation: Christopher Kings-Lynne

This module is sponsored by Delta-Soft Ltd., Moscow, Russia.

F.31. seg
This module implements a data type seg for representing line segments, or floating point intervals. seg
can represent uncertainty in the interval endpoints, making it especially useful for representing laboratory
measurements.

F.31.1. Rationale
The geometry of measurements is usually more complex than that of a point in a numeric continuum. A
measurement is usually a segment of that continuum with somewhat fuzzy limits. The measurements come

2716

Appendix F. Additional Supplied Modules

out as intervals because of uncertainty and randomness, as well as because the value being measured may
naturally be an interval indicating some condition, such as the temperature range of stability of a protein.

Using just common sense, it appears more convenient to store such data as intervals, rather than pairs of
numbers. In practice, it even turns out more efficient in most applications.

Further along the line of common sense, the fuzziness of the limits suggests that the use of traditional
numeric data types leads to a certain loss of information. Consider this: your instrument reads 6.50, and
you input this reading into the database. What do you get when you fetch it? Watch:

test=> select 6.50 :: float8 as "pH";
pH

6.5
(1 row)

In the world of measurements, 6.50 is not the same as 6.5. It may sometimes be critically different. The
experimenters usually write down (and publish) the digits they trust. 6.50 is actually a fuzzy interval
contained within a bigger and even fuzzier interval, 6.5, with their center points being (probably) the only
common feature they share. We definitely do not want such different data items to appear the same.

Conclusion? It is nice to have a special data type that can record the limits of an interval with arbitrarily
variable precision. Variable in the sense that each data element records its own precision.

Check this out:

test=> select ’6.25 .. 6.50’::seg as "pH";
pH

6.25 .. 6.50
(1 row)

F.31.2. Syntax
The external representation of an interval is formed using one or two floating-point numbers joined by the
range operator (.. or ...). Alternatively, it can be specified as a center point plus or minus a deviation.
Optional certainty indicators (<, > or ~) can be stored as well. (Certainty indicators are ignored by all the
built-in operators, however.) Table F-24 gives an overview of allowed representations; Table F-25 shows
some examples.

In Table F-24, x, y, and delta denote floating-point numbers. x and y, but not delta, can be preceded
by a certainty indicator.

Table F-24. seg External Representations

x Single value (zero-length interval)

x .. y Interval from x to y

x (+-) delta Interval from x - delta to x + delta

x .. Open interval with lower bound x

2717

Appendix F. Additional Supplied Modules

.. x Open interval with upper bound x

Table F-25. Examples of Valid seg Input

5.0 Creates a zero-length segment (a point, if you
will)

~5.0 Creates a zero-length segment and records ~ in the
data. ~ is ignored by seg operations, but is
preserved as a comment.

<5.0 Creates a point at 5.0. < is ignored but is
preserved as a comment.

>5.0 Creates a point at 5.0. > is ignored but is
preserved as a comment.

5(+-)0.3 Creates an interval 4.7 .. 5.3. Note that the
(+-) notation isn’t preserved.

50 .. Everything that is greater than or equal to 50

.. 0 Everything that is less than or equal to 0

1.5e-2 .. 2E-2 Creates an interval 0.015 .. 0.02

1 ... 2 The same as 1...2, or 1 .. 2, or 1..2 (spaces
around the range operator are ignored)

Because ... is widely used in data sources, it is allowed as an alternative spelling of ... Unfortunately,
this creates a parsing ambiguity: it is not clear whether the upper bound in 0...23 is meant to be 23 or
0.23. This is resolved by requiring at least one digit before the decimal point in all numbers in seg input.

As a sanity check, seg rejects intervals with the lower bound greater than the upper, for example 5 .. 2.

F.31.3. Precision
seg values are stored internally as pairs of 32-bit floating point numbers. This means that numbers with
more than 7 significant digits will be truncated.

Numbers with 7 or fewer significant digits retain their original precision. That is, if your query returns
0.00, you will be sure that the trailing zeroes are not the artifacts of formatting: they reflect the precision
of the original data. The number of leading zeroes does not affect precision: the value 0.0067 is considered
to have just 2 significant digits.

F.31.4. Usage
The seg module includes a GiST index operator class for seg values. The operators supported by the
GiST operator class are shown in Table F-26.

Table F-26. Seg GiST Operators

2718

Appendix F. Additional Supplied Modules

Operator Description
[a, b] << [c, d] [a, b] is entirely to the left of [c, d]. That is, [a, b]

<< [c, d] is true if b < c and false otherwise.

[a, b] >> [c, d] [a, b] is entirely to the right of [c, d]. That is, [a, b]
>> [c, d] is true if a > d and false otherwise.

[a, b] &< [c, d] Overlaps or is left of — This might be better read
as “does not extend to right of”. It is true when b
<= d.

[a, b] &> [c, d] Overlaps or is right of — This might be better read
as “does not extend to left of”. It is true when a >=
c.

[a, b] = [c, d] Same as — The segments [a, b] and [c, d] are
identical, that is, a = c and b = d.

[a, b] && [c, d] The segments [a, b] and [c, d] overlap.

[a, b] @> [c, d] The segment [a, b] contains the segment [c, d], that
is, a <= c and b >= d.

[a, b] <@ [c, d] The segment [a, b] is contained in [c, d], that is, a
>= c and b <= d.

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names are
reversed from the convention formerly followed by the core geometric data types!)

The standard B-tree operators are also provided, for example

Operator Description
[a, b] < [c, d] Less than

[a, b] > [c, d] Greater than

These operators do not make a lot of sense for any practical purpose but sorting. These operators first
compare (a) to (c), and if these are equal, compare (b) to (d). That results in reasonably good sorting in
most cases, which is useful if you want to use ORDER BY with this type.

F.31.5. Notes
For examples of usage, see the regression test sql/seg.sql.

The mechanism that converts (+-) to regular ranges isn’t completely accurate in determining the number
of significant digits for the boundaries. For example, it adds an extra digit to the lower boundary if the
resulting interval includes a power of ten:

postgres=> select ’10(+-)1’::seg as seg;
seg

9.0 .. 11 -- should be: 9 .. 11

2719

Appendix F. Additional Supplied Modules

The performance of an R-tree index can largely depend on the initial order of input values. It may be very
helpful to sort the input table on the seg column; see the script sort-segments.pl for an example.

F.31.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science Di-
vision, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (http://db.cs.berkeley.edu/jmh/) for elucidating the gist of
the GiST (http://gist.cs.berkeley.edu/). I am also grateful to all Postgres developers, present and past, for
enabling myself to create my own world and live undisturbed in it. And I would like to acknowledge my
gratitude to Argonne Lab and to the U.S. Department of Energy for the years of faithful support of my
database research.

F.32. sepgsql
sepgsql is a loadable module that supports label-based mandatory access control (MAC) based on
SELinux security policy.

Warning
The current implementation has significant limitations, and does not enforce manda-
tory access control for all actions. See Section F.32.7.

F.32.1. Overview
This module integrates with SELinux to provide an additional layer of security checking above and be-
yond what is normally provided by PostgreSQL. From the perspective of SELinux, this module allows
PostgreSQL to function as a user-space object manager. Each table or function access initiated by a DML
query will be checked against the system security policy. This check is in addition to the usual SQL
permissions checking performed by PostgreSQL.

SELinux access control decisions are made using security labels, which are represented by strings such
as system_u:object_r:sepgsql_table_t:s0. Each access control decision involves two labels: the
label of the subject attempting to perform the action, and the label of the object on which the operation
is to be performed. Since these labels can be applied to any sort of object, access control decisions for
objects stored within the database can be (and, with this module, are) subjected to the same general criteria
used for objects of any other type, such as files. This design is intended to allow a centralized security
policy to protect information assets independent of the particulars of how those assets are stored.

The SECURITY LABEL statement allows assignment of a security label to a database object.

2720

Appendix F. Additional Supplied Modules

F.32.2. Installation
sepgsql can only be used on Linux 2.6.28 or higher with SELinux enabled. It is not available on any
other platform. You will also need libselinux 2.0.99 or higher and selinux-policy 3.9.13 or higher (although
some distributions may backport the necessary rules into older policy versions).

The sestatus command allows you to check the status of SELinux. A typical display is:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

If SELinux is disabled or not installed, you must set that product up first before installing this module.

To build this module, include the option --with-selinux in your PostgreSQL configure command.
Be sure that the libselinux-devel RPM is installed at build time.

To use this module, you must include sepgsql in the shared_preload_libraries parameter in
postgresql.conf. The module will not function correctly if loaded in any other manner. Once the
module is loaded, you should execute sepgsql.sql in each database. This will install functions needed
for security label management, and assign initial security labels.

Here is an example showing how to initialize a fresh database cluster with sepgsql functions and security
labels installed. Adjust the paths shown as appropriate for your installation:

$ export PGDATA=/path/to/data/directory
$ initdb
$ vi $PGDATA/postgresql.conf
change
#shared_preload_libraries = ” # (change requires restart)

to
shared_preload_libraries = ’sepgsql’ # (change requires restart)

$ for DBNAME in template0 template1 postgres; do
postgres --single -F -c exit_on_error=true $DBNAME \

</usr/local/pgsql/share/contrib/sepgsql.sql >/dev/null
done

Please note that you may see some or all of the following notifications depending on the particular versions
you have of libselinux and selinux-policy:

/etc/selinux/targeted/contexts/sepgsql_contexts: line 33 has invalid object type db_blobs
/etc/selinux/targeted/contexts/sepgsql_contexts: line 36 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 37 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 38 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 39 has invalid object type db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 40 has invalid object type db_language

These messages are harmless and should be ignored.

If the installation process completes without error, you can now start the server normally.

2721

Appendix F. Additional Supplied Modules

F.32.3. Regression Tests
Due to the nature of SELinux, running the regression tests for sepgsql requires several extra configura-
tion steps, some of which must be done as root. The regression tests will not be run by an ordinary make

check or make installcheck command; you must set up the configuration and then invoke the test
script manually. The tests must be run in the contrib/sepgsql directory of a configured PostgreSQL
build tree. Although they require a build tree, the tests are designed to be executed against an installed
server, that is they are comparable to make installcheck not make check.

First, set up sepgsql in a working database according to the instructions in Section F.32.2. Note that
the current operating system user must be able to connect to the database as superuser without password
authentication.

Second, build and install the policy package for the regression test. The sepgsql-regtest policy is a
special purpose policy package which provides a set of rules to be allowed during the regression tests.
It should be built from the policy source file sepgsql-regtest.te, which is done using make with a
Makefile supplied by SELinux. You will need to locate the appropriate Makefile on your system; the path
shown below is only an example. Once built, install this policy package using the semodule command,
which loads supplied policy packages into the kernel. If the package is correctly installed, semodule -l

should list sepgsql-regtest as an available policy package:

$ cd .../contrib/sepgsql
$ make -f /usr/share/selinux/devel/Makefile
$ sudo semodule -u sepgsql-regtest.pp
$ sudo semodule -l | grep sepgsql
sepgsql-regtest 1.04

Third, turn on sepgsql_regression_test_mode. For security reasons, the rules in
sepgsql-regtest are not enabled by default; the sepgsql_regression_test_mode parameter
enables the rules needed to launch the regression tests. It can be turned on using the setsebool

command:

$ sudo setsebool sepgsql_regression_test_mode on
$ getsebool sepgsql_regression_test_mode
sepgsql_regression_test_mode --> on

Fourth, verify your shell is operating in the unconfined_t domain:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

See Section F.32.8 for details on adjusting your working domain, if necessary.

Finally, run the regression test script:

$./test_sepgsql

This script will attempt to verify that you have done all the configuration steps correctly, and then it will
run the regression tests for the sepgsql module.

After completing the tests, it’s recommended you disable the sepgsql_regression_test_mode pa-
rameter:

$ sudo setsebool sepgsql_regression_test_mode off

2722

Appendix F. Additional Supplied Modules

You might prefer to remove the sepgsql-regtest policy entirely:

$ sudo semodule -r sepgsql-regtest

F.32.4. GUC Parameters

sepgsql.permissive (boolean)

This parameter enables sepgsql to function in permissive mode, regardless of the system setting.
The default is off. This parameter can only be set in the postgresql.conf file or on the server
command line.

When this parameter is on, sepgsql functions in permissive mode, even if SELinux in general is
working in enforcing mode. This parameter is primarily useful for testing purposes.

sepgsql.debug_audit (boolean)

This parameter enables the printing of audit messages regardless of the system policy settings. The
default is off, which means that messages will be printed according to the system settings.

The security policy of SELinux also has rules to control whether or not particular accesses are logged.
By default, access violations are logged, but allowed accesses are not.

This parameter forces all possible logging to be turned on, regardless of the system policy.

F.32.5. Features

F.32.5.1. Controlled Object Classes

The security model of SELinux describes all the access control rules as relationships between a subject
entity (typically, a client of the database) and an object entity (such as a database object), each of which
is identified by a security label. If access to an unlabelled object is attempted, the object is treated as if it
were assigned the label unlabeled_t.

Currently, sepgsql allows security labels to be assigned to schemas, tables, columns, sequences, views,
and functions. When sepgsql is in use, security labels are automatically assigned to supported database
objects at creation time. This label is called a default security label, and is decided according to the system
security policy, which takes as input the creator’s label and the label assigned to the new object’s parent
object.

A new database object basically inherits the security label of the parent object, except when the security
policy has special rules known as type-transition rules, in which case a different label may be applied. For
schemas, the parent object is the current database; for tables, sequences, views, and functions, it is the
containing schema; for columns, it is the containing table.

F.32.5.2. DML Permissions

For tables, db_table:select, db_table:insert, db_table:update or db_table:delete

are checked for all the referenced target tables depending on the kind of statement; in addition,

2723

Appendix F. Additional Supplied Modules

db_table:select is also checked for all the tables that contain columns referenced in the WHERE or
RETURNING clause, as a data source for UPDATE, and so on.

Column-level permissions will also be checked for each referenced column. db_column:select is
checked on not only the columns being read using SELECT, but those being referenced in other DML
statements; db_column:update or db_column:insert will also be checked for columns being modi-
fied by UPDATE or INSERT.

For example, consider:

UPDATE t1 SET x = 2, y = md5sum(y) WHERE z = 100;

Here, db_column:update will be checked for t1.x, since it is being updated, db_column:{select
update} will be checked for t1.y, since it is both updated and referenced, and db_column:select will
be checked for t1.z, since it is only referenced. db_table:{select update} will also be checked at
the table level.

For sequences, db_sequence:get_value is checked when we reference a sequence object using
SELECT; however, note that we do not currently check permissions on execution of corresponding
functions such as lastval().

For views, db_view:expand will be checked, then any other required permissions will be checked on
the objects being expanded from the view, individually.

For functions, db_procedure:{execute} is defined, but is not checked in this version.

The client must be allowed to access all referenced tables and columns, even if they originated from views
which were then expanded, so that we apply consistent access control rules independent of the manner in
which the table contents are referenced.

The default database privilege system allows database superusers to modify system catalogs using DML
commands, and reference or modify toast tables. These operations are prohibited when sepgsql is en-
abled.

F.32.5.3. DDL Permissions

SELinux defines several permissions to control common operations for each object type; such as creation,
alter, drop and relabel of security label. In addition, several object types have special permissions to control
their characteristic operations; such as addition or deletion of name entries within a particular schema.

When a CREATE command is executed, create will be checked on the object being constructed for
each object types. A default security label will be assigned to the new database object, and the create

permission will be checked on the pair of security label of the client and the new object itself. We consider
CREATE TABLE to construct a table and underlying columns at the same time, so it requires the users to
have permission to create both the table and its columns.

A few additional checks are applied depending on object types. On CREATE DATABASE, getattr
permission will be checked on the source or template database of the new database, not only create

on the new database. On creation of objects within a particular schema (tables, views, sequences and
procedures), add_name will be also checked on the schema, not only create on the new object itself.

When DROP command is executed, drop will be checked on the object being removed for each object
types. Permissions will be also checked for objects dropped indirectly via CASCADE. Deletion of ob-

2724

Appendix F. Additional Supplied Modules

jects contained within a particular schema (tables, views, sequences and procedures) additionally requires
remove_name on the schema.

When SECURITY LABEL is executed, setattr and relabelfrom will be checked on the object being
relabeled with its old security label, then relabelto with the supplied new security label.

In the case where multiple label providers are installed and the user tries to set a security label, but it
is not managed by SELinux, only setattr should be checked here. This is currently not done due to
implementation restrictions.

F.32.5.4. Trusted Procedures

Trusted procedures are similar to security definer functions or setuid commands. SELinux provides a
feature to allow trusted code to run using a security label different from that of the client, generally for
the purpose of providing highly controlled access to sensitive data (e.g. rows might be omitted, or the
precision of stored values might be reduced). Whether or not a function acts as a trusted procedure is
controlled by its security label and the operating system security policy. For example:

postgres=# CREATE TABLE customer (
cid int primary key,
cname text,
credit text

);
CREATE TABLE
postgres=# SECURITY LABEL ON COLUMN customer.credit

IS ’system_u:object_r:sepgsql_secret_table_t:s0’;
SECURITY LABEL
postgres=# CREATE FUNCTION show_credit(int) RETURNS text

AS ’SELECT regexp_replace(credit, ”-[0-9]+$”, ”-xxxx”, ”g”)
FROM customer WHERE cid = $1’

LANGUAGE sql;
CREATE FUNCTION
postgres=# SECURITY LABEL ON FUNCTION show_credit(int)

IS ’system_u:object_r:sepgsql_trusted_proc_exec_t:s0’;
SECURITY LABEL

The above operations should be performed by an administrative user.

postgres=# SELECT * FROM customer;
ERROR: SELinux: security policy violation
postgres=# SELECT cid, cname, show_credit(cid) FROM customer;
cid | cname | show_credit

-----+--------+---------------------
1 | taro | 1111-2222-3333-xxxx
2 | hanako | 5555-6666-7777-xxxx

(2 rows)

In this case, a regular user cannot reference customer.credit directly, but a trusted procedure
show_credit allows him to print the credit card numbers of customers with some of the digits masked
out.

2725

Appendix F. Additional Supplied Modules

F.32.5.5. Dynamic Domain Transitions

It is possible to use SELinux’s dynamic domain transition feature to switch the security label of the client
process, the client domain, to a new context, if that is allowed by the security policy. The client domain
needs the setcurrent permission and also dyntransition from the old to the new domain.

Dynamic domain transitions should be considered carefully, because they allow users to switch their label,
and therefore their privileges, at their option, rather than (as in the case of a trusted procedure) as mandated
by the system. Thus, the dyntransition permission is only considered safe when used to switch to a
domain with a smaller set of privileges than the original one. For example:

regression=# select sepgsql_getcon();
sepgsql_getcon

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

(1 row)

regression=# SELECT sepgsql_setcon(’unconfined_u:unconfined_r:unconfined_t:s0-s0:c1.c4’);
sepgsql_setcon

t

(1 row)

regression=# SELECT sepgsql_setcon(’unconfined_u:unconfined_r:unconfined_t:s0-s0:c1.c1023’);
ERROR: SELinux: security policy violation

In this example above we were allowed to switch from the larger MCS range c1.c1023 to the smaller
range c1.c4, but switching back was denied.

A combination of dynamic domain transition and trusted procedure enables an interesting use case that fits
the typical process life-cycle of connection pooling software. Even if your connection pooling software
is not allowed to run most of SQL commands, you can allow it to switch the security label of the client
using the sepgsql_setcon() function from within a trusted procedure; that should take some credential
to authorize the request to switch the client label. After that, this session will have the privileges of the
target user, rather than the connection pooler. The connection pooler can later revert the security label
change by again using sepgsql_setcon() with NULL argument, again invoked from within a trusted
procedure with appropriate permissions checks. The point here is that only the trusted procedure actually
has permission to change the effective security label, and only does so when given proper credentials.
Of course, for secure operation, the credential store (table, procedure definition, or whatever) must be
protected from unauthorized access.

F.32.5.6. Miscellaneous

We reject the LOAD command across the board, because any module loaded could easily circumvent
security policy enforcement.

F.32.6. Sepgsql Functions
Table F-27 shows the available functions.

2726

Appendix F. Additional Supplied Modules

Table F-27. Sepgsql Functions

sepgsql_getcon() returns text Returns the client domain, the current security
label of the client.

sepgsql_setcon(text) returns bool Switches the client domain of the current session
to the new domain, if allowed by the security
policy. It also accepts NULL input as a request to
transition to the client’s original domain.

sepgsql_mcstrans_in(text) returns

text

Translates the given qualifies MLS/MCS range
into raw format if the mcstrans daemon is running.

sepgsql_mcstrans_out(text) returns

text

Translates the given raw MCS/MCS range into
qualified format if the mcstrans daemon is
running.

sepgsql_restorecon(text) returns bool Sets up initial security labels for all objects within
the current database. The argument may be NULL,
or the name of a specfile to be used as alternative
of the system default.

F.32.7. Limitations

Data Definition Language (DDL) Permissions

Due to implementation restrictions, some DDL operations do not check permissions.

Data Control Language (DCL) Permissions

Due to implementation restrictions, DCL operations do not check permissions.

Row-level access control

PostgreSQL does not support row-level access; therefore, sepgsql does not support it either.

Covert channels

sepgsql does not try to hide the existence of a certain object, even if the user is not allowed to
reference it. For example, we can infer the existence of an invisible object as a result of primary key
conflicts, foreign key violations, and so on, even if we cannot obtain the contents of the object. The
existence of a top secret table cannot be hidden; we only hope to conceal its contents.

F.32.8. External Resources

SE-PostgreSQL Introduction4

This wiki page provides a brief overview, security design, architecture, administration and upcoming
features.

4. http://wiki.postgresql.org/wiki/SEPostgreSQL

2727

Appendix F. Additional Supplied Modules

Fedora SELinux User Guide5

This document provides a wide spectrum of knowledge to administer SELinux on your systems. It
focuses primarily on Fedora, but is not limited to Fedora.

Fedora SELinux FAQ6

This document answers frequently asked questions about SELinux. It focuses primarily on Fedora,
but is not limited to Fedora.

F.32.9. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

F.33. spi
The spi module provides several workable examples of using SPI and triggers. While these functions are
of some value in their own right, they are even more useful as examples to modify for your own purposes.
The functions are general enough to be used with any table, but you have to specify table and field names
(as described below) while creating a trigger.

Each of the groups of functions described below is provided as a separately-installable extension.

F.33.1. refint — Functions for Implementing Referential
Integrity
check_primary_key() and check_foreign_key() are used to check foreign key constraints. (This
functionality is long since superseded by the built-in foreign key mechanism, of course, but the module is
still useful as an example.)

check_primary_key() checks the referencing table. To use, create a BEFORE INSERT OR UPDATE

trigger using this function on a table referencing another table. Specify as the trigger arguments: the
referencing table’s column name(s) which form the foreign key, the referenced table name, and the column
names in the referenced table which form the primary/unique key. To handle multiple foreign keys, create
a trigger for each reference.

check_foreign_key() checks the referenced table. To use, create a BEFORE DELETE OR UPDATE

trigger using this function on a table referenced by other table(s). Specify as the trigger arguments: the
number of referencing tables for which the function has to perform checking, the action if a referencing
key is found (cascade — to delete the referencing row, restrict — to abort transaction if referencing
keys exist, setnull — to set referencing key fields to null), the triggered table’s column names which
form the primary/unique key, then the referencing table name and column names (repeated for as many
referencing tables as were specified by first argument). Note that the primary/unique key columns should
be marked NOT NULL and should have a unique index.

There are examples in refint.example.

5. http://docs.fedoraproject.org/selinux-user-guide/
6. http://docs.fedoraproject.org/selinux-faq

2728

Appendix F. Additional Supplied Modules

F.33.2. timetravel — Functions for Implementing Time Travel
Long ago, PostgreSQL had a built-in time travel feature that kept the insert and delete times for each tuple.
This can be emulated using these functions. To use these functions, you must add to a table two columns
of abstime type to store the date when a tuple was inserted (start_date) and changed/deleted (stop_date):

CREATE TABLE mytab (
... ...
start_date abstime,
stop_date abstime
... ...

);

The columns can be named whatever you like, but in this discussion we’ll call them start_date and
stop_date.

When a new row is inserted, start_date should normally be set to current time, and stop_date to infinity.
The trigger will automatically substitute these values if the inserted data contains nulls in these columns.
Generally, inserting explicit non-null data in these columns should only be done when re-loading dumped
data.

Tuples with stop_date equal to infinity are “valid now”, and can be modified. Tuples with a finite
stop_date cannot be modified anymore — the trigger will prevent it. (If you need to do that, you can turn
off time travel as shown below.)

For a modifiable row, on update only the stop_date in the tuple being updated will be changed (to current
time) and a new tuple with the modified data will be inserted. Start_date in this new tuple will be set to
current time and stop_date to infinity.

A delete does not actually remove the tuple but only sets its stop_date to current time.

To query for tuples “valid now”, include stop_date = ’infinity’ in the query’s WHERE condition.
(You might wish to incorporate that in a view.) Similarly, you can query for tuples valid at any past time
with suitable conditions on start_date and stop_date.

timetravel() is the general trigger function that supports this behavior. Create a BEFORE INSERT OR

UPDATE OR DELETE trigger using this function on each time-traveled table. Specify two trigger argu-
ments: the actual names of the start_date and stop_date columns. Optionally, you can specify one to three
more arguments, which must refer to columns of type text. The trigger will store the name of the current
user into the first of these columns during INSERT, the second column during UPDATE, and the third
during DELETE.

set_timetravel() allows you to turn time-travel on or off for a table. set_timetravel(’mytab’,
1) will turn TT ON for table mytab. set_timetravel(’mytab’, 0) will turn TT OFF for table
mytab. In both cases the old status is reported. While TT is off, you can modify the start_date and
stop_date columns freely. Note that the on/off status is local to the current database session — fresh
sessions will always start out with TT ON for all tables.

get_timetravel() returns the TT state for a table without changing it.

There is an example in timetravel.example.

2729

Appendix F. Additional Supplied Modules

F.33.3. autoinc — Functions for Autoincrementing Fields
autoinc() is a trigger that stores the next value of a sequence into an integer field. This has some
overlap with the built-in “serial column” feature, but it is not the same: autoinc() will override attempts
to substitute a different field value during inserts, and optionally it can be used to increment the field
during updates, too.

To use, create a BEFORE INSERT (or optionally BEFORE INSERT OR UPDATE) trigger using this func-
tion. Specify two trigger arguments: the name of the integer column to be modified, and the name of the
sequence object that will supply values. (Actually, you can specify any number of pairs of such names, if
you’d like to update more than one autoincrementing column.)

There is an example in autoinc.example.

F.33.4. insert_username — Functions for Tracking Who
Changed a Table
insert_username() is a trigger that stores the current user’s name into a text field. This can be useful
for tracking who last modified a particular row within a table.

To use, create a BEFORE INSERT and/or UPDATE trigger using this function. Specify a single trigger
argument: the name of the text column to be modified.

There is an example in insert_username.example.

F.33.5. moddatetime — Functions for Tracking Last
Modification Time
moddatetime() is a trigger that stores the current time into a timestamp field. This can be useful for
tracking the last modification time of a particular row within a table.

To use, create a BEFORE UPDATE trigger using this function. Specify a single trigger argument: the name
of the column to be modified. The column must be of type timestamp or timestamp with time

zone.

There is an example in moddatetime.example.

F.34. sslinfo
The sslinfo module provides information about the SSL certificate that the current client provided
when connecting to PostgreSQL. The module is useless (most functions will return NULL) if the current
connection does not use SSL.

This extension won’t build at all unless the installation was configured with --with-openssl.

2730

Appendix F. Additional Supplied Modules

F.34.1. Functions Provided

ssl_is_used() returns boolean

Returns TRUE if current connection to server uses SSL, and FALSE otherwise.

ssl_version() returns text

Returns the name of the protocol used for the SSL connection (e.g. SSLv2, SSLv3, or TLSv1).

ssl_cipher() returns text

Returns the name of the cipher used for the SSL connection (e.g. DHE-RSA-AES256-SHA).

ssl_client_cert_present() returns boolean

Returns TRUE if current client has presented a valid SSL client certificate to the server, and FALSE
otherwise. (The server might or might not be configured to require a client certificate.)

ssl_client_serial() returns numeric

Returns serial number of current client certificate. The combination of certificate serial number and
certificate issuer is guaranteed to uniquely identify a certificate (but not its owner — the owner ought
to regularly change his keys, and get new certificates from the issuer).

So, if you run your own CA and allow only certificates from this CA to be accepted by the server,
the serial number is the most reliable (albeit not very mnemonic) means to identify a user.

ssl_client_dn() returns text

Returns the full subject of the current client certificate, converting character data into the current
database encoding. It is assumed that if you use non-ASCII characters in the certificate names, your
database is able to represent these characters, too. If your database uses the SQL_ASCII encoding,
non-ASCII characters in the name will be represented as UTF-8 sequences.

The result looks like /CN=Somebody /C=Some country/O=Some organization.

ssl_issuer_dn() returns text

Returns the full issuer name of the current client certificate, converting character data into the current
database encoding. Encoding conversions are handled the same as for ssl_client_dn.

The combination of the return value of this function with the certificate serial number uniquely
identifies the certificate.

This function is really useful only if you have more than one trusted CA certificate in your server’s
root.crt file, or if this CA has issued some intermediate certificate authority certificates.

ssl_client_dn_field(fieldname text) returns text

This function returns the value of the specified field in the certificate subject, or NULL if the field
is not present. Field names are string constants that are converted into ASN1 object identifiers using
the OpenSSL object database. The following values are acceptable:

commonName (alias CN)
surname (alias SN)
name
givenName (alias GN)
countryName (alias C)
localityName (alias L)
stateOrProvinceName (alias ST)

2731

Appendix F. Additional Supplied Modules

organizationName (alias O)
organizationUnitName (alias OU)
title
description
initials
postalCode
streetAddress
generationQualifier
description
dnQualifier
x500UniqueIdentifier
pseudonym
role
emailAddress

All of these fields are optional, except commonName. It depends entirely on your CA’s policy which
of them would be included and which wouldn’t. The meaning of these fields, however, is strictly
defined by the X.500 and X.509 standards, so you cannot just assign arbitrary meaning to them.

ssl_issuer_field(fieldname text) returns text

Same as ssl_client_dn_field, but for the certificate issuer rather than the certificate subject.

F.34.2. Author
Victor Wagner <vitus@cryptocom.ru>, Cryptocom LTD

E-Mail of Cryptocom OpenSSL development group: <openssl@cryptocom.ru>

F.35. tablefunc
The tablefunc module includes various functions that return tables (that is, multiple rows). These func-
tions are useful both in their own right and as examples of how to write C functions that return multiple
rows.

F.35.1. Functions Provided
Table F-28 shows the functions provided by the tablefunc module.

Table F-28. tablefunc Functions

Function Returns Description
normal_rand(int numvals,

float8 mean, float8

stddev)

setof float8 Produces a set of normally
distributed random values

2732

Appendix F. Additional Supplied Modules

Function Returns Description
crosstab(text sql) setof record Produces a “pivot table”

containing row names plus N
value columns, where N is
determined by the row type
specified in the calling query

crosstabN(text sql) setof table_crosstab_N Produces a “pivot table”
containing row names plus N
value columns. crosstab2,
crosstab3, and crosstab4 are
predefined, but you can create
additional crosstabN functions
as described below

crosstab(text

source_sql, text

category_sql)

setof record Produces a “pivot table” with the
value columns specified by a
second query

crosstab(text sql, int

N)

setof record Obsolete version of
crosstab(text). The
parameter N is now ignored,
since the number of value
columns is always determined by
the calling query

connectby(text relname,

text keyid_fld, text

parent_keyid_fld [, text

orderby_fld], text

start_with, int

max_depth [, text

branch_delim])

setof record Produces a representation of a
hierarchical tree structure

F.35.1.1. normal_rand

normal_rand(int numvals, float8 mean, float8 stddev) returns setof float8

normal_rand produces a set of normally distributed random values (Gaussian distribution).

numvals is the number of values to be returned from the function. mean is the mean of the normal
distribution of values and stddev is the standard deviation of the normal distribution of values.

For example, this call requests 1000 values with a mean of 5 and a standard deviation of 3:

test=# SELECT * FROM normal_rand(1000, 5, 3);
normal_rand

1.56556322244898
9.10040991424657
5.36957140345079

-0.369151492880995
0.283600703686639

2733

Appendix F. Additional Supplied Modules

.

.

.
4.82992125404908
9.71308014517282
2.49639286969028

(1000 rows)

F.35.1.2. crosstab(text)

crosstab(text sql)
crosstab(text sql, int N)

The crosstab function is used to produce “pivot” displays, wherein data is listed across the page rather
than down. For example, we might have data like

row1 val11
row1 val12
row1 val13
...
row2 val21
row2 val22
row2 val23
...

which we wish to display like

row1 val11 val12 val13 ...
row2 val21 val22 val23 ...
...

The crosstab function takes a text parameter that is a SQL query producing raw data formatted in the
first way, and produces a table formatted in the second way.

The sql parameter is a SQL statement that produces the source set of data. This statement must return one
row_name column, one category column, and one value column. N is an obsolete parameter, ignored
if supplied (formerly this had to match the number of output value columns, but now that is determined
by the calling query).

For example, the provided query might produce a set something like:

row_name cat value
----------+-------+-------
row1 cat1 val1
row1 cat2 val2
row1 cat3 val3
row1 cat4 val4
row2 cat1 val5
row2 cat2 val6
row2 cat3 val7
row2 cat4 val8

2734

Appendix F. Additional Supplied Modules

The crosstab function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab(’...’) AS ct(row_name text, category_1 text, category_2 text);

This example produces a set something like:

<== value columns ==>
row_name category_1 category_2

----------+------------+------------
row1 val1 val2
row2 val5 val6

The FROM clause must define the output as one row_name column (of the same data type as the first result
column of the SQL query) followed by N value columns (all of the same data type as the third result
column of the SQL query). You can set up as many output value columns as you wish. The names of the
output columns are up to you.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. It fills the output value columns, left to right, with the value fields from these rows. If
there are fewer rows in a group than there are output value columns, the extra output columns are filled
with nulls; if there are more rows, the extra input rows are skipped.

In practice the SQL query should always specify ORDER BY 1,2 to ensure that the input rows are properly
ordered, that is, values with the same row_name are brought together and correctly ordered within the row.
Notice that crosstab itself does not pay any attention to the second column of the query result; it’s just
there to be ordered by, to control the order in which the third-column values appear across the page.

Here is a complete example:

CREATE TABLE ct(id SERIAL, rowid TEXT, attribute TEXT, value TEXT);
INSERT INTO ct(rowid, attribute, value) VALUES(’test1’,’att1’,’val1’);
INSERT INTO ct(rowid, attribute, value) VALUES(’test1’,’att2’,’val2’);
INSERT INTO ct(rowid, attribute, value) VALUES(’test1’,’att3’,’val3’);
INSERT INTO ct(rowid, attribute, value) VALUES(’test1’,’att4’,’val4’);
INSERT INTO ct(rowid, attribute, value) VALUES(’test2’,’att1’,’val5’);
INSERT INTO ct(rowid, attribute, value) VALUES(’test2’,’att2’,’val6’);
INSERT INTO ct(rowid, attribute, value) VALUES(’test2’,’att3’,’val7’);
INSERT INTO ct(rowid, attribute, value) VALUES(’test2’,’att4’,’val8’);

SELECT *
FROM crosstab(
’select rowid, attribute, value
from ct
where attribute = ”att2” or attribute = ”att3”
order by 1,2’)

AS ct(row_name text, category_1 text, category_2 text, category_3 text);

row_name | category_1 | category_2 | category_3
----------+------------+------------+------------
test1 | val2 | val3 |

2735

Appendix F. Additional Supplied Modules

test2 | val6 | val7 |
(2 rows)

You can avoid always having to write out a FROM clause to define the output columns, by setting up a
custom crosstab function that has the desired output row type wired into its definition. This is described
in the next section. Another possibility is to embed the required FROM clause in a view definition.

F.35.1.3. crosstabN(text)

crosstabN(text sql)

The crosstabN functions are examples of how to set up custom wrappers for the general crosstab func-
tion, so that you need not write out column names and types in the calling SELECT query. The tablefunc
module includes crosstab2, crosstab3, and crosstab4, whose output row types are defined as

CREATE TYPE tablefunc_crosstab_N AS (
row_name TEXT,
category_1 TEXT,
category_2 TEXT,

.

.

.
category_N TEXT

);

Thus, these functions can be used directly when the input query produces row_name and value columns
of type text, and you want 2, 3, or 4 output values columns. In all other ways they behave exactly as
described above for the general crosstab function.

For instance, the example given in the previous section would also work as

SELECT *
FROM crosstab3(
’select rowid, attribute, value
from ct
where attribute = ”att2” or attribute = ”att3”
order by 1,2’);

These functions are provided mostly for illustration purposes. You can create your own return types and
functions based on the underlying crosstab() function. There are two ways to do it:

• Create a composite type describing the desired output columns, similar to the examples in
contrib/tablefunc/tablefunc--1.0.sql. Then define a unique function name accepting
one text parameter and returning setof your_type_name, but linking to the same underlying
crosstab C function. For example, if your source data produces row names that are text, and values
that are float8, and you want 5 value columns:

CREATE TYPE my_crosstab_float8_5_cols AS (

2736

Appendix F. Additional Supplied Modules

my_row_name text,
my_category_1 float8,
my_category_2 float8,
my_category_3 float8,
my_category_4 float8,
my_category_5 float8

);

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(text)
RETURNS setof my_crosstab_float8_5_cols
AS ’$libdir/tablefunc’,’crosstab’ LANGUAGE C STABLE STRICT;

• Use OUT parameters to define the return type implicitly. The same example could also be done this way:

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(
IN text,
OUT my_row_name text,
OUT my_category_1 float8,
OUT my_category_2 float8,
OUT my_category_3 float8,
OUT my_category_4 float8,
OUT my_category_5 float8)

RETURNS setof record
AS ’$libdir/tablefunc’,’crosstab’ LANGUAGE C STABLE STRICT;

F.35.1.4. crosstab(text, text)

crosstab(text source_sql, text category_sql)

The main limitation of the single-parameter form of crosstab is that it treats all values in a group
alike, inserting each value into the first available column. If you want the value columns to correspond to
specific categories of data, and some groups might not have data for some of the categories, that doesn’t
work well. The two-parameter form of crosstab handles this case by providing an explicit list of the
categories corresponding to the output columns.

source_sql is a SQL statement that produces the source set of data. This statement must return one
row_name column, one category column, and one value column. It may also have one or more “extra”
columns. The row_name column must be first. The category and value columns must be the last two
columns, in that order. Any columns between row_name and category are treated as “extra”. The “extra”
columns are expected to be the same for all rows with the same row_name value.

For example, source_sql might produce a set something like:

SELECT row_name, extra_col, cat, value FROM foo ORDER BY 1;

row_name extra_col cat value
----------+------------+-----+---------
row1 extra1 cat1 val1
row1 extra1 cat2 val2
row1 extra1 cat4 val4
row2 extra2 cat1 val5

2737

Appendix F. Additional Supplied Modules

row2 extra2 cat2 val6
row2 extra2 cat3 val7
row2 extra2 cat4 val8

category_sql is a SQL statement that produces the set of categories. This statement must return only
one column. It must produce at least one row, or an error will be generated. Also, it must not produce
duplicate values, or an error will be generated. category_sql might be something like:

SELECT DISTINCT cat FROM foo ORDER BY 1;
cat

cat1
cat2
cat3
cat4

The crosstab function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab(’...’, ’...’)
AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text, cat4 text);

This will produce a result something like:

<== value columns ==>
row_name extra cat1 cat2 cat3 cat4
---------+-------+------+------+------+------
row1 extra1 val1 val2 val4
row2 extra2 val5 val6 val7 val8

The FROM clause must define the proper number of output columns of the proper data types. If there are N
columns in the source_sql query’s result, the first N -2 of them must match up with the first N -2 output
columns. The remaining output columns must have the type of the last column of the source_sql query’s
result, and there must be exactly as many of them as there are rows in the category_sql query’s result.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. The output row_name column, plus any “extra” columns, are copied from the first row
of the group. The output value columns are filled with the value fields from rows having matching
category values. If a row’s category does not match any output of the category_sql query, its
value is ignored. Output columns whose matching category is not present in any input row of the group
are filled with nulls.

In practice the source_sql query should always specify ORDER BY 1 to ensure that values with the same
row_name are brought together. However, ordering of the categories within a group is not important. Also,
it is essential to be sure that the order of the category_sql query’s output matches the specified output
column order.

2738

Appendix F. Additional Supplied Modules

Here are two complete examples:

create table sales(year int, month int, qty int);
insert into sales values(2007, 1, 1000);
insert into sales values(2007, 2, 1500);
insert into sales values(2007, 7, 500);
insert into sales values(2007, 11, 1500);
insert into sales values(2007, 12, 2000);
insert into sales values(2008, 1, 1000);

select * from crosstab(
’select year, month, qty from sales order by 1’,
’select m from generate_series(1,12) m’

) as (
year int,
"Jan" int,
"Feb" int,
"Mar" int,
"Apr" int,
"May" int,
"Jun" int,
"Jul" int,
"Aug" int,
"Sep" int,
"Oct" int,
"Nov" int,
"Dec" int

);
year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec

------+------+------+-----+-----+-----+-----+-----+-----+-----+-----+------+------
2007 | 1000 | 1500 | | | | | 500 | | | | 1500 | 2000
2008 | 1000 | | | | | | | | | | |

(2 rows)

CREATE TABLE cth(rowid text, rowdt timestamp, attribute text, val text);
INSERT INTO cth VALUES(’test1’,’01 March 2003’,’temperature’,’42’);
INSERT INTO cth VALUES(’test1’,’01 March 2003’,’test_result’,’PASS’);
INSERT INTO cth VALUES(’test1’,’01 March 2003’,’volts’,’2.6987’);
INSERT INTO cth VALUES(’test2’,’02 March 2003’,’temperature’,’53’);
INSERT INTO cth VALUES(’test2’,’02 March 2003’,’test_result’,’FAIL’);
INSERT INTO cth VALUES(’test2’,’02 March 2003’,’test_startdate’,’01 March 2003’);
INSERT INTO cth VALUES(’test2’,’02 March 2003’,’volts’,’3.1234’);

SELECT * FROM crosstab
(
’SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1’,
’SELECT DISTINCT attribute FROM cth ORDER BY 1’

)
AS
(

rowid text,
rowdt timestamp,
temperature int4,

2739

Appendix F. Additional Supplied Modules

test_result text,
test_startdate timestamp,
volts float8

);
rowid | rowdt | temperature | test_result | test_startdate | volts

-------+--------------------------+-------------+-------------+--------------------------+--------
test1 | Sat Mar 01 00:00:00 2003 | 42 | PASS | | 2.6987
test2 | Sun Mar 02 00:00:00 2003 | 53 | FAIL | Sat Mar 01 00:00:00 2003 | 3.1234

(2 rows)

You can create predefined functions to avoid having to write out the result column names and types in each
query. See the examples in the previous section. The underlying C function for this form of crosstab is
named crosstab_hash.

F.35.1.5. connectby

connectby(text relname, text keyid_fld, text parent_keyid_fld
[, text orderby_fld], text start_with, int max_depth
[, text branch_delim])

The connectby function produces a display of hierarchical data that is stored in a table. The table must
have a key field that uniquely identifies rows, and a parent-key field that references the parent (if any) of
each row. connectby can display the sub-tree descending from any row.

Table F-29 explains the parameters.

Table F-29. connectby Parameters

Parameter Description
relname Name of the source relation

keyid_fld Name of the key field

parent_keyid_fld Name of the parent-key field

orderby_fld Name of the field to order siblings by (optional)

start_with Key value of the row to start at

max_depth Maximum depth to descend to, or zero for
unlimited depth

branch_delim String to separate keys with in branch output
(optional)

The key and parent-key fields can be any data type, but they must be the same type. Note that the
start_with value must be entered as a text string, regardless of the type of the key field.

The connectby function is declared to return setof record, so the actual names and types of the
output columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM connectby(’connectby_tree’, ’keyid’, ’parent_keyid’, ’pos’, ’row2’, 0, ’~’)
AS t(keyid text, parent_keyid text, level int, branch text, pos int);

2740

Appendix F. Additional Supplied Modules

The first two output columns are used for the current row’s key and its parent row’s key; they must match
the type of the table’s key field. The third output column is the depth in the tree and must be of type
integer. If a branch_delim parameter was given, the next output column is the branch display and
must be of type text. Finally, if an orderby_fld parameter was given, the last output column is a serial
number, and must be of type integer.

The “branch” output column shows the path of keys taken to reach the current row. The keys are separated
by the specified branch_delim string. If no branch display is wanted, omit both the branch_delim

parameter and the branch column in the output column list.

If the ordering of siblings of the same parent is important, include the orderby_fld parameter to specify
which field to order siblings by. This field can be of any sortable data type. The output column list must
include a final integer serial-number column, if and only if orderby_fld is specified.

The parameters representing table and field names are copied as-is into the SQL queries that connectby
generates internally. Therefore, include double quotes if the names are mixed-case or contain special
characters. You may also need to schema-qualify the table name.

In large tables, performance will be poor unless there is an index on the parent-key field.

It is important that the branch_delim string not appear in any key values, else connectby may incor-
rectly report an infinite-recursion error. Note that if branch_delim is not provided, a default value of ~
is used for recursion detection purposes.

Here is an example:

CREATE TABLE connectby_tree(keyid text, parent_keyid text, pos int);

INSERT INTO connectby_tree VALUES(’row1’,NULL, 0);
INSERT INTO connectby_tree VALUES(’row2’,’row1’, 0);
INSERT INTO connectby_tree VALUES(’row3’,’row1’, 0);
INSERT INTO connectby_tree VALUES(’row4’,’row2’, 1);
INSERT INTO connectby_tree VALUES(’row5’,’row2’, 0);
INSERT INTO connectby_tree VALUES(’row6’,’row4’, 0);
INSERT INTO connectby_tree VALUES(’row7’,’row3’, 0);
INSERT INTO connectby_tree VALUES(’row8’,’row6’, 0);
INSERT INTO connectby_tree VALUES(’row9’,’row5’, 0);

-- with branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby(’connectby_tree’, ’keyid’, ’parent_keyid’, ’row2’, 0, ’~’)
AS t(keyid text, parent_keyid text, level int, branch text);
keyid | parent_keyid | level | branch

-------+--------------+-------+---------------------
row2 | | 0 | row2
row4 | row2 | 1 | row2~row4
row6 | row4 | 2 | row2~row4~row6
row8 | row6 | 3 | row2~row4~row6~row8
row5 | row2 | 1 | row2~row5
row9 | row5 | 2 | row2~row5~row9

(6 rows)

-- without branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby(’connectby_tree’, ’keyid’, ’parent_keyid’, ’row2’, 0)
AS t(keyid text, parent_keyid text, level int);
keyid | parent_keyid | level

2741

Appendix F. Additional Supplied Modules

-------+--------------+-------
row2 | | 0
row4 | row2 | 1
row6 | row4 | 2
row8 | row6 | 3
row5 | row2 | 1
row9 | row5 | 2

(6 rows)

-- with branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby(’connectby_tree’, ’keyid’, ’parent_keyid’, ’pos’, ’row2’, 0, ’~’)
AS t(keyid text, parent_keyid text, level int, branch text, pos int);
keyid | parent_keyid | level | branch | pos

-------+--------------+-------+---------------------+-----
row2 | | 0 | row2 | 1
row5 | row2 | 1 | row2~row5 | 2
row9 | row5 | 2 | row2~row5~row9 | 3
row4 | row2 | 1 | row2~row4 | 4
row6 | row4 | 2 | row2~row4~row6 | 5
row8 | row6 | 3 | row2~row4~row6~row8 | 6

(6 rows)

-- without branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby(’connectby_tree’, ’keyid’, ’parent_keyid’, ’pos’, ’row2’, 0)
AS t(keyid text, parent_keyid text, level int, pos int);
keyid | parent_keyid | level | pos

-------+--------------+-------+-----
row2 | | 0 | 1
row5 | row2 | 1 | 2
row9 | row5 | 2 | 3
row4 | row2 | 1 | 4
row6 | row4 | 2 | 5
row8 | row6 | 3 | 6

(6 rows)

F.35.2. Author
Joe Conway

F.36. tcn
The tcn module provides a trigger function that notifies listeners of changes to any table on which it is
attached. It must be used as an AFTER trigger FOR EACH ROW.

2742

Appendix F. Additional Supplied Modules

Only one parameter may be supplied to the function in a CREATE TRIGGER statement, and that is optional.
If supplied it will be used for the channel name for the notifications. If omitted tcn will be used for the
channel name.

The payload of the notifications consists of the table name, a letter to indicate which type of operation was
performed, and column name/value pairs for primary key columns. Each part is separated from the next
by a comma. For ease of parsing using regular expressions, table and column names are always wrapped
in double quotes, and data values are always wrapped in single quotes. Embedded quotes are doubled.

A brief example of using the extension follows.

test=# create table tcndata
test-# (
test(# a int not null,
test(# b date not null,
test(# c text,
test(# primary key (a, b)
test(#);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "tcndata_pkey" for table "tcndata"
CREATE TABLE
test=# create trigger tcndata_tcn_trigger
test-# after insert or update or delete on tcndata
test-# for each row execute procedure triggered_change_notification();
CREATE TRIGGER
test=# listen tcn;
LISTEN
test=# insert into tcndata values (1, date ’2012-12-22’, ’one’),
test-# (1, date ’2012-12-23’, ’another’),
test-# (2, date ’2012-12-23’, ’two’);
INSERT 0 3
Asynchronous notification "tcn" with payload ""tcndata",I,"a"=’1’,"b"=’2012-12-22’" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"=’1’,"b"=’2012-12-23’" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"=’2’,"b"=’2012-12-23’" received from server process with PID 22770.
test=# update tcndata set c = ’uno’ where a = 1;
UPDATE 2
Asynchronous notification "tcn" with payload ""tcndata",U,"a"=’1’,"b"=’2012-12-22’" received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",U,"a"=’1’,"b"=’2012-12-23’" received from server process with PID 22770.
test=# delete from tcndata where a = 1 and b = date ’2012-12-22’;
DELETE 1
Asynchronous notification "tcn" with payload ""tcndata",D,"a"=’1’,"b"=’2012-12-22’" received from server process with PID 22770.

F.37. test_parser
test_parser is an example of a custom parser for full-text search. It doesn’t do anything especially
useful, but can serve as a starting point for developing your own parser.

test_parser recognizes words separated by white space, and returns just two token types:

mydb=# SELECT * FROM ts_token_type(’testparser’);
tokid | alias | description

2743

Appendix F. Additional Supplied Modules

-------+-------+---------------
3 | word | Word

12 | blank | Space symbols
(2 rows)

These token numbers have been chosen to be compatible with the default parser’s numbering. This allows
us to use its headline() function, thus keeping the example simple.

F.37.1. Usage
Installing the test_parser extension creates a text search parser testparser. It has no
user-configurable parameters.

You can test the parser with, for example,

mydb=# SELECT * FROM ts_parse(’testparser’, ’That”s my first own parser’);
tokid | token

-------+--------
3 | That’s

12 |
3 | my

12 |
3 | first

12 |
3 | own

12 |
3 | parser

Real-world use requires setting up a text search configuration that uses the parser. For example,

mydb=# CREATE TEXT SEARCH CONFIGURATION testcfg (PARSER = testparser);
CREATE TEXT SEARCH CONFIGURATION

mydb=# ALTER TEXT SEARCH CONFIGURATION testcfg
mydb-# ADD MAPPING FOR word WITH english_stem;
ALTER TEXT SEARCH CONFIGURATION

mydb=# SELECT to_tsvector(’testcfg’, ’That”s my first own parser’);
to_tsvector

’that’:1 ’first’:3 ’parser’:5

(1 row)

mydb=# SELECT ts_headline(’testcfg’, ’Supernovae stars are the brightest phenomena in galaxies’,
mydb(# to_tsquery(’testcfg’, ’star’));

ts_headline

Supernovae stars are the brightest phenomena in galaxies

(1 row)

2744

Appendix F. Additional Supplied Modules

F.38. tsearch2
The tsearch2 module provides backwards-compatible text search functionality for applications that used
tsearch2 before text searching was integrated into core PostgreSQL in release 8.3.

F.38.1. Portability Issues
Although the built-in text search features were based on tsearch2 and are largely similar to it, there are
numerous small differences that will create portability issues for existing applications:

• Some functions’ names were changed, for example rank to ts_rank. The replacement tsearch2
module provides aliases having the old names.

• The built-in text search data types and functions all exist within the system schema pg_catalog. In an
installation using tsearch2, these objects would usually have been in the public schema, though some
users chose to place them in a separate schema of their own. Explicitly schema-qualified references to
the objects will therefore fail in either case. The replacement tsearch2 module provides alias objects
that are stored in public (or another schema if necessary) so that such references will still work.

• There is no concept of a “current parser” or “current dictionary” in the built-in text search features,
only of a current search configuration (set by the default_text_search_config parameter). While
the current parser and current dictionary were used only by functions intended for debugging, this
might still pose a porting obstacle in some cases. The replacement tsearch2 module emulates these
additional state variables and provides backwards-compatible functions for setting and retrieving them.

There are some issues that are not addressed by the replacement tsearch2 module, and will therefore
require application code changes in any case:

• The old tsearch2 trigger function allowed items in its argument list to be names of functions to be
invoked on the text data before it was converted to tsvector format. This was removed as being a
security hole, since it was not possible to guarantee that the function invoked was the one intended. The
recommended approach if the data must be massaged before being indexed is to write a custom trigger
that does the work for itself.

• Text search configuration information has been moved into core system catalogs that are noticeably
different from the tables used by tsearch2. Any applications that examined or modified those tables will
need adjustment.

• If an application used any custom text search configurations, those will need to be set up in the core
catalogs using the new text search configuration SQL commands. The replacement tsearch2 module
offers a little bit of support for this by making it possible to load an old set of tsearch2 configuration ta-
bles into PostgreSQL 8.3. (Without the module, it is not possible to load the configuration data because
values in the regprocedure columns cannot be resolved to functions.) While those configuration ta-
bles won’t actually do anything, at least their contents will be available to be consulted while setting up
an equivalent custom configuration in 8.3.

• The old reset_tsearch() and get_covers() functions are not supported.

• The replacement tsearch2 module does not define any alias operators, relying entirely on the built-in
ones. This would only pose an issue if an application used explicitly schema-qualified operator names,
which is very uncommon.

2745

Appendix F. Additional Supplied Modules

F.38.2. Converting a pre-8.3 Installation
The recommended way to update a pre-8.3 installation that uses tsearch2 is:

1. Make a dump from the old installation in the usual way, but be sure not to use -c (--clean) option
of pg_dump or pg_dumpall.

2. In the new installation, create empty database(s) and install the replacement tsearch2 module into
each database that will use text search. This must be done before loading the dump data! If your old
installation had the tsearch2 objects in a schema other than public, be sure to adjust the CREATE

EXTENSION command so that the replacement objects are created in that same schema.

3. Load the dump data. There will be quite a few errors reported due to failure to recreate the original
tsearch2 objects. These errors can be ignored, but this means you cannot restore the dump in a single
transaction (eg, you cannot use pg_restore’s -1 switch).

4. Examine the contents of the restored tsearch2 configuration tables (pg_ts_cfg and so on), and
create equivalent built-in text search configurations as needed. You may drop the old configuration
tables once you’ve extracted all the useful information from them.

5. Test your application.

At a later time you may wish to rename application references to the alias text search objects, so that you
can eventually uninstall the replacement tsearch2 module.

F.38.3. References
Tsearch2 Development Site http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

F.39. unaccent
unaccent is a text search dictionary that removes accents (diacritic signs) from lexemes. It’s a filtering
dictionary, which means its output is always passed to the next dictionary (if any), unlike the normal
behavior of dictionaries. This allows accent-insensitive processing for full text search.

The current implementation of unaccent cannot be used as a normalizing dictionary for the thesaurus
dictionary.

F.39.1. Configuration
An unaccent dictionary accepts the following options:

• RULES is the base name of the file containing the list of translation rules. This file must be stored in
$SHAREDIR/tsearch_data/ (where $SHAREDIR means the PostgreSQL installation’s shared-data
directory). Its name must end in .rules (which is not to be included in the RULES parameter).

The rules file has the following format:

2746

Appendix F. Additional Supplied Modules

• Each line represents a pair, consisting of a character with accent followed by a character without accent.
The first is translated into the second. For example,

À A
Á A
Â A
Ã A
Ä A
Å A
Æ A

A more complete example, which is directly useful for most European languages, can be found in
unaccent.rules, which is installed in $SHAREDIR/tsearch_data/ when the unaccent module is
installed.

F.39.2. Usage
Installing the unaccent extension creates a text search template unaccent and a dictionary unaccent

based on it. The unaccent dictionary has the default parameter setting RULES=’unaccent’, which
makes it immediately usable with the standard unaccent.rules file. If you wish, you can alter the
parameter, for example

mydb=# ALTER TEXT SEARCH DICTIONARY unaccent (RULES=’my_rules’);

or create new dictionaries based on the template.

To test the dictionary, you can try:

mydb=# select ts_lexize(’unaccent’,’Hôtel’);
ts_lexize

{Hotel}

(1 row)

Here is an example showing how to insert the unaccent dictionary into a text search configuration:

mydb=# CREATE TEXT SEARCH CONFIGURATION fr (COPY = french);
mydb=# ALTER TEXT SEARCH CONFIGURATION fr

ALTER MAPPING FOR hword, hword_part, word
WITH unaccent, french_stem;

mydb=# select to_tsvector(’fr’,’Hôtels de la Mer’);
to_tsvector

’hotel’:1 ’mer’:4

(1 row)

mydb=# select to_tsvector(’fr’,’Hôtel de la Mer’) @@ to_tsquery(’fr’,’Hotels’);
?column?

t

(1 row)

2747

Appendix F. Additional Supplied Modules

mydb=# select ts_headline(’fr’,’Hôtel de la Mer’,to_tsquery(’fr’,’Hotels’));
ts_headline

Hôtel de la Mer

(1 row)

F.39.3. Functions
The unaccent() function removes accents (diacritic signs) from a given string. Basically, it’s a wrapper
around the unaccent dictionary, but it can be used outside normal text search contexts.

unaccent([dictionary,] string) returns text

For example:

SELECT unaccent(’unaccent’, ’Hôtel’);
SELECT unaccent(’Hôtel’);

F.40. uuid-ossp
The uuid-ossp module provides functions to generate universally unique identifiers (UUIDs) using one
of several standard algorithms. There are also functions to produce certain special UUID constants.

This module depends on the OSSP UUID library, which can be found at
http://www.ossp.org/pkg/lib/uuid/.

F.40.1. uuid-ossp Functions
Table F-30 shows the functions available to generate UUIDs. The relevant standards ITU-T Rec. X.667,
ISO/IEC 9834-8:2005, and RFC 4122 specify four algorithms for generating UUIDs, identified by the
version numbers 1, 3, 4, and 5. (There is no version 2 algorithm.) Each of these algorithms could be
suitable for a different set of applications.

Table F-30. Functions for UUID Generation

Function Description

2748

Appendix F. Additional Supplied Modules

Function Description
uuid_generate_v1() This function generates a version 1 UUID. This

involves the MAC address of the computer and a
time stamp. Note that UUIDs of this kind reveal
the identity of the computer that created the
identifier and the time at which it did so, which
might make it unsuitable for certain
security-sensitive applications.

uuid_generate_v1mc() This function generates a version 1 UUID but uses
a random multicast MAC address instead of the
real MAC address of the computer.

uuid_generate_v3(namespace uuid, name

text)

This function generates a version 3 UUID in the
given namespace using the specified input name.
The namespace should be one of the special
constants produced by the uuid_ns_*()
functions shown in Table F-31. (It could be any
UUID in theory.) The name is an identifier in the
selected namespace.
For example:
SELECT uuid_generate_v3(uuid_ns_url(), ’http://www.postgresql.org’);

The name parameter will be MD5-hashed, so the
cleartext cannot be derived from the generated
UUID. The generation of UUIDs by this method
has no random or environment-dependent element
and is therefore reproducible.

uuid_generate_v4() This function generates a version 4 UUID, which
is derived entirely from random numbers.

uuid_generate_v5(namespace uuid, name

text)

This function generates a version 5 UUID, which
works like a version 3 UUID except that SHA-1 is
used as a hashing method. Version 5 should be
preferred over version 3 because SHA-1 is thought
to be more secure than MD5.

Table F-31. Functions Returning UUID Constants

uuid_nil() A “nil” UUID constant, which does not occur as a
real UUID.

uuid_ns_dns() Constant designating the DNS namespace for
UUIDs.

uuid_ns_url() Constant designating the URL namespace for
UUIDs.

2749

Appendix F. Additional Supplied Modules

uuid_ns_oid() Constant designating the ISO object identifier
(OID) namespace for UUIDs. (This pertains to
ASN.1 OIDs, which are unrelated to the OIDs
used in PostgreSQL.)

uuid_ns_x500() Constant designating the X.500 distinguished
name (DN) namespace for UUIDs.

F.40.2. Author
Peter Eisentraut <peter_e@gmx.net>

F.41. xml2
The xml2 module provides XPath querying and XSLT functionality.

F.41.1. Deprecation Notice
From PostgreSQL 8.3 on, there is XML-related functionality based on the SQL/XML standard in the core
server. That functionality covers XML syntax checking and XPath queries, which is what this module
does, and more, but the API is not at all compatible. It is planned that this module will be removed in a
future version of PostgreSQL in favor of the newer standard API, so you are encouraged to try converting
your applications. If you find that some of the functionality of this module is not available in an adequate
form with the newer API, please explain your issue to <pgsql-hackers@postgresql.org> so that the
deficiency can be addressed.

F.41.2. Description of Functions
Table F-32 shows the functions provided by this module. These functions provide straightforward XML
parsing and XPath queries. All arguments are of type text, so for brevity that is not shown.

Table F-32. Functions

Function Returns Description

2750

Appendix F. Additional Supplied Modules

Function Returns Description

xml_is_well_formed(document)

bool This parses the document text in
its parameter and returns true if
the document is well-formed
XML. (Note: before PostgreSQL
8.2, this function was called
xml_valid(). That is the
wrong name since validity and
well-formedness have different
meanings in XML. The old name
is still available, but is
deprecated.)

xpath_string(document,

query)

text These functions evaluate the
XPath query on the supplied
document, and cast the result to
the specified type.

xpath_number(document,

query)

float4

xpath_bool(document,

query)

bool

xpath_nodeset(document,

query, toptag, itemtag)

text This evaluates query on
document and wraps the
result in XML tags. If the
result is multivalued, the out-
put will look like: <toptag>

<itemtag>Value 1 which could be an XML fragment</itemtag>

<itemtag>Value 2....</itemtag>

</toptag> If either toptag
or itemtag is an empty string,
the relevant tag is omitted.

xpath_nodeset(document,

query)

text Like
xpath_nodeset(document,

query, toptag, itemtag)

but result omits both tags.

xpath_nodeset(document,

query, itemtag)

text Like
xpath_nodeset(document,

query, toptag, itemtag)

but result omits toptag.

xpath_list(document,

query, separator)

text This function returns multiple
values separated by the specified
separator, for example Value
1,Value 2,Value 3 if
separator is ,.

2751

Appendix F. Additional Supplied Modules

Function Returns Description
xpath_list(document,

query)

text This is a wrapper for the above
function that uses , as the
separator.

F.41.3. xpath_table
xpath_table(text key, text document, text relation, text xpaths, text criteria) returns setof record

xpath_table is a table function that evaluates a set of XPath queries on each of a set of documents and
returns the results as a table. The primary key field from the original document table is returned as the
first column of the result so that the result set can readily be used in joins. The parameters are described
in Table F-33.

Table F-33. xpath_table Parameters

Parameter Description
key the name of the “key” field — this is just a field to

be used as the first column of the output table, i.e.,
it identifies the record from which each output row
came (see note below about multiple values)

document the name of the field containing the XML
document

relation the name of the table or view containing the
documents

xpaths one or more XPath expressions, separated by |

criteria the contents of the WHERE clause. This cannot
be omitted, so use true or 1=1 if you want to
process all the rows in the relation

These parameters (except the XPath strings) are just substituted into a plain SQL SELECT statement, so
you have some flexibility — the statement is

SELECT <key>, <document> FROM <relation> WHERE <criteria>

so those parameters can be anything valid in those particular locations. The result from this SELECT needs
to return exactly two columns (which it will unless you try to list multiple fields for key or document).
Beware that this simplistic approach requires that you validate any user-supplied values to avoid SQL
injection attacks.

The function has to be used in a FROM expression, with an AS clause to specify the output columns; for
example

SELECT * FROM
xpath_table(’article_id’,

’article_xml’,
’articles’,
’/article/author|/article/pages|/article/title’,

2752

Appendix F. Additional Supplied Modules

’date_entered > ”2003-01-01” ’)
AS t(article_id integer, author text, page_count integer, title text);

The AS clause defines the names and types of the columns in the output table. The first is the “key” field
and the rest correspond to the XPath queries. If there are more XPath queries than result columns, the
extra queries will be ignored. If there are more result columns than XPath queries, the extra columns will
be NULL.

Notice that this example defines the page_count result column as an integer. The function deals inter-
nally with string representations, so when you say you want an integer in the output, it will take the string
representation of the XPath result and use PostgreSQL input functions to transform it into an integer (or
whatever type the AS clause requests). An error will result if it can’t do this — for example if the result
is empty — so you may wish to just stick to text as the column type if you think your data has any
problems.

The calling SELECT statement doesn’t necessarily have be be just SELECT * — it can reference the output
columns by name or join them to other tables. The function produces a virtual table with which you can
perform any operation you wish (e.g. aggregation, joining, sorting etc). So we could also have:

SELECT t.title, p.fullname, p.email
FROM xpath_table(’article_id’, ’article_xml’, ’articles’,

’/article/title|/article/author/@id’,
’xpath_string(article_xml,”/article/@date”) > ”2003-03-20” ’)

AS t(article_id integer, title text, author_id integer),
tblPeopleInfo AS p

WHERE t.author_id = p.person_id;

as a more complicated example. Of course, you could wrap all of this in a view for convenience.

F.41.3.1. Multivalued Results

The xpath_table function assumes that the results of each XPath query might be multivalued, so the
number of rows returned by the function may not be the same as the number of input documents. The first
row returned contains the first result from each query, the second row the second result from each query.
If one of the queries has fewer values than the others, null values will be returned instead.

In some cases, a user will know that a given XPath query will return only a single result (perhaps a unique
document identifier) — if used alongside an XPath query returning multiple results, the single-valued
result will appear only on the first row of the result. The solution to this is to use the key field as part of a
join against a simpler XPath query. As an example:

CREATE TABLE test (
id int PRIMARY KEY,
xml text

);

INSERT INTO test VALUES (1, ’<doc num="C1">
<line num="L1"><a>12<c>3</c></line>
<line num="L2"><a>1122<c>33</c></line>
</doc>’);

INSERT INTO test VALUES (2, ’<doc num="C2">

2753

Appendix F. Additional Supplied Modules

<line num="L1"><a>111222<c>333</c></line>
<line num="L2"><a>111222<c>333</c></line>
</doc>’);

SELECT * FROM
xpath_table(’id’,’xml’,’test’,

’/doc/@num|/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c’,
’true’)

AS t(id int, doc_num varchar(10), line_num varchar(10), val1 int, val2 int, val3 int)
WHERE id = 1 ORDER BY doc_num, line_num

id | doc_num | line_num | val1 | val2 | val3
----+---------+----------+------+------+------
1 | C1 | L1 | 1 | 2 | 3
1 | | L2 | 11 | 22 | 33

To get doc_num on every line, the solution is to use two invocations of xpath_table and join the results:

SELECT t.*,i.doc_num FROM
xpath_table(’id’, ’xml’, ’test’,

’/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c’,
’true’)

AS t(id int, line_num varchar(10), val1 int, val2 int, val3 int),
xpath_table(’id’, ’xml’, ’test’, ’/doc/@num’, ’true’)
AS i(id int, doc_num varchar(10))

WHERE i.id=t.id AND i.id=1
ORDER BY doc_num, line_num;

id | line_num | val1 | val2 | val3 | doc_num
----+----------+------+------+------+---------
1 | L1 | 1 | 2 | 3 | C1
1 | L2 | 11 | 22 | 33 | C1

(2 rows)

F.41.4. XSLT Functions
The following functions are available if libxslt is installed:

F.41.4.1. xslt_process

xslt_process(text document, text stylesheet, text paramlist) returns text

This function applies the XSL stylesheet to the document and returns the transformed result. The
paramlist is a list of parameter assignments to be used in the transformation, specified in the form
a=1,b=2. Note that the parameter parsing is very simple-minded: parameter values cannot contain
commas!

2754

Appendix F. Additional Supplied Modules

There is also a two-parameter version of xslt_process which does not pass any parameters to the
transformation.

F.41.5. Author
John Gray <jgray@azuli.co.uk>

Development of this module was sponsored by Torchbox Ltd. (www.torchbox.com). It has the same BSD
licence as PostgreSQL.

2755

Appendix G. Additional Supplied Programs
This appendix and the previous one contain information regarding the modules that can be found in
the contrib directory of the PostgreSQL distribution. See Appendix F for more information about the
contrib section in general and server extensions and plug-ins found in contrib specifically.

This appendix covers utility programs found in contrib. Once installed, either from source or a packag-
ing system, they are found in the bin directory of the PostgreSQL installation and can be used like any
other program.

G.1. Client Applications
This section covers PostgreSQL client applications in contrib. They can be run from anywhere, inde-
pendent of where the database server resides. See also Reference II, PostgreSQL Client Applications for
information about client applications that part of the core PostgreSQL distribution.

oid2name

Name
oid2name — resolve OIDs and file nodes in a PostgreSQL data directory

Synopsis

oid2name [option...]

Description
oid2name is a utility program that helps administrators to examine the file structure used by PostgreSQL.
To make use of it, you need to be familiar with the database file structure, which is described in Chapter
56.

Note: The name “oid2name” is historical, and is actually rather misleading, since most of the time
when you use it, you will really be concerned with tables’ filenode numbers (which are the file names
visible in the database directories). Be sure you understand the difference between table OIDs and
table filenodes!

2756

oid2name

oid2name connects to a target database and extracts OID, filenode, and/or table name information. You
can also have it show database OIDs or tablespace OIDs.

Options
oid2name accepts the following command-line arguments:

-f filenode

show info for table with filenode filenode

-i

include indexes and sequences in the listing

-o oid

show info for table with OID oid

-q

omit headers (useful for scripting)

-s

show tablespace OIDs

-S

include system objects (those in information_schema, pg_toast and pg_catalog schemas)

-t tablename_pattern

show info for table(s) matching tablename_pattern

-V

--version

Print the oid2name version and exit.

-x

display more information about each object shown: tablespace name, schema name, and OID

-?

--help

Show help about oid2name command line arguments, and exit.

oid2name also accepts the following command-line arguments for connection parameters:

-d database

database to connect to

-H host

database server’s host

2757

oid2name

-p port

database server’s port

-U username

user name to connect as

-P password

password (deprecated — putting this on the command line is a security hazard)

To display specific tables, select which tables to show by using -o, -f and/or -t. -o takes an OID, -f
takes a filenode, and -t takes a table name (actually, it’s a LIKE pattern, so you can use things like foo%).
You can use as many of these options as you like, and the listing will include all objects matched by any
of the options. But note that these options can only show objects in the database given by -d.

If you don’t give any of -o, -f or -t, but do give -d, it will list all tables in the database named by -d. In
this mode, the -S and -i options control what gets listed.

If you don’t give -d either, it will show a listing of database OIDs. Alternatively you can give -s to get a
tablespace listing.

Notes
oid2name requires a running database server with non-corrupt system catalogs. It is therefore of only
limited use for recovering from catastrophic database corruption situations.

Examples
$ # what’s in this database server, anyway?
$ oid2name
All databases:

Oid Database Name Tablespace

17228 alvherre pg_default
17255 regression pg_default
17227 template0 pg_default

1 template1 pg_default

$ oid2name -s
All tablespaces:

Oid Tablespace Name

1663 pg_default
1664 pg_global

155151 fastdisk
155152 bigdisk

$ # OK, let’s look into database alvherre
$ cd $PGDATA/base/17228

2758

oid2name

$ # get top 10 db objects in the default tablespace, ordered by size
$ ls -lS * | head -10
-rw------- 1 alvherre alvherre 136536064 sep 14 09:51 155173
-rw------- 1 alvherre alvherre 17965056 sep 14 09:51 1155291
-rw------- 1 alvherre alvherre 1204224 sep 14 09:51 16717
-rw------- 1 alvherre alvherre 581632 sep 6 17:51 1255
-rw------- 1 alvherre alvherre 237568 sep 14 09:50 16674
-rw------- 1 alvherre alvherre 212992 sep 14 09:51 1249
-rw------- 1 alvherre alvherre 204800 sep 14 09:51 16684
-rw------- 1 alvherre alvherre 196608 sep 14 09:50 16700
-rw------- 1 alvherre alvherre 163840 sep 14 09:50 16699
-rw------- 1 alvherre alvherre 122880 sep 6 17:51 16751

$ # I wonder what file 155173 is ...
$ oid2name -d alvherre -f 155173
From database "alvherre":
Filenode Table Name

155173 accounts

$ # you can ask for more than one object
$ oid2name -d alvherre -f 155173 -f 1155291
From database "alvherre":
Filenode Table Name

155173 accounts

1155291 accounts_pkey

$ # you can mix the options, and get more details with -x
$ oid2name -d alvherre -t accounts -f 1155291 -x
From database "alvherre":
Filenode Table Name Oid Schema Tablespace

--
155173 accounts 155173 public pg_default

1155291 accounts_pkey 1155291 public pg_default

$ # show disk space for every db object
$ du [0-9]* |
> while read SIZE FILENODE
> do
> echo "$SIZE ‘oid2name -q -d alvherre -i -f $FILENODE‘"
> done
16 1155287 branches_pkey
16 1155289 tellers_pkey
17561 1155291 accounts_pkey
...

$ # same, but sort by size
$ du [0-9]* | sort -rn | while read SIZE FN
> do
> echo "$SIZE ‘oid2name -q -d alvherre -f $FN‘"
> done

2759

oid2name

133466 155173 accounts
17561 1155291 accounts_pkey
1177 16717 pg_proc_proname_args_nsp_index
...

$ # If you want to see what’s in tablespaces, use the pg_tblspc directory
$ cd $PGDATA/pg_tblspc
$ oid2name -s
All tablespaces:

Oid Tablespace Name

1663 pg_default
1664 pg_global

155151 fastdisk
155152 bigdisk

$ # what databases have objects in tablespace "fastdisk"?
$ ls -d 155151/*
155151/17228/ 155151/PG_VERSION

$ # Oh, what was database 17228 again?
$ oid2name
All databases:

Oid Database Name Tablespace

17228 alvherre pg_default
17255 regression pg_default
17227 template0 pg_default

1 template1 pg_default

$ # Let’s see what objects does this database have in the tablespace.
$ cd 155151/17228
$ ls -l
total 0
-rw------- 1 postgres postgres 0 sep 13 23:20 155156

$ # OK, this is a pretty small table ... but which one is it?
$ oid2name -d alvherre -f 155156
From database "alvherre":
Filenode Table Name

155156 foo

Author
B. Palmer <bpalmer@crimelabs.net>

2760

pgbench

Name
pgbench — run a benchmark test on PostgreSQL

Synopsis

pgbench -i [option...] [dbname]

pgbench [option...] [dbname]

Description
pgbench is a simple program for running benchmark tests on PostgreSQL. It runs the same sequence of
SQL commands over and over, possibly in multiple concurrent database sessions, and then calculates the
average transaction rate (transactions per second). By default, pgbench tests a scenario that is loosely
based on TPC-B, involving five SELECT, UPDATE, and INSERT commands per transaction. However, it is
easy to test other cases by writing your own transaction script files.

Typical output from pgbench looks like:

transaction type: TPC-B (sort of)
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
tps = 85.184871 (including connections establishing)
tps = 85.296346 (excluding connections establishing)

The first six lines report some of the most important parameter settings. The next line reports the number
of transactions completed and intended (the latter being just the product of number of clients and number
of transactions per client); these will be equal unless the run failed before completion. (In -T mode, only
the actual number of transactions is printed.) The last two lines report the number of transactions per
second, figured with and without counting the time to start database sessions.

The default TPC-B-like transaction test requires specific tables to be set up beforehand. pgbench should be
invoked with the -i (initialize) option to create and populate these tables. (When you are testing a custom
script, you don’t need this step, but will instead need to do whatever setup your test needs.) Initialization
looks like:

pgbench -i [other-options] dbname

where dbname is the name of the already-created database to test in. (You may also need -h, -p, and/or
-U options to specify how to connect to the database server.)

2761

pgbench

Caution
pgbench -i creates four tables pgbench_accounts, pgbench_branches,
pgbench_history, and pgbench_tellers, destroying any existing tables of these
names. Be very careful to use another database if you have tables having these
names!

At the default “scale factor” of 1, the tables initially contain this many rows:

table # of rows

pgbench_branches 1
pgbench_tellers 10
pgbench_accounts 100000
pgbench_history 0

You can (and, for most purposes, probably should) increase the number of rows by using the -s (scale
factor) option. The -F (fillfactor) option might also be used at this point.

Once you have done the necessary setup, you can run your benchmark with a command that doesn’t
include -i, that is

pgbench [options] dbname

In nearly all cases, you’ll need some options to make a useful test. The most important options are -c

(number of clients), -t (number of transactions), -T (time limit), and -f (specify a custom script file).
See below for a full list.

Options
The following is divided into three subsections: Different options are used during database initialization
and while running benchmarks, some options are useful in both cases.

Initialization Options

pgbench accepts the following command-line initialization arguments:

-i

Required to invoke initialization mode.

-F fillfactor

Create the pgbench_accounts, pgbench_tellers and pgbench_branches tables with the
given fillfactor. Default is 100.

-s scale_factor

Multiply the number of rows generated by the scale factor. For example, -s 100 will create
10,000,000 rows in the pgbench_accounts table. Default is 1.

2762

pgbench

--index-tablespace=index_tablespace

Create indexes in the specified tablespace, rather than the default tablespace.

--tablespace=tablespace

Create tables in the specified tablespace, rather than the default tablespace.

--unlogged-tables

Create all tables as unlogged tables, rather than permanent tables.

Benchmarking Options

pgbench accepts the following command-line benchmarking arguments:

-c clients

Number of clients simulated, that is, number of concurrent database sessions. Default is 1.

-C

Establish a new connection for each transaction, rather than doing it just once per client session. This
is useful to measure the connection overhead.

-d

Print debugging output.

-D varname=value

Define a variable for use by a custom script (see below). Multiple -D options are allowed.

-f filename

Read transaction script from filename. See below for details. -N, -S, and -f are mutually exclusive.

-j threads

Number of worker threads within pgbench. Using more than one thread can be helpful on multi-CPU
machines. The number of clients must be a multiple of the number of threads, since each thread is
given the same number of client sessions to manage. Default is 1.

-l

Write the time taken by each transaction to a log file. See below for details.

-M querymode

Protocol to use for submitting queries to the server:

• simple: use simple query protocol.

• extended: use extended query protocol.

• prepared: use extended query protocol with prepared statements.

The default is simple query protocol. (See Chapter 46 for more information.)

2763

pgbench

-n

Perform no vacuuming before running the test. This option is necessary if you are running a custom
test scenario that does not include the standard tables pgbench_accounts, pgbench_branches,
pgbench_history, and pgbench_tellers.

-N

Do not update pgbench_tellers and pgbench_branches. This will avoid update contention on
these tables, but it makes the test case even less like TPC-B.

-r

Report the average per-statement latency (execution time from the perspective of the client) of each
command after the benchmark finishes. See below for details.

-s scale_factor

Report the specified scale factor in pgbench’s output. With the built-in tests, this is not necessary;
the correct scale factor will be detected by counting the number of rows in the pgbench_branches
table. However, when testing custom benchmarks (-f option), the scale factor will be reported as 1
unless this option is used.

-S

Perform select-only transactions instead of TPC-B-like test.

-t transactions

Number of transactions each client runs. Default is 10.

-T seconds

Run the test for this many seconds, rather than a fixed number of transactions per client. -t and -T

are mutually exclusive.

-v

Vacuum all four standard tables before running the test. With neither -n nor -v, pgbench will vacuum
the pgbench_tellers and pgbench_branches tables, and will truncate pgbench_history.

Common Options

pgbench accepts the following command-line common arguments:

-h hostname

The database server’s host name

-p port

The database server’s port number

-U login

The user name to connect as

2764

pgbench

-V

--version

Print the pgbench version and exit.

-?

--help

Show help about pgbench command line arguments, and exit.

Notes

What is the “Transaction” Actually Performed in pgbench?

The default transaction script issues seven commands per transaction:

1. BEGIN;

2. UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;

3. SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

4. UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;

5. UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;

6. INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid,

:bid, :aid, :delta, CURRENT_TIMESTAMP);

7. END;

If you specify -N, steps 4 and 5 aren’t included in the transaction. If you specify -S, only the SELECT is
issued.

Custom Scripts

pgbench has support for running custom benchmark scenarios by replacing the default transaction script
(described above) with a transaction script read from a file (-f option). In this case a “transaction” counts
as one execution of a script file. You can even specify multiple scripts (multiple -f options), in which case
a random one of the scripts is chosen each time a client session starts a new transaction.

The format of a script file is one SQL command per line; multiline SQL commands are not supported.
Empty lines and lines beginning with -- are ignored. Script file lines can also be “meta commands”,
which are interpreted by pgbench itself, as described below.

There is a simple variable-substitution facility for script files. Variables can be set by the command-line
-D option, explained above, or by the meta commands explained below. In addition to any variables preset
by -D command-line options, the variable scale is preset to the current scale factor. Once set, a variable’s
value can be inserted into a SQL command by writing :variablename. When running more than one
client session, each session has its own set of variables.

2765

pgbench

Script file meta commands begin with a backslash (\). Arguments to a meta command are separated by
white space. These meta commands are supported:

\set varname operand1 [operator operand2]

Sets variable varname to a calculated integer value. Each operand is either an integer constant or
a :variablename reference to a variable having an integer value. The operator can be +, -, *, or
/.

Example:

\set ntellers 10 * :scale

\setrandom varname min max

Sets variable varname to a random integer value between the limits min and max inclusive. Each
limit can be either an integer constant or a :variablename reference to a variable having an integer
value.

Example:

\setrandom aid 1 :naccounts

\sleep number [us | ms | s]

Causes script execution to sleep for the specified duration in microseconds (us), milliseconds (ms)
or seconds (s). If the unit is omitted then seconds are the default. number can be either an integer
constant or a :variablename reference to a variable having an integer value.

Example:

\sleep 10 ms

\setshell varname command [argument ...]

Sets variable varname to the result of the shell command command. The command must return an
integer value through its standard output.

argument can be either a text constant or a :variablename reference to a variable of any types. If
you want to use argument starting with colons, you need to add an additional colon at the beginning
of argument.

Example:

\setshell variable_to_be_assigned command literal_argument :variable ::literal_starting_with_colon

\shell command [argument ...]

Same as \setshell, but the result is ignored.

Example:

\shell command literal_argument :variable ::literal_starting_with_colon

As an example, the full definition of the built-in TPC-B-like transaction is:

\set nbranches :scale
\set ntellers 10 * :scale
\set naccounts 100000 * :scale
\setrandom aid 1 :naccounts
\setrandom bid 1 :nbranches
\setrandom tid 1 :ntellers

2766

pgbench

\setrandom delta -5000 5000
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

This script allows each iteration of the transaction to reference different, randomly-chosen rows. (This
example also shows why it’s important for each client session to have its own variables — otherwise
they’d not be independently touching different rows.)

Per-Transaction Logging

With the -l option, pgbench writes the time taken by each transaction to a log file. The log file will be
named pgbench_log.nnn, where nnn is the PID of the pgbench process. If the -j option is 2 or higher,
creating multiple worker threads, each will have its own log file. The first worker will use the same name
for its log file as in the standard single worker case. The additional log files for the other workers will be
named pgbench_log.nnn.mmm, where mmm is a sequential number for each worker starting with 1.

The format of the log is:

client_id transaction_no time file_no time_epoch time_us

where time is the total elapsed transaction time in microseconds, file_no identifies which script file
was used (useful when multiple scripts were specified with -f), and time_epoch/time_us are a UNIX
epoch format timestamp and an offset in microseconds (suitable for creating a ISO 8601 timestamp with
fractional seconds) showing when the transaction completed.

Here are example outputs:

0 199 2241 0 1175850568 995598
0 200 2465 0 1175850568 998079
0 201 2513 0 1175850569 608
0 202 2038 0 1175850569 2663

Per-Statement Latencies

With the -r option, pgbench collects the elapsed transaction time of each statement executed by every
client. It then reports an average of those values, referred to as the latency for each statement, after the
benchmark has finished.

For the default script, the output will look similar to this:

starting vacuum...end.
transaction type: TPC-B (sort of)
scaling factor: 1
query mode: simple

2767

pgbench

number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
tps = 618.764555 (including connections establishing)
tps = 622.977698 (excluding connections establishing)
statement latencies in milliseconds:

0.004386 \set nbranches 1 * :scale
0.001343 \set ntellers 10 * :scale
0.001212 \set naccounts 100000 * :scale
0.001310 \setrandom aid 1 :naccounts
0.001073 \setrandom bid 1 :nbranches
0.001005 \setrandom tid 1 :ntellers
0.001078 \setrandom delta -5000 5000
0.326152 BEGIN;
0.603376 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
0.454643 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
5.528491 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
7.335435 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
0.371851 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
1.212976 END;

If multiple script files are specified, the averages are reported separately for each script file.

Note that collecting the additional timing information needed for per-statement latency computation adds
some overhead. This will slow average execution speed and lower the computed TPS. The amount of
slowdown varies significantly depending on platform and hardware. Comparing average TPS values with
and without latency reporting enabled is a good way to measure if the timing overhead is significant.

Good Practices

It is very easy to use pgbench to produce completely meaningless numbers. Here are some guidelines to
help you get useful results.

In the first place, never believe any test that runs for only a few seconds. Use the -t or -T option to make
the run last at least a few minutes, so as to average out noise. In some cases you could need hours to get
numbers that are reproducible. It’s a good idea to try the test run a few times, to find out if your numbers
are reproducible or not.

For the default TPC-B-like test scenario, the initialization scale factor (-s) should be at least as large as
the largest number of clients you intend to test (-c); else you’ll mostly be measuring update contention.
There are only -s rows in the pgbench_branches table, and every transaction wants to update one of
them, so -c values in excess of -s will undoubtedly result in lots of transactions blocked waiting for other
transactions.

The default test scenario is also quite sensitive to how long it’s been since the tables were initialized:
accumulation of dead rows and dead space in the tables changes the results. To understand the results you
must keep track of the total number of updates and when vacuuming happens. If autovacuum is enabled it
can result in unpredictable changes in measured performance.

2768

pgbench

A limitation of pgbench is that it can itself become the bottleneck when trying to test a large number of
client sessions. This can be alleviated by running pgbench on a different machine from the database server,
although low network latency will be essential. It might even be useful to run several pgbench instances
concurrently, on several client machines, against the same database server.

2769

vacuumlo

Name
vacuumlo — remove orphaned large objects from a PostgreSQL database

Synopsis

vacuumlo [option...] dbname...

Description
vacuumlo is a simple utility program that will remove any “orphaned” large objects from a PostgreSQL
database. An orphaned large object (LO) is considered to be any LO whose OID does not appear in any
oid or lo data column of the database.

If you use this, you may also be interested in the lo_manage trigger in the lo module. lo_manage is
useful to try to avoid creating orphaned LOs in the first place.

All databases named on the command line are processed.

Options
vacuumlo accepts the following command-line arguments:

-l limit

Remove no more than limit large objects per transaction (default 1000). Since the server
acquires a lock per LO removed, removing too many LOs in one transaction risks exceeding
max_locks_per_transaction. Set the limit to zero if you want all removals done in a single
transaction.

-n

Don’t remove anything, just show what would be done.

-v

Write a lot of progress messages.

-V

--version

Print the vacuumlo version and exit.

-?

--help

Show help about vacuumlo command line arguments, and exit.

2770

vacuumlo

vacuumlo also accepts the following command-line arguments for connection parameters:

-h hostname

Database server’s host.

-p port

Database server’s port.

-U username

User name to connect as.

-w

--no-password

Never issue a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file, the connection attempt will fail. This option can be
useful in batch jobs and scripts where no user is present to enter a password.

-W

Force vacuumlo to prompt for a password before connecting to a database.

This option is never essential, since vacuumlo will automatically prompt for a password if the server
demands password authentication. However, vacuumlo will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Notes
vacuumlo works by the following method: First, vacuumlo builds a temporary table which contains all of
the OIDs of the large objects in the selected database. It then scans through all columns in the database
that are of type oid or lo, and removes matching entries from the temporary table. (Note: Only types with
these names are considered; in particular, domains over them are not considered.) The remaining entries
in the temporary table identify orphaned LOs. These are removed.

Author
Peter Mount <peter@retep.org.uk>

2771

G.2. Server Applications
This section covers PostgreSQL server-related applications in contrib. They are typically run on the host
where the database server resides. See also Reference III, PostgreSQL Server Applications for information
about server applications that part of the core PostgreSQL distribution.

pg_archivecleanup

Name
pg_archivecleanup — clean up PostgreSQL WAL archive files

Synopsis

pg_archivecleanup [option...] archivelocation oldestkeptwalfile

Description
pg_archivecleanup is designed to be used as an archive_cleanup_command to clean up WAL file
archives when running as a standby server (see Section 25.2). pg_archivecleanup can also be used as a
standalone program to clean WAL file archives.

To configure a standby server to use pg_archivecleanup, put this into its recovery.conf configuration
file:

archive_cleanup_command = ’pg_archivecleanup archivelocation %r’

where archivelocation is the directory from which WAL segment files should be removed.

When used within archive_cleanup_command, all WAL files logically preceding the value of the %r

argument will be removed from archivelocation. This minimizes the number of files that need to
be retained, while preserving crash-restart capability. Use of this parameter is appropriate if the
archivelocation is a transient staging area for this particular standby server, but not when the
archivelocation is intended as a long-term WAL archive area, or when multiple standby servers are
recovering from the same archive location.

When used as a standalone program all WAL files logically preceding the oldestkeptwalfile will be
removed from archivelocation. In this mode, if you specify a .backup file name, then only the file
prefix will be used as the oldestkeptwalfile. This allows you to remove all WAL files archived prior
to a specific base backup without error. For example, the following example will remove all files older
than WAL file name 000000010000003700000010:

pg_archivecleanup -d archive 000000010000003700000010.00000020.backup

pg_archivecleanup: keep WAL file "archive/000000010000003700000010" and later
pg_archivecleanup: removing file "archive/00000001000000370000000F"

2772

pg_archivecleanup

pg_archivecleanup: removing file "archive/00000001000000370000000E"

pg_archivecleanup assumes that archivelocation is a directory readable and writable by the server-
owning user.

Options
pg_archivecleanup accepts the following command-line arguments:

-d

Print lots of debug logging output on stderr.

-n

Print the names of the files that would have been removed on stdout (performs a dry run).

-V

--version

Print the pg_archivecleanup version and exit.

-x extension

When using the program as a standalone utility, provide an extension that will be stripped from all file
names before deciding if they should be deleted. This is typically useful for cleaning up archives that
have been compressed during storage, and therefore have had an extension added by the compression
program. For example: -x .gz.

Note that the .backup file name passed to the program should not include the extension.

-?

--help

Show help about pg_archivecleanup command line arguments, and exit.

Notes
pg_archivecleanup is designed to work with PostgreSQL 8.0 and later when used as a standalone utility,
or with PostgreSQL 9.0 and later when used as an archive cleanup command.

pg_archivecleanup is written in C and has an easy-to-modify source code, with specifically designated
sections to modify for your own needs

Examples
On Linux or Unix systems, you might use:

archive_cleanup_command = ’pg_archivecleanup -d /mnt/standby/archive %r 2>>cleanup.log’

2773

pg_archivecleanup

where the archive directory is physically located on the standby server, so that the archive_command is
accessing it across NFS, but the files are local to the standby. This will:

• produce debugging output in cleanup.log

• remove no-longer-needed files from the archive directory

Author
Simon Riggs <simon@2ndquadrant.com>

See Also
pg_standby

2774

pg_standby

Name
pg_standby — supports the creation of a PostgreSQL warm standby server

Synopsis

pg_standby [option...] archivelocation nextwalfile xlogfilepath [restartwalfile]

Description
pg_standby supports creation of a “warm standby” database server. It is designed to be a production-ready
program, as well as a customizable template should you require specific modifications.

pg_standby is designed to be a waiting restore_command, which is needed to turn a standard archive
recovery into a warm standby operation. Other configuration is required as well, all of which is described
in the main server manual (see Section 25.2).

To configure a standby server to use pg_standby, put this into its recovery.conf configuration file:

restore_command = ’pg_standby archiveDir %f %p %r’

where archiveDir is the directory from which WAL segment files should be restored.

If restartwalfile is specified, normally by using the %r macro, then all WAL files logically pre-
ceding this file will be removed from archivelocation. This minimizes the number of files that
need to be retained, while preserving crash-restart capability. Use of this parameter is appropriate if
the archivelocation is a transient staging area for this particular standby server, but not when the
archivelocation is intended as a long-term WAL archive area.

pg_standby assumes that archivelocation is a directory readable by the server-owning user. If
restartwalfile (or -k) is specified, the archivelocation directory must be writable too.

There are two ways to fail over to a “warm standby” database server when the master server fails:

Smart Failover

In smart failover, the server is brought up after applying all WAL files available in the archive. This
results in zero data loss, even if the standby server has fallen behind, but if there is a lot of unapplied
WAL it can be a long time before the standby server becomes ready. To trigger a smart failover,
create a trigger file containing the word smart, or just create it and leave it empty.

Fast Failover

In fast failover, the server is brought up immediately. Any WAL files in the archive that have not
yet been applied will be ignored, and all transactions in those files are lost. To trigger a fast failover,
create a trigger file and write the word fast into it. pg_standby can also be configured to execute a
fast failover automatically if no new WAL file appears within a defined interval.

2775

pg_standby

Options
pg_standby accepts the following command-line arguments:

-c

Use cp or copy command to restore WAL files from archive. This is the only supported behavior so
this option is useless.

-d

Print lots of debug logging output on stderr.

-k

Remove files from archivelocation so that no more than this many WAL files before the
current one are kept in the archive. Zero (the default) means not to remove any files from
archivelocation. This parameter will be silently ignored if restartwalfile is specified, since
that specification method is more accurate in determining the correct archive cut-off point. Use
of this parameter is deprecated as of PostgreSQL 8.3; it is safer and more efficient to specify a
restartwalfile parameter. A too small setting could result in removal of files that are still
needed for a restart of the standby server, while a too large setting wastes archive space.

-r maxretries

Set the maximum number of times to retry the copy command if it fails (default 3). After each failure,
we wait for sleeptime * num_retries so that the wait time increases progressively. So by default,
we will wait 5 secs, 10 secs, then 15 secs before reporting the failure back to the standby server. This
will be interpreted as end of recovery and the standby will come up fully as a result.

-s sleeptime

Set the number of seconds (up to 60, default 5) to sleep between tests to see if the WAL file to be
restored is available in the archive yet. The default setting is not necessarily recommended; consult
Section 25.2 for discussion.

-t triggerfile

Specify a trigger file whose presence should cause failover. It is recommended that you use a struc-
tured file name to avoid confusion as to which server is being triggered when multiple servers exist
on the same system; for example /tmp/pgsql.trigger.5432.

-V

--version

Print the pg_standby version and exit.

-w maxwaittime

Set the maximum number of seconds to wait for the next WAL file, after which a fast failover will be
performed. A setting of zero (the default) means wait forever. The default setting is not necessarily
recommended; consult Section 25.2 for discussion.

-?

--help

Show help about pg_standby command line arguments, and exit.

2776

pg_standby

Notes
pg_standby is designed to work with PostgreSQL 8.2 and later.

PostgreSQL 8.3 provides the %r macro, which is designed to let pg_standby know the last file it needs to
keep. With PostgreSQL 8.2, the -k option must be used if archive cleanup is required. This option remains
available in 8.3, but its use is deprecated.

PostgreSQL 8.4 provides the recovery_end_command option. Without this option a leftover trigger file
can be hazardous.

pg_standby is written in C and has an easy-to-modify source code, with specifically designated sections
to modify for your own needs

Examples
On Linux or Unix systems, you might use:

archive_command = ’cp %p .../archive/%f’

restore_command = ’pg_standby -d -s 2 -t /tmp/pgsql.trigger.5442 .../archive %f %p %r 2>>standby.log’

recovery_end_command = ’rm -f /tmp/pgsql.trigger.5442’

where the archive directory is physically located on the standby server, so that the archive_command is
accessing it across NFS, but the files are local to the standby (enabling use of ln). This will:

• produce debugging output in standby.log

• sleep for 2 seconds between checks for next WAL file availability

• stop waiting only when a trigger file called /tmp/pgsql.trigger.5442 appears, and perform
failover according to its content

• remove the trigger file when recovery ends

• remove no-longer-needed files from the archive directory

On Windows, you might use:

archive_command = ’copy %p ...\\archive\\%f’

restore_command = ’pg_standby -d -s 5 -t C:\pgsql.trigger.5442 ...\archive %f %p %r 2>>standby.log’

recovery_end_command = ’del C:\pgsql.trigger.5442’

Note that backslashes need to be doubled in the archive_command, but not in the restore_command
or recovery_end_command. This will:

• use the copy command to restore WAL files from archive

2777

pg_standby

• produce debugging output in standby.log

• sleep for 5 seconds between checks for next WAL file availability

• stop waiting only when a trigger file called C:\pgsql.trigger.5442 appears, and perform failover
according to its content

• remove the trigger file when recovery ends

• remove no-longer-needed files from the archive directory

The copy command on Windows sets the final file size before the file is completely copied, which would
ordinarily confuse pg_standby. Therefore pg_standby waits sleeptime seconds once it sees the proper
file size. GNUWin32’s cp sets the file size only after the file copy is complete.

Since the Windows example uses copy at both ends, either or both servers might be accessing the archive
directory across the network.

Author
Simon Riggs <simon@2ndquadrant.com>

See Also
pg_archivecleanup

2778

pg_test_fsync

Name
pg_test_fsync — determine fastest wal_sync_method for PostgreSQL

Synopsis

pg_test_fsync [option...]

Description
pg_test_fsync is intended to give you a reasonable idea of what the fastest wal_sync_method is on your
specific system, as well as supplying diagnostic information in the event of an identified I/O problem.
However, differences shown by pg_test_fsync might not make any difference in real database throughput,
especially since many database servers are not speed-limited by their transaction logs.

Options
pg_test_fsync accepts the following command-line options:

-f

--filename

Specifies the file name to write test data in. This file should be in the same file system that the
pg_xlog directory is or will be placed in. (pg_xlog contains the WAL files.) The default is
pg_test_fsync.out in the current directory.

-s

--secs-per-test

Specifies the number of seconds for each test. The more time per test, the greater the test’s accuracy,
but the longer it takes to run. The default is 2 seconds, which allows the program to complete in about
30 seconds.

-V

--version

Print the pg_test_fsync version and exit.

-?

--help

Show help about pg_test_fsync command line arguments, and exit.

2779

pg_test_fsync

Author
Bruce Momjian <bruce@momjian.us>

See Also
postgres

2780

pg_test_timing

Name
pg_test_timing — measure timing overhead

Synopsis

pg_test_timing [option...]

Description
pg_test_timing is a tool to measure the timing overhead on your system and confirm that the system time
never moves backwards. Systems that are slow to collect timing data can give less accurate EXPLAIN

ANALYZE results.

Options
pg_test_timing accepts the following command-line options:

-d duration

--duration=duration

Specifies the test duration, in seconds. Longer durations give slightly better accuracy, and are more
likely to discover problems with the system clock moving backwards. The default test duration is 3
seconds.

-V

--version

Print the pg_test_timing version and exit.

-?

--help

Show help about pg_test_timing command line arguments, and exit.

Usage

Interpreting results

Good results will show most (>90%) individual timing calls take less than one microsecond. Average per
loop overhead will be even lower, below 100 nanoseconds. This example from an Intel i7-860 system

2781

pg_test_timing

using a TSC clock source shows excellent performance:

Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 nsec
Histogram of timing durations:

< usec: count percent
16: 2 0.00000%
8: 13 0.00002%
4: 126 0.00015%
2: 2999652 3.59518%
1: 80435604 96.40465%

Note that different units are used for the per loop time than the histogram. The loop can have resolu-
tion within a few nanoseconds (nsec), while the individual timing calls can only resolve down to one
microsecond (usec).

Measuring executor timing overhead

When the query executor is running a statement using EXPLAIN ANALYZE, individual operations are
timed as well as showing a summary. The overhead of your system can be checked by counting rows with
the psql program:

CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;

The i7-860 system measured runs the count query in 9.8 ms while the EXPLAIN ANALYZE version takes
16.6 ms, each processing just over 100,000 rows. That 6.8 ms difference means the timing overhead per
row is 68 ns, about twice what pg_test_timing estimated it would be. Even that relatively small amount of
overhead is making the fully timed count statement take almost 70% longer. On more substantial queries,
the timing overhead would be less problematic.

Changing time sources

On some newer Linux systems, it’s possible to change the clock source used to collect timing data at any
time. A second example shows the slowdown possible from switching to the slower acpi_pm time source,
on the same system used for the fast results above:

cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm
echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
pg_test_timing
Per loop time including overhead: 722.92 nsec
Histogram of timing durations:

< usec: count percent
16: 3 0.00007%

2782

pg_test_timing

8: 563 0.01357%
4: 3241 0.07810%
2: 2990371 72.05956%
1: 1155682 27.84870%

In this configuration, the sample EXPLAIN ANALYZE above takes 115.9 ms. That’s 1061 nsec of timing
overhead, again a small multiple of what’s measured directly by this utility. That much timing overhead
means the actual query itself is only taking a tiny fraction of the accounted for time, most of it is being
consumed in overhead instead. In this configuration, any EXPLAIN ANALYZE totals involving many timed
operations would be inflated significantly by timing overhead.

FreeBSD also allows changing the time source on the fly, and it logs information about the timer selected
during boot:

dmesg | grep "Timecounter"
sysctl kern.timecounter.hardware=TSC

Other systems may only allow setting the time source on boot. On older Linux systems the "clock" kernel
setting is the only way to make this sort of change. And even on some more recent ones, the only option
you’ll see for a clock source is "jiffies". Jiffies are the older Linux software clock implementation, which
can have good resolution when it’s backed by fast enough timing hardware, as in this example:

$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:

< usec: count percent
32: 1 0.00000%
16: 1 0.00000%
8: 22 0.00007%
4: 3010 0.00981%
2: 2993204 9.75277%
1: 27694571 90.23734%

Clock hardware and timing accuracy

Collecting accurate timing information is normally done on computers using hardware clocks with vari-
ous levels of accuracy. With some hardware the operating systems can pass the system clock time almost
directly to programs. A system clock can also be derived from a chip that simply provides timing inter-
rupts, periodic ticks at some known time interval. In either case, operating system kernels provide a clock

2783

pg_test_timing

source that hides these details. But the accuracy of that clock source and how quickly it can return results
varies based on the underlying hardware.

Inaccurate time keeping can result in system instability. Test any change to the clock source very carefully.
Operating system defaults are sometimes made to favor reliability over best accuracy. And if you are using
a virtual machine, look into the recommended time sources compatible with it. Virtual hardware faces
additional difficulties when emulating timers, and there are often per operating system settings suggested
by vendors.

The Time Stamp Counter (TSC) clock source is the most accurate one available on current generation
CPUs. It’s the preferred way to track the system time when it’s supported by the operating system and
the TSC clock is reliable. There are several ways that TSC can fail to provide an accurate timing source,
making it unreliable. Older systems can have a TSC clock that varies based on the CPU temperature,
making it unusable for timing. Trying to use TSC on some older multicore CPUs can give a reported
time that’s inconsistent among multiple cores. This can result in the time going backwards, a problem
this program checks for. And even the newest systems can fail to provide accurate TSC timing with very
aggressive power saving configurations.

Newer operating systems may check for the known TSC problems and switch to a slower, more stable
clock source when they are seen. If your system supports TSC time but doesn’t default to that, it may
be disabled for a good reason. And some operating systems may not detect all the possible problems
correctly, or will allow using TSC even in situations where it’s known to be inaccurate.

The High Precision Event Timer (HPET) is the preferred timer on systems where it’s available and TSC
is not accurate. The timer chip itself is programmable to allow up to 100 nanosecond resolution, but you
may not see that much accuracy in your system clock.

Advanced Configuration and Power Interface (ACPI) provides a Power Management (PM) Timer, which
Linux refers to as the acpi_pm. The clock derived from acpi_pm will at best provide 300 nanosecond
resolution.

Timers used on older PC hardware including the 8254 Programmable Interval Timer (PIT), the real-time
clock (RTC), the Advanced Programmable Interrupt Controller (APIC) timer, and the Cyclone timer.
These timers aim for millisecond resolution.

Author
Ants Aasma <ants.aasma@eesti.ee>

See Also
EXPLAIN

2784

pg_upgrade

Name
pg_upgrade — upgrade a PostgreSQL server instance

Synopsis

pg_upgrade -b oldbindir -B newbindir -d olddatadir -D newdatadir [option...]

Description
pg_upgrade (formerly called pg_migrator) allows data stored in PostgreSQL data files to be upgraded
to a later PostgreSQL major version without the data dump/reload typically required for major version
upgrades, e.g. from 8.4.7 to the current major release of PostgreSQL. It is not required for minor version
upgrades, e.g. from 9.0.1 to 9.0.4.

Major PostgreSQL releases regularly add new features that often change the layout of the system tables,
but the internal data storage format rarely changes. pg_upgrade uses this fact to perform rapid upgrades
by creating new system tables and simply reusing the old user data files. If a future major release ever
changes the data storage format in a way that makes the old data format unreadable, pg_upgrade will not
be usable for such upgrades. (The community will attempt to avoid such situations.)

pg_upgrade does its best to make sure the old and new clusters are binary-compatible, e.g. by checking for
compatible compile-time settings, including 32/64-bit binaries. It is important that any external modules
are also binary compatible, though this cannot be checked by pg_upgrade.

pg_upgrade supports upgrades from 8.3.X and later to the current major release of PostgreSQL, including
snapshot and alpha releases.

Options
pg_upgrade accepts the following command-line arguments:

-b old_bindir

--old-bindir=old_bindir

the old cluster executable directory; environment variable PGBINOLD

-B new_bindir

--new-bindir=new_bindir

the new cluster executable directory; environment variable PGBINNEW

-c

--check

check clusters only, don’t change any data

2785

pg_upgrade

-d old_datadir

--old-datadir=old_datadir

the old cluster data directory; environment variable PGDATAOLD

-D new_datadir

--new-datadir=new_datadir

the new cluster data directory; environment variable PGDATANEW

-k

--link

use hard links instead of copying files to the new cluster

-o options

--old-options options

options to be passed directly to the old postgres command

-O options

--new-options options

options to be passed directly to the new postgres command

-p old_port_number

--old-port=old_portnum

the old cluster port number; environment variable PGPORTOLD

-P new_port_number

--new-port=new_portnum

the new cluster port number; environment variable PGPORTNEW

-r

--retain

retain SQL and log files even after successful completion

-u user_name

--user=user_name

cluster’s super user name; environment variable PGUSER

-v

--verbose

enable verbose internal logging

-V

--version

display version information, then exit

-?

-h

--help

show help, then exit

2786

pg_upgrade

Usage
These are the steps to perform an upgrade with pg_upgrade:

1. Optionally move the old cluster

If you are using a version-specific installation directory, e.g. /opt/PostgreSQL/9.1, you do not
need to move the old cluster. The graphical installers all use version-specific installation directories.

If your installation directory is not version-specific, e.g. /usr/local/pgsql, it is necessary to move
the current PostgreSQL install directory so it does not interfere with the new PostgreSQL installation.
Once the current PostgreSQL server is shut down, it is safe to rename the PostgreSQL installation
directory; assuming the old directory is /usr/local/pgsql, you can do:

mv /usr/local/pgsql /usr/local/pgsql.old

to rename the directory.

2. For source installs, build the new version

Build the new PostgreSQL source with configure flags that are compatible with the old cluster.
pg_upgrade will check pg_controldata to make sure all settings are compatible before starting the
upgrade.

3. Install the new PostgreSQL binaries

Install the new server’s binaries and support files.

For source installs, if you wish to install the new server in a custom location, use the prefix variable:

gmake prefix=/usr/local/pgsql.new install

4. Install pg_upgrade and pg_upgrade_support

Install the pg_upgrade binary and pg_upgrade_support library in the new PostgreSQL cluster.

5. Initialize the new PostgreSQL cluster

Initialize the new cluster using initdb. Again, use compatible initdb flags that match the old
cluster. Many prebuilt installers do this step automatically. There is no need to start the new cluster.

6. Install custom shared object files

Install any custom shared object files (or DLLs) used by the old cluster into the new cluster, e.g.
pgcrypto.so, whether they are from contrib or some other source. Do not install the schema
definitions, e.g. pgcrypto.sql, because these will be upgraded from the old cluster.

7. Adjust authentication

pg_upgrade will connect to the old and new servers several times, so you might want to set authen-
tication to trust or peer in pg_hba.conf, or if using md5 authentication, use a ~/.pgpass file
(see Section 31.15).

8. Stop both servers

Make sure both database servers are stopped using, on Unix, e.g.:

pg_ctl -D /opt/PostgreSQL/8.4 stop
pg_ctl -D /opt/PostgreSQL/9.0 stop

or on Windows, using the proper service names:

NET STOP postgresql-8.4
NET STOP postgresql-9.0

2787

pg_upgrade

or

NET STOP pgsql-8.3 (PostgreSQL 8.3 and older used a different service name)

9. Run pg_upgrade

Always run the pg_upgrade binary of the new server, not the old one. pg_upgrade requires the speci-
fication of the old and new cluster’s data and executable (bin) directories. You can also specify user
and port values, and whether you want the data linked instead of copied (the default).

If you use link mode, the upgrade will be much faster (no file copying), but you will not be able to
access your old cluster once you start the new cluster after the upgrade. Link mode also requires that
the old and new cluster data directories be in the same file system. See pg_upgrade --help for a
full list of options.

For Windows users, you must be logged into an administrative account, and then start a shell as the
postgres user and set the proper path:

RUNAS /USER:postgres "CMD.EXE"
SET PATH=%PATH%;C:\Program Files\PostgreSQL\9.0\bin;

and then run pg_upgrade with quoted directories, e.g.:

pg_upgrade.exe
--old-datadir "C:/Program Files/PostgreSQL/8.4/data"
--new-datadir "C:/Program Files/PostgreSQL/9.0/data"
--old-bindir "C:/Program Files/PostgreSQL/8.4/bin"
--new-bindir "C:/Program Files/PostgreSQL/9.0/bin"

Once started, pg_upgrade will verify the two clusters are compatible and then do the upgrade. You
can use pg_upgrade --check to perform only the checks, even if the old server is still running.
pg_upgrade --check will also outline any manual adjustments you will need to make after the
upgrade. If you are going to be using link mode, you should use the --link option with --check to
enable link-mode-specific checks. pg_upgrade requires write permission in the current directory.

Obviously, no one should be accessing the clusters during the upgrade. pg_upgrade defaults to run-
ning servers on port 50432 to avoid unintended client connections. You can use the same port number
for both clusters when doing an upgrade because the old and new clusters will not be running at the
same time. However, when checking an old running server, the old and new port numbers must be
different.

If an error occurs while restoring the database schema, pg_upgrade will exit and you will have
to revert to the old cluster as outlined in step 14 below. To try pg_upgrade again, you will need to
modify the old cluster so the pg_upgrade schema restore succeeds. If the problem is a contrib module,
you might need to uninstall the contrib module from the old cluster and install it in the new cluster
after the upgrade, assuming the module is not being used to store user data.

10. Restore pg_hba.conf

If you modified pg_hba.conf to use trust, restore its original authentication settings. It might
also be necessary to adjust other configurations files in the new cluster to match the old cluster, e.g.
postgresql.conf.

11. Post-Upgrade processing

If any post-upgrade processing is required, pg_upgrade will issue warnings as it completes. It will
also generate script files that must be run by the administrator. The script files will connect to each
database that needs post-upgrade processing. Each script should be run using:

2788

pg_upgrade

psql --username postgres --file script.sql postgres

The scripts can be run in any order and can be deleted once they have been run.

Caution
In general it is unsafe to access tables referenced in rebuild scripts until
the rebuild scripts have run to completion; doing so could yield incorrect
results or poor performance. Tables not referenced in rebuild scripts can
be accessed immediately.

12. Statistics

Because optimizer statistics are not transferred by pg_upgrade, you will be instructed to run a com-
mand to regenerate that information at the end of the upgrade.

13. Delete old cluster

Once you are satisfied with the upgrade, you can delete the old cluster’s data directories by running the
script mentioned when pg_upgrade completes. You can also delete the old installation directories
(e.g. bin, share).

14. Reverting to old cluster

If, after running pg_upgrade, you wish to revert to the old cluster, there are several options:

• If you ran pg_upgrade with --check, no modifications were made to the old cluster and you can
re-use it anytime.

• If you ran pg_upgrade with --link, the data files are shared between the old and new cluster. If
you started the new cluster, the new server has written to those shared files and it is unsafe to use
the old cluster.

• If you ran pg_upgrade without --link or did not start the new server, the old
cluster was not modified except that, if linking started, a .old suffix was appended to
$PGDATA/global/pg_control. To reuse the old cluster, possibly remove the .old suffix from
$PGDATA/global/pg_control; you can then restart the old cluster.

Notes
pg_upgrade does not support upgrading of databases containing these reg* OID-referencing system
data types: regproc, regprocedure, regoper, regoperator, regconfig, and regdictionary.
(regtype can be upgraded.)

All failure, rebuild, and reindex cases will be reported by pg_upgrade if they affect your installation;
post-upgrade scripts to rebuild tables and indexes will be generated automatically.

For deployment testing, create a schema-only copy of the old cluster, insert dummy data, and upgrade
that.

If you are upgrading a pre-PostgreSQL 9.2 cluster that uses a configuration-file-only directory, you must
pass the real data directory location to pg_upgrade, and pass the configuration directory location to the
server, e.g. -d /real-data-directory -o ’-D /configuration-directory’.

2789

pg_upgrade

If using a pre-9.1 old server that is using a non-default Unix-domain socket directory or a default that
differs from the default of the new cluster, set PGHOST to point to the old server’s socket location. (This is
not relevant on Windows.)

A Log-Shipping Standby Server (Section 25.2) cannot be upgraded because the server must allow writes.
The simplest way is to upgrade the primary and use rsync to rebuild the standbys. You can run rsync

while the primary is down, or as part of a base backup (Section 24.3.2) which overwrites the old standby
cluster.

If you want to use link mode and you do not want your old cluster to be modified when the new cluster
is started, make a copy of the old cluster and upgrade that in link mode. To make a valid copy of the old
cluster, use rsync to create a dirty copy of the old cluster while the server is running, then shut down
the old server and run rsync again to update the copy with any changes to make it consistent. You might
want to exclude some files, e.g. postmaster.pid, as documented in Section 24.3.3.

Limitations in Upgrading from PostgreSQL 8.3

Upgrading from PostgreSQL 8.3 has additional restrictions not present when upgrading from later Post-
greSQL releases. For example, pg_upgrade will not work for upgrading from 8.3 if a user column is
defined as:

• a tsquery data type

• data type name and is not the first column

You must drop any such columns and upgrade them manually.

pg_upgrade will not work if the ltree contrib module is installed in a database.

pg_upgrade will require a table rebuild if:

• a user column is of data type tsvector

pg_upgrade will require a reindex if:

• an index is of type hash or GIN

• an index uses bpchar_pattern_ops

Also, the default datetime storage format changed to integer after PostgreSQL 8.3. pg_upgrade will check
that the datetime storage format used by the old and new clusters match. Make sure your new cluster is
built with the configure flag --disable-integer-datetimes.

For Windows users, note that due to different integer datetimes settings used by the graphical installer and
the MSI installer, it is only possible to upgrade from version 8.3 of the installer distribution to version
8.4 or later of the installer distribution. It is not possible to upgrade from the MSI installer to the new
graphical installer.

2790

pg_upgrade

See Also
initdb, pg_ctl, pg_dump, postgres

2791

Appendix H. External Projects
PostgreSQL is a complex software project, and managing the project is difficult. We have found that many
enhancements to PostgreSQL can be more efficiently developed separately from the core project.

H.1. Client Interfaces
There are only two client interfaces included in the base PostgreSQL distribution:

• libpq is included because it is the primary C language interface, and because many other client interfaces
are built on top of it.

• ECPG is included because it depends on the server-side SQL grammar, and is therefore sensitive to
changes in PostgreSQL itself.

All other language interfaces are external projects and are distributed separately. Table H-1 includes a list
of some of these projects. Note that some of these packages might not be released under the same license
as PostgreSQL. For more information on each language interface, including licensing terms, refer to its
website and documentation.

Table H-1. Externally Maintained Client Interfaces

Name Language Comments Website
DBD::Pg Perl Perl DBI driver http://search.cpan.org/dist/DBD-

Pg/

JDBC JDBC Type 4 JDBC driver http://jdbc.postgresql.org/

libpqxx C++ New-style C++ interface http://pqxx.org/

Npgsql .NET .NET data provider http://npgsql.projects.postgresql.org/

pgtclng Tcl http://sourceforge.net/projects/pgtclng/

psqlODBC ODBC ODBC driver http://psqlodbc.projects.postgresql.org/

psycopg Python DB API 2.0-compliant http://initd.org/psycopg/

2792

Appendix H. External Projects

H.2. Administration Tools
There are several administration tools available for PostgreSQL. The most popular is pgAdmin III1, and
there are several commercially available ones as well.

H.3. Procedural Languages
PostgreSQL includes several procedural languages with the base distribution: PL/pgSQL, PL/Tcl, PL/Perl,
and PL/Python.

In addition, there are a number of procedural languages that are developed and maintained outside the
core PostgreSQL distribution. Table H-2 lists some of these packages. Note that some of these projects
might not be released under the same license as PostgreSQL. For more information on each procedural
language, including licensing information, refer to its website and documentation.

Table H-2. Externally Maintained Procedural Languages

Name Language Website
PL/Java Java http://pljava.projects.postgresql.org/

PL/PHP PHP http://www.commandprompt.com/community/plphp/

PL/Py Python http://python.projects.postgresql.org/backend/

PL/R R http://www.joeconway.com/plr/

PL/Ruby Ruby http://raa.ruby-
lang.org/project/pl-ruby/

PL/Scheme Scheme http://plscheme.projects.postgresql.org/

PL/sh Unix shell http://plsh.projects.postgresql.org/

H.4. Extensions
PostgreSQL is designed to be easily extensible. For this reason, extensions loaded into the database can
function just like features that are built in. The contrib/ directory shipped with the source code contains
several extensions, which are described in Appendix F. Other extensions are developed independently,
like PostGIS2. Even PostgreSQL replication solutions can be developed externally. For example, Slony-I3

is a popular master/standby replication solution that is developed independently from the core project.

1. http://www.pgadmin.org/
2. http://www.postgis.org/
3. http://www.slony.info

2793

Appendix I. The Source Code Repository
The PostgreSQL source code is stored and managed using the Git version control system. A public mirror
of the master repository is available; it is updated within a minute of any change to the master repository.

Our wiki, http://wiki.postgresql.org/wiki/Working_with_Git, has some discussion on working with Git.

Note that building PostgreSQL from the source repository requires reasonably up-to-date versions of
bison, flex, and Perl. These tools are not needed to build from a distribution tarball since the files they are
used to build are included in the tarball. Other tool requirements are the same as shown in Chapter 15.

I.1. Getting The Source via Git
With Git you will make a copy of the entire code repository on your local machine, so you will have access
to all history and branches offline. This is the fastest and most flexible way to develop or test patches.

Git

1. You will need an installed version of Git, which you can get from http://git-scm.com. Many systems
already have a recent version of Git installed by default, or available in their package distribution
system.

2. To begin using the Git repository, make a clone of the official mirror:

git clone git://git.postgresql.org/git/postgresql.git

This will copy the full repository to your local machine, so it may take a while to complete, especially
if you have a slow Internet connection. The files will be placed in a new subdirectory postgresql

of your current directory.

The Git mirror can also be reached via the HTTP protocol, if for example a firewall is blocking access
to the Git protocol. Just change the URL prefix to http, as in:

git clone http://git.postgresql.org/git/postgresql.git

The HTTP protocol is less efficient than the Git protocol, so it will be slower to use.

3. Whenever you want to get the latest updates in the system, cd into the repository, and run:

git fetch

Git can do a lot more things than just fetch the source. For more information, consult the Git man pages,
or see the website at http://git-scm.com.

2794

Appendix J. Documentation
PostgreSQL has four primary documentation formats:

• Plain text, for pre-installation information

• HTML, for on-line browsing and reference

• PDF or PostScript, for printing

• man pages, for quick reference.

Additionally, a number of plain-text README files can be found throughout the PostgreSQL source tree,
documenting various implementation issues.

HTML documentation and man pages are part of a standard distribution and are installed by default. PDF
and PostScript format documentation is available separately for download.

J.1. DocBook
The documentation sources are written in DocBook, which is a markup language superficially similar to
HTML. Both of these languages are applications of the Standard Generalized Markup Language, SGML,
which is essentially a language for describing other languages. In what follows, the terms DocBook and
SGML are both used, but technically they are not interchangeable.

DocBook allows an author to specify the structure and content of a technical document without worrying
about presentation details. A document style defines how that content is rendered into one of several final
forms. DocBook is maintained by the OASIS group1. The official DocBook site2 has good introductory
and reference documentation and a complete O’Reilly book for your online reading pleasure. The New-
bieDoc Docbook Guide3 is very helpful for beginners. The FreeBSD Documentation Project4 also uses
DocBook and has some good information, including a number of style guidelines that might be worth
considering.

J.2. Tool Sets
The following tools are used to process the documentation. Some might be optional, as noted.

DocBook DTD5

This is the definition of DocBook itself. We currently use version 4.2; you cannot use later or earlier

1. http://www.oasis-open.org
2. http://www.oasis-open.org/docbook/
3. http://newbiedoc.sourceforge.net/metadoc/docbook-guide.html
4. http://www.freebsd.org/docproj/docproj.html
5. http://www.oasis-open.org/docbook/

2795

Appendix J. Documentation

versions. You need the SGML variant of the DocBook DTD, but to build man pages you also need
the XML variant of the same version.

ISO 8879 character entities6

These are required by DocBook but are distributed separately because they are maintained by ISO.

DocBook DSSSL Stylesheets7

These contain the processing instructions for converting the DocBook sources to other formats, such
as HTML.

DocBook XSL Stylesheets8

This is another stylesheet for converting DocBook to other formats. We currently use this to produce
man pages and optionally HTMLHelp. You can also use this toolchain to produce HTML or PDF
output, but official PostgreSQL releases use the DSSSL stylesheets for that.

The minimum required version is currently 1.74.0.

OpenJade9

This is the base package of SGML processing. It contains an SGML parser, a DSSSL processor (that
is, a program to convert SGML to other formats using DSSSL stylesheets), as well as a number of
related tools. Jade is now being maintained by the OpenJade group, no longer by James Clark.

Libxslt10 for xsltproc

This is the processing tool to use with the XSLT stylesheets (like jade is the processing tool for
DSSSL stylesheets).

JadeTeX11

If you want to, you can also install JadeTeX to use TeX as a formatting backend for Jade. JadeTeX
can create PostScript or PDF files (the latter with bookmarks).

However, the output from JadeTeX is inferior to what you get from the RTF backend. Particular
problem areas are tables and various artifacts of vertical and horizontal spacing. Also, there is no
opportunity to manually polish the results.

We have documented experience with several installation methods for the various tools that are needed to
process the documentation. These will be described below. There might be some other packaged distribu-
tions for these tools. Please report package status to the documentation mailing list, and we will include
that information here.

J.2.1. Linux RPM Installation
Most vendors provide a complete RPM set for DocBook processing in their distribution. Look for an
“SGML” option while installing, or the following packages: sgml-common, docbook, stylesheets,

6. http://www.oasis-open.org/cover/ISOEnts.zip
7. http://wiki.docbook.org/DocBookDssslStylesheetDocs
8. http://wiki.docbook.org/DocBookXslStylesheets
9. http://openjade.sourceforge.net
10. http://xmlsoft.org/XSLT/
11. http://jadetex.sourceforge.net

2796

Appendix J. Documentation

openjade (or jade). Possibly sgml-tools will be needed as well. If your distributor does not provide
these then you should be able to make use of the packages from some other, reasonably compatible vendor.

J.2.2. FreeBSD Installation
The FreeBSD Documentation Project is itself a heavy user of DocBook, so it comes as no surprise that
there is a full set of “ports” of the documentation tools available on FreeBSD. The following ports need
to be installed to build the documentation on FreeBSD.

• textproc/sp

• textproc/openjade

• textproc/iso8879

• textproc/dsssl-docbook-modular

• textproc/docbook-420

A number of things from /usr/ports/print (tex, jadetex) might also be of interest.

It’s possible that the ports do not update the main catalog file in
/usr/local/share/sgml/catalog.ports or that the order isn’t proper. Be sure
to have the following lines in the beginning of the file:

CATALOG "openjade/catalog"
CATALOG "iso8879/catalog"
CATALOG "docbook/dsssl/modular/catalog"
CATALOG "docbook/4.2/catalog"

If you do not want to edit the file you can also set the environment variable SGML_CATALOG_FILES to a
colon-separated list of catalog files (such as the one above).

More information about the FreeBSD documentation tools can be found in the FreeBSD Documentation
Project’s instructions12.

J.2.3. Debian Packages
There is a full set of packages of the documentation tools available for Debian GNU/Linux. To install,
simply use:

apt-get install docbook docbook-dsssl docbook-xsl openjade1.3 opensp xsltproc

12. http://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/tools.html

2797

Appendix J. Documentation

J.2.4. Manual Installation from Source
The manual installation process of the DocBook tools is somewhat complex, so if you have pre-built
packages available, use them. We describe here only a standard setup, with reasonably standard installation
paths, and no “fancy” features. For details, you should study the documentation of the respective package,
and read SGML introductory material.

J.2.4.1. Installing OpenJade

1. The installation of OpenJade offers a GNU-style ./configure; make; make install build
process. Details can be found in the OpenJade source distribution. In a nutshell:

./configure --enable-default-catalog=/usr/local/share/sgml/catalog
make
make install

Be sure to remember where you put the “default catalog”; you will need it below. You can also leave
it off, but then you will have to set the environment variable SGML_CATALOG_FILES to point to the
file whenever you use jade later on. (This method is also an option if OpenJade is already installed
and you want to install the rest of the toolchain locally.)

Note: Some users have reported encountering a segmentation fault using OpenJade 1.4devel to
build the PDFs, with a message like:

openjade:./stylesheet.dsl:664:2:E: flow object not accepted by port; only display flow objects accepted
make: *** [postgres-A4.tex-pdf] Segmentation fault

Downgrading to OpenJade 1.3 should get rid of this error.

2. Additionally, you should install the files dsssl.dtd, fot.dtd, style-sheet.dtd, and catalog

from the dsssl directory somewhere, perhaps into /usr/local/share/sgml/dsssl. It’s proba-
bly easiest to copy the entire directory:

cp -R dsssl /usr/local/share/sgml

3. Finally, create the file /usr/local/share/sgml/catalog and add this line to it:

CATALOG "dsssl/catalog"

(This is a relative path reference to the file installed in step 2. Be sure to adjust it if you chose your
installation layout differently.)

J.2.4.2. Installing the DocBook DTD Kit

1. Obtain the DocBook V4.2 distribution13.

2. Create the directory /usr/local/share/sgml/docbook-4.2 and change to it. (The exact loca-
tion is irrelevant, but this one is reasonable within the layout we are following here.)

$ mkdir /usr/local/share/sgml/docbook-4.2

$ cd /usr/local/share/sgml/docbook-4.2

13. http://www.docbook.org/sgml/4.2/docbook-4.2.zip

2798

Appendix J. Documentation

3. Unpack the archive:

$ unzip -a/docbook-4.2.zip

(The archive will unpack its files into the current directory.)

4. Edit the file /usr/local/share/sgml/catalog (or whatever you told jade during installation)
and put a line like this into it:

CATALOG "docbook-4.2/docbook.cat"

5. Download the ISO 8879 character entities archive14, unpack it, and put the files in the same directory
you put the DocBook files in:

$ cd /usr/local/share/sgml/docbook-4.2

$ unzip/ISOEnts.zip

6. Run the following command in the directory with the DocBook and ISO files:

perl -pi -e ’s/iso-(.*).gml/ISO\1/g’ docbook.cat

(This fixes a mixup between the names used in the DocBook catalog file and the actual names of the
ISO character entity files.)

J.2.4.3. Installing the DocBook DSSSL Style Sheets

To install the style sheets, unzip and untar the distribution and move it to a suitable place, for example
/usr/local/share/sgml. (The archive will automatically create a subdirectory.)

$ gunzip docbook-dsssl-1.xx.tar.gz

$ tar -C /usr/local/share/sgml -xf docbook-dsssl-1.xx.tar

The usual catalog entry in /usr/local/share/sgml/catalog can also be made:

CATALOG "docbook-dsssl-1.xx/catalog"

Because stylesheets change rather often, and it’s sometimes beneficial to try out alternative versions,
PostgreSQL doesn’t use this catalog entry. See Section J.2.5 for information about how to select the
stylesheets instead.

J.2.4.4. Installing JadeTeX

To install and use JadeTeX, you will need a working installation of TeX and LaTeX2e, including the
supported tools and graphics packages, Babel, AMS fonts and AMS-LaTeX, the PSNFSS extension and
companion kit of “the 35 fonts”, the dvips program for generating PostScript, the macro packages fancy-
hdr, hyperref, minitoc, url and ot2enc. All of these can be found on your friendly neighborhood CTAN
site15. The installation of the TeX base system is far beyond the scope of this introduction. Binary packages
should be available for any system that can run TeX.

Before you can use JadeTeX with the PostgreSQL documentation sources, you will need to increase the
size of TeX’s internal data structures. Details on this can be found in the JadeTeX installation instructions.

14. http://www.oasis-open.org/cover/ISOEnts.zip
15. http://www.ctan.org

2799

Appendix J. Documentation

Once that is finished you can install JadeTeX:

$ gunzip jadetex-xxx.tar.gz

$ tar xf jadetex-xxx.tar

$ cd jadetex

$ make install

$ mktexlsr

The last two need to be done as root.

J.2.5. Detection by configure

Before you can build the documentation you need to run the configure script as you would when
building the PostgreSQL programs themselves. Check the output near the end of the run, it should look
something like this:

checking for onsgmls... onsgmls

checking for openjade... openjade

checking for DocBook V4.2... yes

checking for DocBook stylesheets... /usr/share/sgml/docbook/stylesheet/dsssl/modular

checking for collateindex.pl... /usr/bin/collateindex.pl

checking for xsltproc... xsltproc

checking for osx... osx

If neither onsgmls nor nsgmls were found then some of the following tests will be skipped. nsgmls
is part of the Jade package. You can pass the environment variables JADE and NSGMLS to configure to
point to the programs if they are not found automatically. If “DocBook V4.2” was not found then you
did not install the DocBook DTD kit in a place where Jade can find it, or you have not set up the catalog
files correctly. See the installation hints above. The DocBook stylesheets are looked for in a number of
relatively standard places, but if you have them some other place then you should set the environment
variable DOCBOOKSTYLE to the location and rerun configure afterwards.

J.3. Building The Documentation
Once you have everything set up, change to the directory doc/src/sgml and run one of the commands
described in the following subsections to build the documentation. (Remember to use GNU make.)

J.3.1. HTML
To build the HTML version of the documentation:

doc/src/sgml$ gmake html

This is also the default target. The output appears in the subdirectory html.

2800

Appendix J. Documentation

To create a proper index, the build might process several identical stages. If you do not care about the
index, and just want to proof-read the output, use draft:

doc/src/sgml$ gmake draft

To build the documentation as a single HTML page, use:

doc/src/sgml$ gmake postgres.html

J.3.2. Manpages
We use the DocBook XSL stylesheets to convert DocBook refentry pages to *roff output suitable for
man pages. The man pages are also distributed as a tar archive, similar to the HTML version. To create
the man pages, use the commands:

cd doc/src/sgml
gmake man

J.3.3. Print Output via JadeTeX
If you want to use JadeTex to produce a printable rendition of the documentation, you can use one of the
following commands:

• To generate PostScript via DVI in A4 format:

doc/src/sgml$ gmake postgres-A4.ps

In U.S. letter format:

doc/src/sgml$ gmake postgres-US.ps

• To make a PDF:

doc/src/sgml$ gmake postgres-A4.pdf

or:

doc/src/sgml$ gmake postgres-US.pdf

(Of course you can also make a PDF version from the PostScript, but if you generate PDF directly, it
will have hyperlinks and other enhanced features.)

When using JadeTeX to build the PostgreSQL documentation, you will probably need to increase some
of TeX’s internal parameters. These can be set in the file texmf.cnf. The following settings worked at
the time of this writing:

hash_extra.jadetex = 200000

2801

Appendix J. Documentation

hash_extra.pdfjadetex = 200000
pool_size.jadetex = 2000000
pool_size.pdfjadetex = 2000000
string_vacancies.jadetex = 150000
string_vacancies.pdfjadetex = 150000
max_strings.jadetex = 300000
max_strings.pdfjadetex = 300000
save_size.jadetex = 15000
save_size.pdfjadetex = 15000

J.3.4. Overflow Text
Occasionally text is too wide for the printed margins, and in extreme cases, too wide for the printed page,
e.g. non-wrapped text, wide tables. Overly wide text generates “Overfull hbox” messages in the TeX log
output file, e.g. postgres-US.log or postgres-A4.log. There are 72 points in an inch so anything
reported as over 72 points too wide will probably not fit on the printed page (assuming one inch margins).
To find the SGML text causing the overflow, find the first page number mentioned above the overflow
message, e.g. [50 ###] (page 50), and look at the page after that (e.g. page 51) in the PDF file to see the
overflow text and adjust the SGML accordingly.

J.3.5. Print Output via RTF
You can also create a printable version of the PostgreSQL documentation by converting it to RTF and
applying minor formatting corrections using an office suite. Depending on the capabilities of the particular
office suite, you can then convert the documentation to PostScript of PDF. The procedure below illustrates
this process using Applixware.

Note: It appears that current versions of the PostgreSQL documentation trigger some bug in or exceed
the size limit of OpenJade. If the build process of the RTF version hangs for a long time and the output
file still has size 0, then you might have hit that problem. (But keep in mind that a normal build takes
5 to 10 minutes, so don’t abort too soon.)

Applixware RTF Cleanup

OpenJade omits specifying a default style for body text. In the past, this undiagnosed problem led to a long
process of table of contents generation. However, with great help from the Applixware folks the symptom
was diagnosed and a workaround is available.

1. Generate the RTF version by typing:

doc/src/sgml$ gmake postgres.rtf

2. Repair the RTF file to correctly specify all styles, in particular the default style. If the document
contains refentry sections, one must also replace formatting hints which tie a preceding paragraph

2802

Appendix J. Documentation

to the current paragraph, and instead tie the current paragraph to the following one. A utility, fixrtf,
is available in doc/src/sgml to accomplish these repairs:

doc/src/sgml$./fixrtf --refentry postgres.rtf

The script adds {\s0 Normal;} as the zeroth style in the document. According to Applixware,
the RTF standard would prohibit adding an implicit zeroth style, though Microsoft Word happens to
handle this case. For repairing refentry sections, the script replaces \keepn tags with \keep.

3. Open a new document in Applixware Words and then import the RTF file.

4. Generate a new table of contents (ToC) using Applixware.

a. Select the existing ToC lines, from the beginning of the first character on the first line to
the last character of the last line.

b. Build a new ToC using Tools−→Book Building−→Create Table of Contents. Select
the first three levels of headers for inclusion in the ToC. This will replace the existing lines
imported in the RTF with a native Applixware ToC.

c. Adjust the ToC formatting by using Format−→Style, selecting each of the three ToC
styles, and adjusting the indents for First and Left. Use the following values:

Style First Indent (inches) Left Indent (inches)
TOC-Heading 1 0.4 0.4

TOC-Heading 2 0.8 0.8

TOC-Heading 3 1.2 1.2

5. Work through the document to:

• Adjust page breaks.

• Adjust table column widths.

6. Replace the right-justified page numbers in the Examples and Figures portions of the ToC with
correct values. This only takes a few minutes.

7. Delete the index section from the document if it is empty.

8. Regenerate and adjust the table of contents.

a. Select the ToC field.

b. Select Tools−→Book Building−→Create Table of Contents.

c. Unbind the ToC by selecting Tools−→Field Editing−→Unprotect.

d. Delete the first line in the ToC, which is an entry for the ToC itself.

9. Save the document as native Applixware Words format to allow easier last minute editing later.

10. “Print” the document to a file in PostScript format.

2803

Appendix J. Documentation

J.3.6. Plain Text Files
The installation instructions are also distributed as plain text, in case they are needed in a situation where
better reading tools are not available. The INSTALL file corresponds to Chapter 15, with some minor
changes to account for the different context. To recreate the file, change to the directory doc/src/sgml

and enter gmake INSTALL.

In the past, the release notes and regression testing instructions were also distributed as plain text, but this
practice has been discontinued.

J.3.7. Syntax Check
Building the documentation can take very long. But there is a method to just check the correct syntax of
the documentation files, which only takes a few seconds:

doc/src/sgml$ gmake check

J.4. Documentation Authoring
SGML and DocBook do not suffer from an oversupply of open-source authoring tools. The most common
tool set is the Emacs/XEmacs editor with appropriate editing mode. On some systems these tools are
provided in a typical full installation.

J.4.1. Emacs/PSGML
PSGML is the most common and most powerful mode for editing SGML documents. When properly
configured, it will allow you to use Emacs to insert tags and check markup consistency. You could use it
for HTML as well. Check the PSGML web site16 for downloads, installation instructions, and detailed
documentation.

There is one important thing to note with PSGML: its author assumed that your main SGML
DTD directory would be /usr/local/lib/sgml. If, as in the examples in this chapter, you use
/usr/local/share/sgml, you have to compensate for this, either by setting SGML_CATALOG_FILES

environment variable, or you can customize your PSGML installation (its manual tells you how).

Put the following in your ~/.emacs environment file (adjusting the path names to be appropriate for your
system):

; ********** for SGML mode (psgml)

(setq sgml-omittag t)
(setq sgml-shorttag t)
(setq sgml-minimize-attributes nil)
(setq sgml-always-quote-attributes t)

16. http://www.lysator.liu.se/projects/about_psgml.html

2804

Appendix J. Documentation

(setq sgml-indent-step 1)
(setq sgml-indent-data t)
(setq sgml-parent-document nil)
(setq sgml-exposed-tags nil)
(setq sgml-catalog-files ’("/usr/local/share/sgml/catalog"))

(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

and in the same file add an entry for SGML into the (existing) definition for auto-mode-alist:

(setq
auto-mode-alist
’(("\\.sgml$" . sgml-mode)
))

You might find that when using PSGML, a comfortable way of working with these separate files of book
parts is to insert a proper DOCTYPE declaration while you’re editing them. If you are working on this
source, for instance, it is an appendix chapter, so you would specify the document as an “appendix”
instance of a DocBook document by making the first line look like this:

<!DOCTYPE appendix PUBLIC "-//OASIS//DTD DocBook V4.2//EN">

This means that anything and everything that reads SGML will get it right, and I can verify the docu-
ment with nsgmls -s docguide.sgml. (But you need to take out that line before building the entire
documentation set.)

J.4.2. Other Emacs Modes
GNU Emacs ships with a different SGML mode, which is not quite as powerful as PSGML, but it’s less
confusing and lighter weight. Also, it offers syntax highlighting (font lock), which can be very helpful.
src/tools/editors/emacs.samples contains sample settings for this mode.

Norm Walsh offers a major mode17 specifically for DocBook which also has font-lock and a number of
features to reduce typing.

J.5. Style Guide

J.5.1. Reference Pages
Reference pages should follow a standard layout. This allows users to find the desired information more
quickly, and it also encourages writers to document all relevant aspects of a command. Consistency is not
only desired among PostgreSQL reference pages, but also with reference pages provided by the operating
system and other packages. Hence the following guidelines have been developed. They are for the most
part consistent with similar guidelines established by various operating systems.

17. http://nwalsh.com/emacs/docbookide/index.html

2805

Appendix J. Documentation

Reference pages that describe executable commands should contain the following sections, in this order.
Sections that do not apply can be omitted. Additional top-level sections should only be used in special
circumstances; often that information belongs in the “Usage” section.

Name

This section is generated automatically. It contains the command name and a half-sentence summary
of its functionality.

Synopsis

This section contains the syntax diagram of the command. The synopsis should normally not list
each command-line option; that is done below. Instead, list the major components of the command
line, such as where input and output files go.

Description

Several paragraphs explaining what the command does.

Options

A list describing each command-line option. If there are a lot of options, subsections can be used.

Exit Status

If the program uses 0 for success and non-zero for failure, then you do not need to document it. If
there is a meaning behind the different non-zero exit codes, list them here.

Usage

Describe any sublanguage or run-time interface of the program. If the program is not interactive, this
section can usually be omitted. Otherwise, this section is a catch-all for describing run-time features.
Use subsections if appropriate.

Environment

List all environment variables that the program might use. Try to be complete; even seemingly trivial
variables like SHELL might be of interest to the user.

Files

List any files that the program might access implicitly. That is, do not list input and output files that
were specified on the command line, but list configuration files, etc.

Diagnostics

Explain any unusual output that the program might create. Refrain from listing every possible error
message. This is a lot of work and has little use in practice. But if, say, the error messages have a
standard format that the user can parse, this would be the place to explain it.

Notes

Anything that doesn’t fit elsewhere, but in particular bugs, implementation flaws, security consider-
ations, compatibility issues.

Examples

Examples

2806

Appendix J. Documentation

History

If there were some major milestones in the history of the program, they might be listed here. Usually,
this section can be omitted.

Author

Author (only used in the contrib section)

See Also

Cross-references, listed in the following order: other PostgreSQL command reference pages, Post-
greSQL SQL command reference pages, citation of PostgreSQL manuals, other reference pages (e.g.,
operating system, other packages), other documentation. Items in the same group are listed alphabet-
ically.

Reference pages describing SQL commands should contain the following sections: Name, Synopsis, De-
scription, Parameters, Outputs, Notes, Examples, Compatibility, History, See Also. The Parameters sec-
tion is like the Options section, but there is more freedom about which clauses of the command can
be listed. The Outputs section is only needed if the command returns something other than a default
command-completion tag. The Compatibility section should explain to what extent this command con-
forms to the SQL standard(s), or to which other database system it is compatible. The See Also section of
SQL commands should list SQL commands before cross-references to programs.

2807

Appendix K. Acronyms
This is a list of acronyms commonly used in the PostgreSQL documentation and in discussions about
PostgreSQL.

ANSI

American National Standards Institute1

API

Application Programming Interface2

ASCII

American Standard Code for Information Interchange3

BKI

Backend Interface

CA

Certificate Authority4

CIDR

Classless Inter-Domain Routing5

CPAN

Comprehensive Perl Archive Network6

CRL

Certificate Revocation List7

CSV

Comma Separated Values8

CTE

Common Table Expression

CVE

Common Vulnerabilities and Exposures9

1. http://en.wikipedia.org/wiki/American_National_Standards_Institute
2. http://en.wikipedia.org/wiki/API
3. http://en.wikipedia.org/wiki/Ascii
4. http://en.wikipedia.org/wiki/Certificate_authority
5. http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
6. http://www.cpan.org/
7. http://en.wikipedia.org/wiki/Certificate_revocation_list
8. http://en.wikipedia.org/wiki/Comma-separated_values
9. http://cve.mitre.org/

2808

Appendix K. Acronyms

DBA

Database Administrator10

DBI

Database Interface (Perl)11

DBMS

Database Management System12

DDL

Data Definition Language13, SQL commands such as CREATE TABLE, ALTER USER

DML

Data Manipulation Language14, SQL commands such as INSERT, UPDATE, DELETE

DST

Daylight Saving Time15

ECPG

Embedded C for PostgreSQL

ESQL

Embedded SQL16

FAQ

Frequently Asked Questions17

FSM

Free Space Map

GEQO

Genetic Query Optimizer

GIN

Generalized Inverted Index

GiST

Generalized Search Tree

Git

Git18

10. http://en.wikipedia.org/wiki/Database_administrator
11. http://dbi.perl.org/
12. http://en.wikipedia.org/wiki/Dbms
13. http://en.wikipedia.org/wiki/Data_Definition_Language
14. http://en.wikipedia.org/wiki/Data_Manipulation_Language
15. http://en.wikipedia.org/wiki/Daylight_saving_time
16. http://en.wikipedia.org/wiki/Embedded_SQL
17. http://en.wikipedia.org/wiki/FAQ
18. http://en.wikipedia.org/wiki/Git_(software)

2809

Appendix K. Acronyms

GMT

Greenwich Mean Time19

GSSAPI

Generic Security Services Application Programming Interface20

GUC

Grand Unified Configuration, the PostgreSQL subsystem that handles server configuration

HBA

Host-Based Authentication

HOT

Heap-Only Tuples21

IEC

International Electrotechnical Commission22

IEEE

Institute of Electrical and Electronics Engineers23

IPC

Inter-Process Communication24

ISO

International Organization for Standardization25

ISSN

International Standard Serial Number26

JDBC

Java Database Connectivity27

LDAP

Lightweight Directory Access Protocol28

MSVC

Microsoft Visual C29

MVCC

Multi-Version Concurrency Control

19. http://en.wikipedia.org/wiki/GMT
20. http://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
21. http://git.postgresql.org/gitweb?p=postgresql.git;a=blob;f=src/backend/access/heap/README.HOT;hb=HEAD
22. http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
23. http://standards.ieee.org/
24. http://en.wikipedia.org/wiki/Inter-process_communication
25. http://www.iso.org/iso/home.htm
26. http://en.wikipedia.org/wiki/Issn
27. http://en.wikipedia.org/wiki/Java_Database_Connectivity
28. http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
29. http://en.wikipedia.org/wiki/Visual_C++

2810

Appendix K. Acronyms

NLS

National Language Support30

ODBC

Open Database Connectivity31

OID

Object Identifier

OLAP

Online Analytical Processing32

OLTP

Online Transaction Processing33

ORDBMS

Object-Relational Database Management System34

PAM

Pluggable Authentication Modules35

PGSQL

PostgreSQL

PGXS

PostgreSQL Extension System

PID

Process Identifier36

PITR

Point-In-Time Recovery (Continuous Archiving)

PL

Procedural Languages (server-side)

POSIX

Portable Operating System Interface37

RDBMS

Relational Database Management System38

30. http://en.wikipedia.org/wiki/Internationalization_and_localization
31. http://en.wikipedia.org/wiki/Open_Database_Connectivity
32. http://en.wikipedia.org/wiki/Olap
33. http://en.wikipedia.org/wiki/OLTP
34. http://en.wikipedia.org/wiki/ORDBMS
35. http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules
36. http://en.wikipedia.org/wiki/Process_identifier
37. http://en.wikipedia.org/wiki/POSIX
38. http://en.wikipedia.org/wiki/Relational_database_management_system

2811

Appendix K. Acronyms

RFC

Request For Comments39

SGML

Standard Generalized Markup Language40

SPI

Server Programming Interface

SP-GiST

Space-Partitioned Generalized Search Tree

SQL

Structured Query Language41

SRF

Set-Returning Function

SSH

Secure Shell42

SSL

Secure Sockets Layer43

SSPI

Security Support Provider Interface44

SYSV

Unix System V45

TCP/IP

Transmission Control Protocol (TCP) / Internet Protocol (IP)46

TID

Tuple Identifier

TOAST

The Oversized-Attribute Storage Technique

TPC

Transaction Processing Performance Council47

39. http://en.wikipedia.org/wiki/Request_for_Comments
40. http://en.wikipedia.org/wiki/SGML
41. http://en.wikipedia.org/wiki/SQL
42. http://en.wikipedia.org/wiki/Secure_Shell
43. http://en.wikipedia.org/wiki/Secure_Sockets_Layer
44. http://msdn.microsoft.com/en-us/library/aa380493%28VS.85%29.aspx
45. http://en.wikipedia.org/wiki/System_V
46. http://en.wikipedia.org/wiki/Transmission_Control_Protocol
47. http://www.tpc.org/

2812

Appendix K. Acronyms

URL

Uniform Resource Locator48

UTC

Coordinated Universal Time49

UTF

Unicode Transformation Format50

UTF8

Eight-Bit Unicode Transformation Format51

UUID

Universally Unique Identifier

WAL

Write-Ahead Log

XID

Transaction Identifier

XML

Extensible Markup Language52

48. http://en.wikipedia.org/wiki/URL
49. http://en.wikipedia.org/wiki/Coordinated_Universal_Time
50. http://www.unicode.org/
51. http://en.wikipedia.org/wiki/Utf8
52. http://en.wikipedia.org/wiki/XML

2813

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are available at
the University of California, Berkeley, Computer Science Department web site1.

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy Darnovsky, The Practical SQL Handbook: Using SQL Vari-
ants, Fourth Edition, Addison-Wesley Professional, ISBN 0-201-70309-2, 2001.

C. J. Date and Hugh Darwen, A Guide to the SQL Standard: A user’s guide to the standard database
language SQL, Fourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. Date, An Introduction to Database Systems, Eighth Edition, Addison-Wesley, ISBN 0-321-19784-4,
2003.

Ramez Elmasri and Shamkant Navathe, Fundamentals of Database Systems, Fourth Edition, Addison-
Wesley, ISBN 0-321-12226-7, 2003.

Jim Melton and Alan R. Simon, Understanding the New SQL: A complete guide, Morgan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman, Principles of Database and Knowledge: Base Systems, Volume 1, Computer Science
Press, 1988.

PostgreSQL-specific Documentation

Stefan Simkovics, Enhancement of the ANSI SQL Implementation of PostgreSQL, Department of Infor-
mation Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the addition of INTERSECT and EXCEPT constructs
into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr. Georg Gottlob
and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Group, The Postgres95 User Manual, University of California, Sept.
5, 1995.

1. http://db.cs.berkeley.edu/papers/

2814

Bibliography

Zelaine Fong, The design and implementation of the POSTGRES query optimizer 2, University of Cali-
fornia, Berkeley, Computer Science Department.

Proceedings and Articles

Nels Olson, Partial indexing in POSTGRES: research project, University of California, UCB Engin
T7.49.1993 O676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a Database
System”, ERL Technical Memorandum M90/33, University of California, April, 1990.

L. Rowe and M. Stonebraker, “ The POSTGRES data model 3”, Proc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Indexes (cached version) 4 ”, Proc. Eleventh Interna-
tional Conference on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat.
No.95CH35724, 1995, 420-7.

M. Stonebraker and L. Rowe, “ The design of POSTGRES 5”, Proc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc. IEEE
Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “ The design of the POSTGRES storage system 6”, Proc. VLDB Conference, Sept. 1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “ A commentary on the POSTGRES rules system 7”,
SIGMOD Record 18(3), Sept. 1989.

M. Stonebraker, “ The case for partial indexes 8”, SIGMOD Record 18(4), Dec. 1989, 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “ The implementation of POSTGRES 9”, Transactions
on Knowledge and Data Engineering 2(1), IEEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “ On Rules, Procedures, Caching and Views in
Database Systems 10”, Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

2. http://db.cs.berkeley.edu/papers/UCB-MS-zfong.pdf
3. http://db.cs.berkeley.edu/papers/ERL-M87-13.pdf
4. http://citeseer.ist.psu.edu/seshadri95generalized.html
5. http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf
6. http://db.cs.berkeley.edu/papers/ERL-M87-06.pdf
7. http://db.cs.berkeley.edu/papers/ERL-M89-82.pdf
8. http://db.cs.berkeley.edu/papers/ERL-M89-17.pdf
9. http://db.cs.berkeley.edu/papers/ERL-M90-34.pdf
10. http://db.cs.berkeley.edu/papers/ERL-M90-36.pdf

2815

Index

Symbols
$, 38
$libdir, 932
$libdir/plugins, 495, 1535
*, 100
.pgpass, 700
.pg_service.conf, 701
::, 44
_PG_fini, 932
_PG_init, 932

A
abbrev, 234
ABORT, 1192
abs, 173
acos, 175
administration tools

externally maintained, 2793
adminpack, 2608
advisory lock, 373
age, 217
aggregate function, 12

built-in, 261
invocation, 40
user-defined, 956

AIX
installation on, 412
IPC configuration, 435

alias
for table name in query, 12
in the FROM clause, 94
in the select list, 101

ALL, 267, 270
allow_system_table_mods configuration pa-
rameter, 501
ALTER AGGREGATE, 1194
ALTER COLLATION, 1196
ALTER CONVERSION, 1198
ALTER DATABASE, 1200
ALTER DEFAULT PRIVILEGES, 1203
ALTER DOMAIN, 1206

ALTER EXTENSION, 1210
ALTER FOREIGN DATA WRAPPER, 1214
ALTER FOREIGN TABLE, 1216
ALTER FUNCTION, 1220
ALTER GROUP, 1224
ALTER INDEX, 1226
ALTER LANGUAGE, 1229
ALTER LARGE OBJECT, 1230
ALTER OPERATOR, 1231
ALTER OPERATOR CLASS, 1233
ALTER OPERATOR FAMILY, 1235
ALTER ROLE, 525, 1239
ALTER SCHEMA, 1243
ALTER SEQUENCE, 1244
ALTER SERVER, 1247
ALTER TABLE, 1249
ALTER TABLESPACE, 1261
ALTER TEXT SEARCH CONFIGURATION,
1263
ALTER TEXT SEARCH DICTIONARY, 1265
ALTER TEXT SEARCH PARSER, 1267
ALTER TEXT SEARCH TEMPLATE, 1268
ALTER TRIGGER, 1269
ALTER TYPE, 1271
ALTER USER, 1275
ALTER USER MAPPING, 1276
ALTER VIEW, 1278
ANALYZE, 549, 1280
AND (operator), 170
anonymous code blocks, 1442
any, 168, 263, 267, 270
anyarray, 168
anyelement, 168
anyenum, 168
anynonarray, 168
anyrange, 168
applicable role, 846
application_name configuration parameter,
482
arbitrary precision numbers, 114
archive_cleanup_command recovery parame-
ter, 593
archive_command configuration parameter,
469
archive_mode configuration parameter, 468
archive_timeout configuration parameter, 469
area, 231
ARRAY, 46, 147

2816

accessing, 150
constant, 148
constructor, 46
declaration, 148
determination of result type, 307
I/O, 155
modifying, 152
of user-defined type, 961
searching, 154

array_agg, 261
array_append, 257
array_cat, 257
array_dims, 257
array_fill, 257
array_length, 257
array_lower, 257
array_ndims, 257
array_nulls configuration parameter, 497
array_prepend, 257
array_to_json, 251
array_to_string, 257
array_upper, 257
ascii, 177
asin, 175
asynchronous commit, 630
AT TIME ZONE, 225
atan, 175
atan2, 175
authentication_timeout configuration parame-
ter, 457
auth_delay, 2608
auth_delay.milliseconds configuration parame-
ter, 2608
auto-increment

(see serial)
autocommit

bulk-loading data, 391
psql, 1714

autovacuum
configuration parameters, 488
general information, 553

autovacuum configuration parameter, 488
autovacuum_analyze_scale_factor configura-
tion parameter, 489
autovacuum_analyze_threshold configuration
parameter, 489
autovacuum_freeze_max_age configuration
parameter, 489

autovacuum_max_workers configuration pa-
rameter, 489
autovacuum_naptime configuration parameter,
489
autovacuum_vacuum_cost_delay configura-
tion parameter, 490
autovacuum_vacuum_cost_limit configuration
parameter, 490
autovacuum_vacuum_scale_factor configura-
tion parameter, 489
autovacuum_vacuum_threshold configuration
parameter, 489
auto_explain, 2609
auto_explain.log_analyze configuration pa-
rameter, 2609
auto_explain.log_buffers configuration param-
eter, 2610
auto_explain.log_format configuration param-
eter, 2610
auto_explain.log_min_duration configuration
parameter, 2609
auto_explain.log_nested_statements configu-
ration parameter, 2610
auto_explain.log_timing configuration param-
eter, 2610
auto_explain.log_verbose configuration pa-
rameter, 2610
average, 261
avg, 261

B
B-tree

(see index)
backslash escapes, 29
backslash_quote configuration parameter, 497
backup, 288, 556
base type, 911
BEGIN, 1283
BETWEEN, 171
BETWEEN SYMMETRIC, 171
bgwriter_delay configuration parameter, 463
bgwriter_lru_maxpages configuration parame-
ter, 463
bgwriter_lru_multiplier configuration parame-
ter, 464
bigint, 33, 113

2817

bigserial, 116
binary data, 120

functions, 191
binary string

concatenation, 191
length, 192

bison, 399
bit string

constant, 33
data type, 141

bit strings
functions, 193

bitmap scan, 315, 473
bit_and, 261
bit_length, 176
bit_or, 261
BLOB

(see large object)
block_size configuration parameter, 500
bonjour configuration parameter, 456
bonjour_name configuration parameter, 456
Boolean

data type, 133
operators

(see operators, logical)
bool_and, 261
bool_or, 261
booting

starting the server during, 431
box, 232
box (data type), 137
broadcast, 234
btree_gin, 2611
btree_gist, 2611
btrim, 177, 192
bytea, 120
bytea_output configuration parameter, 493

C
C, 646, 730
C++, 955
canceling

SQL command, 680
CASCADE

with DROP, 84
foreign key action, 60

Cascading Replication, 571
CASE, 254

determination of result type, 307
case sensitivity

of SQL commands, 28
cast

I/O conversion, 1313
cbrt, 173
ceil, 173
ceiling, 173
center, 231
Certificate, 521
char, 118
character, 118
character set, 494, 500, 539
character string

concatenation, 176
constant, 29
data types, 118
length, 176

character varying, 118
char_length, 176
check constraint, 54
checkpoint, 632, 1285
checkpoint_completion_target configuration
parameter, 468
checkpoint_segments configuration parameter,
468
checkpoint_timeout configuration parameter,
468
checkpoint_warning configuration parameter,
468
check_function_bodies configuration parame-
ter, 492
chkpass, 2613
chr, 177
cid, 166
cidr, 139
circle, 138, 232
citext, 2614
client authentication, 506

timeout during, 457
client_encoding configuration parameter, 494
client_min_messages configuration parameter,
480
clock_timestamp, 217
CLOSE, 1286
CLUSTER, 1288

2818

of databases
(see database cluster)

clusterdb, 1628
clustering, 571
cmax, 63
cmin, 62
COALESCE, 255
COLLATE, 44
collation, 536

in PL/pgSQL, 1036
in SQL functions, 928

collation for, 281
column, 6, 52

adding, 64
removing, 64
renaming, 66
system column, 62

column data type
changing, 66

column reference, 38
col_description, 285
COMMENT, 1291

about database objects, 285
in SQL, 35

COMMIT, 1295
COMMIT PREPARED, 1297
commit_delay configuration parameter, 467
commit_siblings configuration parameter, 468
common table expression

(see WITH)
comparison

operators, 170
row-wise, 270
subquery result row, 267

compiling
libpq applications, 707

composite type, 156, 911
constant, 158
constructor, 47

computed field, 920
concat, 177
concat_ws, 177
concurrency, 363
conditional expression, 254
configuration

of recovery
of a standby server, 593

of the server, 452

of the server
functions, 287

configure, 399
config_file configuration parameter, 454
conjunction, 170
connection service file, 701
conninfo, 652
constant, 29
constraint, 54

adding, 65
check, 54
exclusion, 62
foreign key, 59
name, 55
NOT NULL, 56
primary key, 58
removing, 65
unique, 57

constraint exclusion, 80, 476
constraint_exclusion configuration parameter,
476
CONTINUE

in PL/pgSQL, 1051
continuous archiving, 556
control file, 980
convert, 177
convert_from, 177
convert_to, 177
COPY, 8, 1299

with libpq, 683
corr, 263
correlation, 263
cos, 175
cot, 175
count, 261
covariance

population, 263
sample, 263

covar_pop, 263
covar_samp, 263
cpu_index_tuple_cost configuration parame-
ter, 475
cpu_operator_cost configuration parameter,
475
cpu_tuple_cost configuration parameter, 475
CREATE AGGREGATE, 1309
CREATE CAST, 1313
CREATE COLLATION, 1318

2819

CREATE CONVERSION, 1320
CREATE DATABASE, 528, 1322
CREATE DOMAIN, 1325
CREATE EXTENSION, 1328
CREATE FOREIGN DATA WRAPPER, 1331
CREATE FOREIGN TABLE, 1333
CREATE FUNCTION, 1335
CREATE GROUP, 1343
CREATE INDEX, 1344
CREATE LANGUAGE, 1351
CREATE OPERATOR, 1355
CREATE OPERATOR CLASS, 1358
CREATE OPERATOR FAMILY, 1362
CREATE ROLE, 523, 1364
CREATE RULE, 1369
CREATE SCHEMA, 1372
CREATE SEQUENCE, 1375
CREATE SERVER, 1379
CREATE TABLE, 6, 1381
CREATE TABLE AS, 1396
CREATE TABLESPACE, 532, 1400
CREATE TEXT SEARCH CONFIGURA-
TION, 1402
CREATE TEXT SEARCH DICTIONARY,
1404
CREATE TEXT SEARCH PARSER, 1406
CREATE TEXT SEARCH TEMPLATE, 1408
CREATE TRIGGER, 1410
CREATE TYPE, 1416
CREATE USER, 1426
CREATE USER MAPPING, 1427
CREATE VIEW, 1429
createdb, 2, 529, 1631
createlang, 1635
createuser, 523, 1638
cross compilation, 405
cross join, 90
cstring, 168
ctid, 63, 1007
cube, 2616
cume_dist, 265
current_catalog, 277
current_database, 277
current_date, 217
current_query, 277
current_schema, 277
current_schemas, 277
current_setting, 287

current_time, 217
current_timestamp, 217
current_user, 277
currval, 251
cursor

CLOSE, 1286
DECLARE, 1433
FETCH, 1517
in PL/pgSQL, 1058
MOVE, 1539
showing the query plan, 1511

cursor_tuple_fraction configuration parameter,
477
Cygwin

installation on, 415

D
data area

(see database cluster)
data partitioning, 571
data type, 111

base, 911
category, 300
composite, 911
constant, 34
conversion, 299
enumerated (enum), 134
internal organization, 933
numeric, 112
type cast, 44
user-defined, 958

database, 528
creating, 2
privilege to create, 524

database activity
monitoring, 596

database cluster, 6, 429
data_directory configuration parameter, 454
date, 122, 124

constants, 127
current, 226
output format, 128

(see also formatting)
DateStyle configuration parameter, 493
date_part, 217, 220
date_trunc, 217, 224

2820

dblink, 2620
db_user_namespace configuration parameter,
459
deadlock, 372

timeout during, 496
deadlock_timeout configuration parameter,
496
DEALLOCATE, 1432
debug_assertions configuration parameter, 501
debug_deadlocks configuration parameter, 503
debug_pretty_print configuration parameter,
482
debug_print_parse configuration parameter,
482
debug_print_plan configuration parameter, 482
debug_print_rewritten configuration parame-
ter, 482
decimal

(see numeric)
DECLARE, 1433
decode, 177, 192
decode_bytea

in PL/Perl, 1106
default value, 53

changing, 65
default_statistics_target configuration parame-
ter, 476
default_tablespace configuration parameter,
491
default_text_search_config configuration pa-
rameter, 495
default_transaction_deferrable configuration
parameter, 492
default_transaction_isolation configuration pa-
rameter, 492
default_transaction_read_only configuration
parameter, 492
default_with_oids configuration parameter,
497
deferrable transaction

setting, 1604
setting default, 492

degrees, 173
delay, 227
DELETE, 14, 88, 1437
deleting, 88
dense_rank, 265
diameter, 231

dict_int, 2655
dict_xsyn, 2655
Digital UNIX

(see Tru64 UNIX)
dirty read, 363
DISCARD, 1440
disjunction, 170
disk drive, 634
disk space, 548
disk usage, 626
DISTINCT, 10, 101
div, 173
DO, 1442
document

text search, 324
dollar quoting, 32
double precision, 115
DROP AGGREGATE, 1444
DROP CAST, 1446
DROP COLLATION, 1448
DROP CONVERSION, 1450
DROP DATABASE, 531, 1452
DROP DOMAIN, 1453
DROP EXTENSION, 1455
DROP FOREIGN DATA WRAPPER, 1457
DROP FOREIGN TABLE, 1459
DROP FUNCTION, 1461
DROP GROUP, 1463
DROP INDEX, 1464
DROP LANGUAGE, 1466
DROP OPERATOR, 1468
DROP OPERATOR CLASS, 1470
DROP OPERATOR FAMILY, 1472
DROP OWNED, 1474
DROP ROLE, 523, 1476
DROP RULE, 1478
DROP SCHEMA, 1480
DROP SEQUENCE, 1482
DROP SERVER, 1484
DROP TABLE, 7, 1486
DROP TABLESPACE, 1488
DROP TEXT SEARCH CONFIGURATION,
1490
DROP TEXT SEARCH DICTIONARY, 1492
DROP TEXT SEARCH PARSER, 1494
DROP TEXT SEARCH TEMPLATE, 1496
DROP TRIGGER, 1498
DROP TYPE, 1500

2821

DROP USER, 1502
DROP USER MAPPING, 1503
DROP VIEW, 1505
dropdb, 531, 1643
droplang, 1646
dropuser, 523, 1649
DTD, 145
DTrace, 406, 613
dummy_seclabel, 2657
duplicate, 10
duplicates, 101
dynamic loading, 495, 932
dynamic_library_path, 932
dynamic_library_path configuration parame-
ter, 495

E
earthdistance, 2658
ECPG, 730, 1652
effective_cache_size configuration parameter,
475
effective_io_concurrency configuration pa-
rameter, 464
elog, 1889

in PL/Perl, 1106
in PL/Python, 1128
in PL/Tcl, 1094

embedded SQL
in C, 730

enabled role, 871
enable_bitmapscan configuration parameter,
473
enable_hashagg configuration parameter, 473
enable_hashjoin configuration parameter, 473
enable_indexonlyscan configuration parame-
ter, 473
enable_indexscan configuration parameter,
473
enable_material configuration parameter, 473
enable_mergejoin configuration parameter,
473
enable_nestloop configuration parameter, 473
enable_seqscan configuration parameter, 473
enable_sort configuration parameter, 473
enable_tidscan configuration parameter, 474
encode, 177, 192

encode_array_constructor
in PL/Perl, 1106

encode_array_literal
in PL/Perl, 1106

encode_bytea
in PL/Perl, 1106

encode_typed_literal
in PL/Perl, 1106

encryption, 445
for specific columns, 2692

END, 1507
enumerated types, 134
enum_first, 228
enum_last, 228
enum_range, 228
environment variable, 699
ereport, 1889
error codes

libpq, 667
list of, 1974

error message, 660
escape string syntax, 29
escape_string_warning configuration parame-
ter, 498
escaping strings

in libpq, 673
event log

event log, 450
event_source configuration parameter, 480
every, 261
EXCEPT, 102
exceptions

in PL/pgSQL, 1055
exclusion constraint, 62
EXECUTE, 1509
EXISTS, 267
EXIT

in PL/pgSQL, 1050
exit_on_error configuration parameter, 499
exp, 173
EXPLAIN, 377, 1511
expression

order of evaluation, 49
syntax, 37

extending SQL, 911
extension, 980

externally maintained, 2793
external_pid_file configuration parameter, 454

2822

extract, 217, 220
extra_float_digits configuration parameter, 494

F
failover, 571
false, 133
family, 234
fast path, 681
fdw_handler, 168
FETCH, 1517
field

computed, 920
field selection, 39
file_fdw, 2660
first_value, 265
flex, 399
float4

(see real)
float8

(see double precision)
floating point, 115
floating-point

display, 494
floor, 173
foreign data, 83
foreign data wrapper

handler for, 1906
foreign key, 16, 59
foreign table, 83
format, 177

use in PL/pgSQL, 1042
formatting, 209
format_type, 281
Free Space Map, 1959
FreeBSD

IPC configuration, 436
shared library, 942
start script, 431

from_collapse_limit configuration parameter,
477
FSM

(see Free Space Map)
fsync configuration parameter, 465
full text search, 323

data types, 141
functions and operators, 141

full_page_writes configuration parameter, 467
function, 170

default values for arguments, 922
in the FROM clause, 95
internal, 931
invocation, 40
mixed notation, 51
named argument, 915
named notation, 50
output parameter, 920
polymorphic, 912
positional notation, 50
RETURNS TABLE, 925
type resolution in an invocation, 303
user-defined, 913

in C, 931
in SQL, 914

variadic, 921
with SETOF, 924

functional dependency, 98
fuzzystrmatch, 2662

G
generate_series, 273
generate_subscripts, 274
genetic query optimization, 475
GEQO

(see genetic query optimization)
geqo configuration parameter, 475
geqo_effort configuration parameter, 476
geqo_generations configuration parameter, 476
geqo_pool_size configuration parameter, 476
geqo_seed configuration parameter, 476
geqo_selection_bias configuration parameter,
476
geqo_threshold configuration parameter, 475
get_bit, 192
get_byte, 192
get_current_ts_config, 236
GIN

(see index)
gin_fuzzy_search_limit configuration parame-
ter, 495
GiST

(see index)
global data

2823

in PL/Python, 1121
in PL/Tcl, 1092

GRANT, 66, 1521
GREATEST, 256

determination of result type, 307
Gregorian calendar, 1986
GROUP BY, 13, 97
grouping, 97
GSSAPI, 515
GUID, 144

H
hash

(see index)
has_any_column_privilege, 279
has_column_privilege, 279
has_database_privilege, 279
has_foreign_data_wrapper_privilege, 279
has_function_privilege, 279
has_language_privilege, 279
has_schema_privilege, 279
has_sequence_privilege, 279
has_server_privilege, 279
has_tablespace_privilege, 279
has_table_privilege, 279
HAVING, 13, 99
hba_file configuration parameter, 454
height, 231
hierarchical database, 6
high availability, 571
history

of PostgreSQL, lxiv
host, 234
host name, 654
hostmask, 234
Hot Standby, 571
hot_standby configuration parameter, 471
hot_standby_feedback configuration parame-
ter, 472
HP-UX

installation on, 416
IPC configuration, 437
shared library, 942

hstore, 2664

I
ident, 518
identifier

length, 28
syntax of, 27

ident_file configuration parameter, 454
IFNULL, 255
ignore_system_indexes configuration parame-
ter, 502
IMMUTABLE, 929
IN, 267, 270
include

in configuration file, 452
include_if_exists

in configuration file, 453
index, 310

and ORDER BY, 314
B-tree, 311
building concurrently, 1346
combining multiple indexes, 315
examining usage, 321
on expressions, 316
for user-defined data type, 967
GIN, 313, 1949

text search, 357
GiST, 312, 1930

text search, 357
hash, 311
locks, 376
multicolumn, 313
partial, 317
SP-GiST, 312, 1940
unique, 316

index scan, 473
index-only scan, 473
inet (data type), 139
inet_client_addr, 277
inet_client_port, 277
inet_server_addr, 277
inet_server_port, 277
information schema, 844
inheritance, 22, 72, 498
initcap, 177
initdb, 429, 1734
Initialization Fork, 1960
input function, 958
INSERT, 7, 86, 1529

2824

inserting, 86

installation, 397

on Windows, 423

instr, 1082

int2

(see smallint)

int4

(see integer)

int8

(see bigint)

intagg, 2671

intarray, 2672

integer, 33, 113

integer_datetimes configuration parameter,
500

interfaces

externally maintained, 2792

internal, 168

INTERSECT, 102

interval, 122, 130

output format, 132

(see also formatting)

IntervalStyle configuration parameter, 493

IRIX

installation on, 417

shared library, 943

IS DISTINCT FROM, 172, 270

IS DOCUMENT, 244

IS FALSE, 172

IS NOT DISTINCT FROM, 172, 270

IS NOT FALSE, 172

IS NOT NULL, 171

IS NOT TRUE, 172

IS NOT UNKNOWN, 172

IS NULL, 171, 499

IS TRUE, 172

IS UNKNOWN, 172

isclosed, 231

isempty, 260

isfinite, 217

isn, 2675

ISNULL, 171

isopen, 231

is_array_ref

in PL/Perl, 1107

J
join, 10, 90

controlling the order, 389
cross, 90
left, 91
natural, 91
outer, 11, 90
right, 91
self, 12

join_collapse_limit configuration parameter,
477
JSON, 147

Functions and operators, 251
Julian date, 1986
justify_days, 217
justify_hours, 217
justify_interval, 217

K
Kerberos, 516
key word

list of, 1989
syntax of, 27

krb_caseins_users configuration parameter,
458
krb_server_keyfile configuration parameter,
458
krb_srvname configuration parameter, 458

L
label

(see alias)
lag, 265
language_handler, 168
large object, 719
lastval, 251
last_value, 265
lc_collate configuration parameter, 500
lc_ctype configuration parameter, 500
lc_messages configuration parameter, 494
lc_monetary configuration parameter, 494
lc_numeric configuration parameter, 494
lc_time configuration parameter, 495

2825

LDAP, 403, 519
LDAP connection parameter lookup, 701
ldconfig, 410
lead, 265
LEAST, 256

determination of result type, 307
left, 177
left join, 91
length, 177, 192, 231, 236

of a binary string
(see binary strings, length)

of a character string
(see character string, length)

length(tsvector), 335
lex, 399
libedit, 397
libperl, 398
libpq, 646

single-row mode, 679
libpq-fe.h, 646, 658
libpq-int.h, 658
libpython, 398
library finalization function, 932
library initialization function, 932
LIKE, 194

and locales, 536
LIMIT, 103
line segment, 137
linear regression, 263
Linux

IPC configuration, 437
shared library, 943
start script, 432

LISTEN, 1533
listen_addresses configuration parameter, 455
ln, 173
lo, 2679
LOAD, 1535
load balancing, 571
locale, 430, 534
localtime, 217
localtimestamp, 217
local_preload_libraries configuration parame-
ter, 495
lock, 369, 369, 1536

advisory, 373
monitoring, 613

log, 173

log shipping, 571
logging_collector configuration parameter, 478
login privilege, 524
log_autovacuum_min_duration configuration
parameter, 489
log_btree_build_stats configuration parameter,
503
log_checkpoints configuration parameter, 483
log_connections configuration parameter, 483
log_destination configuration parameter, 478
log_directory configuration parameter, 479
log_disconnections configuration parameter,
483
log_duration configuration parameter, 483
log_error_verbosity configuration parameter,
483
log_executor_stats configuration parameter,
488
log_filename configuration parameter, 479
log_file_mode configuration parameter, 479
log_hostname configuration parameter, 483
log_line_prefix configuration parameter, 484
log_lock_waits configuration parameter, 485
log_min_duration_statement configuration pa-
rameter, 481
log_min_error_statement configuration param-
eter, 481
log_min_messages configuration parameter,
480
log_parser_stats configuration parameter, 488
log_planner_stats configuration parameter, 488
log_rotation_age configuration parameter, 479
log_rotation_size configuration parameter, 479
log_statement configuration parameter, 485
log_statement_stats configuration parameter,
488
log_temp_files configuration parameter, 485
log_timezone configuration parameter, 485
log_truncate_on_rotation configuration param-
eter, 480
looks_like_number

in PL/Perl, 1106
loop

in PL/pgSQL, 1050
lower, 176, 260

and locales, 536
lower_inc, 260
lower_inf, 260

2826

lo_close, 723
lo_compat_privileges configuration parameter,
498
lo_creat, 720, 723
lo_create, 720, 723
lo_export, 721, 723
lo_import, 720, 723
lo_import_with_oid, 720
lo_lseek, 722
lo_open, 721
lo_read, 722
lo_tell, 722
lo_truncate, 722
lo_unlink, 723, 723
lo_write, 721
lpad, 177
lseg, 137, 232
ltree, 2680
ltrim, 177

M
MAC address

(see macaddr)
Mac OS X

IPC configuration, 437
shared library, 943

macaddr (data type), 140
magic block, 932
maintenance, 547
maintenance_work_mem configuration param-
eter, 460
make, 397
MANPATH, 411
masklen, 234
max, 261
max_connections configuration parameter, 455
max_files_per_process configuration parame-
ter, 461
max_function_args configuration parameter,
500
max_identifier_length configuration parame-
ter, 500
max_index_keys configuration parameter, 500
max_locks_per_transaction configuration pa-
rameter, 496

max_pred_locks_per_transaction configura-
tion parameter, 497
max_prepared_transactions configuration pa-
rameter, 460
max_stack_depth configuration parameter, 461
max_standby_archive_delay configuration pa-
rameter, 471
max_standby_streaming_delay configuration
parameter, 472
max_wal_senders configuration parameter,
470
md5, 177, 192, 514
memory context

in SPI, 1174
min, 261
MinGW

installation on, 417
mod, 173
monitoring

database activity, 596
MOVE, 1539
Multiversion Concurrency Control, 363
MVCC, 363

N
name

qualified, 68
syntax of, 27
unqualified, 69

NaN
(see not a number)

natural join, 91
negation, 170
NetBSD

IPC configuration, 436
shared library, 943
start script, 432

netmask, 234
network, 234

data types, 138
Network Attached Storage (NAS)

(see Network File Systems)
Network File Systems, 430
nextval, 251
NFS

(see Network File Systems)

2827

non-durable, 394
nonblocking connection, 648, 676
nonrepeatable read, 364
NOT (operator), 170
not a number

double precision, 115
numeric (data type), 114

NOT IN, 267, 270
not-null constraint, 56
notation

functions, 49
notice processing

in libpq, 691
notice processor, 691
notice receiver, 691
NOTIFY, 1541

in libpq, 682
NOTNULL, 171
now, 217
npoints, 231
nth_value, 265
ntile, 265
null value

with check constraints, 56
comparing, 172
default value, 53
in DISTINCT, 101
in libpq, 671
in PL/Perl, 1099
in PL/Python, 1117
with unique constraints, 58

NULLIF, 256
number

constant, 33
numeric, 33
numeric (data type), 114
numnode, 236, 336
NVL, 255

O
object identifier

data type, 166
object-oriented database, 6
obj_description, 285
octet_length, 176, 191
OFFSET, 103

oid, 166
column, 62
in libpq, 673

oid2name, 2756
ONLY, 90
opaque, 168
OpenBSD

IPC configuration, 436
shared library, 943
start script, 431

OpenSSL, 403
(see also SSL)

operator, 170
invocation, 40
logical, 170
precedence, 36
syntax, 34
type resolution in an invocation, 300
user-defined, 961

operator class, 319, 967
operator family, 319, 975
OR (operator), 170
Oracle

porting from PL/SQL to PL/pgSQL, 1079
ORDER BY, 9, 102

and locales, 536
ordering operator, 978
outer join, 90
output function, 958
OVER clause, 42
overlay, 176, 191
overloading

functions, 928
operators, 962

owner, 66

P
pageinspect, 2688
palloc, 941
PAM, 403, 521
parameter

syntax, 38
parenthesis, 38
partitioning, 75
password, 525

authentication, 514

2828

of the superuser, 430
password file, 700
passwordcheck, 2689
password_encryption configuration parameter,
458
path, 232, 410

for schemas, 490
path (data type), 137
pattern matching, 194
patterns

in psql and pg_dump, 1712
pause_at_recovery_target recovery parameter,
594
pclose, 231
peer, 518
percent_rank, 265
performance, 377
perl, 399, 1098
permission

(see privilege)
pfree, 941
PGAPPNAME, 700
pgbench, 2761
PGcancel, 681
PGCLIENTENCODING, 700
PGconn, 646
PGCONNECT_TIMEOUT, 700
pgcrypto, 2692
PGDATA, 429
PGDATABASE, 699
PGDATESTYLE, 700
PGEventProc, 695
PGGEQO, 700
PGGSSLIB, 700
PGHOST, 699
PGHOSTADDR, 699
PGKRBSRVNAME, 700
PGLOCALEDIR, 700
PGOPTIONS, 700
PGPASSFILE, 699
PGPASSWORD, 699
PGPORT, 699
PGREALM, 700
PGREQUIREPEER, 700
PGREQUIRESSL, 700
PGresult, 665
pgrowlocks, 2705
PGSERVICE, 699

PGSERVICEFILE, 700
PGSSLCERT, 700
PGSSLCOMPRESSION, 700
PGSSLCRL, 700
PGSSLKEY, 700
PGSSLMODE, 700
PGSSLROOTCERT, 700
pgstattuple, 2711
PGSYSCONFDIR, 700
PGTZ, 700
PGUSER, 699
pgxs, 986
pg_advisory_lock, 297
pg_advisory_lock_shared, 297
pg_advisory_unlock, 297
pg_advisory_unlock_all, 297
pg_advisory_unlock_shared, 297
pg_advisory_xact_lock, 297
pg_advisory_xact_lock_shared, 298
pg_aggregate, 1765
pg_am, 1766
pg_amop, 1768
pg_amproc, 1770
pg_archivecleanup, 2772
pg_attrdef, 1770
pg_attribute, 1771
pg_authid, 1774
pg_auth_members, 1776
pg_available_extensions, 1831
pg_available_extension_versions, 1831
pg_backend_pid, 277
pg_basebackup, 1655
pg_buffercache, 2690
pg_cancel_backend, 287
pg_cast, 1776
pg_class, 1778
pg_client_encoding, 177
pg_collation, 1784
pg_collation_is_visible, 281
pg_column_size, 293
pg_config, 1661

with libpq, 708
with user-defined C functions, 941

pg_conf_load_time, 277
pg_constraint, 1781
pg_controldata, 1738
pg_conversion, 1785
pg_conversion_is_visible, 281

2829

pg_create_restore_point, 288
pg_ctl, 429, 431, 1739
pg_current_xlog_insert_location, 288
pg_current_xlog_location, 288
pg_cursors, 1832
pg_database, 530, 1786
pg_database_size, 293
pg_db_role_setting, 1787
pg_default_acl, 1788
pg_depend, 1789
pg_describe_object, 281
pg_description, 1790
pg_dump, 1664
pg_dumpall, 1675

use during upgrade, 444
pg_enum, 1791
pg_export_snapshot, 292
pg_extension, 1792
pg_extension_config_dump, 983
pg_foreign_data_wrapper, 1792
pg_foreign_server, 1793
pg_foreign_table, 1794
pg_freespacemap, 2704
pg_function_is_visible, 281
pg_get_constraintdef, 281
pg_get_expr, 281
pg_get_functiondef, 281
pg_get_function_arguments, 281
pg_get_function_identity_arguments, 281
pg_get_function_result, 281
pg_get_indexdef, 281
pg_get_keywords, 281
pg_get_ruledef, 281
pg_get_serial_sequence, 281
pg_get_triggerdef, 281
pg_get_userbyid, 281
pg_get_viewdef, 281
pg_group, 1833
pg_has_role, 279
pg_hba.conf, 506
pg_ident.conf, 513
pg_index, 1794
pg_indexes, 1833
pg_indexes_size, 293
pg_inherits, 1797
pg_is_in_recovery, 290
pg_is_other_temp_schema, 277
pg_is_xlog_replay_paused, 291

pg_language, 1798
pg_largeobject, 1799
pg_largeobject_metadata, 1800
pg_last_xact_replay_timestamp, 290
pg_last_xlog_receive_location, 290
pg_last_xlog_replay_location, 290
pg_listening_channels, 277
pg_locks, 1834
pg_ls_dir, 295
pg_my_temp_schema, 277
pg_namespace, 1800
pg_notify, 1542
pg_opclass, 1801
pg_opclass_is_visible, 281
pg_operator, 1801
pg_operator_is_visible, 281
pg_opfamily, 1802
pg_opfamily_is_visible, 281
pg_options_to_table, 281
pg_pltemplate, 1803
pg_postmaster_start_time, 277
pg_prepared_statements, 1837
pg_prepared_xacts, 1838
pg_proc, 1804
pg_range, 1808
pg_read_binary_file, 295
pg_read_file, 295
pg_receivexlog, 1681
pg_relation_filenode, 294
pg_relation_filepath, 294
pg_relation_size, 293
pg_reload_conf, 287
pg_resetxlog, 1745
pg_restore, 1684
pg_rewrite, 1809
pg_roles, 1839
pg_rotate_logfile, 287
pg_rules, 1840
pg_seclabel, 1810
pg_seclabels, 1841
pg_service.conf, 701
pg_settings, 1842
pg_shadow, 1844
pg_shdepend, 1811
pg_shdescription, 1812
pg_shseclabel, 1813
pg_size_pretty, 293
pg_sleep, 227

2830

pg_standby, 2775
pg_start_backup, 288
pg_statio_all_indexes, 598
pg_statio_all_sequences, 598
pg_statio_all_tables, 598
pg_statio_sys_indexes, 598
pg_statio_sys_sequences, 598
pg_statio_sys_tables, 598
pg_statio_user_indexes, 598
pg_statio_user_sequences, 598
pg_statio_user_tables, 598
pg_statistic, 388, 1813
pg_stats, 388, 1845
pg_stat_activity, 598
pg_stat_all_indexes, 598
pg_stat_all_tables, 598
pg_stat_bgwriter, 598
pg_stat_database, 598
pg_stat_database_conflicts, 598
pg_stat_file, 295
pg_stat_replication, 598
pg_stat_statements, 2707
pg_stat_sys_indexes, 598
pg_stat_sys_tables, 598
pg_stat_user_functions, 598
pg_stat_user_indexes, 598
pg_stat_user_tables, 598
pg_stat_xact_all_tables, 598
pg_stat_xact_sys_tables, 598
pg_stat_xact_user_functions, 598
pg_stat_xact_user_tables, 598
pg_stop_backup, 288
pg_switch_xlog, 288
pg_tables, 1848
pg_tablespace, 1816
pg_tablespace_databases, 281
pg_tablespace_location, 281
pg_tablespace_size, 293
pg_table_is_visible, 281
pg_table_size, 293
pg_terminate_backend, 287
pg_test_fsync, 2779
pg_test_timing, 2781
pg_timezone_abbrevs, 1849
pg_timezone_names, 1849
pg_total_relation_size, 293
pg_trgm, 2713
pg_trigger, 1816

pg_try_advisory_lock, 297
pg_try_advisory_lock_shared, 297
pg_try_advisory_xact_lock, 298
pg_try_advisory_xact_lock_shared, 298
pg_ts_config, 1818
pg_ts_config_is_visible, 281
pg_ts_config_map, 1819
pg_ts_dict, 1819
pg_ts_dict_is_visible, 281
pg_ts_parser, 1820
pg_ts_parser_is_visible, 281
pg_ts_template, 1820
pg_ts_template_is_visible, 281
pg_type, 1821
pg_typeof, 281
pg_type_is_visible, 281
pg_upgrade, 2785
pg_user, 1850
pg_user_mapping, 1830
pg_user_mappings, 1850
pg_views, 1851
pg_xlogfile_name, 288
pg_xlogfile_name_offset, 288
pg_xlog_location_diff, 288
pg_xlog_replay_pause, 291
pg_xlog_replay_resume, 291
phantom read, 364
pi, 173
PIC, 942
PID

determining PID of server process
in libpq, 660

PITR, 556
PITR standby, 571
PL/Perl, 1098
PL/PerlU, 1108
PL/pgSQL, 1028
PL/Python, 1113
PL/SQL (Oracle)

porting to PL/pgSQL, 1079
PL/Tcl, 1090
plainto_tsquery, 236, 331
plperl.on_init configuration parameter, 1111
plperl.on_plperlu_init configuration parame-
ter, 1111
plperl.on_plperl_init configuration parameter,
1111
plperl.use_strict configuration parameter, 1112

2831

plpgsql.variable_conflict configuration param-
eter, 1075
point, 137, 232
point-in-time recovery, 556
polygon, 138, 232
polymorphic function, 912
polymorphic type, 912
popen, 231
port, 654
port configuration parameter, 455
position, 176, 191
POSTGRES, lxiv, 1, 431, 529, 1747
postgres user, 429
Postgres95, lxv
postgresql.conf, 452
postmaster, 1755
post_auth_delay configuration parameter, 502
power, 173
PQbackendPID, 660
PQbinaryTuples, 670

with COPY, 684
PQcancel, 681
PQclear, 668
PQclientEncoding, 688
PQcmdStatus, 672
PQcmdTuples, 672
PQconndefaults, 650
PQconnectdb, 647
PQconnectdbParams, 646
PQconnectionNeedsPassword, 661
PQconnectionUsedPassword, 661
PQconnectPoll, 648
PQconnectStart, 648
PQconnectStartParams, 648
PQconninfoFree, 689
PQconninfoParse, 650
PQconsumeInput, 678
PQcopyResult, 690
PQdb, 658
PQdescribePortal, 665
PQdescribePrepared, 665
PQencryptPassword, 689
PQendcopy, 687
PQerrorMessage, 660
PQescapeBytea, 675
PQescapeByteaConn, 675
PQescapeIdentifier, 673
PQescapeLiteral, 673

PQescapeString, 674
PQescapeStringConn, 674
PQexec, 661
PQexecParams, 662
PQexecPrepared, 664
PQfformat, 670

with COPY, 684
PQfinish, 651
PQfireResultCreateEvents, 690
PQflush, 679
PQfmod, 670
PQfn, 682
PQfname, 669
PQfnumber, 669
PQfreeCancel, 681
PQfreemem, 689
PQfsize, 670
PQftable, 669
PQftablecol, 669
PQftype, 670
PQgetCancel, 681
PQgetCopyData, 685
PQgetisnull, 671
PQgetlength, 671
PQgetline, 686
PQgetlineAsync, 686
PQgetResult, 678
PQgetssl, 661
PQgetvalue, 670
PQhost, 658
PQinitOpenSSL, 706
PQinitSSL, 707
PQinstanceData, 696
PQisBusy, 678
PQisnonblocking, 679
PQisthreadsafe, 707
PQlibVersion, 691

(see also PQserverVersion)
PQmakeEmptyPGresult, 689
PQnfields, 669

with COPY, 684
PQnotifies, 683
PQnparams, 671
PQntuples, 668
PQoidStatus, 673
PQoidValue, 673
PQoptions, 658
PQparameterStatus, 659

2832

PQparamtype, 671
PQpass, 658
PQping, 652
PQpingParams, 651
PQport, 658
PQprepare, 663
PQprint, 672
PQprotocolVersion, 660
PQputCopyData, 684
PQputCopyEnd, 685
PQputline, 687
PQputnbytes, 687
PQregisterEventProc, 695
PQrequestCancel, 681
PQreset, 651
PQresetPoll, 651
PQresetStart, 651
PQresStatus, 666
PQresultAlloc, 691
PQresultErrorField, 667
PQresultErrorMessage, 666
PQresultInstanceData, 696
PQresultSetInstanceData, 696
PQresultStatus, 665
PQsendDescribePortal, 677
PQsendDescribePrepared, 677
PQsendPrepare, 677
PQsendQuery, 676
PQsendQueryParams, 676
PQsendQueryPrepared, 677
PQserverVersion, 660
PQsetClientEncoding, 688
PQsetdb, 648
PQsetdbLogin, 647
PQsetErrorVerbosity, 688
PQsetInstanceData, 696
PQsetnonblocking, 679
PQsetNoticeProcessor, 691
PQsetNoticeReceiver, 691
PQsetResultAttrs, 690
PQsetSingleRowMode, 680
PQsetvalue, 690
PQsocket, 660
PQstatus, 659
PQtrace, 688
PQtransactionStatus, 659
PQtty, 658
PQunescapeBytea, 675

PQuntrace, 689
PQuser, 658
predicate locking, 367
PREPARE, 1544
PREPARE TRANSACTION, 1547
prepared statements

creating, 1544
executing, 1509
removing, 1432
showing the query plan, 1511

preparing a query
in PL/pgSQL, 1076
in PL/Python, 1123
in PL/Tcl, 1093

pre_auth_delay configuration parameter, 502
primary key, 58
primary_conninfo recovery parameter, 595
privilege, 66

querying, 277
with rules, 1019
for schemas, 70
with views, 1019

procedural language, 1025
externally maintained, 2793
handler for, 1903

protocol
frontend-backend, 1852

ps
to monitor activity, 596

psql, 3, 1693
Python, 1113

Q
qualified name, 68
query, 8, 89
query plan, 377
query tree, 999
querytree, 236, 336
quotation marks

and identifiers, 28
escaping, 29

quote_all_identifiers configuration parameter,
498
quote_ident, 177

in PL/Perl, 1106
use in PL/pgSQL, 1042

2833

quote_literal, 177
in PL/Perl, 1106
use in PL/pgSQL, 1042

quote_nullable, 177
in PL/Perl, 1106
use in PL/pgSQL, 1042

R
radians, 173
radius, 231, 520
RAISE, 1065
random, 173
random_page_cost configuration parameter,
474
range table, 999
range type, 160

exclude, 165
indexes on, 165

rank, 265
read committed, 364
read-only transaction

setting, 1604
setting default, 492

readline, 397
real, 115
REASSIGN OWNED, 1549
record, 168
recovery.conf, 593
recovery_end_command recovery parameter,
594
recovery_target_inclusive recovery parameter,
594
recovery_target_name recovery parameter, 594
recovery_target_time recovery parameter, 594
recovery_target_timeline recovery parameter,
594
recovery_target_xid recovery parameter, 594
rectangle, 137
referential integrity, 16, 59
regclass, 166
regconfig, 166
regdictionary, 166
regexp_matches, 177, 196
regexp_replace, 177, 196
regexp_split_to_array, 177, 196
regexp_split_to_table, 177, 196

regoper, 166
regoperator, 166
regproc, 166
regprocedure, 166
regression intercept, 263
regression slope, 263
regression test, 408
regression tests, 635
regr_avgx, 263
regr_avgy, 263
regr_count, 263
regr_intercept, 263
regr_r2, 263
regr_slope, 263
regr_sxx, 263
regr_sxy, 263
regr_syy, 263
regtype, 166
regular expression, 195, 196

(see also pattern matching)
regular expressions

and locales, 536
reindex, 554, 1551
reindexdb, 1725
relation, 6
relational database, 6
RELEASE SAVEPOINT, 1554
repeat, 177
repeatable read, 365
replace, 177
replication, 571
replication_timeout configuration parameter,
470
reporting errors

in PL/pgSQL, 1065
RESET, 1556
restartpoint, 633
restart_after_crash configuration parameter,
499
restore_command recovery parameter, 593
RESTRICT

with DROP, 84
foreign key action, 60

RETURN NEXT
in PL/pgSQL, 1045

RETURN QUERY
in PL/pgSQL, 1045

RETURNING INTO

2834

in PL/pgSQL, 1039
reverse, 177
REVOKE, 66, 1558
right, 177
right join, 91
role, 523

applicable, 846
enabled, 871
membership in, 525
privilege to create, 524
privilege to initiate replication, 525

ROLLBACK, 1562
psql, 1716

ROLLBACK PREPARED, 1564
ROLLBACK TO SAVEPOINT, 1566
round, 173
routine maintenance, 547
row, 6, 47, 52
row estimation

planner, 1967
row type, 156

constructor, 47
row-wise comparison, 270
row_number, 265
row_to_json, 251
rpad, 177
rtrim, 177
rule, 999

and views, 1001
for DELETE, 1008
for INSERT, 1008
for SELECT, 1001
compared with triggers, 1022
for UPDATE, 1008

S
SAVEPOINT, 1568
savepoints

defining, 1568
releasing, 1554
rolling back, 1566

scalar
(see expression)

schema, 67, 528
creating, 68
current, 69, 277

public, 69
removing, 68

SCO
installation on, 418

SCO OpenServer
IPC configuration, 438

search path, 69
current, 277

search_path, 69
search_path configuration parameter, 490
SECURITY LABEL, 1570
seg, 2716
segment_size configuration parameter, 500
SELECT, 8, 89, 1573

select list, 100
SELECT INTO, 1592

in PL/pgSQL, 1039
semaphores, 434
sepgsql, 2720
sepgsql.debug_audit configuration parameter,
2723
sepgsql.permissive configuration parameter,
2723
sequence, 251

and serial type, 116
sequential scan, 473
seq_page_cost configuration parameter, 474
serial, 116
serial2, 116
serial4, 116
serial8, 116
serializable, 367
Serializable Snapshot Isolation, 363
serialization anomaly, 367
server log, 477

log file maintenance, 554
server spoofing, 445
server_encoding configuration parameter, 500
server_version configuration parameter, 501
server_version_num configuration parameter,
501
session_replication_role configuration param-
eter, 492
session_user, 277
SET, 287, 1594
SET CONSTRAINTS, 1598
set difference, 102
set intersection, 102

2835

set operation, 102
set returning functions

functions, 273
SET ROLE, 1600
SET SESSION AUTHORIZATION, 1602
SET TRANSACTION, 1604
set union, 102
SET XML OPTION, 493
setseed, 173
setval, 251
setweight, 236, 335
set_bit, 192
set_byte, 192
set_config, 287
set_masklen, 234
shared library, 410, 942
shared memory, 434
shared_buffers configuration parameter, 459
shared_preload_libraries, 954
shared_preload_libraries configuration param-
eter, 461
SHMMAX, 435
shobj_description, 285
SHOW, 287, 1607
shutdown, 442
SIGHUP, 453, 511, 513
SIGINT, 442
sign, 173
signal

backend processes, 287
significant digits, 494
SIGQUIT, 442
SIGTERM, 442
SIMILAR TO, 195
sin, 175
sleep, 227
sliced bread

(see TOAST)
smallint, 113
smallserial, 116
Solaris

installation on, 420
IPC configuration, 438
shared library, 943
start script, 432

SOME, 263, 267, 270
sorting, 102
SP-GiST

(see index)
SPI, 1130

examples, 2728
SPI_connect, 1130
SPI_copytuple, 1178
SPI_cursor_close, 1163

in PL/Perl, 1102
SPI_cursor_fetch, 1159
SPI_cursor_find, 1158
SPI_cursor_move, 1160
SPI_cursor_open, 1153
SPI_cursor_open_with_args, 1155
SPI_cursor_open_with_paramlist, 1157
SPI_exec, 1139
SPI_execp, 1152
SPI_execute, 1135
SPI_execute_plan, 1149
SPI_execute_plan_with_paramlist, 1151
SPI_execute_with_args, 1140
spi_exec_prepared

in PL/Perl, 1102
spi_exec_query

in PL/Perl, 1102
spi_fetchrow

in PL/Perl, 1102
SPI_finish, 1132
SPI_fname, 1166
SPI_fnumber, 1167
SPI_freeplan, 1184

in PL/Perl, 1102
SPI_freetuple, 1182
SPI_freetuptable, 1183
SPI_getargcount, 1146
SPI_getargtypeid, 1147
SPI_getbinval, 1169
SPI_getnspname, 1173
SPI_getrelname, 1172
SPI_gettype, 1170
SPI_gettypeid, 1171
SPI_getvalue, 1168
SPI_is_cursor_plan, 1148
SPI_keepplan, 1164
spi_lastoid, 1094
SPI_modifytuple, 1180
SPI_palloc, 1174
SPI_pfree, 1177
SPI_pop, 1134
SPI_prepare, 1142

2836

in PL/Perl, 1102
SPI_prepare_cursor, 1144
SPI_prepare_params, 1145
SPI_push, 1133
spi_query

in PL/Perl, 1102
spi_query_prepared

in PL/Perl, 1102
SPI_repalloc, 1176
SPI_returntuple, 1179
SPI_saveplan, 1165
SPI_scroll_cursor_fetch, 1161
SPI_scroll_cursor_move, 1162
split_part, 177
SQL/CLI, 2013
SQL/Foundation, 2013
SQL/Framework, 2013
SQL/JRT, 2013
SQL/MED, 2013
SQL/OLB, 2013
SQL/PSM, 2013
SQL/Schemata, 2013
SQL/XML, 2013
sql_inheritance configuration parameter, 498
sqrt, 173
ssh, 449
SSI, 363
SSL, 447, 702

with libpq, 656, 661
ssl configuration parameter, 457
sslinfo, 2730
ssl_ca_file configuration parameter, 457
ssl_cert_file configuration parameter, 458
ssl_ciphers configuration parameter, 458
ssl_crl_file configuration parameter, 458
ssl_key_file configuration parameter, 458
ssl_renegotiation_limit configuration parame-
ter, 458
SSPI, 515
STABLE, 929
standard deviation, 263

population, 263
sample, 263

standard_conforming_strings configuration
parameter, 498
standby server, 571
standby_mode recovery parameter, 595
START TRANSACTION, 1610

statement_timeout configuration parameter,
492
statement_timestamp, 217
statistics, 263, 597

of the planner, 387, 549
stats_temp_directory configuration parameter,
488
stddev, 263
stddev_pop, 263
stddev_samp, 263
STONITH, 571
storage parameters, 1389
Streaming Replication, 571
string

(see character string)
strings

backslash quotes, 497
escape warning, 498
standard conforming, 498

string_agg, 261
string_to_array, 257
strip, 236, 336
strpos, 177
subquery, 12, 45, 95, 267
subscript, 39
substr, 177
substring, 176, 191, 195, 196
sum, 261
superuser, 4, 524
superuser_reserved_connections configuration
parameter, 455
suppress_redundant_updates_trigger, 298
synchronize_seqscans configuration parame-
ter, 499
synchronous commit, 630
Synchronous Replication, 571
synchronous_commit configuration parameter,
465
synchronous_standby_names configuration
parameter, 470
syntax

SQL, 27
syslog_facility configuration parameter, 480
syslog_identity configuration parameter, 480
system catalog

schema, 70

2837

T
table, 6, 52

creating, 52
inheritance, 72
modifying, 63
partitioning, 75
removing, 53
renaming, 66

TABLE command, 1573
table expression, 89
table function, 95
tablefunc, 2732
tableoid, 62
tablespace, 531

default, 491
temporary, 491

tan, 175
target list, 1000
Tcl, 1090
tcn, 2742
tcp_keepalives_count configuration parameter,
457
tcp_keepalives_idle configuration parameter,
456
tcp_keepalives_interval configuration parame-
ter, 457
template0, 529
template1, 529, 529
temp_buffers configuration parameter, 460
temp_file_limit configuration parameter, 461
temp_tablespaces configuration parameter, 491
test, 635
test_parser, 2743
text, 118, 234
text search, 323

data types, 141
functions and operators, 141
indexes, 357

threads
with libpq, 707

tid, 166
time, 122, 125

constants, 127
current, 226
output format, 128

(see also formatting)
time span, 122

time with time zone, 122, 125
time without time zone, 122, 125
time zone, 129, 494

conversion, 225
input abbreviations, 1985

time zone data, 405
time zone names, 494
timelines, 556
timeofday, 217
timeout

client authentication, 457
deadlock, 496

timestamp, 122, 126
timestamp with time zone, 122, 126
timestamp without time zone, 122, 126
timestamptz, 122
TimeZone configuration parameter, 494
timezone_abbreviations configuration parame-
ter, 494
TOAST, 1957

and user-defined types, 961
per-column storage settings, 1251
versus large objects, 719

token, 27
to_ascii, 177
to_char, 209

and locales, 536
to_date, 209
to_hex, 177
to_number, 209
to_timestamp, 209
to_tsquery, 236, 330
to_tsvector, 236, 329
trace_locks configuration parameter, 502
trace_lock_oidmin configuration parameter,
503
trace_lock_table configuration parameter, 503
trace_lwlocks configuration parameter, 503
trace_notify configuration parameter, 502
trace_recovery_messages configuration pa-
rameter, 502
trace_sort configuration parameter, 502
trace_userlocks configuration parameter, 503
track_activities configuration parameter, 487
track_activity_query_size configuration pa-
rameter, 487
track_counts configuration parameter, 487
track_functions configuration parameter, 488

2838

track_io_timing configuration parameter, 487
transaction, 17
transaction ID

wraparound, 550
transaction isolation, 363
transaction isolation level, 364

read committed, 364
repeatable read, 365
serializable, 367
setting, 1604
setting default, 492

transaction log
(see WAL)

transaction_timestamp, 217
transform_null_equals configuration parame-
ter, 499
translate, 177
trigger, 168, 989

arguments for trigger functions, 991
for updating a derived tsvector column, 338
in C, 992
in PL/pgSQL, 1066
in PL/Python, 1121
in PL/Tcl, 1095
compared with rules, 1022

triggered_change_notification, 2742
trigger_file recovery parameter, 595
trim, 176, 191
Tru64 UNIX

shared library, 943
true, 133
trunc, 173, 235
TRUNCATE, 1611
trusted

PL/Perl, 1108
tsearch2, 2745
tsquery (data type), 143
tsvector (data type), 142
tsvector concatenation, 335
tsvector_update_trigger, 236
tsvector_update_trigger_column, 236
ts_debug, 238, 353
ts_headline, 236, 333
ts_lexize, 238, 356
ts_parse, 238, 355
ts_rank, 236, 331
ts_rank_cd, 236, 331
ts_rewrite, 236, 336

ts_stat, 238, 339
ts_token_type, 238, 355
txid_current, 285
txid_current_snapshot, 285
txid_snapshot_xip, 285
txid_snapshot_xmax, 285
txid_snapshot_xmin, 285
txid_visible_in_snapshot, 285
type

(see data type)
polymorphic, 912

type cast, 33, 44

U
UESCAPE, 28, 31
unaccent, 2746, 2748
Unicode escape

in identifiers, 28
in string constants, 31

UNION, 102
determination of result type, 307

unique constraint, 57
Unix domain socket, 654
UnixWare

installation on, 418
IPC configuration, 439
shared library, 944

unix_socket_directories configuration parame-
ter, 456
unix_socket_group configuration parameter,
456
unix_socket_permissions configuration param-
eter, 456
UNLISTEN, 1614
unnest, 257
unqualified name, 69
UPDATE, 14, 87, 1616
update_process_title configuration parameter,
488
updating, 87
upgrading, 443
upper, 176, 260

and locales, 536
upper_inc, 260
upper_inf, 260
URI, 652

2839

user, 277, 523
current, 277

user mapping, 83
User name maps, 512
UUID, 144, 403
uuid-ossp, 2748

V
vacuum, 547, 1621
vacuumdb, 1729
vacuumlo, 2770
vacuum_cost_delay configuration parameter,
462
vacuum_cost_limit configuration parameter,
463
vacuum_cost_page_dirty configuration param-
eter, 463
vacuum_cost_page_hit configuration parame-
ter, 463
vacuum_cost_page_miss configuration param-
eter, 463
vacuum_defer_cleanup_age configuration pa-
rameter, 471
vacuum_freeze_min_age configuration param-
eter, 493
vacuum_freeze_table_age configuration pa-
rameter, 492
value expression, 37
VALUES, 104, 1624

determination of result type, 307
varchar, 118
variadic function, 921
variance, 263

population, 263
sample, 263

var_pop, 263
var_samp, 263
version, 4, 277

compatibility, 443
view, 16

implementation through rules, 1001
updating, 1013

Visibility Map, 1959
VM

(see Visibility Map)
void, 168

VOLATILE, 929
volatility

functions, 929
VPATH, 400

W
WAL, 628
wal_block_size configuration parameter, 501
wal_buffers configuration parameter, 467
wal_debug configuration parameter, 504
wal_keep_segments configuration parameter,
470
wal_level configuration parameter, 465
wal_receiver_status_interval configuration pa-
rameter, 472
wal_segment_size configuration parameter,
501
wal_sync_method configuration parameter,
466
wal_writer_delay configuration parameter, 467
warm standby, 571
WHERE, 96
where to log, 478
WHILE

in PL/pgSQL, 1052
width, 231
width_bucket, 173
window function, 19

built-in, 265
invocation, 42
order of execution, 99

WITH
in SELECT, 105, 1573

witness server, 571
work_mem configuration parameter, 460

X
xid, 166
xmax, 62
xmin, 62
XML, 145
XML export, 247
XML option, 146, 493

2840

xml2, 2750
xmlagg, 243, 261
xmlbinary configuration parameter, 493
xmlcomment, 240
xmlconcat, 240
xmlelement, 241
XMLEXISTS, 245
xmlforest, 242
xmloption configuration parameter, 493
xmlparse, 145
xmlpi, 243
xmlroot, 243
xmlserialize, 145
xml_is_well_formed, 245
xml_is_well_formed_content, 245
xml_is_well_formed_document, 245
XPath, 246
xpath_exists, 247

Y
yacc, 399

Z
zero_damaged_pages configuration parameter,
504
zlib, 398, 405

2841

	PostgreSQL 9.2.7 Documentation
	Table of Contents
	Preface
	1. What is PostgreSQL?
	2. A Brief History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. Conventions
	4. Further Information
	5. Bug Reporting Guidelines
	5.1. Identifying Bugs
	5.2. What to Report
	5.3. Where to Report Bugs

	I. Tutorial
	Chapter 1. Getting Started
	1.1. Installation
	1.2. Architectural Fundamentals
	1.3. Creating a Database
	1.4. Accessing a Database

	Chapter 2. The SQL Language
	2.1. Introduction
	2.2. Concepts
	2.3. Creating a New Table
	2.4. Populating a Table With Rows
	2.5. Querying a Table
	2.6. Joins Between Tables
	2.7. Aggregate Functions
	2.8. Updates
	2.9. Deletions

	Chapter 3. Advanced Features
	3.1. Introduction
	3.2. Views
	3.3. Foreign Keys
	3.4. Transactions
	3.5. Window Functions
	3.6. Inheritance
	3.7. Conclusion

	II. The SQL Language
	Chapter 4. SQL Syntax
	4.1. Lexical Structure
	4.1.1. Identifiers and Key Words
	4.1.2. Constants
	4.1.2.1. String Constants
	4.1.2.2. String Constants with Cstyle Escapes
	4.1.2.3. String Constants with Unicode Escapes
	4.1.2.4. Dollarquoted String Constants
	4.1.2.5. Bitstring Constants
	4.1.2.6. Numeric Constants
	4.1.2.7. Constants of Other Types

	4.1.3. Operators
	4.1.4. Special Characters
	4.1.5. Comments
	4.1.6. Operator Precedence

	4.2. Value Expressions
	4.2.1. Column References
	4.2.2. Positional Parameters
	4.2.3. Subscripts
	4.2.4. Field Selection
	4.2.5. Operator Invocations
	4.2.6. Function Calls
	4.2.7. Aggregate Expressions
	4.2.8. Window Function Calls
	4.2.9. Type Casts
	4.2.10. Collation Expressions
	4.2.11. Scalar Subqueries
	4.2.12. Array Constructors
	4.2.13. Row Constructors
	4.2.14. Expression Evaluation Rules

	4.3. Calling Functions
	4.3.1. Using Positional Notation
	4.3.2. Using Named Notation
	4.3.3. Using Mixed Notation

	Chapter 5. Data Definition
	5.1. Table Basics
	5.2. Default Values
	5.3. Constraints
	5.3.1. Check Constraints
	5.3.2. NotNull Constraints
	5.3.3. Unique Constraints
	5.3.4. Primary Keys
	5.3.5. Foreign Keys
	5.3.6. Exclusion Constraints

	5.4. System Columns
	5.5. Modifying Tables
	5.5.1. Adding a Column
	5.5.2. Removing a Column
	5.5.3. Adding a Constraint
	5.5.4. Removing a Constraint
	5.5.5. Changing a Column's Default Value
	5.5.6. Changing a Column's Data Type
	5.5.7. Renaming a Column
	5.5.8. Renaming a Table

	5.6. Privileges
	5.7. Schemas
	5.7.1. Creating a Schema
	5.7.2. The Public Schema
	5.7.3. The Schema Search Path
	5.7.4. Schemas and Privileges
	5.7.5. The System Catalog Schema
	5.7.6. Usage Patterns
	5.7.7. Portability

	5.8. Inheritance
	5.8.1. Caveats

	5.9. Partitioning
	5.9.1. Overview
	5.9.2. Implementing Partitioning
	5.9.3. Managing Partitions
	5.9.4. Partitioning and Constraint Exclusion
	5.9.5. Alternative Partitioning Methods
	5.9.6. Caveats

	5.10. Foreign Data
	5.11. Other Database Objects
	5.12. Dependency Tracking

	Chapter 6. Data Manipulation
	6.1. Inserting Data
	6.2. Updating Data
	6.3. Deleting Data

	Chapter 7. Queries
	7.1. Overview
	7.2. Table Expressions
	7.2.1. The FROM Clause
	7.2.1.1. Joined Tables
	Join Types
	7.2.1.2. Table and Column Aliases
	7.2.1.3. Subqueries
	7.2.1.4. Table Functions

	7.2.2. The WHERE Clause
	7.2.3. The GROUP BY and HAVING Clauses
	7.2.4. Window Function Processing

	7.3. Select Lists
	7.3.1. SelectList Items
	7.3.2. Column Labels
	7.3.3. DISTINCT

	7.4. Combining Queries
	7.5. Sorting Rows
	7.6. LIMIT and OFFSET
	7.7. VALUES Lists
	7.8. WITH Queries (Common Table Expressions)
	7.8.1. SELECT in WITH
	7.8.2. DataModifying Statements in WITH

	Chapter 8. Data Types
	8.1. Numeric Types
	8.1.1. Integer Types
	8.1.2. Arbitrary Precision Numbers
	8.1.3. FloatingPoint Types
	8.1.4. Serial Types

	8.2. Monetary Types
	8.3. Character Types
	8.4. Binary Data Types
	8.4.1. bytea Hex Format
	8.4.2. bytea Escape Format

	8.5. Date/Time Types
	8.5.1. Date/Time Input
	8.5.1.1. Dates
	8.5.1.2. Times
	8.5.1.3. Time Stamps
	8.5.1.4. Special Values

	8.5.2. Date/Time Output
	8.5.3. Time Zones
	8.5.4. Interval Input
	8.5.5. Interval Output

	8.6. Boolean Type
	8.7. Enumerated Types
	8.7.1. Declaration of Enumerated Types
	8.7.2. Ordering
	8.7.3. Type Safety
	8.7.4. Implementation Details

	8.8. Geometric Types
	8.8.1. Points
	8.8.2. Line Segments
	8.8.3. Boxes
	8.8.4. Paths
	8.8.5. Polygons
	8.8.6. Circles

	8.9. Network Address Types
	8.9.1. inet
	8.9.2. cidr
	8.9.3. inet vs. cidr
	8.9.4. macaddr

	8.10. Bit String Types
	8.11. Text Search Types
	8.11.1. tsvector
	8.11.2. tsquery

	8.12. UUID Type
	8.13. XML Type
	8.13.1. Creating XML Values
	8.13.2. Encoding Handling
	8.13.3. Accessing XML Values

	8.14. JSON Type
	8.15. Arrays
	8.15.1. Declaration of Array Types
	8.15.2. Array Value Input
	8.15.3. Accessing Arrays
	8.15.4. Modifying Arrays
	8.15.5. Searching in Arrays
	8.15.6. Array Input and Output Syntax

	8.16. Composite Types
	8.16.1. Declaration of Composite Types
	8.16.2. Composite Value Input
	8.16.3. Accessing Composite Types
	8.16.4. Modifying Composite Types
	8.16.5. Composite Type Input and Output Syntax

	8.17. Range Types
	8.17.1. Builtin Range Types
	8.17.2. Examples
	8.17.3. Inclusive and Exclusive Bounds
	8.17.4. Infinite (Unbounded) Ranges
	8.17.5. Range Input/Output
	8.17.6. Constructing Ranges
	8.17.7. Discrete Range Types
	8.17.8. Defining New Range Types
	8.17.9. Indexing
	8.17.10. Constraints on Ranges

	8.18. Object Identifier Types
	8.19. PseudoTypes

	Chapter 9. Functions and Operators
	9.1. Logical Operators
	9.2. Comparison Operators
	9.3. Mathematical Functions and Operators
	9.4. String Functions and Operators
	9.5. Binary String Functions and Operators
	9.6. Bit String Functions and Operators
	9.7. Pattern Matching
	9.7.1. LIKE
	9.7.2. SIMILAR TO Regular Expressions
	9.7.3. POSIX Regular Expressions
	9.7.3.1. Regular Expression Details
	9.7.3.2. Bracket Expressions
	9.7.3.3. Regular Expression Escapes
	9.7.3.4. Regular Expression Metasyntax
	9.7.3.5. Regular Expression Matching Rules
	9.7.3.6. Limits and Compatibility
	9.7.3.7. Basic Regular Expressions

	9.8. Data Type Formatting Functions
	9.9. Date/Time Functions and Operators
	9.9.1. EXTRACT, datepart
	9.9.2. datetrunc
	9.9.3. AT TIME ZONE
	9.9.4. Current Date/Time
	9.9.5. Delaying Execution

	9.10. Enum Support Functions
	9.11. Geometric Functions and Operators
	9.12. Network Address Functions and Operators
	9.13. Text Search Functions and Operators
	9.14. XML Functions
	9.14.1. Producing XML Content
	9.14.1.1. xmlcomment
	9.14.1.2. xmlconcat
	9.14.1.3. xmlelement
	9.14.1.4. xmlforest
	9.14.1.5. xmlpi
	9.14.1.6. xmlroot
	9.14.1.7. xmlagg

	9.14.2. XML Predicates
	9.14.2.1. IS DOCUMENT
	9.14.2.2. XMLEXISTS
	9.14.2.3. xmliswellformed

	9.14.3. Processing XML
	9.14.4. Mapping Tables to XML

	9.15. JSON Functions
	9.16. Sequence Manipulation Functions
	9.17. Conditional Expressions
	9.17.1. CASE
	9.17.2. COALESCE
	9.17.3. NULLIF
	9.17.4. GREATEST and LEAST

	9.18. Array Functions and Operators
	9.19. Range Functions and Operators
	9.20. Aggregate Functions
	9.21. Window Functions
	9.22. Subquery Expressions
	9.22.1. EXISTS
	9.22.2. IN
	9.22.3. NOT IN
	9.22.4. ANY/SOME
	9.22.5. ALL
	9.22.6. Rowwise Comparison

	9.23. Row and Array Comparisons
	9.23.1. IN
	9.23.2. NOT IN
	9.23.3. ANY/SOME (array)
	9.23.4. ALL (array)
	9.23.5. Rowwise Comparison

	9.24. Set Returning Functions
	9.25. System Information Functions
	9.26. System Administration Functions
	9.26.1. Configuration Settings Functions
	9.26.2. Server Signalling Functions
	9.26.3. Backup Control Functions
	9.26.4. Recovery Control Functions
	9.26.5. Snapshot Synchronization Functions
	9.26.6. Database Object Management Functions
	9.26.7. Generic File Access Functions
	9.26.8. Advisory Lock Functions

	9.27. Trigger Functions

	Chapter 10. Type Conversion
	10.1. Overview
	10.2. Operators
	10.3. Functions
	10.4. Value Storage
	10.5. UNION, CASE, and Related Constructs

	Chapter 11. Indexes
	11.1. Introduction
	11.2. Index Types
	11.3. Multicolumn Indexes
	11.4. Indexes and ORDER BY
	11.5. Combining Multiple Indexes
	11.6. Unique Indexes
	11.7. Indexes on Expressions
	11.8. Partial Indexes
	11.9. Operator Classes and Operator Families
	11.10. Indexes and Collations
	11.11. Examining Index Usage

	Chapter 12. Full Text Search
	12.1. Introduction
	12.1.1. What Is a Document?
	12.1.2. Basic Text Matching
	12.1.3. Configurations

	12.2. Tables and Indexes
	12.2.1. Searching a Table
	12.2.2. Creating Indexes

	12.3. Controlling Text Search
	12.3.1. Parsing Documents
	12.3.2. Parsing Queries
	12.3.3. Ranking Search Results
	12.3.4. Highlighting Results

	12.4. Additional Features
	12.4.1. Manipulating Documents
	12.4.2. Manipulating Queries
	12.4.2.1. Query Rewriting

	12.4.3. Triggers for Automatic Updates
	12.4.4. Gathering Document Statistics

	12.5. Parsers
	12.6. Dictionaries
	12.6.1. Stop Words
	12.6.2. Simple Dictionary
	12.6.3. Synonym Dictionary
	12.6.4. Thesaurus Dictionary
	12.6.4.1. Thesaurus Configuration
	12.6.4.2. Thesaurus Example

	12.6.5. Ispell Dictionary
	12.6.6. Snowball Dictionary

	12.7. Configuration Example
	12.8. Testing and Debugging Text Search
	12.8.1. Configuration Testing
	12.8.2. Parser Testing
	12.8.3. Dictionary Testing

	12.9. GiST and GIN Index Types
	12.10. psql Support
	12.11. Limitations
	12.12. Migration from Pre8.3 Text Search

	Chapter 13. Concurrency Control
	13.1. Introduction
	13.2. Transaction Isolation
	13.2.1. Read Committed Isolation Level
	13.2.2. Repeatable Read Isolation Level
	13.2.3. Serializable Isolation Level

	13.3. Explicit Locking
	13.3.1. Tablelevel Locks
	Tablelevel Lock Modes

	13.3.2. Rowlevel Locks
	13.3.3. Deadlocks
	13.3.4. Advisory Locks

	13.4. Data Consistency Checks at the Application Level
	13.4.1. Enforcing Consistency With Serializable Transactions
	13.4.2. Enforcing Consistency With Explicit Blocking Locks

	13.5. Locking and Indexes

	Chapter 14. Performance Tips
	14.1. Using EXPLAIN
	14.1.1. EXPLAIN Basics
	14.1.2. EXPLAIN ANALYZE
	14.1.3. Caveats

	14.2. Statistics Used by the Planner
	14.3. Controlling the Planner with Explicit JOIN Clauses
	14.4. Populating a Database
	14.4.1. Disable Autocommit
	14.4.2. Use COPY
	14.4.3. Remove Indexes
	14.4.4. Remove Foreign Key Constraints
	14.4.5. Increase maintenanceworkmem
	14.4.6. Increase checkpointsegments
	14.4.7. Disable WAL Archival and Streaming Replication
	14.4.8. Run ANALYZE Afterwards
	14.4.9. Some Notes About pgdump

	14.5. NonDurable Settings

	III. Server Administration
	Chapter 15. Installation from Source Code
	15.1. Short Version
	15.2. Requirements
	15.3. Getting The Source
	15.4. Installation Procedure
	15.5. PostInstallation Setup
	15.5.1. Shared Libraries
	15.5.2. Environment Variables

	15.6. Supported Platforms
	15.7. Platformspecific Notes
	15.7.1. AIX
	15.7.1.1. GCC Issues
	15.7.1.2. UnixDomain Sockets Broken
	15.7.1.3. Internet Address Issues
	15.7.1.4. Memory Management

	References and Resources
	15.7.2. Cygwin
	15.7.3. HPUX
	15.7.4. IRIX
	15.7.5. MinGW/Native Windows
	15.7.5.1. Collecting Crash Dumps on Windows

	15.7.6. SCO OpenServer and SCO UnixWare
	15.7.6.1. Skunkware
	15.7.6.2. GNU Make
	15.7.6.3. Readline
	15.7.6.4. Using the UDK on OpenServer
	15.7.6.5. Reading the PostgreSQL Man Pages
	15.7.6.6. C99 Issues with the 7.1.1b Feature Supplement
	15.7.6.7. Threading on UnixWare

	15.7.7. Solaris
	15.7.7.1. Required Tools
	15.7.7.2. Problems with OpenSSL
	15.7.7.3. configure Complains About a Failed Test Program
	15.7.7.4. 64bit Build Sometimes Crashes
	15.7.7.5. Compiling for Optimal Performance
	15.7.7.6. Using DTrace for Tracing PostgreSQL

	Chapter 16. Installation from Source Code on Windows
	16.1. Building with Visual C++ or the Microsoft Windows SDK
	16.1.1. Requirements
	16.1.2. Special Considerations for 64bit Windows
	16.1.3. Building
	16.1.4. Cleaning and Installing
	16.1.5. Running the Regression Tests
	16.1.6. Building the Documentation

	16.2. Building libpq with Visual C++ or Borland C++
	16.2.1. Generated Files

	Chapter 17. Server Setup and Operation
	17.1. The PostgreSQL User Account
	17.2. Creating a Database Cluster
	17.2.1. Network File Systems

	17.3. Starting the Database Server
	17.3.1. Server Startup Failures
	17.3.2. Client Connection Problems

	17.4. Managing Kernel Resources
	17.4.1. Shared Memory and Semaphores
	17.4.2. Resource Limits
	17.4.3. Linux Memory Overcommit

	17.5. Shutting Down the Server
	17.6. Upgrading a PostgreSQL Cluster
	17.6.1. Upgrading Data via pgdump
	17.6.2. NonDump Upgrade Methods

	17.7. Preventing Server Spoofing
	17.8. Encryption Options
	17.9. Secure TCP/IP Connections with SSL
	17.9.1. Using Client Certificates
	17.9.2. SSL Server File Usage
	17.9.3. Creating a Selfsigned Certificate

	17.10. Secure TCP/IP Connections with SSH Tunnels
	17.11. Registering Event Log on Windows

	Chapter 18. Server Configuration
	18.1. Setting Parameters
	18.1.1. Parameter Names and Values
	18.1.2. Setting Parameters via the Configuration File
	18.1.3. Other Ways to Set Parameters
	18.1.4. Examining Parameter Settings

	18.2. File Locations
	18.3. Connections and Authentication
	18.3.1. Connection Settings
	18.3.2. Security and Authentication

	18.4. Resource Consumption
	18.4.1. Memory
	18.4.2. Disk
	18.4.3. Kernel Resource Usage
	18.4.4. Costbased Vacuum Delay
	18.4.5. Background Writer
	18.4.6. Asynchronous Behavior

	18.5. Write Ahead Log
	18.5.1. Settings
	18.5.2. Checkpoints
	18.5.3. Archiving

	18.6. Replication
	18.6.1. Sending Server(s)
	18.6.2. Master Server
	18.6.3. Standby Servers

	18.7. Query Planning
	18.7.1. Planner Method Configuration
	18.7.2. Planner Cost Constants
	18.7.3. Genetic Query Optimizer
	18.7.4. Other Planner Options

	18.8. Error Reporting and Logging
	18.8.1. Where To Log
	18.8.2. When To Log
	18.8.3. What To Log
	18.8.4. Using CSVFormat Log Output

	18.9. Runtime Statistics
	18.9.1. Query and Index Statistics Collector
	18.9.2. Statistics Monitoring

	18.10. Automatic Vacuuming
	18.11. Client Connection Defaults
	18.11.1. Statement Behavior
	18.11.2. Locale and Formatting
	18.11.3. Other Defaults

	18.12. Lock Management
	18.13. Version and Platform Compatibility
	18.13.1. Previous PostgreSQL Versions
	18.13.2. Platform and Client Compatibility

	18.14. Error Handling
	18.15. Preset Options
	18.16. Customized Options
	18.17. Developer Options
	18.18. Short Options

	Chapter 19. Client Authentication
	19.1. The pghba.conf File
	19.2. User Name Maps
	19.3. Authentication Methods
	19.3.1. Trust Authentication
	19.3.2. Password Authentication
	19.3.3. GSSAPI Authentication
	19.3.4. SSPI Authentication
	19.3.5. Kerberos Authentication
	19.3.6. Ident Authentication
	19.3.7. Peer Authentication
	19.3.8. LDAP Authentication
	19.3.9. RADIUS Authentication
	19.3.10. Certificate Authentication
	19.3.11. PAM Authentication

	19.4. Authentication Problems

	Chapter 20. Database Roles
	20.1. Database Roles
	20.2. Role Attributes
	20.3. Role Membership
	20.4. Function and Trigger Security

	Chapter 21. Managing Databases
	21.1. Overview
	21.2. Creating a Database
	21.3. Template Databases
	21.4. Database Configuration
	21.5. Destroying a Database
	21.6. Tablespaces

	Chapter 22. Localization
	22.1. Locale Support
	22.1.1. Overview
	22.1.2. Behavior
	22.1.3. Problems

	22.2. Collation Support
	22.2.1. Concepts
	22.2.2. Managing Collations

	22.3. Character Set Support
	22.3.1. Supported Character Sets
	22.3.2. Setting the Character Set
	22.3.3. Automatic Character Set Conversion Between Server and Client
	22.3.4. Further Reading

	Chapter 23. Routine Database Maintenance Tasks
	23.1. Routine Vacuuming
	23.1.1. Vacuuming Basics
	23.1.2. Recovering Disk Space
	23.1.3. Updating Planner Statistics
	23.1.4. Updating The Visibility Map
	23.1.5. Preventing Transaction ID Wraparound Failures
	23.1.6. The Autovacuum Daemon

	23.2. Routine Reindexing
	23.3. Log File Maintenance

	Chapter 24. Backup and Restore
	24.1. SQL Dump
	24.1.1. Restoring the Dump
	24.1.2. Using pgdumpall
	24.1.3. Handling Large Databases

	24.2. File System Level Backup
	24.3. Continuous Archiving and PointinTime Recovery (PITR)
	24.3.1. Setting Up WAL Archiving
	24.3.2. Making a Base Backup
	24.3.3. Making a Base Backup Using the Low Level API
	24.3.4. Recovering Using a Continuous Archive Backup
	24.3.5. Timelines
	24.3.6. Tips and Examples
	24.3.6.1. Standalone Hot Backups
	24.3.6.2. Compressed Archive Logs
	24.3.6.3. archivecommand Scripts

	24.3.7. Caveats

	Chapter 25. High Availability, Load Balancing, and Replication
	25.1. Comparison of Different Solutions
	25.2. LogShipping Standby Servers
	25.2.1. Planning
	25.2.2. Standby Server Operation
	25.2.3. Preparing the Master for Standby Servers
	25.2.4. Setting Up a Standby Server
	25.2.5. Streaming Replication
	25.2.5.1. Authentication
	25.2.5.2. Monitoring

	25.2.6. Cascading Replication
	25.2.7. Synchronous Replication
	25.2.7.1. Basic Configuration
	25.2.7.2. Planning for Performance
	25.2.7.3. Planning for High Availability

	25.3. Failover
	25.4. Alternative Method for Log Shipping
	25.4.1. Implementation
	25.4.2. Recordbased Log Shipping

	25.5. Hot Standby
	25.5.1. User's Overview
	25.5.2. Handling Query Conflicts
	25.5.3. Administrator's Overview
	25.5.4. Hot Standby Parameter Reference
	25.5.5. Caveats

	Chapter 26. Recovery Configuration
	26.1. Archive Recovery Settings
	26.2. Recovery Target Settings
	26.3. Standby Server Settings

	Chapter 27. Monitoring Database Activity
	27.1. Standard Unix Tools
	27.2. The Statistics Collector
	27.2.1. Statistics Collection Configuration
	27.2.2. Viewing Collected Statistics
	27.2.3. Statistics Functions

	27.3. Viewing Locks
	27.4. Dynamic Tracing
	27.4.1. Compiling for Dynamic Tracing
	27.4.2. Builtin Probes
	27.4.3. Using Probes
	27.4.4. Defining New Probes

	Chapter 28. Monitoring Disk Usage
	28.1. Determining Disk Usage
	28.2. Disk Full Failure

	Chapter 29. Reliability and the WriteAhead Log
	29.1. Reliability
	29.2. WriteAhead Logging (WAL)
	29.3. Asynchronous Commit
	29.4. WAL Configuration
	29.5. WAL Internals

	Chapter 30. Regression Tests
	30.1. Running the Tests
	30.1.1. Running the Tests Against a Temporary Installation
	30.1.2. Running the Tests Against an Existing Installation
	30.1.3. Additional Test Suites
	30.1.4. Locale and Encoding
	30.1.5. Extra Tests
	30.1.6. Testing Hot Standby

	30.2. Test Evaluation
	30.2.1. Error Message Differences
	30.2.2. Locale Differences
	30.2.3. Date and Time Differences
	30.2.4. FloatingPoint Differences
	30.2.5. Row Ordering Differences
	30.2.6. Insufficient Stack Depth
	30.2.7. The random Test
	30.2.8. Configuration Parameters

	30.3. Variant Comparison Files
	30.4. Test Coverage Examination

	IV. Client Interfaces
	Chapter 31. libpq C Library
	31.1. Database Connection Control Functions
	31.1.1. Connection Strings
	31.1.1.1. Keyword/Value Connection Strings
	31.1.1.2. Connection URIs

	31.1.2. Parameter Key Words

	31.2. Connection Status Functions
	31.3. Command Execution Functions
	31.3.1. Main Functions
	31.3.2. Retrieving Query Result Information
	31.3.3. Retrieving Other Result Information
	31.3.4. Escaping Strings for Inclusion in SQL Commands

	31.4. Asynchronous Command Processing
	31.5. Retrieving Query Results RowByRow
	31.6. Canceling Queries in Progress
	31.7. The FastPath Interface
	31.8. Asynchronous Notification
	31.9. Functions Associated with the COPY Command
	31.9.1. Functions for Sending COPY Data
	31.9.2. Functions for Receiving COPY Data
	31.9.3. Obsolete Functions for COPY

	31.10. Control Functions
	31.11. Miscellaneous Functions
	31.12. Notice Processing
	31.13. Event System
	31.13.1. Event Types
	31.13.2. Event Callback Procedure
	31.13.3. Event Support Functions
	31.13.4. Event Example

	31.14. Environment Variables
	31.15. The Password File
	31.16. The Connection Service File
	31.17. LDAP Lookup of Connection Parameters
	31.18. SSL Support
	31.18.1. Client Verification of Server Certificates
	31.18.2. Client Certificates
	31.18.3. Protection Provided in Different Modes
	31.18.4. SSL Client File Usage
	31.18.5. SSL Library Initialization

	31.19. Behavior in Threaded Programs
	31.20. Building libpq Programs
	31.21. Example Programs

	Chapter 32. Large Objects
	32.1. Introduction
	32.2. Implementation Features
	32.3. Client Interfaces
	32.3.1. Creating a Large Object
	32.3.2. Importing a Large Object
	32.3.3. Exporting a Large Object
	32.3.4. Opening an Existing Large Object
	32.3.5. Writing Data to a Large Object
	32.3.6. Reading Data from a Large Object
	32.3.7. Seeking in a Large Object
	32.3.8. Obtaining the Seek Position of a Large Object
	32.3.9. Truncating a Large Object
	32.3.10. Closing a Large Object Descriptor
	32.3.11. Removing a Large Object

	32.4. Serverside Functions
	32.5. Example Program

	Chapter 33. ECPG Embedded SQL in C
	33.1. The Concept
	33.2. Managing Database Connections
	33.2.1. Connecting to the Database Server
	33.2.2. Choosing a Connection
	33.2.3. Closing a Connection

	33.3. Running SQL Commands
	33.3.1. Executing SQL Statements
	33.3.2. Using Cursors
	33.3.3. Managing Transactions
	33.3.4. Prepared Statements

	33.4. Using Host Variables
	33.4.1. Overview
	33.4.2. Declare Sections
	33.4.3. Retrieving Query Results
	33.4.4. Type Mapping
	33.4.4.1. Handling Character Strings
	33.4.4.2. Accessing Special Data Types
	33.4.4.2.1. timestamp, date
	33.4.4.2.2. interval
	33.4.4.2.3. numeric, decimal

	33.4.4.3. Host Variables with Nonprimitive Types
	33.4.4.3.1. Arrays
	33.4.4.3.2. Structures
	33.4.4.3.3. Typedefs
	33.4.4.3.4. Pointers

	33.4.5. Handling Nonprimitive SQL Data Types
	33.4.5.1. Arrays
	33.4.5.2. Composite Types
	33.4.5.3. Userdefined Base Types

	33.4.6. Indicators

	33.5. Dynamic SQL
	33.5.1. Executing Statements without a Result Set
	33.5.2. Executing a Statement with Input Parameters
	33.5.3. Executing a Statement with a Result Set

	33.6. pgtypes Library
	33.6.1. The numeric Type
	33.6.2. The date Type
	33.6.3. The timestamp Type
	33.6.4. The interval Type
	33.6.5. The decimal Type
	33.6.6. errno Values of pgtypeslib
	33.6.7. Special Constants of pgtypeslib

	33.7. Using Descriptor Areas
	33.7.1. Named SQL Descriptor Areas
	33.7.2. SQLDA Descriptor Areas
	33.7.2.1. SQLDA Data Structure
	33.7.2.1.1. sqldat Structure
	33.7.2.1.2. sqlvart Structure
	33.7.2.1.3. struct sqlname Structure

	33.7.2.2. Retrieving a Result Set Using an SQLDA
	33.7.2.3. Passing Query Parameters Using an SQLDA
	33.7.2.4. A Sample Application Using SQLDA

	33.8. Error Handling
	33.8.1. Setting Callbacks
	33.8.2. sqlca
	33.8.3. SQLSTATE vs. SQLCODE

	33.9. Preprocessor Directives
	33.9.1. Including Files
	33.9.2. The define and undef Directives
	33.9.3. ifdef, ifndef, else, elif, and endif Directives

	33.10. Processing Embedded SQL Programs
	33.11. Library Functions
	33.12. Large Objects
	33.13. C++ Applications
	33.13.1. Scope for Host Variables
	33.13.2. C++ Application Development with External C Module

	33.14. Embedded SQL Commands
	ALLOCATE DESCRIPTOR
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CONNECT
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DEALLOCATE DESCRIPTOR
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DECLARE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DESCRIBE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DISCONNECT
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	EXECUTE IMMEDIATE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility

	GET DESCRIPTOR
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	OPEN
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	PREPARE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SET AUTOCOMMIT
	Name
	Synopsis
	Description
	Compatibility

	SET CONNECTION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SET DESCRIPTOR
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	TYPE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility

	VAR
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility

	WHENEVER
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility

	33.15. Informix Compatibility Mode
	33.15.1. Additional Types
	33.15.2. Additional/Missing Embedded SQL Statements
	33.15.3. Informixcompatible SQLDA Descriptor Areas
	33.15.4. Additional Functions
	33.15.5. Additional Constants

	33.16. Internals

	Chapter 34. The Information Schema
	34.1. The Schema
	34.2. Data Types
	34.3. informationschemacatalogname
	34.4. administrableroleauthorizations
	34.5. applicableroles
	34.6. attributes
	34.7. charactersets
	34.8. checkconstraintroutineusage
	34.9. checkconstraints
	34.10. collations
	34.11. collationcharactersetapplicability
	34.12. columndomainusage
	34.13. columnoptions
	34.14. columnprivileges
	34.15. columnudtusage
	34.16. columns
	34.17. constraintcolumnusage
	34.18. constrainttableusage
	34.19. datatypeprivileges
	34.20. domainconstraints
	34.21. domainudtusage
	34.22. domains
	34.23. elementtypes
	34.24. enabledroles
	34.25. foreigndatawrapperoptions
	34.26. foreigndatawrappers
	34.27. foreignserveroptions
	34.28. foreignservers
	34.29. foreigntableoptions
	34.30. foreigntables
	34.31. keycolumnusage
	34.32. parameters
	34.33. referentialconstraints
	34.34. rolecolumngrants
	34.35. roleroutinegrants
	34.36. roletablegrants
	34.37. roleudtgrants
	34.38. roleusagegrants
	34.39. routineprivileges
	34.40. routines
	34.41. schemata
	34.42. sequences
	34.43. sqlfeatures
	34.44. sqlimplementationinfo
	34.45. sqllanguages
	34.46. sqlpackages
	34.47. sqlparts
	34.48. sqlsizing
	34.49. sqlsizingprofiles
	34.50. tableconstraints
	34.51. tableprivileges
	34.52. tables
	34.53. triggeredupdatecolumns
	34.54. triggers
	34.55. udtprivileges
	34.56. usageprivileges
	34.57. userdefinedtypes
	34.58. usermappingoptions
	34.59. usermappings
	34.60. viewcolumnusage
	34.61. viewroutineusage
	34.62. viewtableusage
	34.63. views

	V. Server Programming
	Chapter 35. Extending SQL
	35.1. How Extensibility Works
	35.2. The PostgreSQL Type System
	35.2.1. Base Types
	35.2.2. Composite Types
	35.2.3. Domains
	35.2.4. PseudoTypes
	35.2.5. Polymorphic Types

	35.3. Userdefined Functions
	35.4. Query Language (SQL) Functions
	35.4.1. Arguments for SQL Functions
	35.4.2. SQL Functions on Base Types
	35.4.3. SQL Functions on Composite Types
	35.4.4. SQL Functions with Output Parameters
	35.4.5. SQL Functions with Variable Numbers of Arguments
	35.4.6. SQL Functions with Default Values for Arguments
	35.4.7. SQL Functions as Table Sources
	35.4.8. SQL Functions Returning Sets
	35.4.9. SQL Functions Returning TABLE
	35.4.10. Polymorphic SQL Functions
	35.4.11. SQL Functions with Collations

	35.5. Function Overloading
	35.6. Function Volatility Categories
	35.7. Procedural Language Functions
	35.8. Internal Functions
	35.9. CLanguage Functions
	35.9.1. Dynamic Loading
	35.9.2. Base Types in CLanguage Functions
	35.9.3. Version 0 Calling Conventions
	35.9.4. Version 1 Calling Conventions
	35.9.5. Writing Code
	35.9.6. Compiling and Linking Dynamicallyloaded Functions
	35.9.7. Compositetype Arguments
	35.9.8. Returning Rows (Composite Types)
	35.9.9. Returning Sets
	35.9.10. Polymorphic Arguments and Return Types
	35.9.11. Transform Functions
	35.9.12. Shared Memory and LWLocks
	35.9.13. Using C++ for Extensibility

	35.10. Userdefined Aggregates
	35.11. Userdefined Types
	35.12. Userdefined Operators
	35.13. Operator Optimization Information
	35.13.1. COMMUTATOR
	35.13.2. NEGATOR
	35.13.3. RESTRICT
	35.13.4. JOIN
	35.13.5. HASHES
	35.13.6. MERGES

	35.14. Interfacing Extensions To Indexes
	35.14.1. Index Methods and Operator Classes
	35.14.2. Index Method Strategies
	35.14.3. Index Method Support Routines
	35.14.4. An Example
	35.14.5. Operator Classes and Operator Families
	35.14.6. System Dependencies on Operator Classes
	35.14.7. Ordering Operators
	35.14.8. Special Features of Operator Classes

	35.15. Packaging Related Objects into an Extension
	35.15.1. Extension Files
	35.15.2. Extension Relocatability
	35.15.3. Extension Configuration Tables
	35.15.4. Extension Updates
	35.15.5. Extension Example

	35.16. Extension Building Infrastructure

	Chapter 36. Triggers
	36.1. Overview of Trigger Behavior
	36.2. Visibility of Data Changes
	36.3. Writing Trigger Functions in C
	36.4. A Complete Trigger Example

	Chapter 37. The Rule System
	37.1. The Query Tree
	37.2. Views and the Rule System
	37.2.1. How SELECT Rules Work
	37.2.2. View Rules in NonSELECT Statements
	37.2.3. The Power of Views in PostgreSQL
	37.2.4. Updating a View

	37.3. Rules on INSERT, UPDATE, and DELETE
	37.3.1. How Update Rules Work
	37.3.1.1. A First Rule Step by Step

	37.3.2. Cooperation with Views

	37.4. Rules and Privileges
	37.5. Rules and Command Status
	37.6. Rules Versus Triggers

	Chapter 38. Procedural Languages
	38.1. Installing Procedural Languages

	Chapter 39. PL/pgSQL SQL Procedural Language
	39.1. Overview
	39.1.1. Advantages of Using PL/pgSQL
	39.1.2. Supported Argument and Result Data Types

	39.2. Structure of PL/pgSQL
	39.3. Declarations
	39.3.1. Declaring Function Parameters
	39.3.2. ALIAS
	39.3.3. Copying Types
	39.3.4. Row Types
	39.3.5. Record Types
	39.3.6. Collation of PL/pgSQL Variables

	39.4. Expressions
	39.5. Basic Statements
	39.5.1. Assignment
	39.5.2. Executing a Command With No Result
	39.5.3. Executing a Query with a Singlerow Result
	39.5.4. Executing Dynamic Commands
	39.5.5. Obtaining the Result Status
	39.5.6. Doing Nothing At All

	39.6. Control Structures
	39.6.1. Returning From a Function
	39.6.1.1. RETURN
	39.6.1.2. RETURN NEXT and RETURN QUERY

	39.6.2. Conditionals
	39.6.2.1. IFTHEN
	39.6.2.2. IFTHENELSE
	39.6.2.3. IFTHENELSIF
	39.6.2.4. Simple CASE
	39.6.2.5. Searched CASE

	39.6.3. Simple Loops
	39.6.3.1. LOOP
	39.6.3.2. EXIT
	39.6.3.3. CONTINUE
	39.6.3.4. WHILE
	39.6.3.5. FOR (Integer Variant)

	39.6.4. Looping Through Query Results
	39.6.5. Looping Through Arrays
	39.6.6. Trapping Errors
	39.6.6.1. Obtaining information about an error

	39.7. Cursors
	39.7.1. Declaring Cursor Variables
	39.7.2. Opening Cursors
	39.7.2.1. OPEN FOR query
	39.7.2.2. OPEN FOR EXECUTE
	39.7.2.3. Opening a Bound Cursor

	39.7.3. Using Cursors
	39.7.3.1. FETCH
	39.7.3.2. MOVE
	39.7.3.3. UPDATE/DELETE WHERE CURRENT OF
	39.7.3.4. CLOSE
	39.7.3.5. Returning Cursors

	39.7.4. Looping Through a Cursor's Result

	39.8. Errors and Messages
	39.9. Trigger Procedures
	39.10. PL/pgSQL Under the Hood
	39.10.1. Variable Substitution
	39.10.2. Plan Caching

	39.11. Tips for Developing in PL/pgSQL
	39.11.1. Handling of Quotation Marks

	39.12. Porting from Oracle PL/SQL
	39.12.1. Porting Examples
	39.12.2. Other Things to Watch For
	39.12.2.1. Implicit Rollback after Exceptions
	39.12.2.2. EXECUTE
	39.12.2.3. Optimizing PL/pgSQL Functions

	39.12.3. Appendix

	Chapter 40. PL/Tcl Tcl Procedural Language
	40.1. Overview
	40.2. PL/Tcl Functions and Arguments
	40.3. Data Values in PL/Tcl
	40.4. Global Data in PL/Tcl
	40.5. Database Access from PL/Tcl
	40.6. Trigger Procedures in PL/Tcl
	40.7. Modules and the unknown Command
	40.8. Tcl Procedure Names

	Chapter 41. PL/Perl Perl Procedural Language
	41.1. PL/Perl Functions and Arguments
	41.2. Data Values in PL/Perl
	41.3. Builtin Functions
	41.3.1. Database Access from PL/Perl
	41.3.2. Utility Functions in PL/Perl

	41.4. Global Values in PL/Perl
	41.5. Trusted and Untrusted PL/Perl
	41.6. PL/Perl Triggers
	41.7. PL/Perl Under the Hood
	41.7.1. Configuration
	41.7.2. Limitations and Missing Features

	Chapter 42. PL/Python Python Procedural Language
	42.1. Python 2 vs. Python 3
	42.2. PL/Python Functions
	42.3. Data Values
	42.3.1. Data Type Mapping
	42.3.2. Null, None
	42.3.3. Arrays, Lists
	42.3.4. Composite Types
	42.3.5. Setreturning Functions

	42.4. Sharing Data
	42.5. Anonymous Code Blocks
	42.6. Trigger Functions
	42.7. Database Access
	42.7.1. Database Access Functions
	42.7.2. Trapping Errors

	42.8. Explicit Subtransactions
	42.8.1. Subtransaction Context Managers
	42.8.2. Older Python Versions

	42.9. Utility Functions
	42.10. Environment Variables

	Chapter 43. Server Programming Interface
	43.1. Interface Functions
	SPIconnect
	Name
	Synopsis
	Description
	Return Value

	SPIfinish
	Name
	Synopsis
	Description
	Return Value

	SPIpush
	Name
	Synopsis
	Description

	SPIpop
	Name
	Synopsis
	Description

	SPIexecute
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	SPIexec
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIexecutewithargs
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIprepare
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	SPIpreparecursor
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	SPIprepareparams
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgetargcount
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgetargtypeid
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIiscursorplan
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIexecuteplan
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIexecuteplanwithparamlist
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIexecp
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIcursoropen
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIcursoropenwithargs
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIcursoropenwithparamlist
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIcursorfind
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIcursorfetch
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	SPIcursormove
	Name
	Synopsis
	Description
	Arguments
	Notes

	SPIscrollcursorfetch
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	SPIscrollcursormove
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	SPIcursorclose
	Name
	Synopsis
	Description
	Arguments

	SPIkeepplan
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	SPIsaveplan
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes

	43.2. Interface Support Functions
	SPIfname
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIfnumber
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgetvalue
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgetbinval
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgettype
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgettypeid
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgetrelname
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIgetnspname
	Name
	Synopsis
	Description
	Arguments
	Return Value

	43.3. Memory Management
	SPIpalloc
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIrepalloc
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIpfree
	Name
	Synopsis
	Description
	Arguments

	SPIcopytuple
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIreturntuple
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPImodifytuple
	Name
	Synopsis
	Description
	Arguments
	Return Value

	SPIfreetuple
	Name
	Synopsis
	Description
	Arguments

	SPIfreetuptable
	Name
	Synopsis
	Description
	Arguments

	SPIfreeplan
	Name
	Synopsis
	Description
	Arguments
	Return Value

	43.4. Visibility of Data Changes
	43.5. Examples

	VI. Reference
	I. SQL Commands
	ABORT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER AGGREGATE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER COLLATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER CONVERSION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER DATABASE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER DEFAULT PRIVILEGES
	Name
	Synopsis
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	ALTER DOMAIN
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER EXTENSION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN DATA WRAPPER
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN TABLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility

	ALTER FUNCTION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER GROUP
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER INDEX
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER LANGUAGE
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	ALTER LARGE OBJECT
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	ALTER OPERATOR
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER OPERATOR CLASS
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	ALTER OPERATOR FAMILY
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER ROLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER SCHEMA
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	ALTER SEQUENCE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER SERVER
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TABLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TABLESPACE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH PARSER
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	ALTER TEXT SEARCH TEMPLATE
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	ALTER TRIGGER
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TYPE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER USER
	Name
	Synopsis
	Description
	Compatibility
	See Also

	ALTER USER MAPPING
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER VIEW
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ANALYZE
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Notes
	Compatibility
	See Also

	BEGIN
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CHECKPOINT
	Name
	Synopsis
	Description
	Compatibility

	CLOSE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CLUSTER
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMENT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility

	COMMIT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMIT PREPARED
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COPY
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Notes
	File Formats
	Text Format
	CSV Format
	Binary Format
	File Header
	Tuples
	File Trailer

	Examples
	Compatibility

	CREATE AGGREGATE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE CAST
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE COLLATION
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE CONVERSION
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DATABASE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DOMAIN
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE EXTENSION
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN DATA WRAPPER
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN TABLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE FUNCTION
	Name
	Synopsis
	Description
	Parameters
	Overloading
	Notes
	Examples
	Writing SECURITY DEFINER Functions Safely
	Compatibility
	See Also

	CREATE GROUP
	Name
	Synopsis
	Description
	Compatibility
	See Also

	CREATE INDEX
	Name
	Synopsis
	Description
	Parameters
	Index Storage Parameters
	Building Indexes Concurrently

	Notes
	Examples
	Compatibility
	See Also

	CREATE LANGUAGE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR CLASS
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR FAMILY
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	CREATE ROLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE RULE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Compatibility

	CREATE SCHEMA
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SEQUENCE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SERVER
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLE
	Name
	Synopsis
	Description
	Parameters
	Storage Parameters

	Notes
	Examples
	Compatibility
	Temporary Tables
	Nondeferred Uniqueness Constraints
	Column Check Constraints
	EXCLUDE Constraint
	NULL Constraint
	Inheritance
	Zerocolumn Tables
	WITH Clause
	Tablespaces
	Typed Tables

	See Also

	CREATE TABLE AS
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLESPACE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	Notes
	Compatibility
	See Also

	CREATE TEXT SEARCH DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH PARSER
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	CREATE TEXT SEARCH TEMPLATE
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	CREATE TRIGGER
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TYPE
	Name
	Synopsis
	Description
	Composite Types
	Enumerated Types
	Range Types
	Base Types
	Array Types

	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE USER
	Name
	Synopsis
	Description
	Compatibility
	See Also

	CREATE USER MAPPING
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE VIEW
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DEALLOCATE
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	DECLARE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DELETE
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility

	DISCARD
	Name
	Synopsis
	Description
	Parameters
	Notes
	Compatibility

	DO
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP AGGREGATE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP CAST
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP COLLATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP CONVERSION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP DATABASE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP DOMAIN
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP EXTENSION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN DATA WRAPPER
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN TABLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FUNCTION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP GROUP
	Name
	Synopsis
	Description
	Compatibility
	See Also

	DROP INDEX
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP LANGUAGE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR CLASS
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP OPERATOR FAMILY
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OWNED
	Name
	Synopsis
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP ROLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP RULE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SCHEMA
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SEQUENCE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SERVER
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TABLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TABLESPACE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH CONFIGURATION
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH DICTIONARY
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH PARSER
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH TEMPLATE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TRIGGER
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TYPE
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP USER
	Name
	Synopsis
	Description
	Compatibility
	See Also

	DROP USER MAPPING
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP VIEW
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	END
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	EXECUTE
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Examples
	Compatibility
	See Also

	EXPLAIN
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	FETCH
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	GRANT
	Name
	Synopsis
	Description
	GRANT on Database Objects
	GRANT on Roles

	Notes
	Examples
	Compatibility
	See Also

	INSERT
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Examples
	Compatibility

	LISTEN
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	LOAD
	Name
	Synopsis
	Description
	Compatibility
	See Also

	LOCK
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility

	MOVE
	Name
	Synopsis
	Description
	Outputs
	Examples
	Compatibility
	See Also

	NOTIFY
	Name
	Synopsis
	Description
	Parameters
	Notes
	pgnotify

	Examples
	Compatibility
	See Also

	PREPARE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	PREPARE TRANSACTION
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	REASSIGN OWNED
	Name
	Synopsis
	Description
	Parameters
	Notes
	Compatibility
	See Also

	REINDEX
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility

	RELEASE SAVEPOINT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	RESET
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	REVOKE
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK PREPARED
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK TO SAVEPOINT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SAVEPOINT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SECURITY LABEL
	Name
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SELECT
	Name
	Synopsis
	Description
	Parameters
	WITH Clause
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	WINDOW Clause
	SELECT List
	DISTINCT Clause
	UNION Clause
	INTERSECT Clause
	EXCEPT Clause
	ORDER BY Clause
	LIMIT Clause
	FOR UPDATE/FOR SHARE Clause
	TABLE Command

	Examples
	Compatibility
	Omitted FROM Clauses
	Omitting the AS Key Word
	ONLY and Inheritance
	Namespace Available to GROUP BY and ORDER BY
	Functional Dependencies
	WINDOW Clause Restrictions
	LIMIT and OFFSET
	FOR UPDATE and FOR SHARE
	DataModifying Statements in WITH
	Nonstandard Clauses

	SELECT INTO
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET CONSTRAINTS
	Name
	Synopsis
	Description
	Notes
	Compatibility

	SET ROLE
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET SESSION AUTHORIZATION
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET TRANSACTION
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility

	SHOW
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	START TRANSACTION
	Name
	Synopsis
	Description
	Parameters
	Compatibility
	See Also

	TRUNCATE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility

	UNLISTEN
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	UPDATE
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility

	VACUUM
	Name
	Synopsis
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	VALUES
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	II. PostgreSQL Client Applications
	clusterdb
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createdb
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createlang
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	createuser
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropdb
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	droplang
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	dropuser
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	ecpg
	Name
	Synopsis
	Description
	Options
	Notes
	Examples

	pgbasebackup
	Name
	Synopsis
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pgconfig
	Name
	Synopsis
	Description
	Options
	Notes
	Example

	pgdump
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	pgdumpall
	Name
	Synopsis
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pgreceivexlog
	Name
	Synopsis
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pgrestore
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	psql
	Name
	Synopsis
	Description
	Options
	Exit Status
	Usage
	Connecting to a Database
	Entering SQL Commands
	MetaCommands
	Patterns

	Advanced Features
	Variables
	SQL Interpolation
	Prompting
	CommandLine Editing

	Environment
	Files
	Notes
	Notes for Windows Users
	Examples

	reindexdb
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	vacuumdb
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	III. PostgreSQL Server Applications
	initdb
	Name
	Synopsis
	Description
	Options
	Environment
	Notes
	See Also

	pgcontroldata
	Name
	Synopsis
	Description
	Environment

	pgctl
	Name
	Synopsis
	Description
	Options
	Options for Windows

	Environment
	Files
	Examples
	Starting the Server
	Stopping the Server
	Restarting the Server
	Showing the Server Status

	See Also

	pgresetxlog
	Name
	Synopsis
	Description
	Notes

	postgres
	Name
	Synopsis
	Description
	Options
	General Purpose
	Semiinternal Options
	Options for SingleUser Mode

	Environment
	Diagnostics
	Notes
	Bugs
	Usage
	Examples
	See Also

	postmaster
	Name
	Synopsis
	Description
	See Also

	VII. Internals
	Chapter 44. Overview of PostgreSQL Internals
	44.1. The Path of a Query
	44.2. How Connections are Established
	44.3. The Parser Stage
	44.3.1. Parser
	44.3.2. Transformation Process

	44.4. The PostgreSQL Rule System
	44.5. Planner/Optimizer
	44.5.1. Generating Possible Plans

	44.6. Executor

	Chapter 45. System Catalogs
	45.1. Overview
	45.2. pgaggregate
	45.3. pgam
	45.4. pgamop
	45.5. pgamproc
	45.6. pgattrdef
	45.7. pgattribute
	45.8. pgauthid
	45.9. pgauthmembers
	45.10. pgcast
	45.11. pgclass
	45.12. pgconstraint
	45.13. pgcollation
	45.14. pgconversion
	45.15. pgdatabase
	45.16. pgdbrolesetting
	45.17. pgdefaultacl
	45.18. pgdepend
	45.19. pgdescription
	45.20. pgenum
	45.21. pgextension
	45.22. pgforeigndatawrapper
	45.23. pgforeignserver
	45.24. pgforeigntable
	45.25. pgindex
	45.26. pginherits
	45.27. pglanguage
	45.28. pglargeobject
	45.29. pglargeobjectmetadata
	45.30. pgnamespace
	45.31. pgopclass
	45.32. pgoperator
	45.33. pgopfamily
	45.34. pgpltemplate
	45.35. pgproc
	45.36. pgrange
	45.37. pgrewrite
	45.38. pgseclabel
	45.39. pgshdepend
	45.40. pgshdescription
	45.41. pgshseclabel
	45.42. pgstatistic
	45.43. pgtablespace
	45.44. pgtrigger
	45.45. pgtsconfig
	45.46. pgtsconfigmap
	45.47. pgtsdict
	45.48. pgtsparser
	45.49. pgtstemplate
	45.50. pgtype
	45.51. pgusermapping
	45.52. System Views
	45.53. pgavailableextensions
	45.54. pgavailableextensionversions
	45.55. pgcursors
	45.56. pggroup
	45.57. pgindexes
	45.58. pglocks
	45.59. pgpreparedstatements
	45.60. pgpreparedxacts
	45.61. pgroles
	45.62. pgrules
	45.63. pgseclabels
	45.64. pgsettings
	45.65. pgshadow
	45.66. pgstats
	45.67. pgtables
	45.68. pgtimezoneabbrevs
	45.69. pgtimezonenames
	45.70. pguser
	45.71. pgusermappings
	45.72. pgviews

	Chapter 46. Frontend/Backend Protocol
	46.1. Overview
	46.1.1. Messaging Overview
	46.1.2. Extended Query Overview
	46.1.3. Formats and Format Codes

	46.2. Message Flow
	46.2.1. Startup
	46.2.2. Simple Query
	46.2.3. Extended Query
	46.2.4. Function Call
	46.2.5. COPY Operations
	46.2.6. Asynchronous Operations
	46.2.7. Canceling Requests in Progress
	46.2.8. Termination
	46.2.9. SSL Session Encryption

	46.3. Streaming Replication Protocol
	46.4. Message Data Types
	46.5. Message Formats
	46.6. Error and Notice Message Fields
	46.7. Summary of Changes since Protocol 2.0

	Chapter 47. PostgreSQL Coding Conventions
	47.1. Formatting
	47.2. Reporting Errors Within the Server
	47.3. Error Message Style Guide
	47.3.1. What Goes Where
	47.3.2. Formatting
	47.3.3. Quotation Marks
	47.3.4. Use of Quotes
	47.3.5. Grammar and Punctuation
	47.3.6. Upper Case vs. Lower Case
	47.3.7. Avoid Passive Voice
	47.3.8. Present vs. Past Tense
	47.3.9. Type of the Object
	47.3.10. Brackets
	47.3.11. Assembling Error Messages
	47.3.12. Reasons for Errors
	47.3.13. Function Names
	47.3.14. Tricky Words to Avoid
	47.3.15. Proper Spelling
	47.3.16. Localization

	Chapter 48. Native Language Support
	48.1. For the Translator
	48.1.1. Requirements
	48.1.2. Concepts
	48.1.3. Creating and Maintaining Message Catalogs
	48.1.4. Editing the PO Files

	48.2. For the Programmer
	48.2.1. Mechanics
	48.2.2. Messagewriting Guidelines

	Chapter 49. Writing A Procedural Language Handler
	Chapter 50. Writing A Foreign Data Wrapper
	50.1. Foreign Data Wrapper Functions
	50.2. Foreign Data Wrapper Callback Routines
	50.3. Foreign Data Wrapper Helper Functions
	50.4. Foreign Data Wrapper Query Planning

	Chapter 51. Genetic Query Optimizer
	51.1. Query Handling as a Complex Optimization Problem
	51.2. Genetic Algorithms
	51.3. Genetic Query Optimization (GEQO) in PostgreSQL
	51.3.1. Generating Possible Plans with GEQO
	51.3.2. Future Implementation Tasks for PostgreSQL GEQO

	51.4. Further Reading

	Chapter 52. Index Access Method Interface Definition
	52.1. Catalog Entries for Indexes
	52.2. Index Access Method Functions
	52.3. Index Scanning
	52.4. Index Locking Considerations
	52.5. Index Uniqueness Checks
	52.6. Index Cost Estimation Functions

	Chapter 53. GiST Indexes
	53.1. Introduction
	53.2. Extensibility
	53.3. Implementation
	53.3.1. GiST buffering build

	53.4. Examples

	Chapter 54. SPGiST Indexes
	54.1. Introduction
	54.2. Extensibility
	54.3. Implementation
	54.3.1. SPGiST Limits
	54.3.2. SPGiST Without Node Labels
	54.3.3. Allthesame Inner Tuples

	54.4. Examples

	Chapter 55. GIN Indexes
	55.1. Introduction
	55.2. Extensibility
	55.3. Implementation
	55.3.1. GIN Fast Update Technique
	55.3.2. Partial Match Algorithm

	55.4. GIN Tips and Tricks
	55.5. Limitations
	55.6. Examples

	Chapter 56. Database Physical Storage
	56.1. Database File Layout
	56.2. TOAST
	56.3. Free Space Map
	56.4. Visibility Map
	56.5. The Initialization Fork
	56.6. Database Page Layout

	Chapter 57. BKI Backend Interface
	57.1. BKI File Format
	57.2. BKI Commands
	57.3. Structure of the Bootstrap BKI File
	57.4. Example

	Chapter 58. How the Planner Uses Statistics
	58.1. Row Estimation Examples

	VIII. Appendixes
	Appendix A. PostgreSQL Error Codes
	Appendix B. Date/Time Support
	B.1. Date/Time Input Interpretation
	B.2. Date/Time Key Words
	B.3. Date/Time Configuration Files
	B.4. History of Units

	Appendix C. SQL Key Words
	Appendix D. SQL Conformance
	D.1. Supported Features
	D.2. Unsupported Features

	Appendix E. Release Notes
	E.1. Release 9.2.7
	E.1.1. Migration to Version 9.2.7
	E.1.2. Changes

	E.2. Release 9.2.6
	E.2.1. Migration to Version 9.2.6
	E.2.2. Changes

	E.3. Release 9.2.5
	E.3.1. Migration to Version 9.2.5
	E.3.2. Changes

	E.4. Release 9.2.4
	E.4.1. Migration to Version 9.2.4
	E.4.2. Changes

	E.5. Release 9.2.3
	E.5.1. Migration to Version 9.2.3
	E.5.2. Changes

	E.6. Release 9.2.2
	E.6.1. Migration to Version 9.2.2
	E.6.2. Changes

	E.7. Release 9.2.1
	E.7.1. Migration to Version 9.2.1
	E.7.2. Changes

	E.8. Release 9.2
	E.8.1. Overview
	E.8.2. Migration to Version 9.2
	E.8.2.1. System Catalogs
	E.8.2.2. Functions
	E.8.2.3. Object Modification
	E.8.2.4. CommandLine Tools
	E.8.2.5. Server Settings
	E.8.2.6. Monitoring

	E.8.3. Changes
	E.8.3.1. Server
	E.8.3.1.1. Performance
	E.8.3.1.2. Process Management
	E.8.3.1.3. Optimizer
	E.8.3.1.4. Authentication
	E.8.3.1.5. Monitoring
	E.8.3.1.6. Statistical Views
	E.8.3.1.7. Server Settings

	E.8.3.2. Replication and Recovery
	E.8.3.3. Queries
	E.8.3.4. Object Manipulation
	E.8.3.4.1. Constraints
	E.8.3.4.2. ALTER
	E.8.3.4.3. CREATE TABLE
	E.8.3.4.4. Object Permissions

	E.8.3.5. Utility Operations
	E.8.3.6. Data Types
	E.8.3.7. Functions
	E.8.3.8. Information Schema
	E.8.3.9. ServerSide Languages
	E.8.3.9.1. PL/pgSQL ServerSide Language
	E.8.3.9.2. PL/Python ServerSide Language
	E.8.3.9.3. SQL ServerSide Language

	E.8.3.10. Client Applications
	E.8.3.10.1. psql
	E.8.3.10.2. Informational Commands
	E.8.3.10.3. Tab Completion
	E.8.3.10.4. pgdump

	E.8.3.11. libpq
	E.8.3.12. Source Code
	E.8.3.13. Additional Modules
	E.8.3.13.1. pgupgrade
	E.8.3.13.2. pgstatstatements
	E.8.3.13.3. sepgsql

	E.8.3.14. Documentation

	E.9. Release 9.1.12
	E.9.1. Migration to Version 9.1.12
	E.9.2. Changes

	E.10. Release 9.1.11
	E.10.1. Migration to Version 9.1.11
	E.10.2. Changes

	E.11. Release 9.1.10
	E.11.1. Migration to Version 9.1.10
	E.11.2. Changes

	E.12. Release 9.1.9
	E.12.1. Migration to Version 9.1.9
	E.12.2. Changes

	E.13. Release 9.1.8
	E.13.1. Migration to Version 9.1.8
	E.13.2. Changes

	E.14. Release 9.1.7
	E.14.1. Migration to Version 9.1.7
	E.14.2. Changes

	E.15. Release 9.1.6
	E.15.1. Migration to Version 9.1.6
	E.15.2. Changes

	E.16. Release 9.1.5
	E.16.1. Migration to Version 9.1.5
	E.16.2. Changes

	E.17. Release 9.1.4
	E.17.1. Migration to Version 9.1.4
	E.17.2. Changes

	E.18. Release 9.1.3
	E.18.1. Migration to Version 9.1.3
	E.18.2. Changes

	E.19. Release 9.1.2
	E.19.1. Migration to Version 9.1.2
	E.19.2. Changes

	E.20. Release 9.1.1
	E.20.1. Migration to Version 9.1.1
	E.20.2. Changes

	E.21. Release 9.1
	E.21.1. Overview
	E.21.2. Migration to Version 9.1
	E.21.2.1. Strings
	E.21.2.2. Casting
	E.21.2.3. Arrays
	E.21.2.4. Object Modification
	E.21.2.5. Server Settings
	E.21.2.6. PL/pgSQL ServerSide Language
	E.21.2.7. Contrib
	E.21.2.8. Other Incompatibilities

	E.21.3. Changes
	E.21.3.1. Server
	E.21.3.1.1. Performance
	E.21.3.1.2. Optimizer
	E.21.3.1.3. Authentication
	E.21.3.1.4. Monitoring
	E.21.3.1.5. Statistical Views
	E.21.3.1.6. Server Settings

	E.21.3.2. Replication and Recovery
	E.21.3.2.1. Streaming Replication and Continuous Archiving
	E.21.3.2.2. Replication Monitoring
	E.21.3.2.3. Hot Standby
	E.21.3.2.4. Recovery Control

	E.21.3.3. Queries
	E.21.3.3.1. Strings

	E.21.3.4. Object Manipulation
	E.21.3.4.1. ALTER Object
	E.21.3.4.2. CREATE/ALTER TABLE
	E.21.3.4.3. Object Permissions

	E.21.3.5. Utility Operations
	E.21.3.5.1. COPY
	E.21.3.5.2. EXPLAIN
	E.21.3.5.3. VACUUM
	E.21.3.5.4. CLUSTER
	E.21.3.5.5. Indexes

	E.21.3.6. Data Types
	E.21.3.6.1. Casting
	E.21.3.6.2. XML

	E.21.3.7. Functions
	E.21.3.7.1. Object Information Functions
	E.21.3.7.2. Function and Trigger Creation

	E.21.3.8. ServerSide Languages
	E.21.3.8.1. PL/pgSQL ServerSide Language
	E.21.3.8.2. PL/Perl ServerSide Language
	E.21.3.8.3. PL/Python ServerSide Language

	E.21.3.9. Client Applications
	E.21.3.9.1. psql
	E.21.3.9.2. pgdump
	E.21.3.9.3. pgctl

	E.21.3.10. Development Tools
	E.21.3.10.1. libpq
	E.21.3.10.2. ECPG

	E.21.3.11. Build Options
	E.21.3.11.1. Makefiles
	E.21.3.11.2. Windows

	E.21.3.12. Source Code
	E.21.3.12.1. Server Hooks

	E.21.3.13. Contrib
	E.21.3.13.1. Security
	E.21.3.13.2. Performance
	E.21.3.13.3. Fsync Testing

	E.21.3.14. Documentation

	E.22. Release 9.0.16
	E.22.1. Migration to Version 9.0.16
	E.22.2. Changes

	E.23. Release 9.0.15
	E.23.1. Migration to Version 9.0.15
	E.23.2. Changes

	E.24. Release 9.0.14
	E.24.1. Migration to Version 9.0.14
	E.24.2. Changes

	E.25. Release 9.0.13
	E.25.1. Migration to Version 9.0.13
	E.25.2. Changes

	E.26. Release 9.0.12
	E.26.1. Migration to Version 9.0.12
	E.26.2. Changes

	E.27. Release 9.0.11
	E.27.1. Migration to Version 9.0.11
	E.27.2. Changes

	E.28. Release 9.0.10
	E.28.1. Migration to Version 9.0.10
	E.28.2. Changes

	E.29. Release 9.0.9
	E.29.1. Migration to Version 9.0.9
	E.29.2. Changes

	E.30. Release 9.0.8
	E.30.1. Migration to Version 9.0.8
	E.30.2. Changes

	E.31. Release 9.0.7
	E.31.1. Migration to Version 9.0.7
	E.31.2. Changes

	E.32. Release 9.0.6
	E.32.1. Migration to Version 9.0.6
	E.32.2. Changes

	E.33. Release 9.0.5
	E.33.1. Migration to Version 9.0.5
	E.33.2. Changes

	E.34. Release 9.0.4
	E.34.1. Migration to Version 9.0.4
	E.34.2. Changes

	E.35. Release 9.0.3
	E.35.1. Migration to Version 9.0.3
	E.35.2. Changes

	E.36. Release 9.0.2
	E.36.1. Migration to Version 9.0.2
	E.36.2. Changes

	E.37. Release 9.0.1
	E.37.1. Migration to Version 9.0.1
	E.37.2. Changes

	E.38. Release 9.0
	E.38.1. Overview
	E.38.2. Migration to Version 9.0
	E.38.2.1. Server Settings
	E.38.2.2. Queries
	E.38.2.3. Data Types
	E.38.2.4. Object Renaming
	E.38.2.5. PL/pgSQL
	E.38.2.6. Other Incompatibilities

	E.38.3. Changes
	E.38.3.1. Server
	E.38.3.1.1. Continuous Archiving and Streaming Replication
	E.38.3.1.2. Performance
	E.38.3.1.3. Optimizer
	E.38.3.1.4. GEQO
	E.38.3.1.5. Optimizer Statistics
	E.38.3.1.6. Authentication
	E.38.3.1.7. Monitoring
	E.38.3.1.8. Statistics Counters
	E.38.3.1.9. Server Settings

	E.38.3.2. Queries
	E.38.3.2.1. Unicode Strings

	E.38.3.3. Object Manipulation
	E.38.3.3.1. ALTER TABLE
	E.38.3.3.2. CREATE TABLE
	E.38.3.3.3. Constraints
	E.38.3.3.4. Object Permissions

	E.38.3.4. Utility Operations
	E.38.3.4.1. COPY
	E.38.3.4.2. EXPLAIN
	E.38.3.4.3. VACUUM
	E.38.3.4.4. Indexes

	E.38.3.5. Data Types
	E.38.3.5.1. Full Text Search

	E.38.3.6. Functions
	E.38.3.6.1. Aggregates
	E.38.3.6.2. Bit Strings
	E.38.3.6.3. Object Information Functions
	E.38.3.6.4. Function and Trigger Creation

	E.38.3.7. ServerSide Languages
	E.38.3.7.1. PL/pgSQL ServerSide Language
	E.38.3.7.2. PL/Perl ServerSide Language
	E.38.3.7.3. PL/Python ServerSide Language

	E.38.3.8. Client Applications
	E.38.3.8.1. psql
	E.38.3.8.2. pgdump
	E.38.3.8.3. pgctl

	E.38.3.9. Development Tools
	E.38.3.9.1. libpq
	E.38.3.9.2. ecpg

	E.38.3.10. Build Options
	E.38.3.10.1. Makefiles
	E.38.3.10.2. Windows

	E.38.3.11. Source Code
	E.38.3.11.1. New Build Requirements
	E.38.3.11.2. Portability
	E.38.3.11.3. Server Programming
	E.38.3.11.4. Server Hooks
	E.38.3.11.5. Binary Upgrade Support

	E.38.3.12. Contrib

	E.39. Release 8.4.20
	E.39.1. Migration to Version 8.4.20
	E.39.2. Changes

	E.40. Release 8.4.19
	E.40.1. Migration to Version 8.4.19
	E.40.2. Changes

	E.41. Release 8.4.18
	E.41.1. Migration to Version 8.4.18
	E.41.2. Changes

	E.42. Release 8.4.17
	E.42.1. Migration to Version 8.4.17
	E.42.2. Changes

	E.43. Release 8.4.16
	E.43.1. Migration to Version 8.4.16
	E.43.2. Changes

	E.44. Release 8.4.15
	E.44.1. Migration to Version 8.4.15
	E.44.2. Changes

	E.45. Release 8.4.14
	E.45.1. Migration to Version 8.4.14
	E.45.2. Changes

	E.46. Release 8.4.13
	E.46.1. Migration to Version 8.4.13
	E.46.2. Changes

	E.47. Release 8.4.12
	E.47.1. Migration to Version 8.4.12
	E.47.2. Changes

	E.48. Release 8.4.11
	E.48.1. Migration to Version 8.4.11
	E.48.2. Changes

	E.49. Release 8.4.10
	E.49.1. Migration to Version 8.4.10
	E.49.2. Changes

	E.50. Release 8.4.9
	E.50.1. Migration to Version 8.4.9
	E.50.2. Changes

	E.51. Release 8.4.8
	E.51.1. Migration to Version 8.4.8
	E.51.2. Changes

	E.52. Release 8.4.7
	E.52.1. Migration to Version 8.4.7
	E.52.2. Changes

	E.53. Release 8.4.6
	E.53.1. Migration to Version 8.4.6
	E.53.2. Changes

	E.54. Release 8.4.5
	E.54.1. Migration to Version 8.4.5
	E.54.2. Changes

	E.55. Release 8.4.4
	E.55.1. Migration to Version 8.4.4
	E.55.2. Changes

	E.56. Release 8.4.3
	E.56.1. Migration to Version 8.4.3
	E.56.2. Changes

	E.57. Release 8.4.2
	E.57.1. Migration to Version 8.4.2
	E.57.2. Changes

	E.58. Release 8.4.1
	E.58.1. Migration to Version 8.4.1
	E.58.2. Changes

	E.59. Release 8.4
	E.59.1. Overview
	E.59.2. Migration to Version 8.4
	E.59.2.1. General
	E.59.2.2. Server Settings
	E.59.2.3. Queries
	E.59.2.4. Functions and Operators
	E.59.2.4.1. Temporal Functions and Operators

	E.59.3. Changes
	E.59.3.1. Performance
	E.59.3.2. Server
	E.59.3.2.1. Settings
	E.59.3.2.2. Authentication and security
	E.59.3.2.3. pghba.conf
	E.59.3.2.4. Continuous Archiving
	E.59.3.2.5. Monitoring

	E.59.3.3. Queries
	E.59.3.3.1. TRUNCATE
	E.59.3.3.2. EXPLAIN
	E.59.3.3.3. LIMIT/OFFSET

	E.59.3.4. Object Manipulation
	E.59.3.4.1. ALTER
	E.59.3.4.2. Database Manipulation

	E.59.3.5. Utility Operations
	E.59.3.5.1. Indexes
	E.59.3.5.2. Full Text Indexes
	E.59.3.5.3. VACUUM

	E.59.3.6. Data Types
	E.59.3.6.1. Temporal Data Types
	E.59.3.6.2. Arrays
	E.59.3.6.3. WideValue Storage (TOAST)

	E.59.3.7. Functions
	E.59.3.7.1. Object Information Functions
	E.59.3.7.2. Function Creation
	E.59.3.7.3. PL/pgSQL ServerSide Language

	E.59.3.8. Client Applications
	E.59.3.8.1. psql
	E.59.3.8.2. psql * commands
	E.59.3.8.3. pgdump

	E.59.3.9. Programming Tools
	E.59.3.9.1. libpq
	E.59.3.9.2. libpq SSL (Secure Sockets Layer) support
	E.59.3.9.3. ecpg
	E.59.3.9.4. Server Programming Interface (SPI)

	E.59.3.10. Build Options
	E.59.3.11. Source Code
	E.59.3.12. Contrib

	E.60. Release 8.3.23
	E.60.1. Migration to Version 8.3.23
	E.60.2. Changes

	E.61. Release 8.3.22
	E.61.1. Migration to Version 8.3.22
	E.61.2. Changes

	E.62. Release 8.3.21
	E.62.1. Migration to Version 8.3.21
	E.62.2. Changes

	E.63. Release 8.3.20
	E.63.1. Migration to Version 8.3.20
	E.63.2. Changes

	E.64. Release 8.3.19
	E.64.1. Migration to Version 8.3.19
	E.64.2. Changes

	E.65. Release 8.3.18
	E.65.1. Migration to Version 8.3.18
	E.65.2. Changes

	E.66. Release 8.3.17
	E.66.1. Migration to Version 8.3.17
	E.66.2. Changes

	E.67. Release 8.3.16
	E.67.1. Migration to Version 8.3.16
	E.67.2. Changes

	E.68. Release 8.3.15
	E.68.1. Migration to Version 8.3.15
	E.68.2. Changes

	E.69. Release 8.3.14
	E.69.1. Migration to Version 8.3.14
	E.69.2. Changes

	E.70. Release 8.3.13
	E.70.1. Migration to Version 8.3.13
	E.70.2. Changes

	E.71. Release 8.3.12
	E.71.1. Migration to Version 8.3.12
	E.71.2. Changes

	E.72. Release 8.3.11
	E.72.1. Migration to Version 8.3.11
	E.72.2. Changes

	E.73. Release 8.3.10
	E.73.1. Migration to Version 8.3.10
	E.73.2. Changes

	E.74. Release 8.3.9
	E.74.1. Migration to Version 8.3.9
	E.74.2. Changes

	E.75. Release 8.3.8
	E.75.1. Migration to Version 8.3.8
	E.75.2. Changes

	E.76. Release 8.3.7
	E.76.1. Migration to Version 8.3.7
	E.76.2. Changes

	E.77. Release 8.3.6
	E.77.1. Migration to Version 8.3.6
	E.77.2. Changes

	E.78. Release 8.3.5
	E.78.1. Migration to Version 8.3.5
	E.78.2. Changes

	E.79. Release 8.3.4
	E.79.1. Migration to Version 8.3.4
	E.79.2. Changes

	E.80. Release 8.3.3
	E.80.1. Migration to Version 8.3.3
	E.80.2. Changes

	E.81. Release 8.3.2
	E.81.1. Migration to Version 8.3.2
	E.81.2. Changes

	E.82. Release 8.3.1
	E.82.1. Migration to Version 8.3.1
	E.82.2. Changes

	E.83. Release 8.3
	E.83.1. Overview
	E.83.2. Migration to Version 8.3
	E.83.2.1. General
	E.83.2.2. Configuration Parameters
	E.83.2.3. Character Encodings

	E.83.3. Changes
	E.83.3.1. Performance
	E.83.3.2. Server
	E.83.3.3. Monitoring
	E.83.3.4. Authentication
	E.83.3.5. WriteAhead Log (WAL) and Continuous Archiving
	E.83.3.6. Queries
	E.83.3.7. Object Manipulation
	E.83.3.8. Utility Commands
	E.83.3.9. Data Types
	E.83.3.10. Functions
	E.83.3.11. PL/pgSQL ServerSide Language
	E.83.3.12. Other ServerSide Languages
	E.83.3.13. psql
	E.83.3.14. pgdump
	E.83.3.15. Other Client Applications
	E.83.3.16. libpq
	E.83.3.17. ecpg
	E.83.3.18. Windows Port
	E.83.3.19. Server Programming Interface (SPI)
	E.83.3.20. Build Options
	E.83.3.21. Source Code
	E.83.3.22. Contrib

	E.84. Release 8.2.23
	E.84.1. Migration to Version 8.2.23
	E.84.2. Changes

	E.85. Release 8.2.22
	E.85.1. Migration to Version 8.2.22
	E.85.2. Changes

	E.86. Release 8.2.21
	E.86.1. Migration to Version 8.2.21
	E.86.2. Changes

	E.87. Release 8.2.20
	E.87.1. Migration to Version 8.2.20
	E.87.2. Changes

	E.88. Release 8.2.19
	E.88.1. Migration to Version 8.2.19
	E.88.2. Changes

	E.89. Release 8.2.18
	E.89.1. Migration to Version 8.2.18
	E.89.2. Changes

	E.90. Release 8.2.17
	E.90.1. Migration to Version 8.2.17
	E.90.2. Changes

	E.91. Release 8.2.16
	E.91.1. Migration to Version 8.2.16
	E.91.2. Changes

	E.92. Release 8.2.15
	E.92.1. Migration to Version 8.2.15
	E.92.2. Changes

	E.93. Release 8.2.14
	E.93.1. Migration to Version 8.2.14
	E.93.2. Changes

	E.94. Release 8.2.13
	E.94.1. Migration to Version 8.2.13
	E.94.2. Changes

	E.95. Release 8.2.12
	E.95.1. Migration to Version 8.2.12
	E.95.2. Changes

	E.96. Release 8.2.11
	E.96.1. Migration to Version 8.2.11
	E.96.2. Changes

	E.97. Release 8.2.10
	E.97.1. Migration to Version 8.2.10
	E.97.2. Changes

	E.98. Release 8.2.9
	E.98.1. Migration to Version 8.2.9
	E.98.2. Changes

	E.99. Release 8.2.8
	E.99.1. Migration to Version 8.2.8
	E.99.2. Changes

	E.100. Release 8.2.7
	E.100.1. Migration to Version 8.2.7
	E.100.2. Changes

	E.101. Release 8.2.6
	E.101.1. Migration to Version 8.2.6
	E.101.2. Changes

	E.102. Release 8.2.5
	E.102.1. Migration to Version 8.2.5
	E.102.2. Changes

	E.103. Release 8.2.4
	E.103.1. Migration to Version 8.2.4
	E.103.2. Changes

	E.104. Release 8.2.3
	E.104.1. Migration to Version 8.2.3
	E.104.2. Changes

	E.105. Release 8.2.2
	E.105.1. Migration to Version 8.2.2
	E.105.2. Changes

	E.106. Release 8.2.1
	E.106.1. Migration to Version 8.2.1
	E.106.2. Changes

	E.107. Release 8.2
	E.107.1. Overview
	E.107.2. Migration to Version 8.2
	E.107.3. Changes
	E.107.3.1. Performance Improvements
	E.107.3.2. Server Changes
	E.107.3.3. Query Changes
	E.107.3.4. Object Manipulation Changes
	E.107.3.5. Utility Command Changes
	E.107.3.6. Date/Time Changes
	E.107.3.7. Other Data Type and Function Changes
	E.107.3.8. PL/pgSQL ServerSide Language Changes
	E.107.3.9. PL/Perl ServerSide Language Changes
	E.107.3.10. PL/Python ServerSide Language Changes
	E.107.3.11. psql Changes
	E.107.3.12. pgdump Changes
	E.107.3.13. libpq Changes
	E.107.3.14. ecpg Changes
	E.107.3.15. Windows Port
	E.107.3.16. Source Code Changes
	E.107.3.17. Contrib Changes

	E.108. Release 8.1.23
	E.108.1. Migration to Version 8.1.23
	E.108.2. Changes

	E.109. Release 8.1.22
	E.109.1. Migration to Version 8.1.22
	E.109.2. Changes

	E.110. Release 8.1.21
	E.110.1. Migration to Version 8.1.21
	E.110.2. Changes

	E.111. Release 8.1.20
	E.111.1. Migration to Version 8.1.20
	E.111.2. Changes

	E.112. Release 8.1.19
	E.112.1. Migration to Version 8.1.19
	E.112.2. Changes

	E.113. Release 8.1.18
	E.113.1. Migration to Version 8.1.18
	E.113.2. Changes

	E.114. Release 8.1.17
	E.114.1. Migration to Version 8.1.17
	E.114.2. Changes

	E.115. Release 8.1.16
	E.115.1. Migration to Version 8.1.16
	E.115.2. Changes

	E.116. Release 8.1.15
	E.116.1. Migration to Version 8.1.15
	E.116.2. Changes

	E.117. Release 8.1.14
	E.117.1. Migration to Version 8.1.14
	E.117.2. Changes

	E.118. Release 8.1.13
	E.118.1. Migration to Version 8.1.13
	E.118.2. Changes

	E.119. Release 8.1.12
	E.119.1. Migration to Version 8.1.12
	E.119.2. Changes

	E.120. Release 8.1.11
	E.120.1. Migration to Version 8.1.11
	E.120.2. Changes

	E.121. Release 8.1.10
	E.121.1. Migration to Version 8.1.10
	E.121.2. Changes

	E.122. Release 8.1.9
	E.122.1. Migration to Version 8.1.9
	E.122.2. Changes

	E.123. Release 8.1.8
	E.123.1. Migration to Version 8.1.8
	E.123.2. Changes

	E.124. Release 8.1.7
	E.124.1. Migration to Version 8.1.7
	E.124.2. Changes

	E.125. Release 8.1.6
	E.125.1. Migration to Version 8.1.6
	E.125.2. Changes

	E.126. Release 8.1.5
	E.126.1. Migration to Version 8.1.5
	E.126.2. Changes

	E.127. Release 8.1.4
	E.127.1. Migration to Version 8.1.4
	E.127.2. Changes

	E.128. Release 8.1.3
	E.128.1. Migration to Version 8.1.3
	E.128.2. Changes

	E.129. Release 8.1.2
	E.129.1. Migration to Version 8.1.2
	E.129.2. Changes

	E.130. Release 8.1.1
	E.130.1. Migration to Version 8.1.1
	E.130.2. Changes

	E.131. Release 8.1
	E.131.1. Overview
	E.131.2. Migration to Version 8.1
	E.131.3. Additional Changes
	E.131.3.1. Performance Improvements
	E.131.3.2. Server Changes
	E.131.3.3. Query Changes
	E.131.3.4. Object Manipulation Changes
	E.131.3.5. Utility Command Changes
	E.131.3.6. Data Type and Function Changes
	E.131.3.7. Encoding and Locale Changes
	E.131.3.8. General ServerSide Language Changes
	E.131.3.9. PL/pgSQL ServerSide Language Changes
	E.131.3.10. PL/Perl ServerSide Language Changes
	E.131.3.11. psql Changes
	E.131.3.12. pgdump Changes
	E.131.3.13. libpq Changes
	E.131.3.14. Source Code Changes
	E.131.3.15. Contrib Changes

	E.132. Release 8.0.26
	E.132.1. Migration to Version 8.0.26
	E.132.2. Changes

	E.133. Release 8.0.25
	E.133.1. Migration to Version 8.0.25
	E.133.2. Changes

	E.134. Release 8.0.24
	E.134.1. Migration to Version 8.0.24
	E.134.2. Changes

	E.135. Release 8.0.23
	E.135.1. Migration to Version 8.0.23
	E.135.2. Changes

	E.136. Release 8.0.22
	E.136.1. Migration to Version 8.0.22
	E.136.2. Changes

	E.137. Release 8.0.21
	E.137.1. Migration to Version 8.0.21
	E.137.2. Changes

	E.138. Release 8.0.20
	E.138.1. Migration to Version 8.0.20
	E.138.2. Changes

	E.139. Release 8.0.19
	E.139.1. Migration to Version 8.0.19
	E.139.2. Changes

	E.140. Release 8.0.18
	E.140.1. Migration to Version 8.0.18
	E.140.2. Changes

	E.141. Release 8.0.17
	E.141.1. Migration to Version 8.0.17
	E.141.2. Changes

	E.142. Release 8.0.16
	E.142.1. Migration to Version 8.0.16
	E.142.2. Changes

	E.143. Release 8.0.15
	E.143.1. Migration to Version 8.0.15
	E.143.2. Changes

	E.144. Release 8.0.14
	E.144.1. Migration to Version 8.0.14
	E.144.2. Changes

	E.145. Release 8.0.13
	E.145.1. Migration to Version 8.0.13
	E.145.2. Changes

	E.146. Release 8.0.12
	E.146.1. Migration to Version 8.0.12
	E.146.2. Changes

	E.147. Release 8.0.11
	E.147.1. Migration to Version 8.0.11
	E.147.2. Changes

	E.148. Release 8.0.10
	E.148.1. Migration to Version 8.0.10
	E.148.2. Changes

	E.149. Release 8.0.9
	E.149.1. Migration to Version 8.0.9
	E.149.2. Changes

	E.150. Release 8.0.8
	E.150.1. Migration to Version 8.0.8
	E.150.2. Changes

	E.151. Release 8.0.7
	E.151.1. Migration to Version 8.0.7
	E.151.2. Changes

	E.152. Release 8.0.6
	E.152.1. Migration to Version 8.0.6
	E.152.2. Changes

	E.153. Release 8.0.5
	E.153.1. Migration to Version 8.0.5
	E.153.2. Changes

	E.154. Release 8.0.4
	E.154.1. Migration to Version 8.0.4
	E.154.2. Changes

	E.155. Release 8.0.3
	E.155.1. Migration to Version 8.0.3
	E.155.2. Changes

	E.156. Release 8.0.2
	E.156.1. Migration to Version 8.0.2
	E.156.2. Changes

	E.157. Release 8.0.1
	E.157.1. Migration to Version 8.0.1
	E.157.2. Changes

	E.158. Release 8.0
	E.158.1. Overview
	E.158.2. Migration to Version 8.0
	E.158.3. Deprecated Features
	E.158.4. Changes
	E.158.4.1. Performance Improvements
	E.158.4.2. Server Changes
	E.158.4.3. Query Changes
	E.158.4.4. Object Manipulation Changes
	E.158.4.5. Utility Command Changes
	E.158.4.6. Data Type and Function Changes
	E.158.4.7. ServerSide Language Changes
	E.158.4.8. psql Changes
	E.158.4.9. pgdump Changes
	E.158.4.10. libpq Changes
	E.158.4.11. Source Code Changes
	E.158.4.12. Contrib Changes

	E.159. Release 7.4.30
	E.159.1. Migration to Version 7.4.30
	E.159.2. Changes

	E.160. Release 7.4.29
	E.160.1. Migration to Version 7.4.29
	E.160.2. Changes

	E.161. Release 7.4.28
	E.161.1. Migration to Version 7.4.28
	E.161.2. Changes

	E.162. Release 7.4.27
	E.162.1. Migration to Version 7.4.27
	E.162.2. Changes

	E.163. Release 7.4.26
	E.163.1. Migration to Version 7.4.26
	E.163.2. Changes

	E.164. Release 7.4.25
	E.164.1. Migration to Version 7.4.25
	E.164.2. Changes

	E.165. Release 7.4.24
	E.165.1. Migration to Version 7.4.24
	E.165.2. Changes

	E.166. Release 7.4.23
	E.166.1. Migration to Version 7.4.23
	E.166.2. Changes

	E.167. Release 7.4.22
	E.167.1. Migration to Version 7.4.22
	E.167.2. Changes

	E.168. Release 7.4.21
	E.168.1. Migration to Version 7.4.21
	E.168.2. Changes

	E.169. Release 7.4.20
	E.169.1. Migration to Version 7.4.20
	E.169.2. Changes

	E.170. Release 7.4.19
	E.170.1. Migration to Version 7.4.19
	E.170.2. Changes

	E.171. Release 7.4.18
	E.171.1. Migration to Version 7.4.18
	E.171.2. Changes

	E.172. Release 7.4.17
	E.172.1. Migration to Version 7.4.17
	E.172.2. Changes

	E.173. Release 7.4.16
	E.173.1. Migration to Version 7.4.16
	E.173.2. Changes

	E.174. Release 7.4.15
	E.174.1. Migration to Version 7.4.15
	E.174.2. Changes

	E.175. Release 7.4.14
	E.175.1. Migration to Version 7.4.14
	E.175.2. Changes

	E.176. Release 7.4.13
	E.176.1. Migration to Version 7.4.13
	E.176.2. Changes

	E.177. Release 7.4.12
	E.177.1. Migration to Version 7.4.12
	E.177.2. Changes

	E.178. Release 7.4.11
	E.178.1. Migration to Version 7.4.11
	E.178.2. Changes

	E.179. Release 7.4.10
	E.179.1. Migration to Version 7.4.10
	E.179.2. Changes

	E.180. Release 7.4.9
	E.180.1. Migration to Version 7.4.9
	E.180.2. Changes

	E.181. Release 7.4.8
	E.181.1. Migration to Version 7.4.8
	E.181.2. Changes

	E.182. Release 7.4.7
	E.182.1. Migration to Version 7.4.7
	E.182.2. Changes

	E.183. Release 7.4.6
	E.183.1. Migration to Version 7.4.6
	E.183.2. Changes

	E.184. Release 7.4.5
	E.184.1. Migration to Version 7.4.5
	E.184.2. Changes

	E.185. Release 7.4.4
	E.185.1. Migration to Version 7.4.4
	E.185.2. Changes

	E.186. Release 7.4.3
	E.186.1. Migration to Version 7.4.3
	E.186.2. Changes

	E.187. Release 7.4.2
	E.187.1. Migration to Version 7.4.2
	E.187.2. Changes

	E.188. Release 7.4.1
	E.188.1. Migration to Version 7.4.1
	E.188.2. Changes

	E.189. Release 7.4
	E.189.1. Overview
	E.189.2. Migration to Version 7.4
	E.189.3. Changes
	E.189.3.1. Server Operation Changes
	E.189.3.2. Performance Improvements
	E.189.3.3. Server Configuration Changes
	E.189.3.4. Query Changes
	E.189.3.5. Object Manipulation Changes
	E.189.3.6. Utility Command Changes
	E.189.3.7. Data Type and Function Changes
	E.189.3.8. ServerSide Language Changes
	E.189.3.9. psql Changes
	E.189.3.10. pgdump Changes
	E.189.3.11. libpq Changes
	E.189.3.12. JDBC Changes
	E.189.3.13. Miscellaneous Interface Changes
	E.189.3.14. Source Code Changes
	E.189.3.15. Contrib Changes

	E.190. Release 7.3.21
	E.190.1. Migration to Version 7.3.21
	E.190.2. Changes

	E.191. Release 7.3.20
	E.191.1. Migration to Version 7.3.20
	E.191.2. Changes

	E.192. Release 7.3.19
	E.192.1. Migration to Version 7.3.19
	E.192.2. Changes

	E.193. Release 7.3.18
	E.193.1. Migration to Version 7.3.18
	E.193.2. Changes

	E.194. Release 7.3.17
	E.194.1. Migration to Version 7.3.17
	E.194.2. Changes

	E.195. Release 7.3.16
	E.195.1. Migration to Version 7.3.16
	E.195.2. Changes

	E.196. Release 7.3.15
	E.196.1. Migration to Version 7.3.15
	E.196.2. Changes

	E.197. Release 7.3.14
	E.197.1. Migration to Version 7.3.14
	E.197.2. Changes

	E.198. Release 7.3.13
	E.198.1. Migration to Version 7.3.13
	E.198.2. Changes

	E.199. Release 7.3.12
	E.199.1. Migration to Version 7.3.12
	E.199.2. Changes

	E.200. Release 7.3.11
	E.200.1. Migration to Version 7.3.11
	E.200.2. Changes

	E.201. Release 7.3.10
	E.201.1. Migration to Version 7.3.10
	E.201.2. Changes

	E.202. Release 7.3.9
	E.202.1. Migration to Version 7.3.9
	E.202.2. Changes

	E.203. Release 7.3.8
	E.203.1. Migration to Version 7.3.8
	E.203.2. Changes

	E.204. Release 7.3.7
	E.204.1. Migration to Version 7.3.7
	E.204.2. Changes

	E.205. Release 7.3.6
	E.205.1. Migration to Version 7.3.6
	E.205.2. Changes

	E.206. Release 7.3.5
	E.206.1. Migration to Version 7.3.5
	E.206.2. Changes

	E.207. Release 7.3.4
	E.207.1. Migration to Version 7.3.4
	E.207.2. Changes

	E.208. Release 7.3.3
	E.208.1. Migration to Version 7.3.3
	E.208.2. Changes

	E.209. Release 7.3.2
	E.209.1. Migration to Version 7.3.2
	E.209.2. Changes

	E.210. Release 7.3.1
	E.210.1. Migration to Version 7.3.1
	E.210.2. Changes

	E.211. Release 7.3
	E.211.1. Overview
	E.211.2. Migration to Version 7.3
	E.211.3. Changes
	E.211.3.1. Server Operation
	E.211.3.2. Performance
	E.211.3.3. Privileges
	E.211.3.4. Server Configuration
	E.211.3.5. Queries
	E.211.3.6. Object Manipulation
	E.211.3.7. Utility Commands
	E.211.3.8. Data Types and Functions
	E.211.3.9. Internationalization
	E.211.3.10. Serverside Languages
	E.211.3.11. psql
	E.211.3.12. libpq
	E.211.3.13. JDBC
	E.211.3.14. Miscellaneous Interfaces
	E.211.3.15. Source Code
	E.211.3.16. Contrib

	E.212. Release 7.2.8
	E.212.1. Migration to Version 7.2.8
	E.212.2. Changes

	E.213. Release 7.2.7
	E.213.1. Migration to Version 7.2.7
	E.213.2. Changes

	E.214. Release 7.2.6
	E.214.1. Migration to Version 7.2.6
	E.214.2. Changes

	E.215. Release 7.2.5
	E.215.1. Migration to Version 7.2.5
	E.215.2. Changes

	E.216. Release 7.2.4
	E.216.1. Migration to Version 7.2.4
	E.216.2. Changes

	E.217. Release 7.2.3
	E.217.1. Migration to Version 7.2.3
	E.217.2. Changes

	E.218. Release 7.2.2
	E.218.1. Migration to Version 7.2.2
	E.218.2. Changes

	E.219. Release 7.2.1
	E.219.1. Migration to Version 7.2.1
	E.219.2. Changes

	E.220. Release 7.2
	E.220.1. Overview
	E.220.2. Migration to Version 7.2
	E.220.3. Changes
	E.220.3.1. Server Operation
	E.220.3.2. Performance
	E.220.3.3. Privileges
	E.220.3.4. Client Authentication
	E.220.3.5. Server Configuration
	E.220.3.6. Queries
	E.220.3.7. Schema Manipulation
	E.220.3.8. Utility Commands
	E.220.3.9. Data Types and Functions
	E.220.3.10. Internationalization
	E.220.3.11. PL/pgSQL
	E.220.3.12. PL/Perl
	E.220.3.13. PL/Tcl
	E.220.3.14. PL/Python
	E.220.3.15. psql
	E.220.3.16. libpq
	E.220.3.17. JDBC
	E.220.3.18. ODBC
	E.220.3.19. ECPG
	E.220.3.20. Misc. Interfaces
	E.220.3.21. Build and Install
	E.220.3.22. Source Code
	E.220.3.23. Contrib

	E.221. Release 7.1.3
	E.221.1. Migration to Version 7.1.3
	E.221.2. Changes

	E.222. Release 7.1.2
	E.222.1. Migration to Version 7.1.2
	E.222.2. Changes

	E.223. Release 7.1.1
	E.223.1. Migration to Version 7.1.1
	E.223.2. Changes

	E.224. Release 7.1
	E.224.1. Migration to Version 7.1
	E.224.2. Changes

	E.225. Release 7.0.3
	E.225.1. Migration to Version 7.0.3
	E.225.2. Changes

	E.226. Release 7.0.2
	E.226.1. Migration to Version 7.0.2
	E.226.2. Changes

	E.227. Release 7.0.1
	E.227.1. Migration to Version 7.0.1
	E.227.2. Changes

	E.228. Release 7.0
	E.228.1. Migration to Version 7.0
	E.228.2. Changes

	E.229. Release 6.5.3
	E.229.1. Migration to Version 6.5.3
	E.229.2. Changes

	E.230. Release 6.5.2
	E.230.1. Migration to Version 6.5.2
	E.230.2. Changes

	E.231. Release 6.5.1
	E.231.1. Migration to Version 6.5.1
	E.231.2. Changes

	E.232. Release 6.5
	E.232.1. Migration to Version 6.5
	E.232.1.1. Multiversion Concurrency Control

	E.232.2. Changes

	E.233. Release 6.4.2
	E.233.1. Migration to Version 6.4.2
	E.233.2. Changes

	E.234. Release 6.4.1
	E.234.1. Migration to Version 6.4.1
	E.234.2. Changes

	E.235. Release 6.4
	E.235.1. Migration to Version 6.4
	E.235.2. Changes

	E.236. Release 6.3.2
	E.236.1. Changes

	E.237. Release 6.3.1
	E.237.1. Changes

	E.238. Release 6.3
	E.238.1. Migration to Version 6.3
	E.238.2. Changes

	E.239. Release 6.2.1
	E.239.1. Migration from version 6.2 to version 6.2.1
	E.239.2. Changes

	E.240. Release 6.2
	E.240.1. Migration from version 6.1 to version 6.2
	E.240.2. Migration from version 1.x to version 6.2
	E.240.3. Changes

	E.241. Release 6.1.1
	E.241.1. Migration from version 6.1 to version 6.1.1
	E.241.2. Changes

	E.242. Release 6.1
	E.242.1. Migration to Version 6.1
	E.242.2. Changes

	E.243. Release 6.0
	E.243.1. Migration from version 1.09 to version 6.0
	E.243.2. Migration from pre1.09 to version 6.0
	E.243.3. Changes

	E.244. Release 1.09
	E.245. Release 1.02
	E.245.1. Migration from version 1.02 to version 1.02.1
	E.245.2. Dump/Reload Procedure
	E.245.3. Changes

	E.246. Release 1.01
	E.246.1. Migration from version 1.0 to version 1.01
	E.246.2. Changes

	E.247. Release 1.0
	E.247.1. Changes

	E.248. Postgres95 Release 0.03
	E.248.1. Changes

	E.249. Postgres95 Release 0.02
	E.249.1. Changes

	E.250. Postgres95 Release 0.01

	Appendix F. Additional Supplied Modules
	F.1. adminpack
	F.1.1. Functions Implemented

	F.2. authdelay
	F.2.1. Configuration Parameters
	F.2.2. Author

	F.3. autoexplain
	F.3.1. Configuration Parameters
	F.3.2. Example
	F.3.3. Author

	F.4. btreegin
	F.4.1. Example Usage
	F.4.2. Authors

	F.5. btreegist
	F.5.1. Example Usage
	F.5.2. Authors

	F.6. chkpass
	F.6.1. Author

	F.7. citext
	F.7.1. Rationale
	F.7.2. How to Use It
	F.7.3. String Comparison Behavior
	F.7.4. Limitations
	F.7.5. Author

	F.8. cube
	F.8.1. Syntax
	F.8.2. Precision
	F.8.3. Usage
	F.8.4. Defaults
	F.8.5. Notes
	F.8.6. Credits

	F.9. dblink
	dblinkconnect
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkconnectu
	Name
	Synopsis
	Description

	dblinkdisconnect
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblink
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkexec
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblinkopen
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkfetch
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkclose
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkgetconnections
	Name
	Synopsis
	Description
	Return Value
	Examples

	dblinkerrormessage
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblinksendquery
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblinkisbusy
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblinkgetnotify
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblinkgetresult
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkcancelquery
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblinkgetpkey
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Examples

	dblinkbuildsqlinsert
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkbuildsqldelete
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblinkbuildsqlupdate
	Name
	Synopsis
	Description
	Arguments
	Return Value
	Notes
	Examples

	F.10. dictint
	F.10.1. Configuration
	F.10.2. Usage

	F.11. dictxsyn
	F.11.1. Configuration
	F.11.2. Usage

	F.12. dummyseclabel
	F.12.1. Rationale
	F.12.2. Usage
	F.12.3. Author

	F.13. earthdistance
	F.13.1. Cubebased Earth Distances
	F.13.2. Pointbased Earth Distances

	F.14. filefdw
	F.15. fuzzystrmatch
	F.15.1. Soundex
	F.15.2. Levenshtein
	F.15.3. Metaphone
	F.15.4. Double Metaphone

	F.16. hstore
	F.16.1. hstore External Representation
	F.16.2. hstore Operators and Functions
	F.16.3. Indexes
	F.16.4. Examples
	F.16.5. Statistics
	F.16.6. Compatibility
	F.16.7. Authors

	F.17. intagg
	F.17.1. Functions
	F.17.2. Sample Uses

	F.18. intarray
	F.18.1. intarray Functions and Operators
	F.18.2. Index Support
	F.18.3. Example
	F.18.4. Benchmark
	F.18.5. Authors

	F.19. isn
	F.19.1. Data Types
	F.19.2. Casts
	F.19.3. Functions and Operators
	F.19.4. Examples
	F.19.5. Bibliography
	F.19.6. Author

	F.20. lo
	F.20.1. Rationale
	F.20.2. How to Use It
	F.20.3. Limitations
	F.20.4. Author

	F.21. ltree
	F.21.1. Definitions
	F.21.2. Operators and Functions
	F.21.3. Indexes
	F.21.4. Example
	F.21.5. Authors

	F.22. pageinspect
	F.22.1. Functions

	F.23. passwordcheck
	F.24. pgbuffercache
	F.24.1. The pgbuffercache View
	F.24.2. Sample Output
	F.24.3. Authors

	F.25. pgcrypto
	F.25.1. General Hashing Functions
	F.25.1.1. digest()
	F.25.1.2. hmac()

	F.25.2. Password Hashing Functions
	F.25.2.1. crypt()
	F.25.2.2. gensalt()

	F.25.3. PGP Encryption Functions
	F.25.3.1. pgpsymencrypt()
	F.25.3.2. pgpsymdecrypt()
	F.25.3.3. pgppubencrypt()
	F.25.3.4. pgppubdecrypt()
	F.25.3.5. pgpkeyid()
	F.25.3.6. armor(), dearmor()
	F.25.3.7. Options for PGP Functions
	F.25.3.7.1. cipheralgo
	F.25.3.7.2. compressalgo
	F.25.3.7.3. compresslevel
	F.25.3.7.4. convertcrlf
	F.25.3.7.5. disablemdc
	F.25.3.7.6. enablesessionkey
	F.25.3.7.7. s2kmode
	F.25.3.7.8. s2kdigestalgo
	F.25.3.7.9. s2kcipheralgo
	F.25.3.7.10. unicodemode

	F.25.3.8. Generating PGP Keys with GnuPG
	F.25.3.9. Limitations of PGP Code

	F.25.4. Raw Encryption Functions
	F.25.5. RandomData Functions
	F.25.6. Notes
	F.25.6.1. Configuration
	F.25.6.2. NULL Handling
	F.25.6.3. Security Limitations
	F.25.6.4. Useful Reading
	F.25.6.5. Technical References

	F.25.7. Author

	F.26. pgfreespacemap
	F.26.1. Functions
	F.26.2. Sample Output
	F.26.3. Author

	F.27. pgrowlocks
	F.27.1. Overview
	F.27.2. Sample Output
	F.27.3. Author

	F.28. pgstatstatements
	F.28.1. The pgstatstatements View
	F.28.2. Functions
	F.28.3. Configuration Parameters
	F.28.4. Sample Output
	F.28.5. Authors

	F.29. pgstattuple
	F.29.1. Functions
	F.29.2. Authors

	F.30. pgtrgm
	F.30.1. Trigram (or Trigraph) Concepts
	F.30.2. Functions and Operators
	F.30.3. Index Support
	F.30.4. Text Search Integration
	F.30.5. References
	F.30.6. Authors

	F.31. seg
	F.31.1. Rationale
	F.31.2. Syntax
	F.31.3. Precision
	F.31.4. Usage
	F.31.5. Notes
	F.31.6. Credits

	F.32. sepgsql
	F.32.1. Overview
	F.32.2. Installation
	F.32.3. Regression Tests
	F.32.4. GUC Parameters
	F.32.5. Features
	F.32.5.1. Controlled Object Classes
	F.32.5.2. DML Permissions
	F.32.5.3. DDL Permissions
	F.32.5.4. Trusted Procedures
	F.32.5.5. Dynamic Domain Transitions
	F.32.5.6. Miscellaneous

	F.32.6. Sepgsql Functions
	F.32.7. Limitations
	F.32.8. External Resources
	F.32.9. Author

	F.33. spi
	F.33.1. refint Functions for Implementing Referential Integrity
	F.33.2. timetravel Functions for Implementing Time Travel
	F.33.3. autoinc Functions for Autoincrementing Fields
	F.33.4. insertusername Functions for Tracking Who Changed a Table
	F.33.5. moddatetime Functions for Tracking Last Modification Time

	F.34. sslinfo
	F.34.1. Functions Provided
	F.34.2. Author

	F.35. tablefunc
	F.35.1. Functions Provided
	F.35.1.1. normalrand
	F.35.1.2. crosstab(text)
	F.35.1.3. crosstabN(text)
	F.35.1.4. crosstab(text, text)
	F.35.1.5. connectby

	F.35.2. Author

	F.36. tcn
	F.37. testparser
	F.37.1. Usage

	F.38. tsearch2
	F.38.1. Portability Issues
	F.38.2. Converting a pre8.3 Installation
	F.38.3. References

	F.39. unaccent
	F.39.1. Configuration
	F.39.2. Usage
	F.39.3. Functions

	F.40. uuidossp
	F.40.1. uuidossp Functions
	F.40.2. Author

	F.41. xml2
	F.41.1. Deprecation Notice
	F.41.2. Description of Functions
	F.41.3. xpathtable
	F.41.3.1. Multivalued Results

	F.41.4. XSLT Functions
	F.41.4.1. xsltprocess

	F.41.5. Author

	Appendix G. Additional Supplied Programs
	G.1. Client Applications
	oid2name
	Name
	Synopsis
	Description
	Options
	Notes
	Examples
	Author

	pgbench
	Name
	Synopsis
	Description
	Options
	Initialization Options
	Benchmarking Options
	Common Options

	Notes
	What is the Transaction Actually Performed in pgbench?
	Custom Scripts
	PerTransaction Logging
	PerStatement Latencies
	Good Practices

	vacuumlo
	Name
	Synopsis
	Description
	Options
	Notes
	Author

	G.2. Server Applications
	pgarchivecleanup
	Name
	Synopsis
	Description
	Options
	Notes
	Examples
	Author
	See Also

	pgstandby
	Name
	Synopsis
	Description
	Options
	Notes
	Examples
	Author
	See Also

	pgtestfsync
	Name
	Synopsis
	Description
	Options
	Author
	See Also

	pgtesttiming
	Name
	Synopsis
	Description
	Options
	Usage
	Interpreting results
	Measuring executor timing overhead
	Changing time sources
	Clock hardware and timing accuracy

	Author
	See Also

	pgupgrade
	Name
	Synopsis
	Description
	Options
	Usage
	Notes
	Limitations in Upgrading from PostgreSQL 8.3

	See Also

	Appendix H. External Projects
	H.1. Client Interfaces
	H.2. Administration Tools
	H.3. Procedural Languages
	H.4. Extensions

	Appendix I. The Source Code Repository
	I.1. Getting The Source via Git

	Appendix J. Documentation
	J.1. DocBook
	J.2. Tool Sets
	J.2.1. Linux RPM Installation
	J.2.2. FreeBSD Installation
	J.2.3. Debian Packages
	J.2.4. Manual Installation from Source
	J.2.4.1. Installing OpenJade
	J.2.4.2. Installing the DocBook DTD Kit
	J.2.4.3. Installing the DocBook DSSSL Style Sheets
	J.2.4.4. Installing JadeTeX

	J.2.5. Detection by configure

	J.3. Building The Documentation
	J.3.1. HTML
	J.3.2. Manpages
	J.3.3. Print Output via JadeTeX
	J.3.4. Overflow Text
	J.3.5. Print Output via RTF
	J.3.6. Plain Text Files
	J.3.7. Syntax Check

	J.4. Documentation Authoring
	J.4.1. Emacs/PSGML
	J.4.2. Other Emacs Modes

	J.5. Style Guide
	J.5.1. Reference Pages

	Appendix K. Acronyms
	Bibliography
	SQL Reference Books
	PostgreSQLspecific Documentation
	Proceedings and Articles

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

